Summary

dr shi

Dr Zhusheng Shi is a Research Fellow in the Department of Mechanical Engineering at Imperial College London. He received his BSc degree from Northeastern University and MSc degree from Central Iron and Steel Research Institute, China. He holds a PhD degree in Metallurgy and Materials from University of Birmingham. His research experiences include metal forming technologies, powder metallurgy, surface engineering, materials characterisation and modelling. His current research focuses on creep age forming of large aluminium alloy panels for aeronautical and high speed train applications, development of direct powder forging process, and microstructural control for aluminium die forging. He has published 70 papers. He is the manager of AVIC Centre for Structural Design and Manufacture and BIAM-Imperial Centre for Materials Characterisation, Processing and Modelling, and co-director of Shougang-Imperial Lab for lightweight steel based systems for impact resistant automotive applications.

Research keywords

Materials Modelling; Process simulation; Metal Forming Technologies; Creep Age Forming; Power Metallurgy; Die forging; Residual Stress; Aluminium Alloys; Nickel-based superalloy; Steels

Qualifications

  • BSc (Northeastern University, China)
  • MSc (Central Iron and Steel Research Institute, China)
  • PhD (University of Birmingham, UK)

Contact details

Tel: (+44) (0)2075 949546
Email: zhusheng.shi@imperial.ac.uk

 

Recent Publications

  1. W. Li, Y. Liu, S. Jiang, Q. Luan, Y. Li, B. Gu, Z. Shi*, ‘A study of thermomechanical behaviour and grain size evolution of AA7050 under hot forging conditions’, International Journal of Lightweight Materials and Manufacture, in press.           https://doi.org/10.1016/j.ijlmm.2018.10.002
  2. Q. Rong*, Y. Li, X. Sun, Z. Shi, L. Meng, J. Lin, ‘Experimental studies of the efficient use of flexible tool in creep age forming’, Proceedings of the 5th International Conference on New Forming Technology (ICNFT2018), 18 - 21 September 2018, Bremen, Germany. MATEC Web of Conferences 190 (2018) 13002.      https://doi.org/10.1051/matecconf/201819013002
  3. Y. Li*, Y.-L. Yang, Q. Rong, Z. Shi, J. Lin, R. Said, ‘Effect of initial temper on mechanical properties of creep-aged Al-Cu-Li alloy AA2050’, Proceedings of the 5th International Conference on New Forming Technology (ICNFT2018), 18 - 21 September 2018, Bremen, Germany. MATEC Web of Conferences 190 (2018) 12006.       https://doi.org/10.1051/matecconf/201819012006
  4. Y. Li, Z. Shi*, Y.-L. Yang, J. Lin, R. Said, ‘Experimental and numerical study of creep age forming of AA2050 plates with sparse multi-point flexible forming tool’, Procedia Manufacturing, 15 (2018) 1016–1023. https://doi.org/10.1016/j.promfg.2018.07.392
  5. T.-F., Chung, Y.-L. Yang, C.-N. Hsiao, W.-C. Li, B.-M. Huang, C.-S. Tsao, Z. Shi, J. Lin, P.E Fischione, T. Ohmura, J.-R. Yang*, ‘Morphological evolution of GP zones and nanometer-sized precipitates in the AA2050 aluminium alloy’, International Journal of Lightweight Materials and Manufacture, 1 (2018) 142-156.           https://doi.org/10.1016/j.ijlmm.2018.06.002
  6. Y. Li, Z. Shi*, J. Lin, Y.-L. Yang, P. Saillard, R. Said, ‘Effect of machining-induced residual stress on springback of creep age formed AA2050 plates with asymmetric creep-ageing behaviour’, International Journal of Machine Tools and Manufacture, 132 (2018) 113-122. https://doi.org/10.1016/j.ijmachtools.2018.05.003
  7. W. Zhou, Z. Shi*, J. Lin, ‘Upper bound analysis of differential velocity sideways extrusion process for curved profiles using a fan-shaped flow line model’, International Journal of Lightweight Materials and Manufacture, 1 (2018) 21-32.       https://doi.org/10.1016/j.ijlmm.2018.03.004
  8. Y. Li, Z. Shi*, J. Lin, Y.-L. Yang, P. Saillard, R. Said, ‘FE simulation of asymmetric creep-ageing behaviour of AA2050 and its application to creep age forming’, International Journal of Mechanical Sciences, 140 (2018) 228–240. https://doi.org/10.1016/j.ijmecsci.2018.03.003
  9. T.-F. Chung, Y.-L. Yang*, B.-M. Huang, Z. Shi, J. Lin, T.  Ohmura, J.-R. Yang*, ‘Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy’, Acta Materialia, 149 (2018) 377-387.  https://doi.org/10.1016/j.actamat.2018.02.045
  10. S.Z. Chavoshi, J. Jiang, Y. Wang, S. Fang, S. Wang, Z. Shi*, J. Lin, ‘Density-based constitutive modelling of P/M FGH96 for powder forging’, International Journal of Mechanical Sciences, 138–139 (2018) 110-121.           https://doi.org/10.1016/j.ijmecsci.2018.02.003
  11. R. Pan, Z. Shi*, C.M. Davies, C. Li, M. Kaye and J. Lin, ‘An integrated modelling method for residual stress removal through multiple cold forging operations in manufacturing extra large AA7050 T-section panels’. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232 (2018) 1319-1330.       http://doi.org/10.1177/0954405416673097  
  12. Z. Shao, Q. Bai*, N. Li, J. Lin, Z. Shi, M. Stanton, D. Watson and T. A. Dean, ‘Experimental investigation of forming limit curves and deformation features in warm forming of an aluminium alloy’. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232 (2018) 465-474.      http://doi.org/10.1177/0954405416645776 
  13. Y. Li*, Z. Shi, Y.-L. Yang, Q. Rong, R. Said and P. Saillar, ‘Effects of asymmetric creep-ageing behaviour on springback of AA2050-T34 after creep age forming’, Procedia Engineering, 207 (2017) 287–292. https://doi.org/10.1016/j.proeng.2017.10.776
  14. Y.-L. Yang*, Z. Shi, Y. Li, Q. Rong, R. Said, ‘Experimental studies and constitutive modelling of anelastic creep recovery during creep age forming’, Procedia Engineering, 207 (2017), 275–280. https://doi.org/10.1016/j.proeng.2017.10.774
  15. F. Lyu*, X. Huang, Y. Zeng, Z. Shi, M. Wang, ‘Numerical simulation for creep age forming of aluminium alloy 7050 saddle-shaped part’, Procedia Engineering, 207 (2017), 299–304. https://doi.org/10.1016/j.proeng.2017.10.778
  16. Q. Rong*, Z. Shi, X. Li, X. Sun, Y. Li, Y.-L. Yang, L. Meng, J. Lin, ‘Experimental studies and constitutive modelling of AA6082 in stress-relaxation age forming conditions’, Procedia Engineering, 207 (2017), 293–298. https://doi.org/10.1016/j.proeng.2017.10.777
  17. Z. Shi*, L. Wang, M. Mohamed, D.S. Balint, J. Lin, M. Stanton, D. Watson, T.A. Dean, ‘A new design of friction test rig and determination of friction coefficient when warm forming an aluminium alloy’, Procedia Engineering, 207 (2017) 2274–2279.       https://doi.org/10.1016/j.proeng.2017.10.994
  18. Y. Li, Z. Shi*, J. Lin, Y.-L. Yang, Q. Rong, ‘Extended application of a unified creep-ageing constitutive model to multistep heat treatment of aluminium alloys’, Materials & Design, 122 (2017) 422-432. http://doi.org/10.1016/j.matdes.2017.03.023  
  19. Y. Li, Z. Shi, J. Lin*, Y.-L. Yang, Q. Rong, B.-M. Huang, T.-F. Chung, C.-S. Tsao, J.-R. Yang and D.S. Balint, ‘A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy’, International Journal of Plasticity, 89 (2017) 130-149. http://doi.org/10.1016/j.ijplas.2016.11.007
  20. Q. Bai, M. Mohamed*, Z. Shi, J. Lin and T. Dean, ‘Application of a continuum damage mechanics (CDM)-based model for predicting formability of warm formed aluminium alloy’, International Journal of Advanced Manufacturing Technology, 88 (2017) 3437–3446, http://doi.org/10.1007/s00170-016-8853-4
  21. Y. Li*, Z. Shi, Y.-L. Yang, J. Lin, ‘Investigation of Tensile and Compressive Creep Behaviour of AA2050-T34 During Creep Age Forming Process’, Key Engineering Materials, 716 (2016) 323-330. http://doi.org/10.4028/www.scientific.net/KEM.716.323
  22. M. Mohamed*, S. Elatriby, Z. Shi and J. Lin, ‘Prediction of Forming Limit Diagram for AA5754 using Artificial Neural Network Modelling’, Key Engineering Materials, 716 (2016) 770-778. http://doi.org/10.4028/www.scientific.net/KEM.716.770
  23. S. Fang, Z. Shi*, Q. Bai, J. Jiang, S. Wang and J. Lin, ‘An Investigation of Direct Powder Forging of Nickel Superalloy FGH96’, Key Engineering Materials, 716 (2016) 793-799. http://doi.org/10.4028/www.scientific.net/KEM.716.793
  24. R. Pan*, C.M. Davies, W. Zhang, Z. Shi, T. Pirling and J. Lin, ‘The Effectiveness of Cold Rolling for Residual Stress Reduction in Quenched 7050 Aluminium Alloy Forgings’, Key Engineering Materials, 716 (2016) 521-527.    http://doi.org/10.4028/www.scientific.net/KEM.716.521
  25. S. Wang, S. Fang, Z. Shi*, J. Jiang, X. Zhou and J. Lin, ‘Direct Powder Forging of PM Nickel-based Superalloy: Densification and Recrystallisation’, International Journal of Advanced Manufacturing Technology, 88 (2017) 2661-2670.           http://doi.org/10.1007/s00170-016-8966-9
  26. Y.-L. Yang*, A.C.L. Lam, Z. Shi, J. Lin, R. Said ‘Constitutive modelling of creep-ageing behaviour of peak-aged aluminium alloy 7050’, Proceedings of the 4th International Conference on New Forming Technology (ICNFT2015), 6 - 9 August 2015, Glasgow, UK. MATEC Web of Conferences 21 (2015) 12008.      http://doi.org/10.1051/matecconf/20152112008
  27. A.C.L. Lam, Z. Shi*, X. Huang, Y. Yang, Y. Zeng, J. Lin, ‘Material modelling for creep-age forming of 7B04 aluminium alloy’, Proceedings of the 4th International Conference on New Forming Technology (ICNFT2015), 6 - 9 August 2015, Glasgow, UK. MATEC Web of Conferences 21 (2015) 12006. http://doi.org/10.1051/matecconf/20152112006
  28. Y. Li, Z. Shi*, J. Lin, Y.-L. Yang, B.-M. Huang, T.-F. Chung and J.-R. Yang, ‘Experimental investigation of tension and compression creep-ageing behaviour of AA2050 with different initial tempers’, Materials Science and Engineering A, 657 (2016) 299–308.           http://doi.org/10.1016/j.msea.2016.01.074
  29. A.C.L. Lam, Z. Shi*, X. Huang, Y. Yang, Y. Zeng, J. Lin, ‘Material modelling and its application to creep-age forming of aluminium alloy 7B04’, Manufacturing Review, 2 (2015) 19. http://doi.org/10.1051/mfreview/2015022
  30. A.C.L. Lam, Z. Shi, J. Lin* and X. Huang, ‘Influences of residual stresses and initial distortion on springback prediction of 7B04-T651 aluminium plates in creep-age forming’, International Journal of Mechanical Sciences, 103 (2015) 115–126.         http://doi.org/10.1016/j.ijmecsci.2015.09.004
  31. M. Mohamed*, Z. Shi, J. Lin, T. Dean, J. Dear,Strain-based continuum damage mechanics model for predicting FLC of AA5754 under warm forming conditions’, Applied Mechanics and Materials, 784 (2015) 460-467.    http://doi.org/10.4028/www.scientific.net/AMM.784.460
  32. A.C.L. Lam, Z. Shi, J. Lin*, T.A. Dean, X. Huang and Y. Zeng, ‘A method for designing lightweight and flexible creep-age forming tools using mechanical splines and sparse controlling points’. International Journal of Advanced Manufacturing Technology, 80 (2015) 361-372. http://doi.org/10.1007/s00170-015-6982-9
  33. A.C.L. Lam, Z. Shi*, H. Yang, L. Wan, C.M. Davies, J. Lin and S. Zhou, ‘Creep-age forming AA2219 plates with different stiffener designs and pre-form age conditions: experimental and finite element studies’, Journal of Materials Processing Technology, 219 (2015) 155–163. http://doi.org/10.1016/j.jmatprotec.2014.12.012