Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Garner A, van Arkel RJ, Cobb J, 2019,

    Classification of combined partial knee arthroplasty

    , Bone and Joint Journal, Vol: 101B, Pages: 922-928, ISSN: 2049-4394

    AimsThere has been a recent resurgence in interest in combined partial knee arthroplasty (PKA) as an alternative to total knee arthroplasty (TKA). The varied terminology used to describe these procedures leads to confusion and ambiguity in communication between surgeons, allied health professionals, and patients. A standardized classification system is required for patient safety, accurate clinical record-keeping, clear communication, correct coding for appropriate remuneration, and joint registry data collection.Materials and MethodsAn advanced PubMed search was conducted, using medical subject headings (MeSH) to identify terms and abbreviations used to describe knee arthroplasty procedures. The search related to TKA, unicompartmental (UKA), patellofemoral (PFA), and combined PKA procedures. Surveys were conducted of orthopaedic surgeons, trainees, and biomechanical engineers, who were asked which of the descriptive terms and abbreviations identified from the literature search they found most intuitive and appropriate to describe each procedure. The results were used to determine a popular consensus.ResultsSurvey participants preferred “bi-unicondylar arthroplasty” (Bi-UKA) to describe ipsilateral medial and lateral unicompartmental arthroplasty; “medial bi-compartmental arthroplasty” (BCA-M) to describe ipsilateral medial unicompartmental arthroplasty with patellofemoral arthroplasty; “lateral bi-compartmental arthroplasty” (BCA-L) to describe ipsilateral lateral unicompartmental arthroplasty with patellofemoral arthroplasty; and tri-compartmental arthroplasty (TCA) to describe ipsilateral patellofemoral and medial and lateral unicompartmental arthroplasties. “Combined partial knee arthroplasty” (CPKA) was the favoured umbrella term.ConclusionWe recommend bi-unicondylar arthroplasty (Bi-UKA), medial bicompartmental arthroplasty (BCA-M), lateral bicompartmental arthroplasty (BCA-L), and tricompartmental arthroplasty (

  • Journal article
    Lord BR, El-Daou H, Zdanowicz U, Smigielski R, Amis AAet al., 2019,

    The role of fibers within the tibial attachment of the anterior cruciate ligament in restraining tibial displacement


    PurposeTo evaluate the load-bearing functions of the fibers of the anterior cruciate ligament (ACL) tibial attachment in restraining tibial anterior translation, internal rotation, and combined anterior and internal rotation laxities in a simulated pivot-shift test.MethodsTwelve knees were tested using a robot. Laxities tested were: anterior tibial translation (ATT), internal rotation (IR), and coupled translations and rotations during a simulated pivot-shift. The kinematics of the intact knee was replayed after sequentially transecting 9 segments of the ACL attachment and fibers entering the lateral gutter, measuring their contributions to restraining laxity. The center of effort (COE) of the ACL force transmitted to the tibia was calculated. A blinded anatomic analysis identified the densest fiber area in the attachment of the ACL and thus its centroid (center of area). This centroid was compared with the biomechanical COE.ResultsThe anteromedial tibial fibers were the primary restraint of ATT (84% across 0° to 90° flexion) and IR (61%) during isolated and coupled displacements, except for the pivot-shift and ATT in extension. The lateral gutter resisted 28% of IR at 90° flexion. The anteromedial fibers showed significantly greater restraint of simulated pivot-shift rotations than the central and posterior fibers (P < .05). No significant differences (all <2 mm) were found between the anatomic centroid of the C-shaped attachment and the COE under most loadings.ConclusionsThe peripheral anteromedial fibers were the most important area of the ACL tibial attachment in the restraint of tibial anterior translation and internal rotation during isolated and coupled displacements. These mechanical results matched the C-shaped anteromedial attachment of the dense collagen fibers of the ACL.Clinical RelevanceThe most important fibers in restraining tibial displacements attach to the C-shaped anteromedial area of the native ACL tibial attachment. This findi

  • Journal article
    Devitt BM, Lord BR, Williams A, Amis AA, Feller JAet al., 2019,

    Biomechanical assessment of a distally fixed lateral extra-articular augmentation procedure in the treatment of anterolateral rotational laxity of the knee

    , American Journal of Sports Medicine, Vol: 47, Pages: 2102-2109, ISSN: 0363-5465

    Background:Most lateral extra-articular tenodesis (LET) procedures rely on passing a strip of the iliotibial band (ITB) under the fibular (lateral) collateral ligament and fixing it proximally to the femur. The Ellison procedure is a distally fixed lateral extra-articular augmentation procedure with no proximal fixation of the ITB. It has the potential advantages of maintaining a dynamic element of control of knee rotation and avoiding the possibility of overconstraint.Hypothesis:The modified Ellison procedure would restore native knee kinematics after sectioning of the anterolateral capsule, and closure of the ITB defect would decrease rotational laxity of the knee.Study Design:Controlled laboratory study.Methods:Twelve fresh-frozen cadaveric knees were tested in a 6 degrees of freedom robotic system through 0° to 90° of knee flexion to assess anteroposterior, internal rotation (IR), and external rotation laxities. A simulated pivot shift (SPS) was performed at 0°, 15°, 30°, and 45° of flexion. Kinematic testing was performed in the intact knee and anterolateral capsule–injured knee and after the modified Ellison procedure, with and without closure of the ITB defect. A novel pulley system was used to load the ITB at 30 N for all testing states. Statistical analysis used repeated measures analyses of variance and paired t tests with Bonferroni adjustments.Results:Sectioning of the anterolateral capsule increased anterior drawer and IR during isolated displacement and with the SPS (mean increase, 2° of IR; P < .05). The modified Ellison procedure reduced both isolated and coupled IR as compared with the sectioned state (P < .05). During isolated testing, IR was reduced close to that of the intact state with the modified Ellison procedure, except at 30° of knee flexion, when it was slightly overconstrained. During the SPS, IR with the closed modified Ellison was less than that in the intact state at 15° and 30° of fl

  • Journal article
    Ghouse S, Reznikov N, Boughton OR, Babu S, Ng KCG, Blunn G, Cobb JP, Stevens MM, Jeffers JRTet al., 2019,

    The design and in vivo testing of a locally stiffness-matched porous scaffold

    , APPLIED MATERIALS TODAY, Vol: 15, Pages: 377-388, ISSN: 2352-9407
  • Journal article
    Boughton O, Ma S, Cai X, Yan L, Peralta L, Laugier P, Marrow J, Giuliani F, Hansen U, Abel R, Grimal Q, Cobb Jet al., 2019,

    Computed tomography porosity and spherical indentation for determining cortical bone millimetre-scale mechanical properties

    , Scientific Reports, Vol: 9, ISSN: 2045-2322

    The cortex of the femoral neck is a key structural element of the human body, yet there is not a reliable metric for predicting the mechanical properties of the bone in this critical region. This study explored the use of a range of non-destructive metrics to measure femoral neck cortical bone stiffness at the millimetre length scale. A range of testing methods and imaging techniques were assessed for their ability to measure or predict the mechanical properties of cortical bone samples obtained from the femoral neck of hip replacement patients. Techniques that can potentially be applied in vivo to measure bone stiffness, including computed tomography (CT), bulk wave ultrasound (BWUS) and indentation, were compared against in vitro techniques, including compression testing, density measurements and resonant ultrasound spectroscopy. Porosity, as measured by micro-CT, correlated with femoral neck cortical bone’s elastic modulus and ultimate compressive strength at the millimetre length scale. Large-tip spherical indentation also correlated with bone mechanical properties at this length scale but to a lesser extent. As the elastic mechanical properties of cortical bone correlated with porosity, we would recommend further development of technologies that can safely measure cortical porosity in vivo.Introduction

  • Journal article
    Athwal K, Milner P, Bellier G, Amis AAet al., 2019,

    Posterior capsular release is a biomechanically safe procedure to perform in total knee arthroplasty

    , Knee Surgery, Sports Traumatology, Arthroscopy, Vol: 27, Pages: 1587-1594, ISSN: 0942-2056

    PurposeSurgeons may attempt to strip the posterior capsule from its femoral attachment to overcome flexion contracture in total knee arthroplasty (TKA); however, it is unclear if this impacts anterior–posterior (AP) laxity of the implanted knee. The aim of the study was to investigate the effect of posterior capsular release on AP laxity in TKA, and compare this to the restraint from the posterior cruciate ligament (PCL).MethodsEight cadaveric knees were mounted in a six degree of freedom testing rig and tested at 0°, 30°, 60° and 90° flexion with ± 150 N AP force, with and without a 710 N axial compressive load. After the native knee was tested, a deep dished cruciate-retaining TKA was implanted and the tests were repeated. The PCL was then cut, followed by releasing the posterior capsule using a curved osteotome.ResultsWith 0 N axial load applied, cutting the PCL as well as releasing the posterior capsule significantly increased posterior laxity compared to the native knee at all flexion angles, and CR TKA states at 30°, 60° and 90° (p < 0.05). However, no significant increase in laxity was found between cutting the PCL and subsequent PostCap release (n.s.). In anterior drawer, there was a significant increase of 1.4 mm between cutting the PCL and PostCap release at 0°, but not at any other flexion angles (p = 0.021). When a 710 N axial load was applied, there was no significant difference in anterior or posterior translation across the different knee states (n.s.).ConclusionsPosterior capsular release only caused a small change in AP laxity compared to cutting the PCL and, therefore, may not be considered detrimental to overall AP stability if performed during TKA surgery.Level of evidenceControlled laboratory study.

  • Journal article
    Amis AA, 2019,

    Editorial commentary: taking a wider view during anterior cruciate ligament reconstruction? the case for doing more than just reconstructing the anterior cruciate ligament itself


    Anterior cruciate ligament reconstruction may leave a residual instability. If other pathology is identified, the surgeon should consider doing more than the isolated anterior cruciate ligament reconstruction to address peripheral lesions to the menisci, ligaments, and capsule in selected cases.

  • Journal article
    Kedroff L, Galea Holmes MN, Amis A, Newham DJet al., 2019,

    Effect of patellofemoral pain on foot posture and walking kinematics

    , Gait and Posture, Vol: 70, Pages: 361-369, ISSN: 0966-6362

    Background Excessive pronation has been implicated in patellofemoral pain (PFP) aetiology and foot orthoses are commonly prescribed for PFP patients. Pronation can be assessed using foot posture tests, however, the utility of such tests depends on their association with foot and lower-limb kinematics. Research questions Do PFP participants compared with healthy participants (1) have a more pronated foot measured with static foot tests and a kinematic multi-segmental foot model and (2) is there an association between static foot posture and foot and lower limb kinematics during walking? Methods A case-control study including 22 participants (n = 11 PFP, 5 females per group, aged 24 ± 3 (mean ± SD) years) was conducted. Foot posture measures included Arch Height Ratio, Navicular Drop (ND), and Foot Posture Index. Between-group comparisons of foot posture, segment and joint angle magnitudes, and associations between foot posture and kinematic data during gait were evaluated. Results There were no group differences in foot posture tests and mean joint angles. PFP participants had greater internal rotation of the shank and rearfoot segments, and adduction of the mid- and forefoot in the transverse plane (all p < 0.05). Greater ND was associated with increased forefoot abduction (rho=-0.68, p = 0.02) in healthy participants but no relationships were found between foot posture and kinematics in PFP participants. Significance Foot posture and kinematic data did not indicate excessive pronation in PFP participants questioning the use of orthoses to correct pronation. Larger studies are needed to determine the utility of foot posture tests as indicators of gait abnormalities in PFP.

  • Journal article
    Logishetty K, van Arkel RJ, Ng KCG, Muirhead-Allwood SK, Cobb JP, Jeffers JRTet al., 2019,

    Hip capsule biomechanics after arthroplasty THE EFFECT OF IMPLANT, APPROACH, AND SURGICAL REPAIR

    , BONE & JOINT JOURNAL, Vol: 101B, Pages: 426-434, ISSN: 2049-4394
  • Journal article
    Ng KCG, Daou HE, Bankes MJK, Rodriguez y Baena F, Jeffers JRTet al., 2019,

    Hip Joint Torsional Loading Before and After Cam Femoroacetabular Impingement Surgery

    , AMERICAN JOURNAL OF SPORTS MEDICINE, Vol: 47, Pages: 420-430, ISSN: 0363-5465
  • Journal article
    Reznikov N, Boughton OR, Ghouse S, Weston AE, Collinson L, Blunn GW, Jeffers JRT, Cobb JP, Stevens MMet al., 2019,

    Individual response variations in scaffold-guided bone regeneration are determined by independent strain- and injury-induced mechanisms

    , BIOMATERIALS, Vol: 194, Pages: 183-194, ISSN: 0142-9612
  • Journal article
    Doyle R, Boughton O, Plant D, Desoutter G, Cobb JP, Jeffers JRTet al., 2019,

    An in vitro model of impaction during hip arthroplasty

    , JOURNAL OF BIOMECHANICS, Vol: 82, Pages: 220-227, ISSN: 0021-9290
  • Journal article
    El Daou H, Ng KCG, Van Arkel R, Jeffers JRT, Rodriguez y Baena Fet al., 2019,

    Robotic hip joint testing: Development and experimental protocols

    , MEDICAL ENGINEERING & PHYSICS, Vol: 63, Pages: 57-62, ISSN: 1350-4533
  • Journal article
    Getgood A, Brown C, Lording T, Amis AA, Claes S, Geeslin A, Musahl Vet al., 2019,

    The anterolateral complex of the knee: results from the international ALC consensus group meeting

    , Knee Surgery, Sports Traumatology, Arthroscopy, Vol: 27, Pages: 166-176, ISSN: 0942-2056

    The structure and function of the anterolateral complex (ALC) of the knee has created much controversy since the ‘re-discovery’ of the anterolateral ligament (ALL) and its proposed role in aiding control of anterolateral rotatory laxity in the anterior cruciate ligament (ACL) injured knee. A group of surgeons and researchers prominent in the field gathered to produce consensus as to the anatomy and biomechanical properties of the ALC. The evidence for and against utilisation of ALC reconstruction was also discussed, generating a number of consensus statements by following a modified Delphi process. Key points include that the ALC consists of the superficial and deep aspects of the iliotibial tract with its Kaplan fibre attachments on the distal femur, along with the ALL, a capsular structure within the anterolateral capsule. A number of structures attach to the area of the Segond fracture including the capsule-osseous layer of the iliotibial band, the ALL and the anterior arm of the short head of biceps, and hence it is not clear which is responsible for this lesion. The ALC functions to provide anterolateral rotatory stability as a secondary stabiliser to the ACL. Whilst biomechanical studies have shown that these structures play an important role in controlling stability at the time of ACL reconstruction, the optimal surgical procedure has not yet been defined clinically. Concern remains that these procedures may cause constraint of motion, yet no clinical studies have demonstrated an increased risk of osteoarthritis development. Furthermore, clinical evidence is currently lacking to support clear indications for lateral extra-articular procedures as an augmentation to ACL reconstruction. The resulting statements and scientific rationale aim to inform readers on the most current thinking and identify areas of needed basic science and clinical research to help improve patient outcomes following ACL injury and subsequent reconstruction.

  • Journal article
    Kedgley AE, Saw TH, Segal NA, Hansen UN, Bull AMJ, Masouros SDet al., 2019,

    Predicting meniscal tear stability across knee-joint flexion using finite-element analysis

    , Knee Surgery, Sports Traumatology, Arthroscopy, Vol: 27, Pages: 206-214, ISSN: 0942-2056

    Purpose: To analyse the stress distribution through longitudinal and radial meniscal tears in three tear locations in weight-bearing conditions and use it to ascertain the impact of tear location and type on the potential for healing of meniscal tears. Methods: Subject-specific finite-element models of a healthy knee under static loading at 0°, 20°, and 30° knee flexion were developed from unloaded magnetic resonance images and weight-bearing, contrast-enhanced computed tomography images. Simulations were then run after introducing tears into the anterior, posterior, and midsections of the menisci. Results: Absolute differences between the displacements of anterior and posterior segments modelled in the intact state and those quantified from in vivo weight-bearing images were less than 0.5 mm. There were tear-location-dependent differences between hoop stress distributions along the inner and outer surfaces of longitudinal tears; the longitudinal tear surfaces were compressed together to the greatest degree in the lateral meniscus and were most consistently in compression on the midsections of both menisci. Radial tears resulted in an increase in stress at the tear apex and in a consistent small compression of the tear surfaces throughout the flexion range when in the posterior segment of the lateral meniscus. Conclusions: Both the type of meniscal tear and its location within the meniscus influenced the stresses on the tear surfaces under weight bearing. Results agree with clinical observations and suggest reasons for the inverse correlation between longitudinal tear length and healing, the inferior healing ability of medial compared with lateral menisci, and the superior healing ability of radial tears in the posterior segment of the lateral meniscus compared with other radial tears. This study has shown that meniscal tear location in addition to type likely plays a crucial role in dictating the success of non-operative treatment of the menisci. T

  • Journal article
    Correa T, Pal B, van Arkel R, Vanacore F, Amis AAet al., 2018,

    Reduced tibial strain-shielding with extraosseous total knee arthroplasty revision system

    , Medical Engineering and Physics, Vol: 62, Pages: 22-28, ISSN: 1350-4533

    BackgroundRevision total knee arthroplasty (RTKA) has poorer results than primary total knee arthroplasty (TKA), and the prostheses are invasive and cause strain-shielding of the bones near the knee. This paper describes an RTKA system with extracortical fixation. It was hypothesised that this would reduce strain-shielding compared with intramedullary fixation.MethodsTwelve replica tibiae were prepared for full-field optical surface strain analysis. They were either left intact, implanted with RTKA components with cemented intramedullary fixation stems, or implanted with a novel design with a tibial tray subframe supported by two extracortical fixation plates and screw fixation. They were loaded to simulate peak walking and stair climbing loads and the surface strains were measured using digital image correlation. The measurements were validated with strain gauge rosettes.ResultsCompared to the intact bone model, extracortical fixation reduced surface strain-shielding by half versus intramedullary fixation. For all load cases and bone regions examined, the extracortical implant shielded 8–27% of bone strain, whereas the intramedullary component shielded 37–56%.ConclusionsThe new fixation design, which offers less bone destruction than conventional RTKA, also reduced strain-shielding. Clinically, this design may allow greater rebuilding of bone loss, and should increase long-term fixation.

  • Journal article
    Stephen JM, Sopher R, Tullie S, Amis AA, Ball S, Williams Aet al., 2018,

    The infrapatellar fat pad is a dynamic and mobile structure, which deforms during knee motion, and has proximal extensions which wrap around the patella

    , Knee Surgery, Sports Traumatology, Arthroscopy, Vol: 26, Pages: 3515-3524, ISSN: 0942-2056

    PURPOSE: The infrapatellar fat pad (IFP) is a common cause of knee pain and loss of knee flexion and extension. However, its anatomy and behavior are not consistently defined. METHODS: Thirty-six unpaired fresh frozen knees (median age 34 years, range 21-68) were dissected, and IFP attachments and volume measured. The rectus femoris was elevated, suprapatellar pouch opened and videos recorded looking inferiorly along the femoral shaft at the IFP as the knee was flexed. The patellar retinacula were incised and the patella reflected distally. The attachment of the ligamentum mucosum (LMuc) to the intercondylar notch was released from the anterior cruciate ligament (ACL), both menisci and to the tibia via meniscotibial ligaments. IFP strands projecting along both sides of the patella were elevated and the IFP dissected from the inferior patellar pole. Magnetic resonance imaging (MRI) of one knee at ten flexion angles was performed and the IFP, patella, tibia and femur segmented. RESULTS: In all specimens the IFP attached to the inferior patellar pole, femoral intercondylar notch (via the LMuc), proximal patellar tendon, intermeniscal ligament, both menisci and the anterior tibia via the meniscotibial ligaments. In 30 specimens the IFP attached to the anterior ACL fibers via the LMuc, and in 29 specimens it attached directly to the central anterior tibia. Proximal IFP extensions were identified alongside the patella in all specimens and visible on MRI [medially (100% of specimens), mean length 56.2 ± 8.9 mm, laterally (83%), mean length 23.9 ± 6.2 mm]. Mean IFP volume was 29.2 ± 6.1 ml. The LMuc, attached near the base of the middle IFP lobe, acting as a 'tether' drawing it superiorly during knee extension. The medial lobe consistently had a pedicle superomedially, positioned between the patella and medial trochlea. MRI scans demonstrated how the space between the anterior tibia and patellar t

  • Journal article
    Inderhaug E, Stephen JM, Williams A, Amis AAet al., 2018,

    Effect of anterolateral complex sectioning and tenodesis on patellar kinematics and patellofemoral joint contact pressures

    , American Journal of Sports Medicine, Vol: 46, Pages: 2922-2928, ISSN: 0363-5465

    Background:Anterolateral complex injuries are becoming more recognized. While these are known to affect tibiofemoral mechanics, it is not known how they affect patellofemoral joint behavior.Purpose:To determine the effect of (1) sectioning the anterolateral complex and (2) performing a MacIntosh tenodesis under various conditions on patellofemoral contact mechanics and kinematics.Study Design:Controlled laboratory study.Methods:Eight fresh-frozen cadaveric knees were tested in a customized rig, with the femur fixed and tibia free to move, with optical tracking to record patellar kinematics and with thin pressure sensors to record patellofemoral contact pressures at 0°, 30°, 60°, and 90° of knee flexion. The quadriceps and iliotibial tract were loaded with 205 N throughout testing. Intact and anterolateral complex–sectioned states were tested, followed by 4 randomized tenodeses applying 20- and 80-N graft tension, each with the tibia in its neutral intact alignment or left free to rotate. Statistical analyses were undertaken with repeated measures analysis of variance, Bonferroni post hoc analysis, and paired samples t tests.Results:Patellar kinematics and contact pressures were not significantly altered after sectioning of the anterolateral complex (all: P > .05). Similarly, they were not significantly different from the intact knee in tenodeses performed when fixed tibial rotation was combined with 20- or 80-N graft tension (all: P > .05). However, grafts tensioned with 20 N and 80 N while the tibia was free hanging resulted in significant increases in lateral patellar tilt (P < .05), and significantly elevated lateral peak patellofemoral pressures (P < .05) were observed for 80 N.Conclusion:This work did not find that an anterolateral injury altered patellofemoral mechanics or kinematics, but adding a lateral tenodesis can elevate lateral contact pressures and induce lateral patellar tilting if the tibia is pulled into external ro

  • Journal article
    Hoogeslag RAG, Brouwer RW, Huis In 't Veld R, Stephen JM, Amis AAet al., 2018,

    Dynamic augmentation restores anterior tibial translation in ACL suture repair: a biomechanical comparison of non-, static and dynamic augmentation techniques

    , Knee Surgery, Sports Traumatology, Arthroscopy, Vol: 26, Pages: 2986-2996, ISSN: 0942-2056

    PURPOSE: There is a lack of objective evidence investigating how previous non-augmented ACL suture repair techniques and contemporary augmentation techniques in ACL suture repair restrain anterior tibial translation (ATT) across the arc of flexion, and after cyclic loading of the knee. The purpose of this work was to test the null hypotheses that there would be no statistically significant difference in ATT after non-, static- and dynamic-augmented ACL suture repair, and they will not restore ATT to normal values across the arc of flexion of the knee after cyclic loading. METHODS: Eleven human cadaveric knees were mounted in a test rig, and knee kinematics from 0° to 90° of flexion were recorded by use of an optical tracking system. Measurements were recorded without load and with 89-N tibial anterior force. The knees were tested in the following states: ACL-intact, ACL-deficient, non-augmented suture repair, static tape augmentation and dynamic augmentation after 10 and 300 loading cycles. RESULTS: Only static tape augmentation and dynamic augmentation restored ATT to values similar to the ACL-intact state directly postoperation, and maintained this after cyclic loading. However, contrary to dynamic augmentation, the ATT after static tape augmentation failed to remain statistically less than for the ACL-deficient state after cyclic loading. Moreover, after cyclic loading, ATT was significantly less with dynamic augmentation when compared to static tape augmentation. CONCLUSION: In contrast to non-augmented ACL suture repair and static tape augmentation, only dynamic augmentation resulted in restoration of ATT values similar to the ACL-intact knee and decreased ATT values when compared to the ACL-deficient knee immediately post-operation and also after cyclic loading, across the arc of flexion, thus allowing the null hypotheses to be rejected. This may assist healing of the ruptured ACL. Therefore, this study would support further clinical evaluation of dyna

  • Journal article
    Stephen J, Alva A, Lumpaopong P, Williams A, Amis AAet al., 2018,

    A cadaveric model to evaluate the effect of unloading the medial quadriceps on patellar tracking and patellofemoral joint pressure and stability

    , Journal of Experimental Orthopaedics, Vol: 5, ISSN: 2197-1153

    BackgroundVastus Medialis Muscles (VMM) damage has been widely identified following patellar dislocation. Rehabilitation programmes have been suggested to strengthen the VMM and reduce clinical symptoms of pain and instability. This controlled laboratory study investigated the hypothesis that reduced Vastus Medialis Obliquus (VMO) and Vastus Medialis Longus (VML) muscle tension would alter patellar tracking, stability and PFJ contact pressures.MethodsNine fresh-frozen dissected cadaveric knees were mounted in a rig with the quadriceps and iliotibial band loaded to 205 N. An optical tracking system measured joint kinematics and pressure sensitive film between the patella and trochlea measured PFJ contact pressures. Measurements were repeated for three conditions: 1. With all quadriceps heads and iliotibial band (ITB) loaded; 2. as 1, but with the VMO muscle unloaded and 3. as 1, but with the VMO and VML unloaded. Measurements were also repeated for the three conditions with a 10 N lateral displacement force applied to the patella.ResultsReduction of VMM tension resulted in significant increases in lateral patellar tilt (2.8°) and translation (4 mm), with elevated lateral and reduced medial joint contact pressures from 0.48 to 0.14 MPa, and reduced patellar stability (all p < 0.05).ConclusionsThese findings provide basic scientific rationale to support the role of quadriceps strengthening to resist patellar lateral maltracking and rebalance the articular contact pressure away from the lateral facet in patients with normal patellofemoral joint anatomy.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=541&limit=20&page=3&respub-action=search.html Current Millis: 1642776980331 Current Time: Fri Jan 21 14:56:20 GMT 2022