Publications from our Researchers

Several of our current PhD candidates and fellow researchers at the Data Science Institute have published, or in the proccess of publishing, papers to present their research.  


BibTex format

author = {Rocher, L and Hendrickx, J and de, Montjoye Y-A},
doi = {10.1038/s41467-019-10933-3},
journal = {Nature Communications},
title = {Estimating the success of re-identifications in incomplete datasets using generative models},
url = {},
volume = {10},
year = {2019}

RIS format (EndNote, RefMan)

AB - While rich medical, behavioral, and socio-demographic data are key to modern data-driven research, their collection and use raise legitimate privacy concerns. Anonymizing datasets through de-identification and sampling before sharing them has been the main tool used to address those concerns. We here propose a generative copula-based method that can accurately estimate the likelihood of a specific person to be correctly re-identified, even in a heavily incomplete dataset. On 210 populations, our method obtains AUC scores for predicting individual uniqueness ranging from 0.84 to 0.97, with low false-discovery rate. Using our model, we find that 99.98% of Americans would be correctly re-identified in any dataset using 15 demographic attributes. Our results suggest that even heavily sampled anonymized datasets are unlikely to satisfy the modern standards for anonymization set forth by GDPR and seriously challenge the technical and legal adequacy of the de-identification release-and-forget model.
AU - Rocher,L
AU - Hendrickx,J
AU - de,Montjoye Y-A
DO - 10.1038/s41467-019-10933-3
PY - 2019///
SN - 2041-1723
TI - Estimating the success of re-identifications in incomplete datasets using generative models
T2 - Nature Communications
UR -
UR -
VL - 10
ER -