Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • CONFERENCE PAPER
    Jardine RJ, Merritt AS, Schroeder FC, 2015,

    The ICP design method and application to a North Sea offshore wind farm

    , Pages: 247-256, ISSN: 0895-0563

    © ASCE 2015. This paper outlines the Imperial College Pile (ICP) approach for developing reliable predictions for the axial capacity of driven piles. The ICP's advantages over traditional design methods have led to widespread use in offshore oil and gas developments. The methods are now playing a critical role in major Northern European offshore wind projects. Hundreds of large steel tubular piles are being driven in the North and Baltic seas and improving design efficiency is crucial to the industry's economic success. This paper provides an overview of the development of the ICP design methods and summarizes their key features, together with experience-based guidance on their application. Their application is illustrated by reference to the North Sea Borkum West II wind farm, where 40 turbines have been installed on steel tripods founded on large diameter steel piles driven in very dense sands. The paper reports how the significant effects of axial and lateral cyclic loading were addressed for Borkum West II through the ICP design methodology.

  • CONFERENCE PAPER
    Jardine RJ, Thomsen NV, Mygind M, Liingaard MA, Thilsted CLet al., 2015,

    Axial capacity design practice for North European wind-turbine projects

    , Pages: 581-586

    © 2015 Taylor & Francis Group, London. Improving foundation design is central to the offshore wind industry developing deeper water sites. This paper reviews the technical and regulatory difficulties for design of axially loaded piles to German offshore windfarm projects. It is argued that moving towards reliable forward predictive pile design methods and away from ‘dynamic proving tests’ will be vital to reducing unnecessarily high material and installation costs, installation risks and disturbance to marine mammals. Steps are outlined to implement such a change either in combination with regional or international load and resistance factors.

  • JOURNAL ARTICLE
    Jordan JR, Kimura S, Holland PR, Jenkins A, Piggott MDet al., 2015,

    On the Conditional Frazil Ice Instability in Seawater

    , JOURNAL OF PHYSICAL OCEANOGRAPHY, Vol: 45, Pages: 1121-1138, ISSN: 0022-3670
  • JOURNAL ARTICLE
    Lewis MM, Jackson CA-L, Gawthorpe RL, Whipp PSet al., 2015,

    Early synrift reservoir development on the flanks of extensional forced folds: A seismic-scale outcrop analog from the Hadahid fault system, Suez rift, Egypt

    , AAPG BULLETIN, Vol: 99, Pages: 985-1012, ISSN: 0149-1423
  • JOURNAL ARTICLE
    Maes J, Muggeridge AH, Jackson MD, Quintard M, Lapene Aet al., 2015,

    Scaling heat and mass flow through porous media during pyrolysis

    , HEAT AND MASS TRANSFER, Vol: 51, Pages: 313-334, ISSN: 0947-7411
  • JOURNAL ARTICLE
    Magee C, Duffy OB, Purnell K, Bell RE, Jackson CA-L, Reeve Met al., 2015,

    Fault-controlled fluid flow inferred from hydrothermal vents imaged in 3D seismic reflection data, offshore NW Australia

    , Basin Research, Vol: 28, Pages: 299-318, ISSN: 1365-2117

    Fluid migration pathways in the subsurface are heavily influenced by pre-existing faults. Although studies of active fluid-escape structures can provide insights into the relationships between faults and fluid flow, they cannot fully constrain the geometry of and controls on the contemporaneous subsurface fluid flow pathways. We use 3D seismic reflection data from offshore NW Australia to map 121 ancient hydrothermal vents, likely related to magmatic activity, and a normal fault array considered to form fluid pathways. The buried vents consist of craters up to 264 m deep, which host a mound of disaggregated sedimentary material up to 518 m thick. There is a correlation between vent alignment and underlying fault traces. Seismic-stratigraphic observations and fault kinematic analyses reveal that the vents were emplaced on an intra-Tithonian seabed in response to the explosive release of fluids hosted within the fault array. We speculate that during the Late Jurassic the convex-upwards morphology of the upper tip-lines of individual faults acted to channelize ascending fluids and control where fluid expulsion and vent formation occurred. This contribution highlights the usefulness of 3D seismic reflection data to constraining normal fault-controlled subsurface fluid flow.

  • JOURNAL ARTICLE
    Magee C, Maharaj SM, Wrona T, Jackson CA-Let al., 2015,

    Controls on the expression of igneous intrusions in seismic reflection data

    , GEOSPHERE, Vol: 11, Pages: 1024-1041, ISSN: 1553-040X
  • JOURNAL ARTICLE
    Martin-Short R, Hill J, Kramer SC, Avdis A, Allison PA, Piggott MDet al., 2015,

    .Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma

    , RENEWABLE ENERGY, Vol: 76, Pages: 596-607, ISSN: 0960-1481
  • CONFERENCE PAPER
    Martinez Calonge D, Gawecka KA, Zdravkovic L, Sim WW, Taborda DMGet al., 2015,

    Development of a new temperature-controlled triaxial apparatus for saturated soils

    , Pages: 3219-3224

    © The authors and ICE Publishing: All rights reserved, 2015. In recent years, the study of the Thermo-Hydro-Mechanical (THM) behaviour of geomaterials has become a growing area in geotechnical engineering due to the increasing interest in energy geostructures and underground nuclear waste disposal. Advanced laboratory testing is essential in gaining an understanding of the THM behaviour of soils and solving these complex geomechanical problems. This paper describes the development of a new triaxial apparatus at the Imperial College Geotechnics Laboratory, capable of testing saturated soils at temperatures up to 85°C and pressures up to 800kPa. In order to aid its design, numerical analysis of the thermal response of the cell was conducted using the Imperial College Finite Element Program (ICFEP) with its newly developed THM capabilities.

  • CONFERENCE PAPER
    Mason PJ, Ghail RC, Bischoff C, Skipper JAet al., 2015,

    Detecting and monitoring small-scale discrete ground movements across London, using Persistent Scatterer InSAR (PSI)

    , XVI ECSMGE, Publisher: ICE Publishing

    The geology of London is surprisingly poorly understood and, until recently, has been accepted as that of an unfaulted subsidingintraplate basin. The detection of deformation in such quiescent intraplate regions is, however, rather difficult since the movementrates are at least an order of magnitude less than those at plate margins. Growing evidence from across the capital indicates that London'sground conditions are considerably more complex than expected and that faulting is almost always involved.PSInSAR is a developing technique widely used to detect and monitor ground subsidence, especially in urban settings, the movements ofwhich may be up to tens of millimetres. This work focuses on the detection of smaller scale ground movements (of a few millimetres),which we believe are caused by fault-controlled intraplate adjustments, using PSInSAR.The London PSInSAR dataset derives from an imaging SAR archive spanning 18 years (1992 - 2000 and 2001 to 2010). Our preliminaryfindings have revealed systematic patterns of both vertical and horizontal ground displacement. These displacements appear to be faultconstrained and fit the predicted framework of Caledonian, Variscan/Alpine structures known to exist across southern Britain. More detailedanalysis has revealed some surprising patterns, which hint at discrete movements rather than continuous 'creep' over the 18 year period;we believe these are driven by basement faults beneath an inverting London basin.

  • JOURNAL ARTICLE
    Milbury C, Johnson BC, Melosh HJ, Collins GS, Blair DM, Soderblom JM, Nimmo F, Bierson CJ, Phillips RJ, Zuber MTet al., 2015,

    Preimpact porosity controls the gravity signature of lunar craters

    , GEOPHYSICAL RESEARCH LETTERS, Vol: 42, Pages: 9711-9716, ISSN: 0094-8276
  • JOURNAL ARTICLE
    Miljkovic K, Wieczorek MA, Collins GS, Solomon SC, Smith DE, Zuber MTet al., 2015,

    Excavation of the lunar mantle by basin-forming impact events on the Moon

    , EARTH AND PLANETARY SCIENCE LETTERS, Vol: 409, Pages: 243-251, ISSN: 0012-821X
  • JOURNAL ARTICLE
    Molkenthin C, Scherbaum F, Griewank A, Kuehn N, Stafford PJ, Leovey Het al., 2015,

    Sensitivity of Probabilistic Seismic Hazard Obtained by Algorithmic Differentiation: A Feasibility Study

    , BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, Vol: 105, Pages: 1810-1822, ISSN: 0037-1106
  • JOURNAL ARTICLE
    Monroy R, Zdravkovic L, Ridley AM, 2015,

    Mechanical behaviour of unsaturated expansive clay under K-0 conditions

    , ENGINEERING GEOLOGY, Vol: 197, Pages: 112-131, ISSN: 0013-7952
  • JOURNAL ARTICLE
    Morel CRG, van Reeuwijk M, Graf T, 2015,

    Systematic investigation of non-Boussinesq effects in variable-density groundwater flow simulations

    , JOURNAL OF CONTAMINANT HYDROLOGY, Vol: 183, Pages: 82-98, ISSN: 0169-7722
  • JOURNAL ARTICLE
    Mostaghimi P, Percival JR, Pavlidis D, Ferrier RJ, Gomes JLMA, Gorman GJ, Jackson MD, Neethling SJ, Pain CCet al., 2015,

    Anisotropic Mesh Adaptivity and Control Volume Finite Element Methods for Numerical Simulation of Multiphase Flow in Porous Media

    , MATHEMATICAL GEOSCIENCES, Vol: 47, Pages: 417-440, ISSN: 1874-8961
  • CONFERENCE PAPER
    Muxworthy AR, Bland PA, Collins G, Moore Jet al., 2015,

    MAGNETIC FABRICS IN ALLENDE: IMPLICATIONS FOR MAGNETIC REMANENCE ACQUISITION.

    , 78th Annual Meeting of the Meteoritical-Society, Publisher: WILEY-BLACKWELL, ISSN: 1086-9379
  • BOOK CHAPTER
    O Driscoll B, Ferré EC, Stevenson CTE, Magee Cet al., 2015,

    The significance of magnetic fabric in layered mafic-ultramafic intrusions

    , Layered Intrusions, Pages: 295-329, ISBN: 9789401796521

    © Springer Science+Business Media Dordrecht 2015. Anisotropy of magnetic susceptibility (AMS) has been recognised as a well-established fabric analysis tool for intrusive igneous rocks since the 1990s. The AMS technique provides directional information for magnetic foliation and magnetic lineation fabric components of the AMS ellipsoid, potentially coupled with a quantification of the overall fabric strength and geometry. The magnetic susceptibility (and therefore the AMS) of igneous rocks is often dominated by ferromagnetic mineral phases such as magnetite or low-Ti titanomagnetite, even where present in very minor amounts (e.g., ~ 0.1 vol.%). Fe-bearing silicates exhibit subordinate paramagnetic behaviour but are volumetrically much more important constituents of igneous rocks than Fe-Ti oxides, so may also contribute considerably to the AMS. A significant application of AMS is in the characterisation, constraint and quantification of very weak or subtle mineral fabrics related to flow or tectonic deformation. In particular, studies of magnetic fabrics in sheet intrusions and in granite plutons have enormously enhanced our understanding of the magma flow regimes and emplacement kinematics in these settings. Studies of AMS in layered maficultramafic intrusions have been comparatively sparse. This is despite the fact that magnetic fabrics from layered cumulates may provide information on a range of magma chamber processes, from initial magma emplacement to cumulate textural evolution and solidification, if accompanied by careful petrographic documentation and an understanding of the ‘magnetic mineralogy’ of the rock. A wide array of rock magnetic and complementary quantitative fabric analysis techniques can be employed to support an AMS dataset in this regard. With studies of layered mafic-ultramafic intrusions currently proceeding at unprecedented (micro-)scales of textural and geochemical detail, AMS offers petrologists a unique approach to invest

  • JOURNAL ARTICLE
    Ormoe J, Melero-Asensio I, Housen KR, Wuennemann K, Elbeshausen D, Collins GSet al., 2015,

    Scaling and reproducibility of craters produced at the Experimental Projectile Impact Chamber (EPIC), Centro de Astrobiologia, Spain

    , METEORITICS & PLANETARY SCIENCE, Vol: 50, Pages: 2067-2086, ISSN: 1086-9379
  • JOURNAL ARTICLE
    Ouimet W, Dethier D, Bierman P, Wyshnytzky C, Shea N, Rood DHet al., 2015,

    Spatial and temporal variations in meteoric Be-10 inventories and long-term deposition rates, Colorado Front Range

    , QUATERNARY SCIENCE REVIEWS, Vol: 109, Pages: 1-12, ISSN: 0277-3791

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=833&limit=20&page=7&respub-action=search.html Current Millis: 1513327131492 Current Time: Fri Dec 15 08:38:51 GMT 2017