A primary motivation of our research is the monitoring of physical, physiological, and biochemical parameters - in any environment and without activity restriction and behaviour modification - through using miniaturised, wireless Body Sensor Networks (BSN). Key research issues that are currently being addressed include novel sensor designs, ultra-low power microprocessor and wireless platforms, energy scavenging, biocompatibility, system integration and miniaturisation, processing-on-node technologies combined with novel ASIC design, autonomic sensor networks and light-weight communication protocols. Our research is aimed at addressing the future needs of life-long health, wellbeing and healthcare, particularly those related to demographic changes associated with an ageing population and patients with chronic illnesses. This research theme is therefore closely aligned with the IGHI’s vision of providing safe, effective and accessible technologies for both developed and developing countries.

Some of our latest works were exhibited at the 2015 Royal Society Summer Science Exhibition.


Citation

BibTex format

@inproceedings{Qiu:2019,
author = {Qiu, J and Lo, FPW and Sun, Y and Wang, S and Lo, B},
publisher = {British Machine Vision Conference},
title = {Mining discriminative food regions for accurate food recognition},
url = {http://hdl.handle.net/10044/1/79509},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Automatic food recognition is the very first step towards passive dietary monitoring. In this paper, we address the problem of food recognition by mining discriminative food regions. Taking inspiration from Adversarial Erasing, a strategy that progressively discovers discriminative object regions for weakly supervised semantic segmentation, we propose a novel network architecture in which a primary network maintains the base accuracy of classifying an input image, an auxiliary network adversarially mines discriminative food regions, and a region network classifies the resulting mined regions. The global (the original input image) and the local (the mined regions) representations are then integrated for the final prediction. The proposed architecture denoted as PAR-Net is end-to-end trainable, and highlights discriminative regions in an online fashion. In addition, we introduce a new fine-grained food dataset named as Sushi-50, which consists of 50 different sushi categories. Extensive experiments have been conducted to evaluate the proposed approach. On three food datasets chosen (Food-101, Vireo-172, andSushi-50), our approach performs consistently and achieves state-of-the-art results (top-1 testing accuracy of 90:4%, 90:2%, 92:0%, respectively) compared with other existing approaches.
AU - Qiu,J
AU - Lo,FPW
AU - Sun,Y
AU - Wang,S
AU - Lo,B
PB - British Machine Vision Conference
PY - 2019///
TI - Mining discriminative food regions for accurate food recognition
UR - http://hdl.handle.net/10044/1/79509
ER -