Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Conference paper
    Lertvittayakumjorn P, Toni F,

    Human-grounded evaluations of explanation methods for text classification

    , 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Publisher: ACL Anthology

    Due to the black-box nature of deep learning models, methods for explaining the models’ results are crucial to gain trust from humans and support collaboration between AIsand humans. In this paper, we consider several model-agnostic and model-specific explanation methods for CNNs for text classification and conduct three human-grounded evaluations, focusing on different purposes of explanations: (1) revealing model behavior, (2)justifying model predictions, and (3) helping humans investigate uncertain predictions.The results highlight dissimilar qualities of thevarious explanation methods we consider andshow the degree to which these methods couldserve for each purpose.

  • Journal article
    Čyras K, Birch D, Guo Y, Toni F, Dulay R, Turvey S, Greenberg D, Hapuarachchi Tet al., 2019,

    Explanations by arbitrated argumentative dispute

    , Expert Systems with Applications, Vol: 127, Pages: 141-156, ISSN: 0957-4174

    Explaining outputs determined algorithmically by machines is one of the most pressing and studied problems in Artificial Intelligence (AI) nowadays, but the equally pressing problem of using AI to explain outputs determined by humans is less studied. In this paper we advance a novel methodology integrating case-based reasoning and computational argumentation from AI to explain outcomes, determined by humans or by machines, indifferently, for cases characterised by discrete (static) features and/or (dynamic) stages. At the heart of our methodology lies the concept of arbitrated argumentative disputesbetween two fictitious disputants arguing, respectively, for or against a case's output in need of explanation, and where this case acts as an arbiter. Specifically, in explaining the outcome of a case in question, the disputants put forward as arguments relevant cases favouring their respective positions, with arguments/cases conflicting due to their features, stages and outcomes, and the applicability of arguments/cases arbitrated by the features and stages of the case in question. We in addition use arbitrated dispute trees to identify the excess features that help the winning disputant to win the dispute and thus complement the explanation. We evaluate our novel methodology theoretically, proving desirable properties thereof, and empirically, in the context of primary legislation in the United Kingdom (UK), concerning the passage of Bills that may or may not become laws. High-level factors underpinning a Bill's passage are its content-agnostic features such as type, number of sponsors, ballot order, as well as the UK Parliament's rules of conduct. Given high numbers of proposed legislation (hundreds of Bills a year), it is hard even for legal experts to explain on a large scale why certain Bills pass or not. We show how our methodology can address this problem by automatically providing high-level explanations of why Bills pass or not, based on the given Bills and the

  • Journal article
    Schaub MT, Delvenne JC, Lambiotte R, Barahona Met al., 2019,

    Multiscale dynamical embeddings of complex networks

    , Physical Review E, Vol: 99, Pages: 062308-1-062308-18, ISSN: 1539-3755

    Complex systems and relational data are often abstracted as dynamical processes on networks. To understand, predict, and control their behavior, a crucial step is to extract reduced descriptions of such networks. Inspired by notions from control theory, we propose a time-dependent dynamical similarity measure between nodes, which quantifies the effect a node-input has on the network. This dynamical similarity induces an embedding that can be employed for several analysis tasks. Here we focus on (i) dimensionality reduction, i.e., projecting nodes onto a low-dimensional space that captures dynamic similarity at different timescales, and (ii) how to exploit our embeddings to uncover functional modules. We exemplify our ideas through case studies focusing on directed networks without strong connectivity and signed networks. We further highlight how certain ideas from community detection can be generalized and linked to control theory, by using the here developed dynamical perspective.

  • Journal article
    Altuncu MT, Mayer E, Yaliraki SN, Barahona Met al., 2019,

    From free text to clusters of content in health records: An unsupervised graph partitioning approach

    , Applied Network Science, Vol: 4, ISSN: 2364-8228

    Electronic Healthcare records contain large volumes of unstructured data in different forms. Free text constitutes a large portion of such data, yet this source of richly detailed information often remains under-used in practice because of a lack of suitable methodologies to extract interpretable contentin a timely manner. Here we apply network-theoretical tools to the analysis of free text in Hospital Patient Incident reports in the English National Health Service, to find clusters of reports in an unsupervised manner and at different levels of resolution based directly on the free text descriptions contained within them. To do so, we combine recently developed deep neural network text-embedding methodologies based on paragraph vectors with multi-scale Markov Stability community detection applied to a similarity graph of documents obtained from sparsified text vector similarities. We showcase the approach with the analysis of incident reports submitted in Imperial College Healthcare NHS Trust, London. The multiscale community structure reveals levels of meaning with different resolution in the topics of the dataset, as shown by relevant descriptive terms extracted from thegroups of records, as well as by comparing a posteriori against hand-coded categories assigned by healthcare personnel. Our content communities exhibit good correspondence with well-defined hand-coded categories, yet our results also provide further medical detail in certain areas as well asrevealing complementary descriptors of incidents beyond the external classification. We also discuss how the method can be used to monitor reports over time and across different healthcare providers, and to detect emerging trends that fall outside of pre-existing categories.

  • Journal article
    Oehmichen A, Hua K, Diaz Lopez JA, Molina-Solana M, Gomez-Romero J, Guo Y-Ket al., 2019,

    Not All Lies Are Equal. A Study Into the Engineering of Political Misinformation in the 2016 US Presidential Election

    , IEEE ACCESS, Vol: 7, Pages: 126305-126314, ISSN: 2169-3536
  • Journal article
    Cocarascu O, Toni F, 2018,

    Combining deep learning and argumentative reasoning for the analysis of social media textual content using small datasets

    , Computational Linguistics, Vol: 44, Pages: 833-858, ISSN: 0891-2017

    The use of social media has become a regular habit for many and has changed the way people interact with each other. In this article, we focus on analysing whether news headlines support tweets and whether reviews are deceptive by analysing the interaction or the influence that these texts have on the others, thus exploiting contextual information. Concretely, we define a deep learning method for Relation-based Argument Mining to extract argumentative relations of attack and support. We then use this method for determining whether news articles support tweets, a useful task in fact-checking settings, where determining agreement towards a statement is a useful step towards determining its truthfulness. Furthermore we use our method for extracting Bipolar Argumentation Frameworks from reviews to help detect whether they are deceptive. We show experimentally that our method performs well in both settings. In particular, in the case of deception detection, our method contributes a novel argumentative feature that, when used in combination with other features in standard supervised classifiers, outperforms the latter even on small datasets.

  • Journal article
    Amador Diaz Lopez JC, Collignon-Delmar S, Benoit K, Matsuo Aet al., 2017,

    Predicting the Brexit Vote by Tracking and Classifying Public Opinion Using Twitter Data

    , Statistics, Politics and Policy, Vol: 8, ISSN: 2151-7509

    We use 23M Tweets related to the EU referendum in the UK to predict the Brexit vote. In particular, we use user-generated labels known as hashtags to build training sets related to the Leave/Remain campaign. Next, we train SVMs in order to classify Tweets. Finally, we compare our results to Internet and telephone polls. This approach not only allows to reduce the time of hand-coding data to create a training set, but also achieves high level of correlations with Internet polls. Our results suggest that Twitter data may be a suitable substitute for Internet polls and may be a useful complement for telephone polls. We also discuss the reach and limitations of this method.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1060&limit=30&respub-action=search.html Current Millis: 1573950176922 Current Time: Sun Nov 17 00:22:56 GMT 2019