Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Conference paper
    Flaxman S, Sejdinovic D, Cunningham JP, Filippi Set al., 2016,

    Bayesian Learning of Kernel Embeddings

    , UAI'16

    Kernel methods are one of the mainstays of machine learning, but the problemof kernel learning remains challenging, with only a few heuristics and verylittle theory. This is of particular importance in methods based on estimationof kernel mean embeddings of probability measures. For characteristic kernels,which include most commonly used ones, the kernel mean embedding uniquelydetermines its probability measure, so it can be used to design a powerfulstatistical testing framework, which includes nonparametric two-sample andindependence tests. In practice, however, the performance of these tests can bevery sensitive to the choice of kernel and its lengthscale parameters. Toaddress this central issue, we propose a new probabilistic model for kernelmean embeddings, the Bayesian Kernel Embedding model, combining a Gaussianprocess prior over the Reproducing Kernel Hilbert Space containing the meanembedding with a conjugate likelihood function, thus yielding a closed formposterior over the mean embedding. The posterior mean of our model is closelyrelated to recently proposed shrinkage estimators for kernel mean embeddings,while the posterior uncertainty is a new, interesting feature with variouspossible applications. Critically for the purposes of kernel learning, ourmodel gives a simple, closed form marginal pseudolikelihood of the observeddata given the kernel hyperparameters. This marginal pseudolikelihood caneither be optimized to inform the hyperparameter choice or fully Bayesianinference can be used.

  • Conference paper
    Eleftheriadis S, Rudovic O, Deisenroth MP, Pantic Met al., 2016,

    Gaussian process domain experts for model adaptation in facial behavior analysis

    , Fourth International Workshop on Context Based Affect Recognition 2016, Publisher: IEEE
  • Journal article
    Ma ZB, Yang Y, Liu YX, Bharath AAet al., 2016,

    Recurrently decomposable 2-D convolvers for FPGA-based digital image processing

    , IEEE Transactions on Circuits and Systems, Vol: 63, Pages: 979-983, ISSN: 1549-7747

    Two-dimensional (2-D) convolution is a widely used operation in image processing and computer vision, characterized by intensive computation and frequent memory accesses. Previous efforts to improve the performance of field-programmable gate array (FPGA) convolvers focused on the design of buffering schemes and on minimizing the use of multipliers. A recently proposed recurrently decomposable (RD) filter design method can reduce the computational complexity of 2-D convolutions by splitting the convolution between an image and a large mask into a sequence of convolutions using several smaller masks. This brief explores how to efficiently implement RD based 2-D convolvers using FPGA. Three FPGA architectures are proposed based on RD filters, each with a different buffering scheme. The conclusion is that RD based architectures achieve higher area efficiency than other previously reported state-of-the-art methods, especially for larger convolution masks. An area efficiency metric is also suggested, which allows the most appropriate architecture to be selected.

  • Conference paper
    Joulani P, Gyorgy A, Szepesvari C, 2016,

    Delay-Tolerant Online Convex Optimization: Unified Analysis and Adaptive-Gradient Algorithms

    , Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), Publisher: AAAI

    We present a unified, black-box-style method for developingand analyzing online convex optimization (OCO) algorithmsfor full-information online learning in delayed-feedback environments.Our new, simplified analysis enables us to substantiallyimprove upon previous work and to solve a numberof open problems from the literature. Specifically, we developand analyze asynchronous AdaGrad-style algorithmsfrom the Follow-the-Regularized-Leader (FTRL) and MirrorDescentfamily that, unlike previous works, can handle projectionsand adapt both to the gradients and the delays, withoutrelying on either strong convexity or smoothness of theobjective function, or data sparsity. Our unified frameworkbuilds on a natural reduction from delayed-feedback to standard(non-delayed) online learning. This reduction, togetherwith recent unification results for OCO algorithms, allows usto analyze the regret of generic FTRL and Mirror-Descent algorithmsin the delayed-feedback setting in a unified mannerusing standard proof techniques. In addition, the reduction isexact and can be used to obtain both upper and lower boundson the regret in the delayed-feedback setting.

  • Book chapter
    Kormushev P, Ahmadzadeh SR, 2016,

    Robot Learning for Persistent Autonomy

    , Handling Uncertainty and Networked Structure in Robot Control, Editors: Busoniu, Tamás, Publisher: Springer International Publishing, Pages: 3-28, ISBN: 978-3-319-26327-4
  • Book chapter
    Ahmadzadeh SR, Kormushev P, 2016,

    Visuospatial Skill Learning

    , Handling Uncertainty and Networked Structure in Robot Control, Editors: Busoniu, Tamás, Publisher: Springer International Publishing, Pages: 75-99, ISBN: 978-3-319-26327-4
  • Conference paper
    Maurelli F, Lane D, Kormushev P, Caldwell D, Carreras M, Salvi J, Fox M, Long D, Kyriakopoulos K, Karras Get al., 2016,

    The PANDORA project: a success story in AUV autonomy

    , OCEANS Conference 2016, Publisher: IEEE, ISSN: 0197-7385

    This paper presents some of the results of the EU-funded project PANDORA - Persistent Autonomy Through Learning Adaptation Observation and Re-planning. The project was three and a half years long and involved several organisations across Europe. The application domain is underwater inspection and intervention, a topic particularly interesting for the oil and gas sector, whose representatives constituted the Industrial Advisory Board. Field trials were performed at The Underwater Centre, in Loch Linnhe, Scotland, and in harbour conditions close to Girona, Spain.

  • Conference paper
    Pantic M, Evers V, Deisenroth M, Merino L, Schuller Bet al., 2016,

    Social and Affective Robotics Tutorial

    , 24th ACM Multimedia Conference (MM), Publisher: ASSOC COMPUTING MACHINERY, Pages: 1477-1478
  • Conference paper
    Gyorgy A, Szcpesvari C, 2016,

    Shifting regret, mirror descent, and matrices

    , Pages: 4324-4332

    © 2016 by the author(s). We consider the problem of online prediction in changing environments. In this framework the performance of a predictor is evaluated as the loss relative to an arbitrarily changing predictor, whose individual components come from a base class of predictors. Typical results in the literature consider different base classes (experts, linear predictors on the simplex, etc.) separately. Introducing an arbitrary mapping inside the mirror decent algorithm, we provide a framework that unifies and extends existing results. As an example, we prove new shifting regret bounds for matrix prediction problems.

  • Journal article
    Creswell A, Bharath AA, 2016,

    Task Specific Adversarial Cost Function

    The cost function used to train a generative model should fit the purpose ofthe model. If the model is intended for tasks such as generating perceptuallycorrect samples, it is beneficial to maximise the likelihood of a sample drawnfrom the model, Q, coming from the same distribution as the training data, P.This is equivalent to minimising the Kullback-Leibler (KL) distance, KL[Q||P].However, if the model is intended for tasks such as retrieval or classificationit is beneficial to maximise the likelihood that a sample drawn from thetraining data is captured by the model, equivalent to minimising KL[P||Q]. Thecost function used in adversarial training optimises the Jensen-Shannon entropywhich can be seen as an even interpolation between KL[Q||P] and KL[P||Q]. Here,we propose an alternative adversarial cost function which allows easy tuning ofthe model for either task. Our task specific cost function is evaluated on adataset of hand-written characters in the following tasks: Generation,retrieval and one-shot learning.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=954&limit=10&page=7&respub-action=search.html Current Millis: 1594861364465 Current Time: Thu Jul 16 02:02:44 BST 2020