Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Russell F, Kormushev P, Vaidyanathan R, Ellison Pet al., 2020,

    The impact of ACL laxity on a bicondylar robotic knee and implications in human joint biomechanics

    , IEEE Transactions on Biomedical Engineering, Vol: 67, Pages: 217-2827, ISSN: 0018-9294

    Objective: Elucidating the role of structural mechanisms in the knee can improve joint surgeries, rehabilitation, and understanding of biped locomotion. Identification of key features, however, is challenging due to limitations in simulation and in-vivo studies. In particular the coupling of the patello-femoral and tibio-femoral joints with ligaments and its impact on joint mechanics and movement is not understood. We investigate this coupling experimentally through the design and testing of a robotic sagittal plane model. Methods: We constructed a sagittal plane robot comprised of: 1) elastic links representing cruciate ligaments; 2) a bi-condylar joint; 3) a patella; and 4) actuator hamstrings and quadriceps. Stiffness and geometry were derived from anthropometric data. 10° - 110° squatting tests were executed at speeds of 0.1 - 0.25Hz over a range of anterior cruciate ligament (ACL) slack lengths. Results: Increasing ACL length compromised joint stability, yet did not impact quadriceps mechanical advantage and force required for squat. The trend was consistent through varying condyle contact point and ligament force changes. Conclusion: The geometry of the condyles allows the ratio of quadriceps to patella tendon force to compensate for contact point changes imparted by the removal of the ACL. Thus the system maintains a constant mechanical advantage. Significance: The investigation uncovers critical features of human knee biomechanics. Findings contribute to understanding of knee ligament damage, inform procedures for knee surgery and orthopaedic implant design, and support design of trans-femoral prosthetics and walking robots. Results further demonstrate the utility of robotics as a powerful means of studying human joint biomechanics.

  • Conference paper
    Wang K, Marsh DM, Saputra RP, Chappell D, Jiang Z, Kon B, Kormushev Pet al., 2020,

    Design and control of SLIDER: an ultra-lightweight, knee-less, low-cost bipedal walking robot

    , Las Vegas, USA, International Conference on Intelligence Robots and Systems (IROS)

    Most state-of-the-art bipedal robots are designedto be highly anthropomorphic and therefore possess legs withknees. Whilst this facilitates more human-like locomotion, thereare implementation issues that make walking with straight ornear-straight legs difficult. Most bipedal robots have to movewith a constant bend in the legs to avoid singularities at theknee joints, and to keep the centre of mass at a constant heightfor control purposes. Furthermore, having a knee on the legincreases the design complexity as well as the weight of the leg,hindering the robot’s performance in agile behaviours such asrunning and jumping.We present SLIDER, an ultra-lightweight, low-cost bipedalwalking robot with a novel knee-less leg design. This nonanthropomorphic straight-legged design reduces the weight ofthe legs significantly whilst keeping the same functionality asanthropomorphic legs. Simulation results show that SLIDER’slow-inertia legs contribute to less vertical motion in the centerof mass (CoM) than anthropomorphic robots during walking,indicating that SLIDER’s model is closer to the widely usedInverted Pendulum (IP) model. Finally, stable walking onflat terrain is demonstrated both in simulation and in thephysical world, and feedback control is implemented to addresschallenges with the physical robot.

  • Journal article
    AlAttar A, Kormushev P, 2020,

    Kinematic-model-free orientation control for robot manipulation using locally weighted dual quaternions

    , Robotics, Vol: 9, Pages: 1-12, ISSN: 2218-6581

    Conventional control of robotic manipulators requires prior knowledge of their kinematic structure. Model-learning controllers have the advantage of being able to control robots without requiring a complete kinematic model and work well in less structured environments. Our recently proposed Encoderless controller has shown promising ability to control a manipulator without requiring any prior kinematic model whatsoever. However, this controller is only limited to position control, leaving orientation control unsolved. The research presented in this paper extends the state-of-the-art kinematic-model-free controller to handle orientation control to manipulate a robotic arm without requiring any prior model of the robot or any joint angle information during control. This paper presents a novel method to simultaneously control the position and orientation of a robot’s end effector using locally weighted dual quaternions. The proposed novel controller is also scaled up to control three-degrees-of-freedom robots.

  • Journal article
    Cursi F, Mylonas GP, Kormushev P, 2020,

    Adaptive kinematic modelling for multiobjective control of a redundant surgical robotic tool

    , Robotics, Vol: 9, Pages: 68-68, ISSN: 2218-6581

    Accurate kinematic models are essential for effective control of surgical robots. For tendon driven robots, which are common for minimally invasive surgery, the high nonlinearities in the transmission make modelling complex. Machine learning techniques are a preferred approach to tackle this problem. However, surgical environments are rarely structured, due to organs being very soft and deformable, and unpredictable, for instance, because of fluids in the system, wear and break of the tendons that lead to changes of the system’s behaviour. Therefore, the model needs to quickly adapt. In this work, we propose a method to learn the kinematic model of a redundant surgical robot and control it to perform surgical tasks both autonomously and in teleoperation. The approach employs Feedforward Artificial Neural Networks (ANN) for building the kinematic model of the robot offline, and an online adaptive strategy in order to allow the system to conform to the changing environment. To prove the capabilities of the method, a comparison with a simple feedback controller for autonomous tracking is carried out. Simulation results show that the proposed method is capable of achieving very small tracking errors, even when unpredicted changes in the system occur, such as broken joints. The method proved effective also in guaranteeing accurate tracking in teleoperation.

  • Journal article
    Falck F, Doshi S, Tormento M, Nersisyan G, Smuts N, Lingi J, Rants K, Saputra RP, Wang K, Kormushev Pet al., 2020,

    Robot DE NIRO: a human-centered, autonomous, mobile research platform for cognitively-enhanced manipulation

    , Frontiers in Robotics and AI, Vol: A17, ISSN: 2296-9144

    We introduceRobot DE NIRO, an autonomous, collaborative, humanoid robot for mobilemanipulation. We built DE NIRO to perform a wide variety of manipulation behaviors, with afocus on pick-and-place tasks. DE NIRO is designed to be used in a domestic environment,especially in support of caregivers working with the elderly. Given this design focus, DE NIRO caninteract naturally, reliably, and safely with humans, autonomously navigate through environmentson command, intelligently retrieve or move target objects, and avoid collisions efficiently. Wedescribe DE NIRO’s hardware and software, including an extensive vision sensor suite of 2Dand 3D LIDARs, a depth camera, and a 360-degree camera rig; two types of custom grippers;and a custom-built exoskeleton called DE VITO. We demonstrate DE NIRO’s manipulationcapabilities in three illustrative challenges: First, we have DE NIRO perform a fetch-an-objectchallenge. Next, we add more cognition to DE NIRO’s object recognition and grasping abilities,confronting it with small objects of unknown shape. Finally, we extend DE NIRO’s capabilitiesinto dual-arm manipulation of larger objects. We put particular emphasis on the features thatenable DE NIRO to interact safely and naturally with humans. Our contribution is in sharinghow a humanoid robot with complex capabilities can be designed and built quickly with off-the-shelf hardware and open-source software. Supplementary material including our code, adocumentation, videos and the CAD models of several hardware parts are openly availableavailable athttps://www.imperial.ac.uk/robot-intelligence/software/

  • Conference paper
    Pardo F, Levdik V, Kormushev P, 2020,

    Scaling all-goals updates in reinforcement learning using convolutional neural networks

    , 34th AAAI Conference on Artificial Intelligence (AAAI 2020), Publisher: Association for the Advancement of Artificial Intelligence, Pages: 5355-5362, ISSN: 2374-3468

    Being able to reach any desired location in the environmentcan be a valuable asset for an agent. Learning a policy to nav-igate between all pairs of states individually is often not fea-sible. Anall-goals updatingalgorithm uses each transitionto learn Q-values towards all goals simultaneously and off-policy. However the expensive numerous updates in parallellimited the approach to small tabular cases so far. To tacklethis problem we propose to use convolutional network archi-tectures to generate Q-values and updates for a large numberof goals at once. We demonstrate the accuracy and generaliza-tion qualities of the proposed method on randomly generatedmazes and Sokoban puzzles. In the case of on-screen goalcoordinates the resulting mapping from frames todistance-mapsdirectly informs the agent about which places are reach-able and in how many steps. As an example of applicationwe show that replacing the random actions inε-greedy ex-ploration by several actions towards feasible goals generatesbetter exploratory trajectories on Montezuma’s Revenge andSuper Mario All-Stars games.

  • Book
    Deisenroth MP, Faisal AA, Ong CS, 2020,

    Mathematics for Machine Learning

    , Publisher: Cambridge University Press, ISBN: 9781108455145
  • Conference paper
    Saputra RP, Rakicevic N, Kormushev P, 2020,

    Sim-to-real learning for casualty detection from ground projected point cloud data

    , 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019), Publisher: IEEE

    This paper addresses the problem of human body detection-particularly a human body lying on the ground (a.k.a. casualty)-using point cloud data. This ability to detect a casualty is one of the most important features of mobile rescue robots, in order for them to be able to operate autonomously. We propose a deep-learning-based casualty detection method using a deep convolutional neural network (CNN). This network is trained to be able to detect a casualty using a point-cloud data input. In the method we propose, the point cloud input is pre-processed to generate a depth image-like ground-projected heightmap. This heightmap is generated based on the projected distance of each point onto the detected ground plane within the point cloud data. The generated heightmap-in image form-is then used as an input for the CNN to detect a human body lying on the ground. To train the neural network, we propose a novel sim-to-real approach, in which the network model is trained using synthetic data obtained in simulation and then tested on real sensor data. To make the model transferable to real data implementations, during the training we adopt specific data augmentation strategies with the synthetic training data. The experimental results show that data augmentation introduced during the training process is essential for improving the performance of the trained model on real data. More specifically, the results demonstrate that the data augmentations on raw point-cloud data have contributed to a considerable improvement of the trained model performance.

  • Journal article
    Rakicevic N, Kormushev P, 2019,

    Active learning via informed search in movement parameter space for efficient robot task learning and transfer

    , Autonomous Robots, Vol: 43, Pages: 1917-1935, ISSN: 0929-5593

    Learning complex physical tasks via trial-and-error is still challenging for high-degree-of-freedom robots. Greatest challenges are devising a suitable objective function that defines the task, and the high sample complexity of learning the task. We propose a novel active learning framework, consisting of decoupled task model and exploration components, which does not require an objective function. The task model is specific to a task and maps the parameter space, defining a trial, to the trial outcome space. The exploration component enables efficient search in the trial-parameter space to generate the subsequent most informative trials, by simultaneously exploiting all the information gained from previous trials and reducing the task model’s overall uncertainty. We analyse the performance of our framework in a simulation environment and further validate it on a challenging bimanual-robot puck-passing task. Results show that the robot successfully acquires the necessary skills after only 100 trials without any prior information about the task or target positions. Decoupling the framework’s components also enables efficient skill transfer to new environments which is validated experimentally.

  • Conference paper
    Falck F, Larppichet K, Kormushev P, 2019,

    DE VITO: A dual-arm, high degree-of-freedom, lightweight, inexpensive, passive upper-limb exoskeleton for robot teleoperation

    , TAROS: Annual Conference Towards Autonomous Robotic Systems, Publisher: Springer, ISSN: 0302-9743

    While robotics has made significant advances in perception, planning and control in recent decades, the vast majority of tasks easily completed by a human, especially acting in dynamic, unstructured environments, are far from being autonomously performed by a robot. Teleoperation, remotely controlling a slave robot by a human operator, can be a realistic, complementary transition solution that uses the motion intelligence of a human in complex tasks while exploiting the robot’s autonomous reliability and precision in less challenging situations.We introduce DE VITO, a seven degree-of-freedom, dual-arm upper-limb exoskeleton that passively measures the pose of a human arm. DE VITO is a lightweight, simplistic and energy-efficient design with a total material cost of at least an order of magnitude less than previous work. Given the estimated human pose, we implement both joint and Cartesian space kinematic control algorithms and present qualitative experimental results on various complex manipulation tasks teleoperating Robot DE NIRO, a research platform for mobile manipulation, that demonstrate the functionality of DE VITO. We provide the CAD models, open-source code and supplementary videos of DE VITO at http://www.imperial.ac.uk/robot-intelligence/robots/de_vito/.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=954&limit=10&page=1&respub-action=search.html Current Millis: 1606429303624 Current Time: Thu Nov 26 22:21:43 GMT 2020