Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Conference paper
    Wahlstrom N, Schon TB, Deisenroth MP, 2015,

    Learning Deep Dynamical Models From Image Pixels

    , 17th IFAC Symposium on System Identification, SYSID 2015
  • Conference paper
    Kormushev P, Demiris Y, Caldwell DG, 2015,

    Encoderless Position Control of a Two-Link Robot Manipulator

  • Conference paper
    Jamali N, Kormushev P, Carrera A, Carreras M, Caldwell DGet al., 2015,

    Underwater Robot-Object Contact Perception using Machine Learning on Force/Torque Sensor Feedback

  • Conference paper
    Ahmadzadeh SR, Paikan A, Mastrogiovanni F, Natale L, Kormushev P, Caldwell DGet al., 2015,

    Learning Symbolic Representations of Actions from Human Demonstrations

  • Conference paper
    Carrera A, Palomeras N, Hurtos N, Kormushev P, Carreras Met al., 2015,

    Learning multiple strategies to perform a valve turning with underwater currents using an I-AUV

  • Conference paper
    Jamisola RS, Kormushev P, Caldwell DG, Ibikunle Fet al., 2015,

    Modular Relative Jacobian for Dual-Arms and the Wrench Transformation Matrix

  • Conference paper
    Lane DM, Maurelli F, Kormushev P, Carreras M, Fox M, Kyriakopoulos Ket al., 2015,

    PANDORA - Persistent Autonomy through Learning, Adaptation, Observation and Replanning

  • Journal article
    Rivera-Rubio J, Alexiou I, Bharath AA, 2015,

    Appearance-based indoor localization: a comparison of patch descriptor performance

    , Pattern Recognition Letters, Vol: 66, Pages: 109-117, ISSN: 1872-7344

    Vision is one of the most important of the senses, and humans use it extensively during navigation. We evaluated different types of image and video frame descriptors that could be used to determine distinctive visual landmarks for localizing a person based on what is seen by a camera that they carry. To do this, we created a database containing over 3 km of video-sequences with ground-truth in the form of distance travelled along different corridors. Using this database, the accuracy of localization—both in terms of knowing which route a user is on—and in terms of position along a certain route, can be evaluated. For each type of descriptor, we also tested different techniques to encode visual structure and to search between journeys to estimate a user’s position. The techniques include single-frame descriptors, those using sequences of frames, and both color and achromatic descriptors. We found that single-frame indexing worked better within this particular dataset. This might be because the motion of the person holding the camera makes the video too dependent on individual steps and motions of one particular journey. Our results suggest that appearance-based information could be an additional source of navigational data indoors, augmenting that provided by, say, radio signal strength indicators (RSSIs). Such visual information could be collected by crowdsourcing low-resolution video feeds, allowing journeys made by different users to be associated with each other, and location to be inferred without requiring explicit mapping. This offers a complementary approach to methods based on simultaneous localization and mapping (SLAM) algorithms.

  • Conference paper
    Deisenroth MP, Ng JW, 2015,

    Distributed Gaussian processes

    , Pages: 1481-1490

    To scale Gaussian processes (GPs) to large data sets we introduce the robust Bayesian Committee Machine (rBCM), a practical and scalable product-of-experts model for large-scale distributed GP regression. Unlike state-of-the-art sparse GP approximations, the rBCM is conceptually simple and does not rely on inducing or variational parameters. The key idea is to recursively distribute computations to independent computational units and, subsequently, re-combine them to form an overall result. Efficient closed-form inference allows for straightforward parallelisation and distributed computations with a small memory footprint. The rBCM is independent of the computational graph and can be used on heterogeneous computing infrastructures, ranging from laptops to clusters. With sufficient computing resources our distributed GP model can handle arbitrarily large data sets.

  • Conference paper
    Rivera-Rubio J, Alexiou I, Bharath AA, 2015,

    Associating Locations Between Indoor Journeys from Wearable Cameras

    , 13th European Conference on Computer Vision (ECCV), Publisher: SPRINGER-VERLAG BERLIN, Pages: 29-44, ISSN: 0302-9743

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=954&limit=10&page=11&respub-action=search.html Current Millis: 1632719808077 Current Time: Mon Sep 27 06:16:48 BST 2021