Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

    Ferretti GL, Nania M, Matar OK, Cabral JTet al., 2016,

    Wrinkling Measurement of the Mechanical Properties of Drying Salt Thin Films

    , LANGMUIR, Vol: 32, Pages: 2199-2207, ISSN: 0743-7463
    Kovalchuk NM, Matar OK, Craster RV, Miller R, Starov VMet al., 2016,

    The effect of adsorption kinetics on the rate of surfactant-enhanced spreading

    , SOFT MATTER, Vol: 12, Pages: 1009-1013, ISSN: 1744-683X
    Muscatello J, Jaeger F, Matar OK, Mueller EAet al., 2016,

    Optimizing Water Transport through Graphene-Based Membranes: Insights from Nonequilibrium Molecular Dynamics

    , ACS APPLIED MATERIALS & INTERFACES, Vol: 8, Pages: 12330-12336, ISSN: 1944-8244
    Pavlidis D, Gomes JLMA, Xie Z, Percival JR, Pain CC, Matar OKet al., 2016,

    Compressive advection and multi-component methods for interface-capturing

    Angeli P, Azzopardi BJ, Hewakandamby B, Hewitt GF, Pain CC, Simmons MJH, Matar OKet al., 2015,

    Multi-scale exploration of multiphase physics in flows (MEMPHIS): A framework for the next-generation predictive tools for multiphase flows

    , Pages: 242-249

    Ins this paper, we outline the framework that we are developing as part of the Multi-scale Exploration of Multiphase PHysIcs in flowS (MEMPHIS) programme to create the next generation modelling tools for complex multiphase flows. These flows are of central importance to micro-fluidics, oil-and-gas, nuclear, and biomedical applications, and every processing and manufacturing technology. This framework involves the establishment of a transparent linkage between input and prediction to allow systematic error-source identification, and, optimal, model-driven experimentation, to maximise prediction accuracy. The framework also involves massively-parallelisable numerical methods, capable of running efficiently on 10 5 -10 6 core supercomputers, with optimally-adaptive, three-dimensional resolution, and sophisticated multi-scale physical models. The overall aim of this framework is to provide unprecedented resolution of multi-scale, multiphase phenomena, thereby minimising the reliance on correlations and empiricism.

    Che Z, Deygas A, Matar OK, 2015,

    Impact of droplets on inclined flowing liquid films

    , PHYSICAL REVIEW E, Vol: 92, ISSN: 1539-3755
    Hennessy MG, Vitale A, Cabral JT, Matar OKet al., 2015,

    Role of heat generation and thermal diffusion during frontal photopolymerization

    , PHYSICAL REVIEW E, Vol: 92, ISSN: 1539-3755
    Hennessy MG, Vitale A, Matar OK, Cabral JTet al., 2015,

    Controlling frontal photopolymerization with optical attenuation and mass diffusion

    , Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Vol: 91, ISSN: 1063-651X

    Frontal photopolymerization (FPP) is a versatile directional solidification process that can be used to rapidly fabricate polymer network materials by selectively exposing a photosensitive monomer bath to light. A characteristic feature of FPP is that the monomer-to-polymer conversion profiles take on the form of traveling waves that propagate into the unpolymerized bulk from the illuminated surface. Practical implementations of FPP require detailed knowledge about the conversion profile and speed of these traveling waves. The purpose of this theoretical study is to (i) determine the conditions under which FPP occurs and (ii) explore how optical attenuation and mass transport can be used to finely tune the conversion profile and propagation kinetics. Our findings quantify the strong optical attenuation and slow mass transport relative to the rate of polymerization required for FPP. The shape of the traveling wave is primarily controlled by the magnitude of the optical attenuation coefficients of the neat and polymerized material. Unexpectedly, we find that mass diffusion can increase the net extent of polymerization and accelerate the growth of the solid network. The theoretical predictions are found to be in excellent agreement with experimental data acquired for representative systems.

    Ibarra R, Matar OK, Markides CN, Zadrazil Iet al., 2015,

    An experimental study of oil-water flows in horizontal pipes

    , Pages: 169-184

    © BHR Group 2015 Multiphase 17. This paper reports an effort to investigate the effect of flow velocities and inlet configurations on horizontal oil-water flows in a 32 mm ID acrylic pipe using water and an aliphatic oil (Exxsol D140) as test fluids. The flows of interest were analysed using pressure drop measurements and high-speed photography in an effort to obtain a flow pattern map, pressure gradient profiles and measures of the in situ phase fractions. The experiments reveal a particular effect of the inlet configuration on the observed flow patterns. A horizontal plate, installed at the inlet, generates a transition to stratified flow when the plate height closely matched the in situ water height at low water cuts.

    Kahouadji L, PĂ©rinet N, Tuckerman LS, Shin S, Chergui J, Juric Det al., 2015,

    Numerical simulation of super-square patterns in Faraday waves

    , Journal of Fluid Mechanics, ISSN: 1469-7645

    We report the first simulations of the Faraday instability using the full three-dimensional Navier–Stokes equations in domains much larger than the characteristic wavelength of the pattern. We use a massively parallel code based on a hybrid front-tracking/level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. Simulations performed in square and cylindrical domains yield complex patterns. In particular, a superlattice-like pattern similar to those of Douady & Fauve (Europhys. Lett., vol. 6, 1988, pp. 221–226) and Douady (J. Fluid Mech., vol. 221, 1990, pp. 383–409) is observed. The pattern consists of the superposition of two square superlattices. We conjecture that such patterns are widespread if the square container is large compared with the critical wavelength. In the cylinder, pentagonal cells near the outer wall allow a square-wave pattern to be accommodated in the centre.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=689&limit=10&page=2&respub-action=search.html Current Millis: 1508824444076 Current Time: Tue Oct 24 06:54:04 BST 2017