An IEEE style for use with LaTeX (using natbib) – example

The following is an example of an IEEE style output which uses the natbib package. Natbib allows more flexibility in citation format and allows the inclusion of URLs for electronic resources (url= field).

- To invoke the natbib package add \usepackage[numbers]{natbib} to the preamble
- To insert a citation use the \cite command (see table below)
- To achieve an IEEE style output use the \bibliographystyle{IEEEtranN} command

Further information can be found in the Citing and referencing in LaTeX - Using BibTeX guide. The following website also provides much useful information:
http://en.wikibooks.org/wiki/LaTeX/Bibliography_Management

Original document

\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage[numbers]{natbib}

\begin{document}

"Airplanes are by no means the only application of aerodynamics" \cite{Refworks:1248}, the air flow over an automobile, the gas flow through the internal combustion engine powering an automobile, weather and storm prediction \cite{Refworks:1247}, the flow through a windmill, the production of thrust by a jet engine, and rocket engines as stated by Lin \cite{Refworks:1246}, and the movement of air through a windmill are just a few other examples of the application of aerodynamics \cite{Refworks:1249}, \cite{Refworks:1250}.

\bibliographystyle{IEEEtranN}
\bibliography{References}

\end{document}
Natbib citation commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cite{1145}</td>
<td>Citation appears as a number based on the order in which the sources are cited</td>
<td>e.g. aerodynamics [1]</td>
</tr>
<tr>
<td>\cite[p.~22]{1145}</td>
<td>Allows page number to be inserted (used for direct quotes)</td>
<td>e.g. aerodynamics [1, p. 22]</td>
</tr>
<tr>
<td>\cite{1145,1150}</td>
<td>Multiple citations appear</td>
<td>e.g. aerodynamics [1, 2]</td>
</tr>
</tbody>
</table>

Phototypeset document

‘Airplanes are by no means the only application of aerodynamics’ [1, p. 215]. The air flow over an automobile, the gas flow through the internal combustion engine powering an automobile, weather and storm prediction [2], the flow through a windmill, the production of thrust by gas turbine jet engines and rocket engines as stated by Lin & Ebadian [3], and the movement of air through building heater and air-conditioning systems are just a few other examples of the application of aerodynamics [4, 1].

References


