The Department of Bioengineering at Imperial College London is among the best in the world. We returned excellent results in the last three Research Assessment Exercises (2001, 2008 and 2014), making us the leading Department of Bioengineering in the UK. Imperial College itself was ranked 9th in the QS World University Rankings 2015–17.

Housed in newly refurbished purpose-built space within the historic Royal School at Mews and an adjacent Benser building, our Department hosts state-of-the-art laboratories, including ‘wet labs’ for cell culture, chemistry, histology, flow studies, biosensors and biophysics, as well as ‘dry labs’ for modelling, electronics, 3D printing and imaging. The space has been designed to promote greater interaction among researchers—just what is needed for the interdisciplinary field that is bioengineering.

WHAT WE DO

Our academic staff have a wide range of research interests that fall under six main themes:

- Human and biological robotics
- Biomedical engineering
- Neural engineering
- Detection, devices and design
- Molecular and cellular bioengineering
- Biomechanics and mechanobiology

WHAT WE DO

The Department of Bioengineering at Imperial College London is among the best in the world. We returned excellent results in the last three Research Assessment Exercises (2001, 2008 and 2014), making us the leading Department of Bioengineering in the UK. Imperial College itself was ranked 9th in the QS World University Rankings 2015–17.

Housed in newly refurbished purpose-built space within the historic Royal School at Mews and an adjacent Benser building, our Department hosts state-of-the-art laboratories, including ‘wet labs’ for cell culture, chemistry, histology, flow studies, biosensors and biophysics, as well as ‘dry labs’ for modelling, electronics, 3D printing and imaging. The space has been designed to promote greater interaction among researchers—just what is needed for the interdisciplinary field that is bioengineering.

WHAT WE DO

Our academic staff have a wide range of research interests that fall under six main themes:

- Human and biological robotics
- Biomedical engineering
- Neural engineering
- Detection, devices and design
- Molecular and cellular bioengineering
- Biomechanics and mechanobiology

ENTRY REQUIREMENTS

Engineers are physical problem-solvers who understand the problems that face them. Often these people require an education based in mathematics to solve these problems. Engineers are versatile problem-solvers and risk-takers who use their creativity and imagination to solve problems that no one has thought of before.

A first or upper second class honours degree with a substantial amount of engineering is required. Applicants should have in addition to the usual academic qualifications a substantial amount of relevant experience or other competencies. Please go to our website for more details.

CAREER OPPORTUNITIES

Graduates have excellent prospects in a wide range of careers, particularly in the growing healthcare and bioengineering industries. Many choose to pursue careers in industry, with engineering qualifications and a solid understanding of physics. They are also in high demand by Government and private bodies. Many of our graduates have followed careers in research and development, consultancy, project management, sales and marketing, management, finance and banking, and other related fields.

STUDYING WITH US

The Department offers two MEng undergraduate degrees and an integrated BEng/PhD for master’s students. The MEng Biomedical Engineering programme has been running since 2001, and the MEng Molecular Bioengineering programme from 2017. Both programmes lead to the award of a BEng degree. Graduates will also be awarded the Associateship of the Institution of Engineering and Technology (AEI).

The programmes provide a deep understanding of fundamental engineering principles, with extensive training in complex mathematical methods for analysis and design. The programmes suit your university and provide you with the skills required to solve real-world problems. As a result, you’ll be motivated to continue your academic and professional development.

Students also complete a year-long industrial placement between third and fourth year, gaining valuable work experience and transferable skills.

INTERCALATED DEGREE

Students are required to complete their final year in one of partner institutions abroad. This is a great opportunity to challenge yourself professionally in a new academic and cultural environment. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.

The normal requirements for applicants offering AS and A level and International Baccalaureate qualifications and to applicants with appropriate educational qualifications and to applicants with appropriate educational experience. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.

The normal requirements for applicants offering AS and A level and International Baccalaureate qualifications and to applicants with appropriate educational qualifications and to applicants with appropriate educational experience. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.

The normal requirements for applicants offering AS and A level and International Baccalaureate qualifications and to applicants with appropriate educational qualifications and to applicants with appropriate educational experience. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.

The normal requirements for applicants offering AS and A level and International Baccalaureate qualifications and to applicants with appropriate educational qualifications and to applicants with appropriate educational experience. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.

The normal requirements for applicants offering AS and A level and International Baccalaureate qualifications and to applicants with appropriate educational qualifications and to applicants with appropriate educational experience. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.

The normal requirements for applicants offering AS and A level and International Baccalaureate qualifications and to applicants with appropriate educational qualifications and to applicants with appropriate educational experience. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.

The normal requirements for applicants offering AS and A level and International Baccalaureate qualifications and to applicants with appropriate educational qualifications and to applicants with appropriate educational experience. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.

The normal requirements for applicants offering AS and A level and International Baccalaureate qualifications and to applicants with appropriate educational qualifications and to applicants with appropriate educational experience. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.

The normal requirements for applicants offering AS and A level and International Baccalaureate qualifications and to applicants with appropriate educational qualifications and to applicants with appropriate educational experience. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.

The normal requirements for applicants offering AS and A level and International Baccalaureate qualifications and to applicants with appropriate educational qualifications and to applicants with appropriate educational experience. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.

The normal requirements for applicants offering AS and A level and International Baccalaureate qualifications and to applicants with appropriate educational qualifications and to applicants with appropriate educational experience. Some students complete a university placement in the UK and one other subject, preferably chemistry or biology and an overall total of 38 points.
A TOP DOWN APPROACH

The programme is divided into three distinctive pathways: Medical & Chemical Sensors, Biomedical Engineering or Biomimetics. This structure ensures that you develop a deep understanding of engineering principles and their application in the biomedical field.

FIRST YEAR

In the first year all modules are compulsory and help you to build the core skills essential for the rest of the programme.

SECOND YEAR

In the second year all modules are also compulsory. You will build on your knowledge and understanding gained in your first year to meet the professional needs for the advanced years of the programme.

THIRD YEAR

In your final year you will have the opportunity to complete an individual project.

FOURTH YEAR

In your final year you will have the opportunity to complete an individual project.

WE ARE

BIOMEDICAL ENGINEERS

The breadth and depth of the engineering knowledge of our MEng Biomedical Engineering students is supported by the collaboration of four professional engineering institutions: IET, IMechE, IOM3 and IPEM.

FIRST YEAR

In the first year all modules are compulsory and help you to build the core skills essential for the rest of the programme.

SECOND YEAR

In the second year all modules are also compulsory. You will build on your knowledge and understanding gained in your first year to meet the professional needs for the advanced years of the programme.

THIRD YEAR

In your final year you will have the opportunity to complete an individual project.

FOURTH YEAR

In your final year you will have the opportunity to complete an individual project.

WE ARE

MOLECULAR BIOENGINEERS

The focus of the programme is developing a ‘bottom up’ understanding of the links between molecules, cells, tissues and organs and their applications in medicine and healthcare.

FIRST YEAR

In the first year all modules are compulsory and help you to build the core skills essential for the rest of the programme.

SECOND YEAR

In the second year all modules are also compulsory. You will build on your knowledge and understanding gained in your first year to meet the professional needs for the advanced years of the programme.

THIRD YEAR

In your final year you will have the opportunity to complete an individual project.

FOURTH YEAR

In your final year you will have the opportunity to complete an individual project.