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INTRODUCTION 
 
The Masters of Science courses in Transport are quantitatively oriented courses that require 
students to have some familiarity with certain basic mathematical concepts and notation. The 
aim of the Mathematics Refresher is to briefly review this material in order to help your 
preparation for the rest of the course.  
 
These notes accompany the Mathematics Refresher, which will be presented in five parts, 
during the first two weeks of the course.  
 
BACKGROUND 
 
Transport is a quantitative discipline – it uses quantitative data, evidence and arguments to 
draw conclusions about transport problems and their solution. Mathematical reasoning and 
argument is therefore an important part of the work of many transport professionals and 
therefore is an important part of the course.  
 
However, the course is not a course in mathematics or statistics and it certainly does not 
require that you are a mathematical wizard. Students on the course come from a very wide 
range of (mathematical) backgrounds and many of the most successful students come from 
‘softer’ backgrounds 
 
All of you will need to have some familiarity with key concepts and methods covered in the 
maths refresher during the core modules (T1-T6 + BM1-4 or SD1-2) but you will not 
necessarily require a detailed understanding of all the material.  
   
Those of you who want to study certain subjects (e.g., transport demand modelling, traffic 
flow theory) in greater mathematical detail can do so in specialist option modules in the 
spring term. Conversely, there are plenty of specialist option modules for those of you who 
want to study less mathematical aspects of transport 
 
SCOPE 
 
The maths refresher aims to cover a number of topics, which are important for other parts of 
the courses.  
 

• The idea of a variable, operators that can be applied to a variable and how variables 
are combined and manipulated in mathematical expressions and equations 

 
• The idea that a variable can be regarded as a function of one or more other variables 

 
• The interpretation and use of the concepts of the derivative and the integral of a 

function 
 

• The concept of probability and the notion of a random variable and the probability 
distribution of a random variable 
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ADVICE 
 
If you find you are having difficulties with the mathematical elements of the course, either in 
the maths refresher or later on, then here is some good advice. 
 

• DON’T panic or over-react but also DON’T do nothing…  
 
• If you don’t understand a particular part of a lecture then ask the relevant lecturer 

(either in class, during the break, after class or make an appointment – by email, 
don’t just turn up and expect to be seen) to go over it again.  

 
• Don’t be embarrassed to ask questions in lectures – we won’t mind and in all 

probability other students will be grateful that you did. 
 

• Work thoroughly and consistently through the class exercises and coursework – 
think about forming small work groups to help this (we encourage students to work 
together in this way but submitted coursework must be your own work) 

 
BOOKS 
 
There are number of useful books that cover the material in the maths refresher. Our current 
recommendation for background reading to accompany the maths refresher is: 
 
Croft, A. and Davison, R. (2003) Foundation Mathematics, Prentice Hall, Harlow.  
 
The course reading list contains details on a number of other, more advanced, texts. 
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NUMBERS, COMBINATIONS OF NUMBERS AND FACTORIALS 
 
The Number Line 
 
The concept of number is perhaps the most fundamental in mathematics. One of the easiest 
ways of envisaging numbers is by means of a number line. The simplest such line is shown 
below. It is defined by an arbitrarily chosen point called zero and a series of equally spaced 
points in each direction representing the other positive and negative integers. Zero is regarded 
as both positive and negative. Any other real number x is represented as a point distant x from 
the origin (the unit of distance being the distance between adjacent integer points). 
 
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 
 
 
Comparison Operators 
 
The following are common relationships between two real numbers x and y 
 
 yxyxyxyxyxyx >≥≤<≠=  
 
If x < y, the set of numbers z such that x < z < y is called the open interval (x,y). The set of 
numbers such that yzx ≤≤ is called the closed interval [x,y]. 
 
Simple Arithmetic Operators 
 
Two numbers x and y can be combined to form a third number as follows: 
 
 x + y  x – y  xy and  x/y  (provided y≠ 0)  
 
Numbers of the form m/n where m and n are integers are called rational numbers. Most real 
numbers are not rational numbers, but any real number can be approximated arbitrarily 
closely by a rational number. 
 
Exponential Operations  
 
A number x multiplied by itself n-1 times where n is an integer ≥ 1, is raised to the power n, 
written xn; this definition extends to n ≤ 0 when multiplication –1 times is interpreted as 
division. 
 
Any real number y such that yn = x where n is a positive integer, is called the nth root of x. We 
write y = x1/n. If n is even, there are two equal and opposite real nth roots of x; if n is odd there 
is only one. Roots of rational numbers are usually not rational.  
 
x1/2 is called the square root of x and is often written as x . The nth root of x is sometimes 
written as n x  
 
The result of raising x1/n to the power m is written xm/n, thus defining xr for all rational r, and 
this definition can be extended to define xy for all real y. Powers combine as follows: 
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 xyxz  =  xy+z  xy/xz = xy-z xzzy xx =)(  
 
Unitary Operators 
 
The magnitude of a number x regardless of its sign is called its modulus, |x| i.e., 
 
 |x| = x   if x > 0 
 |x| = -x   if x ≤ 0 
 
Precedence of Operators 
 
Algebraic expressions often denote several pairwise combinations of numbers. Such 
expressions are unambiguous only because of the following strict convention regarding the 
order in which operations are carried out in combining adjacent numbers: 
 
 1. raising to a power 
 2. multiplication 
 3. division 
 4. addition and subtraction 
 
Any departure from this convention is indicated by the use of brackets. The expression inside 
a pair of brackets is reduced to a single number before being combined with an adjacent 
number. 
 
Factorials 
 
In many areas of mathematics there arises a need to think in terms of rearrangements of a set 
of objects. The number of ways in which n different objects can be rearranged in a row is  
 

n x (n-1) x (n-2) x …x 3 x 2 x 1.  
 
This quantity is called factorial n and is denoted by n! 
 
Summations and Products 
 
A common requirement is to work with quantities that are the summation or product of other 
quantities and we often use a special notation to simplify expressions involving such sums or 
products. Consider a set of variables 1 2{ , ,... }nx x x then we use the symbol Σ  and Π  as a 
shorthand for summation and multiplication respectively, as follows:  
 

1 2
1

...
n

n i
i

x x x x
=

+ + + =∑  

and 

1 2
1

...
n

n i
i

x x x x
=

× × × =∏  

 
These conventions are used extensively in the course.  
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VECTORS AND MATRICES 
 
It is often very useful to be able to manipulate numbers as structured groups, rather than 
individually. It turns out that not only can this significantly simplify notation and 
manipulation, it also enables us to derive a whole range of interesting and useful results that 
might not otherwise be available. The two most common structures are the matrix and the 
vector. Vectors can be regarded as special cases of matrices. 
 
A matrix is a rectangular array of numbers. A typical matrix will have I rows and J columns 
(I,J ≥ 1) and is written as follows: 

 

B = 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

IJII

J

J

bbb

bbb
bbb

..
.....
.....

..

..

21

22221

11211

 = (bij) 

 
The matrix (λbij) where λ is a real number is denoted λB. 
 
An I x J matrix D = (dij) is called a diagonal matrix if dij = 0 unless i=j 
 
The J x J unit matrix is the J x J diagonal matrix with each diagonal element equal to 1. It is 
usually denoted by IJ. 
 
A vector is a special case of a matrix in which there is either only one row or only one 
column, and it is important to be clear which.  
 
For example the vector a 
 

a = (a1,a2,…,aM) 
 
is a 1 x M matrix and is called a row vector, whereas the vector c  
 

c = 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

Mc

c
c

.

.
2

1

 

 
is an M x 1 matrix and is called a column vector. 
 
There is no clear convention about this, so care is needed when using vectors in reading and 
writing. Whichever way round is chosen in a particular piece of mathematics, it is best to be 
consistent, i.e. either define all vectors as row vectors or column vectors. 
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Matrix Transposition 
 
If we interchange the rows and columns of the vector B above, we obtain a J x I matrix called 
the transpose BT of B (the transpose is also sometime written B′).  
 

BT = 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

IJJJ

I

I

bbb

bbb
bbb

..
.....
.....

..

..

21

22212

12111

 = (bT
ji) 

 
where, bT

ji = bij  (1 ≤ i ≤ I, 1 ≤ j ≤ J). 
 
Notice that if a is a row vector then aT is a column vector and vice versa.  
 
A square matrix S such that ST = S is called symmetric. 
 
Matrix Addition and Subtraction 
 
The operations of addition and subtraction generalise in a straightforward manner to matrices.  
 
If P = (pij) and Q = (qij) are two I x J matrices then P+Q is the I x J matrix (pij + qij) and P-Q 
is the I x J matrix (pij - qij).  
 
Matrix Multiplication 
 
It is also possible to generalise the operation of multiplication to matrices, although it is not 
so straightforward. If U = (uij) is an I x J matrix and V = (vij) is an J x K matrix, then the 
matrix product UV is the I x K matrix (wik) where  
 

∑
−

=
J

j
jkijik vuw

1

 

 
Notice that the product VU does not exist at all unless I=K and even then UV ≠ VU (in 
general). 
 
It follows from the above definitions that  
 

(λP)T = λPT 
 
 (P+Q)T = PT + QT 
 
 λ(P+Q) = λP + λQ 

  (λU)V = U(λV) = λ(UV) 

and  (UV)T = VTUT 
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The Inverse of a Square Matrix 
 
The notion of the inverse of a matrix is extremely important since it arises in an enormous 
range of different mathematical contexts including the solution of systems of linear 
equations, which you will study later in this refresher course. 
If P is an J x J matrix, then there may or may not exist another J x J matrix P-1 such that  
 
 PP-1 = P-1P = IJ 
 
If so, then P-1 is called the inverse of P and P is said to be non-singular (or invertable). 
 
SUM OF SERIES 
 
A series is a set of numbers (a1, a2, a3,…,an,…,aN) in which there is a particular relationship 
between successive terms. This relationship may be arithmetic or geometric or a combination 
of both. 
 
There are many contexts in which we are interested in computing the value of the sum of the 
terms in a series. When an can be expressed as a simple function of n, it is sometimes possible 

to also express the sum SN = ∑
=

N

n
na

1
as a simple function of N.  For example, 

 

If an = n   then )1(
2
1

+= NNS N  

If an = xn  then 
)1(

)1(
x
xxS

N

N −
−

= ,   provided 1≠x  

 
If an ≥ 0 for all n and instead of stopping after N terms we keep on summing indefinitely, then  
either the sum increases indefinitely and the series is said to diverge or the sum approaches 

some finite limit called the sum to infinity of the series, denoted  by S∞ = ∑
∞

=1n
na and the series 

is said to converge. In the second example above (an = xn), it can be shown that the series 
diverges if x > 1 but converges if 0 < x < 1 with S∞ = x/(1-x). 
 
LIMITS AS N → ∞ 
 
An expression in N can do one of the following as N → ∞. 
 

tend to ∞      (e.g. N) 
tend to - ∞      (e.g. –N) 
oscillate infinitely     (e.g. (-1)NN) 
oscillate between finite limits    (e.g. (-1)N) 
tend to a finite limit     (e.g. 1 + 1/N) 

 
 
Acknowledgement 
These notes draw upon material in Richard Allsop’s Mathematics Checklist document. Any 
errors present here are, of course, the responsibility of the author. 
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Linear equations

Equations are used to determine one or more unknown quantities from knowledge of other
quantities.

Linear equations contain only known quantities and known multiples of unknown quantities.
They do not contain powers, roots, products or any more complicated expressions in the
unknown quantities, nor do they contain ratios with unknown quantities in the denominator.

If there is only one unknown  x , the linear equation for  x  takes the form

ax = b .

If a … 0 , this has just one solution:  x = b/a

If a = 0 , then either b … 0  and there is no solution
or b = 0  and any  x  is a solution.

The case  a = 0  is trivial, but has non-trivial counterparts in the case where there are several
unknowns  
x1 , x2 , ... , xn .

Let x = (x1 , x2 , ... , xn) .

In general there will also be several equations. Let there be  m  equations, viz

A x = b

where  A  is an  m × n  matrix and  b  is a column vector of  m  elements.

If  m > 1  the equations may be inconsistent, in which case there is no solution. This can be
checked by examining  A  and  b . In the case that they are consistent, if:

m < n then the equations have a whole range of solutions, 

m = n then they have a unique solution:  x = A-1b  if  A-1  exists, and a whole range of
solutions if  A-1  does not exist, or

m > n then they have a unique solution if some  n  of them have a matrix whose inverse
exists, and a whole range of solutions if not.

A whole range of solutions exists if and only if non-zero solutions of  A x = 0  exist, and the
latter together with any one solution of  A xT = bT  determine all such solutions.

Cartesian co-ordinates

(x1, x2)
8(2) x2

9
(1)

0
(3)

7 x1 6
(4)
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Given an origin  O  and the directions and scales of two perpendicular axes in the plane, every
point in the plane corresponds to a pair of real numbers  (x1, x2)  as shown, and vice versa.

The orientation of the axes shown is the conventional one, and the quadrants are then numbered
1, 2, 3 and 4 as shown.

The set of pairs satisfying an equation of the form

a1 x1 + a2 x2 = 0

is the line through both the origin and the point (-a2 , a1) , which has slope  -a1 /a2 ,  unless  a2 =
0 in which case it is the  x2  axis. If the slope is positive, the line lies in quadrants  1  and  3 , if
negative in quadrants  2  and  4 . If the slope is small the line is near to the  x1  axis  (x2 = 0) , and
if large, near to the  x2  axis  (x1 = 0) .

The set of pairs satisfying

a1 x1 +  a2 x2 = b

is a line parallel to this, passing at a distance  #b# / (a1
2 + a2

2)1/2  from the origin.

Cartesian co-ordinates can also be used in 3 or more dimensions.

In 3 dimensions, the conventional orientation of the  x3  axis is out of this side of the paper in the
above diagram. 

More than 3 dimensions cannot be envisaged physically, but are dealt with algebraically in just
the same way as 1, 2 and 3 dimensions.

Angles and trigonometric functions

Consider a circle of unit radius centred on the origin in the  (x,y)  plane.

The area of the circle is denoted by  π , which is approximately 3.1416 . The circumference is
2π . Let  P  be the point where the circle meets the positive part of the  x  axis.

For a typical point  Q  on the circumference, with co-ordinates  (x, y) , the angle  θ  between  OQ
and  OP  is normally measured anti-clockwise as shown.

When measured in units called radians, θ = arc PQ .
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-1

-0.5

0

0.5

1

y

0.00 0.79 1.57 2.36 3.14 3.93 4.71 5.50 6.28
Angle t (radians)

Cos t

-2

-1

0

1

2

y

0.00 0.79 1.57 2.36 3.14 3.93 4.71 5.50 6.28
Angle t (radians)

Tan t

-1

-0.5

0

0.5

1

y

0.00 0.79 1.57 2.36 3.14 3.93 4.71 5.50 6.28
Angle t (radians)

Sin t

Angles can also be measured in degrees  ( π radians = 180E ) but this is not recommended.
Angles must always be measured in radians when functions of them are being differentiated or
integrated.

The following trigonometrical functions are commonly used, in which the signs of  x  and  y
must be respected.

sin θ = y   cos θ = x tan θ = y/x ( tan θ  is the slope of the line  OQ )
cosec θ = 1/y   sec θ = 1/x cot θ = x/y

These are not mutually independent. Given  sin θ , all the others can be calculated using the fact
that  x2 + y2 = 1 .

There are hundreds of formulae connecting these functions, but the following are the most
important ones.

cos θ = sin (π/2 - θ) cos2θ + sin2θ = 1
tan θ = sin θ / cos θ
sin (θ+φ) = sin θ cos φ  +  cos θ sin φ
cos (θ+φ) = cos θ cos φ  -  sin θ sin φ

The graphs of  sin θ , cos θ  and  tan θ  over the range  (0, 2π)  are as follows. By definition, they
repeat themselves over all other intervals  (2nπ, 2(n+1)π) , n  integer.

The following limits are important.

(sin θ)/θ 6 1 as  θ 6 0 (tan θ)/θ 6 1 as  θ 6 0  (radians)

(note that these limits would be an awkward number if  θ  were measured in degrees)

tan θ 6 4 as  θ 6 (2n+1)π/2  from below B
C  n  integer

tan θ 6 -4 as  θ 6 (2n+1)π/2  from above D

We sometimes need to know the angle that gives rise to a certain value of a trigonometric
function. We
denote this in respect of sin, cos, tan respectively as arcsin, arccos and arctan, or as  sin-1 , cos-1 ,
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and tan-1 respectively. Thus, for example,

arcsin[sin(θ)] = θ , and

cos-1(x) = arccos(x) .

Note that there is no angle θ for which  sin(θ) = 2 , so that there is no value corresponding to
arcsin(2).

Acknowledgement

These notes draw upon material in Richard Allsop's Mathematics Checklist document.  Any
errors present here are, of course, the responsibility of the author.
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y ' α % β x

y ' sin x

y ' loge x

y ' exp x ' e x

y ' Θ x / 0 x # 0
1 x > 0

y ' f x1, x2, . . .xn

Functions

A mathematical function is a mapping from one set of values to another that maps each value
in the first set to exactly one in the second.  Some examples of explicit functions  y = f(x)   from
a set of values of the argument  x  to a set of values of  y  are

Other functions are implicit rather than explicit (eg the value of y that satisfies  y + ey = x) whilst
other relations have multiple values (eg  y = %x , which has two values whenever x … 0).

The set of values for which a function is defined is called the domain of that function, and the
set of values to which it maps the elements of the domain is called its range.  For each of the
example functions given above, the domain and range are given in Table 1.

Table 1:  Domain and range of certain functions

Function  f x Domain Range

α % β x ú   (all real numbers) ú if  β … 0
{α} if  β = 0

Sin x ú [-1, 1]

loge x (0, 4) ú

e x ú (0, 4)

Θ x ú {0, 1}

We often sketch functions as graphs in Cartesian co-ordinates (x, y):  because of the requirement
that each value of the domain is mapped to exactly one in the range, a graph of this kind meets
any line that is parallel to the  y  axis at most once. For example, the graphs of the exponential,
logarithm and sine functions are shown in Figure 1.

In some cases, a variable y  is associated with a function that depends on several variables
x1, x2, ... xn, .  This can be expressed as
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Figure 1: Graphs of some example functions

f x ' α0 % α1 x % α2 x 2
% . . . % αn x n

' j
n

k'0
αk x k

Graphing a function of this kind is often impractical, though the case of  n = 2  can be
represented by a surface over the relevant part of the    plane.x1, x2

A function  can be used to identify a certain value of x  which satisfies the equationf x
;  a value of this kind is known as a root  of the equation or a zero of the function.  Forf x ' 0

example, we might wish to know the value of  x  for which ;  this can be identifiedα% β x ' 0
as a zero of the function .  Provided that  β … 0 , this is seen to be .  Iff x ' α % βx x ' &α/β
β = 0 , then the solution depends on  α : if  α = 0 , then any  x  is a root of the equation, whilst
if  α … 0 , there is no root.

Quadratic and polynomial equations

We have seen linear functions of the form  . The inclusion of a term in  x2  extendsf x ' α % βx

this to the quadratic function which has the form  .  More generally, a kindf x ' α % βx % γx 2
of function that arises quite often is one of the form
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x '
&b ± b 2

& 4ac
2a

Figure 2:  Graphs of some quadratic functions

where by convention, .  This is called a polynomial  function of degree n, and gives riseαn … 0

to the corresponding polynomial equation of degree n: .   Polynomial functions aref x ' 0
always continuous and have domain ú; if the degree  n  is odd, then they have range  ú  as well.
The linear function    is a polynomial of degree 1 and the quadratic functionf x ' α % β x

  is a polynomial of degree 2.f x ' a x 2
% b x % c

The graph of a quadratic function is always a parabola with axis parallel to the  y  axis.

The number of roots that a quadratic equation has depends on the value of the discriminant

:  if this discriminant is strictly positive, then the equation has two distinct roots; if theb 2
& 4ac

discriminant is equal to zero, then the equation has one root which corresponds to two
coincidental solutions, and if the discriminant is negative, then the equation has no real roots at
all.  These cases are illustrated in Figure 2.

The values of the roots of a quadratic equation can be expressed in closed form as 

provided that the discriminant is positive;  where two distinct roots exist, they arise from the
alternative signs of the square root.

A polynomial equation of degree 3 is called a cubic  and always has at least one real root;  it can
have one, two or three distinct ones depending on the values of the coefficients  αi , (0 < i < 3).
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pn x ' x&x0 pn&1 x

f ) x '
dy
dx

g x0 ' Lim
h60

f x0%h & f x0
h

f ) x0 '
dy
dx x0

In general, a polynomial equation of degree  n  can have up to  n  distinct real roots but no more
than that, and it has at least one if  n  is odd and in which case the range of the polynomial
function is ú.

A polynomial equation of degree 3 or 4 can be solved by means of formulae, but these are
complicated.  If  the degree  n  is greater than 4, then solution by formulae is not always possible.
If a root  x0  is known, then the polynomial  pn(x) of degree  n  can be expressed in the form 

where   pn-1(x) is a polynomial of degree  n-1 .  This result, which uses the fact that a × b = 0
Y a = 0 or b = 0 , allows us to use knowledge of a root to decrease the degree of polynomial
equation that we have to solve.

We usually use numerical methods to solve for roots by successive approximation whenever
n > 3 .

Differentiation

For a function   we are often interested in how fast the value of  y  changes as  xy ' f x
changes.  For example, if  y  is the position of a vehicle at time x , then the rate of change of  y
with respect to  x  is the instantaneous velocity of the vehicle.  This rate of change is another
function of  x  and is called the derivative of  y  with respect to  x .  It is often written as 

We can approximate the derivative of  y  with respect to  x  for a function   at a certainy ' f x
value  by taking the ratio of the finite differences   and  h  for .  Thisx0 f x0 % h & f x0 h…0
is illustrated in Figure 3.

For a function such as the one graphed in Figure 3, and indeed for most of the functions that we
shall encounter, the limit of the gradient 

exists and is the same in each of the cases that  h 6 0  from above (ie using positive values of
h ) and from below (ie using negative ones).  This limiting value is the derivative    f N(x)  of the
function  f(x)  at  x0 .  According to convenience and emphasis that is desired in the context of
use, we write this as

Given  a function   f(x) , the calculation of    f N(x)  is called  differentiation.  If   f(x)  is given
as an expression in  x , it is not usually difficult to find   f N(x)   as an expression in  x  using the
results in Table 2.

Differentiation can be repeated, so that for example once we have obtained the velocity of a
vehicle as a function of time by differentiating its position, we can obtain its acceleration by
differentiating the velocity function.  We write
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d
dx

dy
dx

'
d 2y

dx 2
' f )) x ' f 2 x

Figure 3:   A function and its approximate gradient at x0

and so on for higher derivatives.

Table 2:  Some functions and their derivatives

Function   f(x)  Notes and restrictions Derivative   f N(x)  

k k is a constant 0
xn n  constant and  x… 0  if n<1 n xn-1

sin x cos x
cos x - sin x
tan x x … (2n+1) π /2 ,  n  integer sec2 x
ex ex

loge(x) 1 / x
k u(x) k  constant k uN(x)
u(x) + v(x) uN(x) + vN(x)
u(x) v(x) Product rule uN(x) v(x) + u(x) vN(x) 
u(x) / v(x) Quotient rule [uN(x) v(x) - u(x) vN(x)] / [v(x)]2

u[v(x)] Chain rule uN[v(x)] vN(x)
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Figure 4:   A function with stationary points at  x1 , x2 , x3 and x4 .

An important use of differentiation is to find local maximum and minimum values of functions.
For example, the function shown in Figure 4 has local maxima at x1 and x4 , and a local minimum
at x2 . 

The common feature of such points is that the derivative  f N(x)  is zero there, so that  f(x)  is
stationary in the sense that variations in the value of  x  have only small effect on the value of
f(x) .  The first step in finding local maxima and minima is to solve the equation  f N(x) = 0 .
However, not all the roots of this equation are either maxima or minima:  an example of another
kind of root is   x3  in Figure 4, which is an example of a  point of horizontal inflexion.

Having solved  f N(x) = 0 ,  we need to find which of its roots are maxima, which are minima, and
which are points of inflexion.  We do this by evaluating successively higher order derivatives
  f (n)(x)  at each of these roots until we find one that is non-zero:  the order of this derivative and
its sign then determine the nature of the stationary point.  Often the second derivative is non-
zero, in which case we need look no further.  The possibilities for this are identified in Table 3.

Table 3: Nature of  f(x0)  according to the sign of the derivative of least order n that 
is non-zero, and the parity of that order.

f N(x0) Parity of  n f (n)(x0) Nature of  f(x0)

0 even < 0 x0  is a local maximum of  f(x)
0 even > 0 x0  is a local minimum of  f(x)
0 odd … 0 x0  is a point of inflexion of  f(x)
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For most of the functions that we shall be using, this approach will identify all maxima and
minima that lie strictly within their domains.  However, we note that where this domain has a
finite boundary, the values on the boundary may be extremal (ie minimal or maximal) ones:  this
occurs with the function graphed in Figure 4 which is minimised at the left-hand boundary but
is not stationary there.  In the case that the function is not defined on the boundary of a finite
range (such as logarithm), values taken by the function near the boundary can be more extreme
than those at any stationary point.  Similarly, if the range of a function  is infinite (such as

, for  β … 0), values of the function can become progressively more extreme asf x ' α % β x
x  becomes either more positive or more negative.  In these cases, the functions do not attain
their extrema unless constraints are imposed on  x .

A function of more than one variable can be differentiated with respect to each variable
separately:  this is known as partial differentiation.  The notation used for this is illustrated in
terms of a function   f(x, y, z)  of the 3 argument variables  x, y and z.  We write

The calculus for this partial differentiation is identical to that for ordinary differentiation: the key
distinction is in the interpretation and use of the resulting function.

Second and higher order partial derivatives are defined as in the following examples

For the kinds of functions that we shall encounter, the mixed partial derivatives are independent
of the order of differentiation, so that for example

Partial differentiation is used to identify the sensitivity of a function to changes in one of the
arguments whilst the others remain unchanged.  In practice, this is not always possible because
of interrelationships between the argument variables.  For example, we could consider flow of
traffic past a point as a function of traffic speed, density and time;  the partial derivatives of this
function represent the sensitivity to unilateral changes in each of these variables and do not
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incorporate information such as relationships between speed and density.  The total derivative
of a function can be found using its partial derivatives together with information about the
relationships between the arguments according to the formula

Taylor's and MacLaurin's series

In some cases we have or can find the value of a function  f(x)  and its derivatives at a certain
point  x = x0  and wish to estimate values of the function in the neighbourhood.  Provided that
the function is sufficiently smooth, this can be done by means of  Taylor's series:

This is most useful when  h  is small enough for successive terms to become smaller rapidly so
that a good approximation can be obtained with a few terms:  in some cases just 2 terms can be
adequate.  If bounds are available for the value of the derivative  f(n)(x)  in the interval  [x0 ,
x0+h], then Taylor's series can be used to provide a polynomial approximation of specified
accuracy using only information about the function at the single point  x = x0 by evaluating the
final term there.

The special case of Taylor's series in which   x0 = 0  is called MacLaurin's series which, upon
replacing  h  by  x, can be written

This provides a method of expressing certain functions as power series.  For example, the
exponential function can be expanded as

It also provides the basis for Newton's method  for the iterative solution of equations  f(x) = 0.
This takes an initial estimate  x0  of a root and calculates a sequence of approximations

.  In the case that the function  f(x)  is linear, then  x1  is a root of thexn%1 ' xn & f xn / f ) xn
equation whatever the choice of initial estimate   x0 ;  in other cases the sequence   xi  will yield
diminishing values of  |f(xi)| provided that the second derivative   f O(x)  is sufficiently small in
the neighbourhood of the root and the initial estimate   x0  is sufficiently good in the context of
the values of the second derivative.  This approach can be used to help find maxima and minima
of a function by solving for zeros of its derivative.
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INTEGRATION 
 
Consider now the reverse of the question that was answered by differentiation. Suppose we 
know that an unknown function, F(x) say, has a rate of change with respect to x which is a 
know function f(x), and we wish to find F(x) (e.g., we know the speed of a vehicle at each 
instant in a give period, and we want to work out how  
 
Suppose we draw the graph of f(x) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This tells us that at any point x0 the rate of change of F(x) is f(x0), so that for sufficiently 
small h, we have: 
 

0 0
0

( ) ( )
( )

+ −
≅

F x h F x
f x

h
 

 
i.e.,   0 0 0( ) ( ) ( )F x h F x hf x+ ≅ +  
 
where the symbol ≅  means “approximately equal to”. 
 
In the case shown in the diagram, if F(x0) is in some sense the area to the left of x0 between 
the curve y=f(x) and the x axis, then the error in this approximation is represented by the 
shared triangle, and hf(x0) is represented by the rectangle below it.  
 
For sufficiently small h, the triangle becomes negligible compared to the rectangle.  
 
This shows that the shaded area in the diagram below represents F(w)-F(a), and the rate of 
change of this with respect to w is f(w).  
 
 
 
 

y 

x

f(x0) 

y=f(x)

x0 x0+h
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Thus, if we know the value of F(x) at some point which we can use as the point a, then the 
area under the curve between a and w tells us the value of F(w) for any w > a. 
 

We write the area as ( )
w

a
f x dx∫ , so that: 

 

( ) ( ) ( )
w

a
F w F a f x dx− = ∫  

 
The same applies with a and w interchanged, provided that we count as negative the area 
covered as we move to the left along the x axis. It also applies if the curve y=f(x) crosses the x 
axis, provided that we count areas below the x axis as negative.  
 
Thus quite generally (for the kinds of functions we shall be considering), whatever the 
relative positions of a and b and whatever the sign of f(x), we have: 
 

( ) ( ) ( )
b

a
F b F a f x dx− = ∫  

 
where F(x) is any function whose rate of change with respect to x is f(x). The 

quantity ( )
b

a
f x dx∫  is know as the definite integral of f(x) over the interval [a,b] and is also 

written [ ]( ) b

a
F x , if we have an expression for F(x) in terms of x. 

 
To find an expression for F(x) given an expression for f(x), we have to perform the reverse of 
differentiation (if we can) e.g., 1a aax x− → , cos( ) sin( )x x→  etc. We also have to add on an 

arbitrary constant because for any constant k, ( ( ) ) ( ) ( )d F x k dF x F x
dx dx

+ ′= = , so that 

knowledge of ( )F x′ does not enable us to distinguish between functions F(x) which differ 
only by a constant.  
 

y 

x

y=f(x)

a w
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This process is written, for example 
 

1a aax dx x k− = +∫  
 
or more generally 
 

( ) ( )f x dx F x k= +∫  
 
where the quantity ( )f x dx∫ is called the indefinite integral of f(x). 
 
It is in this sense that we can think of integration as being the inverse of differentiation. A list 
of functions and their derivatives can therefore be used in reverse to help to find indefinite 
integrals.  
 
Moreover, the properties of sums, products and quotients of derivatives discussed in Maths 
Refreshers 3 can be used to derive a number of useful properties of indefinite integrals. For 
example the linearity of differentiation implies that,  
 

( ) ( )f x dx f x dxλ = λ∫ ∫    for any constant λ  
and 

[ ( ) ( )] ( ) ( )f x g x dx f x dx g x dx+ = +∫ ∫ ∫  
 
Moreover, if ( ) ( )u x dx U x k= +∫ and ( ) ( )v x dx V x k= +∫ then it follows from the product 
rule of differentiation that:  
 

( ( )) ( ) ( ( ))u v x v x dx U v x k′ = +∫  
and 

( ) ( ) ( ) ( ) ( ) ( )U x v x dx U x V x u x V x dx= −∫ ∫  
 
This is sometimes called the formula for integration by parts. 
 
There are very many methods of evaluating an indefinite integral, note however, that by no 
means all expression f(x), even quite-simple looking ones, have indefinite integrals that are 
similarly simple expressions. For those that do not, however, we can evaluate definite 
integrals numerically. 
 
LOGARITHMIC AND EXPONENTIAL FUNCTIONS 
 
The simplest function that has no indefinite integral in term of the functions of x as have so 
far considered is f(x) = 1/x 
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In such cases, mathematicians often use the integral as the definition of a new function. In 
this case the result of doing so is extremely useful. It is easy to shown that for u and v > 0  
 

1 1 1

1 1 1uv u v

dx dx dx
x x x

= +∫ ∫ ∫  

 

Thus, the integral 
1

1t

dx
x∫ has the property of a logarithm. For this reason it is called ln(t) (the 

natural logarithm of t) and the above equation becomes  
 
  ln(uv) = ln(u) + ln(v) 
 
By definition, and as for any logarithm, ln(1)=0, ln( )  as x x→∞ →∞ and 
ln( )  as 0x x→ −∞ → . 
 
The number whose natural logarithm is 1 is of fundamental importance. It is denoted by e and 
is approximately 2.7183. In the diagram above, it is the point on the x axis such that the 
shaded area is 1.  
 
It is easy to see that for all rational r, ln(er) = r. 
 
For all real x we can define ex to be the number w such that ln(w) =x. The function ex is called 
the exponential function. Then, as we expect of a power, exey=ex+y, for all x and y. 
  
Moreover, eln(x) is the number y such that ln(y)=ln(x), i.e., x. Thus for any real x > 0, x= eln(x). 
 
This enables us to fill in the gap in in our definition of powers by defining xy to be eyln(x) for 
all real y and all x > 0 

 
We often write exp(x) for ex (the alternative notations can be used interchangably). This is 
particularly useful when writing ef(x) when f(x) is already a complicated expression.  
 

y 

x

y=1/x

1 e

1 
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The functions ln(x) and exp(x) are both easy to differentiate. By definition ln( ) 1d x
dx x

=  and it 

is easy to show that exp( ) exp( )d x x
dx

=  

 
Thus exp(x) is the function of x that remains unaltered under differentiation. 
 

From the fact that ( ( )) ( ( )) ( )du v x u v x v x
dx

′ ′=  (chain rule), it follows that ( )kx
xd e ke

dx
= .  

 

Incidentally, it can also be shown from the figure above that 11
N

N
Lim e

N→∞

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 (but this is 

not a result we will use in the MSc courses). 
 
A few of the most useful standard indefinite integrals are given in the table below (where n is 
a constant and k is the constant of integration). Many mathematics textbooks contain 
extensive lists of know indefinite integrals.   
 

f(x) ( )f x dx∫  

( 1)nx n ≠ −  
1

1

nx k
n

+

+
+

 

1 1x
x

− =  ln(| |)x k+  

e ( 0)nx n ≠  enx

k
n

+  

sin( ) ( 0)nx n ≠  cos( )nx k
n

−
+  

cos( ) ( 0)nx n ≠  sin( )nx k
n

+  

 
 
DIFFERENTIAL EQUATIONS 
 
Integration was introduced as a procedure for finding a function F(x) such that ( )F x′ is a 
know function f(x). This can also be described as solving for y as a function of x the 
following equation  
 

( )dy f x
dx

=  

 
This is a simple example of a differential equation, that is an equation in x, y and various 

derivatives of y with respect to x (e.g., 
2

2,  and so ondy d y
dx dx

).  Only the simplest of such 

differentia equations can be solved analytically to yield a neat algebraic expression for y as a 
function of x. Most differential equations must be solved numerically.  
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However, the above differential equation can be solved if the corresponding indefinite 
integral ( )f x dx∫ can be found. The solution involves an arbitrary constant called the 

constant of integration, and this is true of any differential equation involving dy
dx

but no 

higher order derivative. After solution, the appropriate value of the constant can be found if 
the value y0 of y corresponding to just one value x0 of x is know. The solution of a differential 
equation involving derivatives up to the nth order involves n constants of integration.  
 
Another very simple form of differential equation that can be solved similarly is: 
 

( ) ( )dy f x y g x
dx

+ =  

 
This equation has the general solution (not as complicated as it looks) 
 

( ) ( )exp ( ) ( ) exp ( ) )y f x dx k g x f x dx dx⎡ ⎤= − +⎣ ⎦∫ ∫ ∫  

 
where k is the constant of integration and the various indefinite integral are evaluated without 
introducing further constants. This expression is naturally most useful if the two indefinite 
integrals involved can be found.  
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PROBABILITY 
 
Many of the problems that arise in transport studies involve uncertain events (e.g., whether a 
particular traveller will be involved in a traffic accident during a given observation period). 
The laws of probability provide us with the basic concepts to enable us to coherently describe 
uncertain events (and uncertain information) and provide the foundation for a wide range of 
practical tools (called statistical models) that help us draw inferences and make decisions 
about such uncertain events.  
 
Definition of Probability 
 
Consider an event A, which may or may not occur (or a statement A that may or may not be 
true) under the circumstances Z.  
 
The probability of A happening (or being true) in the circumstances Z is denoted by P(A | Z) 
(sometimes this is written Pr(A | Z)). Suppose that Z can be repeated many times (N) over and 
a number of trials are made. Let the number of times that event A occurs in these N trials be 
NA, then for finite N , the probability P(A | Z) is estimated by NA/N  and in the limit as 
N →∞ , we have the definition: 
 

P( | ) Lim A

N

NA Z
N→∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
If the circumstances Z cannot be repeated, then a particular person’s (subjective) estimate of 
P(A | Z) can nevertheless still be expressed in terms of a fair bet. If for example, the person 
regarded as fair a bet in which he wins £1 if A happens and loses £x if it does not, then his 
estimate of P(A | Z) is x/(1+x). If the person is consistent in a certain mathematical sense, the 
probabilities estimated in both these ways satisfy the following axioms.  
 
Axioms of Probability 
 
Suppose that under the circumstances Z, the set of all possible events that might occur is 
denoted by S. 
 

1. The probability of any particular event A in S occurring lies between zero and 
unity. i.e., 0 P( | ) 1A Z≤ ≤  for all A in the set S and all Z 

 
2. Each even that occurs belongs to S i.e., P(S | Z) =1 
 
3. If A and B are two events in S that cannot both happen in circumstances Z (i.e., A 

and B are mutually exclusive events) then  P(A or B | Z) = P(A | Z) + P(B | Z) 
 

Although these axioms are very simple, they allow us to build up sophisticated and useful 
tools of analysis.  

 
Some Basic Properties of Probabilities 
 

1. For any event A in S, the probability that A does not occur is given by:    
P(A does not happen | Z) = 1 – P(A | Z) 
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2. For mutually exclusive events A1, A2,….,An all of which belong to S 

1 2
1

P(  or  or ,...,or | ) P( | )
n

n i
i

A A A Z A Z
=

= ∑  

 
3. For any two events A and B in S that are not mutually exclusive  

P(A or B | Z) = P(A | Z) + P(B | Z) – P(A and B | Z) 
 

The term P(A and B | Z) is called the joint probability of the event A and B occurring.  
 

Conditional Probability 
 
Often it is required to calculate the probability of an event B occurring, given that an event A 
occurs. This is written P(B | Z and A) and is called a conditional probability, since it is the 
probability of B conditional on A. We can show that  
 

P(  and | )P( |  and )
P( | )

A B ZB Z A
A Z

=  

 
Similarly 

P(  and | )P( |  and )
P( | )

A B ZA Z B
B Z

=  

 
and hence  
 

P(A and B | Z) = P(A | Z)P(B | Z and A) = P(B | Z)P(A | Z and B) 
 
It is very important to understand the difference between joint probability and conditional 
probability.  
 
Marginal Probability 
 
If events A1,A2,…,An are mutually exclusive and exhaustive in circumstances Z, then for any 
other event B we can extend the concept of conditional probability as follows:  
 

1
P( | ) P( |  and )P( | )

n

i i
i

B Z B Z A A Z
=

=∑  

 
In these circumstances P(B | Z) is called the marginal probability of B. It is the probability 
that B occurs, taking into account the influence of all the possible events Ai. 
 
Independent Events 
 
If P(B | Z and A) = P(B | Z and (A doesn’t happen)) (i.e., the probability of the event B 
happening is completely unaffected by whether or not the event A happens) then the events A 
and B are said to be independent and then  
 

P(B | Z and A) = P(B | Z and (A doesn’t happen)) = P(B | Z ) 
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and hence from above 
 
  P(A and B | Z) = P(A | Z)P(B | Z) 
 
Independence is a useful property since it greatly simplifies the calculation of joint 
probabilities.  
 
Likelihood 
 
When event A is known to have happened but the circumstances Z are uncertain, then P(A | Z) 
is called the likelihood of the circumstances Z in the light of the event A. The likelihood plays 
an important role in more advanced statistical modelling.  
 
Bayes Theorem 
 
This states that for any events A1, A2,….,An and any other event B such that P( | ) 0B Z ≠  
 
  P( |  and ) P( |  and )P( | )i i iA Z B B Z A A Z∝  
that is: 
 
(probability of  posterior to ) (likelihood of  in the light of ) (probability of prior to )i i iA B A B A B∝ ×
 
STATISTICS 
 
Statistical analysis and modelling (“statistics” for short) is concerned with applying the ideas 
of probability to the practical problems associated with analysing data. There are a number of 
key concepts involved in statistics.  
 
Random Variable 
 
The key idea in making the transition from probability to statistics is the idea of 
characterising data using random variables.  
 
A random variable X is a function with the following properties: 
 

1. X is defined over the set S of all possible events that can occur in the circumstances Z 
and maps each element of S into a point in the set of real numbers . 

 
2. For every real number x, the probability P(X = x) that X assumes the value x in a trial 

is well behaved. Likewise for every interval [x1,x2], the probability 1 2P( [ , ])X x x∈ that 
X assumes any value in the interval [x1,x2] is well behaved.  

 
 
  
 
 
 

S  X
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Distribution of a Random Variable 
 
The probabilities P define what is called the probability distribution (sometimes shortened to 
just the distribution) of the random variable X. This is given by the probability distribution 
function F(x) (sometimes shortened to just the distribution function), which is defined by:  
 

( ) P( )F x X x= ≤  
 
Although these definitions of random variable and distribution function are very general, only 
a rather limited number of distributions occur frequently in typical applications. The 
properties and use of a number of these common distributions will be introduced in the 
module T2.  
 
An important classification of random variables and their distribution functions is according 
to whether they are discrete or continuous. 
 
Discrete Random Variables 
 
A random variable X and its distribution F(x) is discrete if X can assume only finitely (or 
more correctly, countably infinitely) many values. Corresponding to each possible value of X, 
x1, x2,… and so on are positive probabilities p1, p2,… and so on, whereas the probability of 
any interval not containing a possible value of X is zero. Discrete random variables arise in 
circumstances where the trial naturally gives rise to an outcome that is a classification (e.g., a 
traveller chooses either bus or car as the mode of travel to work) or a count (e.g., an engineer 
records the number of accidents per unit time at a road junction).  
 
The probabilities define the probability density function f(x) (sometimes shortened to just the 
density function) by: 
 

  if ( 1, 2,...)
( )

0 otherwise
i ip x x i

f x
= =⎧

= ⎨
⎩

 

 
For a discrete variable, the density function is related to the distribution function by 
summation: 
 

( ) ( )
i i

i i
x x x x

F x f x p
≤ ≤

= =∑ ∑  

 
The second axiom of probability requires that the summation of the density function over all 
possible values of X is unity: 
 

all possible 
( ) 1

i

i
x

f x =∑  

 
The probability P( )a X b≤ ≤  that the random variable X assumes some value in the range 
a X b≤ ≤  is therefore given by 

 
P( ) ( ) ( )

i

i
a x b

a X b F b F a p
≤ ≤

≤ ≤ = − = ∑  
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Continuous Random Variables 
 
Continuous random variables can assume any real value within a certain range (which may be 
infinite). Therefore we cannot enumerate each possible value of X. Continuous random 
variables arise in circumstances in which the trial naturally gives rise to a continuous 
measured quantity such as the speed of a traffic stream over a section of road or the number 
of miles operated by a bus company under a particular contract.  
 
The distribution function of a continuous random variable is related to its density function by 
integration  

( ) ( )
x

F x f t dt
−∞

= ∫  

 
From which it follows that ( ) ( )F x f x′ = . 
 
The second axiom of probability requires, in the case of a continuous random variable, that 
the integral of the density function over the real line is unity: 
 

( ) 1f t dt
∞

−∞

=∫  

 
(Note that in practice many continuous distributions have a more limited range, in which case 
their density function is zero outside that range, so the normalisation above is general in 
nature).  
 
Furthermore, in the case of a continuous random variable, the probability P( )a X b≤ ≤  that 
the random variable X assumes some value in the range a X b≤ ≤  is given by 
 

P( ) ( ) ( ) ( )
b

a

a X b F b F a f t dt≤ ≤ = − = ∫  

 
Role of Probability Distributions  
 
In module T2 (and elsewhere in the course), we will use random variables and probability 
distributions (and methods derived from these concepts) to analyse data from a wide range of 
different transport applications. Although the details will differ from case to case, there will 
be a common basic approach. This involves  
 

1. Conceiving of the data we collect in the real world as being represented by one or 
more random variables. 

2. Selecting appropriate probability distributions to describe these random variables, in 
the light of our knowledge of the real world setting. 

3. Manipulating the resulting probability distributions in order to draw conclusions about 
the probability of certain events occurring or certain assertions regarding the random 
variables as being true.  

4. Translating these conclusions about the random variables and their distributions back 
into conclusions about the original real world setting.  
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For example, we might want to find out whether a bus lane has affected the travel time of 
buses along a particular corridor. Using the ideas from this lectures, we could approach this 
problem by imagining that the travel time of buses along the corridor is a random variable 
(called t say) and that without the bus lane its distribution function is F1(t) whereas with the 
bus lane its distribution is F2(t). If we make measurements of the travel time with and without 
the bus lane, then we want to know whether the data provide us with sufficient evidence to 
claim that F2(t) is a different function than F1(t).  
 
Answering this type of question requires that we have ways of easily characterising 
probability distributions and of making inferences about them. These issues are taken up in 
more detail in the module T2.  
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