
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Metamaterials 1 (2007) 44–51

Higher order interactions in magneto-inductive waveguides

R.R.A. Syms a,∗, O. Sydoruk b, E. Shamonina b, L. Solymar a

a Optical and Semiconductor Devices Group, EEE Department, Imperial College, Exhibition Road, London SW7 2AZ, UK
b Department of Physics, University of Osnabruck, 49060 Osnabruck, Germany

Received 20 December 2006; received in revised form 30 January 2007; accepted 2 February 2007
Available online 12 February 2007

Abstract

The properties of periodic chains of magnetically coupled L–C resonators supporting magneto-inductive (MI) waves are examined
in the case when non-nearest neighbour interactions are significant. The variation of the coupling coefficient with separation is
measured using resonant elements based on printed circuit board inductors and surface mount capacitors, and used to predict the
S-parameters and dispersion characteristics of magnetoinductive waveguides. Good agreement with experimental measurements is
obtained when higher order interactions are included. The significance of non-nearest neighbour interactions in more general MI
wave devices is then highlighted in an example problem involving reflection from a waveguide discontinuity, and the influence of
higher order evanescent waves is discussed.
© 2007 Published by Elsevier B.V.
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1. Introduction

A magnetoinductive (MI) wave is a form of slow-
wave that may propagate on a system of coupled L–C
resonators. Both forward and backward waves may be
supported, depending on the arrangement of the res-
onators (and hence on the sign of the magnetic coupling).
MI waves were mentioned in textbooks in the 1960s
and 1970s in connection with periodic filters [1] and
slow wave structures [2,3], and similar waves have been
exploited more recently in planar slow wave filters [4].
They were recently resurrected by Shamonina et al. [5]
in the context of metamaterials, and experimental con-
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firmation for a set of capacitively loaded loops was
provided by Wiltshire et al. [6]. The initial analysis
for a one-dimensional MI waveguide was generalised
to two and three dimensions [7], and laws of reflection
and refraction have been developed for MI waves that
are analogous to Snell’s law for electromagnetic (EM)
waves [8]. Specifically designed resonant elements with
attenuation as small as 0.12 dB per element have been
recently described [9]. MI waveguides are a variant of
the wider subject of metamaterials, which have been of
considerable interest recently [10–14].

Applications for MI waves are now emerging, since
their slow speed has the potential to allow the processing
of low frequency signals in a compact structure. Planar
MI waveguide transducers have been developed [15],
and phase shifters have been investigated [16]. Imaging
has been demonstrated using parallel two-dimensional
sheets of coupled resonators [17,18]. One-dimensional

1873-1988/$ – see front matter © 2007 Published by Elsevier B.V.
doi:10.1016/j.metmat.2007.02.005



Aut
ho

r's
   

pe
rs

on
al

   
co

py

R.R.A. Syms et al. / Metamaterials 1 (2007) 44–51 45

waveguide devices have received considerable attention,
and tapered concentrators [19], mirrors, interferometers,
splitters, Bragg gratings and couplers have all been inves-
tigated [20].

Most of the analysis of MI waves to date has been
based on lumped element models similar to the mechan-
ical models developed many years ago for crystals [21]
and more recently for other metamaterials with magnetic
coupling between nearest-neighbour elements [22,23].
The generalisation to higher order interactions is quite
straightforward [7]. The need to take into account a
number of higher order interactions had already arisen
when matching theory to experiment, for example, using
the so-called ‘Swiss Roll’ resonators [24]. Also, in a
theoretical paper concerned with retardation effects, all
interactions in a hundred-element array had to be consid-
ered [25]. However, there has been no analysis so far of
the effect of higher order interactions either on the disper-
sion equation itself or on the operational characteristics
of MI wave devices.

The aim of the present paper is therefore to investigate
the effect of higher-order interactions in magneto-
inductive waveguides in more detail. Section 2 provides
a brief overview of the theoretical formulation of
the dispersion equation for higher-order interactions.
Experimental measurements of the coupling coefficients
between pairs of resonant elements, and the scattering
parameters and dispersion characteristics of waveguides
are presented in Section 3, and a comparison between
theory and experiment is made in Section 4. The theory
including second order interaction is applied to a sim-
ple MI waveguide device – a reflector – in Section 5.
Conclusions are drawn in Section 6.

2. Theoretical dispersion characteristic

We shall consider a one-dimensional array of magnet-
ically coupled resonant elements, shown schematically
in Fig. 1a as a set of capacitively loaded loops arranged
in the so-called “axial configuration” with a regular sep-
aration d. The array is assumed to be infinitely long,
and each element is coupled magnetically to every other
element. The elements are modeled as resonant circuits
consisting of an inductor L, a capacitor C and a resistor
R. Note that the length of the array is assumed to be small
relative to the free space wavelength so that retardation
effects may be neglected. Using Kirchoff’s voltage law,
the dispersion equation may be obtained in the form [7]:{

1 − ω2
0

ω2 − j

Q

}
+

N∑
ν=1

κν cos(νkd) = 0 (1)

Fig. 1. (a) Schematic of a magnetoinductive waveguide; (b) PCB
layout of resonant element, and (c) experimental arrangement of a
magneto-inductive waveguide.

Here ω is the angular frequency, ω0 = (LC)−1/2 is the
corresponding resonant frequency and Q = ω0L/R is the
quality factor. For νth nearest neighbours, κν = 2Mν/L is
the coupling coefficient and Mν is the mutual inductance.
The propagation constant is k = β − jα, where βd and
αd describe the phase shift and attenuation per element,
respectively. In the case when losses are low and only
nearest neighbour coupling is significant, Eq. (1) has a
single propagating wave solution, which exists over the
frequency band 1/(1 + κ1) ≤ (ω/ω0)2 ≤ 1/(1 − κ1). More
generally, for real values of k and ω, Eq. (1) leads in most
cases to a monotonically increasing dispersion curve (see
Section 5 for an exception). However, additional solu-
tions can now be found, considering that cos(νkd) can
be expanded into νth order Chebyshev polynomials of
cos(kd). In those solutions, k may turn out to be either
complex or purely imaginary. Usually, these solutions
are of no practical significance, but they will be needed
in the presence of discontinuities in the waveguide. We
shall return to this problem in Section 5.

3. Experimental results

MI waveguides were constructed to investigate their
dispersion characteristic and find their properties in
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reflection and transmission, using an Agilent E5061A
Network Analyser for electrical measurements. The
experiments were performed on planar three-turn induc-
tors formed on FR-4 substrates as shown in Fig. 1b and
made resonant using additional surface mount capac-
itors. The inductance and capacitance were L = 140 nH
and C = 100 pF, respectively, giving a resonant frequency
of f0 ≈ 42 MHz. These values were obtained using a nee-
dle probe for excitation; similar resonant frequencies
were obtained using a weakly coupled exciting coil. At
this frequency, the Q-factor (found from measurements
of bandpass characteristics) was 50. The resonances
of individual elements were matched to ±0.1 MHz,
and magneto-inductive waveguides were constructed by
inserting resonant elements into a plastic baseboard car-
rying an array of regularly spaced slots. The baseboards
were formed using a numerically controlled machine
tool, with a tolerance of ±25 �m. A 30-element line is
shown in Fig. 1c.

Input and output coupling was carried out by connect-
ing 50 � transmission lines from the network analyzer
to additional planar two-turn inductors with an induc-
tance LT ≈ 78 nH, which were then inductively coupled
to the first and last element in the array. This method has
previously been shown to give good broad band match-
ing between a transmission line and a MI waveguide,
provided the matching elements are suitably chosen [9].

The properties of the waveguide depend crucially on
the coupling coefficient between the elements. κ was
determined from the resonances of a two-element sys-
tem, which was probed with a weakly coupled coil as
shown in Fig. 2a and described in more detail in [9].
This method yields the resonant frequencies of a sys-
tem that depends only on nearest neighbour coupling, as
ω2 = 1/{(L ± M1)C} = ω2

0/(1 ± M1/L), allowing the
value of M1/L (and hence κ1) to be determined. The val-
ues of the measured coupling coefficient are plotted in
Fig. 2b as a function of the axial separation d. It is worth
noting that the theoretical maximum value of κ1 is 2, and
this is the first time that coupling coefficients as high as
1.6 have been found.

We have been unable to match the measured coupling
coefficients with the simple analytical theory based on
circular single-turn coils, since the field is quite differ-
ent between two of our closely spaced multi-turn coils.
However, we have found that the inverse polynomial

κ(d)={a0+a1d+a2d
2+a3d

3+a4d
4+a5d

5}−1
(2)

has suitable asymptotic properties and matches the
experimental results very well for the parameter val-
ues a0 = 5.5e−1, a1 = 5.7e−1, a2 = −2.0e−2, a3 = 3.7e−2,

Fig. 2. (a) Experimental arrangement for determination of the coupling
coefficient; (b) variation of coupling coefficient κ with axial element
separation d.

a4 = −3.8e−3 and a5 = 1.9e−4, as shown by the line
in Fig. 2b. The experiments were repeated using ele-
ments resonant at 133 MHz, and similar agreement was
obtained.

Transmission and reflection measurements were
made on the 30-element line shown in Fig. 1c, for an
axial separation of d = 3.5 mm, yielding the scattering
coefficients S11 and S12. The frequency variation of
their modulus is plotted as the bold lines in Fig. 3a
and b, respectively. Transmission is obtained over a nar-
row frequency band, ranging from ≈35 to ≈48 MHz.
The maximum transmission occurs at a frequency of
≈40 MHz, and (ignoring coupling losses) corresponds
to a propagation loss of ≈0.5 dB per element. The min-
imum reflection occurs at the slightly higher frequency
of 45 MHz.

The dispersion characteristics were determined by
measuring the phase delay arg(S12) and dividing by
the number of elements in the line to yield the disper-
sion characteristic shown by the bold line in Fig. 4.
As predicted, low-loss propagation is obtained only
over a narrow frequency band, but propagation with
increasing loss may still be obtained outside the band
edges.
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Fig. 3. Frequency variation of (a) |S11| and (b) |S21| for a 30-element
MI waveguide with 3.5 mm axial element separation. Bold lines show
experimental data, and ordinary lines show theoretical predictions
obtained using the measured coupling coefficient variation including
interactions up to N = 1, 2 and 30.

Fig. 4. Dispersion characteristic of a 30-element MI waveguide with
3.5 mm axial element separation. Bold lines show experimental data
and ordinary lines show theoretical predictions obtained using the mea-
sured coupling coefficient variation including interactions up to N = 1,
2 and 30.

4. Comparison between theory and experiment

Transmission through the MI waveguide system was
modelled by constructing the impedance matrix, and
using the standard definition of the scattering parameters
in terms of the currents and voltages at the input and out-
put [26] to obtain their values as a function of frequency.
For the MI waveguide itself, the circuit elements L, R
and Mν were obtained from the experimental data previ-
ously described. At the experimental spacing, the nearest
neighbour coupling coefficient was κ1 ≈ 0.29. For the
input and output transducers, the element inductance LT
was as previously given, while the mutual inductance MT
describing coupling to the line was estimated as MT = η

(LLT)0.5, where η is a constant such that 0 ≤ η ≤ 1 [27].
In the event, a best-fit value was obtained as η ≈ 0.55.

The thin lines in Fig. 3a and b show theoretical results
for S11 and S21 respectively. Three cases have been con-
sidered, namely when (i) nearest neighbour, (ii) next
nearest neighbour, and (iii) all interactions are taken into
account. For S21, it may be clearly seen that the theo-
retical curve closest to the experimental data is for all
interactions. Given that the calculations are somewhat
involved in this case, an interesting question is, how
many interactions should be included to get reasonable
agreement in a model with only moderate complex-
ity? Further investigation showed that five interactions
are sufficient. The situation is somewhat different for
S11. With Q = 50, the waveguide is so lossy that non-
neighbouring elements are likely to have less influence
on reflection than on transmission. Hence, there is little
difference between the theoretical results for different
number of interactions.

Theoretical dispersion curves can be calculated from
Eq. (1), considering only the low attenuation solution.
The thin lines in Fig. 4 show the results for the same cases
(i)–(iii). Clearly, there is again improved agreement
between theory and experiment as high order interactions
are included.

5. MI waveguide devices

The introduction of non-nearest neighbour coupling
may have significant consequences for magnetoinduc-
tive waveguide devices. To see the likely effects, we
consider the typical, and relatively simple, problem of
the discontinuity that may arise when one of the elements
in an otherwise uniform waveguide is placed at a differ-
ent distance from its neighbour as shown in Fig. 5a. The
discontinuity will act as mirror, and its properties have
already been estimated using nearest neighbour theory
[20].
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Fig. 5. (a) MI waveguide mirror formed by a local variation in the
element spacing d, (b) local variations of the currents near an inter-
face, for κ1 = 0.2, and μ = 0.7, assuming a quadratic decay in coupling
coefficient and a second nearest neighbour model.

The aim is here to find a more accurate solution, by
allowing coupling up to Nth order. The question again
arises how large should N be. In nearest neighbour the-
ory, the boundary-matching problem at the interface can
be described using two equations, corresponding to the
two unknowns (the transmitted and reflected wave ampli-
tudes). If Nth order interactions are considered, there will
be 2N unknowns, one for the amplitude of each solution,
resulting in a considerable increase in calculation effort.
Furthermore, the dispersion equation must be solved to
find the complex propagation constants of a set of N
waves. In this case, we have found that if second-nearest
neighbour interactions are included, a simple analytic
solution may still be obtained for both the dispersion
equation and the boundary problem.

Considering first the dispersion equation, we see that
for N = 2, Eq. (1) may be written as a quadratic in cos(kd).
In the lossless case, we obtain:{

1 − ω2
0

ω2

}
+κ1{cos(kd) + ζ[2 cos2(kd) − 1]}=0 (3)

Here ζ = κ2/κ1 is the ratio of the second-nearest and
nearest coupling coefficients. Eq. (3) is a quadratic in
cos(kd), and hence may be solved exactly using the stan-
dard method. For small ζ, analytic approximations may
also be obtained for the roots. The following results are

obtained. For small ζ, ω increases monotonically with
kd. In this case, there is only one propagating wave solu-
tion. However, for higher values of ζ, the ω-k diagram has
a subsidiary maximum between kd = 0 and kd = π and a
second propagating wave appears. It is simple to show by
differentiation that the subsidiary maximum first appears
when ζ = 0.25. In this case the dispersion curve is very
similar to that shown in Fig. 4, for N = 2, with a rela-
tively flat plateau between kd/π = 0.8 and kd/π = 1.0, and
is therefore a reasonably realistic representation of the
experimental situation here.

Because the case of a non-monotonic dispersion char-
acteristic is somewhat unrealistic, we consider only the
situation when ζ ≤ 0.25. In this case, the propagation
constants for both waves may be found by solving Eq.
(3) using the standard analytic method for a quadratic
equation. The primary solution has a real value of kd
and corresponds to a propagating magneto-inductive
wave. The secondary solution has the complex value
kd = π ± jαd, and is therefore an evanescent wave, whose
modulus decays exponentially and whose sign alternates
between adjacent elements.

Considering now the interface problem, we can see
in Fig. 5a that the uniformity of the waveguide is per-
turbed by having a separation between elements −1 and
0 that is different from the rest. The mutual impedance
between this pair of elements is jωM ′

1 while the mutual
impedances between any other two neighbouring ele-
ments is jωM1. The new feature not considered in
[20] is the mutual impedance between second nearest
neighbours, which is jωM2 in the uniform part of the
waveguide, and jωM ′

2 between elements −2 and 0 and
between elements −1 and 1.

Clearly, the terms M1, M ′
1, M2 and M ′

2 may in general
be found from a coupling coefficient variation of the type
already shown in Fig. 2b. In the calculations that follow,
we have assumed a simpler power law:

κ(d) = bd−2 (4)

This variation is representative of mid-range values of κ

in Fig. 2b, and allows analytic expressions for parameter
values to be obtained. Thus, for example, it is simple to
show that ζ = M2/M1 = 0.25, and other similar ratios may
be derived easily.

The governing equations near the interface may be
obtained by writing Kirchhoff’s voltage law for elements
−2, −1, 0 and 1 as:

ZI−2 + jωM1{I−1 + I−3} + jωM ′
1I0 + jωM2I−4 = 0

ZI−1 + jωM ′
1I0 + jωM1I−2 + jωM ′

2I1

+jωM2I−3 = 0
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ZI0 + jωM1I1 + jωM ′
1I−1

+jωM ′
2I−2 + jωM2I2 = 0

ZI1 + jωM1{I2 + I0} + jωM2I3 + jωM ′
2I−1=0

(5)

Here In is the current in the nth element and
Z = jωL + 1/jωC is the self-impedance of each element.
To solve these equations, it is no longer possible to
assume a single reflected wave and a single transmit-
ted wave. We need two more waves, which, as mentioned
earlier in this Section, are evanescent. In the present con-
text it means that there will be two more waves falling off
exponentially from the discontinuity, which we assume
will have amplitudes A and B at the discontinuity itself.
Thus we write:

In = I00{exp(−jnkd) + Γ exp(+jnkd) + A exp(−jnπ) exp(αnd)} for n < 0

In = I00{T exp(−jnkd) + B exp(−jnπ) exp(−αnd)} for n > −1
(6)

Here I00 is a constant and Γ and T are the amplitudes
of the reflected and transmitted waves. Eq. (5) must be
solved for the four unknowns Γ , T, A and B. Substituting
Eq. (6) into Eq. (5) and using the dispersion equation,
we obtain:

−ζΓ + ξT − ζA + ξB = ζ

−{1 + ζ exp(jkd)}Γ + {μ + ξ exp(−jkd)}T
−{1 − ζ exp(αd)}A + {μ − ξ exp(−αd)}B = {1 + ζ exp(−jkd)}
−{μ exp(−jkd) + ξ exp(−j2kd)}Γ + {exp(jkd) + ζ exp(j2kd)}T
+{μ exp(−αd) − ξ exp(−2αd)}A − {exp(αd) − ζ exp(2αd)}B = {μ exp(jkd) + ξ exp(j2kd)}
−ξ exp(−jkd)R + ζ exp(jkd)T + ξ exp(−αd)A − ζ exp(αd)B = ξ exp(jkd) (7)

Here we have introduced the further normalized quan-
tities μ = M ′

1/M1 and ξ = M ′
2/M1. Once μ has been

defined, the value of ξ follows automatically from Eq.
(4). Eq. (7) now represents the four required simultane-
ous equations. Before proceeding, we note that in the
limit when ζ and ξ → 0, A and B are negligible, so we
obtain:

1+Γ=μT

μ{exp(jkd) + exp(−jkd)Γ } = exp(jkd)T (8)

Eq. (8) are identical to the corresponding equations
obtained previously by neglecting second-nearest neigh-
bour interactions [20].

Fig. 5b shows the local variation of current near the
interface, found by solving Eq. (7) numerically by diag-
onalisation and back-substitution for the particular case

of κ1 = 0.2, μ = 0.7, ζ = 0.25 and ω/ω0 = 1. Two plots are
shown. The light circles show the variation of the modu-
lus of the incident and reflected current on the left-hand
side of the interface and the transmitted current on the
right hand side; the dark circles show similar results for
the evanescent currents. The incident and reflected cur-
rents form a standing wave pattern on the left-hand of
the interface. The evanescent currents clearly have much
smaller amplitudes, and decay rapidly on either side of
the interface. Their decay rate depends on the value of
αd, which may vary significantly depending on the value
of ζ and ω/ω0.

Fig. 6a shows the frequency variation of |Γ |2 and
|T|2, again for κ1 = 0.2, ζ = 0.25 and μ = 0.7. Two sets
of data are shown. The thick lines show results obtained

for nearest-neighbour interactions only, whereas the
thin lines are calculated by including second order
interactions as well. The results are qualitatively

similar, but there is a shift of the characteristic to lower
frequencies. Numerically, we have verified that the sec-
ond neighbour model conserves power between the prop-
agating waves so that |Γ |2 + |T|2 = 1 to a high degree of
accuracy.

Fig. 6b shows the variation of |Γ |2 and |T|2 with
μ, now assuming that ω = ω0. Again, thick lines show
the results for the nearest-neighbour model, while thin
lines show the results including second-nearest neigh-
bours as well. Once again, there are some differences
between the curves indicating that for more accurate
design work the nearest neighbour assumption is no
longer tenable. Note that there is no difference between
the two solutions whenμ = 1, since the discontinuity then
vanishes.
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Fig. 6. (a) Variation of |Γ |2 and |T|2 with ω, in a waveguide mirror
formed by a local variation in the element spacing d, assuming that
κ1 = 0.2 and μ = 0.7, and that there is a quadratic decay in coupling
coefficient; (b) corresponding variation with μ, assuming that κ1 = 0.2
and ω = ω0. Thick lines – nearest neighbour model; thin lines – second
nearest neighbour model.

6. Conclusions

We have shown that higher-order interactions may
not, in general, be neglected in magneto-inductive
waveguides consisting of axially coupled planar resonant
elements. However, their effects may be incorporated
in the theory relatively simply, and accurate predic-
tions of the performance of MI waveguides are obtained
from models using a relatively small number of addi-
tional terms. More importantly, higher-order interactions
have been shown to give rise to additional wave solu-
tions at discontinuities, which significantly alter the
performance characteristics of MI wave devices com-
pared with the predictions of simple theory. There is
therefore a strong incentive to develop element designs
that suppress non-nearest neighbour interactions, for
example using solenoidal inductors rather than planar
elements.
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