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Abstract: Optical microelectromechanical systems (MEMS) combine miniature optical com-
ponents with precision fixtures, elastic suspensions, and microactuators, and allow complex
functionality at low cost. However, the effect of the bounded nature of the beams propagating
through the system on design is profound. The current paper reviews the fundamental conse-
quences. Using a Gaussian beam formulation, models of guidedmodes in gradient indexmedia,
bounded beams and imaging components are constructed. Propagation algorithms are
described. The alignment tolerances for common component trains such as fibre-to-fibre
and beam-to-fibre connections are derived, limits on the curvature of reflecting surfaces are
established, the scaling laws of free-space optical MEMS are presented and the effect of
beam size on filter performance is clarified. Examples such as variable optical attenuators, opti-
cal cross-connect switches, filters and tunable lasers are discussed.

Keywords: microelectromechanical systems, micro-opto-electromechanical systems

1 INTRODUCTION

Optical microelectromechanical systems (MEMS)
have many applications in fibre telecommunications,
since they combine complex optical functionality
with high performance [1–4]. They often involve
combinations of free space components such as mir-
rors, gratings, and lenses, and guided wave com-
ponents such as fibres and lasers. Past reviews have
concentrated on device technology. Here, instead,
the underlying design principles are presented. In
contrast to macroscopic systems, which can be
understood using ray optics, optical MEMS involve
either free-space propagation of bounded beams, or
wave guidance, or a mixture of the two. Ray optics
is therefore inappropriate, but simple designs can
still be achieved by considering the properties of
Gaussian beams, which propagate in free space and
in cylindrically symmetric graded-index media
[5, 6]. Their properties lead to standard layouts, typi-
cally involving the expansion of a beam from a fibre
to a size sufficient for effective interaction with a
component such as a filter, followed by a reduction
in size to allow coupling back into a fibre. Beam
sizes can be controlled using lenses; however, there

are clearly optimum arrangements, which should be
identified to allow efficient packaging solutions [7].
Of course, real systems are imperfect. Any departures
from ideal alignment, or in the components them-
selves, can lead to a reduction in throughput. The
allowable insertion loss then determines themechan-
ical tolerances.
In section 2, the optical MEMS technology is

reviewed, and in section 3, the essential theory of
Gaussian modes is presented. In section 4, imaging
components and general propagation algorithms
are considered, and it is shown in section 5, how
beam parameters are optimized. In section 6,
alignment tolerances are considered, and in section
7, the effect of optical surface curvature. In sections
8, 9, 10, and 11, the principles of MEMS variable
attenuators, switches, filters, and tunable lasers
are described. Mechanical alignment issues are
discussed and conclusions are drawn in section 12.

2 OPTICAL MEMS

Common methods of optical MEMS fabrication
include anisotropic etching of single crystal silicon
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[8], polysilicon surface micromachining [9], synchro-
tron lithography and electroplating (LIGA) [10], and
deep reactive ion etching (DRIE) of bonded silicon-on
insulator (BSOI) [11], as shown in Fig. 1. Three-
dimensional structures may also be assembled by
out-of-plane rotation [12]. Each method has its
merits. Anisotropic etching allows precise formation
of grooves and pits. Surface micromachining allows
flexible design, but offers poor mechanical and optical
properties, due to the use of deposited layers that are
often thin and curved. LIGA provides high sidewall
verticality, but is restricted to metals and plastics.
DRIE of BSOI is a useful compromise, since it allows
arbitrary features in thick layers of high-quality
single crystal material. The processes have been used
to form fixtures for miniature, hybrid-integrated com-
ponents, and also fully integrated systems.
The most common bulk components are optical

fibres, lenses, filters, lasers, and detectors. Standard

silica telecommunications fibre has an outer
diameter of 125 mm and a core diameter of 8 mm.
Anisotropic etching has been used to form kinematic
mounts for fibres [13], fibre cable connectors [14],
and arrangements for connecting fibres to detectors
and lasers [15, 16]. Thesemethods have been extended
to incorporate planar lightwave circuits in complete
opto-hybrid modules [17]. Coupling lenses may be in
the form of rod lenses [18] and spheres [19].
Common approaches to collimation include the use
of lensed fibres [20] and, for shorter propagation dis-
tances, thermal diffusion of the core dopant [21].
Filters for dense wavelength division multiplexing are
often multi-layer stacks [22]. Integrated lenses may
be formed by a variety of methods, including reflow
melting [23] (possibly followed by transfer into an
underlying layer) or etching of a Fresnel lens pattern
[24]. Planar micromirrors may be formed using the
wafer surface or by vertical etching [25]. In-plane

Fig. 1 (a) MEMS fabrication methods; (b) latching VOA; and (c) tuning element for a laser
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blazed gratings may be formed by wet chemical etch-
ing [26], and out-of-plane gratings may be formed by
the LIGA process [27] or deep silicon etching [28].
All fabrication systems allow optical components

and elastic supports to be combined with electro-
static or electrothermal actuation. The supports are
flexures operating in bending or torsion. One limit
to operating speed is therefore set by the mechanical
time constant of the resulting mass-spring system.
Component size determines mass and operating vol-
tages or drive powers determine stiffness. Resonant
frequencies typically lie in the range 100 Hz–
100 kHz, which is sufficient for many operations
involved in network reconfiguration.
Electrostatic actuators have the advantage of low

power; however, high (.200 V) voltages may be
required with large electrode gaps. Parallel plate
and comb electrodes may be used. The former type
is simple to fabricate but complex to control, since
it suffers from a pull-in instability [29]. The latter is
more stable [30], but harder to fabricate as a deep
structure. Out-of-plane actuators based on vertically
staggered comb electrodes have also been developed
[31]. Although electrothermal actuators consume
power continually, they allow large actuation forces
from small, light structures. Material bimorphs,
which operate by differential thermal expansion in a
bilayered cantilever, may be used for both
out-of-plane [32] and in plane [33] motion. Shape
bimorphs, which operate by differential expansion
between parts of different length or section, also
allow in plane motion [34]. Buckling mode actuators
operate by differential thermal expansion between
suspended beams and the substrate and are available
quasi-linear [35, 36] and bistable versions [37].
Early developments in optical MEMS can be traced

to the work of Petersen on scanning mirrors [38] and
Hornbeck [39] on the Texas Instruments Digital
Micromirror Display. However, the greatest effort
has been expended on devices for telecoms.
Advanced packaging (including devices for mounting
[40], aligning [41–43] and switching [44, 45] fibres,
and mounting and aligning components [46]) has
been developed. The simplest functional optical
MEMS are variable optical attenuators (VOAs),
based on the insertion of a shutter between two
co-linear fibres [47, 48]. Multiple-blade [49, 50] and
latching [51] variants have been developed.
Figure 1(b) shows a simple shutter insertion device,
with spring alignment features for optical fibres.
VOAs based on image translation by a translating
[52] or tilting [53] mirror offer improved polarization-
and wavelength-dependence of loss.
A modification of the same principle – insertion of

a mirror – allows the construction of a small port
count switch. Mirrors have been translated [54, 55]
and rotated [56, 57] into position, and the devices

have been operated in transmission and reflection
[58]. Larger optical cross-connects (OXC) operate by
beam steering [59] or using arrays of two-axis tilt mir-
rors [60, 61]. Optical performance has been improved
by replacing polysilicon mirrors with single crystal
surfaces [62], and electromechanical performance
has been improved by replacing parallel plate with
terraced [63] and vertical comb electrodes [64]. An
extremely high performance cross-connect has
recently been demonstrated by Fujitsu [65].
In the signal-processing domain, switch arrays

have been combined with dispersive filters to form
ADD-DROP multiplexers [66] and spectral equalizers
[67], or with delay lines to form true-time delays [68].
A variety of Fabry–Perot filters have been demon-
strated [69, 70], and tunable devices have been used
for attenuation [71] and modulation [72] in addition
to filtering. Photonic bandgap devices with greatly
increased free-spectral range have also been devel-
oped [73]. Fabry–Perot filters have been combined
with vertical cavity surface emitting lasers (VCSEL)
to form tunable sources [74, 75]. External cavity
lasers have been constructed from semiconductor
optical amplifiers (SOAs) using movable mirrors
[76] and gratings [77, 78]. Figure 1(c) shows a
tuning element based on a deep-etched silicon
grating mounted on a flexure suspension and driven
by a pair of electrostatic comb drives. The most
successful device – the Iolon ApolloTM laser – used
a hybrid-integrated mirror mounted on a deep
etched electrostatically driven rotation stage with a
fixed grating in a Littman configuration [79].

3 GAUSSIAN BEAMS

In this section it is shown how Gaussian beams
propagate in gradient-index (GRIN) media such as
optical fibres, and then describe how their behaviour
is modified in free space.
Suitable models for weakly guiding optical systems

may be constructed using scalar theory, based on the
time-independent Helmholtz equation, written in
Cartesian co-ordinates as

@2E

@x2
þ
@2E

@y2
þ
@2E

@z2
þ n2k2

0E ¼ 0 ð1Þ

Here E(x, y, z) is the time independent electric field, n
is the refractive index, and k0 ¼ 2p/l is the free space
propagation constant, where l is the wavelength. In
free space, equation (1) has the solution E ¼ E0

exp(2jk0z) for z-propagating plane waves. However,
because of the small size of microoptical systems, a
single plane wave solution is inappropriate.
Graded-index fibres generally have a parabolic

radial variation in dielectric constant, as shown in

Principles of free-space optical MEMS 3

JMES662 # IMechE 2008 Proc. IMechE Vol. 222 Part C: J. Mechanical Engineering Science



Fig. 2(a). Near its axis, the refractive index n of a
z-oriented fibre varies as n2 ¼ n0

2
f12 (r/r0)

2
g. Here n0

and r0 are constants and r2 ¼ x2 þ y2. For radially sym-
metric guided modes, it may be assumed that E(r, z) ¼
ET(r) exp(2jbz), where ET is the transverse field and b

is the propagation constant. Equation (1) can then be
reduced to the scalar waveguide equation

d2ET

dr2
þ

1

r

� �
dET

dr
þ n2

0k
2
0 1�

r

r0

� �2
" #

� b2

( )
ET ¼ 0

ð2Þ

It is simple to show that the Gaussian transverse field
ET(r) ¼ E0 exp(2r2/a2) is a solution, and that themode
radius a and propagation constant b are given by a ¼
p
(2r0/n0k0) and b2 ¼ n0

2k0
2 2 4/a2 [6]. As a result, all

graded index media support Gaussian modes. Single-
mode fibre often has a parabolic index variation
because it gives low signal dispersion, and a small
mode, with a � 4 mm at near-infrared (1.5 mm)
wavelength.
Using rectangular coordinates, it can be shown that

higher-order solutions are Hermite–Gaussian modes,
with transverse fields Emn(x, y) ¼ Hm(

p
2x/a)Hn(

p
2y/a)

exp[2(x2 þ y2)/a2]. Here m and n are mode numbers,
and Hm(z) is a Hermite polynomial of order m. From
standard texts, H0(z) ¼ 1, H1(z) ¼ 2z, H2(z) ¼ 4z2 22,
H3(z) ¼ 8z32 2z, and so on. Figure 2(b) shows the
first few functions Hm(

p
2x/a) exp(2x2/a2). The

Gaussian solution above is the lowest-order mode,
with m ¼ n ¼ 0. The complete mode field patterns are
multi-lobed, with the number of lobes increasing with
m and n; the insets show the variations of E10 and E21.
For weakly guiding systems, the corresponding

propagation constants bmn are given by bmn � n0k0
22(m þ nþ 1)/r0 [6]. The linear dependence of bmn

on m and n allows imaging functions to be carried
out using graded-index media, as show later.
Modal solutions have the property of orthogonal-

ity, so that the integral over all space of the product
of one mode and the complex conjugate of another
is zero

ð ð
A

EmnE
�
m0n0 dx dy ¼ 0 for m = m0 and n = n0 ð3Þ

This integral is often written as kEmn, Em0n0l. Orthogon-
ality allows an arbitrary transverse field ET(x, y) to be
expanded as a sum of modes, e.g. as ET ¼ Sm Sn amn
Emn (x, y). Multiplying both sides by Em0n0 and integrat-
ing, the expansion coefficients can be found as amn
¼kET, Emn l/k Emn, Emnl. This expression is simple to
evaluate if fields are normalized, so that the denomi-
nator is unity. It is simple to show that the power car-
ried by each mode is proportional to jamnj

2.
Gaussian beams can also express the effects of dif-

fraction in free space. Since they are effectively
bounded plane waves, solutions to the wave equation
may be assumed in the form of modified plane waves.
For cylindrically symmetric z-propagating fields,
therefore, it is assumed that E(r, z) ¼ E0A(r, z)
exp(2jk0z), where A is a slowly varying function. Sub-
stituting into equation (1), and neglecting @2A/@z2

@2A

@r2
þ

1

r

� �
@A

@r
� 2jk0

@A

@z
¼ 0 ð4Þ

It is simple to show that A ¼ E0 exp[2j(p þ k0r
2/2q)]

is a solution [6]. Here p and q are only functions of z,
and q is the complex beam parameter. Substituting
into the above

2k0 p0 þ
j

q

� �
þ

k2
0r

2

q2

� �
(1� q0) ¼ 0 ð5Þ

Here, the prime indicates differentiation with respect
to z. The terms in curly brackets must both vanish, so
that q0 ¼ 1 and p0 ¼ 2j/q. However, the term
exp(2jp) in the solution contains z alone, whereas
ET(r, z) ¼ E0 exp(2jk0r

2/2q) also depends on r.

Fig. 2 (a) Index profile and Gaussian mode of a

parabolic index fibre; (b) three functions

Hn(
p
2x/a) exp(2x2/a2); and (c) transverse

field and expansion of a Gaussian beam
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Ignoring the first term, and assuming that q ¼ z þ jz0,
where z0 ¼ k0w0

2/2

ETðr; zÞ ¼ E0 exp
�r2

w2

� �
exp

�jk0r
2

2R

� �
ð6Þ

Here, the new parameters w and R have been intro-
duced, given by w2 ¼ w0

2 (z0
2
þ z2)/z0

2 and R ¼ (z0
2
þ

z2)/z. Equation (6) describes a Gaussian beam vary-
ing as ET(r, z) ¼ E0 exp(2r2/w0

2) on z ¼ 0. Away from
this plane, the more general term exp(2r2/w2)
describes the radial amplitude variation, whereas
exp(2jk0r

2/2R) is a radial variation in phase that
implies the phase-front is curved. The parameter w
is the local beam radius, whereas R is the radius of
curvature of the phase-front. Both vary with z, on a
scale characterized by the distance z0. The term
exp(2jp) is needed for power conservation. It can
be written as jz0/(z þ jz0) or q0/q, where q0 is the
value of q at the waist. For small z, this term is
roughly constant, whereas for large z it decays as
1/z. Near the waist, the beam is narrow and
the phase-front is flat (z � z0). Far from the waist
(z � z0), it diverges as a spherical wave. Figure 2(c)
shows the variation of w with distance. As one
might expect, free-space equivalents of Hermite–
Gaussian modes also exist, and can be used to
model arbitrary fields. Their properties have been
used to explain the behaviour of cavity resonators
and lens waveguides [5, 6].
Because the field at the waist of a free-space Gaus-

sian is similar to the mode supported by a
graded-index fibre, the former is an extension of the
latter, and the wave emerging from a cleaved fibre
will expand as predicted by equation (6). For the
small modes of single-mode fibres, the expansion is
rapid. For a ¼ 4 mm and l ¼ 1.5 mm, for example,
z0 ¼ 33 mm. Consequently, imaging components are
used to transform the beam, a process, which alters
the value of w0 and hence controls any subsequent
expansion.

4 BEAM CONTROL

In this section, it is shown how one free-space Gaus-
sian beam can be converted into another with a lens,
based on GRIN and refractive optics.
As previously described, a forward-travelling field

E(x, y, 0) specified on the plane z ¼ 0 of a GRIN
medium may be expanded in Hermite–Gaussian
modes. After a distance z, this field will be modified
to E 0(x, y, z ) ¼ SmSnamnEmn(x, y) exp(2jbmnz). Insert-
ing the propagation constants, E 0(x, y, z ) ¼ exp(2jc)
SmSnamnEmn(x, y) exp[ j(m þ n)z/r0], is obtained where
c ¼ (k0n021/2r0)z is a constant phase shift. If z ¼
2pr0, the additional phase shift seen by each mode

is a whole number of multiples of 2p. At this point,
E 0 differs from E only by the complex exponential
exp(2jc). Propagation through a distance P ¼ 2pr0
(the pitch length), therefore, leaves the field effec-
tively unchanged. This process may be viewed as
creating a real, upright image of the input, as a lens
does. GRIN lenses are short lengths of graded-index
media with polished ends, formed by ion exchange
with much larger values of r0 than fibres. Propagation
through half a pitch inverts all modes with odd m þ n,
and therefore, forms an inverted real image I of an
object O as shown in Fig. 3(a). Propagation through
a quarter-pitch forms an image at infinity of an
axial point object. GRIN lenses used in fibre coupling
have standard lengths of just less than P/2 and P/4
[18].
Although GRIN lenses provide elegant packaging

solutions, simpler alternatives are often used. The
thin lens has spherical surfaces of radii R1 and R2.
In a material of refractive index n, the focal length f
is given by the lens-maker’s formula 1/f ¼ (n2 1)
(1/R1 þ 1/R2). For a plano-convex lens (which has,

Fig. 3 (a) Imaging behaviour of GRIN-rod lenses, thin

lenses, and lensed fibre and (b) variation of

Gaussian beam radius with distance for l ¼

1.5 mm and three values of w0 (1–20 mm, 2–

40 mm, and 3–60 mm)
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for example, R2 infinite), f ¼ R1/(n 2 1). For a spheri-
cal ball lens (R1 ¼ R2), f ¼ R1/(2(n2 1)). Since a ball
lens is physically thick, the lens-maker’s formula is
not strictly valid, but this estimate gives a reasonable
start.
If a lens of focal length f is placed a distance j away

from a Gaussian waist of radius w0
0 as shown in

Fig. 3(a), the beam will have diverged to a radius w 0

and its phase-front will have radius R0 at the lens.
To create an expanded beam with a waist w0 a dis-
tance z away from the lens, it is assumed that the
lens corrects the phase-front according to the ima-
ging equation 1/R þ 1/R0 ¼ 1/f. In the process, w 0 ¼

w. After some manipulation, it can be shown that
the focal length is the solution of the two alternative
quadratic equations [6]

ðM2 � 1Þf 2 þ 2z f � ðM2f 20 þ z2Þ ¼ 0 or

1

M2
� 1

� �
f 2 þ 2j f �

f 20
M2

þ j2
� �

¼ 0

ð7Þ

Here, the magnification M ¼ w0/w
0
0 and the normal-

ized distance f0 ¼ (p/l)w0w
0
0 must be introduced. It

can also be shown that the object and image dis-
tances are related by

z ¼ f +M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð f 2 � f 20 Þ

q
and

j ¼ f +
1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð f 2–f 20 Þ

q
ð8Þ

The formulae above provide a first line of attack on
micro-optical system design problems.
Often, a fibre must be coupled to a semiconductor

laser. Lasers have very small mode sizes, because of
their large index steps. Their modes can be described
approximately by a circular mode whose radius is the
geometricmean of orthogonal half-widths. A lens that
can demagnify the fibre mode is therefore required;
this can be constructed by melting the end of a
tapered fibre, as shown in Fig. 3(a). In this case, the
object distance j is zero. From the above, f ¼ f0/(1 2

M2)1/2. If M is small, f � f0 � (p/l)(w0w0
0). The

required lens radius is then R1 ¼ (n 2 1)f. For
example, assuming that n ¼ 1.46 (for silica), w0

0 ¼

4 mm, w0 ¼ 1 mm, and l ¼ 1.5 mm, f ¼ 8.38 mm and
R1 ¼ 3.85 mm are obtained. The fibre end must there-
fore be tapered down to around 8 mm diameter and
then melted to a hemisphere. The distance between
lens and laser is h � f, implying stringent axial align-
ment tolerances.
The propagation of a Gaussian beam can be mod-

elled using the complex beam parameter q ¼ z þ jz0.
It is simple to show that q is related to w and R

by 1/w2 ¼ 2(k0/2) Im(1/q) and 1/R ¼ Re(1/q). The
effect of propagation through a distance z, or through
a lens of focal length f, is tomodify q. The new value q0

is given by the ABCD rule q0 ¼ (Aq þ B)/(Cq þ D) [5].
It is simple to show from earlier results that the coef-
ficients A, B, C, and D are

A B C D
Propagation through a distance z 1 z 0 1
Propagation through a lens 1 0 �1=f 1

ð9Þ

The ABCD method may simulate propagation of per-
fect Gaussian beams through arbitrary optical sys-
tems, and also Hermite–Gaussian beams in a more
general field. If the system contains mirrors, it is
simply unfolded. If any mirror is curved, it can be
replaced with an equivalent spherical lens. For a con-
cave mirror of radius r, the focal length is f ¼ r/2.
More complicated wave-fronts cannot be propa-

gated as described above, and diffraction theory
must be used. In this case, the diffraction of an optical
field E specified on the (x, y) plane to a field E 0 on the
(x 0, y 0) plane a distance z away is described by the
integral

E 0ðx0; y0Þ ¼

ð ð
A

f ðuÞ

jl0r

� �
Eðx; yÞ expð�jk0rÞ dx dy ð10Þ

Here r ¼
p
[(x 0 2 x)2 þ (y 0 2 y)2 þ z2] is the distance

between the points (x, y) and (x 0, y 0), and f(u) is a
slowly varying angular function designed to exclude
backward travelling waves. For normal incidence on
the object plane, f(u) ¼ [1 þ cos(u)]/2, where u is the
angle between the z-axis and the vector r ¼ (x 0 2 x)
i þ (y 0 2 y)j þ zk.

5 OPTIMUM BEAM DESIGN

Compact systems require minimized beam sizes. The
optimum arrangement to travel a distance 2z is then
as shown in Fig. 3(b). Here, the beam converges to a
symmetrically placed waist and then diverges.
Figure 3(b) also shows the variation of w with z
obtained for different initial beam widths w0, assum-
ing that l ¼ 1.5 mm. In each case, w is roughly
constant for small z, and then increases rapidly.
Curve 1 (w0 ¼ 20 mm) provides a smaller beam for
short distances than curve 2 (for w0 ¼ 40 mm).
However, the reverse is true for large distance,
suggesting that there is an optimum w0 to travel a
given distance z. This optimum value is [7]

w0opt ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2z

k0

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
lz

p

� �s
ð11Þ
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The bold locus in Fig. 3(b) shows this envelope, which
provides a lower bound to the size of all Gaussian
beams. Consequently there is indeed an optimum
design; the optimum waist radius scales as the
square root of the propagation distance, and z is the
characteristic distance z0. It can also be shown that
the final radius is wopt ¼ w0opt

p
2.

Single-mode fibres may be joined directly, or be
separated by a gap to allow insertion of a component
such as a shutter. Alternatively, the fibre mode may
be expanded by diffusion of the core dopant to
allow a larger separation without diffraction losses
[21]. To form a demountable connection, a quarter
pitch GRIN-lens can be used to collimate the fibre
output. Two collimated fibres yield a connector
with a large tolerance of transverse alignment errors
[19]. Using components such as multi-layer filters
or gratings, larger waists are required. The beam is
therefore allowed to diverge from the input fibre
and an optimum Gaussian is created using a lens,
as shown in Fig. 4(a). A second lens is then used to
couple the beam back into an output fibre. When
simpler components such as mirrors are used, or a
very compact system is required, lensed fibres
can create a mid-point waist smaller than the
fibre mode.
An optimized layout may be designed very simply.

First, equation (11) is used to find the half-length z of

the expanded beam from the desired value of w0.
Equation (7) is then used to find the focal length f
of the lens from the values of z and the mode size
w 0

0 of the fibre. Equation (8) is then used to find the
object position j. Figure 4(b) shows a design example.
Here a 16-mm waist radius is generated from 4-mm
mode radius at l ¼ 1.5 mm, over a path length 2z ¼
1 mm, and the ABCD method has been used to find
the variations of w and 1/R.

6 COUPLING AND ALIGNMENT

Generally, the problem is to design a systemwith high
end-to-end throughput (although dispersion and
polarization sensitivity may also be important). In
this case, the coupling efficiency into the desired
output device (often, a fibre) must be found. From
modal orthogonality, it can be shown that the coup-
ling efficiency of a field ET1 into a guide supporting
a transverse field ET2 may be found as

h ¼
jkET1;ET2lj2

fkET1;ET1l kET2;ET2lg
ð12Þ

This expression can be used to find the coupling effi-
ciency in imperfect systems, and hence establish tol-
erances. Examples include the misaligned fibre joints
shown in Fig. 5(a).
For example, if the input is a Gaussian, misaligned

by dy in the transverse direction from a fibre support-
ing a similar mode, then ET1(x, y) ¼ E0 expf2[x2 þ
(y 2 dy)

2]/a2
g and ET2(x, y) ¼ E0 exp[2(x2 þ y2)/a2].

In this case, the efficiency is h(dy) ¼ exp(2dy
2/a2).

For small errors, h(dy) � 1 2 (dy/a)
2. The coupling

loss, defined in decibels as 210 log10(h) ¼ 4.343 dy
2/

a2, therefore, rises parabolically with the transverse
error dx. Here, what is important is the size of dy com-
paredwith themode radius. For losses below 1 dB (the
maximumallowable in a low loss system), dy/a, 0.5 is
required. For a ¼ 4 mm, then jdyj , 2 mm is required.
This tolerance is clearly relaxed by increasing the
mode radius.
Similarly, if the input is separated axially from

the output by a distance dz, an overlap may be
taken between the fields ET1 ¼ E0 exp(2r2/w2)
exp(2jk0r

2/2R) and ET2 ¼ E0 exp(2r2/a2) to get

h ¼
4w2a2

½ðw2 þ a2Þ2 þ ðk0w2a2/2RÞ2�
ð13Þ

Assuming that w0 ¼ a and z ¼ dz, h(dz) ¼ 1/[1 þ

(dz/2z0)
2] is obtained. Since z0 is relatively large,

axial alignment tolerances are larger than transverse
ones. Figure 5(a) shows the variation of h with dz/z0.

Fig. 4 (a) Free-space fibre-to-fibre links and (b)

variation of beam radius and curvature with

distance for fibre-lens-lens-fibre link with

2z ¼ 1 mm, a ¼ 4 mm, and l ¼ 1.5 mm
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For losses below 1 dB, dz/z0 ,1 is required. The
tolerance is relaxed using index-matching fluid,
because z0 increases to k0nw0

2/2 in a medium of
index n.
Similarly, if the input is on-axis, but skewed by a

small angle du, it can be written as (for example)
ET1(x, y) ¼ E0 exp[2(x2 þ y2)/a2]exp(2jkxdu), with
ET2(x, y) as before. Then h(du) ¼ exp(2p2a2du

2/l2) is
obtained. The loss rises parabolically with the skew
angle, and for losses below 0.1 dB, padu/l, 0.1 is
required. Assuming that a ¼ 4 mm and l ¼ 1.5 mm,
jduj , 0.018 rad, or 18 is then obtained. This time,
what is important is the phase shift f ¼ 4padu/l
across the beam. In contrast to the previous example,
increasing the mode radius increases loss, because it
increases the phase shift. There may be additional
transverse and angular alignment errors dx and dc.
Because the effects are separable, the overall effi-
ciency may be estimated from the product h ¼ h(dx)
h(dy)h(dz)h(du)h(dc).
Similar analysis may be used to find the efficiency

obtained when a free-space beam is coupled back
into a guided mode using a lens spaced approxi-
mately f away. The beam may (for example) strike
the lens on-axis, but with a lateral offset Dy as
shown in Fig. 5(b). At the fibre, the result will be an
angular error du � 2Dy/f. Alternatively, it may strike
the lens at an angle Du, resulting in both an angular
error du ¼ Du and a transverse error dy ¼ fDu. The

errors may then be combined, and the product
expression used to find the efficiency. Clearly, the
need for accurate alignment increases as the system
size rises. At first sight, it would seem that a pair of
mirrors M1 and M2 arranged as a periscope, and
capable of tilting about two orthogonal axes, should
be able to align any input beam with a fibre. Unfortu-
nately, it is difficult to identify the different contri-
butions to loss simply by measuring throughput.
Alignment is therefore optimized by successive
adjustment of each axis in turn, using dither to accel-
erate the process, and recording the final positions.

7 OPTICAL SURFACE CURVATURE

Arrangements of the type in Fig. 5(b) are often used in
switches and the mirrors are then fabricated as
MEMS parts. Because of coating stress, their surfaces
may be curved, and it important to estimate themaxi-
mum curvature that may be tolerated.
The simplest way to find the effect of imperfect sur-

faces is to unfold the system, replacing each curved
surface with an equivalent lens. The ABCD method
may then be used to propagate the beam between
input and output. Knowing the values of w and R
on exit, the coupling efficiency may be found. For
example, Fig. 6(a) shows such an arrangement, with
a curved mirror located at a distance z from the
waist. Fig. 6(b) shows the variation of beam radius
with position, for 2z ¼ 1.0 mm, z/z0 ¼ 0.33, a ¼

4 mm, l ¼ 1.5 mm, and different values of the focal
length f of the equivalent lens. For large f, there is
little deviation from the optimized arrangement
shown in Fig. 4(b). As f reduces, the beam is focused
more and more, so that the final mode no longer has
the correct radius to couple into the output fibre.
An analytic estimate of the effect of a single curved

surface may be found by the realization that only a
single Gaussian will couple optimally into the
output fibre; all others are coupled suboptimally. In
the absence of the surface curvature, it might be
assumed that the system provides this beam.
Although the system may contain several optical
elements, each one then merely transforms the
beam parameters to provide the optimum output.
Hence, the coupling efficiency may be evaluated at
the curved surface itself in terms of an overlap
between the local beam with and without the surface
curvature; there is no need to propagate to the
output. To implement this plan, a method is needed
to find the overlap between two beams, the second
of which is transformed by a lens simulating the
curved surface at an arbitrary position z. If the inte-
grals in equation (3) are performed using the full sol-
ution A(r, z) and the complex beam parameter q, the

Fig. 5 (a) Variation of fibre-fibre coupling loss with

axial misalignment and (b) free-space input

coupling with misalignment
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following is obtained for two fields A1 and A2

kA1;A2l ¼ j
2pE2

0

k0

� �
q01q

�
02ðq1 � q�2Þ ð14Þ

Here q01 and q02 are the waist values of q1 and q2.
Other terms kA1, A1l and kA2, A2l may be found in a
similar way. To model the effect of a curved surface,
equation (16) is evaluated with q2 ¼ q1/(1 2 q1/f ) as
required by the ABCD method and the result is used
in equation (12) to find the efficiency. In terms of
the element curvature c ¼ 1/r, the following is
obtained

h ¼
1

f1þ ðcz0Þ
2
½1þ ðz=z0Þ

2
�
2
g

ð15Þ

Equation (15) gives the transfer efficiency for any
system with a single, arbitrarily located curved sur-
face, in terms only of simple local parameters. Since
it is quadratic in f and z, converging and diverging
elements have the same effect, as do surfaces on
either side of the waist. Figure 6(c) shows the

variation of h with cz0, for different values of z/z0.
The efficiency falls rapidly with cz0. The allowable
curvature decreases inversely with the system size,
and long propagation paths require very flat mirrors,
ideally formed in single crystal Si [62].

8 VARIABLE OPTICAL ATTENUATORS

Devices based on movable optical components are
now considered, which begins with VOA, which
may be constructed using beam translation or shutter
insertion.
Figure 7(a) shows a beam translation VOA, which

operates by moving a small mirror in the optical
path between two fibres with perpendicular axes
[47]. If the mirror translates laterally by dy, the
beam will deviate from alignment at the output by
the same amount, so the transfer efficiency will be
h(dy) � 1 2 (dy/a)

2. In this example, the path length
is one fibre diameter, so diffraction losses are to be
expected. However, the path may be shortened, by
bringing the fibre ends closer together using tapered
lensed fibres. The angle between the fibre axes may
also be reduced to lessen the polarization

Fig. 7 (a) Beam translation VOAs based on mirror

insertion and mirror tilt; and (b) variation of

transmission with normalized aperture a/w0

for shutter insertion VOAs

Fig. 6 (a) Fibre-to-fibre link with curved surface en

route; (b) example variations of beam radius

with distance; and (c) variations of

transmission with surface curvature
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dependence of mirror reflectivity. Figure 7(a) also
shows a reflective VOA that operates on a similar
principle, but using the combination of a lens and a
tilting mirror to achieve beam translation. If the tilt
mirror is close to the lens and the focal length is rela-
tively long, the lateral translation is dy � 2fDu.
Shutter-based VOAs operate by using one or more

movable blades to create a variable aperture
between two axially aligned fibres, as shown in
Fig. 7(b). Single-blade, double-blade, and square
iris VOAs have all been demonstrated [49, 50].
Reduced polarization dependence is expected as
the shape of the iris tends to a circle. The effect of
the aperture may be described by a function A,
whose transmission is unity inside the aperture
and zero outside it. Ignoring diffraction, analytic
expressions may be obtained for the coupling effi-
ciency of an apertured Gaussian into the output
fibre. Assuming the apertured field is ET1 ¼ AE0

exp[2(x2 þ y2)/a2], and that ET2(x, y) ¼ E0

exp[2(x2 þ y2)/a2], the transfer efficiency hN of
different N-blade polygonal apertures are

h1 ¼
½1þ erfð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a/w0

p
Þ�
2

4

h2 ¼ erf2
ffiffiffiffiffiffi
2a

p

w0

� �

h4 ¼ erf4
ffiffiffiffiffiffi
2a

p

w0

� �

h1 ¼ 1� exp
�2a2

w2
0

� �� �2
ð16Þ

Here erf(x) is the error function [80]. Figure 7(b)
shows the variation of transmission in each case.
The transmission rises smoothly from zero to unity
as the aperture opens, and the travel required
ranges from two to three times the beam radius.
More generally, when the distances z1 and z2 are
such that diffraction cannot be ignored, equation
(10) may be used to propagate the beam and numeri-
cal integration of equation (12) to find the efficiency
[50].

9 OXC SWITCHES

More complex systems are constructed using mul-
tiple movable components. The first example is the
OXC, which can operate using mirror insertion and
mirror rotation. Scaling laws, determined by diffrac-
tion, control switch sizes [7].
Figure 8(a) shows a reflective 2 � 2 mirror-

insertion switch [58]. Here a pair of quarter-pitch
GRIN lenses forms an inverted real image of one

one pair of fibres on another, so that (for example)
ports 1 and 4 are connected. Insertion of a small
mirror can cause the image to be reflected, so that
the connection now switches to ports 1 and 2.
Figure 8(a) also shows a transmissive switch, which
combines a pair of intersecting free-space
fibre-to-fibre links with a movable mirror [54]. With-
out the mirror, axially aligned fibre pairs are con-
nected. When the mirror is inserted, orthogonal
fibres are linked. Several approaches including
linear translation and rotation have been used to
manipulate the movable mirror.
Figure 8(b) shows how this conceptmay be scaled to

an N � N switch [55–57]. Because of the increase in
path length, lenses must now be used to control the
free-space beams and fibres and lenses must be stag-
gered to equalize optical paths. Connection between
the ith and jth fibres is achieved by insertion of the
(ith, jth) mirror. Using the optimum Gaussian beam
equation, it is simple to derive size-scaling laws for
this arrangement. To allow a beam to pass through a
lens without significant attenuation, the lens
diameter must be significantly greater than the beam
diameter – say, 2awopt, where wopt is the the beam
radius at the lens and a is a constant of order 2. To
reasonable approximation, the path length z must

Fig. 8 (a) 2 � 2 mirror insertion switches and (b)

mirror insertion OXC
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then be z ¼ 2awopt � N. Using equation (11)

z ¼
8N2a2l

p
ð17Þ

This result implies that the size of an N � N cross-
connect must increase as the square of the number of
ports. It is relatively unfavourable, and suggests a low
upper limit to size.
More favourable scaling is obtained for the mirror

rotation OXC in Fig. 9(a) [60–65]. Here the input
and output fibre arrays are now square N � N bun-
dles, so the switch will be M � M where M ¼ N2.
The fibre inputs are collimated by a lens array, and
the collimated beams strike an N � N array of small
mirrors on gymbal mounts, which may rotate
through small angles about two orthogonal axes.
The mirrors redirect the beams to a second N � N
mirror array, which in turn pass them via a second
lens array to an output fibre bundle. Because the
beams pass each other in space, arbitrary fibre pairs
can be linked without crosstalk. If the angles sub-
tended by the mirror arrays are small, the length of
the assembly is �2z/3. Furthermore, if each mirror
has a maximum turn angle of u, from the previous
argument concerning beam size (2z/3) � 2u ¼
2awopt � N. Using equation (11)

z ¼
9Ma2l

2pu2
ð18Þ

This time, the switch size scales linearly with the
number of ports, so that larger port counts can be
obtained with a compact switch. Figure 9(b) shows
predictions of the path length z needed for both
switch types, for l ¼ 1.5 mm, a ¼ 2, and u ¼ 58. The
path length rises with the number of ports, but the
advantage of mirror rotation at high port counts is
clear. The mirror size scales linearly with z, and the
tolerable mirror curvature scales inversely.

10 FILTERS AND MULTIPLEXERS

Filtering involves the separation of spectral com-
ponents. The two common approaches are recursive
and dispersive filtering. In the former case, a Fabry–
Perot cavity or a multi-layer stack is used to transmit
specific components in a band, reflecting the remain-
der. In the latter, a blazed grating is used to spread the
components apart.
It is worth considering the effect on filter perform-

ance of bounded beams. Figure 10(a) shows a Fabry–
Perot cavity, with two reflecting surfaces L apart,
placed at the waist of a Gaussian beam. The overall

Fig. 10 (a) Variation of Fabry–Perot transmission with

cavity phase shift for R ¼ 0.99 and different L/

z0; (b) cascaded notch filter; and (c) photonic

bandgap filter

Fig. 9 (a) Large-scale mirror rotation OXC; (b)

variation of path length z with number of

ports for mirror insertion and mirror rotation

switches
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transmission is the sum of all possible paths through
the device. Defining the transmission and reflection
coefficients at the surfaces as T1 and R1, and T2 and
R2, the transmitted field can be obtained at a distance
z . L/2 as

E ¼ E0T1T2 expð�jk0zÞfAðr; zÞ

þ Sn¼1R
n
1R

n
2 expð�jnfÞAðr; z þ 2nLÞg ð19Þ

Here f ¼ 2k0L is the round trip phase shift. This field
is the sum of an infinite set of Gaussian beams, each
with different amplitude after travelling a different
distance. Generally, this field must be coupled back
into a fibre. Unfortunately, it is impossible to define
optics that can couple all the components with com-
plete efficiency; only one (say, the first) can be
coupled optimally. The overall efficiency may be
found using the method in section 7. Carrying out
the integrations, and assuming identical mirrors

h ¼ ð1� R2Þ
1þ Sn¼1R

2n expð�jnfÞ

ð1� jnL=z0Þ

� �����
����
2

ð20Þ

For nL � z0, the standard expression obtained using
plane wave analysis is recovered. The effect of the
bounded beam is to alter the apparent reflectivity
and the cavity resonance condition. For example,
Fig. 10(a) shows the variation of h with f, for R ¼

0.99 and different L/z0. For low L/z0, the variation is
as for an ideal cavity, namely near-unity transmission
at f ¼ 2np, where n is integer, falling rapidly away
from this condition. As L/z0 rises, peak transmission
falls, and the bandpass widens and shifts.
It is not surprising that the resonance alters from

the classical condition as L/z0 increases. Away from
the waist, where the phase front is almost plane, the
full Gaussian solution A ¼ E0 exp[2j(p þ k0r

2/2q)]
contains a more complicated z-dependent phase
variation than the infinite plane wave E ¼ E0

exp(2jk0z), which appears in the term 1/(1 2 jnL/
z0) in equation (20). Because this term is approxi-
mately equal to exp( jnL/z0), resonance might be
expected to occur when exp[2jn(f 2 L/z0)] ¼ 1, or
when f – L/z0 ¼ 2np. Consequently, the resonance
peak shifts slightly as L/z0 rises. However, the sharp-
ness of the peak degrades because the equality above
is only approximate.
The allowed value of L/z0 depends on the quality of

the filter, and wide beams are needed for high finesse.
The largest value of z0 should be used, which again
requires optimized Gaussian beams. An alternative
is to use mirrors whose curvatures match that of the
beam at their respective locations; however, incorrect
curvature leads to outputs with rapidly diverging par-
ameters. High performance is generally obtained

with flat mirrors on solid substrates or membranes
under tension.
Modulators may be constructed from Fabry–Perot

cavities with electrostatically deflected membrane
mirrors. For example, the mechanical anti-reflection
switch, which used a l/4 thick dielectric mirror sus-
pended 3l/4 above the substrate, which was
deflected by l/4 to modulate the reflection [71]. Tun-
able filters may also be constructed; however, the
tuning range is determined from the free spectral
range of the cavity. Wider tuning ranges may be
achieved using multi-layer reflectors. However, until
recently it has been difficult to combine a multi-layer
stack with suitable coupling optics and a tuning
mechanism at low cost. Figure 10(c) shows a suitable
structure [73]. The mirrors are vertically etched fea-
tures, formed by DRIE and crystal plane etching.
DRIE of bonded siliconmaterial is used to form align-
ment features for collimated optical fibres and an
electrostatic tuning mechanism.
The multiple resonances in a Fabry–Perot make it

difficult to separate channels in a DWDM system.
This problem is avoided using dielectric stacks,
which allow transmission only over a single band
[22]. Channel separation may then be carried out
using a cascade of filters. Figure 10(b) shows a four-
channel filter based on three dielectric stacks. The
first element DS1 is has a broad band-pass, and separ-
ates wavelengths l1 and l2 from l3 and l4. The
elements DS2 and DS3 have narrow bandwidths, and
separate l1 from l2, and l3 from l4, respectively.
Assuming the beam is sufficiently wide, the main con-
cern is now to balance losses, by using a tree-structure
to equalize theoptical pathsbetween input andoutput.
Dispersive filters may be constructed by combining

blazed gratings with suitable optics. Figure 11(a)
shows a general structure of period L, arranged at an
angle u0 to a beam of wavelength l. The direction of
the nth diffraction order is given by the grating
equation sin(un) ¼ sin(u0) þ nl/L. Retroreflection
into the 21th order occurs when l ¼ 2L sin(u0). If the
wavelength is varied, the angle of diffraction varies as
du21/dl ¼ 21/[L cos(u0)]. The angular dispersion
may be converted into a linear dispersion using a
lens, so that each wavelength appears spatially
separated in the focal plane. Figure 11(b) shows a
dispersive demultiplexer, which uses a channel guide
pitch converter between the fibre and the lens to
reduce the minimum separation between spectral
components.
In reverse, a dispersive filter can combine chan-

nels, and hence provide a multiplexing function. A
combination of multiplexers and switches form a
wavelength routing device known as an ADD-DROP
MUX, shown in Fig. 11(c). A demultiplexer first separ-
ates the INPUT channels. The channels are passed
to a set of 2 � 2 switches, and then to one of two
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alternative multiplexers, which recombine them.
Depending on the switch states, individual channels
are PASSED or DROPPED, and unused switch ports
are used to ADD replacements for DROPPED chan-
nels. An ADD-DROP MUX can be constructed with
a single dispersive multiplexer. Figure 11(c) shows
the first MEMS ADD-DROP [66], which used an
array of tilt mirrors at the focal plane of a lens illumi-
nated by a dispersed beam. High channel density is
only obtained with very compact switch elements.
Depending on the state of the switches, the channels
either retrace their path back to the input, or are
routed to a different output. Circulators are used to
separate IN and PASS and ADD and DROP signals.
A wavelength switch (which has two wavelength-
multiplexed inputs) can be constructed similarly,
using a second DEMUX before the ADD channels.

11 TUNABLE LASERS

MEMS tunable lasers can be constructed by combin-
ing tunable recursive or dispersive filters with a SOA
or VCSEL. They offer the potential advantage over
monolithic tunable lasers of a simpler tuning algor-
ithm, especially as the laser ages.
Surface emitting lasers may be constructed by

combining a VCSEL with a movable dielectric stack,
as shown in Fig. 12(a) [74]. The device is grown
entirely in one step, then etched to create a cantilev-
ered tuning arm. Tuning is achieved by applying a
small voltage to the top mirror, which causes the can-
tilever to deflect vertically so that the laser cavity
length is reduced, which in turn alters the emission

wavelength. A more stable configuration is obtained
with a half-symmetric cavity based on a spherically
curved reflector [75]. The curvature can be achieved
by stress; however, it is then difficult to ensure ther-
mal stability.
Alignment tolerances clearly affect laser operation.

For example, in an ideal linear model of a laser
cavity, the threshold condition is given by
exp(2gL) ¼ 1/R1R2, where g is the gain constant, L is
the length of the gain block, and R1 and R2 are the
amplitude reflectivities of the two end mirrors. The
threshold gain is therefore

g ¼
1

2L

� �
loge

1

R1R2

� �
ð21Þ

In any external cavity laser, the primary effect of
degrading the alignment of the movable mirror will
be to reduce the efficiency h with which the external
beam is coupled back into the gain block. As a result,
the effective reflectivity of this mirror will reduce to
R2

p
h. For example, in the VCSEL of Fig. 12(a), the

curvature of the external mirror might be incorrect
by an amount Dc. In this case, equation (15) may be
used to calculate the coupling efficiency, writing Dc
for c. Errors that lead to misalignment, tilt, or axial
shift in the reflected beam can be treated using the
methods of section 6. The most obvious consequence
is an increase in the threshold gain g. Given that gains
are limited, it may be impossible to achieve lasing if
the misalignment is too severe.
External cavity lasers may also be constructed by

combining a SOA with a grating. There are two
common configurations: Littrow and Littman. Each

Fig. 11 (a) Grating operation; (b) dispersive filter; and

(c) grating-based ADD-DROP multiplexer

Fig. 12 External cavity lasers based on (a) VCSELS and

(b) SOAs
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consists of a HR/AR coated SOA, a collimating lens,
and feedback elements. In the former case, shown
in Fig. 12(b), reflection from a blazed grating is
used, and the wavelength is tuned by rotating the
grating. Mode-hop free tuning is achieved if the
rotation centre is suitably located. Longitudinal res-
onance occurs when l ¼2LC/m, where LC is the effec-
tive cavity length and m is an integer. Comparison
with the condition for grating retroreflection shows
that LC should be adjusted so that LC ¼ mL sin(u),
and hence that dLC/du ¼ LC/tan(u). To first order,
this can be achieved by mounting the grating on a
radius arm extending tangentially from the grating,
with a radius R ¼ LC/sin(u). Figure 12(b) shows a
tuning element for a Littrow cavity based on a com-
pound flexure that allows independent rotation and
translation of the grating using two electrostatic
actuators [77]. The completed element is shown in
Fig. 1(c).

12 CONCLUSIONS

In the current paper, the arguments that control the
fundamental design of optical MEMS have been pre-
sented. The use of an optimum Gaussian beam leads
quickly to a set of standard arrangements of fibres,
lenses, mirrors, and filters, for which alignment toler-
ances and scaling laws may be derived. The

tolerances are generally so tight that very precise
alignment is required, which leads to a requirement
for an accurate manufacturing method such as
MEMS technology. MEMS can also provide methods
of moving optical surfaces to allow switching and
tunable filtering, albeit on time-scales of millise-
conds. However, the quality of any optical surfaces
is important. Single crystal silicon has therefore pro-
vided the optimum solution for most applications.
In the past, accurate passive alignment was

achieved using kinematic mounts, often combined
with a retaining spring. More complex mounting sys-
tems are now being developed. Figure 13(a) shows an
example of a linear translation stage, with electro-
thermal drives to control motion and a rack-and
tooth latch to fix the stage in position [46].
Figure 13(b) shows a multi-section latch based on
the Vernier principle, and Fig. 13(c) shows an elastic
mount for a torsion mirror, held in a frame perpen-
dicular to the stage. Such developments offer the
possibility of low-cost packaging based on on-chip
actuators for one-time assembly.
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