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Growing waves in drifted plasmas 
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Abstract 
Self-consistent wave solutions for structures consisting of drifting plasmas and dielectrics are presented and the 
appearance of growing waves in one of the models is shown. The role of collisions and diffusion is discussed 
and the direction of future work aimed at devices is indicated. The requirement for velocity matching implies 
that eventually periodic structures and space harmonics are needed so that these devices will form a new type of 
amplifying metamaterials. 
 
1. Introduction 
Plasmas are a big subject: there have been innumerable papers devoted to their multifarious properties. 
It is mostly the hunting ground of physicists with occasional intrusion by engineers. When it comes to 
drifting plasmas it is engineers who are more interested. Drifting plasmas gave rise to a number of de-
vices in the 1950s and they hold the promise of new devices in the still unexplored THz region. 

A plasma is a set of charged particles. In the simplest one-dimensional case their dispersion equation 
is ω2= ωp

2 where ω and ωp are the frequency and plasma frequency respectively. How will the disper-
sion equation modify when this plasma is bodily moved with a velocity, v0? We can find that easily by 
introducing the concept of Doppler shift, i.e. ω is to be replaced by ω - kv0 where k is the propagation 
constant. The corresponding dispersion equation is ω = kv0 ± ωp. The two solutions are known as the 
fast and slow space charge waves. The first device application was in Travelling Wave Tubes where 
amplification was achieved by the interaction of the slow space charge wave with a slow electromag-
netic wave (see e.g. [1]). In most devices the slow electromagnetic wave was produced by a helix [2] 
which slowed down the electromagnetic wave simply because it had to follow the longer path along 
the helix. A slow electromagnetic wave of velocity v can be represented by the dispersion equation ω 
= kv. The waves interact via their longitudinal electric fields. The frequency range in which the inter-
action occurs is in the vicinity of the point where the two dispersion characteristics intersect. The re-
sult is a gap both in frequency and in propagation constant leading to growing waves. The mathemati-
cal solution was always obtained by deriving a coupling term between the two waves in a heuristic 
manner [1]. The first aim of our research is to find the growing waves in self-consistent models with-
out the need of any heuristic coupling terms. We have though a number of other aims as well. Using 
our models we wish to investigate the interaction in regimes in which both collisions and the diffusion 
of the carriers are important. There was a time when such possibility seemed very unlikely that is until 
the advent of a new device in the 1960s, the acoustic wave amplifier [3]. Acoustic waves were ampli-
fied in a piezoelectric crystal (it was CdS although the effect was found in a few other crystals as well) 
by interaction with drifting carriers (the drift was achieved by applying a pulsed d.c. voltage). Ampli-
fication occurred when the drift velocity of the charge carriers exceeded the sound velocity in the 
solid. This device offered a clear indication that growing wave interactions are still possible in a colli-
sion dominated regime. The next logical step, taken in 1966, was [4] to design a Solid State Travelling 
Wave Amplifier to work by the interaction of drifting carriers with electromagnetic fields provided by 
a meander line. However due to the nearly-simultaneous appearance of the Gunn diode [5] there was 
little motivation to continue the research in that direction. The idea did not die: there have been one or 
two papers per year on the subject ever since. For a recent one see e.g. Ref. 6 concerned with another 
type of travelling wave interaction (two-stream instability). We believe there are strong arguments in 
favour of resurrecting and intensifying the research on travelling wave interactions in solids with a 
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view to their applications in THz devices. There are many ways at the moment to generate THz waves 
but none of them satisfactory. A simple, inexpensive device would make possible a series of applica-
tions. The chances of realising such a device are much better than it was half a century ago due to the 
advances in manufacturing small features and to the ease with which complex mathematical solutions 
can nowadays be obtained. We shall briefly discuss various models in the present paper, and show the 
presence of growing waves. 
 
2. Models and mathematical formulation 
In the models considered we shall have two types of media and assume that wave propagation is in the 
z direction. Medium 1 is a lossless dielectric and medium 2 is capable of providing drifting charge car-
riers. The simplest model is shown in Fig. 1a. Both media are infinite in the z and y directions and 
semi-infinite in the x direction. In the second model (Fig. 1b) medium 2 is surrounded on both sides by 
medium 1. In the third model (Fig. 1c) medium 1 is bounded by a perfect electric conductor. In all 
three cases TM waves are assumed which have only Ex, Ez and Hy components. Our three models turn 
actually into six models considering the presence or absence of an applied spatially constant and infi-
nitely large longitudinal magnetic field. Although this assumption is not realistic it may be approxi-
mated in practice, and besides it was often used in the theory of microwave tubes in order to simplify 
the mathematics. The simplification comes from the fact that in the presence of such magnetic field 
the transverse motion of the charge carriers is prohibited. 

 
 

Fig. 1: Models. 

We need to solve Maxwell's equations in conjunction with the equation of motion subject to the 
boundary conditions. There is no difficulty in writing up Maxwell's equations for the three field com-
ponents but we need to dwell on the accompanying equation of motion for the electrons. The usual 
formulation is in Lagrangian terms, i.e. it is concerned with the position of a single charge carrier as it 
varies as a function of time. It needs to be transformed into Eulerian terms, i.e. when the velocity of an 
electron is given at point z at a time t. The resultant nonlinear equation can then be linearized by as-
suming that the harmonically varying velocity is much smaller than the drift velocity. The left-hand-
side of the equation of motion contains, besides the acceleration term, a collision term, and a pressure 
term, the latter depending on the spatial rate of change of the charge density. The boundary conditions 
are trivial on the perfect electric conductor but less so on the boundary between Medium 1 and Me-
dium 2 when transverse motion of the charge carriers is permitted. In that case both surface charges 
and surface currents must be taken into account. For all six models we end up with a set of linear par-
tial differential equations which can be reduced to dispersion equations by the assumption of a wave 
solution in the form exp[j(ωt-kz)]. 
 
3. Results 
We show below the solution for only one of our models (Model 3 with infinite magnetic field in the z 
direction) for the lossless case when the dielectric constant of the dielectric is 1000, the velocity of the 
charge carriers is c/10 (where c is the velocity of light), the plasma frequency is fp = 1 THz, kpb = 0.2, 
kpd = 0.1, kp = 2π fp /c where b and d are dimensions in Fig. 1b and c. The transverse field distribution  
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is harmonic in the plasma; in the dielectric it may be harmonic or hyperbolic depending on the vari-
ables. The dispersion curve for the plasma with zero drift velocity is shown in Fig.2a in terms of nor-
malized coordinates, f/fp plotted against k/kp. It differs from the usual surface plasma dispersion curves 
partly because there are waveguide modes present (due to the confinement of the fields by the perfect 
electric conductor) and partly because the harmonic solution allows a large number of plasma waves 
which cannot be resolved on the scale used. As the drift velocity increases the plasma curves approxi-
mately rotate (Fig. 2b). When the drift velocity becomes higher than the velocity of the waveguide 
mode then the individual dispersion curves intersect resulting in the tell-tale gap in frequency and 
propagation constant giving rise to growing waves. 
 

 
 

Fig. 2: Dispersion equations and growing waves. (a) v0=0. (b) v0=c/10. 
 

4. Conclusions and future work 

We have six models and an enormous range of possible parameters. In the present paper we have only 
scratched the surface of the problem. We have shown that growing waves appear in a self-consistent 
model. We intend to investigate in detail all six models for the lossless case and show the conditions 
under which growing waves appear. The higher is the rate of growth the more likely is that net gain 
can still be achieved in the presence of collisions and diffusion (as in the acoustic amplifier). Having 
found conditions for growth we shall need to investigate how those conditions can be satisfied with 
existing materials. The maximum carrier velocity that can be achieved in a solid is probably about 
c/200 in InSb. The high dielectric constant of 1000 assumed in our example cannot be achieved in 
practice. The practical solution must be a periodic structure in which the interaction can be achieved 
via higher spatial harmonics. And that combination of drifting plasmas with periodic structures places 
the set of problems discussed here firmly into the realm of metamaterials. 
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