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Abstract

An analytic theory of periodically perturbed magneto-inductive waveguides is developed and used to determine the
mode spectrum of distorted MI ring resonators. A set of coupled equations is first established from the recurrence
equations for an infinite set of coupled elements, and used to determine the dispersion equation. Solutions for ring
resonators are then found using periodic boundary conditions, which give simple predictions for resonance splitting.

1. Introduction
Most metamaterial research is concerned with perfect, infinite lattices, which are almost never obtained
in practice. There is therefore an interest in developing simple analytic approaches to more realistic
situations involving finite numbers of elements without excessive reliance on numerical solutions.
Here we show how the method of periodic boundary conditions may be applied to the particular case
of a distorted octagonal magneto-inductive ring resonator, which may have applications in magnetic
resonance imaging [1]. Fig. 1a shows an undistorted ring, which consists of eight coupled L-C
resonators. Each coil is typically rectangular to obtain high coupling. When used in transmit mode
(for example) the ring can produce an extremely uniform distribution of magnetic field (Fig. 1b).
For particular distortions, the properties of the ring alter in a simple way, which allows the eigenmodes
to be found by applying periodic boundary conditions to the dispersion characteristics of an infinite
line. The method can be applied to rings with different numbers of elements and to other distortions.
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Fig. 1 Octagonal ring resonator: a) arrangement, b) distribution ofmagnetic field Hy, and c) symmetrically distorted.

2. Analytic theory
The undistorted ring has coupling coefficients κm between mth neighbours. Assuming the travelling
wave solution In = I0 exp(-jnka) for the current in the nth resonator, we obtain in the loss-less case the
usual dispersion equation [2]:

{1 - ω0
2/ω2} + mΣ κm cos(mka) = 0

(1)
Here ω0

2 = 1/LC and κm = 2Mm/L, where Mm is the corresponding mutual inductance, and ka is the
phase shift per element. The ring will resonate when the round trip phase is a whole number of
multiples of 2π, so that kNa = 2µπ where N is the number of elements and µ is the mode number. For
a ring with even N, there are N/2 + 1 resonances, with propagation constants:

kµa = 2µπ/N (µ = 0, 1 … N/2)
(2)

Once the values of kµa are known, the corresponding angular frequencies ωµ may be obtained from
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the dispersion equation as [1]:

ωµ/ω0 = 1/√{1 + mΣ κm cos(2µmπ/N)}
(3)

For MRI applications, the mode µ = 1 is the most important, since it may couple to the field of a
rotating magnetic dipole.

When the ring is distorted, the mutual inductances and hence the coupling coefficients between
different elements will alter. Fig. 1c shows the most important terms for an octagonal ring undergoing
a horizontal stretching (non-shear) distortion. There are now two possible nearest neighbour coupling
coefficients, κ1a and κ1b, and three second-nearest-neighbour terms, κ2a, κ2b and κ2c. Horizontal
compression produces a similar but rotated pattern of coefficients. Clearly, the eigenmodes could be
found by substituting these coefficients into an 8 x 8 coupling matrix and using the standard
numerical solution. The mathematical effort involved is equivalent to solving an 8th order polynomial.
Here, we use an analytic approach aimed at developing insight. For example, the resonant frequencies
for stretching and compression distortions must be the same, and this feature should emerge naturally.
For simplicity we consider the case when the second neighbour coefficients are negligible, but the
nearest-neighbour coefficients are unequal. For Fig. 1c, this corresponds to a periodic pattern of
coupling, repeating twice per cycle, so the recurrence relation between the currents can be written
down immediately for a similar infinite line as follows:

{1 - ω0
2/ω2}In + {κ/2 + γ cos(nπ/2 - 3π/4)}In-1 + {κ/2 + γ cos(nπ/2 - π/4)}In+1 = 0

(4)
Here, κ1a = κ + 2γ cos(π/4) = κ + γ√2, and κ1b = κ - γ√2. For horizontal compression a similar
expression may be obtained by writing -γ for γ. Symmetry conditions then imply that any result for
resonant frequencies should be independent of the sign of γ.

If Equation 4 may be converted into a dispersion relation, periodic boundary conditions may be used
to find the resonant frequencies of the eight-element ring. Because periodic perturbations tend to
couple together harmonic components [3], we assume the solution as a sum of travelling waves:

In = I00 exp(-jnka) + I01 exp[-jn(ka+π/2)] + I02 exp[-jn(ka+π)] + I03 exp[-jn(ka+3π/2)]
(5)

Here, I00, I01, I02 and I03 are constants. Substituting and equating each of the coefficients of exp(-jnka),
exp[-jn(ka+π/2)], exp[-jn(ka+π/2)] and exp[-jn(ka+3π/2)] separately with zero we obtain:

{(1 – ω0
2/ω2) + κ cos(ka)} I00 + jγ {I03 cos(ka - π/4) - I01 cos(ka + π/4)} = 0

{(1 – ω0
2/ω2) + κ cos(ka)} I01 + jγ {I00 cos(ka + π/4) + I02 cos(ka - π/4)} = 0

{(1 – ω0
2/ω2) + κ cos(ka)} I02 + jγ {I03 cos(ka + π/4) - I01 cos(ka - π/4)} = 0

{(1 – ω0
2/ω2) + κ cos(ka)} I03 - jγ {I02 cos(ka + π/4) + I00 cos(ka - π/4)}  = 0

(6)
Equations 6 are a set of four coupled equations that can be uncoupled to yield a single dispersion
equation. After some manipulation, we get:

{(1 – ω0
2/ω2) + κ cos(ka)}2 = 2γ2 cos2(ka) or

{(1 – ω0
2/ω2) + κ cos(ka)}2 = 2γ2 sin2(ka)

(7)
So that:

ω/ω0 = 1/√{1 + κ cos(ka) ± √2γ cos(ka)} or
ω/ω0 = 1/√{1 + κ cos(ka) ± √2γ sin(ka)}

(8)
This result implies that there are in general four solutions, although some are spurious because they
follow from special cases of the coefficients in Equations 6. For the primary resonance of an eight
element ring (ka = π/4) we obtain:

ω1/ω0 = 1/√{1 + κ/√2 ± γ}
(9)
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This result is independent of the sign of γ. It may also be written as ω1/ω0 = 1/√{1 + κ1a/√2} or ω1/ω0 =
1/√{1 + κ1b/√2}. Since there are two solutions, the original primary resonance has split into two. Fig. 2a
shows the four general solutions (Equation 8), for the parameters κa = -0.35, κa = -0.25. For a ring,
the discrete resonances must be obtained by applying Equation 2 once again. Clearly there can be no
more than 8 resonances in an 8-element ring, so some of the solutions are redundant. The resonance
pairs at ka/π = 0.25 and at ka/π = 0.75 are unambiguous. The remaining resonances are illustrated by
comparison with the discrete eigenvalues obtained from the full numerical solution of the matrix
problem. Fig. 2b shows the variation of the two primary mode frequencies (Equation 9) with the
normalised distortion parameter γ/κ, for κ = -0.3. The degree of mode splitting clearly varies quasi-
linearly with the amount of distortion.
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Fig. 2 a) Dispersion diagram; b) variation of primary mode resonant frequencies with γ/κ for distorted octagonal ring.

Substitution into Equations 6 then allows the relation between the current amplitudes to be found. For
the primary resonances of the 8-element ring we get I03 = ±jI00. A similar relation may be found
between I01 and I02. Using Equations 6, we then get:

In = 2I00 cos[(n ± 1)π/4] + 2I01 cos[(3n ± 1)π/4]
(10)

This result implies that the geometric perturbation will distort the uniform current distribution into a
periodically varying one, which will result in poor transmission uniformity or reception sensitivity in
MRI. Ignoring the contributions of I01, the variations are cosines, shifted in phase by π/2 as expected
from the symmetry of Fig. 1c. These analytic mode shapes also agree with the numerical solution of
the matrix eigenvector problem.

3. Conclusions

The method of periodic boundary conditions has been applied to an octagonal magneto-inductive ring resonator with
symmetric geometrical distortions, and the solution has been shown to imply splitting of otherwise degenerate
resonant modes. The splitting must be controlled for proper functioning in MRI applications, for example by
arranging for the primary coupling coefficient to remain constant as the ring is distorted.
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