
micromachines

Article

Mechanical Synchronization of MEMS Electrostatically Driven
Coupled Beam Filters

Richard Syms * and Adam Bouchaala

����������
�������

Citation: Syms, R.; Bouchaala, A.

Mechanical Synchronization of

MEMS Electrostatically Driven

Coupled Beam Filters. Micromachines

2021, 12, 1191. https://doi.org/

10.3390/mi12101191

Academic Editors: Marius Pustan and

Florina Maria S, erdean

Received: 6 September 2021

Accepted: 25 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road,
London SW7 2AZ, UK; a.bouchaala@imperial.ac.uk
* Correspondence: r.syms@imperial.ac.uk; Tel.: +44-207-494-6203

Abstract: Micro-electromechanical systems (MEMS) bandpass filters based on arrays of electrostati-
cally driven coupled beams have been demonstrated at MHz frequencies. High performance follows
from the high Q-factor of mechanical resonators, and electrostatic transduction allows tuning, match-
ing and actuation. For high-order filters, there is a conflict between the transduction mechanism
and the coupling arrangement needed for dynamic synchronization: it is not possible to achieve
synchronization and tuning simultaneously using a single voltage. Here we propose a general
solution, based on the addition of mass-loaded beams at the ends of the array. These beams deflect for
direct current (DC) voltages, and therefore allow electrostatic tuning, but do not respond to in-band
alternating current (AC) voltages and hence do not interfere with synchronization. Spurious modes
generated by these beams may be damped, leaving a good approximation to the desired response.
The approach is introduced using a lumped element model and verified using stiffness matrix and
finite element models for in-plane arrays with parallel plate drives and shown to be tolerant of
the exact mass value. The principle may allow compensation of fabrication-induced variations in
complex filters.

Keywords: mechanical filter; coupled resonator; MEMS

1. Introduction

Because of their intrinsically high Q-factor, electrical filters based on mechanical res-
onators have long been of interest for signal processing [1–6]. Most are bandpass filters
based on arrays of coupled resonators. Miniaturization using micro-electro-mechanical
systems (MEMS) technology allowed operating frequencies to be raised and the funda-
mental mechanisms limiting Q-factors (gas damping and thermoelastic friction) to be
understood [7–12]. MEMS filters were initially demonstrated at high kHz frequencies as
lumped-element systems driven by electrostatic comb-drives [13–17] and then at MHz
frequencies as coupled-beam arrays driven by parallel-plate actuators [15,18–25]. Match-
ing [20], tuning [26–30] and coupling [31–35] can all be performed electrostatically. Alter-
native designs based on large linear arrays, rings, and 2D and 3D arrays have all been
proposed to achieve different filter functionalities [36–42].

Several difficulties remain. Coupling must be weak to achieve a bandwidth suitable
for applications such as intermediate frequency (IF) filtering. Mechanical coupling elements
must then be nanostructured [43–46]. Electrode gaps must also be very small for realistic
input and output impedance, further complicating fabrication [47–50]. However, a more
fundamental difficulty exists. In a system of two mechanically coupled beams, the modified
resonant frequencies of the two beams are inherently matched, because the effects of the
coupling springs on each beam are identical. However, in high-order filters, which require
more than two beams, the inner beams experience the stiffness modification of a different
number of coupling springs to the outer beams. The suspension needed to ensure equal
DC deflection (and hence equal electrostatic tuning) then no longer yields a synchronous

Micromachines 2021, 12, 1191. https://doi.org/10.3390/mi12101191 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-0901-8314
https://orcid.org/0000-0002-5360-3716
https://doi.org/10.3390/mi12101191
https://doi.org/10.3390/mi12101191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12101191
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12101191?type=check_update&version=3


Micromachines 2021, 12, 1191 2 of 12

AC response. Electrostatic stiffness modification is thus incompatible with the dynamic
synchronization needed for correct collective operation of the array. The effect can be
compensated by applying different DC tuning voltages to the inner and outer beams [17].
Unfortunately, it is difficult to establish the voltages needed even in simulation, using either
the finite element method (FEM) [51–53], which involves accurate results using lengthy
run times, or the stiffness matrix method (SMM) [54–57], which provides approximate
results very quickly. The need for multiple DC voltages may present even more problems
in production if tuning is needed to compensate for fabrication variations.

Here we propose a simple method of eliminating the second voltage, using a mechani-
cal modification that separates the problems of DC tuning and obtaining a synchronized
AC response. Additional resonators are introduced at either end of the array, together
with the coupling elements needed to obtain the correct DC response. These resonators are
mass-loaded so their resonances lie far enough from those of the original array that they do
not take part in collective oscillation. The additional modes may be damped, leaving the
filter response to be determined by the original array, which is now properly synchronized.
The solution is illustrated in terms of arrays with in-plane motion and driven by parallel
plate actuators. The solution is general but is illustrated in terms of arrays with in-plane
motion and driven by parallel plate actuators. The design problem is introduced through
FEM simulations in Section 2, and a solution is proposed. The principle is demonstrated in
Section 3 using a lumped element model (LEM), and performance is verified in Section 4
using the SMM. Conclusions are drawn in Section 5.

2. Design Problem for Coupled Beam Arrays

In this Section, we describe the contradiction inherent in electrostatic synchronization
and present the argument for dynamic compensation using mass-loaded beams.

2.1. Electrostatic Synchronization

Figure 1a shows a 3-beam in-plane coupled beam array configured as a band-pass
filter. Here red and blue features show fixed and undercut moving parts, and connections
are shown as wires. Each horizontal element is a built-in MEMS beam. Adjacent beams are
connected near their roots by two sets of weak nanostructured meander springs, placed
symmetrically. These springs couple the beams together but also upshift their resonant
frequency. The AC input VA and output are connected to parallel plate transducers at
beams 1 and 3 via loads zL, and scattering parameters S11 and S21 describe reflection and
transmission at these ports. An additional DC voltage VD is used to linearize the input
and obtain an output, and to allow electrostatic tuning. To ensure synchronization, the
central beam is also equipped with a transducer. Application of the same DC voltage to
each transducer must then cause equal deflection of each beam, and equal tuning.
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Figure 1. Band-pass coupled-beam filters: (a) 3-beam system and (b) 5-beam system with compensat-
ing springs, mass-loaded end beams and split electrodes. Red—fixed parts; blue—movable parts.

Unfortunately, this arrangement does not provide dynamic synchronization. If each
beam vibrates in isolation, with the others stationary, the end beams must have the elastic
support of one pair of springs, while the central beam has that of two. Consequently,
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the effective resonant frequencies of beams 1 and 3 must differ from that of beam 2.
One solution might be to connect an additional pair of springs from the end beams to
anchors, restoring dynamic synchronization. However, application of the same DC voltage
to each transducer cannot then cause equal beam motion since this would require deflection
of the end springs alone. A common approach to such problems is to apply a different DC
bias to each transducer [17,25]. However, the correction is extremely tedious.

2.2. FEM Simulation

The problem can be illustrated with FEM simulations of the device layout in Figure 1a,
carried out using the commercial software COMSOL® [58]. Three coupled modules (Solid
Mechanics, Electrostatics and Electrical Circuit) were used. First, the mechanical layout and
constraints were set up, and elastic and inertial constants were defined. Inertial damping
was estimated from the Q-factor. Electrostatic drives were defined on opposing surfaces of
cuboid air volumes between each beam and a fixed electrode. Terminals were added to
allow application of DC and AC voltages, with the AC input and output being connected
via load resistors zL. The mechanism and air gaps were meshed using a free triangular
mesh, using different mesh sizes to reduce simulation time. A frequency sweep was used
to calculate S-parameter variations from terminal currents.

The following values were assumed for dimensions: L0 = 150 µm, w0 = 3 µm,
d0 = 4 µm, α = x1/L0 = 0.25, s = 6 µm, w1 = 0.1 µm, and g0 = 0.1 µm. A density of
ρ = 2332 kg/m3, Young’s moduli of E0 = 169× 109 N/m2 and E1 = 130× 109 N/m2 and
a Poisson’s ratio of ν = 0.28 were chosen to model devices in (100) Si with the micro- and
nano-structured beams in the <110> and <010> directions [59]. A quality factor of Q = 5000
was taken as representative; however, its value is of limited significance provided it is large.
An AC voltage of VA = 0.1 mV was used for dynamic actuation.

DC voltages VDE and VDC were first applied to the end and central beams to achieve
tuning at a design frequency of f1 = 1, as VDE = 3.02 V and VDC = 2.98 V, below the
snap-down voltage of ∼ 3.5 V. The impedance zL was then adjusted to achieve matching,
as zL = 400 kΩ. Figure 2a shows the resulting variation of the S-parameters with frequency.
Apart from the high value of zL (a known feature of coupled beam devices [21,47]), high
performance is obtained; the response is bandpass, with correct tuning and broadband
matching. However, determination of the DC voltages is a laborious process, which must
be repeated each time parameters change. For example, Figure 2b shows the extracted
variation of VDE/VDC with the width w1 of the linking springs, likely to vary in production.
The ratio is not constant, implying that both voltages must be continually rediscovered.
Similar effects occur if the electrode gap g0 is altered, and even minor departure from
suitable voltages leads to an unrecognisable response or failed simulation.
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2.3. Dynamic Synchronization

Here we propose the solution shown in Figure 1b, which allows a single DC voltage.
The array is now equipped with an additional beam at either end, coupled to its neighbour
by springs and equipped with transducers to which DC voltages are applied. As in
Figure 1a, a common DC voltage will yield equal deflections of all 5 beams. The additional
beams are mass-loaded at their midpoint. Ideally, this mass will be formed by a variation
in layout. However, care will be required to locate it in the available space without
modifying beam stiffness. One possibility, shown here, is to place both masses outside the
array, splitting the upper electrode to clear the mass (and splitting the remainder to retain
synchronization). If the masses are large enough, the resonances of beams 1 and 5 will
differ sufficiently from that of beams 2–4 that they take no part in the in-band response.
Thus, the array may be considered as five statically synchronized beams for DC bias, and
three dynamically synchronized beams for AC signals.

3. Lumped Element Model

In this section we construct a lumped element model of a set of coupled resonant
beams with parallel-plate drives and show how mass-loading can control the response.

3.1. Resonant Modes of a Vibrating Beam

We start by considering the resonant modes of an undamped, undriven beam of length
L0, width w0 and depth d, formed in a material of density ρ and Young’s modulus E0. These
are the solutions to the dynamic Euler beam-bending equation for a clamped-clamped
beam, namely [60]:

Yν(x) =
(

γ√
L0

){
sin(βνx)− sinh(βνx)

sin(βνL0)− sinh(βνL0)
− cos(βνx)− cosh(βνx)

cos(βνL0)− cosh(βνL0)

}
, (1)

Here Yν(x) is transverse displacement, and x is position along the beam. The eigen-
values βν are related to the angular resonant frequencies ων by β4

ν = ωνρA0/E0 I0, where
A0 = w0d is the area and I0 = w3

0d/12 is the second moment of area, and satisfy the charac-
teristic equation cos(βνL0) cosh(βνL0) = 1. This equation has a set of discrete solutions.
Here we are concerned with the lowest-order mode, which corresponds to β1L0 =

√
22.37.

The term γ is a normalization constant, chosen so that
∫ L0

0 Yν
2dx = 1. More generally, the

beam may have a distributed damping r per unit length and be driven by a force f per
unit length.

3.2. Lumped Element Model

Figure 3a shows the lumped element model, in which each resonator except the first
and the last is considered as a mass M supported on a spring of stiffness K0. Again, the red
and blue features show fixed and moving parts, and damping is omitted for clarity.
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Equivalence with the distributed model is established using the factors η1 = avg(Y1)/
max(Y1) and η1 = avg

(
Y2

1

)
/max

(
Y2

1

)
which have the values 0.5232 and 0.3965, respec-
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tively. These allow the lumped mass M, stiffness K0, damping coefficient R and force F to
be found as [21]:

M = ρA0L0η2, K0 = ω2
1 M, R = rL0η2, F = f L0η1, (2)

For the outer elements, the mass is increased to mr M, where mr = (M + ∆M)/M is
a mass ratio and ∆M is an additional lumped-element mass. The coupling springs are
formed from elements of length L1, width w1, depth d, density ρ and Young’s modulus E1,
inclined at 45◦ angles to give a separation s = L1

√
2 between the beams. The equivalent

spring constant and mass of each pair are k1 = 24E1 I1/L3
1 and m1 = 2ρA1L1, where

I1 = w3
1d/12 and A1 = w1d. Here a different elastic modulus E1 is introduced as before,

and the mass m1 is half the actual mass, to model the motion of the centre of mass of each
spring. Perturbation theory then allows an equivalent lumped element coupling stiffness
K1 to be found as:

K1 =
(

k1 −ω2
1m1

)
L0Y2

1(x1)η2, (3)

For very small springs, the effect of the mass m1 may often be ignored. Development
of a model for electrostatic transducers is more complicated. Following [21] we assume
that the electrodes act as parallel plate capacitors with capacitance:

C = ε0L0d/(g0 − yD), (4)

Here g0 is the initial gap and yD is a static displacement. Application of a DC voltage
VD generates a static force:

FD =
1
2

C′V2
Dη1, (5)

Here C′ = ε0L0d/(g0 − yD)
2 is the derivative of C. Static equilibrium then implies

that FD = K0eyD. Here K0e is the effective stiffness, which may reasonably be approximated
as K0. This is a standard snap-down problem, leading to the cubic equation:

y3
nD − 2y2

nD + ynD − γ = 0, (6)

Here ynD = yD/g0 is the normalised deflection and γ = ε0L0dV2
Dη1/

(
2K0g3

0
)
. Solu-

tion allows calculation of C, C′ and the second derivative C′′ . When an additional AC
voltage VA is applied from a source with output impedance zL, the result is an AC force FA,
a reduction in stiffness ∆K and an effective load ZL given by:

FA = VDC′η1VA, ∆K =
1
2

V2
DC′′ η2, ZL = (VDC′η1)

2zL, (7)

In general, the characteristic impedance Z0 of a coupled beam array is complex, but
for an infinite lossless array at resonance it has the real value:

Z0R = K1/ω1e, (8)

Here ω1e =
√{

(K0 +
2K1
M

}
is the effective angular resonant frequency. Matching can

then be achieved by choosing ZL = Z0R. This requires the load resistance zL to be chosen
so that K2

vzL = Z0R. However, large values of zL are needed if Kv is small [21].

3.3. Coupled Equations

Combining the results above it is simple to show that the governing equations for
a 5-element array with input and output ports at n = 2 and n = 4 subject to a harmonic
drive FA = F0 exp(jωt) at angular frequency ω are:{

(K0 + K1 − ∆K)−mr Mω2 + jωR
}

y1 − K1y2 = 0
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{
(K0 + 2K1 − ∆K)−Mω2 + jω(R + ZL)

}
y2 − K1(y1 + y3) = F0{

(K0 + 2K1 − ∆K)−Mω2 + jωR
}

y3 − K1(y2 + y4) = 0{
(K0 + 2K1 − ∆K)−Mω2 + jω(R + ZL)

}
y4 − K1(y3 + y5) = 0{

(K0 + K1 − ∆K)−mr Mω2 + jωR
}

y5 − K1y4 = 0 (9)

These equations can be solved by inversion of the equivalent matrix representation,
and reflection and transmission scattering parameters can then be found using standard
methods. Here, however, we focus on the resonant modes.

3.4. Resonant Modes

In the absence of damping, loading and a driving force, Equation (9) reduce to:{
(K0 + K1 − ∆K)−mr Mω2

}
y1 − K1y2 = 0{

(K0 + 2K1 − ∆K)−Mω2
}

y2 − K1(y1 + y3) = 0{
(K0 + 2K1 − ∆K)−Mω2

}
y3 − K1(y2 + y4) = 0{

(K0 + 2K1 − ∆K)−Mω2
}

y4 − K1(y3 + y5) = 0{
(K0 + K1 − ∆K)−mr Mω2

}
y5 − K1y4 = 0 (10)

Introducing the terms ω2
1e = (K0 + 2K1 − ∆K)/M, ω2

1m = (K0 + K1 − ∆K)/mr M,
κ = K1/M and κm = K1/(mr M), these equations may be re-written as:(

ω2
1m −ω2

)
y1 − κmy2 = 0(

ω2
1e −ω2

)
y2 − κ(y1 + y3) = 0(

ω2
1e −ω2

)
y3 − κ(y2 + y4) = 0(

ω2
1e −ω2

)
y4 − κ(y3 + y5) = 0(

ω2
1m −ω2

)
y5 − κmy4 = 0, (11)

For characteristic modes oscillating at the µth angular resonance frequency ωµ, we
may write yµn = Yµn exp

(
jωµt

)
, where the constants Yµn define the overall mode shapes.

The values ω2
µ are the eigenvalues of the tridiagonal matrix:

M =


ω2

1m −κm 0 0 0
−κ ω2

1e −κ 0 0
0 −κ ω2

1e −κ 0
0 0 −κ ω2

1e −κ
0 0 0 −κm ω2

1m

, (12)

When ω2
1m is sufficiently different from ω2

1e, experience suggests that there will be
little interaction between the outer masses and the remainder of the array. The eigenmodes
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will then separate into two groups. The first are the eigenvectors of the Toeplitz matrix M′,
given by:

M′ =

 ω2
1e −κ 0
−κ ω2

1e −κ
0 −κ ω2

1e

 , (13)

This matrix represents the dynamics of a reduced set of fully synchronized coupled
resonators. Its eigenvalues are well-known, and lead to resonant frequencies:

ωµ′ =

√{
ω2

1e − 2κ cos
(

µ′π

4

)}
, (14)

Here µ′ = 1, 2, 3. The corresponding eigenvectors have the form:

Yµ′n′ = sin
(

µ′n′π
4

)
, (15)

Here n′ = n − 1, and n′ = 1, 2, 3. The second set contains symmetric and anti-
symmetric modes that predominantly involve oscillation of the outer masses at ω1m. These
responses may be damped using similar loads to the matched loads at the ports.

To confirm these arguments, the blue lines in Figure 4a shows the variation with mr
of the exact resonant frequencies, for an array with example parameters K1/K0 = 0.06.
The red lines show the approximate resonant frequencies. As mr rises, the exact solutions
tend to the approximations, and resonances predominantly involving the outer masses
separate from the remainder. Figure 4b shows the mode amplitudes Yµn for K1/K0 = 0.06
and mr = 1.5. The blue traces show the first set of modes while the red traces show the
second. As predicted, the former is approximated by Equation (15), while the latter mainly
involve the outer masses. Provided only the first modes are excited, the array behaves as if
the outer masses are stationary, as shown in Figure 3b.
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Figure 4. (a) Variation of exact and approximate resonant frequencies of a 5-beam system with mass
ratio mr, as predicted by the LEM for K1/K0 = 0.06. Points show predictions of a comparable FEM;
(b) Exact mode shapes of a 5-beam system predominantly involving the inner (blue) and outer (red)
beams, as predicted by the LEM for K1/K0 = 0.06 and mr = 1.5.

For comparison, the discrete points in Figure 4a show the predictions of the FEM for a
5-beam system with the same dimensional parameters as those used for Figure 2, which
yields an equivalent value of K1/K0. A rectangular mass is added to beams 1 and 5, and
the mass ratio is calculated as described above. The points follow the continuous traces
almost exactly. Similarly, Figure 5 shows the shapes of the highest eigenmodes predicted
by the FEM for mr = 1.5; the outer beams are almost stationary as expected.
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4. Stiffness Matrix Model

In this section, we verify the previous arguments using the stiffness matrix method,
which models beam networks by combining Euler beam bending theory with compatibility
conditions [54,55]. The SMM is often preferred to FEM because of its increased speed.
The high aspect ratio of most MEMS suspensions validates the use of Euler theory, and
transducers may be modelled approximately as previously described [56,57].

4.1. Stiffness Matrix Model

Calculations were performed using a 2D SMM solver written in Matlab® [61]. The
stiffness matrix K was constructed from dimensions and material parameters, with E0
reduced to model electrostatic detuning. Long beams were subdivided to ensure accuracy
of resonant frequencies. Axial, transverse and angular displacements at each node were
found for a vector of applied forces and torques (here a point load on the actuated beam).

Dynamic analysis was performed using additional mass and damping matrices. The
mass matrix M was formed by combining dimensions and densities with standard relations
for motions of centres of mass. The damping matrix C was modelled using Rayleigh’s
method as R = aM + bK [60]. Here a and b are mass and spring damping coefficients,
with a determined from the Q-factor and b = 0. Ports were simulated by increasing
the damping for these beams, using a damping coefficient determined from the load
impedance zL. Assuming harmonic forces and displacements as (F, U) ejωt, substitution
into the governing equation yields

(
K−ω2M + jωR

)
U = F. This equation was solved by

inversion, and the velocity vector constructed as S = jωU. The scattering parameters S11
and S21 were then extracted from midpoint velocities.

4.2. Static Deflections

Responses were simulated for the same dimensional and material parameters as
before. The single DC voltage VD and the impedances zL were adjusted to achieve tuning
and matching at a design frequency of f1 = 1 MHz, as VD = 2.83 V and zL = 434 kΩ,
respectively. An AC voltage of VA = 0.1 mV was again used for dynamic actuation.
Figure 6a shows the magnified static deflection for a 3-beam system with end springs but
no additional end beams, confirming that this design yields unequal deflection and hence
unequal electrostatic tuning. Figure 6b shows the deflection for a 5-beam system equivalent
to Figure 1b; the modified suspension clearly equalizes the deflection as required.
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a flat passband. Additional unwanted transmission near 0.79 MHz can be attributed to 
excitation of the two low-frequency resonances in Figure 4. 

  
(a) (b) 

Figure 6. Deflection of coupled-beam systems with a DC bias applied, as predicted by the SMM:
(a) 3-beam system with end-springs; (b) 5-beam system without end springs.

4.3. Frequency Responses

Figure 7a shows the frequency variation of S-parameters for a 5-beam system with no
added mass. As expected, the response is heavily distorted, with poor matching and a deep
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notch caused by the collective oscillation of an improperly synchronized system. Figure 7b
shows the corresponding response when the first and fifth elements are loaded using
masses with example width 5w0 and length s, yielding a mass ratio mr = 1 + 5s

η2L0
≈ 1.5.

Near the design frequency, the response is bandpass, with good matching and a flat
passband. Additional unwanted transmission near 0.79 MHz can be attributed to excitation
of the two low-frequency resonances in Figure 4.
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Figure 7. Frequency response of a 5-beam filter with electrostatic detuning (a) with and (b) without
added mass, as predicted by the SMM.

The unwanted response can be placed further out-of-band by increasing mr; at the
same time, passband flatness is improved. However, mr is limited by layout constraints.
The dimensions of the mass may be reduced using material with density larger than silicon
(for example, gold, with ρ = 19, 300 kg/m3), but only at price of fabrication complexity. A
simpler solution is to damp the unwanted response, by connecting loads in series with the
DC bias for the first and last beams. Figure 8a shows the response obtained using loads
identical to those used for matching. The unwanted resonances are suppressed, leaving
the desired bandpass response unaltered and confirming the design strategy.
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Figure 8. Frequency response of an electrostatically tuned 5-beam filter with added mass and
additional damping of the end beams, as predicted by (a) the SMM, and (b) the FEM.

All the results presented here were compared with the predictions of the LEM, and
excellent agreement was obtained in each case. The responses shown in Figures 7b and 8a
were also reproduced using the FEM. Figure 8b shows the frequency dependence of S21 for
a 5-beam system with mass-loaded end beams, obtained using COMSOL with and without
end-beam damping. Apart from a minor difference in the tuning voltage (attributed to
approximation of the transducer in the SMM), and minor passband ripple (which reduces
with mr or zL), the results are as expected. A bandpass response is obtained, and end-beam
resonances are effectively suppressed by damping.
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5. Conclusions

A method to compensate for the electrostatic desynchronization of coupled beam
arrays has been proposed and confirmed by simulation, with excellent agreement being
obtained using lumped element, stiffness matrix and finite element models. Additional
beams are simply added at either end of the array, together with the coupling elements
needed to ensure equal displacement of all beams under a DC tuning voltage. If the
additional beams are mass-loaded, they take no part in the collective in-band response. The
remainder of the array then exhibits properly synchronized behavior, and any out-of-band
resonance may be suppressed using external loading. Since the additional mass need only
place the unwanted resonances somewhere out-of-band, this arrangement is extremely
tolerant to the exact mass value. The passband may then be adjusted in frequency with
a single DC voltage, simplifying compensation for fabrication-induced variation of key
nanoscale dimensions such as the width of the linking suspension or the electrode gap.

The combination of feature size and aspect ratio greatly complicates fabrication of any
such device. To maximize the Q-factor, single crystal materials such as bonded silicon-on-
insulator (BSOI) or silicon-on-glass wafers are preferred [8,11]. Mechanical parts may be
formed by anisotropic plasma etching. However, advanced lithography such as the high-
aspect-ratio combined poly and single crystal silicon (HARPSS) micromachining process
would be needed to form sub-micron electrode gaps [43]. Sidewall transfer lithography
(STL) has already been shown capable of integrating nanoscale suspensions with MEMS
parts [45]. Electrical connection to fixed electrodes (many of which lie within the mechanical
structure) also presents a challenge and is most easily achieved using buried or flip-chip
bonded tracks.

The application presented here is to a three-beam filter. However, elimination of the
need for multiple tuning voltages should simplify development of high-order filters based
on larger beam arrays. Extension to four-port acoustic MEMS devices such as directional
couplers and directional coupler filters (which allow more effective signal separation) is
obvious, and we have already investigated example designs. Applicational to out-of-plane
and torsional motion may also be possible. The principle is therefore general and may
enable realization of a wide range of new filter devices.
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