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Abstract: Analytic approximations are presented for the response of buckling-mode electrothermal
actuators with very slender beams with a width-to-length ratio of W/L ≤ 0.001 of the type found
in nanoelectromechanical systems (NEMS). The results are found as closed-form solutions to the
Euler beam bending theory rather than by an iterative numerical solution or a time-consuming finite
element analysis. Expressions for transverse deflections and stiffness are presented for actuators with
the common raised cosine and chevron pre-buckled shapes. The approximations are valid when the
effects of bending dominate over those of axial compression. A few higher-order approximations are
also presented for less slender beams with 0.001 ≤W/L ≤ 0.01.
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1. Introduction

Electrothermal actuators are widely used in microelectromechanical systems (MEMS)
because a device with in-plane motion may be constructed simply by etching and undercut-
ting a mechanical layer to form a suspended structure that is heated by passing a current
between the anchors [1]. The most common arrangements are shape bimorph [2,3] and
buckling [4–6] actuators. Here, we focus on the latter, which have the general arrangement
as shown in Figure 1a. Here, an array of beams is supported on anchors at either end.
The beams are pre-buckled to force motion in the direction shown, tied together with
a crossbeam at their midpoint to ensure collective motion, and driven by constrained
thermal expansion.
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1. Introduction 
Electrothermal actuators are widely used in microelectromechanical systems 

(MEMS) because a device with in-plane motion may be constructed simply by etching and 
undercutting a mechanical layer to form a suspended structure that is heated by passing 
a current between the anchors [1]. The most common arrangements are shape bimorph 
[2,3] and buckling [4–6] actuators. Here, we focus on the latter, which have the general 
arrangement as shown in Figure 1a. Here, an array of beams is supported on anchors at 
either end. The beams are pre-buckled to force motion in the direction shown, tied to-
gether with a crossbeam at their midpoint to ensure collective motion, and driven by con-
strained thermal expansion. 

 
Figure 1. (a) Buckling electrothermal actuator; (b,c) chevron and raised cosine pre-buckle. 
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Figure 1. (a) Buckling electrothermal actuator; (b,c) chevron and raised cosine pre-buckle.

If the beams are initially shaped into a chevron layout, the device is known as a V-beam
actuator. The basis of actuation has been investigated using the Euler buckling theory and a
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finite element analysis [7,8], typically using the simplified single-beam model in Figure 1b.
More recently, geometry effects [9], non-linearity [10], and dynamics [11,12] have been
investigated, and there have been continuing attempts to improve the FEM analysis [13–16].
An alternative layout is the raised cosine pre-buckle in Figure 1c, which has been exten-
sively analysed under the conditions leading to snap-through and bistability [17–19]. The
thermal aspects of buckling actuators have also been modelled [20,21], and a new design—
the Z-shaped actuator, which uses a stepped beam layout—has been developed [22–24].
More complex arrangements have been developed, including cascaded [7,25–29] and out-
of-plane [30] actuators as well as actuators with a variable beam width [31,32], built-in
strain gauges [33], and feedback control [34,35]. V-beam actuators have been used as the
basis of linear [36–38] and rotary [36,39] stepping motors. Applications include electrical
switches [40,41], optical alignment systems [42–45], tunable or scanning micro-optical
devices [46–48], devices for cell manipulation [49–51], and movable neural microelectrode
arrays [52,53]. The devices and applications are reviewed in [54].

Despite approximately twenty years of research, a few difficulties remain. Neither
the analytic nor the finite element models of elastic deformation are very satisfactory. The
former does not yield closed-form expressions and the latter requires excessive computation
when the beams are very long and narrow and the number of elements is large. Apart
from an analytic approximation for the deflection in [6], derived from purely geometric
arguments, there are no closed-form design formulas so layouts are often chosen on an ad
hoc basis. The aim of this paper is to remedy this deficiency by developing approximations
to buckling theory that provide closed-form solutions. The solutions are valid for very
slender beams with a width-to-length ratio in the approximate range of W/L ≤ 0.001
when bending dominates over axial compression; nanoelectromechanical systems (NEMS)
actuators of this type capable of micron-scale deflections have been demonstrated by
sidewall transfer lithography [55]. Raised cosine actuators and actuators with a chevron
pre-buckle are analysed and discussed in Section 2. Additional results including alternative
approximations, intrinsic stress, the relation between deflection and power, and transverse
stiffness are considered in Section 3. Conclusions are drawn in Section 4.

2. Methods

We started by considering the raised cosine pre-buckle but followed the general
approach used for V-beam actuators in [7]. We assumed a single beam with the shape
shown in Figure 1c; the performance of the beam arrays could be estimated by scaling.
The beam had a length L and central offset H, a rectangular cross-section with an in-plane
width W and depth D, and was built-in at both ends. Its initial shape was:

y0(x) = H sin2
(πx

L

)
. (1)

Forces F and moments MA modelled the effects of the anchors and the shape y(x) of
the loaded beam could be found by solving the Euler buckling equation [56]:

EI
d2(y− y0)

dx2 = M(x). (2)

Here, M(x) = MA− Fy is the bending moment, I = W3D/12 is the second moment of
the area of the beam, and E is the Young’s modulus for the material used. An approximation
implicit in the above was the replacement of the change in the beam curvature by the
second derivative, which could clearly render the result inaccurate for a large pre-buckle or
deflection. The analysis was best carried out by substituting y = y0 + u, which yielded:

d2u
dx2 +

(
F

EI

)
u =

(
MA
EI

)
−
(

F
EI

)
y0. (3)
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Equation (3) may be solved in terms of a particular integral and a complementary
function. Applying the boundary conditions u = du

dx = 0 at x = 0 and x = L, the result was:

u(x) = H
{

k2L2

4π2 − k2L2

}
sin2

(πx
L

)
. (4)

Here, k =
√

F/EI. This result demonstrated a special quality of the raised cosine
pre-buckle: the deflected shape did not change. The midpoint deflection U = u(L/2) was:

U = H
{

k2L2

4π2 − k2L2

}
. (5)

Equation (5) implies that U would be infinite when kL = 2π, the Euler buckling condition.
Integrating the deflected beam shape allowed the change in length ∆L due to bending to be

found as ∆L = δL− δL0, where we made the standard approximation δL = 1/2
∫ L

0

(
dy
dx

)2
dx;

δL0 was the integral in the unloaded case (see, e.g., [9]). Integration gave:

∆L
L

=

(
π2H2

4L2

){
k2L2(8π2 − k2L2)
(4π2 − k2L2)

2

}
. (6)

The force F was derived from the constrained thermal expansion. Assuming an
average temperature rise ∆Tavg, the beam must satisfy a compatibility condition [7]:

F
EWD

= α∆Tavg −
∆L
L

. (7)

Here, α is the linear thermal expansion coefficient of the beam material. The three terms
in Equation (7) describe the changes in the length due to the axial compression, thermal
expansion, and bending, respectively. This equation can also be written in the form:

α∆Tavg =
∆L
L

+

(
W
L

)2( k2L2

12

)
. (8)

Equations (6) and (8) allowed ∆Tavg to be found as a function of kL. As U is also a func-
tion of kL, it could be plotted as a function of ∆Tavg. Alternatively, these coupled equations
could be solved iteratively. For example, Figure 2 shows the variation of U with ∆Tavg for
a silicon beam with the following parameters: E = 170× 109 Nm−2, α = 2.6× 10−6 K−1,
L = 1 mm, H = 5 µm, D = 5 µm, and values of W ranging from 20 µm (MEMS domain)
to 0.1 µm (NEMS). In each case, the variation was similar. When the temperature rise
∆Tavg was negative (so the beam was artificially cooled and under tension), U was negative
and tended to −H, straightening the beam. When ∆Tavg was positive (so the beam was
under compression), the deflection rose monotonically as the beam buckled. For values
of W > 1 µm, the variations differed; however, for W ≤ 1 µm, the analytic solutions all
tended to one another. Note, however, that for very large deflections, the approximation of
the curvature changes by a second derivative in Equation (2) would no longer be valid.

Similar calculations were carried out using the commercial FEA solver, COMSOL®

Multiphysics 4.4. A 2D model of a beam with a raised cosine pre-buckle and the dimensions
above was built in the x–y plane. The heat transfer module was used to apply a temperature
change and the solid mechanics module to apply boundary constraints. Structural and
thermal physics were coupled by thermal expansion in the multiphysics modelling interface.
The plane stress approximation was used to eliminate the out-of-plane components of the
stress tensor, and a stationary study was carried out using a geometrically non-linear
analysis. The number of iterations was set to 50, with the solver automatically determining
the damping factor for Newton’s method. In addition to the previous parameters, a
Poisson’s ratio of ν = 0.28 was assumed. The discrete points in Figure 2 show the results
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for the four largest beam widths. The results were in good agreement with the analytic
model for W = 20 µm and W = 10 µm but diverged for W = 5 µm and W = 1 µm; for
smaller values of W, convergence was not reached after 50 iterations.
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Figure 2. Variation of deflection with average temperature rise for a raised cosine actuator, with
E = 170× 109 Nm−2, α = 2.6× 10−6 K−1, L = 1 mm, H = 5 µm, D = 5 µm, and different values of
W in microns. Full lines show the analytic theory; points show the results from the FEA.

A further difficulty was the increase in memory and run time as the W/L decreased.
Table 1 shows the requirements for 37 temperature values using an Intel® CoreTM i7-2600
processor with a 3.4 GHz clock speed and 16 Gb RAM. The increase in the computation
resource implied that the problem would rapidly become intractable, and these problems
would worsen in 3D.

Table 1. Memory requirements and solution time for the finite element analysis models.

Beam Width (µm) Physical Memory (Gb) Virtual Memory (Gb) Run Time (s)

20 1.23 1.32 155

10 1.37 1.49 342

5 1.72 1.86 816

1 4.37 4.69 5955

Although complete, the analytic solution above was still unsatisfactory because it
required a numerical evaluation. A closed-form solution for U in terms of ∆Tavg could
allow the performance to be estimated directly from the geometric parameters. We obtained
such a solution by first comparing Equations (5) and (6). It is simple to show that:

U2 + 2HU =

(
4L2

π2

)
∆L
L

. (9)

For slender beams with W/L� 1, we neglected the second term on the right-hand
side of Equation (8), effectively neglecting the effects of axial compression. In this case,
∆L/L = α∆Tavg, and Equation (9) approximated to the quadratic:

U2 + 2HU −
4α∆TavgL2

π2 = 0. (10)

Equation (10) had two solutions. Retaining only the positive solution, the following
expression for the deflection could be obtained:

U = H


√

1 +
4α∆TavgL2

π2H2 − 1

. (11)
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Equation (11) was the desired closed-form solution. It yielded a real result even
when ∆Tavg was negative until ∆Tavg = −π2H2/4αL2. Figure 3 compares the exact (axial
stress included) and approximate (axial stress ignored) variation of the deflection with the
average temperature rise for the same parameters as Figure 2 but with only the smallest
beam width (W = 0.1 µm, for which W/L = 10−4). The agreement was excellent and the
closed-form analytic formula tracked the exact solution closely, even when the deflection
was large. Other curves are superimposed on this figure; these are discussed later.
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Figure 3. Comparison of the exact and approximate variations of deflection with the average
temperature rise for raised cosine (RC) and V-beam actuators (V), with E = 170 × 109 Nm−2,
α = 2.6× 10−6 K−1, L = 1 mm, H = 5 µm, D = 5 µm, and W = 0.1 µm. Also shown are the
predictions of [6].

We repeated the analysis for the V-beam actuator shown in Figure 1b. The beam had a
length L and tilt angle θ so the central offset was H =

(
L
2

)
tan(θ). As y0 is a linear function

of x for 0 ≤ x ≤ L/2, Equation (2) could be written as d2y
dx2 +

(
F

EI

)
y = MA

EI in this range.

The boundary conditions were y = 0 at x = 0 and dy
dx = tan(θ) at x = 0 and x = L/2. The

solution was [7]:

y(x) =
tan(θ)

k

{
sin(kx) + tan

(
kL
4

)
{1− cos(kx)}

}
. (12)

This result implied that the beam changed shape significantly as it deflected, in contrast
to the raised cosine actuator. The maximum deflection was U = (y− y0)|L/2 or:

U =
2 tan(θ)

k

{
tan
(

kL
4

)
− kL

4

}
. (13)

Integrating the deflected beam shape again allowed the change in the length ∆L due
to bending to be found. The result was [7]:

∆L
L

=
tan2(θ)

4kL

{
2G[1− cos(kL)] +

(
1− G2

)
[sin(kL)− kL]

}
. (14)

Here, G = tan
(

kL
4

)
. The compatibility equation was as before, and Equations (14) and (8)

then allowed ∆Tavg to be found as a function of kL. As Equation (13) was also a function of kL,
U could again be plotted in terms of ∆Tavg. The results are superimposed on Figure 3 for the
same parameters as before. The deflections were very similar to the variations obtained for the
raised cosine actuator, suggesting that the deflection in the V-beam actuator was dominated by
the excitation of the lowest-order buckling-mode. The results obtained using COMSOL (not
shown) again agreed well but suffered from an even worse scaling of run times with W/L.
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The use of the very slender beam approach—relating U to ∆L/L and then solving an
approximate compatibility equation—could yield again an analytic approximation. This
time, there were difficulties caused by the trigonometric functions in Equations (13) and (14).
However, these could be circumvented using power series approximations. For example,
substituting λ = kL/4 allowed Equation (13) to be written as U

L = tan(θ) f (λ), where:

f (λ) =
tan(λ)− λ

2λ
. (15)

As tan(x) = x + x3

3 + 2x5

15 . . ., we could approximate f to order λ4 as:

f4(λ) =
λ2

6
+

2λ4

30
. (16)

In a similar way, Equation (14) could be written as ∆L
L = tan2(θ)g(λ), where:

g(λ) =
2 tan(λ)[1− cos(4λ)] +

[
1− tan2(λ)

]
[sin(4λ)− 4λ]

16λ
. (17)

To simplify the above, we first noted that:

2 tan(λ)[1− cos(4λ)] +
[
1− tan2(λ)

]
sin(4λ) = 4 tan(λ). (18)

g(λ) could then be written as:

g(λ) =
tan(λ)− λ

[
1− tan2(λ)

]
4λ

. (19)

With g in this form, we obtained a power series approximation to the order λ4 as:

g4(λ) =
λ2

3
+

3λ4

15
. (20)

These simple approximations clearly had limited validity. Figure 4 compares the
variations of f , f4, g, and g4 with λ; both approximations were accurate only up to λ ≈ 0.3 π,
well below the buckling condition (when f and g both became infinite).
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Despite this, they allowed useful closed-form solutions. For example, combining
Equations (16) and (20), we obtained:

g4 ≈ 2 f4 +
12 f 2

4
5

. (21)
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Rearranging, we obtained the quadratic equation:

12 f 2
4

5
+ 2 f4 − g4 = 0. (22)

Retaining only the positive root, we obtained:

f4 =
5

12

{√
1 +

12g4

5
− 1

}
. (23)

Noting the original definitions of f and g, we then obtained the midpoint deflection
U as:

U =
5L tan(θ)

12

{√
1 +

12∆L
5L tan2(θ)

− 1

}
. (24)

Neglecting the second term in the RHS of Equation (8) as before, we then obtained:

U =
5L tan(θ)

12

{√
1 +

12α∆Tavg

5 tan2(θ)
− 1

}
. (25)

This result can, of course, be written in the alternative form:

U =
5H
6


√

1 +
3α∆TavgL2

5H2 − 1

. (26)

Equation (26) was analogous to Equation (11) for the raised cosine pre-buckle. The
predictions of this closed-form solution are superimposed on Figure 3 for the same param-
eters. Once again, there was a good agreement with the full model despite the apparent
errors in f4 and g4. We constructed higher-order expansions of both functions and found
that the expressions above gave good results despite their simplicity.

The performances of the two designs were clearly similar; however, the V-beam actua-
tor gave a slightly larger deflection for a given temperature rise. Equations (11) and (26)
could both be written in the form U = A

{√
1 + B∆Tavg − 1

}
. Consequently, the initial

sensitivity S = dU/d∆Tavg
∣∣
0 of the deflection to temperature was S = AB/2. For the two

actuator types, the sensitivities SRC and SV were:

SRC =
2αL2

π2H
SV =

αL2

4H
. (27)

Thus, the sensitivity was always proportional to L2 and inversely proportional to
H. For a common geometry, SV/SRC = π2/8, so the V-beam design was slightly more
sensitive.

3. Results

In this section, we discuss several alternative results, power scaling laws and the
related question of transverse stiffness. We started by considering the well-known formula
for the deflection of a V-beam actuator derived in [6] by considering that the two beam
sections remained straight and simply increased in length by an amount ∆Lh due to thermal
expansion. Using a first-order approximation we obtained:

U =
√

L2
h + 2Lh∆Lh − L2

h cos(θ)− Lh sin(θ). (28)
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Here, Lh = L/2. Rearranging and substituting H for Lh sin(θ) and α∆Tavg for ∆Lh/Lh
we obtained:

U = H


√

1 +
α∆TavgL2

2H2 − 1

. (29)

Equation (28) may also be written in the form U = A
{√

1+ B∆Tavg − 1
}

. Its predictions
are also shown superimposed on Figure 3. It was clearly less accurate than Equation (26);
however, the prediction was remarkable given that bending was entirely ignored.

We then considered alternative approximations for a raised cosine actuator that could
be viable for less slender beams when the axial compression term in Equation (8) could not
be neglected. Retaining this term, it was simple to show that Equation (10) becomes:

U2 + 2HU −
(

4L2

π2

)
α∆Tavg = − 4W3U

3U(H + U)
. (30)

Thus, a more exact relation between U and ∆Tavg was a cubic equation. Clearly,
Equation (30) had a numerical solution. However, in the spirit of the present MS, where
the focus is on solutions that yielded an insight, we derived an analytic approximation.
We assumed that U = U0 + U1, where U0 was the solution to Equation (10) and U1 was an
additional perturbation. Substituting and neglecting the higher-order terms, it was simple
to obtain:

U1 = − 2W2U0

3(H + U0)
2 . (31)

Thus, the effect of axial compression was to reduce the deflection by an amount that
depended on W and (for small deflections) was linearly proportional to U0. Consequently,
the initial slope of the deflection characteristic must reduce for wider beams. To illustrate
this, Figure 5 compares the exact solution, the first approximation (11), and the second
approximation (31). The parameters were as before, but the beam width W was increased
to 5 µm (so that W/L = 5× 10−3). This width was sufficiently large that the first approx-
imation was no longer valid. However, the second approximation was a good match to
the exact solution except when U0 tended to −H. This behaviour was to be expected from
Equation (31); it is unimportant for practical applications when positive temperature rises
are the norm.
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Figure 5. Comparison of the exact and two approximate variations of deflection with the average
temperature rise for a raised cosine actuator with E = 170 × 109 Nm−2, α = 2.6 × 10−6 K−1,
L = 1 mm, H = 5 µm, D = 5 µm, and W = 5 µm.

We noted that the addition of a tensile stress σ (which could arise during processing)
inserted an axial strain term −σ/E into Equation (8). The intrinsic stress could, therefore,
be included by replacing ∆Tavg with ∆Tavg − σ/E in the preceding expressions. The effect
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of stress was, therefore, to shift the deflection characteristics to the right. If measurements
were made from the rest, the effect was to reduce the apparent deflection.

Finally, we considered the well-known relation between temperature and power
(see, e.g., [9,10]). If the beam was heated by a power P and cooled only by thermal
conduction to the anchors, the steady-state temperature rise ∆T(x) was the solution to the
heat conduction equation:

kthWD
d2∆T
dx2 +

P
L
= 0. (32)

Here, kth was the thermal conductivity of the beam material. The solution subject to
the boundary conditions ∆T = 0 at x = 0 and x = L was:

∆T(x) = ∆Tmax
4
(
xL− x2)

L2 . (33)

Here, ∆Tmax was the temperature at x = L/2. The average temperature could then be
found by the integration of the temperature profile along the beam length as:

∆Tavg =
PL

12kthWD
. (34)

The previous expressions for deflection could be converted into variations with power
by making this substitution; for an N-beam array, P was simply divided by N. Similarly,
for a device that was also cooled by gas conduction to the substrate, P was multiplied by
an efficiency term, η.

We then considered the transverse stiffness of a buckling actuator and showed how
the slender beam approximation could be used to evaluate this quantity for the raised
cosine type. Following previous authors [7], we assumed that the stiffness was found from
the transverse force FT needed to return the midpoint deflection to zero. Unfortunately, the
application of FT altered the axial force to a new value, F′, and altered the end moment to
M′A. At a certain point, the rising transverse force will lead to snap-through [9], so the
analysis was carried out with caution. To find the deflection u′(x), we solved:

d2u′

dx2 +

(
F′

EI

)
u′ =

M′A
EI
−
(

F′

EI

)
y0 +

(
FT

2EI

)
x 0 ≤ x ≤ L

2

d2u′

dx2 +

(
F′

EI

)
u′ =

M′A
EI
−
(

F′

EI

)
y0 −

(
FT

2EI

)
(L− x) L/2 ≤ x ≤ L. (35)

The variation of u′ was symmetric about the midpoint. For 0 ≤ x ≤ L/2, it could be
found by standard methods as:

u′(x) = C1

{
k′x− sin

(
k′x
)
+ tan

(
k′L
4

)[
cos(k′x

)
− 1]

}
+ C0 sin2

(πx
L

)
. (36)

Here:

C0 = H
{

k′2L2

4π2 − k′2L2

}
C1 =

FT

2k′3EI
k′ =

√
F′/EI. (37)

The midpoint deflection U′ = u′(L/2) was then:

U′ = C1

{
k′L
2
− 2 tan

(
k′L
4

)}
+ C0. (38)
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Now, to return U′ to zero, we required a transverse force such that:

C1 =
C0

2 tan
(

k′L
4

)
− k′L

2

. (39)

As k′ was unknown, a further condition was required to determine FT . This could
be obtained from the compatibility. As the temperature was unchanged by the transverse

force, we had ∆L′/L = ∆L/L, where ∆L′/L = 1/L
∫ L/2

0

(
dy′
dx

)2
dx. To proceed, we started

with the deflected shape:

dy′

dx
= C1k′

{
1− cos

(
k′x
)
− tan

(
k′L
4

)
sin
(
k′x
)}

+

(
C2π

L

)
sin
(

2πx
L

)
. (40)

Here, C2 = H
{

4π2

4π2−k′2L2

}
. Consequently:

dy′

dx
= C1k′

{
1− cos

(
k′x
)
− tan

(
k′L
4

)
sin
(
k′x
)}

+

(
C2π

L

)
sin
(

2πx
L

)
. (41)

Using the above, the integral determining ∆L′/L could be evaluated, numerically or
analytically. However, the expressions obtained in the latter case were non-linear in k′. In
each case, the values of FT and F′ were, therefore, generally found by iteration to satisfy
the conditions above for a given F. Figure 6 shows a typical result, where the initial shape
y0(x), the actuated shape y(x), and the centrally loaded shape y′(x) were plotted together
for kL = π. The overall deflection increased as the actuator was driven, retaining a raised
cosine shape; the midpoint deflection correctly returned to zero as the actuator was loaded.
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Figure 6. Initial, deflected, and centrally loaded beam shapes y0, y, and y′ of a raised cosine actuator
for kL/π = 1.

A simple analytic solution for the transverse stiffness could be obtained by assuming
that k′L was small and by making power series approximations to Equation (40). This
process yielded:

dy′

dx
≈ C1k′3

{
x2

2
− Lx

4

}
+

(
C2π

L

)
sin
(

2πx
L

)
. (42)

Squaring and integrating, we then obtained:

∆L′/L ≈ −C1C2k′3L
2π2 +

C2
2π2

4L2 . (43)
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At a similar level of approximation, we had:

C0 =
Hk′2L2

4π2 C1 =
24H

π2k′L

C2 = H

{
1 +

k′2L2

4π2

}
∆L
L

=

{
1 +

k2L2

2π2

}(
π2H2

4L2

)
. (44)

A substitution into the compatibility condition then yielded an approximation for
k′ as:

k′2

k2 =
1

1− 96
π4

≈ 69. (45)

Thus, the action of forcing the actuator back to its starting point increased k′ signifi-
cantly from the original value k due to electrothermal actuation alone. To find the transverse
stiffness, we noted that FT and U could be approximated as:

FT ≈
48k′2EIH

π2L
U ≈ Hk2L2

4π2 . (46)

Consequently, the transverse stiffness kT = FT/U could be extracted as:

kT =

(
k′2

k2

)(
192EI

L3

)
. (47)

The term kT0 = 192EI/L3 was then the transverse stiffness of a straight, centrally
loaded built-in beam. Shaping the beam and adding restraints at either end raised the
stiffness by a factor of 69, as shown above. More generally, the transverse stiffness could
always be written in the form kT = κkT0, where κ was a coefficient that depended on the
initial value of k. Figure 7 shows the numerically calculated variation of κ with kL. This fell
monotonically from an initial value of 69, implying that the actuator became weaker and
weaker as it deflected.
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4. Conclusions

We presented analytic approximations to the results of the Euler theory that allowed
the response of buckling-mode electrothermal actuators to be obtained in a closed-form,
avoiding the need for an iterative solution of coupled analytic equations or a lengthy
finite element analysis. The approximations were valid for actuators with very slender
beams (such as NEMS designs) when the effects of bending dominated over those of axial
compression. We compared the expressions with numerical solutions and showed them to
be extremely accurate. We also presented higher-order corrections for less slender beams
as found in MEMS actuators.
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The analysis focused on two specific actuator layouts based on V-beam and raised
cosine beam shapes. Each had the same set of material parameters (E, α, and kth) and
geometric design parameters (W, L, D, and H). The careful choice of the latter allowed
well-known trade-offs between drive power, frequency response, and mechanical stiffness
but the closed form Equations (11) and (26) and the results in Figure 3 showed that there
was little to choose between the two layouts for a fixed set of parameters. However,
the approximation used (neglect of axial stress) may open the door to analytic design
optimisation in more general cases; for example, when the beam width or other properties
vary locally.
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