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Abstract

Deep learning algorithms have long been implemented in financial industry for pricing, return

prediction and so on. However, some complicated models may lead to expensive computational

cost and time cost. In this thesis, we investigate two reservoir computing(RC) methods: echo state

network(ESN) and randomized signature, which have similar structures as recurrent neural network

but can be trained faster. Both models are implemented to forecast forward return of middle

rate of USDMXN over the future 50 ticks. For the convenience of comparison, a simple linear

regression serves as a baseline. Results show that even features are not informative enough, both

RC algorithms can have some predictiveability. When informative features are added, significant

improvement of performance exists in all the models and RC methods can outperform benchmark

model. Among di↵erent RC methods, ESN using PCA and elastic net achieves highest average

R
2 value while randomized signature might slightly underperform ESN but has more e�cient

initialization process. In all, we can conclude that RC methods have the capability in forward rate

forecasting and is superior than linear regression under the same condition.
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Introduction

Risen from initial needs of international business, foreign exchange(forex) trade gradually expand

its aims from business needs to making financial gains. In exchange market, people use available

arbitraging and hedging opportunities to make profits. Nowadays, foreign exchange market or

forex market is known as the largest financial market [1] that trades 24 hours in each working day

Over-the-Counter (OTC). Based on data collected, in April 2022, the average turnover of forex

market is 7.2 trillion USD in daily basis [2]. Unlike other markets, forex market distinguishes itself

as one of the most complex financial markets by its high volatility, nonlinearity, and irregularity

[3]. Those characteristics also make it a good place where more profitable opportunities exist [4].

Besides, the forex market also benefits from several advantages such as free of insider trading, mid-

dlemen, and commissions, as well as having low transaction costs, high liquidity, low margins/high

leverage, limited regulation, and online trading opportunities [5]. However, those advantages and

characteristics not only bring chances of earning, but also make the best time of trading hard to

be captured. In this scenario, being able to predict the future rate of foreign exchange rapidly and

precisely can bring huge benefits.

One method to capture profitable opportunities is predicting the market so as to price and trade

based on the prediction. Machine learning has long being used in financial market predictions.

Specifically, in the past few years, researchers pay more and more attention to high frequency

financial market predictions. In aspect of forex market, Zhelev and Avresky [6] use Long-short

Term Memory (LSTM) to predict the future forex rate, which provides a basis of implementing

deep learning method to forecast forex market. Ahmed & Hassan et al. [4] combined traditional

LSTM model with forex loss function which greatly reduces the prediction loss. Abedin, Moham-

mad Zoynul, et al. [7] add Bagging Ridge (BR) algorithm to LSTM model to predict the exchange

rate during COVID-19 pandemic. Galeshchuk, S. & Mukherjee, S. [8] use macroeconomic data

and stacked LSTM to predict daily closing rates of dominant currency pairs.

All the previous researches show strong preference on LSTM model and prove its e�ciency in

forex market forecasting. However, in order to ensure the performance of model, many neural net-

works, including LSTM, contain numerous neurons. Also, as seen from the previous work, multipl

layers of networks may be needed to improve model’s performance. Complicated model structures

can lead to large amounts of computation thus slow down the speed of training and predicting,

which may miss the best time to trade.

To address the potential problem, reservoir computing(RC) algorithms are considered. A reservoir

computing algorithm can be seen as a special version of RNN, it fixes the weight matrices between

input layers and reservoir as well as the ones between neurons in reservoir. The only matrix needed

to be trained is the weight matrix between reservoir and readout layer, which can be obtained via
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fast training method like linear regression. The fixed weight matrices and simple training model

for the weight matrix between reservoir and readout layer greatly lower computational cost and

training time of RC method. Moreover, the echo state property guarantees RC methods’ ability

of processing information. Thus, the RC models are viewed as promising choices of instantaneous

prediction of high frequency time series data.

The motivation of this thesis is to test the predictability of RC methods in forex market. In

this thesis, we test single and multiple variable RC algorithms and compare them with benchmark

linear model. The two RC methods we use are echo state networks(ESNs) and randomized signa-

ture.

Results show that for single variable model, RC methods utilizing shrinkage regression and di-

mensional reduction can still achieve positive average R
2 even if the feature is of low information

density. When more informative features are added, all the models achieve better results and all

the multiple variable RC methods show significant ability in forex predicting.

This thesis is organized as follows. The first chapter reviews related work. The second chap-

ter introduces methodologies used in experiments. Modelling details and empirical results are

shown in the third chapter. Possible improvements are discussed in chapter four and conclusions

are given in the last chapter.
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Chapter 1

Literature review

Order book data has long being used to forecast future prices of di↵erent equities. The work of

Cao, C. et al. [9] indicates that around 22% of future returns of stock market can be explained

by historical public order book information. Chordia, T. et al. [10] discover that imbalance of

order book and liquidity of asset will influence returns of market. The researches provide reliable

foundation of utilizing order book data to predict returns of financial market.

Regarding using linear regression to forecast market return, Chantarakasemchit, O. et al. [11]

use features processed via simple moving average (SMA) and linear regression to predict EU-

RUSD. Babu, AS. and Reddy, SK. et al. [12] use ARIMA to predct exchange rate of multiple

currencies and find that ARIMA outperforms neural network in India market.

Consider recurrent neural network models. The first known learning recurrent neural network(RNN)

came to the world in 1972 when Shun-Ichi Amari made the Lenz-Ising recurrent architecture be

able to convert its connection weight matrices so as to find the relationship between its input

and output [13]. However, to obtain a more reliable RNN, the weights between states should get

updated, which is solved by backpropagation methods like backpropagation-through-time (BPTT)

[14].

In aspect of applying RNN in forex market, Ni, L. et al. [15] use C-RNN to predict the forex

price, which achieves high accuracy. Zeng, K. et al. [16] combine attention mechanism with

ARIMA and RNN and gain directional accuracy over 70%. Regrettably, even though RNN has

great ability in time series predicting, its short-comes are also obvious. The complicated recurrent

structures of RNN make its training di�cult and time consuming, which may cause missing of op-

portunities considering the nature of high frequency market. Thus, a faster yet accurate algorithm

is required.

Reservoir computing (RC), a class of methods that share similar ideas with RNN is then con-

sidered. RC was established by Jaeger, H. et al. [17] and Mass, W. et al. [18]. Their researches

introduce the concept of echo state network from the engineering side and liquid state machines

from the aspect of biology respectively, which are viewed as foundations of RC methods. In 2007,

Verstraeten, D. et al. [19] suggest the class of methods to be named as reservoir computing and

make it an independent researching field.

Nowadays, RC methods are widely used in a variety of industries. In financial field, the appli-
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cations of RC mainly focus on its predictive power. Specifically, Maciel, L. et al. [20] use echo

state network to predict the exchange rate. Lin, X. et al. [21] predict S&P 500 index by ESN.

Kim, T. & King BR. [22] implement adaptive decomposition deep ESN model to both stationary

and non-stationary time series financial data. These works all demonstrate the superior forecasting

capabilities of ESN.

Except for ESN, signature transform and randomized signature transform are also of powerful

abilities in time series predicting. Signature transform is a process that transforms a path to its

signature [23], which originates from rough path theory [24] [25], while randomized signature can

be viewed as a linear projection of signatures of given features [26]. In regards of applications,

Compagnoni, E.M. et al. [27] apply randomized signature for function solving and signal generat-

ing, results show that randomized signature outperforms ESN, NCDE, LSTM, and NNARX.
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Chapter 2

Methodology

In this thesis, we implement a benchmark model(OLS) and several comparative reservoir computing

models on order book and trade book data. This chapter presents fundamental definitions of related

data and underlying principals of used models.

2.1 Order Book

This section will give some brief introductions to financial terminologies used in later sections.

2.1.1 Ask & Bid Rates

Similar to any other financial markets, in foreign exchange market, buyers, sellers and brokers will

o↵er, ask and match prices for currency pairs. Bid rate is the exchange rate that a buyer can buy

a currency pair. While ask rate is the exchange rate that a seller can sell a currency pair. For one

specific currency pair, there are several di↵erent levels of bid and ask rates at the same time, here we

focus on the top 10 levels. The best(respectively, worst) bid rate is labelled as level 0(respectively,

9), indicating the highest(respectively, lowest) prices that buyers o↵er to buy the currency pair.

The best(respectively, worst) ask rate is also labelled as level 0(respectively, 9), which stands for

the lowest(respectively, highest) exchange rate that the currency pair can be sold. Normally, at

each tick time, a currency pair’s ask rates are higher than its bid rates. The di↵erence between the

best ask and bid rate is called the bid-ask spread, writes as spreadi = aski � bidi, i = 0, 1, ..., 9.

A graph version of bid and ask prices is shown in Figure 2.1

2.1.2 Middle Rate & Alpha

Since there are bid and ask rates, it is natural to think that there is a ’fair’ exchange rate of

currency pairs. This ’ground truth’ rate is called middle rate, which is computed as the average

of the best bid and ask rates, writes as:

Middle Rate =
Bid Rate0 +Ask Rate0

2

Simple forward return of middle price is defined as alpha, writes as:

Alphat = Middle Ratet+k �Middle Ratet

9



Where t is the current tick time and k 2 N+ is chosen manually.

Figure 2.1: Limit order book structure

2.1.3 Ask & Bid Quantities & Counts

In an order book, recorded data are orders that are only o↵ered but not surely executed, order

book will show the amount of all the intended bid and ask orders, which refers to quantities of

bid and ask o↵ers. Also, order book displays how many clients made orders on the given currency

pair, which can be recorded as count of ask or bid orders.

2.2 Simple Linear Regression

Linear regression is one of the most commonly used machine learning algorithms. It raises from

an assumption that suggests linear dependent relation exists between dependent variables and

independent variables. The regression is then used to capture the relation. In this section, we will

introduce the structure and mechanism of linear regression in details.

2.2.1 Model Structure

Assume an input data series X = (x1, x2, ..., xn)T , xi 2 Rd
, i = 1, 2, ..., n, and an output data

series Y = (y1, y2, ..., yn)T , yi 2 R, i = 1, 2, ..., n, which are defined as independent variables

and dependent variables respectively. To investigate the linear relation between independent and

dependent variables, we setup a linear regression model as (2.2.1)

Y = XW + ✏ (2.2.1)

Where W 2 Rd is a coe�cient matrix(can include constant term) and ✏ 2 Rn is the error term

which is usually a sequence of identical independent distributed standard normal random variables.

Also, to make sure there is no overlap information between X and ✏, the two terms are usually

considered as independent, if they are dependent, then the model will be invalid. Under all these
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assumptions, the goal of regression is to find an optimal Ŵ that can represent the relations between

X and Y as much as possible. There are multiple ways to achieve the goal, here we introduce a

basic but commonly used one, ordinary least square regression.

2.2.2 Coe�cients Estimation

As mentioned before, the purpose of linear regression is finding the optimal W . A straightforward

method to measure the quality of fitting is to examine the distance between the estimated results

and ground truth data, show as Figure 2.2.3. The closer the distance, the better the estimations.

Thus, the problem of obtaining the optimal coe�cients equals to finding a matrix that can lead to

the shortest overall distance between ground truth and estimated data. The sum of distances can

be expressed as square error, written as (2.2.2):

SE = (Y � Ŷ )T (Y � Ŷ ) (2.2.2)

Figure 2.2: Mechanism of simple linear regression

To obtain the optimal Ŵ = argmin(SE), it is nature to di↵erentiate (2.2.2) on W , which writes

(2.2.3)
@SE

@W
= 2XT (Y �XŴ ) (2.2.3)

Let (2.2.3) equals 0, the optimal �̂ is then calculated as:

Ŵ = (XT
X)�1

X
T
Y (2.2.4)

SometimesXT
X might not be invertable, which leads to invalid of (2.2.4). In this situation, adding

some penalties will work, the alternative models will be discussed in details in later sections.

11



2.2.3 Results Prediction

After obtaining optimal coe�cients, it is nature to implement trained model for prediction. The

way of predicting can be expressed as:

Ŷtest = XtestŴ + ✏̂ (2.2.5)

Where Xtest is the matrix of testing independent variables and Ŷtest is the vector of estimated

dependent variables. After predicting, we can use Ŷtest(if available) to evaluate the performance

of model, specific methods will be introduced in Section 2.4.1.

2.2.4 Variance Inflation Factor

When implementing multiple variable simple linear regression model. One vital step is to make

sure there is no multicollinearity between features. If multicollinearity exists, the regression will

have high training R
2 but no significant coe�cients exists.

Here we use variance inflation factor(VIF) to test if multicollinearity exists. First, assume a

multiple variable simple linear regression:

y = �0 + �1x1 + �2x2 + �3x3 + ...+ �kxk + ✏

Where xi, i = 1, 2, ..., k is the ith feature. The aim is to calculate VIF to test the multicollinearity

between features. The steps of calculating are as follow:

• Select an xi, i  k, conduct simple linear regression on it over the rest features:

xi = �0 + �1x1 + �2x2 + ...+ �i�1xi�1 + �i+1xi+1 + ...+ �kxk + ✏

• Get R2
i of this regression, compute V IFi via:

V IFi =
1

1�R2
i

Where R
2
i i = 1, 2, ..., k is the multi-correlation coe�cient between xi and the other features.

After VIF is calculated, it is time to analysis the results. Two important values of VIF anal-

ysis are 1 and 10, if VIF of a feature is close to 1, the feature faces less possibility of having

multicollinearity with others. If a feature’s VIF is smaller than 10 but larger than 1, the feature

is then thought to have weak multicollinearity with the rest features. If VIF of a feature is larger

than 10, then it has strong multicollinearity with other features.

2.3 Reservoir Computing

In this section we will show the principals of reservoir computing(RC) methods and some algorithms

related to RC.
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2.3.1 Recurrent Neural Network

RC method can be viewed as a special form of recurrent neural network(RNN). Thus, here we first

introduce the structure of RNN to better explain RC methods.

General Structure

RNN is a neural network with recurrent states. There are multiple forms of it, including using

single variable input to obtain multiple variable output(one-to-many), using multiple variable in-

put to obtain single variable output (many-to-one), and using single variable input to get single

variable output(one-to-one). Di↵erent models have di↵erent application scenarios. Here we focus

on how an one-to-one model is used for time series prediction.

Assume a sequence of input data X 2 RT⇥m, where T is the number of time steps, m is the amount

of features. The sequence can be expressed as X = {x1, x2, ..., xT }T , xi 2 Rm
, i = 1, 2, ..., T . In

an one-to-one model, each time an xi is inputted, a ŷi will be returned. A more understandable

version of the process is presented as Figure 2.3. Where xt is the input at time t, Win,t 2 Rk⇥m is

the weight matrix between input layer and hidden layer at time t, ht 2 Rk is the state calculated

at time t, Wh,t 2 Rk⇥k is the weight matrix connect the t � 1th hidden state and the t
th hidden

state, yt is the output at time t and Wout,t 2 R1⇥k is the weight matrix between hidden layer

and output layer. Figure 2.3 shows that at each time step, the network will pass the activation

obtained at current time to the next state recurrently, which explains its name.

Figure 2.3: Structure of RNN

Inner structure of each hidden state within RNN is shown as 2.4, where g is an activation function,

commonly chosen as tanh(x) = ex�e�x

ex+e�x , and f is an output activation function, which is normally

chosen as a softmax function, defined as f(xi) = exiP
j exj . The detailed math expression of each

states in RNN can be expressed as follow:

ut := Win,txt +Wh,tht�1 + bh

ht = g(ut)

vt := Wout,tht + bo

yt = f(vt)

Where bo, bh are error terms randomly generated via standard normal distribution.
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Figure 2.4: Inner structure of RNN’s hidden state

Back Propagation

In RNN, the update of weight matrices is based on back propagation method. Here we will explain

the process with loss function set as L = 1
2

PT
t=1 ||yt � dt||2, where dt is the ground truth value

at time t and yt is the prediction of target data forecast by RNN. The ultimate goal of training

an RNN model is to minimize the loss function, which can be achieved by updating the weight

matrices via gradient descent. The process writes as Wnew = W � �
@L
@W where � is the learning

rate and @L
@W is the gradient.

In order to calculate the gradient, two error terms are defined: �yt (j) = � @L
@vt(j)

and �
h
t (j) = � @L

@ut(j)
.

Applying chain rule to the error terms, they can then be expanded as:

�
h
t (j) = �(

X

i

@L

@yt(i)

@yt(i)

@vt(i)

@vt(i)

@ht(j)
+

X

i

@L

@ht+1(i)

@ht+1(i)

@ut+1

@ut+1(i)

@ht(j)
)
ht(j)

@ut(j)

= (
X

i

�
y
t (i)Wout,t(j, i) +

X

i

�
h
t+1(i)Wh,t(j, i))g

0
(ut(j))

�
y
t (j) = � @L

@yt(j)

@yt(j)

@vt(j)

= (dt(j)� yt(j))f
0
(vt(j))

Where j = 1, 2, ...,m, t = 1, 2, ..., t � 1, and Wout,t(j, i) represents the weight matrix between j
th

hidden state and i
th output cell. The error terms can be rewrote into vector form as:

�
h
t = (WT

out�
y
t +W

T
h �

h
t+1)

T · g
0
(ut)

�
y
t = (dt � yt) · f

0
(vt)

Here · indicates element wise multiplication. Based on the error terms, updated weight matrices

can then be expressed as:

W
new
out = Wout + �

TX

t=1

�
y
t h

T
t

W
new
in = Win + �

TX

t=1

�
h
t x

T
t

W
new
h = Wh + �

TX

t=1

�
h
t h

T
t�1
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By repeating the update process till loss is within a determined expected range, the training process

can be completed.

2.3.2 Echo State Network

Echo state network(ESN) can be viewed as a simplified version of one-to-one RNN, it commonly

contains an input layer, a reservoir consisted of some sparsely connected neurons [28], and an

output layer. Its whole structure is displayed as Figure 2.5, where the weight matrix between

input layer and hidden layer Win, the one between neurons Wres, and the matrix directing from

output layer to reservoir Wback are fixed manually once it is initialized. The only exempt is the

output weight matrix Wout between reservoir and output layer, which is trained by fitting a linear

regression.

Figure 2.5: Overall structure of a RC method with feedback mechanism

Assume the input of an ESN as x 2 RD⇥T , where D indicates the dimension of features, T denotes

the total time steps of input series, let state matrix be written as s 2 RN⇥T , N is the number of

neurons in the reservoir, and define y 2 RM⇥T as an M dimensional output. At each time step,

the update function can be defined as (2.3.1)

st = (1� ↵)⇥ f(Winxt +Wresst�1 +Wbackyt�1 + ✏) + ↵⇥ st�1 (2.3.1)

yt = Wout[st;xt]

Here ↵ is called leaking decay rate, which decides how much information the current state will

take over from the previous state, [st;xt] 2 R(N+D)⇥1 is a vector concatenated by hidden state

and input data at time t, f is an activation function selected manually(commonly chosen as tanh),

✏t is an extra error term added to model at time t, and the weight matrices are: Win 2 RN⇥D,

Wres 2 RN⇥N , Wout 2 RM⇥(N+D), and Wback 2 RN⇥M . At time t = 1, 2, ..., T , we can have

xt 2 RD⇥1, st 2 RN⇥1, and yt 2 RM⇥1.

Among all the parameters, only the weight matrix directs from reservoir to output layer requires
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training. Common training methods include simple linear regression, lasso regression and other

fast training regression methods. The detailed algorithms will be discussed in Section 2.3.5. The

rest parameters are initialized in specified ways, here are some rules of generating them.

• Elements of Win are commonly generated by a uniform distribution ranging from -a to a,

a 2 [0, 1]

• Spectral radius: max(�(W )), the largest eigenvalue of W and adjust parameter Rho: ⇢(Wres)

are parameters used to help generate Wres. In accordance with echo state property, value of

spectral radius should fall within [0, 1] to ensure the robustness of ESN

• To generate Wres, the first step is generating a sparse, uniformly distributed random matrix

W . The adjust W by alpha and spectral radius to produce Wres. The process writes:

Wres = ⇢(Wres)
W

max(�(W ))

Figure 2.6: Recurrent structure of a RC with feedback mechanism

After initialization, training process starts and Wout will be calculated. Testing or forecasting

results can then be achieved by fitting testing input dataset to the trained model, the results can

be expressed as (2.3.2).

ŝt = (1� ↵)⇥ f(Winxt +Wresst�1 +Wbackŷt�1 + ✏) + ↵⇥ st�1

ŷt = Wout[ŝt;xt] (2.3.2)

Where xt is testing input, ŝt is estimated state at time t, and ŷt is the predicted target data at

time t.

2.3.3 Echo State Property

To obtain a well-functioned and stable ESN model, applying restrictions on initialization matrices

Wres and Win is essential. The matrices are obtained via satisfying some restrictions, which can

be called as echo state property. The property can be described as: no matter what is the initial

state of the reservoir in ESN, the final output of model should always be similar, which can be

expressed by mathematics formula writes as:

||F̂ (sk, Xn)� F̂ (esk, Xn)|| ! 0 when k ! 1
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Where F̂ can be seen as a nonlinear map of input(reservoir in ESN here), Xn = (x1, x2, ..., xn) is

the input and sk, esk are di↵erent states. The formula indicates that influence of states will fade

away in an e�cient ESN model.

To ensure that the reservoir of an integrator leaky ESN satisfies ESP, the su�cient condition

of writes as: ⇢(W ) < 1 algebraically, here ⇢ is the spectral radius of W , W is constructed as:

W = (1 � ↵) ⇥ Wres + ↵I, I is an identity matrix [17]. The proof of above conditions is analo-

gous to proofing ⇢(Wres) < 1 is the su�cient condition of a standard ESN. Thus, proof of basic

ESN’s su�cient condition will be presented and the proof of integrator leaky ESN can be obtained

similarly.

||F̂ (st, Xn)� F̂ (est, Xn)|| = d(st, est)

= d(f(Winxt +Wresst�1), f(Winxt +Wresest�1))

 d(Winxt +Wresst�1,Winxt +Wresest�1)

= d(Wresst�1,Wresest�1)

= ||Wres(st�1 � est�1)||

= ||Wres||d(st�1, est�1)

 ⇢(Wres)d(st�1, est�1)

= ⇢(Wres)||F̂ (st�1, Xn)� F̂ (est�1, Xn)||

Where d(·, ·) means the distance between two vectors. Thus, when ⇢(Wres) < 1 is satisfied,

convergence of di↵erent states is obviously achieved.

2.3.4 Randomized Signature in RC

Predicting high frequency time series data can be analogized as solving a stochastic di↵erential

equation that maps an known input series called control to an known output value called solution

trajectory by a unknown smooth function. The equation can be solved(the smooth function can be

found) using RC methods, one applicable RC method is signature transform, also called signature.

In this section, we will showcase the principals of signature and introduce a modified version of it:

randomized signature.

Path

To understand signature, comprehending the definition of path is a must. Here we discuss paths

in Educlidean space.

Assume a path X as a continuous mapping from an interval [a, b] to Rd [29], denotes as X :

[a, b] 7! Rd
, Xt = {X1

t , X
2
t , ..., X

d
t }, where X

i
, i = 1, 2, ..., d is a real-valued path [30].

Signature

Over a time period [a, b], signature of X is defined as:

Sa,b(X) = (1, S(X)1a,b, S(X)2a,b, ..., S(X)da,b, S(X)1,1a,b, S(X)1,2a,b, ...)
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The signature is an infinite sequence with each element calculated by path integral:

S
I
a,b(X) =

Z

a<t1<t2<...<tk<b
dX

i1
t1 dX

i2
t2 ...dX

ik
tk

Where I = (i1, i2, ..., ik), with ip 2 {1, 2, ..., d}, p = 1, 2, ..., k.

Truncated Signature

Truncated signature is without doubt, a truncated version of signature, making it a finite sequence.

A p order truncated signature of X writes as (2.3.3):

S
p
a,b(X) = (1, S(X)1a,b, S(X)2a,b, ..., S(X)pa,b) (2.3.3)

However, (2.3.3) shows that the cost of computing truncated signature as a reservoir might be very

expensive due to high complexity. One possible solution to the problem is randomized signature,

which will be introduced in the next section.

Randomized Signature

Randomized signature can be viewed as a random projection of truncated signature mapped by a

linear operator [26]. A mathematical definition of randomized signature used as reservoir can be

written as (2.3.4) [27]:

8
<

:
s0 = 0

st = ↵⇥ st�1 + f(A1st�1 + ✏1) +
Pd

i=1 f(A
i
2st�1 + ✏

i
2)x

i
t

(2.3.4)

In (2.3.4), t = 1, 2, ..., T . A1 2 Rk⇥k and A
i
2 2 Rk⇥k

, i = 1, 2, ..., d are independent sparse

matrices generated from standard normal distribution. ✏1 2 Rk and ✏
i
2 2 Rk

, i = 1, 2, ..., d, where

d is dimension of features, are independent random normal distributed error terms. x
i
t is the i

th

element of xt, st is the randomized signature of xt, and f is an activation function set as tanh.

Randomized signature st is viewed as the state at time t while implementing this recursion as a

reservoir.

2.3.5 Regression Methods

In this section, we will showcase some regression methods that can be applied to the training process

of RC. Here X is defined as (x1, x2, ..., xn)T , xi 2 Rd
, i = 1, 2, ..., n, and Y = (y1, y2, ..., yn)T , yi 2

R, i = 1, 2, ..., n.

Ridge Regression

The most commonly used regression method in ESN is simple linear regression. However, as shown

in (2.2.4), the optimal Ŵ of (2.2.1) only holds when X
T
X is a full trace matrix. Unfortunately, the

presumption is not always satisfied since sometimes independent variables are highly correlated,

which can invalid the simple linear regression. In order to ensure the e�ciency of regression,

some restrictions should be applied to simple linear regression to transfer X
T
X to X

T
X + �I.

One algorithm developed from the idea is ridge regression. Ridge regression works by adding an
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l2� norm term to a simple linear regression, which writes as:

Y = W
T
X + ✏

W
T
W  r

Where r is a threshold of the coe�cients. The corresponding loss function of ridge regression is:

J(W ) =
1

2
(Y �XW )T (Y �XW ) + �W

T
W

Here � 2 R+ is the penalty coe�cient. By di↵erentiating the loss function, the optimal coe�cient

matrix Ŵ = (XT
X+�I)�1

X
T
Y can be obtained. Ŵ shows that the larger the �, the more severer

the penalty, the more compressed the estimated coe�cients. When � = 0, the regression is equal

to OLS regression.

Lasso Regression

Another method used to handle multicollinearity is lasso regression. Similar to ridge regression,

lasso regression applies an l1 � norm regularization to OLS regression. The definition and loss

function of lasso regression write as:

8
<

:
Y = W

T
X + ✏

||W ||1  r

J(W ) =
1

2
(Y �XW )T (Y �XW ) + �||W ||1

Where ||W ||1 =
P

i wi, represents the sum of values calculated by row, � is the penalty coe�cient

and r is the threshold of restriction. Optimal Ŵ is calculated via coordinate descent. Empirical

results show that when the penalization is harsh enough, lasso regression can discard(compress

the coe�cients of corresponding features to 0) some features to eliminate the influence of multi-

collinearity.

However, in some scenarios, lasso regression has several disadvantages:

• When n ⇡ d, lasso regression can not choose features e↵ectively

• When input features have grouping e↵ect, lasso regression can only pick one feature among

other similar ones, causing the waste of information [31]

• If n > d and multicollinearity exists, lasso regression might be dominated by ridge regression

[32]

To address these problems, another sparse regression method is considered.

Elastic Net Regression

Aiming at overcoming the weaknesses raised from lasso regression, a regression called elastic net

regression which combines the sparsity of lasso regression and the coe�cient compress ability of

ridge regression is defined. Elastic net comes form naive elastic net, whose loss function writes as:

J(W ) =
1

2
(Y �XW )T (Y �XW ) + �1||W ||1 + �2||W ||22
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Here �1, �2 stand for the penalty factors of l1 � norm and l2 � norm respectively, ||W ||1 is the

l1� norm defined before, while ||W ||22 = W
T
W is an l2� norm term.

Far from expectation, empirical experiments show that naive elastic net does not outperform ridge

regression nor lasso regression [31]. Thus, elastic net regression, a calibrated shrinkage regression

method is developed. The loss function of elastic net regression writes as:

J(W ) = W
T X

T
X + �2I

1 + �2
W � 2Y T

XW + �1||W ||1

The loss function can be viewed as a more robust form of lasso regression’s loss function, thus

leading to more robust results. In experiments, the values of �1 and �2 are usually chosen via cross

validation.

2.3.6 Principal Component Analysis

In this section, we will look into a dimensional reduction method, PCA, and some linear algebra

knowledge related to it.

Singular Value Decomposition

To better understand PCA, we first introduce singular value decomposition(SVD). In linear algebra,

a normal matrix can be decomposed in several methods. However, the matrix we meet is not always

formal. Thus, a more universally applicable matrix decomposition method is needed. Assume a

matrix A 2 Rm⇥n, there always exists two orthogonal matrices U 2 Rm⇥m, V 2 Rn⇥n and a

diagonal matrix ⇤ 2 Rm⇥n that satisfy:

A = U
T⇤V

⇤ =

0

BBBBBBBBBBBBB@

�1

�2

. . .

�r

0
. . .

0

1

CCCCCCCCCCCCCA

Where U is a matrix consisted of standard orthogonal eigenvectors of AA
T , V is a matrix made of

standard orthogonal eigenvectors of AT
A, and �i =

p
�i, i = 1, 2, ..., r, r  m is the square root

of corresponding eigenvalue of A, defined as singular value. The singular values �1,�2, ...,�r are

ranked in an decreasing order.

PCA

Principal component analysis (PCA) is a technique commonly implemented to reduce the dimension

of features. Given X = (x1, x2, ..., xm)T , X 2 Rm⇥n, where m is the dimension of data and n is

the number of data, the covariance matrix of X is defined as ⌃. Assume that we want to reduce

the dimension of X to k (k  m) but at the same time retain as much information from X as

possible. It is natural to consider its linear transform written as (2.3.5), then obtain k elements
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from the transform results.

8
>>>>>><

>>>>>>:

Z1 = ↵
T
1 X = ↵11x1 + ↵21x2 + ...+ ↵m1xm

Z2 = ↵
T
2 X = ↵12x1 + ↵22x2 + ...+ ↵m2xm

...

Zn = ↵
T
nX = ↵1nx1 + ↵2nx2 + ...+ ↵mnxm

(2.3.5)

Where ↵i 2 Rm
, i = 1, 2, ..., n are the coe�cients of linear transformation. Zi, i = 1, 2, ..., n is

called the i
th principal component if :

• ↵
T
i ↵i = 1, i = 1, 2, ..., n

• When i > 1, ↵T
i ⌃↵j = 0, j = 1, 2, ..., i� 1

• V ar(Zi) = max
↵T↵=1,↵T

i ⌃↵j=0,j=1,2,...,i�1
V ar(↵T

X)

These restrictions can be explained by maximize variance theory. The theory indicates that data

with larger variance tends to contain more useful information while data with smaller variance has

a higher chance to be noisy. Thus, a larger variance is preferred. The first condition ↵
T
i ↵i = 1

is a restriction when V ar(Zi) ! 1. Also, to make principal components as e�cient as possible,

di↵erent principal components should has no overlap information. The idea can be expressed as:

Cov(Zi, Zj) = ↵
T
i ⌃↵j = 0, which is equal to the second condition.

Geometrical illustration of principal component is that the process of linear transform and re-

strictions are equivalent to rotating the coordinate system where the datapoints are located to find

a new coordinate system that can maximize the variance of data. For example, as shown in Figure

2.7. In a two dimensional space, sample points are scattered in an oval. Its projection on the orig-

inal coordinate system(black one) indicates a smaller variance(less informative) comparing with

the one in the new coordinate system(blue one). Thus, rotating the axis is essential for clustered

data.

After interpreting the underlying principal of PCA, we start to discuss how to implement it.

The equations (2.3.5) with restrictions can be solved via Lagrange multiplier method. Let �(↵i) =

V ar(↵T
i X)� �(↵T

i ↵i � 1), consider:

8
<

:

@�
@↵i

= 2(⌃� �I)↵i = 0

@�
@� = ↵

T
i ↵i � 1 = 0

(2.3.6)

Since ↵i 6= 0, solving (2.3.6) equals computing the eigenvalues and eigenvectors of ⌃, writes as

|⌃� �I| = 0. Thus, the process of PCA can be concluded as below:

• Centralize X by row

• Calculate the covariance matrix of centralized X

• Implement SVD method to compute the eigenvalues and eigenvectors of the covariance matrix

• Rank the eigenvalues in a decreasing order, rearrange the corresponding top k eigenvectors

as a new characteristic matrix P 2 Rk⇥m

• Obtain PX as the new dataset
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In experiments, when implementing PCA, k is not set as one pleases. The strategy of choosing

k is by computing the contribution rate of components Zi, which is defined as �iPn
j=1 �j

(�i is

the ith eigenvalue), then choose k that makes the cumulative contribution rate
Pk

i=1 �iPn
j=1 �j

reaches a

reasonable threshold.

Figure 2.7: Geometrical meaning of principal component

2.3.7 RC Method with PCA Embedding

In the thesis, we combine PCA with RC methods to improve models’ performances. PCA is

implemented after all the states are updated, or after all the steps in the reservoir are finished, the

process is shown as Figure 2.8. Target dimension of PCA is set manually.
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Figure 2.8: The overall structure of a RC method with feedback mechanism and PCA embedding

2.4 Evaluation Metric

After results are obtained, it is time to verify how good the model works based on predicted

results. One classic metric to evaluate the quality of model is R2. Similarly, in this thesis, we use

an modified R
2 as the evaluation metric. The reason for using the modified model is that, unlike

other prediction tasks, while forecasting forex rate, it is unrealistic to compare the predicted results

with the real market data since the real market is almost unpredictable. Thus, we assume that

the average alpha of a benchmark market is 0, indicating that the market is only influenced by

supply and demand of currency pairs. Under this prerequisite, modified R square can be written

as (2.4.1)

R
2 = 1�

P
i(yi � ŷi)2P
i(yi � 0)2

(2.4.1)

Where yi is real alpha and ŷi is predicted alpha.

Instead of running the model for only one attempt. We want to make sure that it is univer-

sally robust. Thus, the algorithm is implemented over di↵erent training and testing dataset to

obtain a series of R2, some statistics of the R
2 values are then being checked.

First statistics is the mean of R2, which is the main statistics that we will focus on. It is de-

fined as:

R̄
2 =

1

n

nX

i=1

R
2
i

Where R
2
i is the i

th out-of-sample R
2, n is the time that the model is implemented.

Second statistics is the variance of R2 values, which can showcase the stability of model. The

formula writes as:

var(R2) =

Pn
i=1(R

2
i � R̄

2)

n

The third statistics is the skewness of R2 sequence. Skewness used in this thesis is Fisher-Pearson
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coe�cient of skewness, defined as:

skew(R2) =
E[(R2 � R̄

2)3]

(E[(R2 � R̄2)2])
3
2

There are overall three conditions regarding a distribution’s skewness. One is when skewness equals

zero, the distribution is thought to be symmetric. While the skewness is smaller than 0, the dis-

tribution has a negative skew, vice versa. A distribution with positive skew has a longer tail on

the right side and has its mode smaller than its median and its median is smaller than its mean.

While a distribution with negative skew has a longer left tail and has an opposite relation among

mode, median, and mean compared with distribution with positive skew.

The last statistics is kurtosis, it reflects the flatness of a given distribution. The mathematical

definition of it writes as:

kurtosis(R2) =
E[(R2 � R̄

2)4]

(E[(R2 � R̄2)2])2

The benchmark of kurtosis is the kurtosis of standard normal distribution, which equals 3. If a

kurtosis of a distribution is larger than 3, then the distribution has a thick tail. If its kurtosis is

smaller than 3, then the distribution has a thin tail.
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Chapter 3

Experiment

This chapter contains an introduction to data used in experiments, results from selected models

and intuitive explanations of the results.

3.1 Data

In this section, we will briefly review the structure of dataset we use and discuss some features

constructed from the raw data.

3.1.1 Raw data

Our raw data is consisted of order book data and trade book data of USDMXN dating from

2022 January to 2022 December, recorded in unevenly divided time grid(tick). Order book data

includes price, quantity, and count of bid and ask orders at di↵erent levels. Trade book data

includes exchange rate of dealt trades and the time that a trade is give or paid. Size of limit order

book data can reach around 500,000 to 700,000 in one trading day. Trade book data has a smaller

size, but will later be merged with order book data. The overall size of raw data after merging is

22,829,398.

Variable Explanation

Order book

askRatei Exchange rate of ask order at level i

askQtyi Quantity of ask book at level i

askCounti Amount of ask orders at level i

bidRatei Exchange rate of bid order at level i

bidQtyi Quantity of bid book at level i

bidCounti Amount of bid orders at level i

Trade book

price Price of traded order

side State of dealt order (given or paid)

time Time of trades

Table 3.1: Order book and trade book variables at level i = 0, 1, ..., 9

3.1.2 Data Preprocessing

Data processing is the foundation of a robust model. In this thesis we implement single variable

and multiple variable models based on time series data. Here, we will first showcase how the
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features of both models are constructed and then discuss their preprocessing methods.

Features & Target Data Construction

For all the models, alpha over a future time period is set as the target and alpha computed over

a past time period is used as an input variable. For multiple variable models, some other features

are constructed based on limit order book data and trade book data. The definitions of features

and target variable are shown in Table 3.2

Feature Definition

Target Returnfuture,t (askRatet+k+ bidRatet+k)⇥ 0.5� ( askRatet+bidRatet)⇥ 0.5

Features

Returnpast,t (askRatet+ bidRatet)⇥ 0.5� ( askRatet��t+bidRatet��t)⇥ 0.5

OFIi,t Order flow imbalance of order book data at level i, time t

QIi,t Queue imbalance of order book data at level i, time t

traded - mid Traded pricet�Middle pricet

Table 3.2: Features and target data at level i = 0, 1, ..., 9

The underlying ideas of feature constructions are that:

• OFIi,t: Order flow imbalance is constructed as [33]:

bOFi,t =

8
><

>:

v
i,b
t , b

i
t > b

i
t�1

v
i,b
t � v

i,b
t�1, b

i
t = b

i
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i,b
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i
t < b

i
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t�1

v
i,a
t , a

i
t < a

i
t�1

OFIi,t = bOFi,t � aOFi,t

Where v
i,b
t (respectively, vi,at ) is the volume of bid(respectively, ask) orders at time t, level i

and b
i
t(respectively, a

i
t) is the bid(respectively, ask) price of orders at time t, level i. This

feature is a stationary time series made out of a nonstationary time series [34]. It measures

the imbalance of quantity between bid and ask orders, which can indicate the dynamics of

given currency pair, thus having some predictability

• QIi,t: Queue imbalance is defined as [35]:

QIi,t =
v
i,b
t � v

i,a
t

v
i,b
t + v

i,a
t

Where v
i,b
t (respectively, vi,at ) is still the volume of bid(respectively, ask) orders. This feature

describes the pressure of buying or selling a currency pair, which can also showcase the

popularity of given currency pair

• traded - mid: Trade book and order book data are merged by time. If no exact matching

time point exists, trade book data will be matched with order book data at a future time

point with some tolerance. Blank spaces after merging are filled by zero. After merging,
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the feature can be constructed via simple substation. This feature indicates the di↵erence

between dealt price and market middle price. It illustrates the gap between the expectation

of market and executed deal, which can be a potential indicator of the future path of the

market. The underlying reason for its predictability is that executed deals can move the

market thus changing the middle price

All the features are constructed without being carefully tested, some information they contain

surely has some overlap. Thus, in experiments, multicollinearity among features will be examined

to find the optimal combination of independent variables.

Missing Data

Missing values might exists due to versatile reasons. In order to avoid error caused by the null

values while fitting models, historical data are used to fill in the blanks. If after filling there are

still empty values, those blanks are then replaced with zero.

Data Matching for Simple Variable Model

Figure 3.1: Process of data matching for single variable time series forecast

Matching of data is vital to time series modelling. Consider single variable models we implement,

the corresponding data matching method is shown as Figure 3.1, where xt stands for the middle

rate of given currency pair at time t. Assume the current time point as t, the input is alpha over a

past time horizon with length �t and the output is alpha over a future time horizon with length k.

The matching indicates that at time t, the model is designed to predict the alpha over the future

k time steps based on current information and message from �t tick time ago.

Data Preprocessing for Multiple Variables Model

For multiple variable models, data matching method is similar to the one used for single vari-

able models. The only di↵erence is that more features are included. After matching, data is

standardized via MinMax standardization method, writes as (3.1.1)

Xscaled =
X �min(X)

max(X)�min(X)
(3.1.1)
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3.2 Modelling Details

3.2.1 Model Setup

Training & Testing Dataset

To find the optimal training and testing size, experiments are carried out on three di↵erent size of

training datasets, whose sizes are shown in Table 3.3. The unit of size is one trading day, which is

to make sure the model can obtain adequate intraday and overnight information.

Small Size Medium Size Large Size

Training set 5 10 15

Testing set 1 1 1

Table 3.3: Di↵erent size of training and testing dataset

Forecasting Period Setup

For all the models, we set �t and k in Figure 3.1 as (50, 50), (100, 100), and (500, 500), which

approximates one second, one minute, eight minutes respectively.

Reservoir Computing Model Setup

RC methods’ performance varies with the choice of its parameters, we want to investigate how

di↵erent hyperparameters influence them. Thus, the parameters are set as follow:

• Rho(for ESN only): 0.95, 0.5, 0.2

• Number of neurons in the reservoir: 50, 100, 150, 200

• Number of runs for initialization: 100, 150, 200, 250

• Leaking decay rate: 0, 0.2, 0.5, 0.8, 1

• Regression method: ’linear’, ’lasso’, ’elastic’

Here Rho is a parameter used only in ESN to help scale the state matrix, number of runs for

initialization is the number of runs that are implemented before the real training process starts,

leaking decay rate controls how much past information is passed to the current state, and regres-

sion method is the regression algorithm used to train Wout.

In single(respectively, multiple) variable ESN, the input matrix is a sparse matrix generated via

standard uniform random generator whose degree of sparsity equals 0.7(respectively, 0.5). Feed-

back matrix is initialized by standard random uniform generator, but scaled to [�0.5, 0.5]. Weight

matrix between neurons is also a sparse matrix with 0.7(respectively, 0.5) degree of sparsity whose

nonzero elements are obtained from a uniform generator ranging between -1 and 1, the matrix is

then scaled by spectral radius of the uniform matrix and Rho. The initial state matrix is defined

as a zero matrix.

For single variable(respectively, multiple) randomized signatures methods, A1, Ai
2, i = 1, 2, ..., d in

(2.3.4) are set as 70%(respectively, 50%) sparse matrices with other nonzero elements randomly gen-

erated from standard normal distribution independently. The error terms ✏1 and ✏
i
2, i = 1, 2, ..., d
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are generated from identical standard normal distribution independently.

Parameters for sparse regressions are provided in an array and the optimal one is found via cross

validation, the corresponding Python functions are:

sklearn.linear_model.LassoCV

sklearn.linear_model.RidgeCV

sklearn.linear_model.ElasticNetCV

Within each RC method, the activation function is tanh, writes as :

tanh(x) =
ex � e�x

ex + e�x

3.2.2 Implementation Method

Moving Block Bootstrap

To ensure the universal robustness of models, we use rolling block bootstrap to implement di↵erent

models over the full dataset. The specific process can be expressed as Figure 3.2. For each step,

training and testing R
2 are saved for results analysis.

Figure 3.2: Moving block bootstrap

In this graph, m is the length of step for each move, k is the length of training and testing dataset

for each run. In our experiments, m is set as 1 trading day and k is set as 5 + 1, 10 + 1, 15 + 1

trading days.1

3.3 Empirical Results

This section includes results obtained from di↵erent models in di↵erent scenarios respectively.

Possible explanations are given towards the results.

3.3.1 Numerical Results of Single Variable Models

Literature works show that RC methods perform quite well when predicting time series data even

the only feature is the target data itself. To investigate if this conclusion holds with data from

15, 10, 15 trading days are set as the length of training data while 1 trading day is the length of testing data.
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forex market. We implement several single variable RC methods on alpha data series. The results

will be showcased and interpreted and an optimal model will be given at the end of section.

Shorter Horizon Helps Outperform

First, to make the testing process more e�cient, a reasonable (�t, k) pair is needed. Results

obtained from di↵erent models universally align with common sense. They all suggest that the

shorter the length of the lag horizon(�t and k in Figure 3.2), the better the model. This outcome

can be intuitively explained as forecasting a further future is more di�cult since the elements

that might influence a further future can be more versatile compared with the ones that a↵ect a

nearer future. If explain the fact from aspect of modelling, the reason can be that the longer the

prediction horizon, the more unrelated information the model will receive and the higher the level

of noise, which leads to worse performances. Thus, in the following experiments, we set (�t, k) as

(50, 50).

Choices of Hyperparameters

After selecting an optimal predicting horizon, we start to investigate the hyperparameters of ESN.

First parameter to be set is Rho, which relates to matrix initialization. Based on empirical results,

Rho is set as 0.5, which aligns with the rule that initialization parameter that adjust sate matrix

should be smaller than one to maintain a stable model. In other words, a middle level forgetting

speed of past information is preferred, and the echo ability of ESN might get harmed if Rho is too

low, due to heavily faded memory of reservoir.

Next, let’s take a careful look at the reservoir. While calculating hidden states, the amount of

neurons in reservoir is vital to models’ performance. Here, the number of neurons is chosen from

50, 100, 150, 200, and 250. Contrary to common sense, the final choice is 50, which suggests a small

reservoir is preferred. The reason might be that to satisfy echo state property, the initialization

matrix cannot be too large, if not, the maximum absolute value of eigenvalues will exceed 1. In

addition, a model with smaller reservoir is less computationally expensive. Therefore, 50 neurons

will be used in all the models.

Except for the overall structure, parameter between each state is also important. Considering

ESN has a fading memory, its leaking decay rate should be carefully chosen. Commonly speaking,

the larger the leaking decay rate, the more information the previous state will pass to the next one.

For example, if leaking decay rate equals 1, then the t
th state will wholly incorporate the state

generated from the t� 1th state as its state. Oppositely, if it equals 0, the information in the n
th

state will totally come from the updating process rather than simply intaking the previous state’s

information. The rate is chosen from 0, 0.2, 0.5, 0.8, 1. Our empirical experiments suggest that

0 is the optimal choice since variation of leaking decay rate does not influence the performance of

models significantly. The malfunction of leaking decay rate indicates that states calculated by each

neuron might have a large chance to be highly homogeneous, which aligns with the noisy property

of given data, leading to the invalid of leaking decay rate.

The last parameter helps decide how many runs to take before collecting states produced by

neurons. The purposes of running without recording results are to ensure the reservoir is well

initialized and the model is able to reflect the properties of target data [36]. Here, to investigate

how it works, we test the models on 100, 150, 200 and 250 runs. The results show that increment
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of initialization runs does not essentially improve the performance of models significantly but slows

down the speed of computing. Thus, 100 runs is chosen consider the e�ciency of models.

For randomized signature models, the hyperparameters mentioned above have almost the same

e↵ect on models’ performances. Thus, for the convenience of comparison, same parameters are

used.

Training Size Matters

After basic hyperparameters are set. We start to test models over di↵erent dataset. First, dataset

with di↵erent training size are considered, all the models are trained over data over the past

5/10/15 trading days. Experiments are carried out using simple linear regression, RC methods

utilizing simple linear regression, RC methods with lasso regression, and RC methods with elastic

net regression. Results of RC methods using linear regression and lasso regression will not be

displayed due to lack of significance. Linear regression’s results will be presented regardless of its

insignificance to provide a benchmark. Selected results are shown in Table 3.4.

The outcomes show that for simple linear regression, the larger the training dataset, the bet-

ter the results. However, for both ESN and randomized signature method utilizing elastic net

regression, the optimal length of training dataset is 10 trading days, larger or smaller training

size only diminishes RC methods’ performance. These counterintuitive results suggest that the

predictability of RC methods using elastic net regression reaches a peak when training dataset

containing around 1.5 million datapoint. Once more data is added for training, the performance

of model will drop due to incapable of dealing with overloaded noise.

Thus, considering the e�ciency of testing, in the later sections, only results drawn from model

with training size equals 10 trading days will be discussed.

Mean Variance Skewness Kurtosis R
2
> 0 (%)

Simple Linear Regression

(5,1)
�0.26802 0.91996 -2.0511 10.8830 41.1765

Randomized Signature

with ElasticNet(5,1)
0.01122 0.03909 10.80684 140.8782 47.0588

ESN with ElasticNet

(5,1)
0.00378 0.03944 10.3858 133.5544 43.1373

Simple Linear Regression

(10,1)
�0.14091 0.39815 -1.5217 7.3696 43.2

Randomized Signature

with ElasticNet(10,1)
0.02213 0.05634 10.5949 133.2179 46.4

ESN with ElasticNet

(10,1)
0.01405 0.05632 10.6086 135.0786 42.4

Simple Linear Regression

(15,1)
�0.07193 0.31445 -2.6091 20.1699 44.0816

Randomized Signature

with ElasticNet(15,1)
0.01337 0.02568 7.3139 82.9464 47.7551
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ESN with ElasticNet

(15,1)
0.00458 0.02663 6.9764 78.7622 38.7755

Table 3.4: Mean, variance, skewness, and kurtosis of R2 (in %) of

simple linear regression and RC methods trained by di↵erent size

training dataset

Nonlinearity Makes a Di↵erence

As introduced before, the training process in RC methods contains embedding and regression pro-

cesses, here we test how di↵erent regression and embedding methods a↵ect single variable RC

methods. Still, results of simple linear regression are presented as benchmarks and only significant

results of nonlinear models are displayed.

Statistics drawn from di↵erent models are shown in Table 3.5, the density of R2 sequences are

shown in Figure 3.3. It is clear that only RC methods utilizing elastic net regression can obtain

positive average R2, RC methods with other regression methods, for example, linear regression and

lasso regression can not deliver satisfying results. This fact indicates that compare with regression

without penalty, sparse regression does make a di↵erence. Among sparse regression methods, only

having the ability of compressing coe�cients or sparsity is not enough, a combination of both

characteristics is the key to success while implementing single variable model over a highly noisy

dataset. The potential reason might be that after the input data being echoed in reservoir, the

noise and useful message it contains will be amplified. Thus, dropping some noise and at the same

time lower the density of repeated message can greatly improve the performance.

Mean Variance Skewness Kurtosis R
2
> 0 (%)

Simple Linear Regression �0.14091 0.39815 -1.5217 7.3696 43.2

ESN with ElasticNet 0.01405 0.05632 10.6086 135.0786 42.4

Randomized Signature

with ElasticNet
0.02213 0.56340 10.5949 133.2179 46.4

ESN

with ElasticNet & PCA
0.03280 0.05767 10.3085 127.1131 54.8

Randomized Signature

with ElasticNet & PCA
0.03227 0.05763 10.3920 128.5606 55.6

Table 3.5: Average, variance, skewness, and kurtosis of R
2(in %) obtained from simple linear

regression and RC methods with di↵erent embedding methods

Aside from elastic net regression, dimensional reduction algorithm also helps improve models’ per-

formance. It can be witnessed that mean R
2 of RC methods with elastic net regression and PCA

is significantly larger than the ones of RC methods using the same regression without conducting

PCA.

A possible reason for the boost might be that even sparse regression method can drop some

noise, the overall size of state matrix is still too large for a regression method. For instance, in our

experiment, elastic net regression has to take 51 features transformed from one piece of information

at each time step. In this case, reducing dimension of state data before training regression can
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(a) Density of R2 from linear and non linear models

(b) Density of R2 from RC models.

Figure 3.3: Density of R2 from Di↵erent Models
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help linear model concentrate more on useful information.

One thing worthy to be mentioned is that even though linear regression sometimes obtains more

positive R
2 compared with ESN using elastic net regression. ESN still demonstrates higher av-

erage R
2 and less scattered results. The fact indicates that alpha over the past 50 tick time is

not informative enough for linear regression. Thus, compared with ESN, who can amplify input

information, much smaller R2s are obtained by linear regression, leading to a smaller average R
2

regardless of a higher percentage of positive R
2.

Randomized Signature Improves

From results shown in Table 3.4 and Table 3.5, it is clear that in most cases, randomized signa-

ture outperforms ESN significantly, which illustrates the outstanding predictability of randomized

signature. The improvement may come from information carried by non-scaled input data and

emphasis of previous information.

Optimal Single Variable Model

As Figure 3.3 and tables show, it is clear that compared with simple linear regression, RC methods

generally have higher average R
2, higher tendency to have positive results, more stable outcomes

and less extreme negative R
2 values.

Among RC methods, in general, randomized signature methods with sparse regression and PCA

outperform most of others. Consider the average R
2, ESN using elastic net and PCA trained over

past 10 trading days has the highest average R
2, but not the highest chance of achieving positive

R
2, which indicates its strong ability in obtaining larger positive R

2 compared with randomized

signature method implemented in the same scenario.

Based on these facts, the optimal single variable model is selected as ESN with elastic net re-

gression and PCA trained over past 10 trading days.

3.3.2 Numerical Results of Multiple Variable Models

As shown in previous sections, when lots of e↵orts are made on single variable models only focus on

alpha data, RC methods can have some predictability. However, single variable models’ predictive

power is limited and the cost of gaining positive R2 is high. Thus, more features are added to help

models achieve better results. This section includes results drawn from multiple variable models

and discusses the causes of outcomes.

Choices of Features

Firstly, to avoid invalid linear regression model(invalid benchmark model) caused by multicollinear-

ity, VIF of features is computed, results are shown in Table 3.6. The results show that severe mul-

ticollinearity exists among order flow imbalance from di↵erent levels. Thus, features that contain

overlap information are discarded. To describe the process in a quantitative way, the standard can

be set as features whose VIF is larger than 5 are dropped while conducting experiments.
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Feature VIF

Returnfuture,50 1.01102

QI0 1.00328

QI1 1.00978

QI2 1.00453

QI3 1.00465

QI4 1.00508

QI5 1.00446

QI6 1.00538

QI7 1.01022

QI8 1.01525

traded-mid 1.00080

OFI0,t 1.83546

OFI1,t 6.00176

OFI2,t 11.60641

OFI3,t 16.39904

OFI4,t 22.97832

OFI5,t 31.34739

OFI6,t 39.70684

OFI7,t 46.98449

OFI8,t 32.35030

Table 3.6: VIF of features

Choices of Hyperparameters

Similar to single variable models, multiple variable models are also tested in di↵erent scenarios.

The empirical results show that when choosing Rho from 0.95, 0.5, 0.2, the optimal choice is 0.95,

indicating that the model performs well when its memory fades slowly. The result is somewhat

di↵erent from the one drawn from single variable model, indicating that the added features might

essentially contain some useful information.

For leaking decay rate, the multiple variable models draw the same conclusion on it as single

variable models do. The results indicate that the homogeneity property of states remains un-

changed. Thus, 0 is chosen as leaking decay rate of multiple variable model.

Regarding the runs for initialization, same results hold. No significant improvement is seen from

di↵erent situations. Thus, for the e�ciency of model, the number of runs is chosen as 100 again.

Last but not least, multiple variable models also prefer a smaller reservoir considering the e�-

ciency and computational cost of algorithm. Thus, 50 neurons are used in the reservoir.

Specific Model Performances

To find the optimal training size, multiple variable models are tested over training dataset in dif-

ferent sizes, results are shown in Table 3.7.

Results of simple linear regression show stable improvement with the increment of training size.
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However, for RC methods, the positive correlation between training size and performance of models

vanishes. Empirical outcomes suggest that all the RC methods perform the best while trained over

10 trading days. Larger and smaller training sets bring slight falls on average R
2 of RC methods,

indicating that too large training set contains too much noise while too small training set cannot

provide enough information for RC models. In this scenario, the optimal training and test ratio

might be 10:1.

If we focus on ESN with di↵erent regression methods, some surprising results show that in most

cases, ESN using lasso regression fails to outperform other models, including simple linear regres-

sion, which is not within our expectation since lasso regression commonly functions well when

multiple variables are given. Since ESN with other regression methods perform far better than

ESN using lasso regression, the reason is surely on lasso. Thus, we simply test di↵erent regression

methods over the same dataset and find that lasso regression can not outperform linear regression

nor elastic net regression, the results are shown in Table 3.8.

Lasso OLS Elastic Net

Training size=5 0.33545 0.71410 0.87883

Training size=10 0.20030 0.78418 0.92941

Training size=15 0.13328 0.81244 0.92128

Table 3.8: Average R
2(in %) of di↵erent regression models

Based on the definition of regression methods, one major di↵erence between those regressions is the

ability of feature selection, so we take a careful look at the chosen features of di↵erent regression

methods. The results are as follow:

• Lasso regression: queue imbalance at level 0, 1 and order flow imbalance t level 0 are chosen

• Elastic net regression: all the features are selected

• Linear regression: can not choose features

It is obvious that even if we have already dropped features with high multicollinearity, lasso re-

gression still abandoned a decent amount of features. This is because lasso regression is greatly

influenced by grouping e↵ect, thus will wrongly drop features even though they should have been

included. Expanding this finding into RC method, we know that the input of lasso regression in

RC method at time t can be written as follow:

ẑt =

0

BBBB@

ẑt,1

ẑt,2

...

ẑt,p

1

CCCCA

Where ẑt,i, i = 1, 2, ..., p is the i
th principal component of state ŝt = (ŝt,1, ŝt,2, ..., ŝt,n), p is the

number of principal components and n is the dimension of features. As defined by PCA, each

ẑt,i is a linear transform of ŝt. We can deduce that when implementing lasso regression on ẑt,

there must be some ẑt,i that have high correlation with each other considering they are all from

the same information. Thus, due to clustering e↵ect, main part of ẑt,i will be dropped by lasso

regression in ESN, leading to an omission of useful information. To prove the guess, we include 0

into the choosing range of lasso regression’s2 penalty coe�cient. Results show that 0 is the optimal

2In ESN
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choice, indicating that lasso is not operating in this scenario. Thus, in the later discussions, lasso

regression will not be included consider its incapability of dealing the given features.

Except for the abnormal results of ESN using lasso regression, outcomes from other RC meth-

ods all outperform benchmark model in di↵erent degree. Also, randomized signature and ESN

show very similar performances, which aligns with our expectation. The outcomes also display

that all the RC methods can slightly outperform the regression method they use. However, it can

be witnessed from Table 3.8 and Table 3.7 that RC methods using linear regression bring higher

improvement of average R
2 over its regression method while the high average R

2 of RC methods

using elastic net rely less on RC methods’ structures. Besides, since ESN using elastic net regres-

sion can always outperform ESN using linear regression, we can deduce that elastic net regression

is more suitable for dealing with the amplified information compared with OLS regression. Specific

reasons for the di↵erence will be discussed in details in the next subsection.

3.3.3 Investigative Experiments & Optimal Multiple Variable RC Meth-

ods

Source Power of RC Methods

Table 3.7 shows that in each scenario, RC methods can outperform benchmark model, among the

two RC methods, ESN always has the highest average R2 among all the models, it can even slightly

outperform randomized signature stably. The outstanding performances of RC methods raise our

curiosity: what drives them to outperform? Experiments are then implemented to investigate the

magic power that helps RC methods outperform.

First of all, we start from the initialization processes of Wres and Win in ESN. Here the ini-

tialization methods of matrices are changed by generating Wres via standard uniform distribution

rather than from uniform distribution ranging from -1 to 1, the process lower the spectral radius

of Wres. Then we set Win as an identity matrix. Results trained over small training set(with the

most significant di↵erences) are shown in Table 3.9. It can be witnessed from the results that an

inappropriately initialized Wres can even lead to negative average R2 value. For Win, results show

that setting it as identity matrix can help improve the performances of ESN, but the improvement

brought by Win cannot o↵set the negative impact brought by a less appropriate Wres. Thus, we

conclude that Wres is the main reason for a good ESN(results over larger training set demonstrate

the same conclusion). The outcomes also prove that when there is no zero in the input matrix,

the restriction of spectral radius |�max| < 1 can be relaxed. For randomized signature method,

the initialization methods of matrix is nearly fixed and does not allow much space for investigation.

Even though we have found that initialization of Wres is vital to ESN’s success. It is still stunning

that when trained over small training set, inappropriate Wres can turn average R
2 value from

positive to negative. The abnormal behaviour of ESN is obviously an overfitting. By looking at

time-wise R
2 values in Figure 3.4 of two ESN models: ESN using elastic net and OLS with Wres

initialized by standard uniform distribution, it can detected that the disastrous overfitting of ESN

over small training set is caused by some abnormally negative R
2 values, which totally cancel the

e↵ect of all positive R2 values. From this fact, we can deduce that properly initialized initialization

matrices can help ESN capture useful information more e�ciently from a small training set and

thus preventing overfitting.
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Mean (%) Variance Skewness Kurtosis R
2
> 0 (%)

ESN & PCA & OLS

Original |�max| > 1
0.85357 1.76306 -1.85425 15.50343 92.15686

ESN & PCA & Elastic Net

Original |�max| > 1
0.90639 0.36971 2.13331 19.29729 96.86275

ESN & PCA & OLS

Standard Uniform

|�max| > 1

-0.37136 57.21940 -6.97449 50.41778 96.27451

ESN & PCA & Elastic Net

Standard Uniform

|�max| > 1

-0.27034 53.75463 -7.40584 54.82481 90.19608

ESN & PCA & OLS

Standard Uniform

|�max| ⇡ 0.86

-0.05076 27.55537 -6.62018 49.56922 87.05882

ESN & PCA & Elastic Net

Standard Uniform

|�max| ⇡ 0.86

0.00581 25.6 -7.48734 60.55925 89.80392

ESN & PCA & OLS

Standard Uniform

|�max| ⇡ 0.86 Win Identity

-0.02075 23.45740 -6.03584 41.09481 86.66667

ESN & PCA & Elastic Net

Standard Uniform

|�max| ⇡ 0.86 Win Identity

0.031469 21.56926 -6.86233 50.28206 89.41176

Table 3.9: Average, variance, skewness, and kurtosis of R
2(in %) obtained from simple linear

regression and RC methods with di↵erent embedding methods

Figure 3.4: Step wise R
2 value of OLS & ESN models initialized by standard uniform distribution
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Besides initialization matrices, with a closer look at performances of di↵erent models, we might

also be curious about if the outperforming ability of RC methods over the regression method it uses

partly comes PCA method. To figure the answer, we carry out experiments without PCA, results

are shown in Table 3.7. It is clear that without PCA, performances of RC methods drop signif-

icantly. More surprisingly, ESN methods without PCA can not outperform benchmark model in

many cases. These facts reveal that PCA plays a crucial role in the outperforming of RC methods

over linear regressions, which might due to the property that reservoir will extend the dimension of

data: from D to N , in our experiment, is from 12 to 50. The extension process does not essentially

make the features more informative, but hugely increases the dimension of them. Thus, considering

linear regression’s limited ability in dealing with large amount of features, using PCA to extract

more informative factors and reduce the dimension of features that are to be fed to regression is

of great importance.

Another interesting finding from results of RC methods without PCA is that even though ESN

without PCA underperforms OLS from time to time, randomized signature without PCA can still

stably outperform OLS under the same condition. It can be deduced from the fact that when deal-

ing with the given forecasting task, randomized signature has a reservoir structure that functions

better than ESN’s.

Last, regressions used in RC methods are considered. Table 3.7 shows that under the same con-

dition, RC methods implementing elastic net regression outperforms RC methods using linear

regression. This fact can be potentially explained by RC methods’ capability of memorizing in-

formation as elastic net regression can lower the density of information by compressing coe�cients.

In all, for ESN, its predictive ability comes from the combination of a carefully structured ini-

tialization matrices in ESN, PCA and a strong sparsity regression method, no single factor can

take the credit of ESN’s outperforming. While for randomized signature, its reservoir structure

and a suitable regression method seem to be more important in model’s predictability.

Remarks from Exploratory Experiments

In the previous subsection, we find that ESN requires careful cultivation to achieve its optimal

performance. However, randomized signature methods achieve stable outputs more e↵ortlessly. To

investigate what contribute to this unfair di↵erence, when ↵ is set as 0, we modify randomized

signature as:

st = f(A1st�1 + ✏1) +
dX

i=1

f(Ai
2st�1 + ✏

i
2)⇥ f(xi

t) (3.3.1)

Experiments are then implemented using reservoir constructed via (3.3.1). Results are shown in

Table 3.10. The outcomes reveal that when trained over small training set, randomized signature

scaled by tanh function overfits at some points, which makes the model deliver very similar over-

all results to ESN with inappropriately chosen Wres, indicating that tanh function can lead to

overfitting of RC methods over small training set when the initialization matrices are not strictly

set. However, while trained over larger training set, randomized signature performs similar to or

even outperform the optimal ESN model. These abnormal facts may demonstrate that over larger

training set, when overfitting is no longer a problem, the combination of tanh function and the

sum of features(
Pd

i=1 f(A
i
2st�1 + ✏

i
2)⇥ f(xi

t)) can help randomized signature method obtain some
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surprising outcomes.

Model Mean (%) R
2
> 0 (%)

Training size = 5
RS & PCA &OLS Scaled by tanh -0.03099 86.66667

RS & PCA &Elastic Net Scaled by tanh 0.02201 89.41176

Training size = 10
RS & PCA &OLS Scaled by tanh 0.91525 92.4

RS & PCA &Elastic Net Scaled by tanh 0.82485 94

Training size = 15
RS & PCA &OLS Scaled by tanh 0.88068 91.83673

RS & PCA & Elastic Net Scaled by tanh 0.92601 98.77551

Table 3.10: Average R
2(in %) and percentage of positive R

2 values(in %) obtained from models

trained with di↵erent dataset. RS stands for randomized Signatre method

To sum up, we deduce from the results that not scaled xt might be the main reason for randomized

signature’s universally stability, while the summation in randomized signature’s structure has a

high chance to contribute to its outperforming. However, the evidences are not solid enough and

more experiments await to be undertaken for validation.

Optimal Multiple Variable Model

Based on all the results shown above, it can be witnessed that all the models can always achieve

positive R
2 values and are able to predict the future alpha in more than 90% of cases, indicating

the predictive power of chosen features. For multiple variable reservoir computing models, it is

clear that a combination of appropriate regression methods, PCA and the structure of RC method

are the key factors that help RC methods outperform. Thus, optimal RC method is chosen from

randomized signature using PCA and elastic net and ESN with the same dimension reduction and

regression algorithm.

We can conclude from the results that carefully initialized ESN can obtain the highest overall aver-

age R
2 values. However, this achievement relays on initialization matrices in an incredibly degree,

making the outstanding performance of ESN fragile. While for randomized signature methods,

even though in some cases they slightly underperform ESN models, but during the experimental

processes, they all show very low requirements on their initialization processes. The simplicity in

hyperparameter choosing showed by randomized signature methods can be a huge advantage over

ESN since one of the reason reservoir computing is chosen in applications is because of its nature

of simplicity. To sum up, if we emphasize the overall performance of models, ESN with PCA and

elastic net regression might be the optimal choice. However, if highly e�cient hyperparameters

choosing process is more preferred, then randomized signature using PCA and elastic net regression

should be considered.
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Chapter 4

Possible Improvements

Looking back at the models, there are some modifications that can potentially improve their per-

formances. The first is the choice of hyperparameters of ESN. In our experiments, hyperparameters

of ESN are not chosen by a very large parameter search grid. Thus, the hyperparameters in our

experiments have a great chance to not be the optimal ones. We assume that if more parameters

are tested, possibly better model performances can be obtained.

Second, empirical results show that informative features are key factors to model’s predictabil-

ity. Therefore, more carefully constructed features are worthy to be considered in further research.

For example, the order flow imbalance factors we use in experiments are constructed symmetrically,

some researches show that asymmetric features might be more informative, so trying asymmetric

order flow imbalance features might help boost R2.

Third, even though this thesis has conducted some experiments on what make the gap between

ESN and randomized signature, more systematical investigations should be applied to deliver more

convincing results.

Besides, it can be witnessed that randomized signature does not have feedback mechanism, so

we boldly assume that adding a feedback path in randomized signature may be an option to be

considered for further improvement.

Last but not least, it is obvious that dimension reduction or feature selection methods can adding

some value to model performances. Based on these facts, we think some more complex methods

such as attention mechanism can also be applied in RC methods for boosting model’s performance.

42



Conclusion

In this thesis, we implement two RC methods on order book and trade book data. The empirical

results of single variable model shows that while using alpha as the only feature, simple linear

regression suggests alpha as one that’s not informative. However, by implementing RC methods

with sparse regression method and PCA over the same feature, we managed to predict alpha with

some degree of accuracy, revealing some predictability of RC methods. Among all the single vari-

able RC methods, randomized signature shows the strongest ability in foresting and prove itself as

a robust method according to its stable performances in all the scenarios.

Outcomes from multiple variable models show that with more informative features, all the mod-

els experience significant increment in average R
2 value. Specifically speaking, RC methods can

stably outperform benchmark model in all the scenarios. Among RC methods, ESN using PCA

and elastic net regression has the highest average R
2 while randomized signature has universally

robustness over di↵erent hyperparameters. We also find that the predictive ability of ESN used

in the thesis roots from its overall structure rather than one part of it. While randomized sig-

nature outperforms because its reservoir’s structure and regression method(elastic net regression)

used. Also, during the process of hyperparameter choosing, randomized signature shows lower

demand while ESN is more sensitive to hyperparameters. Based on all the facts, when choosing

models, we can start from specific needs. For example, if high average R
2 is the ultimate goal,

then ESN with PCA and ealstic net can be used. Otherwise, if a quick hyperparameter choosing is

prioritized, and slight drop in R
2 values is acceptable, then randomized signature is the best option.

In all, we can conclude that RC methods function well in forex market prediction and the specific

model choice dependents on actual needs.
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