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Abstract

This project shows how to price contracts on assets with a barrier using the Monte-Carlo paradigm. Be-
cause we suppose the barrier continuous and not discrete we cannot price those contracts using only discrete
monitoring of the underlying (i.e. looking if the sampled paths breached the barrier at discrete times).
Doing so underestimates the probability of an asset getting knocked-out (or knocked-in) and results in a
positive bias in the simulated price. We show first how to offset this bias in the case of a single underlying
using known techniques and details how to modify the Monte-Carlo paradigm to quicken the pricing. We
then show that this bias is still present in the case of several underlyings each with its own barrier and
outlines techniques to get the right price. We also show how to greatly speed up the pricing by combin-
ing one of those techniques with a modified Monte-Carlo algorithm. Lastly, we introduce an alternative
method to price barrier contracts on two correlated assets that relies on the Law of Large numbers and
uses a lot of pre-processing calculations so that the actual pricing is very reliable and actually quicker than
other known techniques. We discuss it in detail and propose several axes of research to adapt it for more
than two assets. All the techniques and discussions in this paper are illustrated with numerical results and
figures.

Keywords: Barrier options; Brownian bridge; Monte-Carlo; Barrier shifting; Copula; Correlation; Neural
Network
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Introduction

Banks and financial institutions are always in a competition to find better ways to price financial
products. Among these products, derivatives are contracts tied to different financial assets, and their
potential payouts are only limited by traders’ imaginations. Due to the complexity and diversity of these
contracts, there has been a growing need for faster and more accurate numerical methods in recent decades.
One of the popular methods is the Monte Carlo approach, which has become a key player in finance. It
has been extensively studied and is now well-understood, making it handy for pricing various derivatives.
However, the Monte Carlo method has its limitations, both in terms of performance and conceptually.
These limitations require specific solutions, especially for contracts like barrier options, which are among
the most commonly traded derivatives. Barrier options provide a payout if an underlying asset does not
cross a certain level during the contract’s duration; otherwise, there is no payout. Because of the way
Monte Carlo works, it can be tricky to efficiently and reliably price these contracts. That is why various
numerical techniques have been developed to tackle this challenge.

In this work, we focus on addressing these issues for barrier options. We start with the basics in Chapter
1, looking at barrier contracts related to a single asset. We detail the Brownian bridge techniques and the
barrier shifting techniques. We will also show how the Brownian bridge technique can be combined with
the quite recent Multi-Level Monte-Carlo paradigm to create a dependable way of pricing barrier options.

In Chapter 2, we expand our scope to contracts involving multiple assets with correlation structures.
Specifically, we detail the copula method that derives two bounds for the price of the option and we see
how the barrier shifting techniques can be adapted in this case. Lastly, we merge the Multi-Level Monte-
Carlo paradigm and the copula technique to allow for fast and accurate pricing.

Finally, the third chapter details an alternative technique to price those contracts that makes up to some
of the weaknesses of the existing ones in the case of two correlated assets. It uses a lot of pre-processing
to produce a mathematical object then used to price those contracts. It also discusses how to extend this
technique for more than 2 assets and proposes axes of reflexion.
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Chapter 1

The single asset case

This chapter deals with the single asset case. We start with a contextualization of the problem, then
show how to solve the simplest case (i.e a Brownian motion). We then build on complexity and show how
to tackle real-world situations.

1.1 Barrier options: first results

We start with basic definitions. Let us consider an asset S (real or fictional): this asset can be a stock
(i.e. Tesla) or an index (i.e. S&P 500). A digital option on this asset gives at maturity a payoff P that is
determined at the settlement date or at maturity given that the asset did/ did not cross a certain region
during the lifetime of the option.

1.1.1 Hypothesis and mathematical context

Most of the time this region is a constant barrier B (discrete or continuous), and we call a down-and-out
digital option on the asset the digital option that pays P if the asset did not go under B during the lifetime
of the option and 0 otherwise. This specific form of contract (digital down-and-out) will be one of our main
focus in this thesis. More specifically, suppose the dynamic of the asset price follows the standard model

dSt “ rtStdt ` σtStdW
Q
t (1.1)

where r is the interest rate process, σ is the volatility process and WQ is a single Brownian motion taken
under the standard risk-neutral measure Q. To keep the results of this work general enough and simplify
the notations, we do not take into account credit risk and dividend in (1.1). Suppose at t the present
date the asset price is known equal to Sptq “ St. A digital barrier option with maturity T, domain D and
notional P has its payoff given by

Payoff “

"

P if S stayed in D between t and T
0 otherwise

(1.2)

If the domain is a single constant line B (continuous or not) below St as is often the case and will be our
main focus, the equation (1.2) becomes

Payoff “

"

P if S stayed above B when the barrier is monitored between t and T
0 otherwise

(1.3)

One should pay extra attention if the barrier is continuously monitored or is discretely monitored. The
latter case corresponds to the case where the barrier becomes a set of point: the asset is therefore allowed
to go under the constant level B between two points. In this thesis, we will tackle the case where B is
continuous which implies that the asset should not go below B independently of the monitoring points
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chosen between t and T. The reason why we do not deal with the discrete case is because Monte-Carlo
pricing for this kind of barrier is straightforward. Therefore from now onward and except mention of the
contrary B designs a continuous barrier below St and (1.3) simply becomes

Payoff “

"

P if S stayed above B between t and T
0 otherwise

Another contract of interest for us is the down-and-out call option. Given B, T, a notional P and a strike
K, the payoff can be written as

Payoff “

"

P ˆ pST ´ Kq` if S stayed above B when the barrier is monitored between t and T
0 otherwise

(1.4)

The difference between (1.4) and (1.3) lies simply in the payoff but there is no major difference between
the two (given we can simulate S until T). To simplify things further, notice that under our hypothesis
the price of a barrier option with notional P is simply P times the price of the same barrier option with
notional 1 (to notice this simply write the payoff and use a non-arbitrage argument). Therefore from now
on we will only be interested in the price of barrier options with notional 1: given the dynamics of the
underlying, the price of a barrier option is now a function only of the barrier level B, the maturity T and
of K if it is not of digital type.

1.1.2 Closed form formula under the Black-Scholes model

As for the vast majority of contracts, there is no closed-form formula for the price of barrier options,
digital or not under (1.1). One has to rely on numerical methods such as PDE, Monte-Carlo, etc. This work
deals with the latter and we need to compare our results with benchmark ones under different configurations
of K, B and T to assess the quality of our methods. The Black-Scholes model provides a good starting
point to do so since there exists closed-form formulas. The derivation of those results can be found in [1]
for the digital down-and-out option and in [2] (Chapter 25, p.579) for the down-and-out option and we
give here the desired results.

Digital down-and-out barrier option

We let τ “ T ´ t and the value of the option at time t is given by

DDOpSt, τ, Bq “ D`
KpS, τq ´ IpD`

KpS, τqq (1.5)

where D`
KpS, τq “ e´rτN pd´q and IpD`

KpS, τqq “ p S
B q2αD`

KpB
2

S , τq with α “ 1
2 ´ r

σ2 .

Down-and-out barrier option

Let CBSpK,St, τq be the price of a call under the Black-Scholes model with the usual notations. Then the
price of the option is given by:

DOCpSt, τ, B,Kq “ CBSpK,St, τq ´ p
St

B
q
1´2 r

σ2 CBSpK,
B2

St
, τq (1.6)

Note that those formulas also allow to compute the price of a digital down-and-in barrier options and
down-and-in barrier options using the (model independent) no-arbitrage relations:

1 “ DDOpSt, τ, Bq ` DDIpSt, τ, Bq (1.7)

and
CBSpK,St, τq “ DOCpSt, τ, B,Kq ` DICpSt, τ, B,Kq (1.8)
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where DDI stands for ”digital down-and-in” and DIC for ”down-and-in call”.

Note: In the case of a continuous dividend yield q, just replace r in the above relations by r-q.

1.2 The naive pricing procedure

This section details the numerical procedure used in this work and gives an overview of the principal
limitations to overcome. We for now show how to price the barrier contracts using crude Monte-Carlo, and
will refine our methodology in subsequent sections.

1.2.1 The Euler-Maruyama scheme

In this work, we chose to simulate (1.1) with the Euler-Maruyama scheme. Although it is the simplest
numerical scheme to simulate a SDE, it is robust and very generic when the Milstein method already
requires the volatility term in (1.1) to be C1 which implies obvious limitations when one is not working
with the simpler Black-Scholes model. To obtain good results using the Euler-Maruyama scheme, one only
needs to make sure the drift and volatility terms in (1.1) verify the following assumption (given in [3] (page
1)). If we suppose they are of the standard form pt, xq ÝÑ rpt, xq and pt, xq ÝÑ σpt, xq then:

Assumption 1. The coefficients in (1.1) are globally Lipschitz and they satisfy a linear growth condition;
there exists K such that for all x, x1 P R:

|rpt, xqx ´ rpt, x1qx1| ` |σpt, xqx ´ σpt, x1qx1| ď K|x ´ x1|

and
|rpt, xqx| ` |σpt, xqx| ď Kp1 ` |x|q

In addition, St is independent of WQ and EpS2
t q ă 8.

This assumption seems perfectly reasonable for most of the drift and volatility terms one is expected
to work with in finance. Under this assumption, we recall the two main theorems related to the Euler-
Maruyama scheme, where a formal derivation can be found in [3] (pages 2-3) for the strong convergence
and in [4] (pages 35-41) for the weak convergence for example:

Theorem 1. If ∆t is the time step used in the Euler-Maruyama scheme and Ŝ∆t designs the simulated
piece wise constant asset path under this scheme, then under assumption 1 there exists a positive constant
C such that

sup
sPrt,T s

EpŜ∆tpsq ´ Spsqq ď C
?
∆t

In other words the Euler-Maruyama scheme is strongly convergent of order
?
∆t, which means under our

assumption and given a sufficiently small time step the simulated path and the exact solution should not
differ significantly. We also have the following theorem this time for the weak convergence

Theorem 2. If ∆t is the time step used in the Euler-Maruyama scheme and Ŝ∆t represents the simulated
piecewise constant asset path under this scheme, then under assumption 1, there exists a positive constant
C such that

EpfpŜ∆tpT qq ´ fpSpT qqq ď C∆t

where f is a Lipschitz function.

The latter theorem deals with statistical properties of the simulated random variable S at time T. In-
tuitively, this means that the convergence for a non path-dependent option should be really good (in
particular there is no difference between the Milstein and the Euler-Maruyama scheme in this regard).
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However we deal with barrier options which are by nature path-dependent, and the first theorem comes
into play. Since we would like the error related to the numerical scheme as small as possible, this implies
choosing a fine time grid. We therefore choose to simulate Ŝ∆t with a daily time step: if we want to price
a contract with maturity T ´ t where T ´ t refers to the number of days between settlement and maturity,
then every path in our Monte-Carlo simulations will consist of T ´ t ` 1 points. More precisely, we set
∆t “ 1{365 which is realistic for most applications.

1.2.2 The Monte-Carlo simulations

Let us show how to price a digital down-and-out barrier option naively, with lower barrier B. Once we
know how to simulate our asset paths, we can sample a number N ąą 1 of them. Each path will then be
used to compute a payoff: averaging them will give us our first price estimation of the barrier contract.

More specifically, if ˆS∆t
i refers to the i-th simulated path simulated as described in 1.2.1, then we are able

to compute the non-discounted estimator

Ep1EsPrt,T s s.t SpsqăBq «
1

N

N
ÿ

i“1

1
EsPrt,T s s.t Ŝ∆t

i psqăBq
(1.9)

It should be noted in the latter equation that in the right-hand term ”1
EsPrt,T s s.t Ŝ∆t

i psqăBq
” can be replaced

by ”1
EjPt0,T u s.t Ŝ∆t

i pj∆tqăBq
” since our Euler-Maruyama scheme is piece-wise constant as described in 1.2.1.

If we want to price a down-and-out call of strike K naively, then we adapt equation (1.9):

EppST ´ Kq`1EsPrt,T s s.t SpsqăBq «
1

N

N
ÿ

i“1

pŜ∆t
i pT q ´ Kq`1

EsPrt,T s s.t Ŝ∆t
i psqăBq

(1.10)

and the same remark holds.
The choice of N in (1.9) and (1.10) is directly related to the convergence properties of the Monte-Carlo
method. It is well known (see for example [16]) that this method accuracy increases with the square root of
the number of path: to double the accuracy one needs to quadruple the number of paths. In other words, if
σ̂N designs the empirical standard deviation of a sample of size N, one can prove this estimator is unbiased
which leads to the standard approximated 95% (for example) confidence interval for our Monte-Carlo
estimation of the variable X

rX̂N ´ 1.96
σ̂N
?
N

, X̂N ` 1.96
σ̂N
?
N

s (1.11)

Here X̂N denotes the empirical mean of the sample: EpX̂N q “ EpXq. Simulation-wise, the computational
time required to check whether a path crossed the level B is negligible compared to the time required to
sample the N paths: computing the payoff in equation (1.9) and (1.10) is very fast.

1.2.3 First results with naive pricing

To see whether the pricing methodology described in 1.2.1 and 1.2.2 yields prices close to the benchmark,
we will price contracts under the Black-Scholes model. We start with r “ 0.05, Sptq “ 100, σ “ 0.3, B “ 80,
T ´ t=52 weeks and K “ 100. The equation (1.6) gives a benchmark price of 13.24. We set N “ 100000
which is standard in most applications and we plot an histogram of 500 simulated prices:
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Figure 1.1: Histogram of prices obtained with naive method, mean price of 13.35

As shown in the latter figure, there is a bias. This bias cannot possibly come from the Monte-Carlo method
since the empirical mean is an unbiased estimator of the price, which means it is either coming from the
Euler-Maruyama scheme or the way we evaluate our payoff. Under the specifications of 1.2.1, the strong
convergence theorem guarantees the expected maximal error between our simulated paths and true paths of
the asset is of order Op

?
∆tq « Op0.05q. Moreover, the weak convergence theorem guarantees the expected

error between our final value for the simulated paths and true paths to be of order Op∆tq « Op0.003q.
Therefore the weak error should not play a role here while the strong error would only account for the
very simulated paths that do/do not break the barrier B while the true path do not/do break it. We can
hardly imagine the proportion of those paths to be sufficient enough to cause this kind of massive ”error”.
Moreover, if we price the same contract by just setting B=95, we get a benchmark price of 5.50 and the
below histogram of simulated prices:

Figure 1.2: Histogram of prices obtained with naive method, mean price of 6.31

The error is way bigger and cannot be due purely to the Euler scheme. More generally, the closer the barrier
is to the initial spot, the wider the bias. This bias is also not specific to a down-and-out call: pricing a
digital down-and-out in the same fashion results in the same price gap. We keep the same characteristics
and get a benchmark price for a digital down-and-out of 0.132. Below is the histogram of simulated prices
for the same contract:
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Figure 1.3: Histogram of prices obtained with naive method, mean price of 0.156

Actually, the digital down-and-out call gives us more insight on what is happening: this contract price
should be exactly equal to the probability of the asset not crossing the barrier during the lifetime of the
option.

1.2.4 Analysis of the naive method

Getting a simulated higher price for both contracts means that we are overestimating the probability of
the asset not getting knocked-out. The answer lies in the way we compute the payoff: by only monitoring
the asset level relative to the barrier level for every sampled point for each of the simulated paths, we totally
discard the asset’s behavior between those points. This would be acceptable for a discrete barrier but falls
off in the continuous case. The intuitive way to overcome this bias would be to increase the number of
sampling points in the simulation of (1.1) and use this to compute (1.9) and (1.10) again. However this is
a bad approach for numerous reasons: by doing so we trade the computational efficiency for the accuracy
when we would like a fast and accurate way to price those kind of contracts and most importantly this
bias is not easy to remove entirely. The time step we chose in 1.2.1 is already small enough for practical
applications and sampling (a lot) more points for each path seems like a waste. What if we cannot even set
the time step in the Monte-Carlo simulation because the pricing engine is separate from the path generator
engine? Moreover, this bias does not disappear fast when we increase the number of time steps: we refer
to [6] (Theorem 2.3) for a proof of this result. We state a key point from this article:

Theorem 3. For a digital down-and-out or a down-and-out call, if Pbench designs the true value of the
contract and P∆t

MC the naive value obtained following the procedure outlined in 1.2.1 and 1.2.2, then we
have the following result

Pbench ´ P∆t
MC “ Op

?
∆tq (1.12)

We need to think of other ways to overcome this bias. Furthermore, to speed up calculations, practitioners
often want to do the inverse and reduce the number of monitoring points: given a collection of paths, we
aim to compute the price of the contract using a time step bigger than the one used to simulate the paths.
For example we can think of a weekly time step, a fortnightly time step or even a mix of different time
step for different periods of the contract. One can only expect the bias to grow with the time step using
the naive Monte-Carlo method hence the importance of new techniques to address this problem. We want
to emphasize that the latter point is independent of the simulated paths: we still simulate the paths with
daily time steps following 1.2.1 but we rather aim to reduce the computational expenses to get equations
(1.9) and (1.10) because we do not want to introduce undesired statistical bias with the Euler-Maruyama
scheme (i.e. we want to keep both strong and weak errors as low as possible). The next section deals with
techniques that address this challenge.
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1.3 Removing the bias in the single asset case

This section deal with two techniques that address the problems outlined in 1.2.4. We start with
the Brownian bridge technique and then deal with the family of barrier shifting techniques. For each of
these techniques, we start with the simpler Black-Scholes case then show how to adapt them to more
complex/ diversified cases. Numerical examples are provided to illustrate the strengths/ weaknesses of
those methods.

1.3.1 The Brownian bridge technique

All the results of this section are taken from [5] (pages 3-11). The main idea of the Brownian bridge
technique is the following: we can approximate the probability that the asset breaches its barrier between
two time steps and use this probability in the Monte-Carlo payoff. Suppose we sit at time ti and we know
the value of Ŝ∆t at time ti and ti`1. Following 1.2.1, we got that

Ŝ∆tpti`1q “ Ŝ∆tptiqp1 ` rpti, Ŝ
∆tptiqq∆t ` σpti, Ŝ

∆tptiqq
?
∆tZq (1.13)

where Z „ Np0, 1q is a standard normal variable. Given that ∆t is small enough, this is under assumption
1 a good approximation of the true behavior of the asset. To compute the probability of exit of Ŝ∆t between
ti and ti`1 we could say it follows a Brownian motion with drift equal to rpti, Ŝ

∆tptiqq and volatility equal
to σpti, Ŝ

∆tq then apply the standard results (as outlined in [5] p.5); for a Brownian motion with drift µ,
volatility σ, whose value is x at time t and y at time T, the probability of it breaching the constant level
B between t and T is given by:

ppx, y, T ´ t, σ,Bq “ expp´2
px ´ Bqpy ´ Bq

σ2pT ´ tq
q (1.14)

Note that in (1.14) we assume x and y are above B, otherwise this probability is equal to 1. Also note
that this probability does not depend on µ which may seem counter-intuitive but is normal since y already
depends on µ. We can then replace x and y by the values of Ŝ∆t at time ti and ti`1 and the volatility at time
ti to get an estimation of the asset breaching its barrier in the time interval. However, this approximation
is not that good in the case of a spot-dependent volatility because the volatility is not constant on the time
interval. Using Ito’s lemma classically yields that the log-price follows a Brownian motion (not geometric)
on rti, ti`1s which yields a better approximation of the probability of exit. We will therefore work with the
probability:

ppx, y, T ´ t, σ,Bq “ expp´2
maxplogpxq ´ logpBq, 0qmaxplogpyq ´ logpBq, 0qq

σ2∆t
q (1.15)

where x and y should be replaced by the values of Ŝ∆t at time ti and ti`1. Therefore, for a sampled path
Ŝ∆t
j with S following (1.1) the probability of it not breaching its barrier between ti and ti`1 is given by

1 ´ ppŜ∆t
j ptiq, Ŝ

∆t
j pti`1q,∆t, σpti, Ŝ

∆t
j ptiqq, Bq and the probability of it not breaching its barrier between t

and T is given by:

νpŜ∆t
j q “

M´1
ź

i“0

p1 ´ ppŜ∆t
j ptiq, Ŝ

∆t
j pti`1q,∆t, σpti, Ŝ

∆t
j ptiqq, Bqq (1.16)

where the ti’s are the monitoring points (between t and T) and M is the number of monitoring points. We
can therefore rewrite the payoff for the digital down-and-out taking into account (1.16):

Ep1EsPrt,T s s.t SpsqăBq «
1

N

N
ÿ

j“1

1
EsPrt,T s s.t Ŝ∆t

j psqăBq
νpŜ∆t

j q (1.17)
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and for the down-and-out call:

Ep1EsPrt,T s s.t SpsqăBq «
1

N

N
ÿ

j“1

pŜ∆t
j pT q ´ Kq`1

EsPrt,T s s.t Ŝ∆t
j psqăBq

νpŜ∆t
j q (1.18)

This is still an approximation because each of the probabilities in (1.16) assumes the volatility stays
constant equal to the left point for each time interval, but we expect it to perform way better overall than
the naive pricing method. In particular, in the case where the volatility term in (1.1) is constant, then
(1.17) and (1.18) should be unbiased.
To show this, we price the same contracts than in 1.2.4. For a down-and-out call with r=0.05, Sptq “ 100,
σ “ 0.3, B=80, T ´ t=52 weeks and K=100 we get using (1.18) the following histogram of prices where
every price has been obtained using N= 100000 simulations, and the monitoring time step is first set to
one day (i.e we check every day if the barrier had been crossed and every probability in (1.16) is computed
on a time interval of 1 day):

Figure 1.4: Histogram of prices obtained with the Brownian bridge method, mean price of 13.23

The empirical mean of the simulated prices is equal to the benchmark price: the Brownian bridge technique
successfully removed the bias.
We also want to make sure this technique works fine when the barrier is close to the initial spot, so we
keep the same contract characteristics and only set B=95 (the bias observed with the naive method was
bigger). We get the following histogram of prices:

Figure 1.5: Histogram of prices obtained with the Brownian bridge method, mean price of 5.51
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Once again there is no bias. We price the exact same contract but we now take monitoring time steps equal
to one week to show that the estimator (1.18) is still unbiased as outlined above. We get the following
histogram:

Figure 1.6: Histogram of prices obtained with Brownian Bridge method, mean price of 5.51

The advantage of taking less time step in the computation of (1.18) is that it decreases the computational
time required to compute the probabilities and check whether the asset breached its barrier. Taking a
weekly time step instead of a daily one cuts this computational time by seven! This can be used in real-
word applications when the need for speed is often crucial for traders, because the left-point volatility
approximation is still a very good approximation in most cases and the volatility mean is not expected to
change by a lot on a given time interval. However this is the responsibility of the model designer to make
sure additional checks are implemented to prevent ill cases to have an influence on the final price (e.g. by
using adaptive time steps when the volatility regime is modified or when jumps occur in the simulation).
To finish with, we price a digital down-and-out with the same characteristics as in 1.3.1 using (1.17) (B=95
and a monitoring time step of seven days). We get the following histogram of prices (which we recall can
be seen as the empirical probability the asset does not breach its barrier between t and T):

Figure 1.7: Histogram of prices obtained with Brownian Bridge method, mean price of 0.132

Maybe more than for the down-and-out call case, the latter shows that the exit probability estimation is
spot on (the benchmark price being 0.132).
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1.3.2 The barrier shifting techniques

All the results of this section are taken from [5] (pages 11-32). Unlike the Brownian bridge technique,
the family of barrier shifting techniques do not modify the way we evaluate the payoff in (1.9) and (1.10).
What is done instead is modifying the barrier level to offset the bias: we aim to shift the barrier level just
by the right amount so that we offset the bias induced by only discretely monitoring the barrier. This
family of techniques in fact aims to connect the price of a continuously monitored barrier contract and the
price of a discretely monitored barrier contract (which is straightforward to simulate).

BAST

Originally developed in [8], the BAST (BArrier Shifting Technique) shifts the barrier by an amount
that at least partly depends of the asset level, barrier level, volatility level and time step. We recall the
main theorem from [8] (Theorem 1.1 p.327):

Theorem 4. Let VM (B) be the price of a discretely monitored (M monitoring points) knock-in or knock-out
barrier option (digital or not) with maturity T and volatility σ. Let V(B) be the price of the continuously
monitored option with the same characteristics. Then

VM pBq “ V pBe
˘βσ

b

T
M q ` op

1
?
M

q (1.19)

where - applies if the contract is of the down-and-out type and + applies otherwise. β « 0.5826 is here
kept constant.

This is already an improvement compared to the crude method since the left-hand side term in (1.19)
can be computed exactly and the total error is now in o rather than in O. This theorem implicitly assumes
that the volatility is constant through the life of the option but is still applicable when the volatility is
allowed to be a more general process as in (1.1) by using different shifting amounts for different periods.
More specifically, if σ “ σpt, Sq, then after simulating the paths as described in 1.2.1 we shift the barrier
differently for every time interval for every path. Obviously there is no need to do so within the Black-
Scholes framework. To show how this method perform, we price the same options as before. Starting with
the DOC with barrier level 80, we get the following histogram of prices:

Figure 1.8: Histogram of prices obtained with BAST, mean price 13.25

And indeed we verify that the empirical mean corresponds to the benchmark price (13.24). Now we price
the same option setting B=95 and we get:
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Figure 1.9: Histogram of prices obtained with BAST, mean price of 5.51

Also note that (1.19) holds for digital barrier options as well, as pointed out in [8] (p.343). We price the
usual digital down-and-out option and get the following histogram:

Figure 1.10: Histogram of prices obtained with BAST, mean price of 0.132

However note that this technique, at least following theorem 4, is not perfect. To see this, we price a
down-and-out call with strike 100 and barrier level 99. This is quite an extreme case but we would expect
a good technique to perform well regardless. The benchmark price is 1.23 (all other parameters are kept
constant), and we get the histogram of price:
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Figure 1.11: Histogram of prices obtained with BAST, mean price of 1.46

This time, the empirical mean is not spot on. This partly has to do with the expected overshoot as outlined
in [5] (pages 14-16). This quantity actually depends on the relative distance between the logarithmic value

of the initial spot and the logarithmic value of the barrier uM “
logpStq´logpBq

σ
b

T
M

and converges very fast to

β “ 0.5826 when uM increases. Here σ is the volatility of the asset, T the maturity of the contract and M
the number of monitoring points of the barrier. However in [5], Gobet proposes to refine this constant β
to take the expected overshoot into account. There is no closed-form formula for this expected overshoot
but [5] (p. 23) showed that it could be very well approximated by the following functional:

ŷpuM q « 0.5826 ` 0.1245exp ˆ p´2.7u1.2M q (1.20)

with less than 1% error. This allows us to refine theorem 4 and to move on to ABAST.

ABAST

Following what we just outlined and following [5] (p. 21 and remark of p.23), we can now state a refined
version of the theorem 4:

Theorem 5. Let VM (B) be the price of a discretely monitored (M+1 time steps) knock-in or knock-out
barrier option (digital or not) with maturity T and volatility σ. Let V(B) be the price of the continuously
monitored option with the same characteristics. Then

VM pBq “ V pBe
˘ŷpuM qσ

b

T
M q ` op

1
?
M

q (1.21)

where - applies if the contract is of the down-and-out type and + applies otherwise. Here uM stands for
logpStq´logpBq

σ
b

T
M

.

We can now try to price the contract that gave us trouble earlier (Sptq “ 100, T ´ t “ 1 year, σ “ 0.3,
r “ 0.05, K “ 100 and B “ 99). We get the following histogram of price:

18



Figure 1.12: Histogram of prices obtained with ABAST, mean price of 1.41

As we can see, there is a slight improvement towards the true value but this is still far from perfect. An-
other improvement we can add is to move the barrier differently for each time step for every path, so that
the barrier shifting is tailored for every time interval. For the monitoring period, we stay with ∆t “ 1

365
and we get a mean price of 1.39 (0.02).
To understand while we are not able to fit the benchmark price perfectly, we refer to the original derivation
of the BAST theorem in the well-known article from [8] (Appendix A) . The error comes from the term
op 1?

m
q and it is true it behaves well when we do not deal with ill cases; however this error depends also of

the term uM and it can quickly become a problem.

Here we should point out that quite surprisingly we found the barrier shifting techniques to behave
rather poorly on a wide range of examples. For the down-and-out call option, there is a bias that be-
comes predominant whenever uM shrinks. We reproduced the numerical examples given in [8] (Section
2, numerical results) that seem to show those techniques are almost ideal for most application. How-
ever, and this is something we highlight further, all of the numerical examples given there are with a
strike set to K=100 i.e. for at-the-money contracts. Consider a path Ŝ∆t and suppose we monitor it
with a period ∆t1 to evaluate its payoff for a down-and-out call option. The final Monte-Carlo payoff
is simply the average of all the payoffs corresponding to the paths 1,...,N. If we shift the barrier at the
beginning or for every time interval corresponding to the monitoring periods, the path’s payoff given by
pŜ∆tpT q ´Kq`1EsPrt,T s s.t the path breaches its barrier will only differ when using crude Monte-Carlo or the bar-
rier shifting techniques in the following case: the path breaches its shifted barrier AND does not breach
its barrier AND does not end up below K. In other words, the proportion of the paths making a difference
in the final payoff in the barrier shifting case is a decreasing function of K. For a given barrier level B, the
impact of the term op 1?

M
q will therefore be reduced when K increases. To show this, we price a digital

down-and-out option with B=99. The benchmark price (i.e. the discounted probability that a path gets
knocked-out) is equal to 0.026. We use the ABAST method to price this contract and re-asjust the barrier
or every interval of every path. We get a mean price of 0.031p0.002q which means we overestimate this
probability by almost 20% ! Clearly this range of method becomes obsolete when uM becomes small: the
ABAST adjustment is not enough to fit the true probability of the continuous paths getting knocked-out.
Finally, we would like to assess whether the estimates we obtain by using the barrier shifting techniques re-
main accurate when we decrease the monitoring frequency. We price a down-and-out call with K=10, B=95
and the usual other characteristics by taking fortnightly time steps rather than daily ones, i.e ∆t1 “ 14

365 .
The benchmark price is 17.33 and we get a simulated price of 18.23 (0.07) using ABAST. This in particular
shows that one should be careful whenever there is a need to speed up computations while using barrier
shifting techniques: as soon as uM becomes relatively small the bias becomes overwhelming. We plot below
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for the same contract the evolution of the simulated price with the time step:

Figure 1.13: Evolution of the contract price using ABAST as a function of the monitoring time step. True
price of 17.33

There is clearly an overestimation of the price that does not behave in op 1?
M

q at all. Note that if

the barrier level and strike level are both quite far from the initial spot price, then this method works as
intended, even for large monitoring time steps. For example, if K “ 100 and B “ 80 the same experiment
yields the following plot:

Figure 1.14: Price evolution with the time step

To conclude, the barrier shifting techniques are decent techniques that will yield a better estimate than the
crude Monte-Carlo one, but are far from perfect especially when one wants to reduce the computational
time by taking bigger monitoring time steps or when one wants to price contracts that are tricky in the
sense that the initial spot is close to the barrier level and the contract is relatively far out of the money.

1.4 The Multi-Level Monte-Carlo estimator

In the last section, we have seen how to remove the bias induced by the discrete monitoring of the
barrier. Most of the time, the gross of the computational time required to price a barrier contract lies in
sampling the paths necessary to the Monte-Carlo estimate. This is done using 1.2.1 and taking a small
time step for the simulation is mandatory since we want to keep the error due to the Euler-Maruyama
scheme as low as possible i.e. we want the simulated paths to be as close as possible to the true paths. Of
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course, the more points are used for each path the longer the whole pricing procedure will take. We can
approximate the global error of the whole pricing procedure by writing, as pointed out in [9] (equation 7
p.5):

aM ´ EpXT q “ aM ´ EpXN q ` EpXN ´ XT q (1.22)

where XT is the ”true” random variable whose expectancy we are trying to compute, XN is a random
variable obtained using Euler-Maruyama that approximates XT and aM designs the estimation of EpXN q

obtained by using Monte-Carlo with M paths. The left-hand side of (1.22) is the total error of our
procedure and the right-hand side shows this error is due to the Euler-Murayama discretization and the
Monte-Carlo procedure. As pointed out before, the Monte-Carlo error tends to decrease when M increases
asymptotically in Op 1?

M
q and the other term decreases with the step size we use in Euler-Maruyama at a

rate that is approximately equal to Op∆tq (even though to price barrier contracts this is not exactly true
since strong convergence properties of the scheme theoretically play a role in the final estimate, but we will
come to this later). We can therefore state that for a non path-dependent option, if we want to achieve a
level of accuracy ϵ, then we should make sure both the approximation scheme error due to the numerical
scheme and the error due to Monte-Carlo scale accordingly. Therefore, M should scale like ϵ´2 and ∆t like
ϵ´1. Since the computational cost per path scales like 1

∆t it means that to reach accuracy ϵ the total cost
of the pricing algorithm behaves in Opϵ´3q.
To reduce this cost, we can therefore use a method with better weak convergence order, so that we need to
sample less points for every path to achieve the same order of error. However such methods often require
additional constraints on the coefficients of (1.1) than those induced by Assumption 1 and the Euler-
Maruyama scheme. The Multi-level Monte-Carlo (MLMC in short) method, introduced in the paper [10]
takes advantages of both weak and strong convergence properties of the numerical scheme to reduce the
overall cost to achieve accuracy ϵ. For a non-path dependent option sampled using the Euler-Maruyama
scheme Giles shows in [10] (pages 609-610) that the MLMC framework achieves an overall cost that scales
like Opϵ´2plogpϵq2qq.

1.4.1 Construction of the MLMC estimator

Let f be a utility function. Suppose we want to estimate the quantity EpfpXT qq using Monte-Carlo
and that we do not possess a closed-form formula for w ÝÑ XT pwq. We therefore have to simulate the
variable XT for a set of possible w to then evaluate the empirical mean using Monte-Carlo. Let M ą 1
whose precise value does not matter for the asymptotic analysis and let ∆tl “ T

M l be the time step at level

l, where l P t1, ..., Lu with L an integer. Let P̂l be the random variable that approximates fpXT ) using the
time step ∆tl. The MLMC takes advantage of the following equation:

EpP̂Lq “ EpP̂0q `

L
ÿ

l“1

EpP̂l ´ P̂l´1q (1.23)

For every level l, we estimate EpP̂Lq using a Monte-Carlo estimator so that the final estimator reads, if we
use Nl paths for the level l:

EpP̂Lq «
1

N0

N0
ÿ

i“1

P̂0pw0,iq `

L
ÿ

l“1

1

Nl

Nl
ÿ

i“1

pP̂lpwl,iq ´ P̂l´1pw1
l,iqq (1.24)

It should be noted in equation (1.24) that for every level l, we compare the estimator P̂l and P̂l´1 on
the ”same” realizations wl,i and w1

l,i every time which is a vital feature of the MLMC method. By same

realization we mean that the same simulated Brownian motion is used at level l for both P̂l and P̂l´1 for
i “ t1, ...Nlu. In equations, let l ą 0 and suppose we sample a Brownian Motion using normal realizations
at resolution l ´ 1:
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W i
l´1pj∆tl´1q “

2j
ÿ

k“0

Zk,i

a

∆tl (1.25)

where Zk „ Np0, 1q are independent random variables and j P t0, .., T´1M l´1u. We then let the corre-
sponding discretized Brownian Motion at level l be:

W i
l pj∆tlq “

j
ÿ

k“0

Zk,i

a

∆tl (1.26)

with j P t0, .., T´1M lu. The ”fine” paths wl,i are then built using increments of the Brownian motion
(1.26) and the ”coarse” paths w1

l,i using increments of (1.25) and 1.2.1. The simulated paths are very close,
although of different resolutions, and it is how they differ that matters when using this method.

Figure 1.15: Path at a level of resolution l vs resolution l-1

1.4.2 Properties of the MLMC estimator

We now state the general theorem for the MLMC method from [10] ( theorem 3.1 p.609) which will
allow us to choose the number of levels L we use and the number of paths per level Nl for each of those
levels.

Theorem 6. Let P be the random variable whose mean we want to estimate and let Yl be independent
estimators at level t0, ..., Lu (not necessarily the ones build in the last subsection). If there exists positive
constants α, β, γ, c1,c2 and c3 such that α ě 1

2minpβ, γq and

1. |EpPl ´ P q| ď c12
´αl

2. EpY0q “ EpP0q and EpYlq “ EpPl ´ Pl´1q for l ą 0.

3. varpYlq ď c2N
´1
l 2´βl

4. EpClq ď c3Nl2
γl, where Cl is the complexity of Yl

then there exists a positive constant c4 such that for any ϵ ă e´1 then there exists values L and Nl for
which the MLMC estimator

Y “

L
ÿ

i“0

Yi

has a mean square error with bound
EppY ´ EpP qq2q ă ϵ2
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with a computational complexity C with bound

EpCq ď

$

’

&

’

%

c4ϵ
´2, β ą γ

c4ϵ
´2logpϵq2, β “ γ

c4ϵ
´2´

pγ´βq

α , β ă γ

(1.27)

One can apply this theorem to prove that using the MLMC estimator and the construction of the
estimators P̂l of the last subsection for a Lipschitz payoff (i.e. European put an call options that are not
path-dependent) indeed yields a complexity in Opϵ´2logpϵq2q (case β “ γ). One can also use a more refined
numerical scheme such as the Milstein scheme to attain Opϵ´2q but we do not do it here for the reasons
outlined above (see [11] p.18).
Needless to say we are not in the case of a Lipschitz payoff. The problem with barrier options lies in the
point 3 of 6: a path can totally get knocked-out at the level l and not at the level l-1 which results in a
Op1q difference in payoff and this proportion of path, intuitively low when uM is low can increase with uM .
In [12] (pages 6-8), it is proven that for any δ ą 0, we have

EppP ´ P̂ q2q “ Oph
1
2

´δq (1.28)

which by using an upper bound of the variance and Minkowski’s inequality is enough to prove that the

estimator built in subsection 1.4.1 achieves an overall complexity that is bounded by Opϵ´2´
δ´ 1

2
α q for any

δ ą 0 which is still an improvement compared to the standard Monte-Carlo method. Here P̂ is the
approximation of P using Euler-Maruyama. We will see in the next section how much better this method
performs.

1.4.3 Pricing using the MLMC method

This section outlines the results obtained by mixing the MLMC technique and the Brownian Bridge
technique. The process is the same when we want to combine the MLMC method with the barrier shifting
technique but we focus on the former since it gave the best results in 1.2.4. We do not use the estimators
defined in 1.4.1 but rather the estimators Yl defined in 1.3.1 meaning for each time step ∆tl we use the
discounted estimators given by (1.17) and (1.18) and we will use (1.24) to approximate the value of the
down-and-out barrier options. We set M “ 2 and process in the following fashion: we first define a level of
accuracy ϵ we want to reach. We set L to be the first integer such that 2L ě T . We then run ”pilot” runs
to compute an estimation of the cost and of the variance of the estimators Yl for each level l P t0, .., Lu. In
practice we impose a run time limit τ to perform those pilot runs at each level: the first estimated path is a
good estimator of the time required to sample a path at resolution l and evaluate its payoff using Yl. Then,
we sample enough paths at level l so that the overall run time of the pilot runs at level l is approximately
equal to τ . Since all the levels are independent, we can write:

varpY0 `

L
ÿ

i“1

Yiq “

L
ÿ

i“0

varpYiq (1.29)

Now using that Yl “ 1
Nl

řNl
i“1pP̂lpwl,iq ´ P̂l´1pw1

l,iqq where Pl corresponds to the estimator defined by (1.17)
for digital barrier option and (1.18) for regular ones we get that the variance at level l is simply the
empirical one we found through our pilot runs divided by Nl. Since we want to achieve:

varpY q ă ϵ2 (1.30)

we need to make sure the sum of the variance across each level does not exceed ϵ2. Since the cost is also
given by those pilot runs, we solve a classic optimization problem: the output of this optimization is the
necessary number of levels L to use as well with the number of paths Nl to use across every level. If we
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denote by Ĉl the empirical cost per path at level l (in seconds) then the objective function we want to
minimize is:

JpN0, .., NLq “

N
ÿ

i“0

CiNi (1.31)

subject to varpY q ă ϵ2 and Nl ě 10 for each level (to not get outlier paths one one level). Note that this
pre-analysis also allows to compute an empirical β and γ and at posteriori an empirical α.

Results without variance reduction

We now present the numerical results corresponding to this method. We do not yet try to reduce
the variance and stick to what has been said before. What really matters here is the ratio between the
computational time using standard Euler-Maruyama/ Standard Monte-Carlo and the MLMC method for
a given level of accuracy ϵ. Below is the table summing up those results for down-and-out options for
ϵ “ 0.15. We set Sptq “ 100, r “ 0.05, T ´ t “ 52 weeks and a constant volatility equal to 0.3. We price
down-and-out call options and we make the strike K (index) and barrier level B (columns) vary:

Figure 1.16: Ratio of the computational times: SMC over MLMC methods

As we can see, the MLMC method outperforms the standard Monte-Carlo procedure. It is also interesting
to notice that this ratio differs a lot with the barrier level B and strike K.

Results with variance reduction

Finally, we show that the variance of the estimator Y can be improved by modifying slightly the
estimators Yl as shown in [11] (pages 24-28). Let us sum up the method. In the last paragraph, the
estimator Yl is built using the difference of the estimator defined in (1.17) and (1.10) on the path defined
with the Brownian motion sampled as in (1.26) and (1.25). We would like to include the information at
level l for the fine estimator in the coarse estimator at the same level. To do so, we refine the coarse
Brownian path at level l by sampling a point using a Brownian bridge construction. More specifically, we
still sample the coarse Brownian path using (1.25) and build the asset path according to (1.2.1) but for
every j P t1, ..., p2l ´ 1qT´1u we set the following value for the asset path i P t1, Nlu

Ŝ
∆tl´1

i pj∆tlq “
1

2

ˆ

Ŝ
∆tl´1

i ppj ´ 1q∆tlq ` Ŝ
∆tl´1

i ppj ` 1q∆tlq

´ Ŝ
∆tl´1

i ppj ´ 1q∆tlqσppj ´ 1q∆tl´1, Ŝ
∆tl´1

i ppj ´ 1q∆tlqq

ˆ pW i
l´1ppj ` 1q∆tlq ´ 2W i

l ppj ` 1q∆tlq ` W i
l´1ppj ´ 1q∆tlqq

˙

(1.32)

As pointed out in [11], modifying the coarse estimator at every level l ą 1 does not modify the equality
(1.23) and guarantees convergence (provided we satisfy theorem 6). Intuitively this reduces the variance
because a path getting knocked out at the fine level l is now almost sure to be knocked out at the coarse
level l for the estimator Yl. However as pointed out in [11] (pages 31-32), finding estimators in such a way
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for other problems is not guaranteed at all and is still an area of research especially in the case of multi-
dimensional SDE’s. We now conduct the same experiments as in the last section to find the computational
time ratio between the standard Monte-Carlo method and this modified estimator:

Figure 1.17: Ratio of the computational times: SMC over MLMC methods

The computational gain is way higher than without variance reduction: modifying the path as outlined
above allows the method to perform almost as good as with a Lipschitz payoff.
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Chapter 2

The Multi-Asset case

The last chapter dealt with one asset only. Naturally a lot of contracts involve more than one underlying
asset. We present a few of them in what follows. We then show how to adapt 1.2.1 in this setting to take
into account correlation between the assets and present two techniques to price those contracts. Finally
we show how to use the MLMC method in this case.

2.1 Contextualization

A lot of the barrier contracts that are traded actually involve more than one asset. We consider n
assets Si, i P t1, nu where every asset follows the standard model:

dSi
t “ ritS

i
tdt ` σi

tS
i
tdW

Q,i
t (2.1)

where the drift and volatility processes for each of the assets are supposed to satisfy Assumption 1. The
Brownian motions WQ,i are not necessarily independent and therefore we assume that for i, j P J1 ..nK2

there exists a correlation function ρi,j such that for s P rt, T s we have

dWQ,i
s dWQ,j

s “ ρi,jpsq (2.2)

We can rewrite the n ` n2 equations from (2.2) and (2.1) with the following system:

dSt “ rtdt ` ΣptqσtdW
Q
t (2.3)

Here St, r and σ should be understood as n ˆ 1 vectors and Σ as the Cholesky decomposition of the
n ˆ n correlation matrix, which is positive-definite with all diagonal entries equal to 1. Also WQ should
be understood as a nˆ 1 vector of uncorrelated Brownian motions. Note in (2.2) the correlation functions
are supposed to be deterministic functions of the time but in practice it could be dependent of more
terms/ stochastic; it does not affect the following results. We will consider the following type of contract
throughout our numerical study: a down-and-out call on the first asset that pays pS1pT q´Kq` conditional
on none of the asset touching its barrier Bi on rt, T s. It is enough to consider this type of payoff since the
study is more focused on getting a good approximation of the probability of exit on rt, T s rather than on
the payoff. Unfortunately, there is no closed-form formula for the price of such contracts even under the
simpler Black-Scholes model but we refer to [7] (annex) for a whole table of such prices for a wide range
of contracts.

2.2 Simulation and naive pricing

For the same reasons as the ones outlined in Chapter 1, we do not consider a Milstein simulation of
the stochastic system (2.1) since this is often an unrealistic approach that requires to know about partial
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derivatives of the σ vector and requires simulation of the Levy areas (see [13] pages 10-11). We instead
simply use (1.2.1) for each of the simulated assets which preserves the rate of strong/weak convergence of
the total simulation.
The (not discounted) payoff for the down-and-out call contract on the first asset therefore reads in the
naive setting:

EppS1pT q ´ Kq`1EsPrt,T s s.t SjpsqăBj @jPt1,..,nu «
1

N

N
ÿ

i“1

pŜ∆t,1
i pT q ´ Kq`1

EsPrt,T s s.t Ŝ∆t,j
i psqăBj @jPt1,..,nu

(2.4)
where Ŝj,∆t

i designs the simulated i-th path of the j-th asset. The results we outlined in 1.2.1 and 1.2.2
still hold for this procedure. For the simulation of the paths, we still take ∆t “ 1

365 for all of the assets
and use N “ 100000 paths. The first derived numerical results are for 3 assets with, Siptq “ 100, T ´ t “ 1
year, ri “ 0.05, K “ 100, σi “ 0.4, Bi “ 80 and ρi,j “ 0.5 if i ‰ j. As shown in [7] (p.19), the benchmark
price is equal to 7.60. We plot an histogram obtained with 500 realizations of the naive procedure with
the above parameters:

Figure 2.1: Naive price obtained with Monte-Carlo, mean price of 8.10

As we can see, we encounter the very same phenomenon outlined in 1.2.4. The naive procedure underesti-
mates the probability of ones of the asset getting knocked-out and we show that this bias increases when

the mean of the quantities uiN “
logp

Siptq

Bi
q

σi

?
∆t1

(where ∆t1 is the monitoring period that is greater or equal than

the simulation period ∆t) increases by pricing the same contract with Bi “ 95: the benchmark price is
0.77 and we get the following price histogram:
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Figure 2.2: Naive price obtained with Monte-Carlo, mean price of 1.12

This bias again increases when K decreases. This happens because roughly speaking the proportion of
path breaching their barrier and ending above the barrier vector B increases which means there is a higher
margin for error. Again we need techniques that allow us to take into account this probability of exit
between every interval of the form rj∆t1, pj ` 1q∆t1s. The difficulty that arises in this situation is, unlike
for the single asset case, that the correlation structure has to be taken into account. More specifically, if
two assets Si and Sj have a correlation ρ constant on rk∆t1, pk`1q∆t1s then the probability of any of them
getting knocked-out on this time interval is different than the one under correlation 0 i.e. if the assets were
independent. Consider the following notations (we will use those notations again later):

Eiprk∆t1,pk ` 1q∆t1s, Biq “

!

The i-th asset breaches its barrier Bi

during rk∆t1, pk ` 1q∆t1s, knowing the values of Si at the two endpoints
) (2.5)

If there is no confusion on the interval of time rk∆t1, pk ` 1q∆t1s and the level of the barrier Bi we will
simply write Ei. Then, we write:

P ρpEi Y Ejq (2.6)

as the probability of at least one of the assets Si or Sj getting knocked-out on rk∆t1, pk ` 1q∆t1s if we
suppose they have correlation ρ on this interval of time. What we said earlier is that under the assumption
ρ ‰ 0 on rk∆t1, pk ` 1q∆t1s we generally have:

P ρpEi Y Ejq ‰ P 0pEi Y Ejq (2.7)

To see this, one can of course think of the pathological case where the assets would be correlated with
ρ « 1. In this case we simply get:

P ρpEi Y Ejq « P pEiq ‰ P 0pEi Y Ejq (2.8)

in general. Of course this is true for every value of ρ that is not 0. This in particular means that if we think
about the Brownian bridge technique outlined in 1.3.1, then we cannot adapt it easily in this situation if
the correlation is not zero. If the correlation is zero, we can write

P 0pEi Y Ejq “ P pEiq ` P pEjq ´ P pEiqP pEjq (2.9)
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and therefore we can compute analytically the latter equation since every P pEiq and P pEjq are given
by (1.15) (given there is a geometric Brownian motion part in the volatility terms of Si and Sj). This
generalizes for more than 2 assets because the probability of any of the asset getting knocked-out will
ultimately simplify to terms that can be directly computed using (1.15). However, in the general case
where the correlation matrix differs from the identity matrix, the Brownian bridge method cannot be used
to provide unbiased estimation of the price and we need other ways to compute it. Below we show how

evolves P ρpEiYEjq when the initial and terminal values of Si and Sj are

ˆ

100
100

˙

on a one day interval, and

when the volatilities are constant equal to 0.4 with r “ 0.05 for both of the assets. We also set B “

ˆ

98
98

˙

:

Figure 2.3: Probability of exit with correlation

2.3 Removing the bias in the multi-asset case

2.3.1 The copula method

A way to get the price of those contracts is given in [7]. All the results that follow are from this article.
The copula method introduced here does not assume anything more about the simulation procedure or the
coefficients in (2.1) than the assumptions we already provided. This method gives up on trying to derive
an unbiased estimator of the option price and rather derives two biased estimators that bound the option
price and converge towards it. This method is based on the following result from [7] (Theorem p.7) we
recall here:

Theorem 7. Let A1, ..., An be events in a probability space such that P pAiq “ ai, i P t1, ..., nu. Then we
got the Fréchet’s bounds for the probability of the intersection of those events:

maxr0,
n

ÿ

i“0

ai ´ pn ´ 1qs ď P pA1 X ... X Anq ď min
i“1,..,n

ai (2.10)

If we think of the events Ei defined above, what we really want is to get those bounds for the probability
that none of the paths corresponding to the assets Sj where j P t1, nu gets knocked-out on rt, T s (which
would be what to plug in the Brownian bridge method if we knew how to compute it). This probability is
given by (for n assets on a time interval corresponding to the monitoring period):

P pYN
i“1Eiq “ P pXN

i“1Eiq (2.11)
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Therefore applying 2.10 to (2.11) yields the following equation:

maxr0,
n

ÿ

i“0

P pEiq ´ pn ´ 1qs ď P pXN
i“1Eiq ď min

i“1,..,n
P pEiq (2.12)

Now let

PLprk∆t1, pk`1q∆t1s, Spk∆t1q, Sppk`1q∆t1q, Bq “ maxr0,
n

ÿ

i“0

P pEiprk∆t1, pk ` 1q∆t1s, Biqq´pn´1qs (2.13)

and

PU prk∆t1, pk ` 1q∆t1s, Spk∆t1q, Sppk ` 1q∆t1q, Bq “ min
i“1,..,n

P pEiprk∆t1, pk ` 1q∆t1s, Biqq (2.14)

design the lower and upper bounds for the probability of not getting knocked-out for the process S ( nˆ 1
vector) between time rk∆t1, pk ` 1q∆t1s that corresponds to a monitoring period, with lower barriers B (
n ˆ 1 vector). To simplify the notations, we will write PLpS, k∆t1q and PU pS, k∆t1q to refer to (2.13) and
(2.14) when there is no confusion about the other parameters. Now if we let tŜ∆t

i ui“1,..,N be the simulated
sample of (2.1) using Euler-Maruyama and with M monitoring points, we define the lower biased estimator
of the price of the option (not discounted) to be

EL “
1

N

N
ÿ

i“1

`

pŜ∆t,1
i pT q ´ Kq` ¨ 1

EsPrt,T s s.t Ŝ∆t,j
i psqăBj @jPt1,...,nu

˘

ˆ

M´1
ź

k“0

PLpŜi
∆t
, k∆t1q (2.15)

and the upper biased estimator (not discounted) to be:

EU “
1

N

N
ÿ

i“1

`

pŜ∆t,1
i pT q ´ Kq` ¨ 1

EsPrt,T s s.t Ŝ∆t,j
i psqăBj @jPt1,...,nu

˘

ˆ

M´1
ź

k“0

PU pŜi
∆t
, k∆t1q (2.16)

Note that the expressions (2.15) and (2.16) are correct since the simulated samples are piece-wise constants
on rt, T s. Thanks to theorem 2.10, we know that the true price of the option lies within those bounds.
When the monitoring period decreases, we expect the two estimators to converge towards one another
which will allow us to estimate the price of the option. In [7], Shevchenko showed on a variety of examples
that this convergence was indeed very fast in the sense that even a large monitoring period can yield
meaningful results when one uses for example the midpoint estimator given by:

EM “
EL ` EU

2
(2.17)

Moreover, Shevchenko also shows how to adapt those estimators in the case of other contracts such as
when some of the assets have two barriers. Truth is that this method is flexible and even though the
convergence of the biased estimators towards the price is slower when ρ gets close to 1, it is still very much
sufficient for the realistic cases one can encounter in finance. Another advantage of this method is that we
do not actually need to know the correlation between the assets to estimate the price. It means that even
if we need to know the correlation matrix to simulate the asset paths, we can do without it in the pricing
setting. We now price a call on the first asset conditional on none of 3 assets getting knocked-out with
∆t1 “ 1

365 , S
i
t “ 100, T ´ τ “ 1 year, ri “ 0.05, K “ 100, σi “ 0.4, Bi “ 80 and ρi,j “ 0.5 if i ‰ j. As

shown in [7] (p.19), the benchmark price is equal to 7.60. We get the following histogram of price:
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Figure 2.4: Copula price obtained with Monte-Carlo, mean price of 7.59

This time the average price is spot on. We do the same when Bi “ 95 for each of the asset and get the
following histogram of prices (benchmark price of 0.77):

Figure 2.5: Copula price obtained with Monte-Carlo, mean price of 0.78

Again there is no more bias. In fact the convergence stays very good even if we take bigger time steps
e.g ∆t1 “ 7

365 for example. We could take even bigger time steps but one has to keep in mind that in
real situations we deal with volatility functions that are not constant and taking bigger time steps might
introduce a bigger error due to the left-point approximation of the volatility for each time step. Nevertheless
we show that even for very pathological cases those estimators stay relatively stable when we increase ∆t1.
We set Bi “ 95 @i P r1, 3s and we now plot the evolution of the upper and lower copula estimators for
this contract as a function of the monitoring time step.
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Figure 2.6: Copula prices obtained with Monte-Carlo as a function of the time step

Even for a very ill case the price stays relatively stable with the monitoring time step ∆t1 so we would
expect this to hold as well for other contracts. For example, if we take Bi “ 80 and K “ 100 then the
same experiment shows:

Figure 2.7: Copula prices obtained with Monte-Carlo as a function of the time step

And we can see the lower and upper bounds are way closer as the monitoring time step increases as with
the previous case.

2.3.2 The barrier shifting techniques for the multi-asset case

In [5] (p.27), Gobet generalizes the barrier shifting method for more than one asset by stating that
”Contrary to the Brownian bridge techniques, we do not need to take into account the correlation between
assets to adjust the barriers” and then provides a range of numerical experiments to confirm this theoretical
choice. Namely every barrier is shifted as in 1.3.2 independently of if we pick the BAST and ABAST
technique and independently of the correlation between the assets (which makes sense since the barrier
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shifting techniques are more concerned about the normal increments rather than the initial and terminal
values for each time interval). We indeed implemented this and got the same results as in [5] (Table 6 p.29).
However and once again, the argument given in 1.2.4 seems to hold. Choosing a strike K “ 100 and a low
level for the barriers is not really relevant when we want to assess whether the barrier shifting techniques
perform well in the multi-asset setting. For example, let d “ 3 be the number of assets, Siptq “ 100,
T ´ τ “ 1 year, ri “ 0.05, K “ 10, σi “ 0.3, Bi “ 95, ∆t1 “ 7

365 and ρi,j “ 0.5. The benchmark price
is 3.14 and the BAST yields a mean price of 3.25 while the ABAST yields a mean price of 3.23. Those
method fails for this example. Nevertheless they still performs well on contracts that are not too exigent

in the sense that either the mean of the quantities uM,i “
logpSiptqq´logpBiq

σ
b

T
M

is quite low and/ or K is large

which affects the approximation as discussed in 1.2.4. Again, we set d “ 3 the number of assets, Si
t “ 100,

T ´ τ “ 1 year, ri “ 0.05, σi “ 0.3, ∆t1 “ 7
365 and ρi,j “ 0.5. We make K (index) and Bi (columns) vary

and we compare the mean price obtained over 50 repetitions using BAST (left), ABAST (middle) and the
copula method (right):

Figure 2.8: Comparison of prices obtained with BAST, ABAST and the copula method

BAST and ABAST perform well except when K is low and/or the barrier level is high (the mean of the
quantities uM,i decreases).

2.4 The MLMC copula estimator

This last section of this chapter shows that using the copula method in conjunction with the MLMC
method outperforms the performance of the copula method in itself. We first detail how to build this
estimator then show how to reduce its variance.

2.4.1 Construction of the MLMC copula estimator

Suppose we are still in the setting of this chapter and would like to price a down-and-out option with
a conditional payoff depending on the terminal values of the system (2.1). We have shown that the copula
estimator was a solid method to price this kind of contract. Nevertheless, the numerical analysis conducted
in 1.4 still holds and the overall cost of pricing those contracts using Euler-Maruyama and standard Monte-
Carlo for a given level of accuracy ϵ scales worst than Opϵ´3q (because the payoff is not Lipschitz). This can
become extremely painful because it implies that to reduce the variance by a factor 2 one has to multiply
the number of paths used in the Monte-Carlo pricing by a factor higher than 4 (factor whose exact value
is contract-dependent). Therefore, and if we can apply theorem 6, the MLMC setting seems particularly
appealing in this context.
Suppose we want to price a contract of this type with maturity T. As before, let M “ 2 and ∆tl “ T

2l
the

time step at level l. We define Y0 to be the mid-point copula estimator at level zero for this contract, and
let for l ą 1 Yl be the difference between the mid-point copula estimator at resolution l and at resolution
l ´ 1. Namely, we can write:

YlpŜ
∆tl , Ŝ∆tl´1q “ EM pŜ∆tlq ´ EM pŜ∆tl´1q (2.18)
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where Ŝ∆tl and Ŝ∆tl´1 are simulations of the system (2.1) using Euler-Maruyama with time step ∆tl and
∆tl´1 for the same sampled Brownian motions vectors as shown in (1.26) and (1.25) (every corresponding
component of the vector W∆tl,Q and W∆tl´1,Q are sampled this way). The mid-point MLMC copula
estimator is then:

Y “

L
ÿ

i“0

Yl (2.19)

Of course, we still need to get L and the number Nl of paths per level. This is done following the exact
same procedure as the one in 1.4.3 namely using pilot runs for each level. This pricing method will converge
towards the true value of the option if we can satisfy the hypothesis outlined in theorem 6. To show that
this method indeed improves the computational time for a desired level of accuracy ϵ fixed at 0.25 we
provide a table that outlines the ratio between the computational time using this method and the standard
method of section 2.3.1. We take three assets with σi “ 0.4, ri “ 0.05, ρi,j “ 0.5 @i ‰ j, Siptq “ 100,
T ´ t “ 52 weeks and we make the strike (index) and the barrier levels (index and we suppose them equal)
vary:

Figure 2.9: Ratio between the pricing time using the standard Copula method and the modified MLMC
Copula method

As shown, this method outperforms the standard method by a significant margin. Again this ratio seems
to be a function of the strike K and the barrier levels Bi.

2.4.2 Variance reduction of the MLMC copula estimator

Finally, we show here that using MLMC and the copula method together also allows for further variance
reduction for the same computational time. In 1.4.3 of chapter 1, we slightly modify the default estimators
by using mid-points for the coarse paths using a Brownian bridge construction. While this works in this
particular case for the Brownian bridge estimator (1.17) and (1.18) because then the relation:

EpY f
l´1q “ EpY c

l q (2.20)

where Y f
l is the fine estimator at level l ´ 1 and Y c

l is the coarse estimator at level l is satisfied for l ě 1,
it cannot be done for the copula MLMC estimator since adding points in such a fashion makes El and EU

in the coarcer levels converge faster towards the true value and therefore (2.20) is no longer satisfied. We
therefore refer to [14] who shows that using antithetic paths allows for variance reduction of the MLMC
estimator (in a setting that is quite general). Namely for a level l, once the fine and coarce Brownian
paths Wl,1 and Wl´1 are built using (1.26) and (1.25), we construct another fine Brownian path that is
the reflection of the original fine path at every odd point (obtained by swapping every increment after the
first one):

W i
l,2pj∆tlq “

#

W i
l,1pj∆tlq if j is even

W i
l,1ppj ´ 1q∆tlq ` Zj`1 if j is odd

(2.21)
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and we do that for every asset Si, i P t1, ..., nu. This gives us a collection of paths S∆tl,1, S∆tl,2 and S∆tl´1

Then the estimator at level l ě 1 is modified to be:

YlpŜ
∆tl,1, Ŝ∆tl,2, Ŝ∆tl´1q “

EM pŜ∆tl,1q ` EM pŜ∆tl,2q

2
´ EM pŜ∆tl´1q (2.22)

Figure 2.10: A fine path and its reflected path obtained by swapping Brownian increments

Those new estimators Yl are valid because equality (2.20) is respected. To show how the variance is
reduced, we conduct the same experiments as in the last subsection:

Figure 2.11: Ratio between the pricing time using the standard Copula method and the modified MLMC
Copula method with variance reduction

This shows that this new MLMC estimator performs better than the one in the last subsection for all the
range of contracts tested here.
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Chapter 3

Pricing Barrier contracts using
pre-processing

This chapter presents an alternative to pricing barrier contracts in multi-dimension. We start by giving
a contextualization of the problem then show how to approach probabilities of exit on a time interval by
solving an (convex) optimization problem. We use this to build a 2 assets contract-specific surface which
allows us to price the latter in the case of assets following the Black-Scholes dynamics. We then show how
to adapt this to contracts who follow more general volatility dynamics and conduct in-depth analysis of
this numerical method. Finally, we discuss how this method can be adapted for more than two assets and
give axes of research.

3.1 Contextualization of the problem

We have seen in the last chapter that the copula method was a fast and reliable method to price
multidimensional barrier contracts. However this method suffers some performance drawbacks because
one needs to derive a lower and upper bound on the price of the contract. Also, this method does not allow
the user to get some useful metrics such as the average crossing time of the asset and does not allow for a
path-by-path analysis. Therefore, we would like to find another way to estimate the price of such contracts
that allows for this and reduce the computing time. The method we will develop in the following sections
can be seen as an extension of the Brownian Bridge method in the multidimensional case. As outlined
before, we will start by considering a simplified case of (2.1) and will build on complexity. Specifically,
suppose n “ 2 and the two assets follow a geometric Brownian motion with constant correlation coefficient
on rt, T s:

d

ˆ

S1
t

S2
t

˙

“

ˆ

r1S1
t

r2S2
t

˙

dt ` Σ

˜

σ1S1
t dW

1,Q
t

σ2S2
t dW

2,Q
t

¸

(3.1)

where Σ is the Cholesky decomposition of the constant correlation matrix

ˆ

1 ρ
ρ 1

˙

(3.2)

We will focus on a down-and-out call with strike K on the first asset than pays pS1pT q ´ Kq` conditional
on none of the assets breaching their constant barrier on [t,T] but the following reasoning can be adapted
to other type of payoffs.
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3.2 Approximation of the probability of exit

3.2.1 Volatility equal to 1

In this section, we use the notations defined in section 2.2. We namely want to approximate (2.6) given
an interval of time rk∆t1, pk ` 1q∆t1s and initial and terminal values of the process (3.1) on this interval.
What follows is entirely taken from [15]. To do this we will approximate the probability that both assets
get knocked-out on this interval then use the relation:

P ρpE1 Y E2q “ P pE1q ` P pE2q ´ P ρpE1 X E2q (3.3)

Suppose as of now that both volatility functions are equal to 1. Denote by

X “

ˆ

X1
t

X2
t

˙

(3.4)

the logarithmic values of the assets on rt, T s. The process X follows a standard Brownian motion on rt, T s

whose drift is given by applying the Girsanov’s theorem on S. If the process S is simulated perfectly
through (3.1) then there is an equivalence between simulating S or X but for a maximum of generality
we will in our simulations use Euler-Maruyama to simulate (3.1) and then simply take the logarithmic
vector to get X. We do not detail the construction of the approximation (see [15] Section 2 pages 27-72)

to not introduce repetition but we give the necessary simulation steps. Let K “ ppΣΣT q´1q
1
2 and this is a

symmetric matrix of the form

K “

ˆ

k1 k2
k2 k3

˙

(3.5)

If we denote by x P R2 the values that takes the process X at time k∆t1, by y P R2 the values it takes at

time pk ` 1q∆t1 and by c “

ˆ

c1
c2

˙

“

ˆ

logpB1q

logpB2q

˙

the value of the barriers, then we define the new vectors

x1 “ Kx and y1 “ Ky and we define two hyper-planes that correspond to the boundaries of the open set
([15] p.38) :

F “ pKx, x P Dq (3.6)

where D is
D “ ppx1, x2q, x1 ą c1, x2 ą c2q (3.7)

Those equations are given by
k3z1 ´ k2z2 “ c1pk1k3 ´ k22q (3.8)

´k2z1 ` k1z2 “ c2pk1k3 ´ k22q (3.9)

Now we denote by J1 (resp. J2) the points P R2 that satisfy equation (3.8) (resp. (3.9)). The optimization
problem we have to solve is in two parts ([15] p.46):

• Find
upx, y, cq1 “ inf

ϕ1PJ1,ϕ2PJ2
p||x1 ´ ϕ1|| ` ||ϕ1 ´ ϕ2|| ` ||ϕ2 ´ y1||q (3.10)

and
upx, y, cq2 “ inf

ϕ1PJ2,ϕ2PJ1
p||x1 ´ ϕ1|| ` ||ϕ1 ´ ϕ2|| ` ||ϕ2 ´ y1||q (3.11)

• Take the minimum of those quantities upx, y, cq.
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In [15] (Lemma 2.2.1 p.53), it is proven that the two problems (3.10) and (3.11) are convex in the variables
ϕ1 and ϕ2 which makes this optimization quite quick to perform as well with admitting a unique solution.
Now the approximation of the probability that both components of X get knocked-out on rk∆t1, pk`1q∆t1s

knowing initial values x and terminal values y is given by ([15] p.41) :

ppx, y,∆t1, 1, 1, c1, c2q “ expp´
upx, y, cq

∆t1
q (3.12)

assuming of course that the initial values of x and y do not imply they have both crossed their barriers (in
this case we set ppx, y,∆t1, 1, 1, c1, c2q “ 1).

3.2.2 Different volatility

When the volatilities in (3.1) are no longer equal to 1 but are equal to σ1 and σ2, we need to adapt
the problem. Intuitively a Brownian motion with volatility σ will have normal increments with standard
deviation σ, so that re-scaling the real value axis by 1

σ gives a standard Brownian motion. Whence, a
Brownian motion that has an initial value x and a terminal value y over rk∆t1, pk ` 1q∆t1s with a constant
barrier c1 and a volatility σ can be seen as a standard Brownian motion with initial value x

σ , terminal value
y
σ and barrier level c1

σ over this interval. This means that if X1 has volatility σ1 and X2 has volatility σ2

then we only need to re-scale x1, y1 and c1 by 1
σ1 and x2, y2 and c2 by 1

σ2 and then use 3.2.1 to get (3.12).

3.2.3 Limitations of this method

Using the above, it is theoretically possible knowing Σ to price a contract whose underlying assets follow
the dynamic (3.1). However and despite the convexity of the optimization problem this is way too slow for
real applications. Using an industry standard number of path equal to N “ 100000 and using a monitoring
period of say ∆t1 “ 7

365 roughly yields for a one year contract with 2 assets 2 ˆ 52 ˆ N=107 optimizations
of this sort to perform. On our machine (8 ˆ Intel® Core™ i5-1155G7 Processor) this optimization takes
approximately 5 ms to perform which means it would take approximately 105 s for one contract. Obviously
this is not realistic and this method cannot be applied in this crude form: we therefore need to think of
other way to proceed.

3.3 The correlation surface

In this section we construct a surface that uses last section and the law of Large Numbers. We first
build that surface for specific contracts then propose a transformation that allows to use one surface for
a wide range of contracts. Finally, we show that this new method behaves very well even for problematic
contracts and discuss some of the shortcomings of this method and discuss what could possibly be done to
overcome them.

3.3.1 On a single interval

Suppose once more the assets follow (3.1) and that we sit on the time interval rk∆t1, pk ` 1q∆t1s. The
law of the vector X “ log(S) at pk ` 1q∆t1 knowing what values X takes at k∆t1 is given by:

Xpk`1q∆t1 |Xk∆t1 ãÑ Np

˜

X1
k∆t1 ` pr1 ´ σ1

2

2
q∆1

t

X2
k∆t1 ` pr2 ´ σ2

2

2
q∆1

t

¸

,Σ
?
∆t1q (3.13)

Now, this means that we can sample points from the above distribution (3.13). Sampling enough points
in R2 allows us to find desirable quantities but in particular allows us to use the transfer theorem for any
function. Let us consider the following function:
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fpX,Y q “
P ρpE1 Y E2q

P 0pE1 Y E2q
pX,Y q (3.14)

where the vectors X and Y design the initial and terminal values of the process (3.1) given some realization
of the process. In particular, f should be understood as ”the ratio between the probability of exit under
correlation ρ and zero of the process S given initial and terminal values on the interval rk∆t1, pk ` 1q∆t1s”.
The transfer theorem then states if we are given some initial values X that:

EpfpX,Y q|Xq “

ż

R2

fpX, yqdP pyq (3.15)

where P is the density given in (3.13). Of course, to get (3.15) we could use a 2 dimensional-grid or simply
(which is better for higher dimensions) sample points with (3.13) and then use Monte-Carlo to get an
approximation of (3.15). The function pX,Y q ÝÑ fpX,Y q is equal to 1 if any component of X or Y is
below the barrier vector B which makes the latter attractive. Now that we get a good estimation of (3.15)
we can use the law of Large Numbers to state that on average the function Y ÝÑ P 0pE1 Y E2qpX,Y q ˆ

EpfpX,Y q|Xq should be a good approximation of the function Y ÝÑ P ρpE1 YE2qpX,Y q. This is what we
will do to estimate the price of the option.

3.3.2 The contract-specific surface

Let ρ “ 0.5 through this section. Suppose again that the assets dynamics follow (3.1) and suppose we

got a constant barrier level B “

ˆ

B1

B2

˙

for the assets for a down-and-out call on S1 with strike K, maturity

T and monitoring period ∆t1. We create a grid of ”initial values” in the following way:

Θ “ tpX1, X2q P rB1,8rˆrB2,8ru (3.16)

Of course numerically we replace rB1,8r by tB1, B1 ` step, ..., B1 ` K1 ˆ step and rB2,8r by tB2, B2 `

step, ..., B2 `K2 ˆ step where K1 and K2 can be taken as upper bounds of the price of the assets on rt, T s

using a standard deviation argument (or something else)) and ”step” corresponds to the resolution of the
grid. We then apply the procedure outlined in 3.3.1 for every point of this grid which gives a surface where
every point of this surface is the Monte-Carlo estimate of (3.15) for this initial value. Below we show a
specific surface where B1 “ B2 “ 90, σ1 “ σ2 “ 0.3, r1 “ r2 “ 0.05, S1ptq “ S2ptq “ 100, T ´ τ “ 52
weeks and ∆t1 “ 7

365 :
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Figure 3.1: Contract specific surface

As expected this surface is symmetric. We used N 1 “ 50 for the Monte-Carlo simulation for every point
in Θ which means we sampled 50 points in (3.13) and solved less than 50 optimization problems for every
X P Θ ( we recall that f “ 1 if any component of X or Y is below the barrier level B which means there
is no need to solve an optimization problem in this case). Because we want the quantity EpfpX,Y q|Xq

for every possible initial point X that the asset price can take in the Monte-Carlo simulations, we use a
standard interpolator from the scipy: RegularGridInterpolator. To extrapolate, we say that outside
of Θ the ratio is equal to 1 which is makes sense looking at the surface. To price the contract using the
surface we simulate our paths as with the naive pricing procedure and for every interval of every path we
compute P 0pE1 Y E2q for which there is a closed-form formula. Then we simply multiply the latter by
EpfpX,Y q|Xq for the initial values X at the left-hand of the time interval. The price of the contract is
then given by the formula:

ESC “
1

N

N
ÿ

i“1

`

pŜ∆t,1
i pT q ´ Kq` ¨ 1

EsPrt,T s s.t Ŝ∆t,j
i psqăBj @jPt1,...,nu

˘

ˆ DiscountpŜ∆t
i q (3.17)

where M is the number of monitoring points and N is the number of simulated paths and where

DiscountpŜ∆t
i q “

M´1
ź

k“0

P 0pE1 Y E2qEpfpŜ∆t
i pk∆t1q, Ŝ∆t

i ppk ` 1q∆t1qqq|Ŝ∆t
i pk∆t1qqq (3.18)

We choose a strike K “ 10 and the benchmark price for this contract is 16.70 (obtained using the copula
method from Chapter 2). We get the following histogram of price with our method and 50 repetitions:
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Figure 3.2: Histogram of prices. Mean price is 16.71

The mean price is spot on. Note also that obviously we do not need to re-calibrate the surface with K
changing.
Also, unlike the copula method, doing so allows us to compute other metrics such as the average crossing-
time of the barrier, etc.

3.3.3 From a contract-specific surface to a general surface

The last subsection shows that it is possible to get the price of a barrier option using this method.
However and from a practical point of view, having to calibrate a surface for every contract is prohibitive in
terms of computational time. Also, all the latter has been developed in the case where the assets follow the
dynamics given by (3.1). Usually practitioners use local volatility models or even stochastic local volatility
models for the asset’s dynamics. To overcome this and in the case where S1 has a volatility function
pt, xq ÝÑ σ1pt, xq and S2 has a volatility function pt, xq ÝÑ σ2pt, xq we could compute M correlation sur-
faces following 3.3.2 where each correlation surface corresponds to the spot-dependent volatility functions
x ÝÑ σ1pk∆t1, xq and x ÝÑ σ2pk∆t1, xq where k varies from 0 to M ´ 1 and ∆t1 is the monitoring period.
Even if this allows us to theoretically get the contract fair price it is computationally very expensive and
we see no plausible way to extend this when the volatility functions are no longer deterministic.
Suppose we are given a vector of initial values Spk∆t1q and a vector of terminal values Sppk ` 1q∆t1q for
the time interval rk∆t1, pk ` 1q∆t1s for the process S that has the dynamics on [t,T] given by (3.1) but
with volatility processes given by σ1

t and σ2
t that are general (deterministic or not). We approximate the

volatility functions on the interval rk∆t1, pk ` 1q∆t1s by their left values and we denote by σ1 and σ2 their
approximated values on this interval of time. To compute the probability that both components of the
process cross the barrier level vector B on the time interval we use the log-levels of the price and the barri-
ers as described in 3.2. However, the log-price dynamics of the assets over rk∆t1, pk`1q∆t1s is governed by
an arithmetic Brownian motion and is therefore not spot-dependent which means the probability of exit
over rk∆t1, pk ` 1q∆t1s as given in (3.12) is a function of the distance between the logarithmic value of S
and the logarithmic value of B. Also and as pointed out before, this distance does not necessarily have
to be the absolute distance but can also take into account the volatility of the assets on this time interval
as well as the monitoring period ∆t1. The standard deviation of S1 over this time interval being equal to
σ1

?
∆t1 and the one of S2 being equal to σ2

?
∆t1 we come with the following theorem:

Theorem 8. The probability of exit of S P ρpE1 Y E2q over the time interval rk∆t1, pk ` 1q∆t1s with
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barrier level B knowing initial and terminal values is equal to the probability of exit of a 2-dimensional
standard Brownian motion with barrier level 0, with same correlation matrix with initial values X “
¨

˝

logpS1pk∆t1q´logpB1q

σ1
?
∆t1

logpS2pk∆t1q´logpB2q

σ2
?
∆t1

˛

‚ and terminal values Y “

¨

˝

logpS1ppk`1q∆t1q´logpB1q

σ1
?
∆t1

logpS2ppk`1q∆t1q´logpB2q

σ2
?
∆t1

˛

‚ over the time interval r0, 1s.

Proof. Subsections (3.2.2) and (3.2.1) show that discounting the initial and terminal values x1 and y1 in

the optimization problems (3.10) and (3.11) yields the same exact solution: if x “

ˆ

logpS1pk∆t1qq

logpS2pk∆t1qq

˙

,

y “

ˆ

logpS1ppk ` 1q∆t1qq

logpS2ppk ` 1q∆t1qq

˙

, c1 “ logpB1q and c2 “ logpB2q then we have

ppx, y,∆t1, σ1, σ2, c1, c2q “ ppX,Y, 1, 1, 1, 0, 0q

Suppose throughout the rest of this section that r1 “ σ1

2

2
and r2 “ σ2

2

2
so that the log-process of (3.1) has

zero drift. This theorem is useful for us because it means that given a correlation matrix we only need to
build one surface for the process X with dynamics given by:

d

ˆ

X1
t

X2
t

˙

“ Σ

˜

dW 1,Q
t

dW 2,Q
t

¸

(3.19)

over r0, 1s and barrier level B “

ˆ

0
0

˙

. Given a grid

Θ “ tpX1
0 , X

2
0 q P r0,8rˆr0,8ru (3.20)

we discretize it numerically and we sample points according to the following distribution

X1|X0 ãÑ Np

ˆ

X1
0

X2
0

˙

,Σq (3.21)

for every initial value in discretized Θ and then compute the Monte-Carlo approximation of the ratio
function f under correlation 0 and ρ knowing this initial value. We therefore get a surface for this process
as shown below:
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Figure 3.3: General surface

We interpolate and extrapolate this surface as done previously for the contract-specific surface. Now if we
want to price a contract where the underlying dynamics are given by (3.1) but where we allow the volatility
functions to be more general than in the Black-Scholes setting and the barrier level to be time-dependent,
we proceed as described in 3.3.2 but we modify the discount function: if we denote by px, yq ÝÑ γpx, yq

the surface function we write for a simulated path:

DiscountpŜ∆t
i q “

M´1
ź

k“0

P 0pE1 Y E2qγpβpŜ1
i pk∆t1q, B1pk∆t1q, σ1

k∆t1 ,∆t1q, βpŜ2
i pk∆t1q, B2pk∆t1q, σ2

k∆t1 ,∆t1qq

(3.22)
where

βpx, y, z, tq “
logpxq ´ logpyq

z
?
t

(3.23)

is the ”normalization” function. This surface can virtually be used for any 2-dimensional process with
this specific correlation matrix and as long as the probability of exit over a time interval can be computed
using (3.2). Moreover this approach is fairly general and can be coupled with variance reduction techniques.
Below we give a table that compares the results and computing time we obtain with our technique against
the copula technique for different monitoring periods and barrier levels for down-and-out barrier contracts.
We take 2 assets with Siptq “ 100, ρ1,2 “ 0.5, T ´ t “ 52 weeks, ri “ 0.05 and σi “ 0.3. We make the
barrier levels vary (columns) as well as the strike level (index). Each cell is computed using 50 repetitions
and gives respectively the mean price, the standard deviation and the average time taken to sample the
path and compute the payoff:
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Figure 3.4: Statistics using the correlation surface method

Figure 3.5: Statistics using the copula method

As one can see this method performs fairly well for all the contracts considered and outperforms the copula
method in terms of speed; there is no need to compute two estimators with this method.
One could argue with the results above that the prices are spot on because ∆t1 is relatively small and so
for each time interval of every path we have P 0pE1 Y E2q « P ρpE1 Y E2q. The next graph shows how
the mean price evolves as ∆t1 increases with our method against one where we only use P 0pE1 Y E2q to
estimate the probability of exit on the intervals. We take 2 assets with Siptq “ 100, ρ1,2 “ 0.5, T ´ t “ 52
weeks, ri “ 0.045, σi “ 0.3, K “ 50 and Bi “ 90 for i P t1, 2u:

Figure 3.6: Price evolution with the time step using the surface correlation technique

The price computed with this method stays approximately the same when the monitoring time step changes.
To compare, the same experiment gives with the copula technique and the mid-point estimator the following
graph:
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Figure 3.7: Price evolution with the time step using the copula method

Because of this transformation, the surface we use to price those contracts only depends of the correlation
matrix. Specifically the volatility levels, barrier levels and monitoring period do not have any influence
anymore on the pricing; we use their left-hand approximations to compute the coordinates of the ratio
estimate on the surface through the function β. Therefore we can handle other dynamics for the assets:
local volatility, stochastic local volatility... with no more efforts than in the Black-Scholes case. We can
use different monitoring periods for different periods of the life-time of the contract and the barrier level
can also be time-dependent: all that matters is the relative distance spot-barrier i.e. the quantities uM,i.
The only quantity that can trigger issues are the drift functions: we will see in the next section how to
adapt the latter.

3.3.4 Discussion and extension

The main drawback of this method is that we need to calibrate this surface for every possible correlation
matrix which means we need to calibrate it for every ρ P r´1, 1s. Also, we said that this surface could
be used to price any contract when the underlying assets follow general dynamics in terms of drift and
volatility functions; while in practice this is true, in theory the drift functions should modify the way we
compute EpfpY,Xq|Xq. To finish with, we did all of the above with the 2 assets. How should one adapt
the above for more underlyings ? The next section details those issues and proposes solutions.

3.4 Beyond the correlation surface

3.4.1 Smoothing and interpolation

Suppose we have a surface as explained in 3.3.3 for a certain ρ. Because we use Monte-Carlo to get
estimates of (3.15) there is some noise in the estimates. Below is shown the estimates of the surface shown
in 3.3.3 for X1 “ 1 when X2 varies from zero to 3 and ρ “ 0.5:
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Figure 3.8: Variation of the estimates with X1 fixed and X2 varying

To get rid of the noise and prepare interpolation inter-surfaces, we use a Salgov filter. We plot the same
graph with the smoothed data on top of it:

Figure 3.9: Variation of the estimates with X1 fixed and X2 varying

To be able to price any contract for any correlation matrix (i.e. any ρ) we first build a surface for every
ρ P α “ t´1,´0.9, ..., 0.9, 1u with the same Θ grid every time. We smooth them using Salgov filter
then interpolate the surfaces along t´1,´0.9, ..., 0.9, 1u so that if we have any ρ P r´1, 1s we are able
to retrieve the corresponding surface and estimates. Of course this section only outlines the idea and a
way to proceed but one can think of many other ways to proceed using Machine Learning, other ways to
interpolate, thinner α... There is virtually no limit to the amount of surfaces one can compute and the
degree of accuracy (N 1) to do so because all of this computational time only has to be spent once and is
totally separate from the pricing. Below we show the same table as in the last subsection for ρ1,2 “ 0.45
where the surface estimates used in the pricing have been obtained through linear interpolation. We set
Siptq “ 100, ri “ 0.05, σi “ 0.3, T ´ t “ 52 weeks, and we make K (index) and the equal barrier levels Bi

(columns) vary:
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Figure 3.10: Pricing with linearly interpolated estimates for ρ “ 0.45

For the benchmark prices, we use the copula method:

Figure 3.11: Pricing with the copula method for ρ “ 0.45

The prices are sticking to the benchmark and this demonstrates the generalization and applicability of this
technique.

3.4.2 Offsetting the drift

In the last section, we have been elusive on the impact of the drift functions on the pricing by setting
this drift to zero for the logarithmic price process. Given an initial vector of values X we sample points
according to (3.21) which yields terminal values for a two-dimensional arithmetic Brownian motion with
zero drift which corresponds to the case where the two assets follow a log-normal distribution with drift

equal respectively to σ1

2

2
and σ2

2

2
using Ito’s lemma. This means that any estimates computed in the

last section 3.3.3 assumes that the assets drift is constant equal to the above on every monitoring period
rk∆t1, pk` 1q∆t1s. But if the first asset has a drift r1 and the second asset had a drift r2 on a time interval
of length ∆t1 then we have for S1 for example:

S1ppk ` 1q∆t1q

S1pk∆t1q
|S1pk∆t1q ãÑ lognormalppr1 ´

σ1

2

2

q∆t1, pσ1q2∆t1q (3.24)

which means we should sample points for the generic surface according to the following distribution (by
taking the logarithms in the above expression and using β):

X1|X0 ãÑ Np

˜

X1
0 ` pr1 ´ σ1

2

2
q

?
∆t1

σ1

X2
0 ` pr2 ´ σ2

2

2
q

?
∆t1

σ2

¸

,Σq (3.25)

to obtain our estimates. This differs of what we did since we sampled points for the generic surfaces

according to (3.21). In practice, the term pr1 ´ σ1

2

2
q

?
∆t1

σ1 is so small it can be neglected (with r “ 0.1,
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σ1 “ 0.3 and ∆t1 “ 7
365= 1 week it is equal to 0.035) when we estimate the ratio from the surface (the

pricing tables shown above in 3.3.3 show this technique still provides prices that are very close to the
benchmark ones). To take into account this drift, we do not modify the way the surfaces in 3.3.3 are built

but the way we look at them. By setting X11

0 “ X1
0 ` pr1 ´ σ1

2

2
q

?
∆t1

σ1 and X21

0 “ X2
0 ` pr2 ´ σ2

2

2
q

?
∆t1

σ2 then
we can refer to the vector of coordinates X 1

0 to estimate the probability of exit since X1 is obtained from
X0 using (3.21). It simply means we modify the transformation function in the following way:

βpx, y, z, t, rq “
logpxq ` pr ´ z

2
2
qt ´ logpyq

z
?
t

(3.26)

and use again (3.22) to price the option. To show how our pricing results are modified when doing the
latter compared with our methodology from 3.3.3, we set Siptq “ 100, ρi,j “ 0.5, T ´ τ “ 52 weeks,
ri “ 0.5, σi “ 0.3, K “ 50 and Bi “ 97. Then we plot the evolution of the price as a function of ∆t1 for
the price obtained using (3.26) and (3.23):

Figure 3.12: Adjusting the drift vs not adjusting the drift

Not adjusting for the drift when using (3.22) causes the computed price to deviate from the true price
(10.96) when ∆t1 increases but adjusting for the drift makes it stay at the same level regardless of the
monitoring time step. Note however that ri “ 0.5 is unlikely to happen in practice and for more general
volatility processes it is not recommended to have a large ∆t1 anyways.

3.4.3 The method in higher dimensions

So far we have developed this technique for two correlated assets. We have shown how to deal with
more general processes than the Black-Scholes one and have shown that this method is faster than the
copula method for the same level of accuracy. If we want to make this technique work for a number n
of correlated assets we need to adapt the above framework. The idea stays the same: given a correlation
matrix P P Rnˆn we create a grid Θ “ tpX1

0 , X
2
0 , ..., X

n
0 q P r0,8rnu, discretize it and for every point X in

the latter we compute an approximation of EpfpX,Y q|Xq where f is now

fpX,Y q “
P ρp

Ťn
i“1Eiq

P 0p
Ťn

i“1Eiq
pX,Y q (3.27)

Then using the β function and interpolation we should theoretically be able to price any contract with a
continuous barrier using the same procedure as in 3.3.3. To compute an approximation of P ρp

Ťn
i“1Eiq we

refer to [15] (pages 49-55); this is the same concept as the one developed in 3.2 but for vectors of n initial
and terminal values. Obviously and even though constructing those n-dimensional surfaces for every P
matrix is completely separate from the pricing aspect, there is an explosion of the computational time.
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Whereas in dimension 2 computing 20 of those surfaces is virtually enough to price any contract with 2
correlated Brownian motions (by interpolating the surfaces) this is not the case anymore for n assets. If

we restrict ourselves to correlation values in t´1,´0.9, ..., 0.9, 1u we can build roughly 21
npn´1q

2 correlation
matrix (minus the repetitions). Besides every one of those correlation matrix has its own grid Θ and every
estimate in this discretized grid is obtained solving N 1 optimization problems who take way longer to
perform than for the 2-dimensional case. Therefore trying to extend this method crudely for n correlated
assets is a bad idea. To extend this method in higher dimension we therefore propose two approaches.
The first one would be to find a way to parametrize the function f i.e find a good approximation of this
function in terms of ρ and the initial and terminal values X,Y and extend it for n ě 2. Because our
numerical experiments show this function is smooth in those parameters we believe it would be possible to
do so. A good approximation would allow to overcome those numerical issues when computing the ratio
estimates. A parametrization of the surfaces in 3.3.3 should also be possible thanks to their smoothness
which would lead to the same conclusion. The second approach is to approximates the probability of exit
P p

Ť

i “ 1nEiq by the one of the worst k performers with k ă n. By worst performers we mean the assets
with higher quantities uM : to approximate this probability use either the method developed in 3.3.3 or
a parametrization of this probability (or of f). Those approaches are not mutually exclusive and could
lead to faster, more accurate pricing while retaining the advantages of the latter method (price stable with
monitoring period, etc...).

3.5 A machine learning approach as an alternative

This last section proposes an alternative to what has been done before. Instead of approximating
the probability of exit P ρpE1 Y E2q by P 0pE1 Y E2qEpfpβpXq, βpY qq|βpXqq we will rather approximate
it by P 0pE1 Y E2qf̂pβpXq, βpY qq where f̂ is a fitted machine learning model that approximates f . To be
more specific, given a correlation matrix, we sample points according to the distribution (3.21) and use
those points as features for the model we want to fit. Then when we want to price a barrier contract on
underlyings sharing this correlation matrix we use this machine learning model to adjust the probability of
exit under correlation zero to get the one under correlation ρ. The Monte-Carlo payoff for a down-and-out
call therefore reads in this setting:

EML “
1

N

N
ÿ

i“1

`

pŜ∆t,1
i pT q ´ Kq` ¨ 1

EsPrt,T s s.t Ŝ∆t,j
i psqăBj @jPt1,...,nu

˘

ˆ DiscountMLpŜ∆t
i q (3.28)

with:

DiscountMLpŜ∆t
i q “

M´1
ź

k“0

P 0pE1 Y E2qf̂pβpS∆t
i pk∆t1qq, βpS∆t

i ppk ` 1q∆t1qqq (3.29)

This alternative to the surface technique has some advantages: the use of a machine learning model allows
for a faster calibration given the model captures the distribution well. It also allows us to ignore the
influence of the drift since the function f is not drift-dependent (since the impact of the drift is entirely
captured by the terminal point Y ) even though X ÝÑ EpfpβpXq, βpY qq|βpXqq is.

3.5.1 Features and calibration

As mentioned before, the essential features of the model should be the initial vector X and terminal
vector Y . We randomly sample points X using an uniform distribution over r0, 6s2 which is the standard
image interval for β. Then for each point X we sample Y using (3.21). To speed up and improve the
quality of the fit, we compute for each pair of initial and terminal values the quantities P pE1q, P pE2q and
P 0pE1 Y E2q. We pass P pE1q and P pE2q as features for the model. If either P pE1q ă α or P pE2q ă α
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with α arbitrary small (say 10´3) then we can reasonably assume that P 0pE1 Y E2q « P ρpE1 Y E2q and
remove this pair of initial/terminal values from the training sample. We do this as well for any sampled
point Y that has a component at least below the barrier. We use the package scikit learn for the models
calibration.

3.5.2 Which model to use ?

The fitted model should be accurate but perhaps most importantly should be fast to make new predic-
tions. To assess the quality of the model we can sample points as with the training set and then compare
the predictions to the test target values. Also the model should correctly capture the dynamics of the
ratio distribution which means that the accuracy of the predictions should stay relatively stable when X
changes. We found that using a neural network yielded the best results; while a KNN algorithm might
seem a better choice because we are not limited in the number of points we sample to fit the model its
prediction time makes it a prohibitive choice. Below we show how a neural network trained with a dataset
of 300000 samples approximates Y ÝÑ fpp1, 1q, .q:

(a) Actual values of f (b) Predicted values of f

Figure 3.13: Comparison of Actual and Predicted Values

Of course, it is possible to achieve better results using other algorithms, or using separate neural
networks for different partition of the discretized image space of β. On a test set build in the same fashion
as the training set, the latter model performs very well in term of prediction quality as the below histogram
shows with an error that appears centered around 0:
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Figure 3.14: Predicted values vs actual values of f

3.5.3 Pricing results

We use this algorithm to price the same contracts as with the correlation surface technique obtained
in 3.3.3. Namely, we take 2 assets with Siptq “ 100, ρ1,2 “ 0.5, T ´ t “ 52 weeks, ri “ 0.05 and σi “ 0.3.
We make the barrier levels vary (columns) as well as the strike level (index) and get the table below. We
take a large monitoring time step ∆t1 “ 26

365 so that the prices we compute are different from the ones we
would get discounting only with P 0pE1 Y E2q for each time step of each simulated path:

Figure 3.15: Pricing using a neural network

The benchmark table is given in 3.3.3. We can see this method performs fairly well for most of the entries;
the relatively large differences in the last columns is mostly due to the large values of uM,i. Also as outlined
in 3.4.2 another transformation needs to be done to offset the drift. However using a fitted machine learning
model as detailed above should allow us to price a contract correctly no matter the drifts function for the
asset.
The results show this method is also general and applicable in fairly generic situations. To be able to
price any contract for any ρ P r´1, 1s we can fit several machine learning algorithms for a discretized range
of correlation value or fit a general machine learning model for sampled points in the β space where ρ
is randomly sampled in r´1, 1s and used as a feature. Doing the latter allows to only fit one machine
learning model to price any contract but the quality of the fit might get worse since the model does not
learn specifically for a given correlation value; therefore when we were sampling random points to fit
the algorithm before one might need to be more careful in constructing the training set to make sure the
accuracy of the model is somewhat preserved. However this is an interesting approach: finding an adequate
training set to minimize the test error across all correlation values would allow for an extension of this
solution to higher dimensions while keeping a low training time.
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Conclusion

The first chapter of this master’s thesis addressed the single-asset case. We introduced the Brownian
bridge techniques and the barrier shifting techniques, and we demonstrated that the former was more
reliable than the latter. Building on the concepts presented in [10], we illustrated that combining the
Multi-Level Monte-Carlo paradigm with Brownian bridge techniques enabled rapid and accurate pricing.

The second chapter outlined the copula method and evaluated the performance of barrier shifting
techniques in the context of multi-asset scenarios. We implemented Multi-Level Monte-Carlo estimators
using the copula method and observed a significant increase in computational time.

In the final chapter, we utilized the approximation technique for exit probabilities from [15] to con-
struct mathematical models for pricing barrier contracts on assets through the application of the law of
large numbers. We provided a detailed exposition of this alternative technique and discussed potential
extensions, particularly in multi-asset scenarios. Additionally, we explored the potential application of
machine learning techniques to this problem and considered its potential extensions.

The aim was to comprehensively investigate various techniques and methodologies for pricing barrier
options across different asset scenarios, providing insights into both traditional and innovative approaches.
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