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Abstract

Electricity pricing in a liberalised market is essentially based on matching supply and demand in
a market clearing process. The supply curve, based on an increasing aggregation of the marginal
costs of various means of electricity generation, induces a dynamism in prices that depends on
the competition between these generation units. Therefore, how can the true marginal cost of
production be defined in a system dominated solely by hydraulic generation? In other words,
what value is given to the water stored and dedicated to electricity generation? In this thesis
we elaborate on how a hydropower marginal value of water called Water Value is defined when
considering no thermal units but availability to import or export power. Several general aspects
of electricity markets and a possible stochastic modelling of the Day-Ahead price are given before
defining Water Value and its impact on the functioning of the market in hydro-dominated countries.
The results are tested numerically on data from Norway, a country that embodies this situation.
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Introduction

Among the world of commodities, electricity remains relatively unique. Indeed, one of its funda-
mental characteristics is its inability to be stored in large quantities. This lack of storage has thus
entailed typical behaviors in this market. Firstly, many traditional strategies and risk manage-
ment techniques fail with this commodity due to lack of storage capacities of the underlying asset
compared to stock or bond market. In addition, numerous physical factors such as energy transfer
grid, transmission lines and availability of production sites have generated additional constraints
that have a truly unique impact on prices. Furthermore, this market has developed three specific
characteristics that many models attempt to reproduce: seasonality, that can be annual, weekly
or even daily, which can be simulated by Wavelet-based modelling, see for example [2] and [3], the
effects of spikes whose causes are multi- factorial such as congestion in transmission lines [4] and
very sharp mean reversion behavior which appears generally after a sudden price peak [5]. Since
the creation of liberal electricity trade, these parameters have been studied in numerous research
articles, but those characteristics make all the analyses fairly complex since few techniques such as
Black-Scholes modelling cannot be applied to this type of asset essentially because of the violation
of the geometric Brownian motion hypothesis of the underlying.

Within this framework of scientific research on the modelling of electricity markets, there is a
very specific type of market, only a handful of countries depend on today: namely hydro- dominated
markets, i.e. where electricity production is essentially reliant on hydraulic units (run-of- river,
hydro-reservoirs and Pumped Storage Power Station). In most countries, such as France, the
United Kingdom and Spain, the coordination of hydro generation is often based on price indicators
and frequently complements other means of generation. In these countries, hydro-assets do not
drive prices, but adapt to them. On the other hand, in Norway, which is the reference country
for this thesis, the electricity production is based on a strategy that relies heavily on water. The
study of prices is thus more complex because additional meteorological factors, such as quantity of
water that the country possesses and expects to receive over the study period are less foreseeable.
To understand how water prices evolve, electricity producers need to take into account what the
value of stored water against production strategy and the market is. Researchers and professionals
refer to this concept more commonly as Water Value. The problem lies in the fact that there is
no single interpretation of Water Value, and it all depends on the researcher’s approach to the
problem.

Nevertheless, two main definitions seem to stand out in the report [2]: profit-based water
value, which corresponds to a variation in the company’s profit for a marginal variation in its
water resources, and cost-based water value, which is defined as the marginal cost of substituting
a water resource with a thermal resource. The latter provides us with important information as it
potentially links marginal production costs to prices observed on the markets. Several approaches
have already been considered for calculating water value, as listed in the following document [6]
based on estimation using a stochastic process, Linear Programming or even Mixed-Integer Linear
Programming Algorithms.

Norway is divided into five zones Oslo (NO1), Kristiansand (NO2), Trondheim (NO3), Tromso
(NO4) and Bergen (NO5). The market is handled by Nord Pool, a power exchange that facilitates
the trading of electricity in the Nordic and Baltic regions. The Nord Pool Group was established in
1993 and has since become a key player in the energy industry, providing transparent and efficient
electricity market solutions.

This paper is organised in the following manner. Chapter 1 evolves around a global description
of the main features of electric market to give the reader an overview on how this market is
organised. Since this thesis mainly focuses on hydraulic production systems, generation units are
described and an analysis of Norway’s situation is presented with quantitative statistics of the five
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bidding zones. In Chapter 2, an initial price model is built, attempting to reproduce the behaviour
of day-ahead prices directly from NordPool [7] data. The analysis is carried out more specifically
for 2017, with a focus on the NO1 and NO4 zones, which globally reflect the two price behaviours
in Norway. Thus, a deterministic part of the prices is first built with the analysis of a weekly trend
and a theoretical part to finally add a stochastic part built from an ARMA process on the residuals.
Finally, Chapter 3 focuses on a supply and demand model based on the concept of water value.
After a general description of this type of model for prices and types of hydraulic production, a
quantitative analysis is carried out to construct the demand curve using stochastic processes and
a supply curve model is constructed based on influencing factors such as CO2 prices and carbon
emission contracts to determine the factors influencing the formation of the day-ahead price. At
the end, the concept of water value is analysed in more detail with a comparison of existing models,
the situation in Norway, and modelling using optimisation solutions to market problems is carried
out with the aim of recreating price dynamics in the NO1 zone.
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Chapter 1

Electric spot prices

This part is dedicated to a global description of how electricity markets work. Besides, there are
similarities between equities and bonds market, electricity is a special commodity whose interest
has been gradually increasing since the Trade Liberalisation in the early nineties. For a better
understanding on how pricing and trading are organised, behaviour of this commodity and how
the market is built to answer requirements of consumers and producers must be analysed. That is
why the first part presents some features of transport and storage and also the two main types of
market, the Intraday and the Day-Ahead Market. Secondly, since this report focuses on electric
hydrogeneration prices, a presentation of the hydro modelling supply plants is given and how they
impact the behaviour of the market. Finally, a brief description of the case of Norway is underlined
and statistical facts of Day-Ahead price models are presented.

1.1 Global Features and Market Microstructure

One key point when analysing the commodity sector is to take the physical constraints into account.
Indeed, electricity is highly concerned because it has to be delivered at a specific time and given
area, while one has to maintain a strict balance between supply and demand on the grid at all times.
Some components, such as storage plants and transmission infrastructures, must be integrated into
the market for the success of the consumer delivery contracts. Indeed, they ensure the foundations
of well- functioning of the electricity market [8, Part 2].

1.1.1 Transmission

Like many raw materials, very often, electricity is not consumed where it is produced. A Transport
network is needed to provide the link between the production facilities and the consumers [9]. One
must bear in mind that electric current is a movement of electrons in a network, generally copper,
between two areas experiencing different potential and the current takes all possible roads from
one point to another. This phenomenon belongs to well-known physical laws, namely Kirchhoff’s
laws.

Definition 1.1.1 (Kirchhoff’s laws). Kirchhoff’s first law or Kirchhoff’s junction rule states that,
for any node in an electricity grid, the sum of the currents flowing out of the node is equal to the
sum of currents flowing into it. Note that the current is signed (positive or negative depending on
the orientation rule) reflecting if it goes into or out of a node, we have the following mathematical
formulation:

N∑
n=1

In = 0 (1.1.1)

where N is the number of branches connected to the node.

Transmission limits may be exceeded when the demand is very high and cannot be contained
by supply leading to network breakdown. To enable liberalised electricity markets to open up,
operators have had to define a number of rules both to prevent overloading and to ensure the
stability of the network. According to [10][part 2.1.2], the market was organised by Transmission
system operators (TSO) which by auction mechanism, had to buy a tax for transferring electricity
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from one country to another, in the European area. Meanwhile, in the Northern countries (Nor-
way, Finland, Sweden,..) members of NordPool marketplace, buyers and sellers send bids to the
exchange market without concern for transport constraints and consequently the responsability is
given to the market coordinator. From 2006 onwards, the last option has been mainly adopted
across Europe to create a unification between all markets, a concept known as ”Market coupling”.

To ensure the stability of the electric networks, a smart grid concept has been developed in
order to integrate new sources of energy produced by essentially renewable technologies. More
flexibility is essential in the transmission grids to overcome spikes of supply and demands. In
fact, researchers have shown tremendous interest in the resilience of electrical infrastructures by
modelling them for example with a Bayesian network [4]. They have attempted to underline the
advantages and disadvantages of current grids. Finally, more political decisions to put an end to
consumption are settled to face incapacity to fulfil the demand when intermittent plants are no
longer available to maintain flexibility on the market.

1.1.2 Storage

Electricity cannot be stored instantly because, by definition, in order to create an electric current,
electrons have to move from point A to B. Without movement, there is no electric power. However,
electricity can be stored by physical or chemical transformations to create a potential energy that
can be restated in the future by inverted transformations. Through those technologies, electricity
can be stored but transformed into another potential energy. This involves an optimisation issue
between available generation plants and potential storage plants that can be used to answer the
electricity consumption which is continuous over time. One type of storage that has really enabled
the democratization of electricity storage is hydraulic reservoirs. Widely used in mountainous
countries, where abundant rainfall and snowmelt enable dams to be filled with water, a potentially
usable, long-term reserve of energy that can be converted into electricity, has made this type of
production a widespread part of the energy mix in many countries.

1.1.3 Day-Ahead Market

Since the Liberalisation of Trade and the deregulation of electricity prices in the 1990s, two main
types of market have emerged: Intraday market and Day-Ahead market. A Day-Ahead market
enables the well-being of all electricity auctions [11, Part 5.2]. These two markets are complemen-
tary and have their own specific features that ensure the smooth running of electricity exchanges.
One of the special features of the electricity market is the nature of the traded product. Unlike
equity markets and even other commodity markets, electricity is a product that cannot be stored in
quantity compared to the amount traded on the market. As a result, electricity cannot be traded
at a given moment in time. Contracts have to be drawn up in advance, usually the day before,
specifying the quantity to be delivered, the period during which the system operators must supply
the electricity and, finally, the recipient customer. As its name suggests, the Day-Ahead market
is a market where the spot price of electricity is traded for the hours of the following day. It is
based on the principle of a blind auction that takes place once a day throughout the year. Market
participants are entitled to submit bids and offers for the hours of day d until 12:00 CET on day
d-1. After this time, orders are no longer accepted and the price is calculated using a supply and
demand balancing algorithm.

There main type of order in the market is referred to as single hourly order. This type of order
allows the trader to buy or sell a certain quantity of MW at a specific time and at an agreed price
between the minimum and maximum price imposed by the market. Furthermore, there is more
complexity because the buyer or the seller can choose to buy/sell a certain amount of electricity
depending on the price. If the quantity does not depend on the price, we call this order price either
independent order or a price dependent order. Let us consider the following example to further
understand:

Example 1.1.1 (Dependent and independent orders). Imagine one wants to buy 100 MW at any
price between the minimum price and the maximum price, in the first two hours of the sale. The
order will be described as the following:
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Hour\Price -200 -20 2 ... 2000
1 100 100 100 ... 100
2 100 100 100 ... 100

Table 1.1: Example of price independent order

Let us now consider that the buyers care about the price. The following table shows an example
of dependent price order:

Hour\Price -200 -20 2 2.1 ... 2000
1 100 80 20 18 ... -200
2 70 55 10 10 ... -180

Table 1.2: Example of price dependent order

According to NordPool website [7], NordPool interpolate volumes between adjacent pair of
submitted price steps to find the correct traded volume.

1.1.4 Intraday Market

To complete Day-Ahead market, intraday market supported by balancing mechanisms and organ-
ised by TSO consists of a place that ensure exchanges between market players themselves to ensure
the well balancing between consumption and generation. If this balance is not respected, balancing
operators bid on the market to ensure the real-time assessment of the grid and send a financial
penalty to market players. The time frame for trading is shorter than for the day-ahead market,
which means that market operators can rebalance volumes very shortly before the delivery time of
the day-ahead contract This market is outside the scope of this Master’s thesis and so its operation
will not be studied in detail. However, readers can refer to the following article [12] for further
information.

1.2 Hydro modelling approaches

The different types of electricity production are important in defining the best approaches for
modelling the market. Indeed, a country dependent on renewable energies is subject to constraints
linked to the intermittent nature of energy production, due to variations in wind power , sunshine
and water levels in rivers and reservoirs in dams for hydroelectric power. All these constraints are
accompanied with additional costs that are reflected in the pricing model. In an approach based
on hydro-production, it is relevant to establish the means of production available to generate
electricity from water, in order to establish the cost constraints that will be reflected in the market
prices. Hydro-power by reservoir storage is a controllable form of energy, that is that the quantity
of electricity produced can be controlled and managed according to demand. This is essentially due
to the capacity to store water in artificial dam lakes, which provides a reservoir of water available
for generation. However, the amount of water available greatly depends on the inflow from rivers
and rainfall.

One can consider water to be a renewable resource, as it follows a permanent regeneration
cycle. In the current economic and climatic context, this resource is attracting attention because
carbon dioxide emissions with this technology are virtually zero. As a result, many countries have
reverted to using hydroelectric power generation systems, and a number of technologies have been
developing in order to convert the potential energy of gravity contained in water, firstly into me-
chanical energy and then, with the help of turbines, into electrical energy.

Hydroelectric sources can be divided into two main categories:

1. Installations equipped with a reservoir, which can be further divided into:

• Storage power plants;

• Pumped-storage power plants;

2. Run-of-river power plants, which have a short residence time.
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A storage power plant operates as a pivotal component of modern energy systems, adept at
balancing electricity supply and demand fluctuations. These facilities store excess energy during
periods of low demand and generate electricity when demand peaks. This process involves several
stages: charging, storage, and discharging. During times of surplus electricity production, such as
when renewable sources like solar and wind are abundant, the storage plant converts excess energy
into a storable form, like chemical potential in batteries or gravitational potential in pumped hydro
storage. The stored energy is then retained until it is needed, such as during peak demand hours
or when renewable energy output is low. Upon demand surge, the stored energy is released by in-
verting the conversion process, converting stored potential back into electrical energy, which can be
supplied to the grid. This dynamic interplay enables storage power plants to act as reliable buffers,
enhancing grid stability, supporting renewable energy integration, and ensuring a continuous and
responsive energy supply.

Pumped-storage power plants illustrate a specialized form of energy storage that utilize grav-
itational potential energy to store and release electricity. These facilities consist of two reservoirs
located at various elevations. During periods of excess, the electricity generation, typically when
renewable sources like solar and wind are abundant, surplus energy is used to pump water from the
lower reservoir to the upper reservoir, thereby storing potential energy. When electricity demand
increases, the stored water is released back to the lower reservoir, flowing through turbines to
generate electricity. Pumped-storage power plants are highly efficient in terms of energy storage
and release, and they provide rapid response capabilities to balance grid fluctuations.

Run-of-river hydropower is a sustainable energy technology that taps into the natural flow
of rivers to generate electricity. Unlike traditional dam-based hydropower, run-of-river systems
operate without the need for massive reservoirs, reducing environmental disruption. The process
begins with diverting a portion of the river’s flow into a channel or pipeline, which directs the
water’s energy towards a turbine. As the high-velocity water flows through the turbine, its kinetic
energy turns the blades and generates mechanical energy. This energy is then converted into
electricity through a connected generator. Since run-of-river plants work with the river’s existing
flow, they don’t significantly alter the watercourse or ecosystem. They often employ weirs or
structures to ensure a consistent water supply, especially during low-flow periods. The generated
electricity is then fed into the grid, contributing to the overall energy supply. Run-of-river systems
are particularly well-suited for rivers with steady flow rates, providing reliable renewable energy
while minimizing the ecological impact often associated with conventional hydropower projects.

1.3 A state-of-the-art Norway

The case of Norway is presented in this section because this country can be considered as the
subsequent applications of our models, since Norway is one of the first countries in the world to
base its electricity production on hydro-based energy. This section therefore begins with an overall
description of the situation in Norway, followed by a study of the dynamics governing its five
bidding zones.

1.3.1 Quick facts

Norway is a unique country when it comes to electricity production. Because of its geographical and
political commitment, around 90% of its electricity production is based on hydroelectric resources.

Norway remains one of the best examples in the global energy landscape thanks to its abundant
and diverse energy resources, including hydropower, oil, and natural gas. The country’s electricity
situation is characterized by a robust energy mix, focusing on sustainability and the ongoing
transition towards increased reliance on renewable sources. Hydropower has been the backbone of
Norway’s electricity production for over a century. The country’s topography, with numerous rivers
and waterfalls, has enabled the development of a vast hydropower infrastructure. This renewable
resource accounts for the majority of Norway’s electricity generation, offering a consistent and
reliable source of energy. The ability to store energy in hydropower reservoirs allows Norway
to manage electricity supply and demand efficiently, making it a key player in the Nordic and
European electricity markets.
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Figure 1.1: Installed production capacity Norway (2015-2022)

In Figure 1.1, Hydro power reservoir and Hydro Run-of-river and poundage are clearly the main
sources of electric production. Besides the fact that Norway as a few thermal power capacity of
production, thanks to network link transmission cables, electricity can be imported from bordering
countries such as Sweden, Denmark, Finland and Germany in Norway’s case. Inverse procedure
of exporting electricity to neighbour countries is also possible and its mainly the case in Norway
thanks to a low production costs by hydro generation. We can also note that the energy mix seems
to be shifting slightly towards new sources such as onshore wind power, but also towards waste
incineration and the use of biomass. This is fairly typical of European countries, which do not
tend towards a monopoly of one type of production, but rather towards the broadest possible mix
by integrating different types of production. The recent emergence of new production technologies
plays an important role in price formation, as marginal production costs are not the same for each
production category. New studies are being carried out into the implementation of new intermittent
electricity generation techniques, with a particular focus on long-term prices. For example, in [13],
some authors have studied how the future power market in Norway may be affected by risk factors
using a probabilistic approach by incorporating forecast new share of renewable energies (Offshore
Wind and PV).

The electric market in Norway is a dynamic and well-developed system that encompasses a
range of participants and activities related to the generation and consumption of electricity. It
operates under the principles of competition, transparency, and regulation to ensure efficient and
reliable electricity supply across the country [14, Part 4]. At the core of the Norwegian electric
market is the NordPool market, the leading power market in Europe, where electricity is traded in
various markets, including the Day-Ahead, Intraday, and balancing markets. To complete section
1.1.3 and 1.1.4, balancing market ensures grid stability by addressing imbalances between scheduled
and actual electricity flows.

Market participants include electricity producers, distributors, retailers, traders, and con-
sumers. Producers generate electricity from various sources, with a significant emphasis on hy-
dropower due to Norway’s abundant water resources. Distributors manage the transmission of
electricity through the grid, ensuring its safe and efficient delivery to consumers. Retailers pro-
vide electricity services to end-users, while traders engage in buying and selling electricity on the
exchange to optimize their portfolios. The Norwegian electric market places strong emphasis on
renewable energy and sustainability. Hydropower plays a central role, accounting for the majority
of electricity generation. Additionally, Norway is engaged in exploring the integration of other
renewable sources such as wind and solar powers. To ensure fair competition and market integrity,
the electric market in Norway is regulated by government authorities such as the Norwegian Water
Resources and Energy Directorate (NVE) and the Ministry of Petroleum and Energy. These en-
tities oversee market operations, set regulatory frameworks, and monitor compliance with energy
policies and standards.

12



Figure 1.2: Map showing electrical interconnections in the Nordic zone [1]

1.3.2 Statistical Analysis of the five bidding zones in Norway

The purpose of this section is to investigate the main statistics of the five bidding zones. Data use
for this are originally hourly day-ahead spot prices of the five bidding zones from January 2015 to
December 2022.

The data set is from NordPool website [7]. The day-ahead market price is given for each hour of
the study period specified above. The first relevant observation is that electricity prices can be null
or even negative. Indeed, it is remarkable that some hours of this study period have negative prices,
which is very different from other markets found in finance. Thus, the returns and logarithms of
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returns conventionally defined as follows are not defined at all points:

rt = ln(
Pt

Pt−1
) (1.3.1)

where :

1. Pt is the spot price at time t

2. Pt−1 is the spot price at time t-1

3. rt is the log-return at time t.

To overcome the problem of defining logarithmic returns, a constant will be added to each price
to ensure that only positive values are used, so that this metric can be calculated. Therefore, we
first plot Day-Ahead spot prices and returns for the five bidding zones : Oslo 1.3, Kristiansand
1.4, Trondheim 1.5, Tromso 1.6 and Bergen 1.7 from 2015 to 2022. Data are available thanks to
Nord Pool AG [7].

(a) Oslo spot prices (2015-2022) (b) Oslo log spot price returns (2015-2022)

Figure 1.3: Day-Ahead spot prices and returns Oslo N01 (2015-2022)

(a) Kristiansand spot prices (2015-2022) (b) Kristiansand log spot price returns (2015-2022)

Figure 1.4: Day-Ahead spot prices and returns Kristiansand N02 (2015-2022)
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(a) Trondheim spot prices (2015-2022) (b) Trondheim log spot price returns (2015-2022)

Figure 1.5: Day-Ahead spot prices and returns Trondheim N03 (2015-2022)

(a) Tromso spot prices (2015-2022) (b) Tromso log spot price returns (2015-2022)

Figure 1.6: Day-Ahead spot prices and returns Tromso N04 (2015-2022)

(a) Bergen spot prices (2015-2022) (b) Bergen log spot price returns (2015-2022)

Figure 1.7: Day-Ahead spot prices and returns Bergen N05 (2015-2022)

The first element to understand about these graphs is that there are two distinct periods. The
first runs from 2015 to the beginning of 2021 (around the 50,000th hour on plots). In fact, this
period is marked by a certain periodicity, with classic behaviour including a seasonal trend and
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extreme regimes (peaks) with a quick return to the mean. But since the end of 2020, the pattern
has changed radically, with a drastic rise in prices and increased volatility. Price peaks are reaching
levels almost 20 to 30 times higher than in the previous period, and the returns are much more
pronounced. There are several explanations for these phenomena. The first one is the global
pandemic caused by Covid-19, which has led to market disruptions and an economic recovery from
2021, boosting demand. In addition to this strong demand, soaring gas and oil prices are having
a direct causal effect on electricity prices on the European market. There is also a purely political
factor behind these prices. The European Union has embarked upon an energy transition based
on alternative and intermittent means of production (solar, wind, to name a few) deemed to be
“greener” for the environment. This decision has lead to some intermittency in the production
systems and, consequently, to instantaneous falls in the supply curve, which necessarily implies an
increase in prices. With interconnections between countries and zones within a country, prices can
vary because of transmission capacity from one zone to another. For northern countries, prices
depend on the ability to transmit power from one country to another. This, of course, applies to
Norway, which exports a large proportion of its electricity, so its price is defined by the market
and interconnection capacities.

If we focus on the first part of the graph until the end of 2019 (500, 000 hours approximately),
all graphs globally show the same features, spikes that occurs at the same time on each zone which
are really sharp and also return steadily to the mean. Moreover, a yearly periodicity is visible
across the spot price graph with more volatility on winter periods than summer. Zooming on
return plots, there is a significant correlation between all zones since returns have approximately
the same amplitude at the same time. This is due to interconnections between Norway’s areas that
ensure a standardization of the market. NordPool considers that if there is sufficient interconnection
capacity between the Scandinavian countries, then the price is defined for the region and then,
depending on the constraints of each locality, the price may vary according market clearing process.

A final remark is that some zones are likely to share same features. Indeed, Oslo, Kristiansand
and Bergen have the same behavior for electricity prices whereas Tromso and Trondheim have
globally the same profile for returns and spot prices. Many factors like geography, types of pro-
duction, interconnection with other countries play an important role to define the profile of curves.
This point is discussed through next sections.

The following two tables table 1.3 and table 1.4 show a summary of Day-Ahead Spot prices
and returns. The volatility value for spot prices is quite surprising. This can be explained by the
recent market movements from 2020 onwards, which have seen hour-on-hour price variations of
unprecedented amplitude.

Oslo Kristiansand Trondheim Tromso Bergen
count 69648 69648 69648 69648 69648
mean 536.914 559.203 310.479 269.267 533.50
std 26.63 28.04 17.26 14.7 26.60
min -19.72 -19.72 -21.370 -10.580 -0.960
max 7820.33 8224.63 6175.74 5335.090 7820.33

Table 1.3: Day-Ahead spot prices (NOK/MWh) of the five bidding zones (2015-2022)

Oslo Kristiansand Trondheim Tromso Bergen
count 69647 69647 69647 69647 69647
mean 2.2e-05 2.2e-05 -3.805e-07 -3.964e-07 2.3e-05
std 9.29e-02 9.20e-02 8.914e-02 8.758e-02 9.92e-02
min -3.116 -3.116 -2.028 -3.197 -3.322
max 3.564 3.56 2.321 2.614 3.865

Table 1.4: Log returns of the five bidding zones (2015-2022)

The two types of zones are even more apparent when you look at the basic statistical data.
Indeed, Oslo, Kristiansand and Bergen share same orders of magnitude whereas Trondheim and
Tromso look similar. It is interesting to see why these zones behave in a same way. This basic
data already represents a break with the traditional models used in the equity market. Indeed, it
is remarkable that the price of electricity can be negative, whereas it is impossible to see a negative
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share price. This is because electricity is a commodity and its behaviour is also governed by phys-
ical laws that can lead to extreme price behaviour. Another observation concerns the difference
between the average price and the maximum price, which in some cases is more than twenty times
the average price. Here again, electricity is the only market where such a wide range of prices can
be seen, and this is due to the difficulty of storing energy to smooth out extreme situations and
maintain the smooth operation of the network, as explained in the section on 1.1.

After these initial descriptions, we now go into more detail about the structure of the distribu-
tion of prices and returns. To do this, histograms give us an initial impression of the law that can
be associated with these distributions, whether the tail of the distribution is thicker or thinner, and
whether the data are distributed symmetrically or with an imbalance. Another interest of these
histograms is to see whether the Gaussian hypotheses can be applied to the Norwegian electricity
market. The density curve of a Normal distribution calibrated to the data is also shown. The
normality assumption is very important and essential in financial markets. Many simplifications
flow from this assumption and it often provides explicit formulas for many problems. However, it
is unlikely that we are in this situation, given the observations made on the graphs of returns.

(a) Oslo spot price histogram (b) Oslo log spot price histogram (c) Q-Q plot of Oslo log spot price
returns

Figure 1.8: Distribution of Day-Ahead prices and log returns Oslo N01 (2015-2022)

(a) Kristiansand spot price histogram (b) Kristiansand log spot price his-
togram

(c) Q-Q plot of Kristiansand log spot
price returns

Figure 1.9: Distribution of Day-Ahead prices and log returns Kristiansand N02 (2015-2022)
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(a) Trondheim spot price histogram (b) Trondheim log spot price his-
togram

(c) Q-Q plot of Tromso log spot price
returns

Figure 1.10: Distribution of Day-Ahead prices and log returns Trondheim N03 (2015-2022)

(a) Tromso spot price histogram (b) Tromso log spot price histogram (c) Q-Q plot of Tromso log spot price
returns

Figure 1.11: Distribution of Day-Ahead prices and log returns Tromso N04 (2015-2022)

(a) Bergen spot price histogram (b) Bergen log spot price histogram (c) Q-Q plot of Bergen log spot price
returns

Figure 1.12: Distribution of Day-Ahead prices and log returns Bergen N05 (2015-2022)

In financial and in in other types of markets, the assumption of normal distribution is often used,
although it is often rejected by the data. This description is well explained in [15] research paper
which, using a multivariate approach to the risks associated with mutually generated portfolios,
highlights the importance and credibility of the normal distribution hypothesis. For the remainder
of the analysis, we can define the study hypothesis H0 as follows:

Definition 1.3.1 (H0). H0: ”The time series is normally distributed”

Two most common features used for comparing distribution to the normal one are called skew-
ness and kurtosis. Skewness is a statistical measure that describes the asymmetry of the probability
distribution of a real-valued random variable and Kurtosis is a statistical measure that quantifies
the ”tailedness” of the probability distribution of a real-valued random variable. Note that for
normal distribution, the model should be 0 for skewness and 3 for kurtosis. As explained in the
table 1.5 below, the results for these two characteristics are calculated for the five zones and for
both Day-Ahead spot prices and log returns from 2015 to 2022.

The excess kurtosis is too high to consider that the returns follow a normal distribution. This
first approach therefore concludes that we should abandon the idea of modelling returns using a
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Oslo Kristiansand Trondheim Tromso Bergen
skewness 1.75 1.89 1.08 1.08 2.67
kurtosis 190 214 94 133 215
H0 : Rejected Rejected Rejected Rejected Rejected

Table 1.5: Skewness and Kurtosis of log returns (2015-2022)

normal distribution, and that a modelling approach such as the Black-Scholes model would not be a
very accurate approximation for Day-Ahead prices. To be a little more precise and to definitively
confirm the non-normality of the returns, two statistical tests inspired by [16, Chapter 3] are
performed, the Jarque-Bera test and Shapiro-Wilk test.

Definition 1.3.2. The Jarque-Bera test statistic is calculated from:

JB =
n

6
(s2 +

(k − 3)2

4
) (1.3.2)

where n is the same size, s is the sample skewness and k is the sample kurtosis. The null hypoth-
esis is rejected if the test statistic exceeds some predefined critical value, which is taken in the
asymptotic limit from the χ2

2.

Definition 1.3.3. The Shapiro-Wilk test statistic is defined as:

W =

∑n
i=1 aixi)

2

(
∑n

i=1(xi − x̄)2
(1.3.3)

where xi are the order statistics from the empirical sample, x̄ is the mean and ai are appropriate
constant values attained from the means and covariance matrix of the order statistics. Again, the
null hypothesis is rejected if the test statistic exceeds some predefined critical value.

The results of these two tests are shown in the table 1.6 below:

areas Jarque-Bera test Shapiro-Wilk test
Log Returns stat p-value stat p-value

Oslo 105327420 0.0 0.478 0.0
Kristiansand 133218022 0.0 0.473 0.0
Trondheim 25664905 0.0 0.576 0.0
Tromso 51458630 0.0 0.488 0.0
Bergen 134487777 0.0 0.455 0.0
H0 : Rejected Rejected

Table 1.6: Log returns normality tests

The results are indisputable. All the p-values are 0, which means that we have to reject the
normality hypothesis 1.3.1. This confirms the hypothesis put forward by the graphical analysis
that it is inappropriate to use a normal model for the distribution of returns.

Finally, Heating maps for correlation make no doubt about the dependency between zones.
High correlation come out for Oslo, Kristansand and Bergen according to 1.13(a) (superior to
0.95). For returns it’s practically the same 1.3.2. On the same hand, Tromso and Trondheim have
a high correlation for spot prices and returns.

A second point of interest when studying a time series is the auto-correlation between observa-
tions from a same time series. To study this phenomenon, Autocorrelation functions (ACF) and
Partial autocorrelation functions (PACF) are two features that underline much information about
the structure of our time series. We can expect same remarks from the precedent part such as
similar shape of curve for Oslo, Kristiansand and Bergen zones and on the other hand between
Trondheim and Tromso and also natural correlation corresponding to the structure of a day and
week. Indeed, electricity spot prices as explained before are mainly described with intern season-
ality in days, weeks and years. Therefore, it is more likely to observe spikes of ACF at lag 24, 48,
72. Several points seem to emerge from these graphs. The first is, as expected, a very high degree
of similarity in the graphs between Oslo, Kristiansand and Bergen ACF and PACF for spot prices
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(a) Spot price correlations between bidding zones (b) Log return correlations between bidding zones

Figure 1.13: Heating map of spot prices and returns (2015-2022)

and returns 1.14, A.1, A.3 and also between Trondheim and Tromso A.2 and 1.15. Moreover,
we observe in each ACF plots two main features. The first one is a smooth decrease when the
lag increases and the second one is small peaks at lag 24,48,and other multiples of 24. It should
be noted, however, that the decline is much more marked in the Tromso and Trondheim regions,
as the graphs 1.15(a) and A.2(a) show. PACF curves for each zones confirm these observations,
with a slow decay and increasingly small peaks in terms of amplitude, reflecting a reduction in the
correlation of the series as the lag increases.

(a) ACF Oslo prices NO1 (2015-2022) (b) PACF Oslo prices NO1 (2015-2022)

(c) ACF Oslo log returns NO1 (2015-2022) (d) PACF Oslo log returns NO1 (2015-2022)

Figure 1.14: ACF and PACF Day-Ahead prices and returns Oslo NO1 (2015-2022)
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(a) ACF Tromso prices NO4 (2015-2022) (b) PACF Tromso prices NO4 (2015-2022)

(c) ACF Tromso log returns NO4 (2015-
2022)

(d) PACF Tromso log returns NO4 (2015-
2022)

Figure 1.15: ACF and PACF Day-Ahead prices and returns Tromso NO4 (2015-2022)

As the structure of our time series is globally analysed, we can now focus on a distinction
between months in each year from 2017 to 2022. Indeed, electricity price is under physical con-
straint and obeys to many dynamics driven by the market but also by natural elements such as
temperature, wind, melting of snow,etc. Therefore, seasons and more precisely months and weeks
in each year reflect a change of those constraints on electricity prices. To expand on this point
and to go deeper into our analysis, Box plots of each areas (NO1,NO2,NO3,NO4 and NO5) are
presented to give to the reader a viewpoint about sparsity of Day-Ahead spot prices each week.

(a) Box plot Oslo NO1 (2017-2022) (b) Box plot Tromso NO4 (2017-2022)

Figure 1.16: Box plots NO1 and NO4 (2017-2022)

A remark would be to notice is that the behavior of N01,NO2 and NO3 are roughly the same
with somehow a high volatility with many values ”outside the box” according to figures 1.16(a),
A.4 and A.6. As explained in this section, this phenomenon is due to the fact that those areas have
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to import electricity from other zones to fulfil the demand and are more exposed to fluctuations of
market due to transmission costs and power reserve management. On the other hand NO3,NO4 are
less volatile as show Figures A.5 and 1.16(b) which is explained by the fact that hydro-capacities
of production in this two zones are superior to the demand. So less electricity has to be imported
and hydro plants are used to generate more electricity power than the local demand to improve
profit by exporting overproduction and when prices are high.
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Chapter 2

Stochastic dynamic model

In this part, we attempt to use an approach based on stochastic calculus. The idea is to derive
directly the spot price based on historical data instead of modelling the market. Indeed, after closer
examination, especially on previous history of electric spot price, it seems that one can model the
dynamic of the price with some stochastic dynamics. To be able to better fit the curve price, some
features have to be transcribed in our model. More precisely, three components of the dynamic
must be incorporated: the seasonality over days, weeks and years, sharp spikes due to inelastic
demand and tendency over weeks. Those spikes lead to another interesting feature, which is the
mean-reversion of the price. After substantial increases in price, one can observe that the price
goes back quickly to the mean.

2.1 Observations on data

As explained in the previous section, some features of our time series have to be quantified. When
we are interested in modelling, the first step is to observe the dynamics that we are trying to
quantify. By way of example, the weeks 18 (2018), 36 (2020) and 35 (2022) are shown in the three
figures 2.1.

(a) NO1(OSLO)-2018-Week18 (b) NO1(OSLO)-2020-Week36 (c) NO1(OSLO)-2022-Week35

Figure 2.1: Weekly spot price change over hours NO1

A number of factors stand out in these graphs 2.1. The first is that the general dynamics of each
week are broadly the same. In fact, there is a temporal periodicity of daily frequency throughout
the week, but also, more subtly, a periodicity within the day. What’s more, each week seems to
be driven by an increasing or decreasing weekly trend. This trend must be taken into account, as
it often leads to problems of non-stationary in the time series. This point is highlighted in many
electricity markets in Europe, particularly in the Iberian market [17].

2.2 Weekly trend

Thanks to the first observations made in part 2.1, this section focuses on estimating a trend in
our data. Since mainly the five bidding zones have a behavior of two distinct dynamics, we only
compute studies on NO1 and NO4 areas which embody the best these two behaviors.
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2.2.1 Linear Trend estimation

Identifying linear trend in our hourly data in each week have two main goals. The first one is to
differentiate each week by the coefficient of the trend and secondly by subtracting this trend to
the original data, the time series of Day-Ahead prices is more stationary. Last remark is useful for
next sections focusing on periodicity and fitting the residuals.

To compute trends, linear regression is performed through each week. Recall that this estimator
is given by the following definition:

Definition 2.2.1. We assume a dependence of the form

yi = f(xi) + ϵi, for i = 1,...,n (2.2.1)

where f(x) ≡ α + βx is a linear function, and the sequence (ϵi)i=1,...,n are centered independent
random noises with constant variance σ2.

The least-square estimator (α̂, β̂) is the solution to the minimisation problem

(α̂, β̂) := arg min
((α,β)

L(α, β) =
n∑

i=1

(yi − α− βxi)
2 (2.2.2)

Theorem 2.2.1. The solution to (2.2.2) reads

α̂ = ȳ − β̂x̄ and β̂ =

∑n
i=1 xi(yi − ȳ)∑n
i=1 xi(xi − x̄)

(2.2.3)

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi.

Since linear trend coefficient is compute, we forecast the trend over each week. New time series
are computed by subtracting linear trends to original Day-Ahead spot prices. Results for weeks 8
and 42 in 2O17 for Oslo (NO1) and Tromso (NO4) are displayed in Figures 2.2 and 2.3. In our
study, the xi are the hours of the week and the yi are the Day-Ahead prices associated with these
hours. By convention, the first hour is priced at index 0 and is incremented by one until the end
of the week. Thus, each week 168 observations are considered.

(a) Weekly trend adjusted Day-Ahead spot prices NO1
(2017-Weeks8)

(b) Weekly trend adjusted Day-Ahead spot prices NO1
(2017-Weeks42)

Figure 2.2: Weekly trend adjusted Day-Ahead spot prices NO1 (2017-Weeks8-42)
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(a) Weekly trend adjusted Day-Ahead spot prices NO4
(2017-Weeks8)

(b) Weekly trend adjusted Day-Ahead spot prices NO4
(2017-Weeks42)

Figure 2.3: Weekly trend adjusted Day-Ahead spot prices NO4 (2017-Weeks8-42)

Remark 2.2.2. Hypothesis of stationary is likely to be respected after linear trend adjustment as
Figures 2.2 and 2.3 shows in red. Indeed, a drift that the reader can observe in blue curves seems
to disappear in red curve. More careful and quantitative facts are given in the next section 2.2.2
focusing on stationary.

To finally give a global view of the behavior of trend coefficients in 2017, the 52 linear trend
coefficients of each zones are reassembled together in histograms 2.4.

(a) Histogram of estimated trend coefficients NO1
(2017)

(b) Histogram of estimated trend coefficients NO4
(2017))

Figure 2.4: Histogram of estimated trend coefficients NO1-NO4 (2017)

The distribution of coefficients is not the same between the different zones. In fact, the his-
togram 2.4(a) shows a higher concentration of trend coefficients distributed between [-0.4,0.2] than
on the histogram 2.4(b). Recall that Oslo NO1 zone is an import zone for electricity whereas
Tromso NO4 zone exports electricity mostly every day. This difference is quite remarkable, and
reflects the dynamics of prices in relation to power generation capacity in the zone.

2.2.2 Test of stationarity

Stationarity is a key factor to describe a time series.

Definition 2.2.3. (Stationary) A time series (Xt)t∈Z is said to be stationary if

(Xt1 , ..., Xtn)
d
= (Xt1+k

, ..., Xtn+k
) (2.2.4)

where
d
= is equality between joint distributions.
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The Augmented Dicky Fuller test (ADF test) is a way for checking stationary in time series.
This test is classified as a unit root test that determines how a time series is defined by a trend.
Null and alternate Hypothesis are defined by the following definition 2.2.4 and 2.2.5 :

Definition 2.2.4. Null Hypothesis (H0): Time series has a unit root, meaning it is non-stationary.
It has some time dependent structure.

Definition 2.2.5. Alternate Hypothesis (H1): Time series does not have a unit root, meaning it
is stationary. It does not have time-dependent structure.

The satistics use to reject or not the null hypothesis is p-value. A p-value below a threshold (5%
or 1%) reject the null hypothesis (stationary), otherwise the test fails to reject the null hypothesis.

The results of the ADF test are shown in the tables 2.1 and 2.2 below:

Statistic p-value CV 1% CV 5% H0 1% H0 5%
NO1 Week8 -5.823 0 -3.471 -2.879 Rejected Rejected

NO1 Week8 (LA) -5.862 0 -3.471 -2.879 Rejected Rejected
NO1 Week42 -3.670 0.004 -3.471 -2.879 Rejected Rejected

NO1 Week42 (LA) -5.298 0.000 -3.471 -2.879 Rejected Rejected

Table 2.1: ADF Test results NO1 (2017-Week8-42)

Statistic p-value CV 1% CV 5% H0 1% H0 5%
NO4 Week8 -3.781 0.003 -3.471 -2.879 Rejected Rejected

NO4 Week8 (LA) -4.008 0.001 -3.471 -2.879 Rejected Rejected
NO4 Week42 -3.273 0.016 -3.471 -2.879 Non-Rejected Rejected

NO4 Week42 (LA) -5.473 0.002 -3.471 -2.879 Rejected Rejected

Table 2.2: ADF Test results NO4 (2017-Week8-42)

Remark 2.2.6. (LA) stands for Linear Adjustment. This corresponds to the new time series
obtained once the linear trend has been removed.

Once the linear trend has been removed from the Day-Ahead price time series, the HO hypoth-
esis is more likely to be rejected. Indeed, ADF statistics and p-values are lower after the linear
adjustment, that reject more likely the hypothesis of tendency in our time series.

In this first stage, the new time series has gained in stationarity, which makes it possible to
eliminate a spurious trend for the study of periodicity and the calibration of a stochastic model on
the residuals.

2.3 Periodic deterministic function

One of the main feature of electric market is the periodicity in prices. Indeed, daily, weekly and
yearly seasonality play a key role on observed prices. When one think of modeling electricity prices,
it’s an important part to integrate into the model. The main question is how to fit seasonality
with price.

After a closer look in the previous section, it seems that some periodicity existed in the market.
Indeed, after an overview on graphs and deeper on the data, we remark that a daily and an in-daily
shape composed each week. In order to reconstruct and forecast the weekly electricity spot price,
a mathematical tool, Fourier series, is really useful to this goal. A Fourier series is an expansion of
a periodic function f(x) in terms of an infinite sum of sines and cosines. The study of Fourier series
is known as harmonic analysis and is useful as a way to reconstruct a periodic function into a set of
simple terms called harmonics that can be plugged in, and then recombined to an approximation
to it to whatever accuracy is desired [18, Chapter 3].

Concerning our times series for weekly prices, the idea is to decompose weekly data. We apply
Fourier analysis to the hourly-resolved profiles of electricity price over a weekly time horizon.
Fourier analysis allows to represent or approximate any generic function through a Fourier series,
i.e., the sum of trigonometric functions with different frequencies and amplitudes. In the case of
the electricity price profile, St, the Fourier series representation is given by :
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St = a0 +
2

N

N/2∑
n=1

ancos(
2nπt

N
) + bnsin(

2nπt

N
) (2.3.1)

where a0 corresponds to the mean value of St, an and bn are the Fourier coefficients defining the
shape of the periodic functions at frequency n, and N is the length of the original time series.

Fourier Transform is applied to the time series that has become stationary by subtracting the
linear trend in the previous part 2.2. The inverse transform is then calculated to recover the original
series, but filtering the frequencies by order of importance. To assess the impact of keeping more
frequencies or not, RMSE is performed to quantify the accuracy of our model.

(a) Inverse Fourier transforms NO1 (2017-Week8) (b) Inverse Fourier transforms NO1 (2017-Week42)

Figure 2.5: Weekly trend adjusted Day-Ahead spot prices NO1 (2017-Weeks8-42)

(a) Inverse Fourier transforms NO4 (2017-Week8) (b) Inverse Fourier transforms NO4 (2017-Week42)

Figure 2.6: Weekly trend adjusted Day-Ahead spot prices NO4 (2017-Weeks8-42)

1F 3F 5F 7F 10F
Oslo NO1 Week8 10.64 7.37 6.53 5.91 5.20

Tromso N04 Week8 5.30 4.20 3.16 2.77 2.36
Oslo NO1 Week42 21.54 13.93 11.40 9.75 8.14

Tromso NO4 Week42 23.09 14.03 11.14 10.10 8.88

Table 2.3: RMSE of Inverse Fourier transforms NO1-NO4 (2017-Week8-42)

An improvement is observable when referring to the table 2.3 when the number of frequencies
retained for our model increases. Keeping only the continuous component and the two most
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important significant frequencies clearly improves the RMSE. For the sake of simplicity and to
avoid overfitting, only the constant component and the first two most important frequencies are
kept for the rest of this section. The periods selected are 7, 14 hours and the 0 for the constant
component.

Once the inverse Fourier transform has been performed, the periodic component is subtracted
from the stationary time series, leaving only the stochastic residual component.

2.4 ARMA Process

According to [19, Part 3.2] ARIMA process is one of the principal choices of modelling electricity.
Autoregressive Integrated Moving Average models was developed by Box and Jenkins in 1976 [20].
Main reason is the mean-reverting behavior of electricity price. This model requires the time series
to be stationary for meaningful results to be obtained. Another advantage of this process is the
convergence of this process for long-term forecasts of the series to the unconditional mean of the
series. Since a previous work was done to make time series stationary, the model uses in this
section in only an ARMA process thanks to the non-necessity of differentiating the series to make
it stationary.

To define a mathematical context for this process, several definitions are recalled in order to
justify the use of the ARMA model.

Definition 2.4.1. (Covariance Stationary Process) A process (Xt)t∈Z is covariance-stationary if

• (Xt)t∈Z is square-integrable.

• For any s,t ∈ Z and k ∈ Z, the mean function µ and autocovariance function γ of (Xt)t∈Z

satisfy µ(t) = µ(t+ k), γ(s, t) = γ(s+ k, t+ k).

Definition 2.4.2. (White Noise) A covariance stationary process (Xt)t∈Z is called a white noise if

ρ(h) =

{
1 h = 0,

0 h > 0
If (Xt)t∈Z is a white noise with µ(t) = 0 and γ(0) = σ2, then we write (Xt)t∈Z

∼ WN(0,σ2).

Definition 2.4.3. (ARMA Process) The process (Xt)t∈Z is a zero-mean ARMA(p,q) process,
where p,q = 0,1,..., if it is covariance-stationary and satisfies

Xt =

p∑
i=1

ϕiXt−i + ϵt +

q∑
j=1

θjϵt−j ∀t ∈ Z, (2.4.1)

where ϕ1, ..., ϕp and θ1, ..., θq are the parameters of the process and (ϵt)t∈Z ∼ WN(0,σ2).

The order of our ARMA process is chosen on the basis of the ACF and PACF figures defined
in section 1.3.2. A good approximation for both zones (NO1 and NO4) is p=1 and q=1. The
ARMA process is calibrated using the ARIMA module in the ”statsmodels” library in the Python
language. The results of both the model statistics and the graphs for the NO1 and NO4 zones
are presented to give the reader an idea of the coherence of the choice of this model. Remember
that the model is defined on day-Ahead price data by subtracting the linear trend and the periodic
function.
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(a) ARMA process statisitcs NO1 (2017-Week8) (b) ARMA process fitted on Residuals NO1
(2017-Week8)

Figure 2.7: ARMA process statisitcs and chart NO1 (2017-Weeks8)

(a) ARMA process statisitcs NO1 (2017-Week42) (b) ARMA process fitted on Residuals NO1
(2017-Week42)

Figure 2.8: ARMA process statisitcs and chart NO1 (2017-Week42)

(a) ARMA process statisitcs NO4 (2017-Week8) (b) ARMA process fitted on Residuals NO4
(2017-Week8)

Figure 2.9: ARMA process statisitcs and chart NO4 (2017-Week8)
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(a) ARMA process statisitcs NO4 (2017-Week42) (b) ARMA process fitted on Residuals NO4
(2017-Week42)

Figure 2.10: ARMA process statisitcs and chart NO4 (2017-Week42)

ARMAmodels provide a powerful framework for modeling mean-reverting processes by incorpo-
rating both autoregressive and moving average components. The results of the processes calibrated
on historical data reflect the overall behaviour of our residuals. Sudden price movements leading
to mean reversion are well captured as Figures 2.11 and 2.12 show.

2.5 Reconstructed Day-Ahead Price

To conclude this section, the day-Ahead price for weeks 8 and 42 in the NO1 and NO4 zones
is reconstructed from the results obtained in previous section. For each week, the weekly trend,
the periodic function and the ARMA process are added to create the day-ahead price estimator.
Results are shown graphically (Figures 2.11 and 2.12) and RMSE and MAE are computed.

(a) Reconstructed Day-Ahead Price NO1 (2017-Week8) (b) Reconstructed Day-Ahead Price NO1 (2017-
Week42)

Figure 2.11: Reconstructed Day-Ahead Price NO1 (2017-Weeks8-42)
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(a) Reconstructed Day-Ahead Price NO4 (2017-Week8) (b) Reconstructed Day-Ahead Price NO4 (2017-
Week42)

Figure 2.12: Reconstructed Day-Ahead Price Day-Ahead spot prices NO4 (2017-Weeks8-42)

NO1 Week8 NO1 Week42 NO4 Week8 NO4 Week42
RMSE 6.60 4.68 8.65 4.35
MAE 4.13 3.36 5.48 3.25

Table 2.4: RMSE and MAE reconstructed Day-Ahead price NO1-NO4 (2017-Week8-42)

The results presented in the table 2.5 are very encouraging for an approach to price with this
breakdown into three parts. The main dynamics of the day-ahead price, i.e. periodicity, sudden
price movements and the weekly trend, seem to be well integrated into this model. The rather low
values of the RMSE and MAE over these two weeks of study reflect the effectiveness of this model
for considering a future price projection with these parameters, which are outside the scope of this
master’s thesis.
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Chapter 3

Market clearing model, a water
value approach

We saw earlier that it is possible to approximate the Day-Ahead price. But is it possible to
reconstruct the dynamic market processes that lead to the formation of these prices? This is the
aim of this section that takes a different approach to that used previously, to approximate as closely
as possible the supply curve based on hydraulic generation in order to deduce the resulting price.

The market clearing price is the linchpin of efficient market operation, shaping the equilibrium
between supply and demand across various economic sectors, most notably in electricity markets.
Within this context, the market clearing price serves as the pivotal point where the quantity of
goods or services offered equals the quantity coveted by consumers, ensuring optimal resource
allocation and fair value exchange. Market clearing process is based on supply and demand curve
but for hydro dominated market where mainly all production is done by hydro generation plants,
the supply curve is linked to the water stored in reservoirs which influences the marginal cost
function. In this part, the Water Value concept attempts to throw new light on this particular point
by providing a new interpretation of the marginal costs in hydro-dominated electricity production.

3.1 A global description

Market participants, ranging from electricity producers and consumers to traders, submit bids
and offers detailing the quantity of electricity they are willing to supply or purchase at varying
price levels for a specific period, often an hour. These bids and offers are subsequently sorted in
ascending order, forming a supply curve representing the quantity of electricity available at each
price point, while the corresponding demand curve embodies the quantity consumers seek at each
price level. The point of intersection between these curves embodies the potential market clearing
price [21, Part 3.3].

To pinpoint the precise market clearing price, the grid operator or market platform identifies the
highest-priced bid whose quantity matches or exceeds the quantity sought at the intersection. This
highest-priced bid becomes the marginal offer and establishes the market clearing price, applicable
to all accepted trades. Bids and offers below the market clearing price are approved, with trades
executed at this equilibrium rate. The market clearing price is not only an economic benchmark
but also a dynamic indicator [22, Part3,4,5]. It mirrors the cost of production for the marginal
producer - the participant whose electricity offering sets the market clearing price - highlighting
the price at which the last unit of electricity supplied matches the last unit demanded.

The significance of the market clearing price reverberates throughout the energy landscape.
Consumers make consumption choices as long as the price remains beneath their valuation. This
delicate balance aids grid operators in sustaining stability by ensuring a harmonious match between
electricity supply and demand. Furthermore, the market clearing price provides critical insights to
market participants, governments, and regulators. Producers adjust their output and investment
strategies based on the prevailing clearing price, while consumers adapt their energy consumption
habits. Regulatory bodies, equipped with these pricing signals, can shape policies to enhance
market competitiveness, incentivize renewable energy integration, and mitigate imbalances.
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3.2 Supply Curve

The supply curve in a market illustrates the relationship between the quantity of a good or service
that producers are willing to offer for sale and the corresponding prices at which they are willing
to sell. Based on merit order principle, sources of energy are based on ascending order of marginal
price of production. This competition between electricity products creates the supply curve which
described generation constraints reflected in marginal costs. Various factors can shift the sup-
ply curve, such as changes in production costs, technology, input prices, or government policies,
ultimately impacting the equilibrium price and quantity in the market.

3.2.1 Main Features

The supply curve is one of the main elements for elaborating the electric spot price in a market
clearing process. Indeed, by matching with the demand curve, one can find the market clearing
price associated to the equilibrium quantity. At all time, the supply curve is constructed by adding
together the bid offers ordered by increasing marginal costs of production. A new supply curve is
thus created by adding next to each other all types of production of an area.

To model this supply curve, it remains necessary to find a function that reproduces its shape.
Thus, the function must be increasing, continuous and must adopt a behaviour reproducing an
exponential character towards high quantities of electricity produced. One of the primary factors
is the cost of production, which encompasses various expenses incurred during electricity genera-
tion. These costs include capital expenditures for building power plants, operational costs such as
fuel and maintenance, and regulatory compliance expenses. As the price of electricity increases, it
becomes more profitable for producers to generate electricity, resulting in a greater quantity being
supplied. Additionally, the type of energy sources used for electricity generation plays a pivotal
role in shaping the supply curve. Different energy sources have varying production costs, efficiency
levels, and environmental impacts. For instance, renewable sources like solar and wind have lower
marginal costs. On the other hand, fossil fuels such as coal and natural gas have variable costs
associated with fuel prices and emissions regulations. As these costs change, the supply curve
adjusts accordingly. Technological breakthroughs and innovations also influence the supply curve
by altering the efficiency and cost-effectiveness of electricity generation methods. Breakthroughs
in energy storage, grid management, and generation technologies can lower production costs. Con-
versely, disruptions in supply chains or technological constraints can reduce supply and therefore
cause an increase in price.

3.2.2 Literature review for fitting supply curve with linear and logistic
curves

If we attempt at approximating the supply curve with mathematical function, two types of models
are mainly quoted in the literature, the linear 3.2.1 and the logistic 3.2.2 supply curve. For example,
[23, Part 3] considers a model for forecasting based on an approximation of supply and demand
curves compile with bid data of auctions.

For linear curve: Pt =

{
0 if Qt < Qmin

a+ b ∗Qt if Qt ∈ (Qmin, Qmax)
(3.2.1)

For logistic curve: Pt(Qt) =

{
0 if Qt < Qmin

a+ b1
1+e−b2(Qt−b3) if Qt ∈ (Qmin, Qmax)

(3.2.2)

where Qt is the demand at time t.
This short presentation allows us to better understand the first techniques of modelling the

supply curve. Subsequently another model is chosen for section 3.4 but it is interesting to present
different existent approaches.

3.3 Demand curve

We now need to define the demand curve. In order to achieve this, several approaches can be
considered. As we have already illustrated the importance of the Ornstein-Uhlenbeck (OU) process
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in modelling the market, and the fact that it lends itself particularly well to modelling the demand
curve, we are going to use it to complete a periodic trend, which we will model using a period
function whose period frequencies is be determined by the Fourier transform as done in section
2.3.

Definition 3.3.1. For the following section, we assume that the demand curve is built from two
process, one is a deterministic and periodic function and the second is an Ornstein-Uhlenbeck
process. Therefore, the demand curve is defined as the following :

Dt = Pt + St, ∀t ∈ [0, T ] (3.3.1)

where T is the studied period, (Pt)t∈[0,T ] is a periodic function and (St)t∈[0,T ] is an Ornstein-
Uhlenbeck process.

3.3.1 Ornstein-Uhlenbeck process

As stated by definition 3.3.1, residuals defined by ∀t St = Dt − Pt are realisations of an Ornstein-
Uhlenbeck process.

Remark 3.3.2. The function Pt can be modelled using the same study carried out in part 2.3.

Definition 3.3.3. We define the Ornstein-Uhlenbeck process as followed :{
dSt = −θStdt+ σdWt

S0 = So

(3.3.2)

where θ is the mean reversion rate and σ is the volatility.

Theorem 3.3.1. The explicit solution of an Ornstein-Uhlenbeck process (St)t∈[0,T ] with S0 = So

is:

St = So exp(−θt) + σ

∫ t

0

exp(−θ(t− s)) dWs (3.3.3)

where Ws is the standard Wiener process.

Proof. By using variation of parameters, defining Xt = St exp(θt) and by Itô’s lemma:

dXt = θSt exp(θt)dt+ exp(θt)dSt

= σ exp(θt)dWt

St exp(θt)− So =

∫ t

0

exp(θs)dWs ,(By Integrating from 0 to t)

St = So exp(−θt) + σ

∫ t

0

exp(−θ(t− s)) dWs

The following simulation equation 3.3.4 is used for generating paths of Figure 3.1. The equation
is obtained by splitting time into time step with the same length.

St+dt = St exp
−θdt +σ

√
1− exp−2θdt

2θ
N0,1, ∀t ∈ [0, T − dt] (3.3.4)

where θ is the mean reversion rate and σ is the volatility and N0,1 is the Normal law.

Figure 3.3.1 shows the result of 10 paths simulated according to the parameters defined in the
description.
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Figure 3.1: 10 sample paths from the following Ornstein-Uhlenbeck process (x0=2.0, θ = 0.2,
σ = 0.2, dt=0.01, number of steps=1000, number of paths=10)

The OU process is used for its mean-reverting nature. To illustrate the properties of parameter-
dependent dynamics θ and σ, a sensitiveness analysis is presented in Figures 3.2 to understand
how these parameters impact the behaviour of the curve.

(a) Theta sensitiveness of OU process (x0=2.0, sigma
=0.2, dt=0.01, number of steps=1000, number of
paths=5)

(b) Sigma sensitiveness of OU process (x0=2.0, Theta
=1, dt=0.01, number of steps=1000, number of
paths=5

Figure 3.2: Theta and Sigma sensitiveness of OU process

The θ parameter is responsible for the mean reversion characteristic. The greater the coefficient
is, the greater the mean reversion is. The figure 3.2(a) clearly shows this phenomenon, with a return
to the mean 0 in less than 200 steps for θ = 2 and a very slow decrease for θ = 0.001.

The σ parameter is responsible for the amplitude of volatility. For a fixed mean reversion
coefficient, each amplitude depends on σ, which can lead to a deviation from the mean, resulting
in sudden jumps in amplitude as Figure 3.2(b) shows.

3.3.2 Calibration of Ornstein-Uhlenbeck process to demand curve

In this section, two tools are presented to fit the Ornstein-Uhlenbeck process to the demand curve.
First, we present a calibration by least squares regression and secondly by Maximum Likelihood
estimation.

Least squares regression needs linear relationship between explained variable St+1 and the
observable variable St. It’s the case for simulation 3.3.4 where the relation between two consecutive
observations is linear with iid Normal term ϵ such as

St+∆ = α+ βSt + ϵ (3.3.5)

where α = 0, β = exp (−θ∆) and sd(ϵ) = σ
√

1−exp−2θ∆

2θ
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By rewriting these equations: {
θ = − log(β)

∆

σ = sd(ϵ)
√

2θ
1−exp−2θ∆

Theorem 3.3.2. (β and sd(ϵ) estimators) Estimators for β and sd(ϵ) are given by the following
formula:

β =
n
∑n−1

i=0 Si+1Si −
∑n−1

i=0 Si

∑n−1
i=0 Si+1

n
∑n−1

i=0 S2
i − (

∑n−1
i=0 Si)2

(3.3.6)

sd(ϵ) =

√
n
∑n−1

i=0 S2
i+1 − (

∑n−1
i=0 Si+1)2 − β(n

∑n−1
i=0 Si+1Si −

∑n−1
i=0 Si

∑n−1
i=0 Si+1)

n(n− 2)
(3.3.7)

Once an estimate has been made of β and sd(ϵ), θ and σ can be easily deduced.
Maximum Likelihood estimation requires conditional distribution of St+1 given St. The condi-

tional probability density of an observation given a previous observation (with a time step of ∆)
is normally distributed and given by 3.3.8

f(Si+1|Si, θ, σ) =
1√
2πσ2

1

exp(− (Si+1 − Si exp(−θ∆))2

2σ2
1

) (3.3.8)

where σ2
1 = σ2 1−exp(−2θ∆)

2θ .
By asymptotic analysis, since ∆ is small compared to θ, we can assume σ2

1 ∼ σ2∆.
We derive from the conditional density function the log-likelihood function:

L(θ, σ1) =

n−1∑
i=0

log f(Si+1|Si, θ, σ1)

= −n

2
log(2π)− n log(σ1)

− 1

2σ2
1

n−1∑
i=0

[Si+1 − Si exp(−θ∆)]2

(3.3.9)

To find the maximum of this log-likelihood curve, all partial derivatives have to be zero. Thanks
to equation 3.3.9, we derive partial derivatives associated to θ and σ1.

∂L(Si, θ, σ1)

∂θ
= 0 ⇐⇒

− 1

2σ2
1

n−1∑
i=0

2[Si+1 − Si exp(−θ∆)]Si∆exp(−θ∆) = 0 ⇐⇒

−∆exp(−θ∆)

σ2
1

n−1∑
i=0

[Si+1Si − exp(−θ∆)S2
i ] = 0 ⇐⇒

θ = − 1

∆
log(

∑n−1
i=0 Si+1Si∑n−1

i=0 S2
i

)

(3.3.10)

∂L(Si, θ, σ1)

∂σ1
= 0 ⇐⇒

− 1

σ1
+

1

σ3
1

n−1∑
i=0

[Si+1 − Si exp(−θd∆)]2 = 0 ⇐⇒

σ2
1 =

1

n

n−1∑
i=0

[Si+1 − Si exp(−θ∆)]2

σ2
1 ∼ 1

n∆

n−1∑
i=0

[Si+1 − Si exp(−θ∆)]2

(3.3.11)
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The solution for σ2 depends on θ. However θ can be estimated only with data. Therefore, we
can find optimal solution for σ and θ by solving equations 3.3.10 and 3.3.11 by using historical
data of demand.

A simulation of the same process but with the two different ways of calibration is shown in
Figures 3.3

(a) Simulated path from Ornstein-Uhlenbeck Process
with linear fit of parameters (sigma = 14493, theta=466)

(b) Simulated path from Ornstein-Uhlenbeck Process
with maximum likelihood fit of parameters (sigma =
14492, theta=466)

Figure 3.3: Simulated path from Ornstein-Uhlenbeck Process with linear and maximum likelihood
fit

Using preciously calibrated OU processes, we can predict annual demand and thus forecast its
evolution in our market clearing model. The reconstructed demand for the NO1 and NO4 zones
are shown in the figures 3.4 and 3.5. The part of the modelling of the deterministic function is not
described in this section because the same study was carried out in advance in section 2.3. It can
be seen that the model follows the annual demand profile well, with peak amplitudes corresponding
to the data. Nevertheless, the model could be improved with the possibility of adding a stochastic
process for volatility that can be found, for example, in the Heston model.

(a) Path simulated from Ornstein-Uhlenbeck Process
with linear fit of parameters(sigma = 14493, theta=466)

(b) Path simulated from Ornstein-Uhlenbeck Process with
maximum likelihood fit of parameters (sigma = 14492,
theta=466)

Figure 3.4: Reconstructed demand NO1 (2017)
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(a) Path simulated from Ornstein-Uhlenbeck Process
with linear fit of parameters(sigma = 4450, theta=469)

(b) Path simulated from Ornstein-Uhlenbeck Process with
maximum likelihood fit of parameters (sigma = 4411,
theta=469)

Figure 3.5: Reconstructed demand NO4 (2017)

3.3.3 Integration of run-of-river technologies in the demand curve

. One of the main types of hydro-generator used for electricity production is the “run-of-river”.
Compared to dams, “run-of-river” (ROR) don’t store water above the gate but use the flow of the
river to produce power. In this context, Norway has considerably installed many of them along
rivers to produce low-price electricity in part to develop aluminum industry. Quantity in MW
produce by those technologies cannot be negligible against the hydro reservoir plants. In addition,
this means of production is considered as fatal production, i.e. the operator cannot manage the
quantity of water to optimise production; he must necessarily produce instantaneously. However,
the marginal production cost of these systems is considered to be zero. This is why, in order to
integrate these means of production into our modelling, it is better to integrate them as a reduction
in demand. The amount of power available from run-of-river units will be subtracted from demand
to create an adjusted demand that must be met solely by generation from hydroelectric reservoirs.

In order to quantify electricity production from this energy source and integrate it in a market
clearing model, an idea is to link the production to water flow. Indeed, water flow can be considered
as a stochastic process following a stochastic differential equation. Consider a given probability
space (Ω,F ,P) supporting a Brownian motion (Wt)t≥0. According to [24, Part 3, page 1713], we
can express the water flow by the following SDE :

dQt = bs(Qt, t)dt+ σs(Qt, t)dWt, if t ∈ [s,T],
Qs = q

(3.3.12)

Since, a seasonality trend is identifiable in data of water flows, the idea is to divide the produc-
tion into two parts, once for the deterministic component and the second for the stochastic part.
This stochastic process can be model by a mean-reverting process with mean 0.

Let assume a process with stochastic process but minus the seasonal deterministic function,
St = Rt − r(t). Furthermore, we assume that this process follows an Orstein-Uhlenbeck process
reverting towards 0, i.e.

dSt = −κStdt+ σdWt, where κ ≥ 0, σ ≥ 0. (3.3.13)

Theorem 3.3.3. Water flow processQt = exp(r(t)+St) follows the following stochastic differential
equation

dQt = (
dr(t)

dt
+

1

2
σ2 − κ(log(Qt)− r(t)))Qtdt+ σQtdWt (3.3.14)

Proof. By using Itô’s lemma :
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dQt = d(exp(r(t) + St))

= (
dr(t)

dt
e(r(t)+St)dt+ dSte

(r(t)+St) +
1

2
σ2er(t)d[eS , eS ]t

= (
dr(t)

dt
Qtdt− κStdt+ σdWt)Qt +

1

2
σ2Qtdt

= (
dr(t)

dt
+

1

2
σ2 − κSt)Qtdt+ σQtdWt

Run-of-river unit generally operates in On/Off mode. As a result, the few operating costs
are generally start-up and shut-down costs. Electricity is generated by a turbine powered by the
movement of the watercourse, which drives an alternator. The physics of electricity production
using this method are shown in the following system 3.3.15 :

P(Q) =

 0 if Q ≤ Qmin

c× η(Q)×Q if Qmin ≤ Q ≤ Qmax

c× η(Qmax)×Qmax if Qmax ≤ Q
(3.3.15)

where c = ρgh with ρ density of water, g acceleration of gravity and h the level of water and where
η is an efficiency function depending on river flows.

For the following sections, this model will not be used since the generation data for run-of-
river is directly available on the Entsoe website [25]. However, an approach based on the model
explained above could be envisaged, provided that access to historical river data is available.

3.4 Basic Model of market clearing based on exponential
supply curve

To complete the section 3.2 on the supply curve, this section looks in more detail at a dynamic
approach based on an exponential function.

3.4.1 Description of the model

It is clear that the supply curve behaves dynamically over time. Supply is not constant for every
hour of every day of the year. As a result, the model needs to incorporate a time expenditure to
reflect hour-by-hour variations. To do this, the values of the potential electricity reserves contained
in the hydraulic reservoirs is integrated hour by hour, as are all the other variables in our system.
Unlike Barlow [26], who considers the structure of supply to be fixed, we vary the structure of
supply and demand over time.

The choice of supply curve model has evolved over time. A relatively simplistic model is the
linear model as presented in 3.2.2, which is rarely used because it does not reflect the exponential
rise in prices when demand soars. Research has therefore focused on functions that translate this
exponential rise in prices, hence the use of exponential function modelling of the supply curve,
which can be found in [27]. However, it is not an exponential function that is used in this section.
If we refer to [26] and [28], a power function better reflects the dynamics of the supply market
and allows sudden price spikes to be modelled more accurately than an exponential function.

Furthermore, the supply curve has to fit well with physical conditions that the market has set
for the modelling. Indeed, Nordpool imposes a maximal price to limit outrageous prices if a major
problem should occurs on the network. For the Day-Ahead spot price on the Norwegian market,
this price is settled by NordPool at 50000 NOK/MWh. In addition, market operators cannot send
an infinite quantity of electricity to the market because infrastructure limits transmission. This is
why a maximum supply is added to the model to take account of this behaviour.

Therefore based on [28], the same model is used for the supply curve:

Pt(St) = P̄ − eat(S̄ − St)
α (3.4.1)

where St is the supply at time t, S̄ is the maximal installed supply capacity, P̄ is the maximal price
and α and at are coefficients which can be constant or time-dependent of physical parameters.
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To understand why this modelling is interesting for our model, two coefficient sensitivity analysis
for α and at are presented in 3.6.

(a) α sensitiveness of the supply curve (b) at sensitiveness of the supply curve

Figure 3.6: α and at sensitiveness of the supply curve

Figure 3.6(a) shows how the parameter α change the shape of the supply curve especially when
the power approaching the limit supply value. When α increases, the curve becomes steeper when
power increases. For small values of α, the curve gets a linear shape with a constant coefficient
of growth. This graph accurately reflects a quality that our model must have, which is to adapt
the growth of the curve according to the available supply and in a supply and demand model that
must therefore be equal to demand.Figure 3.6(b) shows the impact of the multiplier coefficient at
on the supply curve. We can see that it translates and modulates supply. Subsequently, when the
coefficient is determined by concrete variables, it can be used to simulate an adjustment of supply
according to the quantity of electricity that can be loaded onto the network, and thus reflect the
daily modulations due to the means of production.

Based on previous remarks and analyses, supply curve has to be adapted to macro data which by
causal effect influence shape of our curve. Three specific energy data are used to model multiplying
factor at which are:

• Reservoir levels (MWh) (named as rt)

• Carbon emission right prices (NOK/MWh) (named as PEUA
t )

• Coal prices (NOK/MWh) (named as PCoal
t )

Therefore, four models are defined, each of those incorporates a new variable in addition to
others. M1 Model 3.4.2 is built with only constant for at, M2 Model adds reservoir levels variable,
M3 Model incorporates carbon emission right prices and finally coal prices are added to model M4.
All equations are listed in 3.4.2:

P 1
t =P̄ − exp(a)(S̄ − S1

t )
α (M1) (3.4.2a)

P 2
t =P̄ − exp(a+ b2r × rt)(S̄ − S2

t )
α (M2) (3.4.2b)

P 3
t =P̄ − exp(a+ b3r × rt + b3p × PEUA

t )(S̄ − S3
t )

α (M3) (3.4.2c)

P 4
t =P̄ − exp(a+ b4r × rt + b4p × PEUA

t + b4c × PCoal
t )(S̄ − S4

t )
α (M4) (3.4.2d)

One reason why this structure of supply curve is useful and wide spread is because of exponential
behaviour and the recovering of linear structure after a log transformation. After readjusting terms
and taking log in both sides, equations 3.4.2 becomes:
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log(P̄ − P 1
t ) =a+ α× log(S̄ − S1

t ) (M1) (3.4.3a)

log(P̄ − P 2
t ) =a+ b2r × rt + α× log(S̄ − S2

t ) (M2) (3.4.3b)

log(P̄ − P 3
t ) =a+ b3r × rt + b3p × PEUA

t + α× log(S̄ − S3
t ) (M3) (3.4.3c)

log(P̄ − P 4
t ) =a+ b4r × rt + b4p × PEUA

t + b4c × PCoal
t + α× log(S̄ − S4

t ) (M4) (3.4.3d)

3.4.2 Principles of linear regression

In order to find the most accurate parameters for solving 3.4.3, we are going to apply principles of
linear regression and how we can compute the Ordinary least squares estimator (OLS).

Suppose we have independent observations of our target variable and also our regressor variables
and we assume that target variables and regressor variable are linked by a linear model described
as follows:

∀i ∈ [1, n], yi = θ0 + θ1xi,1 + ...+ θpxi,p + ϵi (3.4.4)

where p represents the number of parameters and n the number of observations. We can describe
this setup with a matrix modelling setup :

X =


1 x1,1

. . . x1,p

1 x2,1
. . . x2,p

...
...

. . .
...

1 xn,1
. . . xn,p

,Y =


y1
y2
...
yn

, θ =


θ1
θ2
...
θn


.

When one performs an ordinary least squares regression, the main goal is to minimise the
following Lost function by choosing the proper vector θ :

L(θ) = ∥Y −Xθ∥22 (3.4.5)

where ∥.∥ is the L2 norm. By differentiating and taking the gradient equals to 0, we obtain an
explicit formula for OLS estimator : θ̂ = (XTX)−1XTY .

3.4.3 Results

Section 3.4.2 enables to set up a clear mathematical model to fit our models. The idea of this
study is to highlight the macro data that most influences the price of electricity. It is not designed
to accurately reflect the sudden changes that the market can undergo on an hour-by-hour basis.
In fact, our data is mainly expressed in daily periods and interpolated in a constant way over the
whole day. As a result, any sudden movements cannot be explained using linear regression models
alone. An approach based on a more precise definition of the market structure is presented in the
following section 3.5.

As described in the section 3.4.1, four models are studied, with a variation in the variables
considered between each model. The variables considered are firstly a model without any physical
macros, then the second only includes the level of reservoirs in the study area, then we add the
prices of carbon contracts issued by Europe and finally the price of coal is added to the last
model. Undeniably other parameters can be considered, such as temperature, but this is outside
the scope of this section. The analysis will cover a two-year period from the beginning of 2017
to the end of 2018, starting with Norway’s NO1 zone. The prices are into Norwegian kroner per
MWh (NOK/MWh), as are the prices of emissions contracts and coal.

The results are presented in two different ways. The first way chosen is a graph, to enable the
reader to see the impact of the macro considered on the accuracy of the model’s calibration on
prices.
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(a) Market clearing prices Model 1 NO1 (2017-2018) (b) Market clearing prices Model 2 NO1 (2017-2018)

Figure 3.7: Market clearing prices Model 1-2 NO1 (2017-2018)

(a) Market clearing prices Model 3 NO1 (2017-2018) (b) Market clearing prices Model 4 NO1 (2017-2018)

Figure 3.8: Market clearing prices Model 3-4 NO1 (2017-2018)

Models \ coefficients a br beua bcoal α
1 10.807 – – – 7.50e−4

2 10.805 -2.68e−10 – – 1.050e−3

3 10.807 1.18e−10 -2.46e−5 – 1.056e−3

4 10.809 1.72e−10 -2.37e−5 -1.96e−6 1.045e−3

Table 3.1: Linear regression coefficients

To access the quality of the performance, two well-known indicators are used: the mean absolute
estimator and the root mean squared error (RMSE) :

MAE =
1

N

N∑
n=1

|(ŷn − yn)| (3.4.6)

RMSE =
1√
N

√√√√ N∑
n=1

(ŷn − yn)2 (3.4.7)
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Model 1 2 3 4
R Score 0.029 0.062 0.6073 0.6102
RMSE 106.70 104.86 67.83 67.59
MAE 88.62 87.27 40.8 40.69

Table 3.2: Statistics for evaluating approximation errors

Table 3.2 presents a few statistics to quantify the accuracy. R score, RMSE and MAE have
been computed and acquaint in this table. To access precision of the fitting of a linear regression,
Rscore gives a first approach. In our results, model 1 and 2 have a really low Rscore compared to
model 3 and 4. Recall that higher the R score is, closer the model is to data. A sharp increase
is observed between model 2 and model 3 when prices of carbon emission is added to the model.
This is confirmed by observing the difference between plot 3.7 and plot 3.8 because Models 3-4
represented by a red trend in our model fit better variations of Day-Ahead spot prices. This
observation is confirmed by statistics. For example, RMSE drops significantly from approximately
100 to 68 between model 2 and 3. The same is observed with MAE estimator which is divided by
2 between model 2 and 3. It seems that the price of carbon emission permits is an essential feature
for establishing prices in Norway.

3.5 The water value

In this final part, the concept of water value is extended to the case of Norway where traditional
definitions of water value for electricity production aren’t well adapted due to the lack of production
by thermal plants. The main goal of this section is to review traditional approaches for defining
water value and trying to create a new understanding of this concept.

3.5.1 Description

Day-Ahead electricity prices has a dynamic based on price clearing which is a result of a balance
between supply and demand every hour. Variations of supply and demand from one hour to
the next one can appears involving high volatility in the market. Thanks to the flexibility of
hydro-power production, allocation of water to be converted into electricity to maximise profit, is
managed with influence of water stocks, Day-Ahead prices and installed power. The operators face
the decision whether to use the water in the hydro reservoirs now or later. Therefore, the relevant
costs are the opportunity costs (water value) of using the water in the future [2, Part 2, 2.1].

When we look at hydro-power generation, one of the key steps in understanding price formation
is the coordination of hydro-power units between other generation systems. Globally, the decision-
making of any production system is based on minimising the overall production costs under the
various constraints that apply to our system. With the liberalisation of the electricity markets,
the competition between producers has taken hold, creating a decentralized decision-making, tra-
ditionally carried out by a national and central company towards private companies. As a result, a
company owning hydraulic assets has to plan a production schedule that generally covers an entire
year, taking into account its production strategy as well as the strategy of its competitors, in order
to maximise the benefits of its decisions. For a company to manage its production, access must
be granted to both hydraulic and thermal production units, and its aim will be to decide when
to activate one in favour of the other. If we refer to the article [29, Part 2], energy systems can
interact with each other in two ways, either temporally or geographically. To create a link between
two markets, one needs a storage unit capable of retaining energy from one market in order to
transfer it to another. In the case of electricity markets, reservoirs are an ideal tool because water
enables electricity to be stored in the form of potential energy that can be released again at se-
lected times. In addition, hydraulic reservoirs provide a link between long-term programming and
short-term operations, as it is very easy and inexpensive for a dam to switch from an operational
state to a shutdown state, which ensures great operational flexibility and a means of optimising
its profitability in relation to the market.

This is precisely the objective of a hydro producer company, to optimise its water stock with
the aim of using it when sufficient profitability signals appear in order to cover short-term demand
while maintaining a long-term management strategy.
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A hydroelectric generating company will therefore be interested in trying to assess the value of
its water stock in relation to its planned medium and long-term schedule. The aim is to find a way
of comparing the potential value of the reserve with the market price in order to obtain a price
signal to trigger production. This is the purpose of water value, which is an interesting indicator
for getting an idea of how much marginal cost it would be worth bidding hydro production on the
market to optimise our profitability.

3.5.2 Model

For considering a model in Norway in order to compute water value at each time step, a framework
is needed to better fit the situation in this country. Therefore, thanks to the description in part
1.3, one can consider the market in Norway as a centralized environment dominated by a central
company which is responsible of the exploitation of hydro storage plants, run-of-river hydro gener-
ation plants. The quantity of electric imports in Norway can be considered as electricity produced
by thermal plants because traditionally electricity bought on the market is at the most expensive
of bidding price and this price are reached by thermal plants. This last remark is essential because
it is the central point of the redefinition of Water Value for countries whose thermal production
is insufficient to cover demand. Indeed, thereafter, many changes in the modelling of constraints
appear and is presented in the course of this section.

In this framework, the objective function is to minimize the total generation costs by thermal
units or in the view point of Norway to minimise imports of overseas electricity and promote the
quantity of electricity exported in line with its available generation resources. To simplify the for-
mulation of the problem, a unique hydro storage plant is consider as well as an inelastic demand.
This situation matches very well with the description of [30, part 3.1].

Traditionally for solving this cost minimization problem, one can try to solve the following
problem 3.5.1. It is exactly the first approach we can find in [31, part 3].

min
Tt,Ht

tmax∑
t=1

Ct(Tt)

subject to Tt +Ht = Dt for all t

H ≤ Ht ≤ H for all t

0 ≤ Tt ≤ T for all t

tmax∑
t=1

Ht × lt ≤ Rmax

(3.5.1)

where Tt is the thermal power (MW) at time t, Ht is the hydro power (MW) at time t, Dt is
the demand (MW) at time t, H is the minimal hydro power (MW), H is the maximal hydro power
(MW), T is the maximal thermal power (MW), Rmax is maximal total hydro production (MWh),
lt is the duration of each period of production (h) and Ct(Tt) is the cost function.

The problem 3.5.1 is the basic framework. Equation Tt + Ht = Dt represents the supply
and demand balance equation at each t with inelastic price. Inequalities are described physical
dynamics of generation constraints by settling power limits and maximum capacities of production
at all t.

Now that the basic framework has been defined by 3.5.1, it needs to be adapted to best model
the situation in Norway. As mentioned at the beginning of this section, Norway has very little
thermal production capacity. In addition, as the study focuses on the NO1 and NO4 zones, thermal
production for these zones is non-existent. As a result, thermal production Tt is replaced by im-
ported or exported production from adjacent zones. Thus, thermal generation becomes imported
or exported power (positive sign for power imports and negative sign for power exports), which
has consequently changed the limits of generation by no longer reducing by 0 but by considering
the transmission capacities between the study area and its neighbours. Furthermore, the previous
model only included a general constraint on hydro generation, which must not exceed maximal
reserves. By refining the model, a daily time step constraint (or even hourly if the needs are on this
scale) can be added by inserting a dynamic for emptying and filling reservoirs according to water
inflows and hydraulic generation for the period [30, Part 3]. Finally, the new mathematical formu-
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lation for minimising the costs over the all period of one year with daily steps under constraints is
stated as follows:

min
Tw,d,Hw,d,Rw,d

52∑
w=1

7∑
d=1

Cw,d(Tw,d)

subject to Tw,d +Hw,d = Dw,d ∀(w, d), (ηw,d)

Rw,d −Rw,(d−1) +Hw,d × 24 = Iw,d ∀(w, d), (µw,d)

0 ≤ Hw,d ≤ Hw,d ∀(w, d),
Rw,d ≤ Rw,d ≤ Rw,d ∀(w, d),

Tw,d ≤ Tw,d ≤ Tw,d ∀(w, d),

R1,0 = Rin

R52,7 = Rend

(3.5.2)

where Tw,d is the imported/exported power (MW) for each day of the year, Ht is the average
hydro power (MW) for each day of the year, Dt is the demand (MW) for each day of each week,
Rw,d is the reservoir level in energy (MWh) for each day of the year, Iw,d is the water inflow (MWh)
for each day of each week, H is the maximal hydro power (MW), Tw,d is the minimal exported

power (MW), T is the maximal exported power (MW), Rw,d is the minimal level of reservoir

(MWh), Rw,d is the maximal level of reservoir, Rin and Rend are initial and final condition for
reservoir level and Cw,d(Tw,d) is the cost function.

The overall structure of the algorithm 3.5.1 has been retained, but a number of constraints
have been added to provide the best possible model of production dynamics throughout the study
period. Equation (ηw,d) represents the equality between supply and demand in the same way as the
previous algorithm 3.5.2, except that this time it is discretized for each day of each week and Tw,d

is imported power. The most important change in the description of the dynamics is probably the
addition of the equation (µw,d) which describes the evolution of the energy level contained in the
reservoirs subject to the hydraulic production and the quantity of water entering the system. The
variation in energy of the water stored in the reservoir between two consecutive days translated by
Rw,d − Rw,(d−1) is the result of the amount of energy entering during the day minus the average
production of the day by the hydraulic system multiplied by 24 hours.

To find optimal solutions, Lagrange multipliers are applied to each of these constraints. The
most important Lagrange multipliers are ηw,d and µw,d which represents the marginal costs for
each time period and the value of interest : the Water Value according to [30, part 3.1]. A similar
approach to define those coefficients is also used by [32, part 3.1] but Water Value associated to
the additional profit that would arise if an unit of water could be used for hydro generation. When
thermal generation is replaced by the possibility of importing or exporting, as in our case study, the
link between the two definitions is established. Indeed, if the electricity producer is in a situation
where it is considering importing electricity, then its decision relates to cost-based water value as
described of the cost by subsisting hydro generation by imported electricity which extends the def-
inition given by [30, part 4.1]. On the other hand, if the electricity producer is in a situation where
it is considering exporting electricity, then this Water Value is associated to the additional profit
for producer that would arise if an unit of water could be used for hydro exportation generation,
which is consistent with [32] definition.

The Lagrangian expression of optimisation problem 3.5.2 is given by:

L = L(Tw,d, Hw,d, Rw,d, ηw,d, µw,d, γ
down
w,d , γup

w,d, δ
down
w,d , δdown

w,d , αw,d, βw,d)

= min
Tw,d,Hw,d,Rw,d

52∑
w=1

7∑
d=1

Cw,d(Tw,d) + ηw,d(Tw,d +Hw,d −Dw,d

+ µw,d(Rw,d −Rw,(d−1) +Hw,d − Iw,d)− γdown
w,d ∗Hw,d + γup

w,d(Hw,d −Hw,d)

+ δdown
w,d (Rw,d −Rw,d) + δupw,d(Rw,d −Rw,d) + +ζdown

w,d (Tw,d − Tw,d) + ζupw,d(Tw,d − Tw,d)

+ αw,d(R1,0 −Rin) + βw,d(R52,7 −Rend),∀(w, d)

(3.5.3)

The optimal solution has to fulfill first order conditions :
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∂L
∂Tw,d

=
∂Cw,d(Tw,d)

∂Tw,d
+ ηw,d − ζdown

w,d + ζupw,d = 0 (3.5.4a)

∂L
∂Hw,d

= ηw,d + µw,d − γdown
w,d + γup

w,d = 0 (3.5.4b)

∂L
∂Rw,d

= µw,d − δdown
w,d + δupw,d = 0 (3.5.4c)

ηw,d(Tw,d +Hw,d −Dw,d +Bw,d) = 0 (3.5.4d)

µw,d(Rw,d −Rw,(d−1) +Hw,d − Iw,d) = 0 (3.5.4e)

γdown
w,d ∗Hw,d = 0 (3.5.4f)

γup
w,d(Hw,d −Hw,d) = 0 (3.5.4g)

δdown
w,d (Rw,d −Rw,d) = 0 (3.5.4h)

δupw,d(Rw,d −Rw,d) = 0 (3.5.4i)

ζdown
w,d (Tw,d − Tw,d) = 0 (3.5.4j)

ζupw,d(Tw,d − Tw,d) = 0 (3.5.4k)

αw,d(R1,0 −Rin) = 0 (3.5.4l)

βw,d(R52,7 −Rend) = 0 (3.5.4m)

If we assume ∀(w,d), when the maximum and minimum hydro power generation constraints are
not binding, that involves γup

w,d = and γdown
w,d =. The same reasoning is applied to import generation

constraints that involve ζdown
w,d = 0 and ζupw,d = 0. Water value is finally given by ηw,d because its

embodies cost by subsisting hydro generation by imported electricity
∂Cw,d(Tw,d)

∂Tw,d
. Then, the first

condition of 3.5.4 gives us directly a formula for the water Value (WV):

ηw,d = −∂Cw,d(Tw,d)

∂Tw,d
(3.5.5)

Hence, fixing a function for the costs Cw,d which is differentiable ∀(w,d), gives us directly the
Water value for each time.

For the marginal cost function, based on the work made by [32, Part 5.1], we can globally
approximated marginal imported production costs by a linear function. This is true if the imported
quantity does not exceed a limit of transmission.

In the following, we define cw,d =
∂Cw,d(Tw,d)

∂Tw,d
as a function only dependant of Tw,d:

cw,d =
∂Cw,d(Tw,d)

∂Tw,d
= ath + bth ∗ Tw,d (3.5.6)

where ath and bth are constants.

3.5.3 Data

Data Unit Time Frame Source
Norway spot prices NO1 NOK/MWh 01/2017-01/2018 (Hourly) (Nord Pool Spot AS)
Water inflows MWh 01/2017-01/2018 (Monthly) (NVE)
Load MW 01/2017-01/2018 (Hourly) (Nord Pool Spot AS)
Generation per production Type MW 01/2017-01/2018 (Hourly) (Entso-e Transparency)
Water Reservoirs MWh 01/2017-01/2018 (Weekly) (Entso-e Transparency)

Table 3.3: Data used in simulation

Remark 3.5.1 (Data sources). As usual, when data come from different sources, a reshape and
reformatting work has to be done in order to match the right time frame. In our case, two main
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sources are used for the model in 3.5.2, Entso-e transparency which is a main data base of different
countries, technologies and information for European electricity market whose the quality has been
certified in many references such as in [33] and NordPool Spot AS which is the leading power market
in Europe, offering day-ahead and intraday markets and data base for Northern countries.

One of the main issues for reprocessing data is the time scale variations between different
sources. Indeed, for electricity markets, most of data such as load, prices are given in hourly.
However, more macroeconomic and statistic data are often found in daily or weekly scale. In
addition, our model defined in 3.5.2 takes in input daily data. Thus, we have to choose a strategy
to interpolate data for re-scaling them to the correct time scale.

Water Reservoirs are given in week steps. Since daily data are key to our analysis, we interpolate
the missing values by a linear Lagrange interpolation.

For load quantity, since we need the daily load of each weeks of the all year, we have to choose
on how approximate daily load with hourly data. To keep it simple, we just take the mean of each
hour of each day.

Finally, Water inflows are quite difficult to predict and different approaches can be considered
to approximate inflows. For example [34] using a probability viewpoint by estimating the distri-
bution with a modified Maximum Likelihood estimation and Bayesian inference. In this paper,
we try another approach only based on the curve of the inflows during the year. Then, we esti-
mate the profile of quantity of MWh falls during the year by taking the generation of MWh by
hydroelectricity during the entire year on the interest area.

For the simulation, Rin = 3157000MWh, Rend = 3471000MWh, and ∀(w,d), Tw,d=-7800MW,

Tw,d=7800MW, Hw,d = 1365MW based on ENTSO-E NO1 data for Norway.

3.5.4 Results

Model 3.5.2 runs are performed using data from the year 2017 as explained in 3.5.3.

To test the explanation, we apply model 3.5.2 to Norway’s NO1 zone, where a weekly curve
showing the evolution of the hydraulic energy reserve is available on the Entso-e Transparency
website [25]. Similarly, run-of-river production is estimated using the Entso-e transparency plat-
form. The values used are estimated for the periods of each day of the year 2017 summarised in
the following table 3.4:

Days 1-130 131-200 201-300 301-363
Daily production (MWh) 19200 28800 24000 21600

Table 3.4: Run-of-river generation (MWh) NO1 2017

These daily values for run-of-river generation are subtracted from the demand observed each
day to obtain an adjusted demand corresponding to the netting demand defined part 3.3.3. The
inflow profile used for modelling with demand adjusted to production by run-of-river technologies
is presented in the appendix A.7. To certify the consistency of our results, we need a control
variable that we can easily compare with the data. As the evolution of energy in the reservoirs
is an accessible variable, it serves as a benchmark for the accuracy of our simulation based on
optimisation problem 3.5.2.

The following graph 3.5.4 shows the result of the simulation for the control value with the data
explained above.
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Figure 3.9: Data and predicted shape of level in reservoirs in NO1 (2017)

Remark 3.5.2. (Optimisation algorithm) The optimisation problem is calculated using Python
language and the ”scipy.optimise” library. The function minimize with method=’SLSQP’ enables
minimizing a scalar function of one or more variables using Sequential Least Squares Programming.

The overall behaviour of the evolution of energy in the reservoirs follows the evolution of the
data. Nevertheless, there are a few notable points of divergence, particularly at the very end of
the year. In fact, the decrease in the reservoir in the simulation is faster and more abrupt than
the data. The final level of the reservoir is reached before the end of the year. There are two
reasons for this. The first is simply that the evolution of reservoirs depends on the inflow curve.
The amount of water imported into the reservoir plays an important role and it is just estimated
from historical hydraulic production quantity. As a result, it is difficult to predict the actual
quantity of water available throughout the year. The second is the profile of these inflows over the
year. In fact, just like the total quantity of water to be estimated, the inflow curve depends on a
daily interpolation made from monthly data, which gives rise to numerous imprecisions and can
therefore explain these discrepancies. Nevertheless, the model transcribes the general evolution of
the reservoir level, which guarantees that our model is a good approximation to reality. The effects
of filling and emptying are well reproduced at the corresponding times.

The model 3.5.2 has several degrees of freedom to find the optimum. It can play on the values
of hydraulic production but also on the quantity imported or exported of electricity with the other
zones. Finally, the level of the reservoirs is also linked to these production values. Thanks to
NordPool [7], it is possible to access the quantity of imported or exported power (MW) each day
in the NO1 zone. However, hydraulic production data are not available. Thus, another proof of
good behaviour of our model is to compare the quantities of imported and exported power (MW)
predicted by the model with the real data. The figures 3.11 present these comparisons. Remem-
ber that at each point in time, hydraulic generation and imported power (counted positively) or
exported power (counted negatively) must be equal to demand adjusted by run-of-river generation.
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(a) Generated consumption of each type in NO1 (2017) (b) Daily Day-Ahead spot prices and Water Value NO1
(2017)

Figure 3.10: Data and predicted power NO1 (2017)

The graph shows changes in hydraulic generation and the quantity imported in 2017. It can
be seen that the understanding of hydraulic production is fairly binary, i.e. the operation either
favours maximum production from the reservoirs or turns it off. Over most of the year, production
is at its maximum, except at two periods, around the hundredth day and from the three hundred
and fortieth. The second period is due to the shutdown of the reservoirs, as the overall level
has reached its final level. On the other hand, for the first period, it is more difficult to provide a
justification for this shutdown behaviour, which is due to the inflow profile imposed as a hypothesis
for our system. However, one reason for this is that the level of the reservoirs (MWh) has reached
its low limit.

Since we have compute imported production, we can calculate the Water Value from observed
market prices using the formula 3.5.6. After displaying the day-ahead price observed on the market
against imported production, we note that the linear modelling seems to be improved by a change
to exponential function for marginal imported costs. Based on work done part 3.4.1, we define the
exponential function for Water Values as followed:

WVt =
∂Cw,d(Tw,d)

∂Tw,d
= P̄ − exp(a)(S̄ − Tt)

α (3.5.7)

where P̄ = 50000NOK/MWh, S̄ = 6500MW .
Models 3.5.7 and 3.5.6 are calibrated by using linear regression on historical prices in NO1 in

2017. Results are shown in Figures 3.11.

(a) Water Value VS Imported Power NO1 (2017) (b) Daily Day-Ahead spot prices and Water Value NO1
(2017)

Figure 3.11: Daily Day-Ahead spot prices and Water Value NO1 (2017)
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Models R-score MAE RMSE
Exponential Water Values 0.48 19.61 28.22

Linear Water Values 0.56 19.55 28.15

Table 3.5: Results for both linear and exponential Water Values NO1 (MWH)

The results are quite surprising, as it seems that the linear model performs better than the
exponential model. Indeed, the table 3.5 shows better results for the R-score and the MAE for
linear model and similar result for RMSE. However, the difference between these two models is
not marked, we have no model that outperforms another among these two.

The overall trend in prices is well respected. Winter periods are well represented, with higher
volatility than during the summer. The linear model is better able to capture periods when prices
are low, whereas the exponential model is better able to capture periods of high demand and
therefore higher day-ahead prices.

However the daily comparison reveals that also both models are not fully capable to capture
the jumps and troughs of the Norwegian electricity prices in 2017. We find the same results in the
following paper [35, Part 5.2], which considers another approach to quantify Water Value. There
are several reasons for this phenomenon. The first is that the jumps appear at specific times of
the day, usually in the late afternoon, suddenly. Since,daily Day-Ahead prices and the demand are
averaged for each day, we loose the effect of the increase in demand on an hourly basis. Secondly,
the reader should remember that this model is made up of a single reservoir which covers all the
production in the NO1 zone in 2017. This means that only one associated Water Value is defined.
In reality, each reservoir has its own supply curve and therefore its own associated Water Value,
which is then aggregated to build the supply curve. This extension of the Water Value calculation
model to a competitive multi-agent environment can be found in the paper [30, Part 4.2]. Finally,
this model predicts the best daily price that a reservoir operator can hope to obtain for his water
reserve. The use of electricity production is then adapted to this value because it allows us to
know at what time it will be interesting to produce in order to optimise the operation of the dam.
During the day, demand varies from hour to hour, which leads to price movements over the day.
So, with the Water Value defined for the day, the operator can choose the most interesting hours
of production when prices are highest and import electricity when the price falls below the Water
Value; his stock of water is saved for future hours when the price will be higher. This is mostly
the case in summer, as can be seen in the figure 3.11(b). From day 140 to day 230, the price falls
sharply and it becomes very rare to have production opportunities at Water Value prices. Hydro
generation is therefore slowed down to be used when prices become attractive again.

Many constraints can be added to our model. We have only considered hydraulic constraints
and network constraints at the interconnection capacity level. But environmental constraints are
increasingly being imposed on electricity producers, leading to a change in production optimisation
policy [36].
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Conclusion

In this thesis, we have highlighted the non-normality of electricity market distributions and pre-
sented several studies and graphs on the correlation and auto-correlation of Day-Ahead prices for
the five bidding zones in Norway. We have concluded that these five zones are divided into two
groups because of their hydropower generation capacity and interconnection capacity. Finally,
having identified a weekly trend in spot prices, adapted a deterministic function to transcribe the
periodicity of the Day-Ahead price time series, an ARMA stochastic process was used to best tran-
scribe the residuals. Despite the good performance of this approach on the Norwegian data, the
internal dynamics of the market structure are not reflected in this model. Thus, a more detailed
modelling of the supply curve and the redefinition of the Water Value for hydro-dominated zones
with import and export capacity with adjacent zones was detailed to re-transcribe the market
clearing price process. A stochastic modelling approach using an Ornstein-Uhlenbeck process is
described for the demand curve. Thus, by imposing dynamic constraints on reservoir levels and
on the possibility of importing or exporting, without forgetting the principle of equalising supply
and demand at every moment, an optimisation problem led us to redefine Water Value and to
recover the trend in Day-Ahead prices observed in Norway in 2017. The results show a good ap-
proximation of the general dynamics of the curve, despite an inability to capture price peaks. For
future studies, models with a spike component to reflect these sudden dynamics of price increases
or decreases could be considered.
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Appendix A

Additional graphs

A.1 Additional graphs of the five bidding zones in Norway

(a) ACF Kristiansand prices NO2 (2015-
2022)

(b) PACF Kristiansand prices NO2 (2015-
2022)

(c) ACF Kristiansand log returns NO2 (2015-
2022)

(d) PACF Kristiansand log returns NO2
(2015-2022)

Figure A.1: ACF and PACF Day-Ahead prices and returns Kristiansand NO2 (2015-2022)
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(a) ACF Trondheim prices NO3 (2015-2022) (b) PACF Trondheim prices NO3 (2015-2022)

(c) ACF Trondheim log returns NO3 (2015-
2022)

(d) PACF Trondheim log returns NO3 (2015-
2022)

Figure A.2: ACF and PACF Day-Ahead prices and returns Trondheim NO3 (2015-2022)

(a) ACF Bergen prices NO5 (2015-2022) (b) PACF Bergen prices NO5 (2015-2022)

(c) ACF Bergen log returns NO5 (2015-2022) (d) PACF Bergen log returns NO5 (2015-
2022)

Figure A.3: ACF and PACF Day-Ahead prices and returns Bergen NO5 (2015-2022)
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Figure A.4: Box plot Oslo NO2 (2017-2022)

Figure A.5: Box plot Trondheim NO3 (2017-2022)
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Figure A.6: Box plot Bergen NO5 (2017-2022)
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A.2 Market clearing graphs

Figure A.7: Water inflows and Daily adjusted demand (MWh) NO1 (2017)
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[29] Lennart Söder. Analysis of electricity markets, 2011.
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