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Abstract

In today’s ever-evolving financial landscape, options play a pivotal role, serving diverse purposes
for financial institutions and corporations alike. This paper zooms in on a specific category of
options known as barrier options, which have gained significant prominence in over-the-counter
(OTC) markets. Among these, barrier options in the foreign exchange (FX) market are particularly
noteworthy, given their dual role in risk management and speculative trading. This paper is
dedicated to thoroughly exploring the pricing techniques for FX barrier options, focusing on their
accuracy and adaptability.



Contents

1 Barrier Options 7
1.1 Some elements of context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Single Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Double Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 European and American Barrier options . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Rebates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Window Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Discrete monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Garman-Kohlhagen model 11
2.1 A generalised version of the Black-Scholes model . . . . . . . . . . . . . . . . . . . 11
2.2 Estimation of the Implied volatility using the Garman-Kohlhagen model . . . . . . 12
2.3 Theoretical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Single Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Double Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 In-Out parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Monte Carlo methods 15
3.1 Some basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Variance reduction techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Control Variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Antithetic Variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Conditional Monte-Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.5 Combination of methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Window Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Lattice methods 26
4.1 Binomial Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Single Barrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Double Barrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Trinomial Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Single Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Double Barrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Improved Tree for Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Window Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Finite Difference Methods 35
5.1 Garman-Kohlhagen model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 General framework for Finite Difference Methods . . . . . . . . . . . . . . . . . . . 35

5.2.1 Explicit scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Fully implicit scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.3 Crank-Nicolson scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.4 Study of consistency, stability and convergence . . . . . . . . . . . . . . . . 39
5.2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.6 Window Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Improved scheme for Discrete Barrier options . . . . . . . . . . . . . . . . . . . . . 42

2



A Garman-Kohlhagen PDE 44

B Lattice methods 46
B.1 Proof of Theorem 3.1.1: Backward Induction Algorithm . . . . . . . . . . . . . . . 46
B.2 Proof of Theorem 4.1.2 : Price of a Vanilla option . . . . . . . . . . . . . . . . . . 46

C Finite difference methods 48
C.1 Explicit scheme and Trinomial Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
C.2 Stability of the Explicit Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography 50

3



List of Figures

1.1 Payoffs of Single Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Price of the underlying under the condition of two barriers . . . . . . . . . . . . . . 9
1.3 Price of the underlying under the condition of two time-dependent barriers . . . . 10

2.1 Convergence of the option price with S=147,
Bu = 150, Bd = 145,K = 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Comparision between Monte-Carlo methods for S=100, K=90,Bd = 90, Bu = 110, rd =
0.1, rf = 0.05, T = 0.25, σ = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 A two-step Binomial Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Convergence of Single Barrier Option Price with increasing Tree Steps in the Bino-

mial Tree for S0 = 100,K = 90, B = 95, rd = 0.08, rf = 0.04, T = 0.5, σ = 0.25 . . . 28
4.3 Convergence of Double Barrier Option Price with increasing Tree Steps in the Bino-

mial Tree S0 = 100,K = 100, Bu = 130, Bl = 70, , rd = 0.1, rf = 0.05, T = 0.25, σ =
0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 A one step trinomial tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Convergence of Single Barrier Option Price with increasing Tree Steps in the Trino-

mial Tree for S0 = 100,K = 90, B = 95, rd = 0.08, rf = 0.04, T = 0.5, σ = 0.25 . . . 31
4.6 Convergence of Double Barrier Option Price with increasing Tree Steps in the Trino-

mial Tree S0 = 100,K = 100, Bu = 130, Bl = 70, , rd = 0.1, rf = 0.05, T = 0.25, σ =
0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Close-up to the first time step of the Bino-Trinomial Tree . . . . . . . . . . . . . . 32
4.8 Evolution of the percent error for the BTT Tree model S0 = 100,K = 100, Bu =

130, Bd = 70, rd = 0.1, rf = 0.05, T = 0.25, σ = 0.25 . . . . . . . . . . . . . . . . . . 33
4.9 Comparision between Tree methods for S=100, K=90,Bd = 90, Bu = 110, rd =

0.1, rf = 0.05, T = 0.25, σ = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 The partitioning of the t, x plane for a two dimensional finite difference method . 36
5.2 Convergence of the CN scheme for S0 = 120,K = 90, B = 110, rd = 0.08, rf =

0.04, T = 0.5, σ = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4



List of Tables

2.1 Theoretical Values of Single Barrier options . . . . . . . . . . . . . . . . . . . . . . 14

3.1 (MC)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, K = 90 16
3.2 (MC)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100,

S0 = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Average computation time for Monte-Carlo . . . . . . . . . . . . . . . . . . . . . . 17
3.4 (CV-MC)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25,

K = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 (CV-MC)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100,

S0 = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 (A-MC)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, B = 95 20
3.7 (A-MC)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100,

S0 = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 (C-MC)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, B = 95 22
3.9 (C-MC)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100,

S0 = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 (IS-MC)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, B = 95 24
3.11 (IS-MC)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100,

S0 = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.12 (MC)KOKO call option with rd = 0.1,rf = 0.05,T = 1,σ = 0.25, K = 100, S0 = 100,

Bu = 130,Bd = 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 (BT)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, K = 90 . 28
4.2 Average computation time for Lattice methods . . . . . . . . . . . . . . . . . . . . 28
4.3 (BT)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100, S0 = 100 29
4.4 (TT)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, K = 90 30
4.5 (TT)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100, S0 = 100 31
4.6 (BTT)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100,

S0 = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 (Tree)KOKO call option with rd = 0.1,rf = 0.05,T = 1,σ = 0.25, K = 100,

S0 = 100, Bu = 130,Bd = 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Average Computational Time for Finite Difference Methods with a Fixed Spatial
Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 (CN)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, K = 90 40
5.3 (CN)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100, S0 = 100 41
5.4 (CN)KOKO call option with rd = 0.1,rf = 0.05,T = 1,σ = 0.25, K = 100, S0 = 100,

Bu = 130,Bd = 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 (IM)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, K = 90 . 42

5



Introduction

In today’s dynamic financial landscape, options play a pivotal role for both financial institutions
and corporations. These versatile financial instruments serve a multitude of purposes, including
hedging against risk, speculating on market movements, and crafting innovative solutions for ad-
vanced trading strategies. As financial markets continue to evolve, there is a continuous emergence
of more sophisticated option types, commonly referred to as exotic options. This vibrant market
for exotic options has witnessed significant growth over the past decades, characterized by rising
trading volumes and enhanced liquidity. In this paper, our focus centers on a specific category of
exotic options known as barrier options.

As barrier options gain increasing traction within the OTC markets, they have garnered height-
ened attention within the field of derivatives research. In the FX market, barrier options stand
out as the most frequently traded type among exotic options. They serve a dual purpose, being
integral to risk hedging strategies for corporate cash flows and offering speculative opportunities
for traders seeking sophisticated FX spot rate exposure. Consequently, they present significant
risk considerations for market makers. Notably, significant developments have unfolded in the
literature, particularly concerning their analytical valuation. One of the early contributions in this
field can be attributed to Reiner and Rubinstein, as documented in [1]. Their groundbreaking
work provided pricing formulas for Single Barrier options. One other major contribution comes
from Kunitomo and Ikeda in 1992 in [2]. They introduced a valuation formula for Double Barrier
options, building upon a generalization of the Levy formula.

This thesis is dedicated to the comprehensive examination of various techniques employed in
the pricing of FX Barrier options. Our primary objectives are to assess their accuracy and to
evaluate their adaptability in the context of Barrier option pricing. Through rigorous analysis
and empirical testing, we aim to provide an understanding of the strengths and limitations of
these pricing techniques. In the first chapter of this thesis, we provide an extensive exposition
of Barrier options, delving into their characteristics and offering an overview of the significance
and appeal of these exotic financial instruments. Chapter 2 delves into the Garman-Kohlhagen
framework, designed for pricing FX options. Additionally, we explore the theoretical formulas
that are indispensable for pricing Barrier options, serving as fundamental building blocks for the
subsequent chapters of this thesis. The remainder of the thesis shifts its focus towards the diverse
methods employed to price these exotic options. Chapter 3 delves into investigations of Monte-
Carlo methods, encompassing the testing of various variants within the Monte-Carlo framework.
In contrast, Chapter 4 centers its attention on Lattice methods, exploring the utility of Binomial,
Trinomial, and an enhanced version of the Binomial Tree. These methods serve as invaluable
tools for pricing exotic options and form a significant part of our analytical exploration. Chapter
5 represents a thorough exploration of Finite Difference Methods. This chapter delves into the
examination of various schemes and discretization techniques designed to efficiently price Barrier
options. This pursuit marks a significant stride forward in the quest for effective numerical pricing
methods.
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Chapter 1

Barrier Options

A barrier option is a type of financial derivative whose payoff depends on whether the underlying
asset’s price reaches or crosses some specified barrier level during the lifetime of the option. If the
barrier is not crossed, the option remains active until its expiration, and the usual payoff conditions
apply. If the barrier is crossed, either the option is knocked out, meaning an immediate termination
of the option with no further value or the option is knocked in, that results in the activation of
the option. Barrier options are path-dependent options and are composed of four basic forms:
down-and-out, down-and-in, up-and-out and up-and-in. The barrier is either set ’up’ or ’down’
that is to say above or below the asset price at the time the option is created.

1.1 Some elements of context

Barrier options were developed in order to address specific hedging needs and market conditions
that could not be accommodated with European or American options. This specific type of op-
tions have started to be traded in the OTC market in the 1970s when the Black-Scholes model
revolutionized option pricing. Barrier options gained popularity since they provide tailored risk
management solutions. They indeed allow investors or institutions to have positions that can pro-
vide specific levels of protection. One can then maintain exposure to profits while be protected
against unfavorable movements of the market.

In the 1990s as financial markets continued to evolve, barrier options became more standardized
and accessible. Financial institutions and derivatives exchanges started offering barrier options on
a wider range of underlying assets, including currencies, commodities, and equities. That is the
precise context of this work.

The 2008 global financial crisis prompted a renewed interest in risk management and derivatives
products. Barrier options remained relevant due to their ability to tailor risk profiles to specific
market conditions and individual preferences. Additionally, advancements in computational tools
and trading platforms facilitated the trading and pricing of these options, making them more
accessible to a broader range of market participants.

1.2 Single Barrier options

As mentioned before, a barrier option is an option whose payoff is either ”knocked out” or ”knocked
in” if the price of the underlying crosses a barrier. The price of the option is reduced since there
is a chance that the option may be made worthless. The simplest type of barrier option are Single
Barrier options. The four types of Single Barrier call options are the following:

An up-and-out call option with a constant barrier B > S0 has a payoff if the underlying price
does not go beyond the barrier value until maturity T :

{
(ST −K)+ St < B,∀t
0 otherwise

7



An up-and-in call option with a constant barrier B > S0 has a payoff if the underlying price
go beyond the barrier value until maturity T :

{
0 St < B,∀t
(ST −K)+ otherwise

An down-and-out call option with a constant barrier B < S0 has a payoff if the underlying
prices stays beyond the barrier value until maturity T :

{
(ST −K)+ St > B,∀t
0 otherwise

An down-and-in call option with a constant barrier B < S0 has a payoff if the underlying prices
stays bellow the barrier value until maturity T :

{
0 St > B,∀t
(ST −K)+ otherwise

Figure 1.1: Payoffs of Single Barrier options

1.3 Double Barrier options

Double Barrier options are either knocked in or knocked out if the underlying price crosses the
lower barrier Bd or the upper one Bu before the expiration of the option. There are two different
variations of double barrier options, including:

Knock-In Double Barrier Option only becomes active and valid if the underlying asset’s price
crosses one of the barriers during its lifetime. If the asset’s price does not breach the barriers, the
option remains inactive and expires worthless.

Knock-Out Double Barrier Option loses its validity if the underlying asset’s price crosses one
of the barriers during its lifetime. If the asset’s price breaches either barrier, the option becomes
null and void.

In Figure 1.2, the underlying does not cross any barrier. Assuming the option is a knocked-out
option, the option will not be affected by the barriers and its value will be the one the equivalent
vanilla option.

8



Figure 1.2: Price of the underlying under the condition of two barriers

1.4 European and American Barrier options

As with standard options, we can define American Barrier options. American Barrier options differ
from their corresponding European options due to their exercise flexibility. European options can
only be exercised at the expiration date, while American options can be exercised at any time before
or on the expiration date. The modifications required for pricing and hedging these new Barrier
options are similar to those for their Vanilla equivalents. In this work, we will not extensively
delve into American Barrier options since their characteristics are either akin to European Barrier
options or can be compared to standard American options. However, we can note that Haug
developed in [3] closed-form solution for Single American Barrier options.

1.5 Rebates

A rebate feature is a distinctive aspect that can be added to barrier options, enhancing their flex-
ibility and attractiveness to investors. In the context of barrier options, a rebate refers to a fixed
cash payment that is granted to the option holder when the option is knocked out or becomes void
due to a barrier breach. This rebate acts as a consolation prize for the option holder, compensating
them for the potential loss of profit resulting from the barrier being hit.

Rebate features can be particularly appealing to investors who are interested in barrier options
but want a degree of protection against barrier breaches. Rebates can make these options more
attractive by adding an element of potential income, regardless of whether the option achieves its
full profit potential. Additionally, rebates can be used as a tool for managing risk and enhancing
risk-reward profiles in trading and investment strategies. In this thesis, we are considering zero-
rebate barrier options.

1.6 Window Barrier options

Window Barrier options are similar to standard Barrier options but include an additional feature
known as a ’window.’ In this case, the Barrier (or Barriers, in the context of Double Barrier
options) is active only during a specific period between the trading date and the option’s maturity.
This concept of a ’window’ can be further extended by introducing multiple monitoring windows
throughout the option’s lifespan, each with its unique barrier levels. This feature allows for a more
nuanced and flexible approach to structuring options, accommodating different market conditions
and price dynamics during various time intervals.

In Figure 1.3, we can observe that the underlying crosses the barriers multiple times, the first
being the upper barrier at T = 0.55. If this is a knock-out barrier, the option will be valued zero.

9



Figure 1.3: Price of the underlying under the condition of two time-dependent barriers

1.7 Discrete monitoring

Another important characteristic of Barrier options is the monitoring method: they can be either
continuously monitored or discretely monitored. In the case of continuous monitoring, if the
underlying price reaches the barrier at any time before the option’s expiry, the barrier will be
effectively considered reached. In the second case, discrete monitoring is used, where specific
monitoring times are defined (such as daily or weekly checks), and the value of the underlying is
only assessed at these predetermined times.

In practice, barriers are monitored only at discrete points in time for equity or commodity
options. On top of the differences of implementation, there are financial or legal reasons for this
type of monitoring. Broadie, Glasserman and Kou introduced in [4] a continuity correction for
discrete barrier options. Their work resulted in the following theorem:

Theorem 1.7.1. Let V and V m
d be the respective prices of the continuous barrier option and the

discrete barrier option (with m monitoring times). The barrier level is B. We can assume the
following approximation:

V m
d (B) = V (Be±βσ

√
T
m ) + o(

1√
m
) (1.7.1)

+ is designed for ’up’ options while - is for ’down’ options. β = − ζ(0.5)√
2π

≈ 0.5826

where ζ(s) =
∑∞

n=1
1
ns is Riemann zeta function.
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Chapter 2

Garman-Kohlhagen model

2.1 A generalised version of the Black-Scholes model

In Black-Scholes model, the underlying is a non-dividend paying stock with returns that follows a
geometric Brownian motion. Hence, the model that accounts for domestic risk-free interest rates
only is not sufficient to be applied to foreign exchange options. The Garman-Kohlhagen option-
pricing model (1983) is suitable with interest rate parity. The partial differential equation is the
following:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (rd − rf )S

∂V

∂S
− rdV = 0 (2.1.1)

The terminal condition is V (T, S) = g(S), the payoff of the option. The variables used in the
model are:

V (S, T ): price of a call option in domestic units per foreign units

S: spot price

T : time remaining until maturity

K: exercise price of the call option

rd: domestic interest rate

rf : foreign interest rate

σ: volatility of spot currency price

The derivation of the PDE is explained in details in the Appendix. As with the Black-Scholes
model, the equation above assumes that one will pay proportional dividend. The spot price follows
a geometric Brownian motion, option price includes one stochastic volatility and interest rates are
constant.

dS = µSdt+ σSdZ (2.1.2)

where µ = rd − rf is the drift of spot currency price and Z a standard Wiener process.

The closed-form solutions for the European calls and puts are the following:

C(S, T ) = e−rfTSN(d1)− e−rdTKN(d2) (2.1.3)

P (S, T ) = −e−rfTSN(−d1) + e−rdTKN(−d2) (2.1.4)

with d1 and d2 defined as follows:

d1 =
ln( S

K ) + (rd − rf + σ2

2 )T

σ
√
T

, d2 = d1 − σ
√
T (2.1.5)
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2.2 Estimation of the Implied volatility using the Garman-
Kohlhagen model

In the context of option pricing, estimating the implied volatility is sometimes a crucial step in
matching the theoretical option prices to the observed market prices. For the Garman-Kohlhagen
model, which is commonly used for pricing currency options, this involves solving for the volatility
parameter that equates the calculated theoretical option price to the market price. Two widely
used numerical methods for estimating implied volatility are the Newton-Raphson method and the
bisection method.

The Newton-Raphson method is an iterative numerical technique that aims to find the root of
a function. In the context of implied volatility estimation, we use it to find the volatility σ that
satisfies the equation Ccalculated−Cmarket = 0, where Ccalculated is the option price calculated using
Equation (1) and Cmarket is the observed market option price.

The Newton-Raphson iteration formula for updating the estimate of volatility is given by:

σnew = σold − Ccalculated − Cmarket

Vega
(2.2.1)

Where:

σnew is the updated estimate of volatility

σold is the previous estimate of volatility

Vega is the sensitivity of the option price with respect to volatility, defined as

the derivative of the option price with respect to volatility

The bisection method is another iterative numerical technique that is particularly useful for
functions with a single root within an interval. In the context of implied volatility estimation, the
bisection method involves finding the volatility σ that makes the calculated option price Ccalculated

match the observed market option price Cmarket.

The bisection method is a straightforward numerical technique used for finding the root of
a function within a given interval. In the context of estimating implied volatility, the bisection
method aims to find the volatility parameter σ that makes the calculated option price Ccalculated

match the observed market option price Cmarket. The bisection algorithm involves iteratively
narrowing down the interval in which the root lies until a sufficiently accurate estimate is obtained.
The basic steps of the algorithm are as follows:

1. Choose an initial interval [σlow, σhigh] where you believe the root (implied volatility) lies.

2. Calculate the option price Ccalculated using the Garman-Kohlhagen pricing formula with the
midpoint volatility σmid = (σlow + σhigh)/2.

3. Calculate the error Cerror = Ccalculated − Cmarket.

4. If |Cerror| is sufficiently small (i.e., convergence criterion met), stop and consider σmid as the
estimated implied volatility.

5. Determine the new interval based on the sign of Cerror. If Cerror > 0, set σlow = σmid; if
Cerror < 0, set σhigh = σmid.

6. Repeat steps 2 to 5 until the desired level of accuracy is achieved.

The midpoint volatility σmid is updated in each iteration using the formula:

σmid =
σlow + σhigh

2
(2.2.2)

During each iteration, the interval [σlow, σhigh] is halved, bringing the algorithm closer to the
true implied volatility.

As implied volatility increases, a notable distinction arises between barrier options and plain
vanilla options. Unlike plain vanilla options, where vega (the sensitivity of the option price to
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changes in implied volatility) usually increases uniformly with volatility, barrier options exhibit a
unique behavior.

In this context, the impact of volatility on a barrier option’s price becomes nonlinear. Higher
volatility pushes the option’s value toward the barrier, enhancing the likelihood of breaching it.
Consequently, the vega of a barrier option ”flattens” as volatility increases. This flattening vega
is a result of the growing significance of the barrier relative to other factors as volatility rises.
This behavior is in stark contrast to plain vanilla options, where vega tends to rise steadily with
increasing volatility.

For simplicity in the next chapters, we will impose a fixed volatility. For example, in lattice
methods there is a local volatility different from the input volatility and in numerical schemes we
can define either a constant volatility or using a deterministic function of two variables.

2.3 Theoretical values

For some types of Barrier options, we have theoretical formulas. Some have been developed and
proved in [2] by Kunitomo and Ikeda for more general examples of Double Barrier options. The
formulas derived there are for curved boundaries barriers, our use case is a specific example with
constant barriers.

2.3.1 Single Barrier options

The formulas for Single Barrier options have been proved by Reiner and Rubinstein in [1]. B
represents the value of the barrier, otherwise we kept the notation previously introduced in section
2.1.

A1 = e−rfTaSN(ax1)− e−rdTKN(ax1 − aσ
√
T )

A2 = e−rfTaSN(ax1)− e−rdTKN(ax2 − aσ
√
T )

A3 = e−rfTa(
B

S
)2(µ+1)SN(bx3)− e−rdTK(

B

S
)2µN(bx3 − bσ

√
T )

A4 = e−rfTa(
B

S
)2(µ+1)SN(bx4)− e−rdTK(

B

S
)2µN(bx4 − bσ

√
T )

A5 = Ke−rdT [N(bx2 − bσ
√
T )− (

B

S
)2µN(bx4 − bσ

√
T )]

A6 = K[(
B

S
)µ+λN(bx5) + (

B

S
)µ−λN(bx5 − 2bλσ

√
T )]

with

{
a = 1,−1 call,put
b = 1,−1 out,in

x1 =
log( S

K )

σ
√
T

+ (1 + µ)σ
√
T , x2 =

log( S
B )

σ
√
T

+ (1 + µ)σ
√
T

x3 =
log( B2

SK )

σ
√
T

+ (1 + µ)σ
√
T , x4 =

log(BS )

σ
√
T

+ (1 + µ)σ
√
T

x5 =
log(BS )

σ
√
T

+ λσ
√
T , µ =

rd − rf − σ2

2

σ2
, λ =

√
µ2 +

2rd
σ2
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Down/Up In/Out Call/Put Payoff (K ≤ B) Payoff (K ≥ B)
Down In Call A1 −A2 +A4 +A5 A3 +A5

Up In Call A2 −A3 +A4 +A5 A1 +A5

Down In Put A1 +A5 A2 −A3 +A4 +A5

Up In Put A3 +A5 A1 −A2 +A4 +A5

Down Out Call A2 −A4 +A6 A1 −A3 +A6

Up Out Call A1 −A2 +A3 −A4 +A6 A6

Down Out Put A6 A1 −A2 +A3 −A4 +A6

Up Out Put A1 −A3 +A6 A2 −A4 +A6

Table 2.1: Theoretical Values of Single Barrier options

2.3.2 Double Barrier options

The formulas for Double Barrier options are more complex, for simplification we will only refer to
Double Knock-Out (KOKO) call options. With parity conditions and other symmetries the other
types of options can be derived.Bu and Bd represent respectively the upper and the lower barrier
of the considered option.

C = Se−rfT
∞∑

n=−∞
(
Bn

u

Bn
d

)µ[N(d1)−N(d2)]− (
Bn+1

d

Bn
uS

)µ[N(d3)−N(d4)] (2.3.1)

−Ke−rdT
∞∑

n=−∞
(
Bn

u

Bn
d

)µ−2[N(d1−σ
√
T )−N(d2−σ

√
T )]−(

Bn+1
d

Bn
uS

)µ−2[N(d3−σ
√
T )−N(d4−σ

√
T )]

with

d1 =
log(

SB2n
u

KB2n
d
) + (rd − rf + σ2

2 )T

σ
√
T

, d2 =
log(

SB2n−1
u

B2n
d

) + (rd − rf + σ2

2 )T

σ
√
T

d3 =
log(

B2n+2
d

KSB2n
u
) + (rd − rf + σ2

2 )T

σ
√
T

, d4 =
log(

B2n+2
d

SB2n+1
u

) + (rd − rf + σ2

2 )T

σ
√
T

µ =
2(rd − rf )

σ2

Double Barrier option prices are represented using infinite series. However, the convergence
of these series can be achieved with only a limited number of terms. When the two barriers are
closely positioned, adding more terms is necessary to ensure the accuracy of the computed price.

Figure 2.1: Convergence of the option price with S=147,Bu = 150, Bd = 145,K = 147

2.3.3 In-Out parity

Owning both a Knock-Out option and a Knock-In option with identical features is essentially
equivalent to holding a comparable vanilla option, regardless of how the underlying asset behaves
concerning the barrier level. Barriers effectively cancel each other out. If the underlying asset’s
price touches the barrier level (which would activate the Knock-In option), it also crosses the
barrier level (which would terminate the Knock-Out option). If the underlying asset’s price does
not touch the barrier level, neither the Knock-In nor the Knock-Out option is triggered. In both
cases, the final outcome is equal to the vanilla price.
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Chapter 3

Monte Carlo methods

Simulation techniques are invaluable tools in managing complex financial scenarios involving path-
dependent payoffs or distributions that lack analytical expressions. One prominent application is
in pricing derivative securities, estimating value at risk, and emulating hedging strategies. Monte-
Carlo simulation, in particular, proves highly effective for such tasks, offering a blend of simplicity
and adaptability as its chief advantages. However, the method’s drawback lies in its considerable
computational demands, which can be mitigated to some extent. Our approach employs Monte-
Carlo simulation to generate simulated option price values, which are then juxtaposed against
outcomes derived from analytical formulas. In this chapter, we will delve into the fundamental
tenets of Monte Carlo simulation, expounding on its core concepts and providing pertinent formulas
for a comprehensive understanding.

3.1 Some basic definitions

The idea of Monte Carlo method is to estimate θ = E(f(X)) with f(X) is an arbitrary function.
For a sequence of independent and identically distributed random variables X1, X2...Xn. We can
estimate θ with the sample mean defined by:

θ̂ =
1

n

n∑
i=1

f(Xi) (3.1.1)

As n grows to infinity, we have by the law of large number that θ̂ −→ E(f(X)) = θ
Furthermore, the Central Limit Theorem underscores that regardless of the distribution of

individual samples, when the sample size is sufficiently large, the distribution of the sample means
approximates a normal distribution, that is to say:

θ̂ − θ√
σ2

n

−→ N(0, 1)

with

σ2 =
1

n− 1

n∑
i=1

(f(Xi)− θ̂)2

This is equivalent to the following probabilistic approach:

P (θ̂ − η1−α
2

σ√
n
< θ < θ̂ + η1−α

2

σ√
n
) = 1− α (3.1.2)

The accuracy of the estimation can be measured using the term σ√
n
, which is the standard error.

Additionally, when feasible, we will analyze the percent error relative to theoretical values.
In order to simulate barrier options using Monte Carlo, we first have to simulate sample paths

of the underlying price. For vanilla options, this path generation is not useful since only the price
of the underlying at maturity is concerned in the calculations. However, for Barrier options, this is
mandatory since we need to know whether the price hits the barrier before expiry. So, we have to
simulate the entire evolution. We consider equation (2.1.2) to describe the price of the underlying
asset.
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The Euler scheme gives us the following equation:

St+dt = (1 + µdt)St + σSt

√
dtZ

with Z is a standard normal random variable. Using the properties of Wiener process, we have:

St+dt = Ste
(µ−σ2

2 )dt+σ
√
dtZ

In Table 3.1, we present the results of Monte Carlo simulations for various Down-and-Out call
options. We have chosen options with different Barrier values as well as varying stock values.
These results will be compared with those obtained through alternative variations of Monte Carlo
methods. The errors listed in the tables represent the percent errors from the analytical values.
The standard errors of the estimations are also written under the parenthesis. We started with
simple Barrier options to initially assess the efficiency of the method.

Price MC100 err100 MC1000 err1000 MC5000 err5000 MC10000 err10000

S0 = 100
B=95

6.7447
9.1516
(1.3131) 0.3569

7.4283
(0.4712) 0.1014

7.0233
(0.2107) 0.0413

6.7394
(0.1468) 7.8.10−4

S0 = 100
B=90

10.9501
12.2386
(1.5597) 0.1176

11.3816
(0.4885) 0.0394

11.1965
(0.2284) 0.0316

11.0001
(0.1578) 4.56.10−3

S0 = 110
B=100

15.0164
13.7898
(2.3698) 0.0817

14.9260
(0.6672) 0.0060

15.4914
(0.2987) 0.0316

15.2934
(0.2146) 0.0184

S0 = 110
B=90

21.1631
19.1583
(1.7933) 0.0947

21.8267
(0.6145) 0.0314

21.4614
(0.2743 ) 0.0141

21.2005
(0.1961) 1.8.10−3

S0 = 120
B=100

28.0566
28.8587
(2.3466) 0.0286

28.5134
(0.7669) 0.0163

28.2530
(0.3471 ) 7.0.10−3

28.0295
(0.2410 ) 1.0.10−3

S0 = 120
B=110

18.4403
19.2732
(2.7871) 0.0452

19.1378
(0.8465) 0.0378

18.7095
(0.3773) 0.0146

18.1083
(0.2664) 0.0180

Table 3.1: (MC)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, K = 90

Monte Carlo estimations give accurate prices compared to the analytical formulas for Single
Barrier Options. We worked on simulations for n = 100, 1000, 5000 and 10000 samples. Results are
very promising, for n = 1000, we get for example on average a percent error of order 10−2. With
the table we confirm one main aspect of Monte Carlo theory: increasing the number of simulations
leads to an improved accuracy for the computation.

We then transition to Double Barrier options, which involve both a lower and an upper barrier.
The key algorithmic modification here is the addition of the upper barrier, along with monitoring
to ensure that our estimates fall within the defined lower and upper barrier levels. Monte Carlo
computations offer the flexibility required to easily adapt to the unique characteristics of our exotic
options. Table 3.2 provides the results for various Double Barrier options.

Price MC100 err100 MC1000 err1000 MC5000 err5000 MC10000 err10000

Bd = 50
Bu = 150

5.4636
5.8933
(0.9468) 0.0786

5.6280
(0.2546) 0.0301

5.6248
(0.1133) 0.0295

5.4615
(0.0811) 4.0.10−4

Bd = 60
Bu = 140

5.2200
5.6990
(0.8387) 0.0918

5.3711
0.2453 0.0289

5.2930
(0.1088) 0.0140

5.2386
(0.0774) 3.6.10−3

Bd = 70
Bu = 130

4.3806
4.1325
(0.7008) 0.0566

4.2668
(0.1999) 0.0260

4.4774
(0.0941) 0.0221

4.3846
(0.0658) 9.0.10−4

Bd = 80
Bu = 120

2.4642
2.6122
(0.4752) 0.0601

2.6041
(0.1446) 0.0568

2.4168
(0.0628) 0.0192

2.4346
(0.0438) 0.0120

Bd = 90
Bu = 110

0.3003
0.3474
(0.1524) 0.1568

0.3149
(0.0401) 0.0486

0.3140
(0.0181) 0.0456

0.3015
(0.0125) 4.0.10−3

Table 3.2: (MC)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100, S0 = 100
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The results show that Monte-Carlo techniques are well-adapted to price Barrier options of
diverse types. For most of the cases, we obtain a percent error inferior to 0.1 with less than
1000 simulations. The last case is relevant to analyze since we have close upper and lower barrier
(namely Bd = 90 and Bu = 110). However with an increasing number of simulations, the results
even for this kind of close up and down barriers appear to be accurate. Nevertheless, it is important
to acknowledge that Monte Carlo methods do have some limitations, including the computational
time required for estimations and the potential width of confidence intervals. The next section will
introduce techniques aimed at mitigating variance, addressing this second challenge.

One element to notice is the computational time of Monte Carlo simulations. On average we
have:

MC100 MC1000 MC5000 MC10000

Time(s) 0.017 1.589 39.24 158.9

Table 3.3: Average computation time for Monte-Carlo

Figure 3.1 highlights the second issue raised above, that is to say the size of the confidence
intervals. We can observe that it reduces as the number of simulations increase, as introduced in
the probabilistic approach of Monte-Carlo in (3.1.2). One goal in the next section is to analyse
estimations conduced with Variance reduction techniques.

Figure 3.1: Comparision between Monte-Carlo methods for S=100, K=90,Bd = 90, Bu = 110, rd =
0.1, rf = 0.05, T = 0.25, σ = 0.25

3.2 Variance reduction techniques

Variance reduction techniques play a crucial role in enhancing the efficiency and accuracy of Monte-
Carlo simulations, particularly in the context of option pricing. Monte-Carlo methods rely on
generating random samples to approximate complex mathematical calculations, such as option
prices in finance. Variance, representing the dispersion of these sampled outcomes around their
mean, is a key factor in determining the reliability and precision of these estimates. Variance
reduction techniques aim to minimize this dispersion, thereby increasing the reliability of the
Monte Carlo estimates.

3.2.1 Control Variates

In option pricing, one widely used variance reduction technique is the control variate method.
This technique involves identifying a correlated variable with known expected value and using it to
create an adjusted payoff structure. By subtracting this correlated variable’s expected value from
the simulated payoffs, the variance of the resulting estimates is significantly reduced.
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Let us define the control variate g(X), such that its expectation G = E[g(X)] is known. We
can suppose correlation between f(X) and g(X):

Cov(f, g) = E[(f − θ̂)(g −G)]

The new random variable Y = f(X) − α(g(X) − G) has less variance than f(X). Therefore,
we can replace the formula of the estimator for the following:

θ̂ =
1

n

n∑
i=1

(f(Xi)− αg(Xi)) + αG (3.2.1)

α is a fixed parameter that needs to be chosen carefully, it has to minimize the variance

σ2
Y = σ2

f − 2αCov(f, g) + α2σ2
g

With the optimal α∗ = Cov(f,g)
σ2
g

, we get:

σ2
Y = σ2

f − Cov(f, g)2

σ2
g

Correlation between f and g can be defined as

ρfg =
Cov(f, g)

σfσg

Hence, we can write the dependency between the control variate and the correlation of f and
g.

σ2
Y = σ2

f (1− ρ2fg)

The fact is that knowing α∗ is not very likely to happen, so we estimate it with Monte-Carlo
information. Let us build this new estimator θ̃:

θ̃ = θ̂ − α̃∗ 1

n

n∑
i=1

(g(Xi)−G) (3.2.2)

with

α̃∗ =
˜Cov(f, g)

σ̃2
g

=
1
n

∑n
i=1(f(Xi)− θ̂)(g(Xi)−G)
1
n

∑n
i=1(g(Xi)−G)2

The generalisation is to use a set of control variates g1(X), g2(X)....gn(X). The new random
variable formed is Y = f(X)−

∑n
i=1 αigi(X). As in the case with one variate, we need to minimize

the variance of Y .
For α1, ...αn to be optimal, it means that f(X) and

∑n
i=1 αigi(X) are uncorrelated. The two

terms being independent, we can write:

V ar(f(X)) = V ar(Y ) + V ar(

n∑
i=1

αigi(X))

The method allows for more accurate and efficient estimation of option prices while maintaining
Monte-Carlo framework’s flexibility and simplicity. The numerical results will illustrate the im-
provements made. The control variate technique demonstrates how a clever choice of auxiliary
variables can substantially improve the quality of Monte-Carlo estimates.
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Price MC100 err100 MC1000 err1000 MC5000 err5000 MC10000 err10000

S0 = 100
B=95

6.7447
8.6713
(1.0458) 0.2856

7.3981
(0.2145) 0.0969

7.0076
(0.1000) 0.0390

6.7402
(0.0725) 7.0.10−4

S0 = 100
B=90

10.9501
12.1457
(0.6727) 0.1092

11.3214
(0.1122) 0.0339

11.1765
(0.0516) 0.0207

10.9899
(0.0352) 3.6.10−3

S0 = 110
B=100

15.0164
13.8975
(0.9800) 0.0745

14.7765
(0.2389) 0.0160

15.3567
(0.1045) 0.0227

15.2251
(0.0762) 0.0139

S0 = 110
B=90

21.1631
19.3758
(0.2956) 0.0845

21.8189
(0.03687) 0.0310

21.4701
(0.0226) 0.0145

21.1974
(0.0140) 1.6.10−3

S0 = 120
B=100

28.0566
28.7554
(0.4304) 0.0249

28.5563
(0.1250) 0.0178

28.2365
(0.0588) 6.4.10−3

28.0265
(0.0409) 1.1.10−3

S0 = 120
B=110

18.4403
19.1341
(1.3179) 0.0376

19.0007
(0.3925) 0.0304

18.6541
(0.1685) 0.0116

18.5567
(0.1192) 6.3.10−3

Table 3.4: (CV-MC)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, K = 100

The use of this first Variance reduction technique helped with improving the percent as well
as the standard error for most of the cases as shown in Table 3.3. For each number of simulations
tested, we obtained better results and smaller confidence intervals. We tested as before the new
technique with Double Barrier options.

Price MC100 err100 MC1000 err1000 MC5000 err5000 MC10000 err10000

Bd = 50
Bu = 150

5.4636
5.8576
(0.5935) 0.0721

5.6135
(0.1953) 0.0274

5.4897
(0.0845) 4.8.10−3

5.4617
(0.0562) 3.0.10−4

Bd = 60
Bu = 140

5.2200
5.5567
(0.5163) 0.0645

5.3352
(0.1853) 0.0221

5.2769
(0.0748) 0.0109

5.2298
(0.0578) 1.9.10−3

Bd = 70
Bu = 130

4.3806
4.1457
(0.4339) 0.0536

4.2758
(0.1586) 0.0239

4.3985
(0.0854) 4.1.10−3

4.3833
(0.0315) 1.1.10−3

Bd = 80
Bu = 120

2.4642
2.6088
(0.2956) 0.0587

2.5957
(0.0956) 0.0534

2.4844
(0.0498) 8.2.10−3

2.4839
(0.0416) 8.0.10−3

Bd = 90
Bu = 110

0.3003
0.3485
(0.0997) 0.1605

0.3120
(0.0317) 0.0390

0.3102
(0.0113) 0.0330

0.3016
(0.0092) 4.3.10−3

Table 3.5: (CV-MC)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100,
S0 = 100

The outcomes for Double Barrier options exhibit varying degrees of contrast when Control
Variates are employed. We continue to obtain reasonable estimations, especially with a substantial
number of simulations, and in some cases, we observe improvements compared to the standard
Monte-Carlo algorithm. Variance reduction techniques have proven effective, resulting in progres-
sively narrower confidence intervals for each option price. However, it is important to note that the
issue raised in the previous section concerning closely positioned upper and lower barriers remains
unsolved with Control Variates. Over time, the estimations for this type of Double Barrier option
tend to resemble the previous results obtained through the standard Monte-Carlo approach.”

3.2.2 Antithetic Variates

Antithetic Variates is another powerful variance reduction technique used in option pricing sim-
ulations to improve accuracy and efficiency. The method aims at leveraging negative correlation
between the pairs of random variables in order to reduce the entire variance of the estimates. In
the context of option pricing, antithetic variates involves generating paired random paths, where
one path follows the original model and the other path follows the mirrored model. Let us consider
a set of n copies of the random variable X. Now, we just suppose they are identically distributed
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but not independent. The antithetic variates method relies on the following equality:

θ̂ =
1

2n

2n∑
i=1

f(Xi) =
1

n

n∑
i=1

Yi = Y (3.2.3)

with

Y1 =
f(X1) + f(X2)

2
, ...., Yn =

f(Xn−1) + f(Xn)

2

The previous estimators are identical and we have by linearity that E[Yi] = E[f(X)] = θ. By
taking the example of Y1, we compute the variance.

V ar(Y1) =
1

2
(σ2 + Cov(f(X1), f(X2)) (3.2.4)

Usually, we make the assumption of independent variables, so we get V ar(Y ) = σ2

n . However,
we will build Y such that f(Xi) and f(Xi+1) are negatively correlated for each pair but with
independent pairs so that Yi are independent and identical. It enables us to use Central Limit

Theorem and we get : V ar(Y ) < σ2

n .
In our application, we need to construct standard normal random variables Zi, −Zi are also

standard normal and correlation between them is ρ = −1. Then, we can use the following theorem
to estimate the expected payoff of the options.

Theorem 3.2.1. Consider a monotone function f, then Y1 = f(Z1, ..., Zn) and Y2 = f(−Z1, ...,−Zn)
with Zi iid N(0, 1) are negatively correlated: Cov(Y1, Y2) < 0

Price MC100 err100 MC1000 err1000 MC5000 err5000 MC10000 err10000

S0 = 100
K=95

6.7447
7.8821
(1.0322) 0.1686

7.3114
(0.3210) 0.0840

6.5826
(0.1421) 0.0240

6.7348
(0.1057) 1.5.10−3

S0 = 100
K=90

10.9501
10.7399
(1.1215) 0.0192

11.1422
(0.3597) 0.0175

11.0503
(0.1581) 9.2.10−3

11.0127
(0.1117) 5.7.10−3

S0 = 110
K=100

15.0164
16.9545
(1.4472) 0.1291

15.6856
(0.4881) 0.0446

15.3699
(0.2144) 0.0235

14.9484
(0.1493) 4.5.10−3

S0 = 110
K=90

21.1631
20.9043
(1.4217) 0.0122

21.2639
(0.4346) 4.8.10−3

21.1341
(0.1938) 1.4.10−3

21.1393
(0.1361) 1.1.10−3

S0 = 120
K=100

28.0566
28.4078
(1.6323) 0.0125

28.2745
(0.5354) 7.8.10−3

28.2103
(0.2450) 5.5.10−3

28.0639
(0.1729) 3.0.10−4

S0 = 120
K=110

18.4403
20.1230
(1.7805) 0.0913

18.3566
(0.6010) 4.5.10−3

18.3785
(0.2637) 3.4.10−3

18.4617
(0.1879) 1.2.10−3

Table 3.6: (A-MC)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, B = 95

Antithetic Variates produced highly promising results for Single Barrier options, notably re-
ducing the standard error as indicated in Table 3.6 (values within parentheses). The percent errors
achieved with Antithetic Variates are comparable to those of Control Variates for sample sizes of
n = 100 and n = 1000. However, as the sample size increases beyond this point, the new technique
significantly reduces the percent errors.

Results for Double Barrier options presented in Table 3.7 suggest that using Antithetic Variates
are a reasonable technique to use to price Double Barrier options using Monte-Carlo methods.
The technique made it possible to reduce variance significantly, similarly to the Control Variates
technique. Furthermore, the results are more accurate with a percent error of order 10−4 for
n = 10000 simulations. It seems to be a good compromise since the computation is similar to
standard Monte-Carlo while enhancing greatly the different types of errors.
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Price MC100 err100 MC1000 err1000 MC5000 err5000 MC10000 err10000

Bd = 50
Bu = 150

5.4636
5.5535
(0.5884) 0.0165

5.5564
(0.1896) 0.0170

5.4704
(0.0823) 1.2.10−3

5.4676
(0.0576) 7.0.10−4

Bd = 60
Bu = 140

5.2200
5.5554
(0.5013) 0.0643

5.1176
(0.1616) 0.0196

5.2315
(0.0758) 2.2.10−3

5.2233
(0.0550) 6.0.10−4

Bd = 70
Bu = 130

4.3806
4.5404
(0.4272) 0.0365

4.1528
(0.1517) 0.0520

4.3647
(0.0660) 3.6.10−3

4.3766
(0.0467) 9.0.10−4

Bd = 80
Bu = 120

2.4642
2.8276
(0.2974) 0.1475

2.4379
(0.0983) 0.0107

2.4553
(0.0432) 3.6.10−3

2.4839
(0.0312) 8.0.10−3

Bd = 90
Bu = 110

0.3003
0.3869
(0.0905) 0.2884

0.2637
(0.0293) 0.1219

0.3034
(0.0123) 0.0103

0.3005
(0.0087) 7.0.10−4

Table 3.7: (A-MC)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100,
S0 = 100

3.2.3 Conditional Monte-Carlo

Conditional Monte-Carlo is a specialized simulation technique that offers a refined approach to
valuing barrier options. Traditional Monte-Carlo simulations may suffer from inefficiencies when
pricing barrier options, as many simulated paths may not cross the barrier. Conditional Monte-
Carlo addresses this challenge by focusing only on paths that trigger the barrier condition. Rather
than simulating the entire range of possible paths, the technique selectively simulates only those
paths that lead to barrier crossing and then use the Garman-Kohlhagen formula to compute the
price of the option until expiry. This targeted approach significantly reduces computation time
and enhances the precision of option price estimates.

For simplicity and clarity of the explanation, we consider a down-and-out call option. We write
the discreet stock prices S = {St0 , St1 , ..., Stn}. The price of the option at time 0 is the discounted
expected payoff:

Cdown−out = CGK − e−rdTE[1tc<T (Stn −K, 0)+] (3.2.5)

where tc is the time the stock crosses the down-barrier and CGK is the vanilla call price using the
Garman-Kohlhagen model.

Considering tc < T , we can write:

E[(Stn −K, 0)+] = E[E[(Stn −K, 0)+|c, Stc ]] (3.2.6)

Since S follows a log-normal process, we can deduce that:

E[(Stn −K, 0)+|c = k, Stc=tk ] = erd(T−tk)E[e−rd(T−tk)(Stn −K)+|Stk = S]

= Sϕ(d1(T − tk))−Ke−rd(T−tk)ϕ(d2(T − tk))

By taking the expectation, we get the new expression of equation (3.2.6). Conditional Monte-
Carlo estimator simulates n paths and average the results:

{
erd(T−tk)Sϕ(d1(T − tk))−Ke−rd(T−tk)ϕ(d2(T − tk)) tk < T
0 tk ≥ T

(3.2.7)

Then we discount by e−rdT to get the second term of (3.2.5). The same method can be detailed
for other types of Barrier options such as Double Barrier options.

This technique captures the essential features of barrier options while eliminating the need to
simulate irrelevant paths. The result might be a more efficient and accurate valuation process,
particularly suited for complex barrier option structures and higher-dimensional models.
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Price MC100 err100 MC1000 err1000 MC5000 err5000 MC10000 err10000

S0 = 100
K=95

6.7447
8.5435
(1.0155) 0.2667

7.0187
(0.3658 ) 0.0406

6.9803
(0.1562) 0.0349

6.7985
(0.0993) 8.0.10−3

S0 = 100
K=90

10.9501
12.2243
(1.1142) 0.1164

11.1414
(0.3349) 0.0175

11.0078
(0.1447) 5.3.10−3

11.0097
(0.0992) 5.4.10−3

S0 = 110
K=100

15.0164
14.0856
(1.4175) 0.0620

15.9356
(0.4684) 0.0612

15.4888
(0.2035) 0.0315

15.3756
(0.1394) 0.0239

S0 = 110
K=90

21.1631
19.3004
(1.2265) 0.0880

21.7564
(0.4458) 0.0280

21.4475
(0.1915) 0.0134

21.1995
(0.1203) 1.7.10−3

S0 = 120
K=100

28.0566
28.8653
(1.5126) 0.0288

28.5553
(0.5503) 0.0178

28.2319
(0.2180) 6.2.10−3

28.0304
(0.1583) 9.0.10−4

S0 = 120
K=110

18.4403
19.2856
(1.6277) 0.0458

19.1358
(0.5713) 0.0377

18.6574
(0.2451) 0.0118

18.1059
(0.1572) 0.0181

Table 3.8: (C-MC)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, B = 95

Conditional Monte Carlo is a powerful technique to reduce variance as shown in the results
of Table 3.8. Standard errors is reduced by 30% to 60% for each value, which is similar to the
improvements made with Antithetic Variates. However, this improvement is not changing much
the percent errors with the theoretical prices of Single Barrier options. Indeed, we get similar or
worse errors than standard Monte-Carlo and the other Variance Reduction techniques.

Price MC100 err100 MC1000 err1000 MC5000 err5000 MC10000 err10000

Bd = 50
Bu = 150

5.4636
5.9598
(0.5773) 0.0908

5.6198
(0.1772) 0.0286

5.6321
(0.0729) 0.0308

5.4756
(0.0615) 2.2.10−3

Bd = 60
Bu = 140

5.2200
5.7065
(0.5118) 0.0932

5.3532
(0.1818) 0.0255

5.2763
(0.0735) 0.0108

5.2380
(0.0530) 3.4.10−3

Bd = 70
Bu = 130

4.3806
4.1145
(0.4281) 0.0607

4.2764
(0.1503) 0.0238

4.4751
(0.0672) 0.0216

4.3839
(0.0458) 8.0.10−4

Bd = 80
Bu = 120

2.4642
2.1907
(0.3003) 0.1110

2.2136
(0.0793) 0.1017

2.4106
(0.0503) 0.0218

2.4451
(0.0274) 7.8.10−3

Bd = 90
Bu = 110

0.3003
0.3975
(0.0974) 0.3237

0.3675
(0.0262) 0.2238

0.3354
(0.0155) 0.1169

0.3146
(0.0093) 0.0476

Table 3.9: (C-MC)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100,
S0 = 100

The same conclusions can be made for Double Barrier options. In the analysis, it was found
that when applying Conditional Monte-Carlo, there was a decrease in the standard error. This
means that the estimation precision improved when using Conditional Monte-Carlo, which is a
positive result indicating that the technique has potential in reducing uncertainty in the estimated
option values. However, despite the reduction in standard error, the percent error did not see a
significant improvement when compared to other previously employed techniques. The percent
error is a crucial metric because it provides insights into the accuracy of the estimations relative to
the true values. The fact that the percent error did not decrease substantially suggests that while
Conditional Monte-Carlo may reduce uncertainty, it may not necessarily provide more accurate
estimates for Double Barrier options compared to other methods.
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3.2.4 Importance Sampling

Importance sampling is a sophisticated technique widely used in Monte-Carlo simulations to en-
hance the accuracy and efficiency of estimating rare or unlikely events, such as extreme outcomes in
financial models. In traditional Monte-Carlo methods, each simulated scenario contributes equally
to the final estimate, even if some scenarios are relatively insignificant or rarely occur. Importance
sampling addresses this inefficiency by intelligently biasing the simulation towards scenarios that
have a higher impact on the desired estimation.

The key idea behind importance sampling is to choose a different probability distribution,
known as the ”importance distribution,” that guides the simulation towards relevant scenarios.
By sampling more frequently from regions where the outcome of interest is more likely to occur,
importance sampling reduces the variance and increases the precision of Monte-Carlo estimates.
This technique is particularly beneficial in financial modeling, where rare events, like extreme
market movements, are essential to capture accurately. In out context, we aim at changing the
probability distribution of the stock to increase the probability of crossing the barrier.

In the Monte-Carlo framework, we want to estimate θ = EX [f(X)] =
∫
f(x)pX(x)dx for some

function f with density pX . If we know another random variable Y with density pY , then:

θ = EX [f(X)] =

∫
f(x)pX(x) dx

=

∫
f(x)

pX(x)

pY (x)
pY (x) dx

= EY [f(x)
pX(x)

pY (x)
pY (x)]

= EY [f
∗(X)]

(3.2.8)

The expected value is taken with respect to the other random variable.
pX(x)
pY (x) is called the likelihood ratio and variance reduction depends on the choice of the density

pY (x). The variance is given by:

V arY [f
∗(X)] = EY [(f

∗(X))2]− θ2

=

∫
f(x)2

pX(x)

pY (x)
pX(x) dx− θ2

= EX [f(X)2
pX(X)

pY (X)
]− θ2

(3.2.9)

As the objective is to reduce the variance, let us evaluate the difference betwenn the variances:

V arX [f(X)]− V arY [f
∗(x)] =

∫
f(x)2[1− pX(x)

pY (x)
]pX(x) dx (3.2.10)

Variance reduction is ensured if the integral defined before is positive, so we need to choose Y such
that:

{
pX(x) > pY (x) if f(x)2pX(x) small
pX(x) < pY (x) if f(x)2pX(x) large

3.2.5 Combination of methods

Ross and Shanthikumar developed in [5] the idea that Importance Sampling and Conditional
Monte Carlo could be used together. This is particularly relevant for barrier options. Importance
Sampling can be used until the price crosses the barrier, after that we apply conditional estimator.

Again, we assume lognormal model for the price process. The mean is µ = (r − σ2

2 )dt and
variance σX = σ2dt. The joint density function of the multivariate normal formula is:

f(x) =
1

(2π)n/2|Σ|1/2
e−

(x−µ)T Σ−1(x−µ)
2 (3.2.11)

with Σ is the covariance matrix.
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We also select a parameter β to diminish the mean in order to make the crossing barrier a more
likely event, we name this new joint density g.

We rewrite the same conditional expectation as in the conditional Monte Carlo with these new
density functions.

Eg[
f(X)

g(X)
1tc<T (Stn −K)+|c, Stc ] =

f(x1, ..., xc)

g(x1, ..., xc)
Eg[

f(Xc+1, ..., Xn)

g(Xc+1, ..., Xn)
1tc<T (Stn −K)+|c, Stc ]

=
f(x1, ..., xc)

g(x1, ..., xc)
Ef [1tc<T (Stn −K)+|c, Stc ]

=
f(x1, ..., xc)

g(x1, ..., xc)
er(T−tc)CGK(Stc ,K, T − tc)

(3.2.12)
with

f(x1, ..., xc)

g(x1, ..., xc)
= exp{− 1

2σ2dt

c∑
i=1

[(xi − µ)2 − (xi − µ+ b)2]}

= exp{ 1

2σ2dt

c∑
i=1

[2(xi − µ)b+ b2]}

= exp{ b

σ2dt

c∑
i=1

xi +
cb2

2σ2dt
− cb

σ2
(r − σ2

2
)}

Price MC100 err100 MC1000 err1000 MC5000 err5000 MC10000 err10000

S0 = 100
K=95

6.7447
8.6578
(1.0317) 0.2836

7.2135
(0.2541) 0.0695

6.9766
(0.1132) 0.0344

6.7997
(0.0853) 8.2.10−3

S0 = 100
K=90

10.9501
12.2179
(0.8827) 0.1158

11.2351
(0.0935) 0.0260

11.1756
(0.0671) 0.0206

10.9928
(0.0479) 3.9.10−3

S0 = 110
K=100

15.0164
13.9876
(0.9913) 0.0685

15.2313
(0.3546) 0.0143

15.3798
(0.1679) 0.0242

15.2354
(0.0994) 0.0146

S0 = 110
K=90

21.1631
19.1563
(0.5428) 0.0948

21.7734
(0.1455) 0.0288

21.4461
(0.0891) 0.0134

21.1999
(0.0507) 1.7.10−3

S0 = 120
K=100

28.0566
28.8453
(0.6315) 0.0281

28.5102
(0.3418) 0.0162

28.1796
(0.1002) 4.4.10−3

28.0305
(0.0672) 9.0.10−4

S0 = 120
K=110

18.4403
19.2728
(1.4427) 0.0451

19.1334
(0.4495) 0.0376

18.6613
(0.2049) 0.0120

18.1023
(0.1321) 0.0183

Table 3.10: (IS-MC)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, B = 95

Importance sampling has demonstrated enhancements to Conditional Monte Carlo compared
to the preceding section. Notably, the resulting confidence intervals have decreased in size, indi-
cating a higher level of precision in our estimates. Additionally, the percent errors, while showing
improvement and tending toward zero, have yet to rival the performance achieved by techniques
like Antithetic Variates, for instance.
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Price MC100 err100 MC1000 err1000 MC5000 err5000 MC10000 err10000

Bd = 50
Bu = 150

5.4636
5.8532
(0.6002) 0.0713

5.6112
(0.1773) 0.0270

5.6299
(0.0665) 0.0304

5.4602
(0.0458) 6.0.10−4

Bd = 60
Bu = 140

5.2200
5.7123
(0.4883) 0.0943

5.3423
(0.1655) 0.0234

5.2754
(0.0643) 0.0106

5.2345
(0.0410) 2.8.10−3

Bd = 70
Bu = 130

4.3806
4.1401
(0.4014) 0.0549

4.2891
(0.1318) 0.0209

4.4561
(0.0945) 0.0172

4.3845
(0.0395) 9.0.10−4

Bd = 80
Bu = 120

2.4642
2.7194
(0.2761) 0.1036

2.5891
(0.1045) 0.0507

2.4173
(0.0382) 0.0190

2.4387
(0.0277) 0.0103

Bd = 90
Bu = 110

0.3003
0.3546
(0.0965) 0.1808

0.3241
(0.0314) 0.0793

0.3129
(0.0115) 0.0420

0.3087
(0.0061) 0.0280

Table 3.11: (IS-MC)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100,
S0 = 100

For Double Barrier options, combining Conditional Monte Carlo with Importance Sampling
improved on average the accuracy. However, the overall conclusions closely align with those of Sin-
gle Barrier options. This suggests that while the combined technique shows promise for enhanced
precision, it still faces similar challenges compared to Single Barrier options.

3.3 Window Barrier options

Previously, we analyzed the results of Monte Carlo methods for always-active barriers. Now, let
us shift our focus to Window Barrier options. Since closed-form solutions are not available in
the literature for these options, Monte Carlo simulations can provide valuable approximations and
confidence intervals for pricing. We will employ both standard Monte Carlo simulations and the
Antithetic Variates technique for our estimations. Antithetic Variates can be chosen since it ap-
pears to be the most efficient method used for standard Barrier options in the previous sections.

Let us examine a KOKO option with fixed parameters, except for the time window during
which the barriers are active. Initially, we assumed that both barriers were active in the same
window, but we can generalize this by considering specific time windows for each barrier.

Start End Price MC5000 MCA
5000

0 0 11.7343
11.7213
(0.2738)

11.7438
(0.1957)

0.45 0.55
7.0135
(0.2783)

6.9928
(0.1955)

0.25 0.75
4.4329
(0.2686)

4.3761
(0.1966)

0.25 1
2.2469
(0.2722)

2.2259
(0.1984)

0 0.75
4.2096
(0.0792)

4.2013
(0.0554)

0 1 2.1018
2.2677
(0.0795)

2.1290
(0.0546)

Table 3.12: (MC)KOKO call option with rd = 0.1,rf = 0.05,T = 1,σ = 0.25, K = 100, S0 = 100,
Bu = 130,Bd = 70

In Table 3.12, we have compiled various results for increasing time windows. In the ’Price’
column, you will find the theoretical prices for either the standard call option when the barrier is
never active or the standard Double Barrier option when it is always active. It becomes apparent
that Monte Carlo simulations may tend to overprice the options, particularly when the window is
small. This is evident as the prices exceed those of vanilla options, a situation that is typically not
observed in practice.
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Chapter 4

Lattice methods

Lattice methods are computational techniques used to value options and other derivatives by con-
structing a lattice, which is essentially a grid-like representation of the underlying asset’s possible
price movements over discrete time intervals. The two most common types of lattice methods are
the Binomial Tree and the Trinomial Tree.

In a lattice, each node represents a possible price level of the underlying asset at a specific
point in time. Starting from the initial price, the lattice evolves over time by considering possible
upward and downward movements based on the asset’s volatility. The key concept is to calculate
the option’s value at each node by working backward through the lattice, determining the expected
payoff at expiration and discounting it to the present.

Lattice methods are flexible and can accommodate various option types, including European
and American options, as well as more complex derivatives. They offer a balance between accuracy
and computational efficiency, making them suitable for a wide range of financial instruments.

Pricing barrier options can be challenging due to the added complexity introduced by the
barrier conditions. Lattice methods, like the Trinomial Tree, are often used to model the price
dynamics of barrier options. In a lattice, the barrier levels can be incorporated into the calculations
by adjusting the probabilities of price movements, it will analyze with the Bino-Trinomial model.

4.1 Binomial Tree

The binomial method was first introduced by Cox, Ross and Rubinstein in [6]. They showed the
construction of a recombining tree to discretize the geometric Brownian motion. Considering an
important number of time steps, binomial tree is equivalent to Black-Scholes formula for the case
of European options pricing. The method is particularly relevant for American options, or exotic
options, where no closed-form solution exists.

At each step of the tree, the asset price can over the time step ∆t either move up by a fixed
amount u with a probability pu or decrease by a fixed amount d with a probability pd = 1 − pu.
We assume there are n time steps in the tree. Figure 4.1 depicts a two step Binomial Tree.

We define i and j as the numbers of price and time steps until the considered node (j, i). As
a consequence, the number of paths that lead to the node is

(
j
i

)
with probability

(
j
i

)
piup

j−i
d . At each

time point j, the random variable Sn (describing the stock price) takes value on {S0u
j , S0u

j−1d..., S0d
j}.

The discrete stock price process follows Sn = S0

∏n
i=1 ξi where ξi are iid random variables defined

as follows:

ξi =

{
u with probability qu
d with probability qd

A simple approach is to use backward induction to price the option with a binomial tree.
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S0

S0u

S0d

S0ud

S0u
2

S0d
2

Figure 4.1: A two-step Binomial Tree

Theorem 4.1.1. Consider V j = e−rd(n−j)∆tE[g(Sn)|Fj ] the time-j fair value of the European call
option. We have the following recursive algorithm:

V j =

{
g(Sn) j = n
e−rd∆tE[V j+1|Fj ] j ≤ n− 1

(4.1.1)

The up and down factors u and d and their probabilities must match the first two moments of
the price distribution.There are only two equations and three parameters to determine (knowing
one probability pu makes it possible to know also pd = 1 − pu. Cox-Ross-Rubinstein (CRR) set
the additional equation to ud = 1. The CRR model has parameters:

u = eσ
√
∆t

d = e−σ
√
∆t

pu =
e(rd−rf )∆t − d

u− d

(4.1.2)

Under this configuration and with the previous theorem, we define the following recursive
formula:

V j
i = e−rd∆t[puV

j+1
i + pdV

j+1
i+1 ] (4.1.3)

At the end of the recursive algorithm, we obtain the time-zero option value.
In the standard CRR tree, the local volatility is constant for each time step and converges to

the input volatility as n becomes large:

σj
i =

1√
∆t

√
pupd lnu

2 (4.1.4)

Theorem 4.1.2. The price of a Vanilla option for an n ∈ n step tree is given by,

V = e−rd)n∆t

 n∑
j=0

(
n

j

)
pjup

n−j
d V j

 . (4.1.5)

One remark to make with that CRR model is that in some cases where σ < |(rd − rf )
√
∆t|,

negative probabilities can occur (see formulas (4.1.2)). First, it is inconsistent as far as probability
theory is concerned, but on top of that it could prevent the model from covering relevant events.
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4.1.1 Single Barrier Options

In this section, we present several results for Barrier options using the Binomial Tree lattice. First,
we tested on Single Barrier to estimate accuracy based on analytical formulas presented before.

Price BT100 err100 BT1000 err1000 BT5000 err5000 BT10000 err10000
S0 = 100
B=95

6.7447 6.9232 0.0265 7.2117 0.0692 6.8689 0.0184 6.9234 0.0265

S0 = 100
B=90

10.9501 10.9894 3.6.10−3 10.9961 4.2.10−3 11.0644 0.0104 10.9881 3.5.10−3

S0 = 110
B=100

15.0164 16.0780 0.0707 15.5487 0.0354 15.2386 0.0148 15.0318 1.0.10−3

S0 = 110
B=90

21.1631 21.4149 0.0119 21.1770 7.0.10−4 21.2066 2.1.10−3 21.1835 1.0.10−3

S0 = 120
B=100

28.0566 28.7007 0.0230 28.1782 4.3.10−3 28.0668 4.0.10−4 28.1432 3.1.10−3

S0 = 120
B=110

18.4403 18.6470 0.0112 18.8119 0.0202 18.5149 4.0.10−4 18.6502 0.0114

Table 4.1: (BT)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, K = 90

We can observe that the calculated prices closely align with the theoretical values. Remarkably,
the Binomial Tree model achieved an error of less than 0.1 with fewer than 1000 steps. Nevertheless,
a systematic error becomes evident, especially when the barrier closely approaches the stock price.
To delve deeper into this matter, let’s focus on a specific trade.

Figure 4.2: Convergence of Single Barrier Option Price with increasing Tree Steps in the Binomial
Tree for S0 = 100,K = 90, B = 95, rd = 0.08, rf = 0.04, T = 0.5, σ = 0.25

These results can be also obtained and generalized with Double Barrier options which is our
main interest in the thesis. As observed in Figure 4.2, the error between the obtained price and the
theoretical value is not linear in the number of steps. However, the shape of the curve is rapidly
decreasing before n = 1000. Jhihrong Lin and Ken Palmer proved in [7] that the binomial tree is
O( 1√

n
) convergent.

Regarding computational time, which can become an issue as the number of nodes increases,
we have the following values:

T100 T1000 T5000 T10000

Time(s) 0.010 0.96 24.7 97.5

Table 4.2: Average computation time for Lattice methods

As an initial point of comparison, these computational times are notably shorter than those
observed with standard Monte Carlo simulations. This efficiency underscores the advantages of
the method in terms of speed and computational resource utilization.
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4.1.2 Double Barrier Options

In this section, we will consider more complex barrier options. First, we can work on standard
Double Barrier options, where we have theoretical values.

Price BT100 err100 BT1000 err1000 BT5000 err5000 BT10000 err10000
Bd = 50
Bu = 150

5.4636 5.4671 6.0.10−4 5.4656 4.0.10−4 5.4653 3.0.10−4 5.4647 2.0.10−4

Bd = 60
Bu = 140

5.2200 5.2270 1.3.10−3 5.2422 4.3.10−3 5.2272 1.4.10−3 5.2264 1.2.10−3

Bd = 70
Bu = 130

4.3806 4.3879 1.7.10−3 4.4236 9.8.10−3 4.3986 4.1.10−3 4.3833 6.0.10−4

Bd = 80
Bu = 120

2.4642 2.6089 0.0587 2.5622 0.0398 2.5083 0.0179 2.4696 2.2.10−3

Bd = 90
Bu = 110

0.3003 0.3974 0.3233 0.3484 0.1602 0.3044 0.0137 0.3144 0.0470

Table 4.3: (BT)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100, S0 = 100

In Table 4.3, we encounter an intriguing insight into the behavior of lattice methods when
applied to barrier options. Specifically, when the lower and upper barriers are situated in close
proximity to each other, a discernible pattern emerges. Take, for instance, the case where Bd = 90
and Bu = 110. Here, we observe that the price estimations are not as accurate as in other scenarios.

This phenomenon can be attributed to the nature of barrier options. When the barriers are
nearly adjacent, the underlying asset’s price often hovers around this region, making it more
challenging for the lattice method to accurately capture the complex dynamics. Consequently, the
estimations exhibit a degree of imprecision in such cases.

In contrast, when the barriers are sufficiently separated, a remarkable transformation occurs.
The lattice method rapidly converges to highly accurate estimations. The errors encountered in
these scenarios are typically of the order of 10−3, which signifies a remarkable level of precision.

Figure 4.3: Convergence of Double Barrier Option Price with increasing Tree Steps in the Binomial
Tree S0 = 100,K = 100, Bu = 130, Bl = 70, , rd = 0.1, rf = 0.05, T = 0.25, σ = 0.25

In Figure 4.3, we illustrate the price evolution of a Double Barrier option. The reduction in
error observed here appears to follow a similar trend to the one depicted in Figure 4.2. This
consistent pattern highlights the effectiveness of the method in reducing errors and enhancing the
precision of option pricing.

4.2 Trinomial Tree

Trinomial trees, a concept similar to that of binomial trees, were introduced by Boyle in [8]. In
contrast to Binomial Trees, where the stock can take two paths at any node, Trinomial trees offer
three possible paths. This unique characteristic allows us to achieve the same level of accuracy
while reducing the number of time steps. The central branch, where the asset price remains
unchanged, is commonly denoted as m. This m branch represents a stable price movement within
the Trinomial Tree framework.

The discrete stock price process follows Sn = S0

∏n
i=1 ξi where ξi are iid random variables

defined as follows:
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S0

S0u

S0d

S0m

Figure 4.4: A one step trinomial tree

ξi =

 u with probability pu
m with probability pm
d with probability pd

We have a variety of models at our disposal, and for our analysis, we opted for the Kamrad-
Ritchken parametrization, which was developed in [9].This parametrization offers a robust frame-
work for our analysis.

u = eλσ
√
∆t,m = 1, d = e−λσ

√
∆t

pu =
1

2λ2
+

(rd − rf − σ2

2 )
√
∆t

2λσ
, pm = 1− 1

λ2
, pd =

1

2λ2
−

(rd − rf − σ2

2 )
√
∆t

2λσ

where λ ≥ 1 is a free parameter.

4.2.1 Single Barrier options

The selection of the parameter λ is a crucial aspect that warrants thorough investigation. Edward
Omberg, as outlined in [10], conducted a comprehensive analysis focused on enhancing the Trino-
mial process using what he referred to as a ’sharpened’ approach. This particular model addresses
the question of discontinuity in the first derivative of the option’s pricing function, and the corre-
sponding parameter, λ, is set to a specific value, namely λ =

√
π
2 . What makes this particularly

interesting is the striking similarity between Boyle and Omberg’s models. In fact, for very small
values of

√
∆t and the choice of λ as described above, the Trinomial Tree method exhibits uniform

probabilities. Boyle’s work, discussed in [8] , demonstrated that the Trinomial Tree model is most
effective when uniform probabilities are employed.

This convergence towards uniform probabilities, as observed in both Boyle and Omberg’s re-
search, highlights the efficiency and effectiveness of the Trinomial Tree model, particularly when
the chosen parameters align with the goal of achieving uniformity in probability distributions.

Price TT100 err100 TT1000 err1000 TT5000 err5000 TT10000 err10000
S0 = 100
B=95

6.7447 7.0599 0.0467 6.7735 4.3.10−3 6.9024 0.0234 6.8737 0.0191

S0 = 100
B=90

10.9501 10.9292 1.9.10−3 10.9357 1.3.10−3 10.9709 1.9.10−3 10.9330 1.6.10−3

S0 = 110
B=100

15.0164 15.3094 0.0195 15.2302 0.0142 15.2262 0.0140 15.0204 3.0.10−4

S0 = 110
B=90

21.1631 21.5106 0.0164 21.2918 6.1.10−3 21.2051 2.0.10−3 21.1740 5.0.10−4

S0 = 120
B=100

28.0566 28.9394 0.0315 28.1167 2.1.10−3 28.0797 8.0.10−4 28.0958 1.4.10−3

S0 = 120
B=110

18.4403 18.4953 3.0.10−3 18.5427 5.6.10−3 18.4579 1.0.10−3 18.6102 9.2.10−3

Table 4.4: (TT)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, K = 90
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The results presented in Table 4.4, specifically for Down-and-Out call options, exhibit striking
similarities to those obtained using the Binomial Tree method. Notably, this new lattice method
effectively reduces errors, offering the advantage of achieving highly accurate results with a reduced
number of computational steps.

Figure 4.5: Convergence of Single Barrier Option Price with increasing Tree Steps in the Trinomial
Tree for S0 = 100,K = 90, B = 95, rd = 0.08, rf = 0.04, T = 0.5, σ = 0.25

When analyzing a specific trade, a similar dynamic unfolds as seen with the Binomial Tree
method. Rather than a smooth reduction, we discern a discernible pattern of error reduction. In-
terestingly, this pattern is not characterized by a constant period, but as the number of simulations
increases, it tends to stabilize and display reduced variability.

4.2.2 Double Barrier Options

Similar to our exploration with the Binomial Tree model, we have conducted tests on advanced
Barrier options. Our focus is on standard Double Barrier options.

Price TT100 err100 TT1000 err1000 TT5000 err5000 TT10000 err10000
Bd = 50
Bu = 150

5.4636 5.4687 9.0.10−4 5.4650 3.0.10−4 5.4671 6.0.10−4 5.4640 1.0.10−4

Bd = 60
Bu = 140

5.2200 5.2782 0.0111 5.2237 7.0.10−4 5.2220 6.0.10−4 5.2222 4.0.10−4

Bd = 70
Bu = 130

4.3806 4.4711 0.0207 4.3865 1.3.10−3 4.4033 5.2.10−3 4.3952 3.3.10−3

Bd = 80
Bu = 120

2.4642 2.6496 0.0752 2.4946 0.0123 2.5093 0.0183 2.4921 0.0113

Bd = 90
Bu = 110

0.3003 0.5321 0.7719 0.3601 0.1991 0.3305 0.1006 0.3068 0.0216

Table 4.5: (TT)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100, S0 = 100

Figure 4.6: Convergence of Double Barrier Option Price with increasing Tree Steps in the Trinomial
Tree S0 = 100,K = 100, Bu = 130, Bl = 70, , rd = 0.1, rf = 0.05, T = 0.25, σ = 0.25

The results for Double Barrier options are more contrasting when comparing to Binomial Tree
results. While we do find similarities between the results, there are no substantial improvements
in terms of accuracy and convergence speed. Surprisingly, in certain cases, we even encounter less
accurate pricing outcomes.
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4.3 Improved Tree for Barrier options

As evident from the preceding sections, both Binomial and Trinomial trees exhibit a notable bias
in valuing barrier options. This bias stems from the fact that barrier values are not genuine ’levels’
within these trees, leading to erratic convergence in their pricing. One idea presented by Dai-Lyuu
in [11] is the Bino-Trinomial Tree. In this model, the barrier is adjusted to be at a correct price
level.

Considering a standard Double Barrie option with lower barrier Bd and upper barrier Bu. We
take the logarithm of each barrier defining l = log(Bd

S0
) and b = log(Bu

S0
).

Hence, one must define another time step as well as another space step:

∆T = (
b− l

2kσ
)2

with k an integer such that k = ⌈ b−l
2
√
∆Tσ

⌉. The corresponding space step is: σ
√
∆T

The modified CCR model has now for parameters:

u = eσ
√
∆T

d = e−σ
√
∆T

pu =
e(rd−rf )∆t − d

u− d

(4.3.1)

The layers of the grid are now matching the barrier values and there are ⌊ T
∆T ⌋ steps . At the

end of the tree we get three nodes N1, N2 and N3 and a remaining amount of time ∆T ′ such as
∆T ≤ ∆T ′ < 2∆T and:

∆T ′ = T − (⌊ T

∆T
⌋ − 1)∆T

After that, we need to calculate the three branching probabilities to them. The variance Var
and the mean µ of the stock price needs to be matched and we need to define three probabilities
p1, p2 and p3.

µ = (rd − rf − σ2

2
)∆T ′

V ar = σ2∆T ′
(4.3.2)

In Figure 4.7, we observe that the middle node N2 exhibits the closest logarithmic return to µ,
denoted as µ̂, when compared to the other two nodes. This figure provides detailed insights into
the initial time step of the new model.

Figure 4.7: Close-up to the first time step of the Bino-Trinomial Tree
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In Figure 4.7, α, β, and γ represent the differences in the mean logarithmic returns among each
node. By properties of the three, we have the following formulas:

 α = µ̂+ 2σ
√
∆T − µ = β + 2σ

√
∆T

β = µ̂− µ

γ = µ̂− 2σ
√
∆T − µ = β − 2σ

√
∆T

(4.3.3)

To compute the price X in Figure 4.7, it is imperative to determine the probabilities p1, p2, and
p3. We solve this system of equations to match the requirement of a Tree model:

 p1α+ p2β + p3γ = 0
p1α

2 + p2β
2 + p3γ

2 = σ2∆T ′

p1 + p2 + p3 = 1
(4.3.4)

Price BTT100 err100 BTT1000 err1000 BTT5000 err5000 BTT10000 err10000
Bd = 50
Bu = 150

5.4636 5.4673 7.0.10−4 5.4623 2.0.10−4 5.4641 1.0.10−4 5.4639 1.0.10−4

Bd = 60
Bu = 140

5.2200 5.2713 9.8.10−3 5.2224 5.0.10−4 5.2221 4.0.10−4 5.2215 3.0.10−4

Bd = 70
Bu = 130

4.3806 4.4652 0.0193 4.3881 1.7.10−3 4.4059 0.0058 4.3980 4.0.10−3

Bd = 80
Bu = 120

2.4642 2.6344 0.0691 2.4875 9.5.10−3 2.4938 0.0120 2.4688 1.9.10−3

Bd = 90
Bu = 110

0.3003 0.4120 0.3720 0.3255 0.0839 0.3029 8.7.10−3 0.3018 5.0.10−3

Table 4.6: (BTT)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100, S0 = 100

The results obtained from the Bino-Trinomial Tree model strongly suggest that it represents a
compelling improvement over the standard Binomial Tree. This improvement is achieved through
subtle node modifications. Although errors are more pronounced for fewer than 100 time steps,
given a sufficiently large number of simulations, these errors appear to diminish significantly. In
cases where the barriers are in close proximity, such as Bd = 90 and Bu = 110, we previously
encountered challenges in substantially reducing errors. However, with the implementation of
the Bino-Trinomial Tree, this issue is effectively addressed, resulting in an approximate tenfold
reduction in errors for the same number of time steps.

Figure 4.8: Evolution of the percent error for the BTT Tree model S0 = 100,K = 100, Bu =
130, Bd = 70, rd = 0.1, rf = 0.05, T = 0.25, σ = 0.25
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In Figure 4.8, both the percent error of the Bino-Trinomial Tree and the theoretical error of
the Binomial Tree are depicted. The data unequivocally demonstrates the superior performance
of the improved Tree, effectively reducing errors.

One significant improvement introduced by the BTT model, as previously mentioned, is its
ability to address a bias that commonly occurred in the pricing of options when dealing with
barriers close to the stock price. In standard Tree methods, there was a tendency for the nodes of
the trees to inaccurately capture the barrier levels. Figure 4.9 provides a detailed analysis of the
last example from Table 4.6, comparing all tree methods up to 1000 time steps. It is evident that
the enhancements introduced by the Dai-Lyuu model have a noticeable impact on the pattern of
error reduction, effectively mitigating the limitations observed in standard tree methods.

Figure 4.9: Comparision between Tree methods for S=100, K=90,Bd = 90, Bu = 110, rd = 0.1, rf =
0.05, T = 0.25, σ = 0.25

4.4 Window Barrier options

In the preceding sections of this chapter, we conducted an analysis of the estimations provided by
Lattice methods for always-active barriers. As in the Monte-Carlo estimation chapter, our current
objective is to derive price approximations for Window Barrier options using all three methods.
Specifically, we focus on the KOKO call option and vary the time window during which the barriers
are active, comparing the results with theoretical values whenever applicable

Start End Price BT5000 TT5000 BTT5000

0 0 11.7343 11.7338 11.7342 11.7321
0.45 0.55 6.9628 6.9823 6.9249
0.25 0.75 4.2788 4.3001 4.2368
0.25 1 2.1828 2.2010 2.1514
0 0.75 4.2467 4.2684 4.2041
0 1 2.1018 2.1681 2.1465 2.1366

Table 4.7: (Tree)KOKO call option with rd = 0.1,rf = 0.05,T = 1,σ = 0.25, K = 100, S0 = 100,
Bu = 130,Bd = 70

The results we have obtained exhibit a remarkable degree of similarity when compared to the
outcomes derived from Monte-Carlo simulations. This alignment between our lattice-based calcu-
lations and the results generated through the computationally intensive Monte-Carlo simulations
serves as a compelling endorsement of the accuracy and effectiveness of our pricing model for these
particular options.
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Chapter 5

Finite Difference Methods

Finite Difference Methods are essential numerical techniques employed in option pricing to solve
partial differential equations (PDEs). These methods discretize the PDE into a grid of points
in both time and space, allowing us to approximate option prices efficiently. By breaking down
complex derivatives pricing problems into manageable steps, Finite Difference Methods play an
important role in the valuation of exotic options.

5.1 Garman-Kohlhagen model

Let us recall the model and its partial differential equation that we will be working on in this
chapter. The Garman-Kohlhagen option-pricing model (1983) is suitable with interest rate parity.
Its partial differential equation is the following:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (rd − rf )S

∂V

∂S
− rdV = 0 (5.1.1)

The terminal condition is V (T, S) = g(S), the payoff of the option. The variables used in the
model are:

V (S, T ): price of a call option in domestic units per foreign units

S: spot price

T : time remaining until maturity

K: exercise price of the call option

rd: domestic interest rate

rf : foreign interest rate

σ: volatility of spot currency price

The derivation of the PDE is explained in details in the Appendix. The spot price follows a
geometric Brownian motion, option price includes one stochastic volatility and interest rates are
constant.

dS = µSdt+ σSdZ (5.1.2)

where µ is the drift of spot currency price and Z a standard Wiener process.

5.2 General framework for Finite Difference Methods

First, we reformulate the PDE as an initial condition problem. We consider τ = T − t in order to
reformulate the problem.

 −∂V

∂τ
+ σ2S2

2

∂2V

∂S2
+ (rd − rf )s

∂V

∂S
− rdV = 0 τ > 0

V (0, S) = g(S) τ = 0
(5.2.1)
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Generally we work on the truncated domain D = [0, T ]x[smin, smax]. We construct a uniform
grid over D with N+1 points along the time dimension and M+1 points along the space dimension.
That is to say:

∆t =
T

N
,∆x =

Smax − Smin

M

The grid points are given by the following expressions:

{
tn = n∆t n=0,...,N
sk = smin + k∆x k=0,...,M

t

x

∆x

∆t

(tn, sk) (tn+1, sk)

(tn, sk+1)

(tn−1, sk)

n, k − 1

Figure 5.1: The partitioning of the t, x plane for a two dimensional finite difference method

Finite Difference Methods rely on Taylor series expansions. Considering V a function of two
variables s and t that is twice differentiable. With the subdivisions we can define Vn,k = V (tn, sk) =
V (t, s). Using Taylor series, we have the following approximation of order ∆x2:

∂2V

∂s2
=

V (tn, sk+1)− 2V (tn, sk) + V (tn, sk−1)

∆x2
+O(∆x2)

∂2V

∂s2
=

V n
k+1 − 2V n

k + V n
k−1

∆x2
+O(∆x2)

We can get similar approximations for the other time derivatives that are used in the PDE,
respectively the forward and the backward difference approximation

∂V

∂t
=

V n+1
k − V n

k

∆t
+O(∆t),

∂V

∂t
=

V n
k − V n−1

k

∆t
+O(∆t).
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5.2.1 Explicit scheme

In light of the given PDE, we apply the forward difference approximation to derive the equations.
Additionally, it is worth noting that the scheme presented here accounts for a local volatility model,
but it can be adapted to incorporate a uniform volatility throughout the entire grid if needed. This
represents an adaptation of the FX model from the Black-Scholes Explicit scheme, as derived in
[12].

V n+1
k − V n

k

△t
=

σ(sk, tn)
2s2k

2

V n
k+1 − 2V n

k + V n
k−1

△x2
+ (rd − rf )sk

V n
k+1 − V n

k−1

2△x
− rdV

n
k

Hence V n+1
k =

(
△t

△x2

σ(sk, tn)
2s2k

2
− △t

2△x
(rd − rf )sk

)
V n
k−1 +

(
1− △t

△x2
σ(sk, tn)

2s2k −△trd

)
V n
k

+

(
△t

△x2

σ(sk, tn)
2s2k

2
+

△t

2△x
(rd − rf )sk

)
V n
k+1

= An
kV

n
k−1 + (1 +Bn

k )V
n
k + Cn

k V
n
k+1

for k = 1, 2, ...,M − 1 and n = 1, 2, ..., N − 1 where

An
k :=

△t

△x2

σ(sk, tn)
2s2k

2
− △t

2△x
(rd − rf )sk, Bn

k := − △t

△x2
σ(sk, tn)

2 −△trd,

Cn
k :=

△t

△x2

σ(sk, tn)
2s2k

2
+

△t

2△x
(rd − rf )sk

The recursive formula presented above, coupled with the boundary conditions V n+1
0 and V n+1

M ,
provides the foundation for computing prices through a forward induction algorithm.
Without employing the reformulation outlined before, and under the assumption that in the explicit
method, the spatial derivatives of V are equivalent for both (n, k) and (n+1, k), we can reconfigure
the scheme as follows:

V n+1
k − V n

k

∆t
+ (rd − rf )sk

V n+1
k+1 − V n+1

k−1

2△x
+

1

2
σ(sk, tn+1)

2s2k
V n+1
k+1 − 2V n+1

k + V n+1
k−1

△x2
= rdV

n
k .

The equation can be reformulated as:

V n
k = pdV

n+1
k−1 + pmV n+1

k + puV
n+1
k+1

where,

pd =
1

1 + rd∆t

(
−1

2
(rd − rf )sk∆t+

1

2
σ2s2k∆t

)
,

pm =
1

1 + rd∆t

(
1− σ2s2k∆t

)
,

pu =
1

1 + rd∆t

(
1

2
(rd − rf )j∆t+

1

2
σ2s2k∆t

)
.

The notation is not arbitrary, it serves a purpose. By drawing a parallel between the ex-
plicit scheme and the Trinomial Tree method developed in Chapter 4, we establish a meaningful
connection. However, the probabilities dependent on the second variable which is not true in a
Trinomial model. A change of variable, specifically z = ln(S), facilitates the elimination of this
dependency and aligns the scheme more closely with the Trinomial model. Details are provided in
the corresponding Appendix.

For this reason, as well as the others elaborated upon in subsequent sections, we will not delve
extensively into the Explicit scheme for our estimations.
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5.2.2 Fully implicit scheme

In the case of the Fully Implicit scheme, we employ the backward difference method and derive
the following estimations as in [12] for the Black-Scholes case:

V n
k − V n−1

k

△t
=

σ(sk, tn)
2s2k

2

V n
k+1 − 2V n

k + V n
k−1

△x2
+ (rd − rf )sk

V n
k+1 − V n

k−1

2△x
− rdV

n
k

Hence V n−1
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(
△t

△x2
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2s2k

2
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2△x
(rd − rf )sk

)
V n
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(
1 +

△t

△x2
σ(sk, tn)
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)
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k

−
(

△t

△x2

σ(sk, tn)
2s2k

2
+

△t

2△x
(rd − rf )sk

)
V n
k+1
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kV

n
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k )V
n
k − Cn

k V
n
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for k = 1, 2, ...,M − 1 and n = 1, 2, ..., N − 1 where

An
k :=

△t

△x2

σ(sk, tn)
2s2k

2
− △t

2△x
(rd − rf )sk, Bn

k := − △t

△x2
σ(sk, tn)

2 −△trd,

Cn
k :=

△t

△x2

σ(sk, tn)
2s2k

2
+

△t

2△x
(rd − rf )sk

The structure of the equation is similar with the Explicit scheme and we also have to couple it
with the boundary conditions to use the recursive algorithm and obtain prices.

5.2.3 Crank-Nicolson scheme

John Crank and Phyllis Nicolson are credited with the development of the Crank-Nicolson method,
a numerical solution technique designed to address the challenges posed by PDEs arising from heat-
conduction problems in [13] . This method was introduced with the dual objectives of mitigating
instability while simultaneously enhancing the efficiency and accuracy of both implicit and explicit
numerical methods. The Crank-Nicolson scheme can indeed be viewed as a midpoint between
the implicit and explicit schemes. To implement this scheme, we blend elements from both the
implicit and explicit methods. We construct the scheme by adopting the structure of the implicit
scheme and then incorporate the missing terms according to the following formula. This approach
combines the stability of the implicit scheme with the computational efficiency of the explicit
scheme, resulting in a well-balanced numerical solution. This has been also analyzed in [14].

To define the scheme, we can introduce a generalized θ-scheme, which operates as a weighted
scheme with θ serving as the weight.

V n
k − V n−1

k

△t
= θ

{
σ(sk, tn)

2s2k
2

V n
k+1 − 2V n

k + V n
k−1

△x2
+ (rd − rf )sk

V n
k+1 − V n

k−1

2△x
− rdV

n
k

}
+ (1− θ)

{
σ(sk, tn−1)

2s2k
2

V n−1
k+1 − 2V n−1

k + V n−1
k−1

△x2
+ (rd − rf )sk

V n−1
k+1 − V n−1

k−1

2△x
− rdV

n−1
k

}
(5.2.2)

With θ = 0.5, the scheme is the Crank-Nicolson scheme. We use the same boundary conditions as
for the other schemes and compute the price using a similar recursive algorithm.

For all three numerical schemes, we arrive at a tridiagonal system, which we solve at each time
step using LU decomposition.

Definition 5.2.1. LU decomposition
The principle of LU decomposition is to represent any matrixM as the product of a lower triangular
matrix L and an upper triangular matrix U .This decomposition, denoted as M = LU is called the
LU decomposition of M.

The primary reasons for employing LU decomposition lie in its advantages, particularly its
efficiency in computing the inverses of triangular matrices. This characteristic proves invaluable
when dealing with the resolution of the linear systems integral to our work.
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When we impose the number of spatial points and increment the number of time steps, we
observe the following computational time trends:

CN100 CN1000 CN5000 CN10000

Time(s) 0.010 0.10 0.54 1.05

Table 5.1: Average Computational Time for Finite Difference Methods with a Fixed Spatial Grid

PDE-based computations offer faster processing speeds. In the upcoming sections, we will delve
into whether this increased speed comes at the expense of accuracy.

5.2.4 Study of consistency, stability and convergence

In this section, we will present a series of theorems and propositions that pertain to numerical
schemes, particularly focusing on their stability, consistency and convergence. These aspects are
of paramount importance in the context of pricing options, especially when dealing with grids that
are imposed by the specific characteristics of our financial products. The analysis is exhaustively
done in [15].

Definition 5.2.2. A numerical scheme is considered consistent when its discrete operator, imple-
mented using finite differences, converges toward the continuous operator of the underlying partial
differential equation (PDE) for ∆t,∆x → 0 . (the local truncation error Ln

k vanishes)

For instance, the local truncation error of the Explicit scheme is:

Ln
k =

V n+1
k − V n

k

△t
− σ2s2k

2

V n
k+1 − 2V n

k + V n
k−1

△x2
− (rd − rf )sk

V n
k+1 − V n

k−1

2△x
+ rdV

n
k

Measuring how well the values of V n
k at discrete points satisfy the original PDE is challenging due

to their discrete nature. However, we can assess the accuracy of the solution to the PDE when
it is evaluated at these grid points, determining how effectively it aligns with the finite difference
scheme.

Theorem 5.2.3. Explicit and Implicit schemes are consistent and their truncation errors are such
that: Ln

k =O(∆t) +O(∆x2)

Theorem 5.2.4. Crank-Nicolson schemes is consistent and its truncation error is such that:
Ln
k =O(∆t2) +O(∆x2)

Proofs for both of these theorems are straightforward using the local truncation error and Taylor
expansions of the derivatives. The final theorem serves as an explanation for the widespread
adoption of the Crank-Nicolson scheme. Consistency, while necessary, is not alone sufficient to
ensure convergence. The reason behind this lies in the potential accumulation of small local errors
introduced at each time step during recursive calculations, a challenge commonly referred to as
the stability issue.

Definition 5.2.5. Let us consider a finite difference scheme such as Xn+1 = DXn with D an
operator applied to each of the Xi . The scheme is stable if for every n, ∥DnX∥ ≤ CT ∥X∥ with
CT constant

Theorem 5.2.6. Lax-Richtmyer Equivalence Theorem
A finite different scheme is convergence if and only if it is stable and consistent.

Now that we have introduced the concept of stability, it becomes crucial to determine whether
our schemes possess this property.

Theorem 5.2.7. Implicit and Crank-Nicolson schemes for Garman-Kohlhagen PDE are uncon-

ditionally stable while Explicit scheme is stable if ∆t ≤ ∆x2

2

The unconditional stability exhibited by the Implicit scheme and Crank-Nicolson scheme, in
contrast to the conditional stability of the Explicit scheme, further elucidates why the latter is not
the preferred choice when solving PDEs.
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5.2.5 Numerical results

In this section, we will present the results obtained using the Crank-Nicolson scheme.

Price CN100
100 err100100 CN100

1000 err1001000 CN500
1000 err5001000 CN1000

1000 err10001000

S0 = 100
B=95

6.7447 6.7357 1.3.10−3 6.7358 1.3.10−3 6.7444 4.4.10−5 6.7446 1.5.10−5

S0 = 100
B=90

10.9501 10.9459 3.8.10−4 10.9459 3.8.10−4 10.9499 1.8.10−5 10.9501 < 10−5

S0 = 110
B=100

15.0164 15.0159 3.3.10−5 15.0159 3.3.10−5 15.0163 < 10−5 15.0164 < 10−5

S0 = 110
B=90

21.1631 21.1603 1.3.10−4 21.1603 1.3.10−4 21.1629 < 10−5 21.1630 < 10−5

S0 = 120
B=100

28.0566 28.0539 0.0319 28.0540 9.3.10−5 28.0564 < 10−5 28.0565 < 10−5

S0 = 120
B=110

18.4403 18.4304 < 10−5 18.4305 < 10−5 18.4398 < 10−5 18.4401 < 10−5

Table 5.2: (CN)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, K = 90

The results and estimations presented here exhibit significant differences from those in the
previous chapter. Notably, the convergence of the price occurs much more rapidly, with prices
stabilizing after only 1000 time steps for each trade. As a result, we conducted separate modifi-
cations of the spatial steps to assess the impact of this parameter on the computed prices. The
numbers in the exponent correspond to the number of spatial steps, and the indices correspond to
the number of time steps. It is noteworthy that the Finite Difference method proves to be highly
efficient for pricing Single Barrier options. With just 100 steps, we manage to achieve an error of
less than 10−3 for most cases. Furthermore, increasing the number of spatial points acts as a grid
refinement, leading to even more precise price estimations. In particular, with 1000 time steps and
spatial points, we consistently achieve errors on the order of 10−5 or lower. This level of accuracy
far surpasses what was attainable with the previous methods employed.

Figure 5.2: Convergence of the CN scheme for S0 = 120,K = 90, B = 110, rd = 0.08, rf =
0.04, T = 0.5, σ = 0.25

In Figure 5.2, we depict the convergence of prices for a specific trade, offering valuable insights
into the behaviour of the Crank-Nicolson scheme. In the left plot, we set the spatial step to
M = 100 and observe how the price evolves with an increasing number of time steps. Notably,
we observe that time convergence is exceptionally rapid with the Crank-Nicolson scheme. In fact,
with fewer than 20 time steps, we achieve a remarkably accurate approximation of the price.
Conversely, in the right plot, we reverse the scenario by fixing N = 100 time steps and scrutinising
the convergence as we vary the number of spatial steps. Here, we encounter a different pattern
of convergence. Firstly, we require a higher number of spatial steps, and the convergence rate is
comparatively slower. Beyond M = 700, we observe that the price undergoes minimal changes,
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indicating that convergence has effectively been reached.
We performed the similar computations for Double Barrier options. As for the Single Barrier

options, computations did not need much time steps to converge to a value, so we worked on time
and spatial grid points.

Price CNN100
100 err100100 CNN100

1000 err1001000 CNN500
1000 err5001000 CN1000

1000 err10001000

Bd = 50
Bu = 150

5.4636 5.4640 7.3.10−5 5.4639 5.5.10−5 5.4637 1.8.10−5 5.4636 < 10−5

Bd = 60
Bu = 140

5.2200 5.2211 2.1.10−4 5.2211 2.1.10−4 5.2202 3.8.10−5 5.2200 < 10−5

Bd = 70
Bu = 130

4.3806 4.3850 1.0.10−3 4.3849 9.8.10−4 4.3805 2.3.10−5 4.3805 2.3.10−5

Bd = 80
Bu = 120

2.4642 2.4660 7.3.10−4 2.4661 7.7.10−4 2.4645 1.2.10−4 2.4644 8.1.10−5

Bd = 90
Bu = 110

0.3003 0.3014 3.6.10−3 0.3013 3.3.10−3 0.3005 6.6.10−3 0.3004 3.3.10−4

Table 5.3: (CN)KOKO call option with rd = 0.1,rf = 0.05,T = 0.25,σ = 0.25, K = 100, S0 = 100

We observe that the convergence dynamics for Double Barrier options when using the Crank-
Nicolson scheme closely resemble those for Single Barrier options. In most cases, we achieved
errors below the threshold of 10−3 within fewer than 100 computational steps. However, when
dealing with Double Barrier options featuring extremely tight barriers, achieving such conver-
gence proved more challenging. Nonetheless, even in this specific case, the Crank-Nicolson scheme
demonstrated significantly improved convergence performance when compared to alternative nu-
merical techniques discussed in previous chapters. The overall results suggest that this numerical
scheme is highly suitable for accurately pricing always-active Double Barrier options.

5.2.6 Window Barrier options

We have completed our investigation of the Crank-Nicolson scheme, including the computation of
Window Barrier option prices. Throughout the preceding chapters, we observed consistent results
between Monte-Carlo estimations and Lattice methods.

Start End Price CN500
5000

0 0 11.7343 11.7131
0.45 0.55 6.9486
0.25 0.75 4.2748
0.25 1 2.1815
0 0.75 4.2748
0 1 2.1018 2.1674

Table 5.4: (CN)KOKO call option with rd = 0.1,rf = 0.05,T = 1,σ = 0.25, K = 100, S0 = 100,
Bu = 130,Bd = 70

The results presented in Table 5.4 align closely with the outcomes produced by Lattice methods
and Monte-Carlo estimations. This consistency provides further evidence of the correctness and
accuracy of our pricing estimations, bolstering our confidence in the reliability of the methods
employed in this study.
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5.3 Improved scheme for Discrete Barrier options

As elucidated by Daniel J. Duffy in [16], while Crank-Nicolson remains a widely favored and highly
accurate numerical technique in various scenarios, it can exhibit inaccuracies and erratic behavior,
particularly when applied to Barrier options. This observation underscores the importance of
carefully considering the choice of numerical methods, especially for complex financial instruments
like Barrier options.

In the previous sections, our focus was primarily on Continuously monitored Barrier options,
which are often suitable in an FX context. However, it is essential to acknowledge that in many
real-world scenarios, barriers are applied and monitored discretely. This discrete monitoring can
have a profound impact on the convergence of the Crank-Nicolson method. Unlike Monte-Carlo
and even Lattice methods, Crank-Nicolson may exhibit spurious oscillations when confronted with
discrete barriers. Over time, these oscillations may persist and, in some cases, fail to converge,
leading to substantial inaccuracies in pricing and Greek estimations. Consequently, the accurate
pricing of such options can be severely compromised. This highlights the need for alternative
numerical methods or adaptations when dealing with discrete barrier options.

An interesting solution for this issue is suggested in [17]. The method consists in using a
modified grid to compute the prices, a ”point-distributed finite volume scheme” as defined by the
authors of the article.

The discretization of the Garman-Kohlhagen PDE follows a similar approach as described
in Section 5.2.2 with the key difference being that the spatial step, denoted as ∆x , may not
be uniformly distributed across the grid. This non-uniform spatial discretization is employed to
accurately capture the behavior of barriers. They also suggest that Implicit Method ( θ = 0 in
our case )produces better results than Crank-Nicolson. The oscillations are indeed responsible for
inaccurate prices.

As an example, we decide to price Down-and-Out call options with a barrier monitored five
times a day. As explained in [17], we applied the Implicit scheme to compute the required values.
The modified algorithm generates a non-uniform grid tailored to different types of barrier options
by adjusting the grid density around specific barrier levels (in this case it is around a ”Down”
barrier). It ensures that the grid captures the dynamics of the underlying asset’s price accurately,
taking into account the discrete monitoring of barrier levels. The distribution of the grid points is
customized using a coefficient, for the following trades we set the ratio of grid points around the
barrier to 85%.

Continuous Price Discrete IM1000
1000

S0 = 100
B=95

6.7447 7.5324

S0 = 100
B=90

10.9501 11.1591

S0 = 110
B=100

15.0164 15.4032

S0 = 110
B=90

21.1631 21.3947

S0 = 120
B=100

28.0566 28.9748

S0 = 120
B=110

18.4403 18.8456

Table 5.5: (IM)Down-and-out call option with rd = 0.08,rf = 0.04,T = 0.5,σ = 0.25, K = 90

The observation that discrete barrier options with discrete monitoring are more expensive than
continuously monitored ones aligns with intuition. This price difference can be attributed to the
reduced probability of the underlying asset crossing the barrier when monitoring is less frequent.
In discrete monitoring, the barrier can only be crossed during the specific monitoring times, and
if it is not breached on those times, it will not impact the option price. Therefore, the discrete
monitoring reduces the effective barrier-crossing probability, making the Knock-Out option more
expensive compared to continuously monitored options where the barrier can be crossed at any
time. This highlights the significance of monitoring frequency in the pricing of barrier options.
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Conclusion

This thesis aimed to delve into various methodologies for pricing barrier options. Barrier options
encompass a highly diverse category of exotic options, and in this paper, we focus on a select
subset of these, including Single Barrier options, Double Barrier options, Window Barrier options,
and, in Chapter 5, some Discrete Barrier options using Finite Difference methods. This expansive
nature of Barrier options renders them both captivating and pertinent in numerous scenarios.

Our work was based on FX options, so Our research focused on FX options, and as such, we
introduced the Garman-Kohlhagen model as the foundation for pricing the options under study.
With the valuable contributions of researchers such as Reiner and Rubinstein [1] or Kunitomo
and Ikeda [2], among others, we were able to calculate theoretical values for specific categories of
Barrier options.

Our primary objective was to obtain precise and robust estimates for Barrier options, with a par-
ticular focus on extending our investigation to Window Barrier options. We initiated our analysis
using Monte Carlo simulations, which offer the advantage of being computationally straightforward
and providing reasonably accurate estimates, provided that a sufficient number of simulations are
conducted. Nevertheless, they come with their limitations, notably in terms of computational
time and the width of the resulting confidence intervals. To address the latter issue, we explored
various Variance reduction techniques. Among these techniques, the Antithetic Variates method
yielded the most promising results in our context. However, despite our efforts in variance reduc-
tion, we still encountered challenges in reducing computational time significantly. One potential
avenue for improvement could involve delving into parallel programming as a means to expedite
the computations.

We then turned our attention to lattice methods, specifically employing Binomial and Trinomial
Trees, as well as an Improved Tree method. We observed that these lattice methods generally
exhibited faster convergence compared to Monte Carlo simulations and provided more accurate
price estimates with fewer time steps.The CRR Binomial model [6] emerged as an efficient approach,
notably faster than Monte Carlo simulations. Trinomial Trees, with the addition of an extra node
at each time step, allowed for convergence in fewer steps as a general trend. However, these
methods sometimes faced challenges when the barrier levels did not align precisely with the layers
of nodes in the trees.To address this issue, we explored a solution based on adapting the grid to
the barrier levels, drawing inspiration from the work of Dai-Lyuu [11]. This approach enabled us
to tackle specific cases where barriers were not correctly handled, further enhancing the accuracy
and robustness of our pricing methods.

Finally, we introduced Finite Difference methods for pricing Barrier options. We defined the
primary schemes utilized and elaborated on why the Crank-Nicolson scheme stands out as the
most widely employed method within the financial industry. Its unconditional stability and supe-
rior consistency rendered it the optimal choice, allowing us to price Barrier options with exceptional
accuracy and efficiency compared to other methods. However, it is important to acknowledge that
the model is not without its imperfections, as we aim to elucidate in the concluding section. No-
tably, it can exhibit severe oscillations when dealing with discontinuities, as was the case with
Discrete Barrier options. These oscillations are typically not a significant concern when focus-
ing solely on pricing continuously monitored barriers (our primary objective), but they become
problematic when computing sensitivities. To address this issue, we explored one solution. Our
approach involved implementing a non-uniform grid to better capture the dynamics around the
barrier [17]. Additionally, the Rannacher stepping method, which combines several steps of the
Implicit-Scheme with Crank-Nicolson, emerged as a popular alternative. This method provides all
the advantages of the Crank-Nicolson scheme while mitigating the undesirable oscillations around
barrier levels.
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Appendix A

Garman-Kohlhagen PDE

In this section, we will delve on the Garman-Kohlhagen PDE and how to derive its PDE. First,
let us redefine all the variables involved in the proof:

V (S, T ): price of a call option in domestic units per foreign units
S: spot price
T : time remaining until maturity
K: exercise price of the call option
rd: domestic interest rate
rf : foreign interest rate
σ: volatility of spot currency price

Three other variables are useful for the computation and need to be defined as follows:
α: expected rate of return on the security
β: standard deviation of the security rate of return
γ: drift of spot price
Let us consider a contigent claim with some payoff function Φ(χ(T )) based on the exchange rate

χ at time T and a pricing function f(t, χ(t)) = Π(t) = Π that depends on time t and exchange rate.
The notation Π aims at simplifying the notation and does not change the proof. The exchange
rate is supposed to be domestic to foreign.

dχ(t) = αχ(t)dt+ σχ(t)dZ(t) (A.0.1)

where α is the drift of the exchange rate and σ is the volatility. Let Bf and Bd be respectively
the foreign and the domestic bank accounts:

dBf (t) = rfB
f (t)dt, dBd(t) = rdB

d(t)dt

Since we must work in domestic currency, we have to define a new bank account:

B̃f (t) = χ(t)Bf (t)

By Itô product rule, we have

dB̃f (t) = χ(t)dBf (t) + dχ(t)Bf (t) + dBf (t)dχ(t)

dB̃f (t) = χ(t)rfB
f (t)dt+ (αχ(t)dt+ σχ(t)dZ(t))Bf (t) + rfB

f (t)dt(αχ(t)dt+ σχ(t)dZ(t))

dB̃f (t) = χ(t)Bf (t)(α+ rf )dt+ σχ(t)Bf (t)dZ(t)

dB̃f (t) = B̃f (t)(α+ rf )dt+ σB̃f (t)dZ(t)

Supposing V is the value process of the portfolio:

dV (t) = V (wχ dB̃
f (t)

B̃f (t)
+ wΠ dΠ

Π
)

where wχ is the weight of the underlying and wΠ the weight of our claim
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By applying Itô rule to f we get:

df = ftdt+ fχdχ+
1

2
fχχ(dχ)

2

df = ftdt+ fχ(αχ(t)dt+ σχ(t)dZ(t)) +
1

2
fχχσ

2χ2(t)dt

df = (ft + fχαχ(t) +
1

2
fχχσ

2χ2(t))dt+ fχσχ(t)dZ(t)

Let us define αf and σf such as:

αf =
ft + fχαχ(t) +

1
2fχχσ

2χ2(t)

f
, σf =

fχσχ(t)

f

df = fαfdt+ fσfdZ(t),Π = f

dΠ

Π
= αfdt+ σfdZ(t)

dB̃f (t)

B̃f (t)
=

B̃f (t)(α+ rf )dt+ σB̃f (t)dZ(t)

B̃f (t)

dB̃f (t)

B̃f (t)
= (α+ rf )dt+ (t)

dV (t) = V (wχ[(α+ rf )dt+ (t)] + wΠ[αfdt+ σfdZ(t)])

dV (t) = V (wχ(α+ rf ) + wΠαf )dt+ V (wχσ + wΠσf )dZ(t)

We can deduce the following system of three equations:

 rd = wχ(α+ rf ) + wΠαf no arbitrage (1)
wχσ + wΠσf = 0 portfolio with no risk (2)
wχ + wΠ = 1 portfolio with no risk (3)

(A.0.2)

Using (2) and (3), we have:

wΠ =
σ

σ − σf

And with (3):

wχ =
σf

σf − σ

Finally, with (1)
σf (α+ rf − rd) = σ(αf − rd)

Hence, the market price risk equivalency between the underlying and the claim

α+ rf − rd
σ

=
αf − rd

σf
= λ (A.0.3)

so
λσf = αf − rd

λ
fχσχ(t)

f
=

ft + fχαχ(t) +
1
2fχχσ

2χ2(t)

f
− rd

ft + fχαχ(t)− λfχσχ(t) +
1

2
fχχσ

2χ2(t)− rdf = 0

ft + fχ(α− λσ)χ(t) +
1

2
fχχσ

2χ2(t)− rdf = 0

using (A.1.3) we get the PDE
f(T, χ) = Φ(χ)
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Appendix B

Lattice methods

B.1 Proof of Theorem 3.1.1: Backward Induction Algo-
rithm

For j = n,

V j = E[g(Sn)|Fj ] = g(Sn)

with g(Sn) is Fn measurable.

For j < n, we get by using Tower’s property:

V j = e−rd(n−j)∆tE[g(Sn)|Fj ]

= e−rd(n−j)∆tE[E[g(Sn)|Fj+1]|Fj ]

= e−rd∆tE[e−rd(n−j−1)∆tE[g(Sn)|Fj+1]|Fj ]

=−rd∆t E[vj+1|Fj ]

B.2 Proof of Theorem 4.1.2 : Price of a Vanilla option

We prove this by induction. Clearly for n = 1 we have,

V = e−rd∆t

 1∑
j=0

(
1

j

)
pjup

1−j
d Vuj ,d1−j


= e−rd∆t

[(
1

0

)
p0up

1
dVu0,d1 +

(
1

1

)
p1up

0
dVu1,d0

]
= e−rd∆t[puVu + pdVd].

Which is exactly the kind of formulas we compute in practice in the numerical implementation for
each step . We can also check this for n = 2 . We now perform our inductive step. Assume that
the equation hold for some k ∈ N. Then note that,

V = e−rdk∆t

 k∑
j=0

(
n

j

)
pjup

k−j
d Vuj ,dk−j


= e−rdk∆t

[(
k

0

)
pkdVdk +

(
k

1

)
pup

k−1
d Vu,dk−1 + . . .

+

(
k

k − 1

)
pk−1
u pdVu,dk−1 +

(
k

k

)
pkuVuk

]
.
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Now we can expand this formula,

V = e−rdk∆t

[(
k

0

)
pkd[puVu,dk + pdVdk+1 ]e−rd∆t

+

(
k

1

)
pup

k−1
d [puVu2,dk−1 + pdVu,dk ]e−rd∆t + . . .

+

(
k

k

)
pku[puVuk+1 + pdVuk,d]e

−r∆t

]
.

For a term Vuj ,dk−j+1 for j = 1, 2, . . . , k+1 the contributing factors are Vuj ,dk−j+1 and Vuj+1,dk−j .

These contributing factors are
(

k
j−1

)
V jpk−j+1

d and
(
k
j

)
pj−1
u pup

k−j
d pd respectively. Hence we have

that the coefficient of Vuj ,dk−j+1 is given by,

pk−j+1
d pju

(
k

j − 1

)
+

(
k

j

)
pk−j+1
d pju = pk−j+1

d pju

((
k

j

)
+

(
k

j − 1

))
= (pk−j+1

d pju

(
k + 1

j

)
.

For the next step, we have now that

V = e−rdk∆t
k+1∑
j=1

e−rd∆t

(
k + 1

j

)
pk−j+1
d pjuVuj ,dk−j+1

= e−rd(k+1)∆t
k+1∑
j=1

(
k

j

)
pk−j
d pjufuj ,dk−j .

Then if it is true for k it is also true for k + 1. By induction, the theorem is proved.
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Appendix C

Finite difference methods

C.1 Explicit scheme and Trinomial Tree

In this section, we will prove that we can define probabilities p∗d, p
∗
m and p∗u for the Explicit scheme

that are independent of sk.
First, one must reformulate Garman-Kohlhagen PDE defined as :

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (rd − rf )S

∂V

∂S
− rdV = 0

By using the change of variable z = ln(S), the PDE transforms into:

∂V

∂t
+

1

2
σ2 ∂

2V

∂z2
+ (rd − rf − σ2

2
)
∂V

∂z
− rdV = 0

The explicit difference methods gives the new estimation:

V n+1
k − V n

k

△t
=

σ2

2

V n+1
k+1 − 2V n+1

k + V n+1
k−1

△z2
+ (rd − rf − σ2

2
)
V n+1
k+1 − V n+1

k−1

2△z
− rdV

n
k

Hence

V n
k = p∗d

n+1
k−1 + p∗mV n+1

k + p∗uV
n+1
k+1

where,

p∗d =
1

1 + rd∆t

(
−1

2
(rd − rf − σ2

2
)
∆t

∆z
+

1

2
σ2 ∆t

2∆z2

)
,

p∗m =
1

1 + rd∆t

(
1− σ2 ∆t

2∆z2

)
,

p∗u =
1

1 + rd∆t

(
∆t

2∆z
(rd − rf )j∆t+

1

2
σ2 ∆t

2∆z2

)
.

As claimed in Section 5.2.1, the probabilities obtained are no more dependent on k (assuming
the fact that the volatility is constant).
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C.2 Stability of the Explicit Scheme

Garman-Kohlhagen PDE can be reinterpreted as as the heat equation of the form

∂u

∂t∗
=

∂2u

∂x2

We consider a set of transformations given by:

s = Kex

t = T − 2t∗

σ2

V = Kv(t∗, x).

Then we define u(t∗, x) = eαx+βtv(t∗, x) with some constants α and β. These transformations
are employed to derive the Heat equation PDE. We omit the detailed computation steps in this
section, as our primary focus here is to analyze the stability of the numerical schemes used.

Von Neumann stability analysis is a technique used to analyze the stability of numerical meth-
ods, particularly finite-difference methods. We assume that the solution can be written in the form
of a Fourier series:

un
j = Aeiwj∆xeλ

n∆t

= Rneiwj∆x

The scheme is stable if |R| ≤ 1. We will determine the condition of stability for the Explicit
scheme as an example.

un+1
j − un

j

△t∗
=

un
j+1 − 2un

j + un
j−1

△x2

un+1
j = un

j +
∆t∗

∆x2
(un

j+1 − 2un
j + un

j−1)

By substituting with the formula of un
j and simplification, we have that:

R = 1 +
∆t∗

∆x2
(eiwj∆x + e−iwj∆x)

= 1 + 2
∆t∗

∆x2
(cos(w∆x)− 1)

= 1− 4
∆t∗

∆x2
sin2(

w∆x

2
)

We need to have |R| ≤ 1, that is to say 1− 4∆t∗

∆x2 ≥ −1. Hence the Explicit scheme is stable if

and only if ∆t∗

∆x2 ≤ 1
2 .
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