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Abstract

Precise directional predictions in financial markets are essential for optimizing portfolio allocation
and executing effective long-term portfolio rebalancing strategies. While extensive research has
delved into this area within the realms of stock indices, futures, and foreign exchange markets, this
thesis introduces a fresh perspective focused on directional prediction for corporate bond indices.
Leveraging the latest insights in factor investing within corporate bond markets, this study applies
an array of different machine learning algorithms and data analysis techniques specifically tailored
for sequential data to predict directional movements in duration-hedged corporate bond indices.
As a result of this comprehensive analysis, the study develops four distinct models. These models
not only demonstrate accurate directional predictions for the eleven corporate bond indices under
examination but also effectively capture the associated returns.
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Introduction

Directional prediction of market indices is a ubiquitous problem in finance, which has been re-
searched extensively by academics and practitioners. This interest arises from the significant
positive impact that accurate predictions can have on optimal portfolio allocation and on the
schedule of long term portfolio rebalancing. Moreover, the ability to anticipate these movements
offers valuable insights about the expected returns of portfolios that have exposure to a particular
index.
One of the pioneering results in this field is attributable to Fama in [1]. In this work the author
concludes that knowledge of the time series of the price and other publicly available information
regarding a specific security provides no substantial insight for determining the distribution of
future prices. While this concept, famously referred to as the ’Efficient Market Hypothesis’, was
predominant among academics, recent years have seen a surge in articles that challenge this no-
tion.
Illustrative of these opposing viewpoints are the articles by Shiller [2] as well as DeBondt and
Thaler [3] that explore short-run momentum as a predictive factor of future positive stock returns.
Furthermore, the tendencies of stocks to yield higher returns during specific months of the year,
as discussed by Rozeff and Kinney [4] and Dyl [5], alongside predictive patterns utilized in techni-
cal analysis, exemplified by the work of Lo, Mamaysky, and Wang [6], collectively underscore the
potential predictability of the distribution of future prices.
These new findings renewed the interest in market movements detection through statistical ap-
proaches. Tay and Cao in [2] leverage returns computed across different time horizons to train a
Radial basis function kernel Support Vector Machine to forecast future prices of five distinct fu-
ture contracts: Standard&Poor’s 500 stock index futures, United States 30-year government bond,
United States 10-year government bond, German 10-year government bond and French govern-
ment stock index futures. The authors then proceed to compare the results of this methodology
with those obtained using a neural network, finding that the SVM model demonstrates a better
performance.
A similar analysis is repeated by Wang in [3], who employs Principal Component Analysis to
reduce the dimensionality of the data before training the classification model. The outcome of
this analysis is a set of SVM models with an accuracy consistently higher than 60% in predicting
directional daily movements of the Korean composite stock price index as well as the constituents
of the Hang Seng index market (a stock market index in Hong-Kong) between 2002 and 2012. The
predictive factors explored in this study are past daily returns for the constituents of the index,
the S&P 500 index price and the exchange rate of US dollars to Korean Won and to Hong Kong
Dollar.
In [4], Novak and Velušček undertake the prediction of daily high price movements for 370 stocks
in the S&P500 index, spanning the period from 2005 to 2013. They train different kernel SVM
models on sliding windows of the following time series: daily open price, daily high price, daily
low price, close price and intraday volume. The most effective model in their analysis, the radial
basis function SVM, exhibited an accuracy score ranging from 53.54% to 64.11% across the set of
stocks.
One of the most comprehensive analysis in this context, which considers ten distinct data mining
techniques, is described in [5]. The authors examine the daily change of closing prices of the Hang
Seng index by training the models on open price, daily high price, daily low price, S&P 500 index
price, and exchange rate of US dollars to Hong Kong dollar. The best performing method is again
the radial basis function kernel SVM, that records a precision greater than 80% both on the test
set and the validation set.
In recent times, the investigation of factors capable of explaining the cross-section of excess returns
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has extended its reach to encompass corporate bond markets. One of the most renowned works
that investigate this aspect is a paper by Israel, Palhares and Richardson [6]. In this paper, the
authors employ long-short portfolio analysis to study duration hedged monthly excess returns for
US Investment Grade and US High yield bond. The results suggest statistically significant posi-
tive risk premia for Option Adjusted Spread, equity momentum and value, where this last factor
measures how cheap a bond is by comparing its spread to its default probability.
These findings find partial validation in a later examination of the cross-sectional returns of monthly
duration-hedged US Investment Grade and US High Yield bonds’ excess returns, conducted by
Henke in [7]. The outcome of this analysis is that equity momentum and value have statistically
significant explanatory power, however the evidence regarding the Option Adjusted Spread factor,
the quality factor (determined as a score from 0 to 9, assessing the strength of the fundamentals
of a company) and the value factor remains inconclusive.
Building upon these findings, this thesis will provide a prospective on weekly directional movement
prediction of duration-hedged sectors indices in the US Investment Grade corporate bond markets.
This will be achieved through the application of supervised classification techniques and kernel
methods specifically tailored for sequential data.

Outline of the thesis

The thesis is organized as follows: In Chapter 1, Support Vector Machines, Logistic regression
model and Gradient boosting trees techniques are presented and analyzed. In the following chapter,
the fundamental concepts of kernel methods are elaborated upon, with a focus on the global
alignment kernel and the signature kernel as examples of kernel methods tailored for time series.
Chapter 3 presents a comprehensive overview of data and the methodology alognside the obtained
results.
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Chapter 1

Classification Techniques: SVM,
Logistic regression and XGBoost

Consider a dataset comprising observations and their associated labels (x, y) = {(x1, y1), ...., (xn, yn)}
with xi ∈ Rd and yi ∈ {1, ..., k}, i = 1, ..., n, a classification algorithm aims at determining a func-
tion f : Rd → {1, ..., k} that assigns to each observation its corresponding label. When the number
of labels is equal to two, the classification problem is also called binary classification problem.
Additionally, a variation of this problem involves predicting the likelihood or probability of a data
point being associated with a specific label.
Even for this variation, the core objective remains consistent: to obtain a robust model that ex-
hibits the capability to accurately predict the labels for a given observation, even previously unseen
ones.
The aim of this chapter is to introduce four classification methodologies and their properties:
Logistic regression, Support Vector Machines, Classification trees, and Boosting Trees.

1.1 Support Vector Machines

Support Vector Machines (SVM) are a supervised statistical learning models introduced by Vapnik
in [8]. In a binary classification setting, SVM find an hyperplane separating the training data in
two groups corresponding to each label.
More specifically, let (x, y) = {(x1, y1), (x2, y2), ....(xn, yn)} ∈ Rd × {−1, 1} be the data set, a
separating hyperplane is an hyperplane ⟨ω, x⟩+ b = 0, ω ∈ Rd and b ∈ R, such that

yi(⟨ω, xi⟩+ b) ≥ 1 for every i = 1, ..., n. (1.1.1)

It is easy to prove that the distance between the two closest points with different labels is given
by 2

||ω|| , which corresponds to twice the distance between the points and the hyperplane. This

last distance is referred to as the margin and the points that are the closest to the separating
hyperplane are called the support vectors.
Since the model should separate the points with different labels as much as possible, the Support
Vector Machine classifiers corresponds to the linear decision function f(x) := sign(⟨ω, x⟩+ b) that
maximizes the margin.
From this observation and the constraint 1.1.1 the problem of finding the optimal separating
hyperplane can be formalized as the following constrained minimization problem

min ||ω||22
st

yi(⟨ω, xi⟩+ b) ≥ 1 for every i = 1, ..., n.

(1.1.2)

The SVM works well when there is a clear margin of separation between classes and is more
effective in high dimensional spaces, characteristics that make this method especially suited for
datasets where the number of dimensions is bigger than the number of samples. Moreover, given
the reduced number of parameters that are needed to describe it, the model is relatively memory
efficient.
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However SVM is not suited for data sets with more samples than dimensions, with noisy data or
in situations where the data points are not exactly separable by any hyperplane.
In cases where most of the data points are linearly separable, for example when observations are
affected by measurement errors or in the presence of outliers, this last issue may by solved by re-
laxing the constraint 1.1.1 to allow for some violations of the decision boundary. Such modification
of the SVM model is also known as soft margin SVM whereas the original SVM model is often
called hard margin SVM.
This is achieved by introducing a vector of parameters (called slack variables) ζ = (ζ1, ..., ζn) where
each component ζi ≥ 0. This turns the constraint 1.1.1 into:

yi(⟨ω, xi⟩+ b) ≥ 1− ζi for every i = 1, ..., n.

However, for large enough values for every ζi, this constraint is always automatically satisfied,
therefore the sum of the components of this last vector needs to be included in the objective
function. With this remark in mind, the minimization problem 1.1.2, adapted for the soft margin
SVM is 

min
ω,ζ

||ω||22 + C
∑n

i=1 ζi

st

yi(⟨ω, xi⟩+ b) ≥ 1− ζi for every i = 1, ..., n.

C > 0, ζi ≥ 0 for every i = 1, ..., n.

(1.1.3)

With C being a hyper parameter of the model that is determined during the cross-validation.
From this last expression, the last optimization problem can be understood as a generalization of
the original hard margin SVM, for which every slack variable was zero.
Another property of the SVM model, is that it is possible to show that the parameters of the
soft margin SVM (and consequently of the hard margin SVM) are linear combinations of the data
points. The advantage provided by this reformulation will become apparent in the next chapter,
which introduces kernel methods, that allow linear models like the SVM have non-linear decision
boundaries.
The first step in proving this result is to define the generalized Lagrangian for soft SVM problem

L(ω, b, α, ζ, β, µ) = 1

2
||ω||22 + C

n∑
i=1

ζi −
n∑

i=1

αi

(
yi(⟨ω, xi⟩+ b)− 1 + ζi

)
−

n∑
i=1

µiζi

And notice how, if all the constraints are satisfied, then

max
α≥0,µ≥0

L(ω, b, α, ζ, β, µ) = 1

2
||ω||22 + C

n∑
i=1

ζi

(where for a vector v ∈ Rn, v > 0 is intended as vi > 0, i=1,..., n), but when one at least one of
the constraints is not satisfied then

max
α≥0,µ≥0

L(ω, b, α, ζ, β, µ) = ∞

So that the problem 1.1.3 can be rewritten as the following min max problem, called primal problem

min
ω,b;
ζ≥0

max
α≥0,µ≥0

L(ω, b, α, ζ, β, µ)

Now, for the soft margin SVM, define the following max min problem, called the dual problem

max
α≥0,µ≥0

min
ω,b;
ζ≥0

L(ω, b, α, ζ, β, µ)

Under certain conditions the equality between the primal and dual problem can be established.

Theorem 1.1.1. Let f : Rd → R and gi(x) : Rd → R i = 1, ..., n be convex functions and
hj(x) : Rd → R j = 1, ...,m be affine functions.
Consider the following convex optimization problem

minx f(x)

st

gi(x) ≤ 0 i = 1...n

hj(x) = 0 j = 1....m
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If the inequality constraints are feasible, i.e. there exists a value for x such that gi(x) < 0 for
i = 1, ..., n, then the primal and the dual problem associated to the convex optimization problem
have the same solution.

Proof. see chapter 5 in [9].

Since the inequality constraints for the problem at hand are linear functions, then the feasibility
condition is automatically satisfied, so the solution of the primal and dual problem coincide.
Then, following the derivation in [10], for a fixed α, minimizing the Lagrangian by setting the
gradient to zero and simplifying, allows to obtain


max
α

∑n
i=1 αi − 1

2

∑n
i=1

∑n
j=1 yiyjαiαj⟨xi, xj⟩

0 ≤ αi ≤ C∑n
i=1 αiyi = 0

And express ω as a linear combination of the observations, ω =
∑n

j=1 yjαjxj .
This implies that the problem of finding ω and b (which can be easily recovered from the ex-
pression for the decision function of the SVM), can be reformulated to only depend on the linear
combinations of the dot products of the data points.

1.2 Logistic regression

The logistic regression (or logit) is a parametric statistical model that describes non deterministic
binary outcomes under the assumption of the existence of a linear relationship between a set of
variables and the log-odds of these outcomes.
More precisely, consider the set of observations and response variables (x, y) = {(x1, y1), (x2, y2),
...., (xn, yn)}, with xi ∈ Rd × {1,−1} for i = 1, ..., n. The logistic regression models the set
of response variables yi conditioned to xi as a collection of independent random variables with
distribution yi|xi ∼ Bernoulli(pi), pi ∈ (0, 1).
A second assumption is that the logarithm of the odds ratio conditioned to the independent
variables is a linear combination of the independent variables plus a constant

log
P(yi|xi)

1− P(yi|xi)
= log

pi
1− pi

= β0 + ⟨β, xi⟩ for any xi ∈ x

So that the probability of the outcome 1 for the i-th data point is given by

pi =
1

1 + exp−(β0+⟨β,xi⟩)

This implies that the model predicts outcome 1 if the pi > 0.5 and 0 otherwise.
The function σ : R → R, σ(x) = 1

1+exp−x is ubiquitous in classification problems and is known by
the names of logistic or sigmoid function.
Similarly to other statistical models, the parameters β0, β are commonly estimated through the
maximum-likelihood approach. The expression for the conditional likelihood can be derived easily
from the hypotheses made above, in fact, starting from the conditional independence and the
assumption on the conditional distribution for the response variables and using next the expression
for the log odds it is obtained that

L(β0, β) =
∏

{i|yi=−1}

(1− pi)
∏

{i|yi=1}

pi

=
∏

{i|yi=−1}

(
1− 1

1 + exp−(β0+⟨β,xi⟩)

) ∏
{i|yi=1}

(
1

1 + exp−(β0+⟨β,xi⟩)

)
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So that the parameters of the model can be found by maximizing the conditional log-likelihood

ℓ(β0, β) = logL(β0, β)

=
∑

{i|yi=−1}

log

(
1− 1

1 + exp−(β0+⟨β,xi⟩)

)
+

∑
{i|yi=1}

log

(
1

1 + exp−(β0+⟨β,xi⟩)

)

=
∑

{i|yi=−1}

log

(
1

1 + exp(β0+⟨β,xi⟩)

)
+

∑
{i|yi=1}

log

(
1

1 + exp−(β0+⟨β,xi⟩)

)

=

n∑
i=1

log

(
1

1 + exp−yi(β0+⟨β,xi⟩)

)
It is easily seen how the solution to this minimization problem is not unique in general, in fact, if the
columns of the matrix having the values of the observations as rows are not linearly independent,
then there are infinitely many solution for β, just like it happens for the linear regression model.
Another problem this model can suffer from is overfitting, that is when the model fits the data too
closely and is not able to classify accurately new data. This is a problem that can arise when d is
large compared to n. A possible solution is to add a L2 regularization term to the log-likelihood
to the expression above, so that the estimated values of β0 and the components of β are shrinked
towards zero, resulting in a simpler model.
The maximization problem for the regularized logistic regression can be formalized as follows

β∗ = argmax
β∈R

ℓ(β) + C||β||22 C > 0 (1.2.1)

Where, abusing the notation, the term β0 was included in the vector β that now becomes β =
(β0, β1, ...., βk) and each independent variable takes the form xi = (1, xi,1, ...., xi,k). Since it pro-
vides better readability, this notation will be maintained until the end of this section. Another
advantage of introducing the L2 regularization term is that the minimization problem has a unique
solution since the Hessian matrix of the conditional likelihood is negative definite. In fact, as shown
in [11]

∂2L
∂β∂βT

= −
n∑

i=1

exp(⟨β, xi⟩)(
1 + exp(⟨β, xi⟩)

)2xix
T
i − λ1k+1,k+1 = −xWxT − λ1k+1,k+1

Where x is the matrix with columns (x1, ..., xn) and W indicates the diagonal matrix with
positive entries

W = diag

(
σ(⟨x1, β⟩)(

1 + exp(⟨β, x1⟩
) , ..., σ(⟨xn, β⟩)(

1 + exp(⟨β, xn⟩
))

Moreover, anticipating the discussion of the chapter, it is possible to show that even for this model,
the parameters given by a linear combination the observations and the problem can be rephrased
to be only dependent on dot products of the observations. This result was obtained by Jaakkola
and Haussler in [12]. Following the steps presented in [13], the main idea is to take advantage of
the inequality

log(σ(x)) ≤ cx− clog(c)− (1− c)log(1− c)

which, when used in 1.2.1, allows to recover a tight upper bound for the original likelihood max-
imization problem. Furthermore, it is possible to show that this upper bound has the same sta-
tionary points as original problem.

ℓ(β) + C||β||22 ≤
n∑

i=1

ciyi⟨β, xi⟩ − cilog(ci)− (1− ci)log(1− ci) + C||β||22 ci ∈ (0, 1) i = 1, ..., n

Similarly to the SVM model, after finding the minimizing value for the weights β, the original
problem is solved by minimizing over the ci’s. More concretely, setting the gradient with respect
to β of the last expression equal to zero yields

∂ℓ

∂β
=

n∑
i=1

yicixi − 2Cβ = 0d+1

=⇒ β =
1

2C

n∑
i=1

ciyixi
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Then the solution to the maximization problem is obtained as the solution of
min 1

2C

∑n
i=1

∑n
j=1 cicjyiyjxixj − cilog(ci)− (1− ci)log(1− ci)

st

0 < ci < 1 for every i = 1, ..., n.

However, there is no known closed formula for the coefficients of the logistic regression, both for
this last problem and for the original regularized likelihood maximization problem. This means
that these parameters need to be estimated via numerical methods such as Newton method or the
gradient descent methods. For more information about the different numerical methods applicable
to this estimation problem refer to [13] and [14] .
Before discussing the next model it is worth mentioning the advantages and disadvantages of
choosing this model for supervised classification tasks.
The main advantages of the logistic regression are the ease of training and interpretation, the
probabilistic output and the fact that the model can perform well on small datasets compared
to more complex machine learning techniques. On the other hand, the assumption of linearity
between log odds and observations might be too restrictive in some cases. As anticipated in the
previous section, this issue will be addressed in the second chapter where a possible solution is
presented.

1.3 XGBoost

1.3.1 Classification trees

Definition 1.3.1. Let (x, y) be set of observations and their associated labels (x, y) = {(x1, y1), (x2, y2),
..., (xn, yn)}, where xi = (xi,1, ..., xi,d) ∈ Rd, yi = {−1, 1} i = 1, ..., n. A classification tree
is a supervised classification algorithm that partitions Rd in a set of M disjoint regions R =
{R1, R2, ..., RM}, such that, every a point x ∈ Rd is associated to its label according to the rule

f(x) =
∑M

i=1 ci1{x∈Ri} with ci ∈ {−1, 1} for all i = 1, ...,M .

The partition R is determined via a recursive greedy algorithm that minimizes the sum of the
classification error at each step by partitioning each region in two disjoint regions until a stopping
rule is satisfied. The classification error is measured by a loss function ℓ : Rd × {−1, 1} → [0,∞).
For a given element of the partition Ri, for which the proportion of observation labeled with k is
indicated as p̂i,k, the following functions can be used as the loss functions to evaluate the quality
of a split:

• Gini index: 1− p̂2i,1 − p̂2i,−1

• Cross Entropy: −p̂i,1 log2 p̂i,1 − p̂i,−1 log2 p̂i,−1

• Exponential Loss:
∑

xi∈Ri

exp
(
− yif(xi)

)
• Miss-classification error: 1−max{p̂i,1, p̂i,−1}

Assuming a stopping rule on the classification error threshold for each separate region, the set of
labels and the partitions are identified as follows:

1. Input: The singelton D = {{Rd, (x, y)}}, a value ϵ corresponding to the maximum error
threshold for each leaf.

2. Create an empty set R that will contain the final partition

3. Associate a label ci to every set {Ri, (xi, yi)} in D, with (xi, yi) = {(xi1 , yi1), ..., (xik , yik)},
defined as the modal label for this last vector.

4. For each region Ri in D, find the two regions R1, R2 of the form R1 = {z ∈ Ri|zj > β},
R2 = {z ∈ Ri|zj ≤ β}, β ∈ R, j=1,...,d, such that the loss

∑
xi∈R1

ℓ(xi, yi) +
∑

xi∈R2
ℓ(xi, yi)

is minimized.
If {Rl, {(xi, yi)|xi ∈ Rl}} with l=1,2 satisfies the stopping rule, add this region to R, other-
wise add it to D. Remove Ri from D.

5. If D is empty, output R, otherwise go to step 2
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In addition to the error threshold, alternative stopping criteria can be applied to this algorithm.
For instance, one alternative could be setting a threshold on the minimum number of observations
that can belong to a region, or establishing a rule on the maximum percentage of observations
with identical labels that can be associated with a single region. It’s important to note that these
alternative stopping rules do not fundamentally alter the main steps of the algorithm previously
described.
The main advantages of a binary tree classifier are ease of interpretation and training and also the
fact that there is no need to normalize the data prior to the training phase. The major drawback
of the classification trees is their high variance: a small perturbation of the data can cause major
variations to the structure of the tree. This is due to the greedy nature of the algorithm that
partitions the regions. A consequence of this fact is that decision trees may not be suited for
classification tasks involving financial time series due the presence of noise.

1.3.2 Gradient boosting trees

Many techniques have been introduced during the years to mitigate the problem of high variance
in classification trees, one of the most popular class of algorithms introduced to overcome this issue
is known as ”gradient boosting trees”.
The idea behind these techniques is to combine numerous ”weak” learners, which are classifiers
that do slightly better than a random classifier. The output is determined by a voting system
where each of these ’weak’ learners contributes to the output with a weight assigned to their con-
tribution.
One of the most famous implementations of gradient boosting trees is XGBoost, which, since its
release in 2014, has been one of the most popular libraries used in machine learning competitions
(for more details, see the following survey [15] on Kaggle, one of the biggest platforms for data
science competitions).
In the context of binary classification, the XGBoost classifier models the probability of the obser-
vation x ∈ Rd to be associated to the label 1 as

f(x) := σ
( K∑
k=1

fk(x)
)

where σ is the sigmoid function and fk are distinct classification trees.
Similarly to a standard classification tree, this model can be parametrizedd by the partition
R = {R1, ..., RM} and the weights c = {c1, ..., cM} associated to each region. However, since
the different tree classifiers can have different weights, the label associated to a partition by a
single classifier is allowed to be a real number and not just the predicted value for the label.
Just like tree classifiers, the XGBoost algorithm employs a greedy algorithm that minimizes the
classification loss at every step in the training phase of the model.
More precisely, following the procedure adopted in the original article by Chen and Guestrin [16],
given a set of independent variables and the associated response variables (x, y) = {(x1, y1), ..., (xn, yn)}
with xi = (xi,1, ..., xi,d) ∈ Rd and yi ∈ {−1, 1}, define the objective to be minimized for the (k-1)-th
step of the algorithm Lk−1 : Rd × {−1, 1} → [0,∞) as

Lk−1(x, y) =

n∑
i=1

ℓ(fk−1(xi), yi) + γm+

k−1∑
j=1

1

2
λ||c(j)||22

where fk−1 =
∑k−1

j=1 fj , is the tree boosted model at the (k-1)-th step of the training cycle, ℓ is the

loss function, defined as in the previous section and c(j) denotes the vector of weights associated
to the j-th tree.
Assuming that the loss is a twice differentiable function, the boosted model for the k-th step is
obtained by adding a new learner fk to fk−1, so that the quadratic approximation of the objective
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is minimized. This concretely translates to minimizing the following expression

Lk(x, y) =

n∑
i=1

ℓ(fk(xi), yi) + γM +
λ

2
||c(k)||22

=

n∑
i=1

ℓ(fk−1(xi) + fk(xi), yi) + γM +
1

2
λ||c(k)||22

≈
n∑

i=1

ℓ(fk−1(xi), yi) +
∂ℓ(fk−1(xi), yi)

∂fk−1
fk(xi) +

1

2

∂2ℓ(fk−1(xi), yi)

∂(fk−1(xi))2
f2
k (xi) + γM +

λ

2
||c(k)||22

=

M∑
m=1

∑
{i|xi∈Rm}

ℓ(fk−1(xi), yi) +
∂ℓ(fk−1(xi), yi)

∂fk−1(xi)
c(k)m +

1

2

∂2ℓ(fk−1(xi), yi)

∂(fk−1(xi))2
(c(k)m )2 +

λ

2
(c(k)m )2 + γM

Where in the last step the definition of the labels cm was used.

Define now the quantities ℓ1(xi) = ∂ℓ(fk−1(xi),yi)
∂fk−1(xi)

and ℓ2(xi) = ∂2ℓ(fk−1(xi),yi)
∂(fk−1(xi))2

, then the optimal

value for the label cm of the newly added classifier is given by

cm = −

∑
{i|xi∈Rm}

ℓ1(xi)∑
{i|xi∈Rm}

ℓ2(xi) +
λ
2

Plugging this value in the formula for the loss Lk(x, y) on a single region Rm yields

Lk(x, y,Rm) = −1

2

M∑
m=1

( ∑
{i|xi∈Rm}

ℓ1(xi)

)2

∑
{i|xi∈Rm}

ℓ2(xi) +
λ
2

+ γT

which implies that if Rm is split into two disjoint regions Rm1 and Rm2 , the decrease in loss (or
gain) by adding the new learner is then

∆L = Lk(x, y,Rm1
) + Lk(x, y,Rm2

)− Lk−1(x, y,Rm)

The optimal way of splitting each Rm, which determines the partition used by the new learner, is
found by searching the maximum reduction of the loss over all possible division of such region.
The algorithm for this last part goes as follows

1. Input: the set I = {i|xi ∈ Rm} with Rm a generic region.

2. Initialize the variables gain=0, G =
∑

{i|xi∈Rm}

∂ℓ(fk−1(xi),yi)
∂fk−1(xi)

and H =
∑

{i|xi∈Rm}

∂2ℓ(fk−1(xi),yi)
∂(fk−1)2

3. Fix k ∈ {1, ...,m}, initialize the variables GL = 0 and HL = 0. Sort the set I by the values
xk,·. Now for each value xi,k define the update GL and HL by the following rule

GL = GL +
∂ℓ(fk−1(xi), yi)

∂fk−1(xi)
HL = HL +

∂2ℓ(fk−1(xi), yi)

∂(fk−1)2

define GR = G−GL and HR = H −HL.
The gain of this configuration is now given by

gain config =
G2

L

HL + λ
+

G2
R

HR + λ
− G2

H + λ

if gain config > gain, then save this configuration and set gain = gain config

4. Repeat the previous step for all k = 1, ...,m

5. Output: The two regions Rm,1 and Rm,2 that produce the maximum gain.
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In addition to the previously described process, it is possible to select from a set of hyperparam-
eters that can be fine-tuned to achieve an optimal balance between bias and variance, thereby
preventing overfitting and controlling various aspects of the training procedure. Some of these
hyperparameters include:

• Number of trees

• Learning rate: A value between in [0, 1] that regulates step size shrinkage applied to each
feature weight to prevent overfitting

• Max depth: The maximum depth of a tree, the higher this value, the higher the more likely
the model is to overfit

• Column sample by tree: Subsample ratio of columns that is taken when constructing a
new tree

• Column sample by level: Subsample ratio of columns taken when a new level of the tree
is reached.

• L1 regularization term for the weights of the trees

• L2 regularization term for the weights of the trees

As in the other methods, this section is concluded by listing advantages and shortcomings of
the XGBoost model. The main advantages of the XGBoost model are its flexibility in handling
different type of inputs, the great accuracy even in the case of nonlinear relations between the
features and the targets and its efficiency in terms of speed and memory usage compared to other
gradient boosting techniques. The two main disadvantages are the fact that XGBoost is a black-
box method making it difficult to interpret the result and the wide range of parameters that need
to be carefully tuned to achieve optimal performance.
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Chapter 2

Kernel methods for time series

As previously anticipated, this chapter introduces kernel methods, a class of machine learning
algorithms designed to enhance traditional linear classifiers allowing them to be applied to problems
where the data in not linearly separable. The main idea behind kernel methods is to use a function
ϕ : V → H, called feature map, that maps the input from the data space V to a higher-dimensional
inner product space H, sometimes called feature space. This transformation may render the data
linearly separable in the feature space, allowing successful application of linear classifiers.
Associated to ϕ is the so called kernel K : V × V → R which is a symmetric map defined as
K(x, y) : ⟨ϕ(x), ϕ(y)⟩H . From the dual formulation for the SVM and logistic regression problems,
presented in the previous chapter, it is evident that the solution of their related convex optimization
problems only depends on the dot products of the data points. This implies that, when using
kernel methods with these classification algorithms, instead of explicitly performing the feature
space transformation, which could be computationally expensive or even infeasible in very high-
dimensional spaces, it is possible to work directly in the original space using the kernel function.
This is commonly known as ”kernel trick” and its applicability extends to a considerable array of
machine learning algorithms, as shown in detail in the reference [17].
The chapter is structured as follows:

• Introduction to Kernels and Reproducing Kernel Hilbert Spaces: this section
presents the foundational concepts of kernels, Reproducing Kernel Hilbert Spaces (RKHS),
and introduce the Representer Theorem. This theorem demonstrates that solutions to a
wide range of optimization problems can be expressed as a finite linear combinations of
kernel evaluations at sample points.

• Kernel Properties for Sequentially Ordered Data: This part of the chapter focuses
on the properties of two specific kernels tailored for sequentially ordered data: the Global
Alignment Kernel (GAK) and the signature kernel

The chapter begins by introducing the class of kernel that are considered for most of the results.

Definition 2.0.1. Given any set of points {x1, ..., xn}n∈N that belongs to the data space V and a
kernel map K : V × V → R, the matrix

G := (K(xi, xj))i,j i, j = 1, ..., n

is called the Gram matrix.

Definition 2.0.2 (Positive semidefinte kernels). Let V be the data space and K : V × V → R
be a kernel. If for any set of points {x1, ..., xn}n∈N ⊂ V , the Gram matrix associated to K is a
positive semidefinite matrix then K is said to be a positive semidefinite kernel.

Example 2.0.1. A trivial example of a positive semidefinite kernel is the linear kernel, also known
as ”non-kernel”. This kernel is generated by the feature map ϕ(x) = x and corresponds to the dot
product on the data space V

K(x, y) = ⟨x, y⟩V
Positive semidefinite kernels are related to Reproducing Kernel Hilbert Spaces (RKHS), which

were first proposed by Aronszajn in [18]. A Reproducing Kernel Hilbert Space is a Hilbert space
of functions characterized by the property that the value of a function at any point is equal to the
inner product of that function and a particular kernel, called the reproducing kernel.
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Definition 2.0.3. Let H be a Hilbert space of functions defined on set V . A reproducing kernel
of H is a map K : V × V → R such that

1. The function K(·, x) : V → R is in H for every x ∈ X

2. f(x) = ⟨f,K(·, x)⟩H for every f ∈ H and for every x ∈ X

The first step towards the definition of the RKHS is the definition of the evaluation functional

Definition 2.0.4. Let H be a Hilbert space of functions on a set V, the evaluation functional is
defined as the linear functional

Lx : f → f(x) for every f ∈ H

that associates to each function f in H its value at x ∈ V

Definition 2.0.5 (Reproducing Kernel Hilbert Space). Given an Hilbert space of functions H
defined on set V , if the evaluation functional Lx is continuous, that is, if for every x ∈ V there is
a value C(x) ≥ 0 such that for all f ∈ H

|f(x)| ≤ C(x)||f ||H

Then the space H is called a reproducing kernel Hilbert space

The following theorem, known as Riesz representation theorem, is a fundamental result in the
theory of Hilbert space and establishes a connection between continuous linear functionals and
evaluation kernels.

Theorem 2.0.6 (Riesz representation theorem). Let H be an Hilbert space on a set V , then
for every continuous linear functional L and any f ∈ H there exists a unique ϕ ∈ H such that
L(f) = ⟨f, ϕ⟩H .

Consider the RKHS H over a set V , define the function ϕx : V → R to be the element of H
associated to the evaluation functional at x by the Riesz representation theorem.
By setting K(·, x) := ϕx(·), it is possible to recover an expression a reproducing kernel of H, in
fact, the following holds

1. K(·, x) = ϕx(·) ∈ H for every x ∈ V

2. f(x) = ⟨f, ϕx(·)⟩H = ⟨f,K(·, x)⟩H

Notice also that, since K(x, ·) ∈ H for every x ∈ V , from the previous construction

K(x, y) = ⟨K(·, x),K(·, y)⟩H
= ⟨ϕx(·), ϕy(·)⟩H

Which also allows to identify the map ϕx obtained via the Riesz theorem with the feature map ϕ
that was introduced as the beginning of the chapter.
Another fundamental contribution to the theory of Hilbert spaces is given by the Moora-Aronszajn
theorem, which guarantees that every positive semidefinite kernel K can be associated to a unique
RKHS.

Theorem 2.0.7 (Moora-Aronszajn Theorem [18]). Given a positive semidefinite kernel K : V ×
V → R, then there exists a unique RKHS H, such that, for any f ∈ H and x ∈ V

f(x) = ⟨K(x, ·), f⟩H

Leveraging these results for the RKHS it is possible to give a proof of the representer theorem.

Theorem 2.0.8. Let K : V × V → R a semipositive defined kernel and H the RKHS associated
to K. Given {(x1, y1), ..., (xn, yn)}n∈N ⊂ V × R, an arbitrary function ℓ : (V × R2)n → R and a
strictly increasing function g : [0,∞) → R then the minimiser

f∗ = argmin
f∈H

ℓ((x1, y1, f(x1)), ..., (xn, yn, f(xn))) + g(||f ||2H)

if it exists, belongs to Span{K(xi, ·)|i = 1, ..., n}
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Proof. Let S = Span{K(xi, ·)|i = 1, ..., n} and for any f ∈ H denote by fS the projection of f on
S and by fS⊥ the projection of f on S⊥. From the definition of S, fS is of the form

fS =

n∑
i=1

ciK(xi, ·) where ci ∈ R, i = 1, ..., n

The reproducing property of the kernel K(xj , ·) for every j = 1, ..., n allows to write

f(xi) = ⟨f,K(xi, ·)⟩H

= ⟨
n∑

i=1

ciK(xi, ·) + fS⊥ ,K(xj , ·)⟩H

= ⟨
n∑

i=1

ciK(xi, ·),K(xj , ·)⟩H

= ⟨
n∑

i=1

ciK(xi, xj)⟩H

Where in the second step the projection theorem was used, which guarantees that H = S ⊕ S⊥

(S is a finite dimensional linear space, therefore it is closed) and in the last step the reproducing
property of K(xj , ·) and the fact that K(xi, ·) ∈ H for every i = 1, ..., n.
Now, using this last identity, the projection theorem and recalling that g is strictly increasing

ℓ((x1, y1, f(x1)), ..., (xn, yn, f(xn))) + g(||f ||2H)

= ℓ((x1, y1, fS(x1)), ..., (xn, yn, fS(xn))) + g(||f ||2H)

= ℓ((x1, y1, fS(x1)), ..., (xn, yn, fS(xn))) + g(||fS ||2H + ||fS⊥ ||2H)

≥ ℓ((x1, y1, fS(x1)), ..., (xn, yn, fS(xn))) + g(||fS ||2H)

Which implies that the minimiser is reached when f ∈ S.

It is evident that SVM and logistic regression classifiers are solutions to optimization prob-
lems that satisfy the assumptions outlined in theorem 2.0.8. Consequently, when using positive
semidefinite kernels, the optimal predictors for these two methods can be expressed through a
linear combination of kernel functions computed at specific data points.

2.0.1 Kernel approximation methods

The computation of the Gram matrix for a set of n distinct k-dimensional data points comes with
substantial computational demands. It incurs a space complexity of O(n2) and a time complexity
of O(n2k) for many computations of interest, such as matrix inversion or eigendecomposition.
These complexities pose a significant challenge for kernel methods when dealing with large datasets,
making efficient scaling difficult. To address this challenge, several methods have been proposed
to approximate the Gram matrix efficiently. Among these, three popular techniques stand out:
Choleski decomposition [19], Randomized Fourier Features [20], that approximates the feature map
for shift invariant kernels, and the Nyström method.
The latter is based on a result from the theory of integral equations obtained by Nyström in [21]
that was popularized by Williams and Seeger in [22] for applications to Gram matrices.

This method uses a sample of m columns from the Gram matrix K ∈ Rn×n to construct its
approximation, K̃ ∈ Rn×n. This last matrix has rank k, with k << n and can be obtained using
SVD decomposition on the original matrix. The storage cost of this new matrix is O(nm) and it
requires O(nkm) operations to be computed.
More precisely, let K ∈ Rn×n be a symmetric semidefinite matrix with rank(K) = r. The SVD
decomposition of K allows to recover that K = UΣUT where U ∈ Rn×r and Σ = diag(σ1, ...., σr)
with σi > 0 for every i = 1, ..., r. From the SVD decomposition it is also possible to write the
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pseudo-inverse of the matrix K as K+ = UΣ−1UT , where Σ−1 = diag(σ−1
1 , ...., σ−1

r ).
The method works as follows: suppose without loss of generality that the sampled columns are
the first m columns of K, and their corresponding singular values are ordered in decreasing order,
then, using block notation write K as

K =

[
W KT

2,1

K2,1 K2,2

]
with W ∈ Rm×m, K2,1 ∈ Rn−m×m, and define the matrix containing the sampled columns as

C :=

[
W
K2,1

]
.

The SVD decomposition of W is given by W = U1ΣmUT
1 where U =

[
U1

U2

]
, with U1 ∈ Rm×m and

Σm = diag(σ1, ..., σm).
Following Williams in [22], the optimal rank k approximation of W with respect to the Frobenius
norm is W̃ = Ũ1Σ̃Ũ

T
1 where the columns of the components are given by:

σ̃i =
n

m
σi i = 1, ..., k

ũi =

√
m

n

1

σi
Cui i = 1, ..., k

with ui being the i-th column of U1.
The Nyström approximation of K is then

K̃ = CW̃+CT (2.0.1)

This matrix requires a space complexity of O(nm) to store C, whilst the time complexity of the
computation is given by O(kmn+m2k) = O(kmn) since the SVD decomposition requires O(m2k)
and the matrix multiplication in 2.0.1 requires O(kmn) operations.
Moreover, if k = n, as shown in [22], the Nyström approximation reproduces perfectly all the
blocks of K except for the block K2,2. In fact, in this case, the block representation of K̃ is given
by

K̃ =

[
W KT

2,1

K2,1 K2,1W
+K2,1

]

2.1 Radial basis function kernel

The most popular kernel used in classification tasks is the radial basis function kernel, which can
be defined as follows

Definition 2.1.1. Let σ ∈ R+, x = {x0, ..., xn−1} and y = {y0, ..., yn−1} be two elements in Rn,
then the radial basis function kernel is defined as

K(x, y) = e−
1

2σ2

∑n−1
k=0 (xi−yi)

2

The radial basis function kernel is a decreasing function of the euclidean distance between the
two points. It can be interpreted as a measure of similarity between points: the closer two points
are, the larger the value this function takes. The value σ regulates how much the distance between
the points affects the value of the kernel function. The higher the value of sigma the more impact
the distance between the points is going to have on the value of the kernel. This kernel offers a first
example of an alternative to distances as a means of measuring similarity or dissimilarity between
points. In the next section this concept will be explored more in depth by introducing a class of
symmetric maps that can be used in place of distances in many classification tasks.
The next step in analyzing the properties of this kernel is to show that it is a positive semidefinite
kernel. This result will ensure compatibility with all the results introduced in the previous part of
this chapter.
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Proposition 2.1.2. The radial basis function kernel is positive semidefinite

Proof. The result follow easily from the following identity for the Gaussian density function

e−
1

2σ2 (x−y)2 =

√
2πσ2

2

∫ ∞

−∞
e−

1
σ2 (z−x)2e−

1
σ2 (y−z)2dz x, y ∈ R

In fact, from the definition of positive semidefinite kernel, for a collection any set of points
{x0, ..., xn−1}n∈N ⊂ Rn and any set {c1, ..., cn}n∈N ⊂ R the following holds

n−1∑
i=0

n−1∑
j=0

cicje
−

(xi−xj)
2

2σ2 =

√
(2πσ2)d

2d

n−1∑
i=0

n−1∑
j=0

cicj

∫
Rd

e−
(z−xj)

2

σ2 e−
(xi−z)2

σ2 dz

=

√
(2πσ2)d

2d

∫
Rd

n−1∑
i=0

n−1∑
j=0

cicje
−

(z−xj)
2

σ2 e−
(z−xi)

2

σ2 dz

=

√
(2πσ2)d

2d

∣∣∣∣∣∣∣∣ n−1∑
i=0

cie
− (z−xi)

2

σ2

∣∣∣∣∣∣∣∣
L2

≥ 0

which concludes the proof

Moreover, it is possible to recover an explicit form for the feature map generating the radial
basis function kernel. As it will be shown in the next lines, the feature map ϕ : Rn → H maps Rn

to H, where H is the Hilbert space l2, which is the space of square summable sequences taking
values in R equipped with the inner product

⟨x, y⟩ =
∞∑
u=1

xuyu

For simplicity, consider two points x and y in R, then the radial basis function kernel

K(x, y) = e−
1

2σ2 (x−y)2

= e−
1

2σ2 (x2+y2−2xy)

= e−
1

2σ2 (x2+y2)
∞∑
k=0

xkyk

σ2kk!

Where the last step follows from the series expansion of the exponential function. Then a feature
map generating the radial basis function kernel for points in R is

ϕ(x) = e−
1

2σ2 x2

(
1,

√
1

1

x

σ
,

√
1

2

x2

σ2
,

√
1

3!

x3

σ3
, ...

)
The case where x, y ∈ Rn just requires a simple modification of this last proof and is presented in
detail in [23].

2.2 The DTW distance and the global alignment kernel

As previously mentioned, the following section introduces a class of symmetric maps, called dissim-
ilarity measures, that can be used to assess the similarity between points. Dissimilarity measures
provide more flexibility compared to traditional distances while remaining compatible with most
machine learning classification techniques. Before defining dissimilarity measures, we shall recall
the definition of distance

Definition 2.2.1 (Distance). Let X be a non empty set. A distance d : X × X → R is a map
that satisfies

1. d(x, y) ≥ 0 for every x, y in X

2. d(x, y) = 0 if and only if x = y
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3. d(x, y) = d(y, x) for every x, y in X

4. d(x, y) ≤ d(x, z) + d(z, y) for every x, y and z in X

In classification tasks, the distance can be used as a measurement of dissimilarity between two
elements in a space. However, even for classification methods based on dissimilarity measurements,
properties (2) and (4) are not essential. For example in time series analysis it could be desirable
to have a symmetric map d on a set X, d : X ×X → [0,∞] such that if two time series x and y
take values in X and are equal up to time reparametrization, then d(x, y) = 0. It becomes evident
that a map defined in such a manner has the potential to violate conditions (2) and (4), yet it can
still possess considerable utility within certain contexts.
Motivated by this fact, by relaxing this two conditions, following Bock in [24], a dissimilarity
measure can be defined as follows

Definition 2.2.2 (Dissimilarity measure). Let X be a non empty set. A distance d : X ×X → R
is a map that satisfies

1. d(x, y) ≥ 0 for every x, y in X and d(x, y) = 0 if x = y (positivity)

2. d(x, y) = d(y, x) for every x, y in X (symmetry)

2.2.1 The DTW distance

An example of a dissimilarity measure is the Dynamic Time Warping distance (DTW distance),
introduced independently by Vintsyuk [25] and Sakoe and Chiba in [26] for classification tasks in
speech recognition.
The DTW distance is a dissimilarity measure for time series that extends a distance by considering
a set of time reparametrizations and defining the dissimilarity as the minimal distance between
the two time series among all possible time reparametrization. This unique property has found
applications in scenarios where both a time series and its time reparametrization are categorized
as belonging to the same class. Examples of applications where the DTW has produced state of
the art results are music and signal processing ([27] and [28]), finance ([29]) and speech recognition
([30], [31]).

Definition 2.2.3 (DTW distance). Let V be a finite dimensional vector space and the partitions
T = {t0 < ... < tn−1} and S = {s0 < ... < sm−1} of [t0, tn−1] and [s0, sm−1] ⊂ R+

0 respectively.
Given two time series x = {(ti, xi)}(ti,xi)∈V×T and y = {(si, yi)}(si,yi)∈V×S and a distance d, the
dynamic time warping distance is defined as

DTW (x, y) = min
π∈Π(x,y)

∑
(i,j)∈π

d(xi, yj) (2.2.1)

where Π(x, y) is the set of all the collections of pairs, π = ((i0, j0), ..., (iK , jK)), called warping
path, that satisfy

1. π0 = (0, 0) and πK = (n− 1,m− 1) (boundary constraint)

2. If πl = (il, jl) and πl+1 = (il+1, jl+1) then il ≤ il+1 ≤ il + 1, jl ≤ jl+1 ≤ jl + 1 and
(il+1, jl+1) ̸= (il, jl) (monotonicity and continuity constraint)

It is evident from the definition above that the DTW distance is well defined even when the two
time series that have different lengths. This further enhances the flexibility of this dissimilarity
measure when it is compared to distances.
However, the flexibility provided by the DTW distance comes with the caveat of a large number of
admissible time reparametrizations that must be taken into account during the DTW computation.
Given two time series of equal length n, the number of admissible paths is in fact given by the
n − th Delannoy number D(n) (refer to [32] for more information about the Delannoy numbers).
This leads to a possible number of reparametrizations which has asymptotic

D(n) ≈ (3 + 2
√
2)n√

4πn(3
√
2− 4)

(1 +O(
1

n
))
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that would make the computation unfeasible for large enough n.
The solution to this problem comes from the constraints on the admissible paths, that allow the
computation of the DTW distance to be formulated as a dynamic programming problem requiring
space and time complexity of the order O(mn) if m and n are of the same order of magnitude.
In fact denoting by xu = (x0, ..., xu) the truncated time series at time u, from the expression
2.2.1, using first the boundary constraint and next the monotonicity and continuity constraints,
it’s possible to obtain the following dynamic programming problem.

DTW(xu, yv) = min
π∈Π(xu,yv)

∑
(i,j)∈π

d(xti , ytj )

= d(xu, yv) + min(DTW(xu−1, yv−1),DTW(xu, yv−1),DTW(xu−1, yv))

However, for longer time series, a quadratic time complexity may still result problematic. A possible
solution to reduce computational time is to include additional constraint in the set of admissible
paths, modifying the dissimilarity measure in a way that the resulting dissimilarity measure will
be invariant just for local reparametrizations. Examples of additional constraint are

• The Sakoe-Chiba band, introduced in [26], is a constraint that requires the distance
between the coordinates of the warping path to be less than a certain value, more precisely
max(||i − d||, ||i − d||) ≤ B where (i, j) ∈ π and π is an admissible path according to the
definition 2.2.3, d is the segment connecting the first point in π to the last point in π and
B ∈ N.

• The Itakura parallelogram , introduced in [33], that imposes a maximum slope of the
warping path max( ij ,

j
i ,

n−i
m−j ,

m−j
n−i ) ≤ P where (i, j) ∈ π and π is an admissible path according

to the definition 2.2.3 for two time series with length n and m respectively and P ≥ m
n

This additional constraints not only reduce computational time but have been shown to improve
the performance of classifiers in certain classification tasks, for example in [26] for speech recogni-
tion and in [34] on an array of different classification tasks.

2.2.2 The global alignment kernel

The Global Alignment Kernel (GAK) is class of kernels proposed by Cuturi et al. in [35]. These
kernels are specifically designed for time series data and are based on the DTW distance.

Definition 2.2.4 (Global alignment kernel). Let T = {t0 < ... < tn−1} and S = {s0 < ... <
sm−1}. Consider two time series taking values in Rn, x = {(ti, xi)}ti∈T and y = {(si, yi)}si∈S , a
positive semi definite kernel θ defined on Rn. Denote the set of all warping sequences between x
and y as Π(x, y). Then the global alignment kernel induced by θ is defined as

K(x, y) =
∑

π∈Π(x,y)

e
−

∑
(i,j)∈π(x,y)

θ(xi,yj)

=
∑

π∈Π(x,y)

|π|∏
l=1

k(xπ1(l), yπ2(l))

where xπ1(·) is the reparametrization of the path x determined by the warping path π, defined as

in 2.2.1 and k(xπ1(l), yπ2(l)) = e−θ(xπ1(l),yπ2(l))

Similarly to the DTW distance, leveraging the constraints on the warping paths coordinates,
the computation of the global alignment kernel can be formulated as a dynamic programming
problem with time complexity O(mn), where m and n denote the lengths of the involved time
series. In fact, denoting by xu the time series x truncated at time tu and using first the boundary
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constraint and next the monotonocity and continuity constraints yields

K(xu, yv) =
∑

π∈Π(xu,yv)

e
−

∑
(i,j)∈π(xu,yv)

θ(xi,yj)

=
∑

π∈Π(xu,yv)

e
−θ(xu,yv)+

(
−

∑
(i−1,j)∈π(xu−1,yv)

θ(xi,yj) −
∑

(i−1,j)∈π(xu−1,yv−1)

θ(xi,yj) −
∑

(i−1,j)∈π(xu,yv−1)

θ(xi,yj)
)

=
(
K(xu, yv−1) +K(xu−1, yv) +K(xu−1, yv−1)

)
k(xu, yv)

Moreover, Theorem 1 in [35] provides sufficient conditions for the global alignment kernel to be
positive definite, so that this kernel satisfies the conditions required by the representer theorem

Theorem 2.2.5. Let T = {t0 < ... < tn−1} and S = {s0 < ... < sm−1}. Consider two time series
taking values in Rn, x = {(ti, xti)}ti∈T and y = {(si, ysi)}si∈S , a positive semidefinite kernel θ
defined on Rn, and let Π(x, y) be the set of all warping sequences between x and y. Let K be the
global alignment kernel on the path x and y and k as in 2.2.4, if k

1+k is positive definite kernel,
then the global alignment kernel K induced by θ is positive definite.

By using theorem it is possible to show that the GAK induced by the squared Euclidean distance
is in fact a semipositive definite kernel. This result follows from the relation between a class of
functions known as completely monotone functions and radial kernels, which are a class of kernels
whose value depends on the squared distance between the two points the kernel is evaluated at.

Definition 2.2.6. An infinite differentiable function f : [0,∞) → R is said to be a completely
monotone if (−1)nf (n)(x) ≥ 0 for any n = 0, 1, ... and x ∈ (0,∞)

Bernstein’s theorem [36] relates completely monotone function and Laplace transforms of non-
negative finite Borel measures on [0,∞).

Theorem 2.2.7 (Bernstein’s theorem). A function f : [0,∞) → R is completely monotone if and
only if f(x) =

∫∞
0

e−txdα(t) for every x ∈ (0,∞) where α is a non-negative finite Borel measure
on [0,∞).

The last result that will be used is a contribution of Schoenberg [37] that provides the afore-
mentioned link between completely monotone functions and positive semidefinite kernels

Lemma 2.2.8. Let f be a completely monotone function then the radial kernel K(x, y) = f(||x−
y||2) is a positive semidefinite kernel.

Proposition 2.2.9. The global alignment kernel induced by the squared Euclidean distance is
positive semidefinite

Proof. Starting from theorem 2.2.2, for any x, y ∈ R

k

k + 1
(x, y) =

e−
1

2σ2 ||x−y||2

1 + e−
1

2σ2 ||x−y||2

=
1

1 + e
1

2σ2 ||x−y||2

=

∫ ∞

0

e−t(e
1

2σ2 ||x−y||2
)e−tdt

Now Bernstein’s theorem implies that the function f(||x − y||2) = k
k+1 (

√
2σ2x,

√
2σ2y) is a

completely monotone function. This allows to conclude the proof by making use of 2.2.8 and from
rescaling x and y.

2.3 Signature of a path

The signature of a path is a way to encode the information of a path through an infinite sequence
of iterated integrals. Its properties were first studied by Chen [38] and it was then used by Lyons
in the context of stochastic analysis and controlled differential equations playing a pivotal role in
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rough paths theory [39]. In recent years signatures based machine learning methods have been
successfully applied to a wide range of problems involving sequential data. For example by Gyurko
and Lyons [40] for directional futures price prediction using order book data, Lemercier et al. [41]
for distribution regression on sequential data and Yang et al.[42] for handwriting recognition with
a recurrent neural network combined with signature features.

The initial steps toward formally defining the signature of a path involve introducing the specific
class of paths that needs to be considered and establishing the definition of the tensor product.

Definition 2.3.1. Let (V, || · ||V ) be a normed space, [s, t] ⊂ R+ and p ≥ 1 a real number. The
p-variation of a path x : [s, t] → V is given by

||x||p−var,[s,t] =

(
sup

D⊂[s,t]

∑
ti∈D

||xti+1
− xti ||

p
V

) 1
p

(2.3.1)

Where the supremum is taken over all partitions of D of [s,t].

If ||x||p−var,[s,t] is finite, then x is said to be a path of finite p-variation. If x has finite 1-
variation, it is said to be a bounded variation function.
In the following part of this section the class of continuous paths of finite p-variation x : [s, t] → V ,
with [s, t] ⊂ [0,∞) and V a Banach space, will be denoted by Cp([s, t], V ).

Definition 2.3.2. Let V1, V2...Vn and Z be vector spaces, the tensor product of V1, V2...Vn is a
vector space V1 ⊗ V2 ⊗ ...⊗ Vn with a bilinear map ϕ : V1 × V2 × ...× Vn → V1 ⊗ V2 ⊗ ...⊗ Vn, that
satisfies the universal property for which, for every bilinear map f : V1 × V2 × ...× Vn → Z there
exists a unique linear map f̃ : V1 ⊗ V2 ⊗ ...⊗ Vn → Z, such that f = f̃ ◦ ϕ

Definition 2.3.3. Let x ∈ Cp([s, t], V ), with 1 ≤ p < 2, the k-fold iterated integral of x over [s, t]
is

Sk(x)s,t =

∫
s<t1<t2<...<tk<t

dxt1 ⊗ ...⊗ dxtk ∈ V ⊗k

V ⊗k = V ⊗ V ⊗ V...⊗ V︸ ︷︷ ︸
k times

and with the convention that S(x)0s,t = 1 and V ⊗0 = R.

The iterated integral of the path x can be understood in the sense of Young and therefore is
well defined for any path of finite p-variation, 1 ≤ p < 2 (for a reference on Young integral, see
chapter 1 of [43]).
As anticipated, the signature is an infinite sequence of these iterated integrals.

Definition 2.3.4 (Signature of a path). Let x ∈ Cp([s, t], V ), with 1 ≤ p < 2, the signature of x
over [u, v] ⊂ [s, t] is given by the collection of iterated integrals

S(x)u,v = (1, S1(x)u,v, ..., S
n(x)u,v, ...) ∈

∞∏
k=0

V ⊗k

It is possible to equip the space
∏∞

k=0 V
⊗k with the operations of sum, product, and natural

action of R defined in the following way: for any two elements u = (u0, u1, ...) and v = (v0, v1, ...)
of
∏∞

k=0 V
⊗k and λ ∈ R then

v + u := (u0 + v0, u1 + v1, ...)

u⊗ v := (w0, w1, ...) with wk =

k∑
i=0

ui ⊗ wk−i for any k ≥ 0

λu := (λu0, λu1, ...)

The space
∏∞

k=0 V
⊗k endowed with these operations is a real non-commutative unital algebra with

unit element 1 = (1, 0, 0, ...), and is denoted T ((V )). The space T ((V )) can be understood as the
space of formal series of tensors.
Alongside T ((V )), its subalgebra T (V ) =

⊕∞
i=0 V

⊗i is extremely relevant for the applications of
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signatures to kernel methods described later in this section.
Since the signature can contain an infinite number non-zero elements, many practical applications
that use them, a necessary step of ”truncation” at some level k is required. For a given path
x ∈ Cp([s, t], V ), 1 ≤ p < 2, the truncated signature is just the element of T (V ) defined as

S
(n)
s,t (x) = (1, S1(x)s,t, ..., S

k(x)s,t, 0, 0, ...).
The next proposition allows to recover an upper bound on the approximation error committed
when the signature is approximated by a truncated signature.

Lemma 2.3.5. (Exponential decay) Let x ∈ C1([s, t], V ) then the k-th term of the signature of x
satisfies

Sk(x)s,t ≤
||x||k1−var

k!
for every k ∈ N

Proof. See Proposition 2.2 in [43]

This proposition implies that the approximation error committed when truncating the signature
signature decays factorially.
Given that the signature is originally defined for continuous paths, when dealing with observed
paths sampled at discrete time intervals, it is possible to concatenate the discrete points to form a
continuous path. The resulting continuous path can be defined as follows:

Definition 2.3.6. Let x : [r, s] → V and y : [s, t] → V be two paths, the concatenated path
x ∗ y : [r, t] → V is defined as

(x ∗ y)u =

{
xu v ∈ [r, s]

yu + xs − ys v ∈ (s, t]

Another property of the signatures that makes them suited for sequential data is the ease of
computation for concatenated paths, in fact, extending the result of Chen in [38], it is possible
compute recursively the signature of the resulting path as the tensor product of the signatures of
the concatenated paths.

Theorem 2.3.7. Let x ∈ C1([r, s], V ) and y ∈ C1([s, t], V ) be two continuous paths, then S(x ∗
y)r,t = S(x)r,s ⊗ S(y)s,t

Proof. Fix k ∈ N, then

Sk(x ∗ y)r,u =

=

∫
s<u1<u2<...<uk<t

d(x ∗ y)u1 ⊗ ...⊗ d(x ∗ y)uk

=

k∑
i=0

∫
s<u1<u2<...<ui<t<ui+1<..<uk<t

d(x ∗ y)u1 ⊗ ...⊗ d(x ∗ y)uk

=

k∑
i=0

(∫
s<u1<u2<...<ui<t

d(x ∗ y)u1
⊗ ...⊗ d(x ∗ y)ui

)
⊗

(∫
t<ui+1<..<uk<t

d(x ∗ y)ui+1
⊗ ...⊗ d(x ∗ y)uk

)

=

k∑
i=0

(∫
s<u1<u2<...<ui<t

dxu1 ⊗ ...⊗ dxui

)
⊗

(∫
t<ui+1<..<uk<t

dyui+1 ⊗ ...⊗ dyuk

)

=

k∑
i=0

Si(y)r,s ⊗ Sk−i(x)s,t

Where in the third step Fubini‘s theorem was used and the last step follows from the definition of
the concatenation of paths.

Furthermore, employing this proposition, it is possible to show that when linear interpolation
is utilized to interpolate a time series, the signature can be expressed as a product of tensor
exponentials.
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Proposition 2.3.8. Let x be a piece-wise linear path x = {(ti, xti)}ti∈T with T = {t0 < ... <
tn−1 < tn}, then S(x)s,t = exp⊗(x(t1)− x(t0)) exp⊗(x(t2)− x(t1))... exp⊗(x(tn)− x(tn−1)) where

exp⊗(x) =
∑∞

k=0
x⊗k

k!

Proof. Consider the fist segment the path, x : [t0, t1] → V , then the k-th element of the signature
is given by

Sk(x)t0,t1 =

∫
t0<u1<...<uk<t1

(xt1 − xt0)
⊗k

(t1 − t0)k
du1...duk

=
(xt1 − xt0)

⊗k

k!

Which concludes the proof

Additionally the signature of a path is invariant for time reparametrizations. This characteristic
is highly desirable in classification tasks that prioritize the sequential arrangement of path points
rather than their specific time parametrization.

Lemma 2.3.9 (Reparameterization invariance). Consider a path x ∈ Cp([s, t], V ) with 1 ≤ p < 2,
and a continuous non-decreasing surjection γ : [u, v] → [s, t] with [u, v] ⊂ [0,∞), then S(x◦γ)u,v =
S(x)s,t.

Proof. See proposition 7.10 in [44]

Definition 2.3.10. Let T = {t0 < ... < tn−1 < tn} and x = {(ti, xti)}ti∈T be a path taking values
in Rd, then the lead lag transform of x is given by the process x̂ : T → R2d defined as follows

x̂t =

{
(xti , xti−1

) t ̸= t0

(xt0 , xt0) t = t0

This transformation, first introduced by Chevyrev and Kormilitzin [45], is referred to as the
lead-lag transform and will be employed in the subsequent chapters. As shown in [45] (pg 25-27),
the lead-lag transform contains direct information about the quadratic variation of a path, which
holds particular significance for financial time series of prices.

2.3.1 The signature kernel

In this last part of this section it will be shown how the signature of a path can be utilized as
a feature map to define a semipositive kernel that possesses all the properties described at the
beginning of the chapter. The first step is to define a suitable tensor product on T (V ).

Definition 2.3.11. Let H1 and H2 be two Hilbert spaces equipped with the inner products ⟨·, ·⟩H1

and ⟨·, ·⟩H2
respectively. Then the Hilbert-Schmidt inner product between any x1⊗x2 and y1⊗ y2

in the space H1 ⊗H2 is defined as

⟨x1 ⊗ x2, y1 ⊗ y2⟩H1⊗H2
= ⟨x1, y1⟩H1

⟨x2, y2⟩H2

It is worth noticing that the from the completion theorem, the space obtained by completing
the space H1 ⊗H2 with respect to this inner product is again an Hilbert space.
Now, following [46], using the Hilbert-Schmidt product of Hilbert spaces, it the inner product for
the subalgebra T (V ) is defined as follows.

Definition 2.3.12. Let V be a space endowed with a inner product, let u and v be elements of
T (V ), then the inner product ⟨·, ·⟩T (V ) is defined as

⟨u, v⟩T (V ) =

n∑
i=0

⟨uk, vk⟩V ⊗k

Where ⟨·, ·⟩V ⊗k is the Hilbert-Schmidt product on V ⊗k and uk indicates the k-th component of u.
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Denote by T (V ) Hilbert space obtained by completing the space T (V ) with respect to the
inner product on T (V ). Then it follows from the factorial decay property of the signature that
S(x) ∈ T (V ) for every path x ∈ C1([s, t], V ). In fact, from the exponential decay property

||S(x)s,t||2T (V ) =

∞∑
k=0

||Sk(x)s,t||2V ⊗k

≤
∞∑
k=0

||x||2k1−var

k!
< ∞

Leveraging this and the definition 2.3.12 it follows that the kernel defined as

K(x, y) = ⟨S(x)s,t, Ss,t(y)⟩T (V )

=

n∑
i=0

⟨Sk(x)s,t, S
k(y)s,t⟩V ⊗k

is positive definite for any x, y ∈ C1([s, t], V ).
In fact, consider a collection of paths {x1, ..., xn} ⊂ C1([s, t], V ), for any set of constants {c1, ..., cn} ⊂
R, then

n∑
i=1

n∑
j=1

cjci⟨S(xi)s,t, S(xj)s,t⟩T (V ) = ⟨
n∑

i=1

ciS(xi)s,t,

n∑
j=1

cjS(xj)s,t⟩T (V )

=

∣∣∣∣∣∣∣∣ n∑
i=1

ciS(xi)s,t

∣∣∣∣∣∣∣∣2
T (V )

≥ 0

In light of these results, as anticipated, the signature map can now be understood as a feature
map, mapping paths from C1([s, t], V ) to the Hilbert space T (V ) and its associated kernel, being
positive definite, enjoys all the properties presented at the beginning of this chapter.
Moreover, Cass et al. have shown in [47] that this signature kernel satisfies an hyperbolic partial
differential equation, allowing the kernel to be computed as numerical solution of a PDE.

Theorem 2.3.13. Let V be a Banach space endowed with an inner product and let x ∈ C1([a, b], V )
and y ∈ C1([c, d], V ). The signature kernel kx,y for every s ∈ [a, b] and t ∈ [c, d] is a solution of
the following linear, second order, hyperbolic partial differential equation

∂kx,y
∂x∂y

(s, t) = ⟨ẋs, ẏt⟩V kx,y(a, ·) = kx,y(·, b) = 1

Proof. See Theorem 2.5 in [47]

26



Chapter 3

Directional movement prediction
for corporate bond indices

3.1 Data description

3.1.1 Corporate bond indices

The data employed in this study to analyze weekly directional movements of duration hedged
corporate bond indices consists of proprietary daily data. These data points were sampled at
the close of each business day, spanning from July 10, 2010, to May 30, 2023. The dataframes
are constructed from the industry-level 3 and industry-level 2 Bloomberg-Barclays US Investment
Grade bond index (LUACTRUU Index), which collectively encompassed 7,658 distinct issues as
of August 2023, with a total market value of 6,193 billion USD.
The criteria that regulate the composition of this index, which are detailed in [48] and [49] are the
following:

• Currency: the index includes only bonds with principal and interest payments denominated
in USD

• Sector of the issuer: the LUACTRUU index comprises bonds issued by companies in the
industrial, utility, and financial sectors. This level of classification represents Industry Level
2. Subsequently, the sub-indices obtained through this aggregation are further categorized
into two additional levels: Industry Level 3 and Industry Level 4. The table below outlines
the first two levels of the Bloomberg Global Sector Classification Scheme (BCLASS), which
serves as the standard used by the Bloomberg-Barclays index to classify bonds based on the
issuer’s sector.

• Credit quality of the issuer: measurement of the ability of the issuer to meet specific
financial obligations. Credit ratings, which assess this ability, are provided by the following
agencies: Standard & Poor’s, Moody’s Investor Services and Fitch IBCA. To qualify as an
investment-grade bond, a bond must hold a credit rating higher or equivalent to BBB- for
Standard & Poor’s, Baa3 from Moody’s, BBB from Fitch. If at least one of those agencies
covers a particular bond issue, then the most conservative modal rating is used. In cases where
bond-level ratings are unavailable, issuer-level ratings or expected ratings (ratings assigned
before receiving the final documentation from the issuer) may be employed as alternatives.

• Amount outstanding: only issues that have an amount outstanding greater than 300mln
USD are considered, this criterion is referred to as ”liquidity” rule.

• Time to maturity: interval of time from the current date to the principal repayment date,
only issues with at least one year of maturity are eligible to be included in the LUACTRUU
index.

• Market of issue and placement type: that indicates whether a bond is publicly registered,
exempt from registration or privately placed. It also indicates the type of investor the product
is being marketed and sold to: local investors, non-local investors or globally offered. Only
publicly registered issues are covered whilst there are no restriction regarding the type of
investor the product is marketed to.

• Taxability: only fully taxable issues are included in the indices.
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• Level subordination of the investor‘s claim within the capital structure of the issuer. Both
senior and subordinated bonds are included in the corporate indices.

• Coupon type: Bonds that convert from fixed to floating rate, including fixed-to-float per-
petual, will exit the index one year prior to conversion to floating-rate. Fixed-rate perpetuals
are not included.

• Embedded options: both option-free bonds, putable and callable bonds are eligible to be
included in the indices.

The eligible bonds participate to the index proportionally to their market value at the beginning
of each month, when the index is rebalanced. Moreover, the value of the index takes into account
intra-month cash flows from interest and principal payments which are not reinvested at a short-
term reinvestment rate between rebalance dates but are reinvested in the index at the beginning of
the next rebalancing period. According to the Bloomberg-Barclays methodology ([48]), the market
value weighting facilitates the replication by investors as it reflects market capacity and liquidity
of a particular issue.
Historically Industrials have represented 58% of the market value of the LUACTRUU, followed by
Financial Institutions with 32% and Utility with 10% (source: [49]).
The forthcoming analysis will focus on specific sectors, namely the Industry level 2 Utility and
Financial Services sectors, as well as all Industry level 3 sectors categorized under the broader
Industrial classification at Industry level 2.

Industry level 1 Industry level 2 Industry level 3

Corporate

Industrial

Basic Industry
Capital Goods
Communications
Consumer Cyclical

Consumer Non-Cyclical
Energy

Technology
Transportation
Other Industrial

Utility

Electric
Natural Gas
Other Utility

Financial
Institutions

Banking
Brokerage, Asset Managers, Exchanges

Finance Companies
Insurance
REITS

Other Financial

Table 3.1: Industry level 1, Industry level 2 and Industry level 3 sectors in LUACTRUU index
according to the BCLASS standard

3.1.2 Variables description

The variables used in this study are the following:

Daily total return

Total return is the standard measure of bond return, it is calculated as the sum of return from
interest accrual and payments (coupon return), security price movements (price return) and sched-
uled and unscheduled payments of principal (paydown return). More precisely, considering a time
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interval [s,t]

Price return =
Pricet − Prices

Prices +Accrued Interests

Coupon return =
Accrued Interestt −Accrued Interests + Interest Payment

Prices +Accrued Interests

Paydown Return = Principal Repayment× 100− Pricet − Prices
Prices +Accrued Interests

Where Price(·) is used to indicate the clean price, Interest Payment is the sum of all interest
payments in the period [s,t] and Principal Repayment is actual principal payment expressed as a
percentage of par divided by the par amount outstanding at the beginning of the period.
The total return for the index is computed as the weighted average of the total returns of the
constituents, using as weight the market value of the security at the beginning of the period
divided by the market value of the index at the beginning of the period.

Excess returns

The excess return of a bond serves as a basis for comparing the total return of a risky bond to the
return of the treasury asset class. To achieve this, a portfolio of treasuries, that has a duration
that matches perfectly the duration of the bond, is constructed at the start of each month. The
exact methodology adopted to compute the duration hedging is discussed in great detail in the
Appendix 3 of [48]. For time spans longer than a month, the common practice is to compute excess
returns by compounding the total returns of the bond and comparing them to the compounded
returns of a risk-free portfolio of treasuries. This approach is adopted because excess returns over
a period, when compounded, may not accurately reflect the difference between the risky bond and
the riskless portfolio over the longer period.
Similarly to the total return, the excess return for the index is computed as the weighted average
of excess returns of the constituents, using the market value of the security at the beginning of the
period divided by the market value of the index at the beginning of the period as weights.

US 2 year and 10 year Treasury yield

These variables allow to gauge changes in the slope of the yield curve. Historically, whenever the
yield curve has inverted, that is when the yield of the 10Y treasury falls below the yield of the 2Y
treasury , a recession followed (for a more in depth discussion see [50]). It is widely believed that
the more pronounced the yield curve inversion, the higher the likelihood of an impending recession.
As a result, this variable serves as a valuable macroeconomic indicator for the current phase of
the business cycle, which can have a significant impact on some sectors. In fact, sectors like con-
sumer cyclical and financial services tend to be highly sensitive to the current phase of the business
cycle, on the other hand, defensive sectors such as utilities are less affected by extreme fluctuations.

Returns of the S&P500 index

The interaction between the stock and corporate bond markets is a well-documented phenomenon
in the literature. In one of the most renowned works on this topic, as highlighted by Ilmanen
in [51], the observed empirical lead-lag patterns between the stock market and bond markets are
thoroughly examined. The interpretation suggests that a weak equity market can lead to the
implementation of quantitative easing measures, that can result in an increase of bond prices. On
the other hand, strong performance in the stock market is usually followed by lower returns in the
bond market compared to other periods of the business cycle.
Given these characteristics, it is plausible to consider the returns of the S&P500 index as predictive
indicator of sector performance in the corporate bond market.
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Equity momentum

This variable measures the change in stock price of the parent company of the issuer over a period
of time.
Numerous publications, including [52], [6], [7] have empirically demonstrated that equity momen-
tum serves as a statistically significant predictor for forecasting the cross-section of future excess
returns for corporate bonds.
This phenomenon is elaborated upon in [52] by Gebhardt, Hvidkjaer, and Swaminathan. In their
work, the authors present evidence of momentum spillover from equities to investment-grade cor-
porate bonds issued by the same firms. The proposed explanation for this phenomenon is tied to
the trend observed in companies with strong equity momentum to exhibit credit rating improve-
ments in the near future, leading to the anticipation of reduced default risk.
The equity momentum for a corporate bond over a period [t− k, t] is calculated as

EquityMomentumt(k) =
ewmℓ,α(Pt)

ewmℓ,α(Pt−k)
(3.1.1)

with ewmℓ,α(Pt) being the exponential smoothing average of length ℓ for the price Pt of the par-
ent’s company stock at time t, with a smoothing factor of α.
The choice of smoothing the prices comes from a need to mitigate the microstructural effects that
may affect this indicator in a non negligible way, especially when the momentum is calculated on
a short time window.
The decision to smooth the prices arises from the necessity to mitigate the impact of microstructural
effects, which can significantly influence this indicator, especially when calculating momentum over
a short time window. In the calculation of sector equity momentum, each bond is initially asso-
ciated with its corresponding equity parent (bonds without equity parents are excluded, although
more than 90% of issuers have an equity parent). The equity momentum for each issuer is then
computed based on its parent’s equity performance. Subsequently, the sector’s equity momentum
is determined by taking a weighted average of the parent equity momenta. The weighting factors
are based on the total outstanding amount for each issuer relative to the total outstanding amount
within that sector at the beginning of each month.

Yield to worst

The yield to worst is a measure of the return an investor can realize on a callable bond. Assume a
callable bond has the following redemption dates T = {t0 < t1 < ... < tn−1}, the yield to worst is
the lowest return in the set of returns {yieldti}ti∈T where for all i = 1, ..., n−1 and value yieldti is
the return the investor would obtain if the bond is redeemed at time ti, under the assumption that
the issuer does not default before T . The yield to worst of a portfolios of bond is calculated by
using a weighted average of yield to worst of the components, with weights equal to the proportion
of the value of each bond with respect to the value of the portfolio.

Option Adjusted Spread

The Option Adjusted Spread (OAS) is the constant spread that needs to be added to the bench-
mark’s yield curve to match the current market price of a bond with its discounted cash flows,
considering any embedded options. Similarly to the spread, this metric provides a measure of the
compensation an investor receives over a benchmark security for bearing credit risk, however, only
the Option Adjusted Spread (OAS) enables the comparison of bonds or portfolios of bonds that
may have distinct redemption structures.
More precisely, suppose the market is arbitrage-free and complete, take a callable bond with face
value F that pays {C1, ..., CK} at times T = {t ≤ t1 < ... < tK = T} if the option is not exercised.
Fix a filtered probability space (Ω,F ,Ft,P) and denote the risk-free measure as Q (which exists
given the hypothesis on the market), the risk-free short rate by rt, and T[t,T ] as the set of all
stopping times taking values in T .
Then, the option adjusted spread is the value γ ∈ R such that the following equality between the
market price Pt(r) and the discounted cash flows holds

Pt(r) = inf
τ∈T[t,T ]

K∑
k=1

EQ

[
Ck1{τ>tk}e

−
∫ tk
t (rs+γ)ds

∣∣∣∣rt = r

]
+ FEQ

[
1{τ<T}e

−
∫ T
t

(rs+γ)ds

∣∣∣∣rt = r

]
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The computation of the OAS is usually carried out using Montecarlo methods. There are many
ways to compute the OAS for a portfolio of callable bonds, however, to ensure comparability
between individual securities and portfolios the standard practice is to discount the aggregated
payments of each security composing of the portfolio on every path.

Option Adjusted Duration

The Option Adjusted Duration (OAD) measures the sensitivity of the price of a bond to changes in
interest rates, taking into account existing embedded options. This allows to compare the interest
rate risk of bonds that may present different redemption structures.
More precisely, suppose all the hypothesis on the structure of the market and the bond made in
the previous section about the OAS hold. For a callable bond with an OAS denoted as γ and a
price at time t determined by the function Pt(r, γ), where Pt(r, γ) is assumed to be both positive
and differentiable with respect to the interest rate r, the OAD of the bond at time t is defined as:

OAD =
1

Pt(r, γ)

∂Pt(r, γ)

∂r

Similarly to the, OAS, the computation of the OAD is usually carried out using Montecarlo methods
and for a portfolio of bonds, the payments of each security composing of the portfolio are aggregated
on every path during the simulation.

3.1.3 Data Processing

This section outlines the steps involved in creating four distinct dataframes, each intended for
training different models to predict weekly directional movements of excess returns for the corporate
bond sectors. In all versions of the dataframe, the short rate model utilized for calculating OAS
and OAD is based on a lognormal model. The price is obtained by compounding total returns of
the index. Additionally, for the calculation of momentum, the exponential smoothing process with
sequence length of 10 observations and a smoothing factor of 0.3 is applied uniformly across all
versions.
For the first dataframe, stores the term of a signature transform truncated at level 3, for the
linearly interpolated time series in 3.1.2, computed using a 6 months daily rolling window. Before
the signature transform is computed, each time series is first smoothed using a 10 day exponential
smoothing average with smoothing factor of 0.3 and is then standardized.

{5 day total returns
(lead−lag)
t ,SPX10 day returnst,

USD2Y yieldt
USD10Y yield t

} (3.1.2)

where t is measured in days and the lead-lag transform is computed according to the definition
2.3.10.
Additionally, for each day, the following variables are added to the dataframe

• 10 day Option Adjusted Spread percentage change

• 1, 3 and 6 months equity momentum

• 10 day yield to worst percentage change

The target for a date t is computed as the excess return of each the sector over the next 5 days.
This process results in 11 different dataframes (one for each sector) with 90 features each and will
be used to train, validate and test the XGBoost model.
The second version, that will be used by to train logistic regression and SVM models, uses the
signature transform truncated at level 3 and computed for 6 months daily rolling windows for each
of the following time series, which are smoothed using a 10 days exponential smoothing average
with smoothing factor 0.3

{5 day total returns
(lead−lag)
t ,SPX 10 day returnst,

USD2Y yieldt
USD10Y yield t

}

Similarly to the previous dataframe, for each day, the following variables are added to the dataframe

• 10 day Option Adjusted Spread percentage change
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• 1, 3 and 6 months equity momentum

• 10 day yield to worst percentage change

• OAD

This process results in an additional 11 different dataframes, one for each sector, of 91 features
each.
A third version, used to compute the Nystrom approximation of the global alignment kernel,
contains a 6 months daily rolling window for the following time series

{5 day total returnst,SPX 10 day returnst,
USD2Y yield

USD10Y yield t

,
OASt

OASt−10
,Equity Momentumt(1M)t,

Equity Momentumt(3M)t,Equity Momentumt(6M)t,
yield to worstt

yield to worstt−10

}

where each 6 month window that constitutes the time series is standardized before computing the
kernel.
Finally, the last version, used to compute the signature kernel, with the Python package [47], is
constituted by the standardized time series of

{5 day total returns
(lead−lag)
t ,SPX 10 day returnst,

USD2Y yieldt
USD10Y yield t

,
OASt

OASt−10
,Equity Momentumt(1M)t,

Equity Momentumt(3M)t,Equity Momentumt(6M)t,
yield to worstt

yield to worstt−10

}

3.2 Performance metrics

Confusion matrix

In a supervised binary classification task, the confusion matrix is a 2x2 matrix that records the
value of true positives, false positives, true negatives and false negatives. The table below illustrates
the structure of this table for the current classification problem

Actual positive return Actual negative return
Predicted positive return True positive (TP) False positive (FP)
Predicted negative return False negative (FN) True negative (TN)

Table 3.2: Confusion matrix matrix for directional predictions

A false negative is also known as a type I error, a false positive as a type II error. Related to
these errors are the notions of sensitivity and precision.
The sensitivity of a classifier is an estimate of how likely prediction of the negative class is correct.

Sensitivity =
TN

FN + TN

The precision of a classifier is an estimate of how likely the prediction of the positive class is correct.

Precision =
TP

FP + TP

Accuracy score

The accuracy score the most popular metric used in classification tasks and corresponds to the
percentage of correct predictions. The accuracy score is given by the formula:

Accuracy score =
TP + TN

TP + TN + FP + FN
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Balanced accuracy score

The balanced accuracy is defined as the average between the sensitivity and the specificity. By
taking into account both of these measures it can be a more accurate measure of performance in
the case that the dataset is unbalanced.

Balanced Accuracy Score =
1

2

(
TP

FP + TP
+

TN

FN + TN

)
Matthews correlation coefficient

The Matthew coefficient is a correlation coefficient between the observed and predicted classifica-
tions

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

This score ranges from [-1, 1], the value -1 is reached in the case of perfect missclassification and
the value +1 in the case of perfect classification, if the MCC = 0 then the classification method
has the same expected score as a completely random classifier.
Like the previous score, the Matthews Accuracy score is a robust accuracy score for unbalanced
dataframes.

Distribution of returns

To achieve a better evaluation of the classifier’s performance on the test set, it is essential not only
to calculate the prediction accuracy but also to examine the distribution of returns generated by
following the classifier’s predictions. Specifically, this involves analyzing the returns distribution of
a strategy in which the index is either bought when the classifier predicts positive excess returns
or sold short when the classifier predicts negative returns.
Since the purpose of the classifier is not to actively define a strategy but to help with the timing
of market activity for an existing long term strategy and provide insight on portfolio allocation
choices, the following simplifications are not restricting:

• There are no transaction costs

• It is possible to borrow capital at a zero interest rate

• It is possible to short sell the bonds composing the indices

• It is possible to trade the bonds that compose the indices at every time, without liquidity
restrictions.

The metrics that will be used to compare the different distributions of returns obtained by the
different classifiers are: annualized average excess return, annualized standard deviation of the
excess returns, skewness of the distribution and finally the information ratio.

3.3 Sliding window cross validation

The method used to validate the different models is the sliding window cross validationn, which is
a validation model specifically designed for the validation of machine learning techniques for time
series.
Given a fixed a training window length L, the data {x1, ..., xn} is divided in contiguous blocks of
length k, starting from xL. The model is initially trained on the first L data points and validated
on the first block, then the windows index shifts by k and the model is updated (or retrained in the
case of logistic regression and SVM) using the data in the current window while being validated
on the successive block. This process iterates until the final block is reached. The sliding window
cross validation procedure is repeated to identify hyper parameters that yield the lowest average
loss across the validation blocks without overfitting the training data.
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Sliding window cross validation offers notable benefits compared to conventional validation meth-
ods. Its key advantage lies in its consideration of temporal dependencies within time series data.
By employing sequential blocks for training and validation, this technique ensures that evaluations
are conducted on sequences similar to those encountered in when the model is applied. Moreover
sliding window cross validation provides insight into how well a model generalizes across different
segments of the time series, allowing to compute the average and the standard deviation of the
accuracy score across time. This is crucial for avoiding overfitting and ensuring that the model’s
predictions are reliable for unseen data.

Figure 3.1: Sliding window cross validation with four validation blocks

3.4 Results

The dataset is divided into three subsets: training and validation sets together comprise 70% of the
entire data span, ranging from 10-07-2010 to 20-10-2019. The remaining 30% is allocated to the test
set, covering the period from 20-10-2019 to 30-05-2023. Each of the models undergoes a grid search,
followed by a manual fine-tuning process, aimed at identifying the best set of hyperparameters.
Specifically, XGBoost is fine-tuned to minimize binary cross-entropy and maximize accuracy, while
SVM and logistic regression are optimized to find a compromise between maximizing accuracy,
MCC and balanced accuracy.
Once this is achieved, the model is tested and the obtained performance scores for the out of
sample data are compared to the performance scores obtained for the validation data.
Moreover, using the predictions obtained in this last step, the annualized excess returns, annualized
standard deviation, skewness and information ratio are calculated as described in 3.2 and compared
to the annualized excess returns, annualized standard deviation, skewness and information ratio
obtained from a buy and hold strategy to further assess the performance of the model.
The following sections describe the results for each of the trained model.

3.4.1 XGBoost model

The elevent XGBoost models are incrementally trained using sliding windows comprising 150, 200
or 250 observations. The validation and test blocks are contiguous blocks of 12 data points, with
shifts of 28 points between successive validation blocks.
The grid search is performed separately for every sector on the following set of hyperparameters
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hyperparameter values
number of trees {100, 150, 250}
learning rate {0.01, 0.05, 0.1, 0.2, 0.3}
max depth {3, 4, 5}

column sample by tree {0.8, 0.9}
column sample by level {0.8, 0.9}

L1 regularization constant {0.1, 0.3, 0.5}
L2 regularization constant {0.1, 0.3, 0.5}

Table 3.3: XGBoost model hyperameters grid

The XGBoost models achieved an average accuracy of 55.3% on the validation set, with an
average collective accuracy standard deviation of 17% . The sectors where this type of classifier
showed the best performance in capturing directional movements are the Utility and Basic Industry
sectors, achieving an accuracy of 59.1%. In contrast, the classifier exhibited lower accuracy in the
Capital Goods sector, with a performance of 52.5%. The balanced accuracy values in the validation
set indicate that the XGBoost classifiers are equally proficient at predicting both upward and
downward movements. This finding is further supported by the MCC scores.
In the test set, the average accuracy stands at 56.3%, accompanied by an average standard deviation
of 17%. Notably, the sector where the XGBoost demonstrates a higher proficiency in capturing
directional movements is Capital Goods, achieving an accuracy of 63.5%. On the other hand, the
sector with the lowest performance in terms of accuracy is Consumer Cyclical, with a score of 52%.
The table below details the values for the scores for the different XGBoost classifiers.

Figure 3.2: Accuracy scores for the XGBoost model for the validation set (in blue) and for the test
set (in red)

Following the models’ recommendation results in average excess returns that are consistently
higher than the returns obtained through a buy and hold strategy, while maintaining a similar
standard deviation. However, by examining the plots in the Appendix A.4, for the Consumer
Cyclical, Consumer Non-Cyclical and Other Industrial sectors, there are periods where the excess
returns obtained by the model are lower than returns obtained through a Buy and Hold strategy.
Conversely, for the remaining eight sectors the XGBoost models consistently obtains a higher ex-
cess returns compared to the Buy and Hold stategy.
The best results are obtained for the Energy sector (9.33% annualized average excess returns)
followed by Technology with an improvement of +6.17% in terms of annualized averaged excess
returns. The smallest improvement in excess returns over the benchmark strategy, with an annu-
alized average excess return increase of +0.47% per year, are seen in the Consumer Cyclical and
Capital Goods sectors.
With the exceptions of the Capital Goods and the Other Industrial sector, the returns distribution
distribution typically exhibits a rightward skew compared to the returns of the Buy and Hold strat-
egy. This suggests that the models efficaciously identifies outliers in the distribution of each sector.
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XGBoost Classifier Buy & Hold
avg excess returns (%) std (%) skewness information ratio avg excess returns (%) std (%) skewness information ratio

Financial Services 1.73 6.04 -0.93 0.29 0.52 6.04 -1.34 0.09
Utility 4.22 7.50 -1.51 0.565 0.32 7.47 -2.52 0.043

Basic Industry 2.46 7.30 -1.66 0.338 1.21 7.28 -2.34 0.163
Capital Goods 1.56 6.66 -2.42 0.234 1.09 6.67 -2.37 0.163
Communications 4.04 8.44 2.21 0.371 0.72 8.46 -0.38 0.085
Consumer Cyclical 0.88 7.28 1.63 0.128 0.41 7.28 -1.77 0.056

Consumer Non-Cyclical 1.82 6.88 -0.643 0.264 1.07 6.89 -0.580 0.155
Energy 9.46 11.1 0.917 0.851 0.13 11.2 -3.84 0.011

Technology 7.04 5.82 3.05 1.21 0.87 5.92 -0.468 0.147
Transportation 3.92 8.18 -0.978 0.479 0.92 8.20 -1.24 0.113
Other Industrial 1.67 6.99 -5.27 0.240 0.032 6.99 -5.27 0.005

Table 3.4: Comparison between the XGBoost classifier and Buy and Hold average annualized
excess returns, annualized standard deviation of the excess returns, skewness of the excess returns
and annualized information ratio

3.4.2 Support Vector Machines

The Support Vector Machine models are trained on windows of 50, 60, or 80 data points, and the
window size is chosen independently to better adapt to each sector. Validation and testing are
performed on blocks of 12 data points. In a sliding window cross-validation setup, these windows
are shifted at intervals of 28 days. The initial choice of the positive real value 1

C , which determines
the regularization parameter C for each model, is independently searched for each model version
from the following list: {0.001, 0.01, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 1, 5, 10, 20, 50, 100}. Subsequently,
manual selection is employed to further optimize the value of C.

SVM + signatures

The first set of SVM models is based on the second version of the dataframes described in the
previous section. These models, each tailored to a specific sector, achieve an average accuracy of
53.9%, with an accuracy standard deviation of 18.2%.
On the validation set, the models that demonstrate the highest accuracy are those predicting di-
rectional movements in the Capital Goods and Financial Institutions sectors, achieving scores of
56.3% and 55.3%, respectively. Conversely, the model’s accuracy in predicting directional move-
ments for the Other Industrial sector is the lowest, at 51.3%. The consistently positive MCC score
indicates that each model consistently outperforms a random classifier. Additionally, the average
balanced accuracy score of 52.9% hints at the models’ consistent performance in both upward and
downward movement classifications.
The models collectively achieve an average performance of 56.3% in the test set. The top perform-
ing sectors are Capital Goods and Utility, with a respective accuracy of 63.5% and 59.2% . The
accuracy standard deviation on the test is is comparable to the accuracy standard deviation on
the validation set, with an average of 17.1%.
Furthermore, the choice of kernel results in an average MCC score of 5.1% and a balanced accuracy
of 54.9%. These metrics reaffirm the same conclusions drawn from the training set, highlighting
the models’ consistent performance.
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Figure 3.3: Accuracy scores for the SVM+ signature model for the validation set (in blue) and for
the test set (in red)

The annualized excess returns obtained following the prediction of the SVM model are consis-
tently higher than the ones obtained through the Buy and Hold strategy, all while maintaining a
comparable annualized standard deviation. This results in a higher annualized information ratio.
Notably, the distribution of excess returns skews to the right compared to the distribution of the
Buy and Hold strategy.
Among the sectors, Basic Industry records the best improvement over the benchmark strategy,
with an information ratio of 1.133 compared to the benchmark’s 0.163. Additionally, the models
associated to the Energy, Utility and Other Industrial sectors also show noticeable improvement
of returns over the benchmark strategy. On the other hand, the Consumer Non-Cyclical sector
records the lowest improvement over the benchmark strategy, with the SVM predictor achieving
an average annualized excess return of 1.20 compared to the 1.07. It is worth noticing that the
models associated to Consumer Cyclical and Consumer Non-Cyclical and the Transportation sec-
tor exhibit periods were the excess returns obtained by following the models’ recommendations are
lower than a simple Buy and Hold strategy.

SVM + signature Buy & Hold
avg excess returns (%) std (%) skewness information ratio avg excess returns (%) std (%) skewness information ratio

Financial Services 3.71 6.02 1.05 0.616 0.52 6.04 -1.34 0.09
Utility 4.13 7.47 3.60 0.578 0.32 7.47 -2.52 0.043

Basic Industry 8.18 7.30 2.71 1.133 1.21 7.28 -2.34 0.163
Capital Goods 1.68 6.66 -2.33 0.253 1.09 6.67 -2.37 0.163
Communications 3.29 8.44 2.11 0.390 0.72 8.46 -0.38 0.085
Consumer Cyclical 2.92 7.27 -0.43 0.401 0.41 7.28 -1.77 0.056

Consumer Non-Cyclical 1.20 6.89 -0.518 0.174 1.07 6.89 -0.580 0.155
Energy 5.78 11.2 -0.097 0.518 0.13 11.2 -3.84 0.011

Technology 1.06 5.92 1.90 0.180 0.87 5.92 -0.468 0.147
Transportation 4.90 8.18 -0.257 0.599 0.92 8.20 -1.24 0.113
Other Industrial 3.64 6.95 -2.99 0.524 0.032 6.99 -5.27 0.005

Table 3.5: Comparison between the SVM + signature classifier and Buy and Hold average
annualized excess returns, annualized standard deviation of excess returns, skewness of the excess
returns and annualized information ratio
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SVM+sig kernel

The second version of the SVM models, utilizing the signature kernel, demonstrates a collective
average accuracy of 53.1%, which is lower than that of the previous set of models. Furthermore,
the models show a comparatively higher average standard deviation in accuracy, standing at 20%
In this case, the sectors achieving the highest accuracy in the validation set are Financial Services
(57.2%) and Other Industrial (54.7%), while Energy lags behind with the lowest accuracy, 50.2%.
The MCC score stands at 9.8%, and the average balanced accuracy score is 50.6%. These metrics
suggest a relatively lower performance for this model compared to the previous version.
Consistent with the previously discussed models, the average accuracy in the test set surpasses
that of the validation set, reaching 53.6%. Notably, the standard deviation for accuracy is lower in
the test set, measuring at 18.4%. However, it remains higher than the collective average observed
for the SVM+signature model Surprisingly, the model achieves its highest accuracy in the Energy
sector (58.5%) followed by Transportation (56.8%). In contrast, the sector with the lowest accu-
racy is Communication, recording a score of 50.3%
The average MCC score and balanced accuracy are on average 2.6% and 51.6%.

Figure 3.4: Accuracy scores for the SVM+sig kernel model for the validation set (in blue) and for
the test set (in red)

The SVM + signature kernel consistently outperforms the Buy and Hold strategy, while incur-
ring in a similar amount or lower volatility for every sector. This consequently implies a better
annualized information ratio.
By examining at the plots in Appendix A.4, it is possible to notice how this model achieves the
best performance across all models for the Transportation sector where the recorded information
ratio is 0.734. Additionally, it remains highly competitive for the Other Industrial sector with an
information ratio of 0.640. However, it is worth noticing that, for Financial Institutions, Consumer
Cyclical and Consumer Non-Cyclical, the excess returns obtained by the SVM+ sig kernel model
are lower than the returns obtained by the Buy and Hold strategy during certain periods.

SVM + sig kernel Buy & Hold
avg excess returns (%) std (%) skewness information ratio avg excess returns (%) std (%) skewness information ratio

Financial Services 0.71 6.04 -1.15 0.117 0.52 6.04 -1.34 0.09
Utility 3.46 7.47 2.32 0.464 0.32 7.47 -2.52 0.043

Basic Industry 2.25 5.78 -0.80 0.390 1.21 7.28 -2.34 0.163
Capital Goods 2.94 6.67 -2.43 0.442 1.09 6.67 -2.37 0.163
Communications 3.38 7.30 0.007 0.463 0.72 8.46 -0.38 0.085
Consumer Cyclical 1.52 7.28 -1.81 0.210 0.41 7.28 -1.77 0.056

Consumer Non-Cyclical 1.10 6.71 0.560 0.164 1.07 6.89 -0.580 0.155
Energy 7.29 11.1 3.76 0.655 0.13 11.2 -3.84 0.011

Technology 1.90 5.78 0.285 0.329 0.87 5.92 -0.468 0.147
Transportation 5.99 8.15 0.970 0.734 0.92 8.20 -1.24 0.113
Other Industrial 4.39 6.87 5.30 0.640 0.032 6.99 -5.27 0.005

Table 3.6: Comparison between the SVM + sig kernel classifier and Buy and Hold average
annualized excess returns, annualized standard deviation of the excess returns, skewness of the
excess returns and annualized information ratio
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SVM+Global Alignment Kernel

The SVM with Global Alignment Kernel (SVM+GAK) achieves the best average accuracy score
across sectors on the validation set among all the trained models versions, reaching 55.6%. How-
ever, it exhibits the highest average accuracy standard deviation among the SVM models, standing
at 21%.
The MCC scores and balanced accuracy score are recorded at 50.4% and 1.2%, respectively. No-
tably, for many of the models, the MCC score is negative, indicating that in some cases, some
model associated to the distinct sectors perform worse than a random classifier. In contrast to
the previously discussed models, the SVM+GAK model exhibits a lower average accuracy in the
test set compared to the validation set (53.4% compared to 55.6%). This decline in accuracy is
accompanied by a decrease in the standard deviation of accuracy, which has an average 19.8%
across sectors. The sectors where the models achieves the model is the most accurate in predict-
ing directional movements are Energy and Capital Goods, with an accuracy of 58.0% and 57.3%
respectively, Technology achieves the worst performance with just 50.0% accuracy.

Figure 3.5: Accuracy scores for the SVM+GAK model for the validation set (in blue) and for the
test set (in red)

Despite achieving strong accuracy results, a majority of the MCC scores are negative, and the
balanced accuracy scores deviate significantly from the overall accuracy. This suggests that the
SVM+GAK model struggles to equally recognize both upward and downward movements for most
sectors.
These findings are reinforced by the plots in A.4, which clearly illustrate that the SVM+GAK
model predominantly predicts upward movements in the majority of the test set. Furthermore,
the average annualized excess returns consistently fall short of those obtained through a Buy and
Hold strategy. This indicates that despite its high accuracy, the model fails to capture returns
effectively, making it unusable for the task at hand.

SVM + GAK Buy & Hold
avg excess returns (%) std (%) skewness information ratio avg excess returns (%) std (%) skewness information ratio

Financial Services -1.31 6.04 -1.20 -0.217 0.52 6.04 -1.34 0.09
Utility -1.22 7.50 -2.37 -0.164 0.32 7.47 -2.52 0.043

Basic Industry -0.44 7.22 -2.25 -0.061 1.21 7.28 -2.34 0.163
Capital Goods 0.14 6.65 -2.32 0.021 1.09 6.67 -2.37 0.163
Communications -0.88 8.45 -0.225 -0.105 0.72 8.46 -0.38 0.085
Consumer Cyclical -1.14 7.28 -1.64 -0.156 0.41 7.28 -1.77 0.056

Consumer Non-Cyclical -0.86 6.89 -0.393 -0.125 1.07 6.89 -0.580 0.155
Energy 0.40 11.2 -3.75 0.036 0.13 11.2 -3.84 0.011

Technology -1.15 5.91 -0.283 -0.195 0.87 5.92 -0.468 0.147
Transportation -0.71 8.20 -1.08 -0.086 0.92 8.20 -1.24 0.113
Other Industrial -2.06 6.98 -5.17 -0.296 0.032 6.99 -5.27 0.005

Table 3.7: Comparison between the SVM + GAK classifier and Buy and Hold average annualized
excess returns, annualized standard deviation of excess returns, skewness of the excess returns and
annualized information ratio
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3.4.3 Logistic regression

The Logistic regression models are trained on a window of 80, 100, or 130 points, with the choice of
window size tailored independently for each model to better suit the characteristics of each sector.
These models are then validated and tested on blocks of 12 points, with shifts of 28 days between
successive windows in the sliding window cross-validation setup.
Following an analoguous methodology as the one followed for the tuning of the SVM model,
the initial choice of the positive real value 1

C , which determines the L2 regularization parame-
ter C for each model, is independently searched for each model version from the following list:
{0.001, 0.005, 0.01, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 1, 5, 10, 20, 50, 100, 150, 200}. Subsequently, manual
selection is employed to further optimize the value of C.

logit+signature

The first model, a logistic regression + signature, attains an average accuracy of 53.5% on the val-
idation set, with a accuracy standard deviation that collectively averages 19% across the different
sectors. The best-performing models are found in the Financial Institutions, Transportation, and
Basic Industry sectors, achieving accuracies of 56.4%, 55.0%, and 55.0%, respectively. The lowest
accuracy is obtained for the model predicting the movements of the Energy sector, with a score of
51%.
The average MCC score is 0.057 and the average balanced accuracy is 55%, suggesting that the
performance of the models is consistent when predicting both movement directions.
In the test set the model has a collective average accuracy of 56.2% with an accuracy standard
deviation across sectors of 18.8%. The best performing models are the one predicting movements
in the Transportation and Financial Services sectors, achieving accuracies of 60.8% and 60.2%, re-
spectively. The model with the least accuracy is the one associated to the Consumer Non cyclical
sector, with a score of 50.9%. The balanced accuracy and MCC scores confirm the models’ good
performance across most of the sectors, with an average of 54.9% and 9.9%, respectively

Figure 3.6: Accuracy scores for the logit+signature model for the validation set (in blue) and for
the test set (in red)

The models consistently outperforms the benchmark strategy, yielding higher annualized excess
returns and information ratios. As observed in previous models, the skewness of excess returns
from the models’ directional predictions is greater than the skewness of the Buy and Hold strategy.
The models that exhibit substantial performance improvements are the one for the Basic Industry
(+5.99% annualized averaged excess returns), Communications (+4.39%), and Other Industrial
(+4.92%) sectors. Conversely, the Consumer Non-Cyclical sector shows the most consistent per-
formance improvements, albeit modest, with a +0.43% annualized averaged excess return. Further-
more, the model maintains a standard deviation comparable to the benchmark strategy, resulting
in consistently superior information ratios compared to the benchmark strategy. Furthermore, the
logit+signature model stands out as the top performer in terms of excess returns for both the
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Consumer Cyclical and Consumer Non-Cyclical sectors. These two sectors are characterized by
extended periods during which all other models consistently yield lower excess returns compared
to the benchmark strategy.

logit + signature Buy & Hold
avg excess returns (%) std (%) skewness information ratio avg excess returns (%) std (%) skewness information ratio

Financial Services 3.27 6.03 1.07 0.544 0.52 6.04 -1.34 0.09
Utility 2.35 7.49 3.34 0.315 0.32 7.47 -2.52 0.043

Basic Industry 4.87 7.24 2.73 1.061 1.21 7.28 -2.34 0.163
Capital Goods 1.52 6.66 1.30 0.227 1.09 6.67 -2.37 0.163
Communications 5.70 8.42 2.10 0.667 0.72 8.46 -0.38 0.085
Consumer Cyclical 3.62 7.26 -0.468 0.499 0.41 7.28 -1.77 0.056

Consumer Non-Cyclical 1.63 6.88 2.280 0.236 1.07 6.89 -0.580 0.155
Energy 0.99 11.2 -0.371 0.088 0.13 11.2 -3.84 0.011

Technology 1.85 5.91 1.87 0.312 0.87 5.92 -0.468 0.147
Transportation 3.49 8.20 -0.177 0.426 0.92 8.20 -1.24 0.113
Other Industrial 3.64 6.95 -3.00 0.524 0.032 6.99 -5.27 0.005

Table 3.8: Comparison between the logit + signature classifier and Buy and Hold average annu-
alized excess returns, annualized standard deviation of the excess returns, skewness of the excess
returns and annualized information ratio

Logit+signature kernel

Contrary to the SVM + signature kernel models, the logistic regression + signature kernel models
fail to consistently obtain a satisfactory accuracy in the test set. For instance, it fails to surpass a
50% accuracy score in the test set for the Technology and Consumer Non-Cyclical sectors.
In the validation set, the best performing sectors are Basic Industry and Consumer cyclical, achiev-
ing 58% and 54.7% accuracy respectively.
The MCC score, with an average of -2.2%, and the balanced accuracy score, averaging 49.1%,
confirm that collectively the models struggle to capture sector movements even in the validation
set.
The good performance in the Basic Industry and Consumer Cyclical sectors observed in the val-
idation set carries over to the test set, with respective accuracy scores of 59.7% and 57.9%. The
standard deviation in the test set falls within the range of values seen in other models analyzed so
far, at 19.7%. Unlike the training set, the balanced accuracy and MCC score values in the test set
suggest strong performance in all sectors achieving an accuracy greater than 50%.

Figure 3.7: Accuracy scores for the logit+sig kernel model for the validation set (in blue) and for
the test set (in red)

Considering the results obtained for the accuracy of the model, it’s not surprising to see that the
model associated to Consumer Non-Cyclical obtains negative excess returns over the testing period.
However, the model for the Transportation sector, despite the good out of sample performance, fails
to capture efficaciously the excess returns, which when annualized amount to -3.50%. Conversely,
the Technology sector, despite being the worst performer in terms of out-of-sample accuracy,
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manages to achieve +2.23% annualized excess returns. Additionally, the logit + sig kernel models
are the best models for Financial Institutions, Capital Goods and the Energy sectors.

logit + sig kernel Buy & Hold
avg excess returns (%) std (%) skewness information ratio avg excess returns (%) std (%) skewness information ratio

Financial Services 5.24 6.00 1.84 0.874 0.52 6.04 -1.34 0.09
Utility 3.58 7.48 3.22 0.479 0.32 7.47 -2.52 0.043

Basic Industry 2.12 7.28 2.43 0.668 1.21 7.28 -2.34 0.163
Capital Goods 2.74 6.67 2.91 -0.020 1.09 6.67 -2.37 0.163
Communications 1.80 8.45 -0.225 -0.213 0.72 8.46 -0.38 0.085
Consumer Cyclical 0.89 7.28 -1.78 0.123 0.41 7.28 -1.77 0.056

Consumer Non-Cyclical -3.84 6.88 0.49 -0.125 1.07 6.89 -0.580 0.155
Energy 18.51 11.2 4.13 1.68 0.13 11.2 -3.84 0.011

Technology 2.23 5.91 1.20 0.378 0.87 5.92 -0.468 0.147
Transportation -3.50 8.20 -1.07 -0.427 0.92 8.20 -1.24 0.113
Other Industrial 2.75 6.97 4.98 0.394 0.032 6.99 -5.27 0.005

Table 3.9: Comparison between the logit + sig kernel classifier and Buy and Hold average
annualized excess returns, annualized standard deviation of the excess returns, skewness of the
excess returns and annualized information ratio

Logit+Global Alignment Kernel

The last set of models, logistic regression + Global Alignment Kernel (logit+GAK), achieve a
collective accuracy of 55.5% on the validation set. Among sectors, Basic Industry and Transporta-
tion record the highest accuracy, at 58.9% and 58.3%, respectively, while Communication performs
the worst with just 50.8% accuracy. The average standard deviation for the accuracy score in
the training set is 21%, indicating variability in performance across sectors. However, despite the
relatively high accuracy score, the balanced accuracy, which averages 50%, suggests that the model
does not predict upward and downward movements with equal accuracy.

In the test set, the models achieve a collective accuracy of 55.2%, with a standard deviation of
19.4%. Transportation and Basic Industry continue to be the sectors for which the model achieves
the highest accuracy, both at 58.5%, while the lowest accuracy is obtained for Technology and
Communications, both at 51.7%. Similarly to the validation set, the MCC scores for the test data
are mostly negative, indicating that despite the high accuracy, the model does not consistently
outperform a random classifier for many of the covered sectors.

Figure 3.8: Accuracy scores for the logit+GAK model for the validation set (in blue) and for the
test set (in red)

Despite achieving results for performance metrics that are consistent with the other models,
the logit+GAK model fails to outperform the buy and hold strategy in terms of annualized average
excess return.
By examining the plots in A.4, it becomes apparent that the models’ prediction largely favor up-
ward movements for the indices throughout most of the period. This observation aligns with the
findings from the MCC score and the balanced accuracy, which suggested that the model did not
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consistently outperform a random classifier.
Of particular note is the unexpected result for the Transportation sector. Despite the model achiev-
ing an accuracy higher than 58% on both the validation and test sets, it fails to capture returns
effectively, resulting in annualized average excess returns that do not surpass the Buy and Hold
strategy.

logit+GAK Buy & Hold
avg excess returns (%) std (%) skewness information ratio avg excess returns (%) std (%) skewness information ratio

Financial Services -1.74 6.04 1.84 -0.289 0.52 6.04 -1.34 0.09
Utility -2.32 7.49 -2.43 -0.310 0.32 7.47 -2.52 0.043

Basic Industry 1.19 7.30 -2.35 0.163 1.21 7.28 -2.34 0.163
Capital Goods -0.13 6.66 -2.30 0.413 1.09 6.67 -2.37 0.163
Communications -0.89 8.45 -0.225 -0.105 0.72 8.46 -0.38 0.085
Consumer Cyclical -1.04 7.28 -1.69 -0.143 0.41 7.28 -1.77 0.056

Consumer Non-Cyclical -0.86 6.89 -0.393 -0.558 1.07 6.89 -0.580 0.155
Energy -0.427 11.0 -3.82 -0.038 0.13 11.2 -3.84 0.011

Technology 0.85 5.92 -0.358 0.144 0.87 5.92 -0.468 0.147
Transportation -0.71 8.20 -0.985 -0.086 0.92 8.20 -1.24 0.113
Other Industrial -1.72 6.97 -5.17 -0.246 0.032 6.99 -5.27 0.005

Table 3.10: Comparison between the logit + GAK classifier and Buy and Hold average annualized
excess returns, annualized standard deviation of the excess returns, skewness of the excess returns
and annualized information ratio
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Chapter 4

Conclusion

This thesis delves into the weekly prediction of movements in duration-hedged corporate bond
sector indices. This is achieved through different models: XGBoost, Support Vector Machine and
logistic regression. For the last two models application of global alignment and signature kernels
to the Support Vector Machine and the logistic regression model are explored and compared.

The initial sections of this thesis introduce and carefully analyze these models, highlighting
their properties and strengths. Subsequently, the focus shifts to a comprehensive exploration of
kernel methods, encompassing their properties. Within this context, special attention is given to
two examples of kernel designed for the application to sequential data: of the global alignment
kernel and the signature kernel, both of which are examined in detail.
Moving forward, the thesis presents the empirical data and conducts a systematic evaluation of the
diverse models’ performances. The outcome of this evaluation reveals that among the models con-
sidered, the SVM model + GAK achieves the highest average accuracy across sectors in predicting
directional movements (55.6%) . However, a critical observation arises from this analysis. While
the global alignment kernels exhibit promising prediction accuracy, they fall short in effectively
capturing returns, thereby compromising the overall reliability of the models. The second model in
terms of average accuracy is the XGBoost model (55.3%). This model records a good performance
in terms of captured returns, showing consistently better returns than the simple Buy and Hold
strategy for most of the sectors. However the model that shows the most consistent improvement
over the benchmark strategy is the logistic regression model + signature, which scores an average
accuracy of (53.5%). Similarly to this last model, the SVM+signature shows an average accuracy of
directional predictions of 53.9% and shows consistently outperforms the benchmark strategy. The
last model to obtain satisfactory results is the SVM+sig kernel model, that, despite not showing
results to the level of the previous model, still consistently outperforms the Buy and Hold strategy
for most of the sectors.
The current project offers several promising avenues for further exploration. One avenue involves
the inclusion of longer time horizons for the used time series. This broader dataset not only may
improve the ability of the XGBoost model to generalize by encompassing diverse market cycles and
behaviors, but also alleviates overfitting concerns that arose during this project in many occasions.
Consequently, this expansion enables the utilization of the signature transform with higher levels
before truncation, the incorporation of additional variables into the signature, and the integra-
tion of simple neural network models. Moreover, an increasing availability of data facilitates the
creation of comprehensive test sets, allowing for more comprehensive assessment of the models’
performance across various market scenarios. Another compelling path towards improvement lies
in the incorporation of a wider set of variables, tailored to the unique characteristics of each sector.
For example, variables like the 3-month treasury yield for Financial Institutions or the US Treasury
H15 Constant Maturity 5-year real yield curve rates for sectors like Consumer Cyclical, Consumer
Non-Cyclical, and Financial Institutions could provide valuable insights. This approach extends
to considering not only new time series data, but also experimenting with different lengths for the
time series used for the kernels, diverse window shifts for distinct sectors, and variations in length
and smoothing techniques for each dataframe.

Additionally, exploring alternative signature kernels, as the ones presented by Cass et al. in [46],
presents an opportunity for further developments. These alternate kernels may potentially yield
improved results, especially when combined with higher dyadic orders. These orders determine
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the discretization of the grid utilized in the PDE solver, consequently regulating the precision of
the signature kernel’s approximation. To address potential computational constraints that could
occur even for low value of the dyadic order when using these alternative kernels, a lower-rank
approximation strategy could be applied in such cases, effectively mitigating computational costs.
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Appendix A

Performance metrics

A.1 Performance metrics - validation data

Financial services Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 55 16.3 1.95 51.1
SVM + signature 52.7 20.1 8.45 54.3
SVM + GAK 57.5 21.3 -1.34 49.5
SVM + sig kernel 57.2 19.5 1.14 50.5
logit + signature 56.3 19.8 9.0 54.5
logit + GAK 57.5 21.3 -2.60 49.1
logit + sig kernel 53.6 20.2 -0.87 49.6

Utility Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 59.2 22.5 1.44 57.4
SVM + signature 54.4 16.1 8.82 54.4
SVM + GAK 55.3 21.8 2.93 51.2
SVM + sig kernel 51.7 22.8 -0.36 49.8
logit + signature 53.6 17.4 6.77 53.4
logit + GAK 55.8 21.7 4.18 51.8
logit + sig kernel 51.7 22.1 8.38 49.5

Basic Industry Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 59.1 13.7 11.5 56.6
SVM + signature 53.9 18.79 7.40 53.7
SVM + GAK 58.9 22.0 6.25 52.5
SVM + sig kernel 51.7 24.0 0.56 50.3
logit + signature 55 20.1 7.46 53.8
logit + GAK 58.9 22.0 6.25 52.5
logit + sig kernel 58.0 18.2 19.1 59.4

Capital Goods Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 52.5 16.7 2.37 51.3
SVM + signature 56.4 20.5 6.97 53.1
SVM + GAK 59.7 20.9 5.0 51.7
SVM + sig kernel 53.9 22.9 5.08 52.6
logit + signature 53.9 18.0 7.21 53.6
logit + GAK 58.1 21.6 1.21 50.4
logit + sig kernel 53.9 13.6 46.0 52.3

Communications Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 53.3 13.5 0.046 50.3
SVM + signature 54.2 18.1 8.25 54.1
SVM + GAK 52.8 21.4 -0.38 49.8
SVM + sig kernel 54.2 22.4 7.25 53.6
logit + signature 53.9 19.7 7.91 54.0
logit + GAK 50.0 21.6 -5.63 47.4
logit + sig kernel 50.8 20.6 -0.12 49.9

Consumer Cyclical Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 56.7 17.8 1.4 57.1
SVM + signature 53.6 22.5 6.88 53.4
SVM + GAK 54.7 20.1 1.17 50.4
SVM + sig kernel 50.8 17.4 1.54 50.8
logit + signature 51.9 22.0 3.17 51.6
logit + GAK 53.1 20.4 -1.88 49.2
logit + sig kernel 54.7 19.0 -5.55 47.3

Consumer Non-Cyclical Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 55.8 17.5 12.1 56.0
SVM + signature 53.3 17.6 6.25 53.1
SVM + GAK 53.1 18.1 -0.54 49.8
SVM + sig kernel 53.3 19.8 3.80 51.8
logit + signature 51.9 20.9 3.66 51.8
logit + GAK 53.1 18.1 -0.54 49.8
logit + sig kernel 51.7 16.4 21.5 51.1

Energy Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 54.2 18.3 6.83 53.5
SVM + signature 52.5 17.4 4.41 52.2
SVM + GAK 55.0 22.1 3.31 51.4
SVM + sig kernel 50.3 24.4 -0.22 49.9
logit + signature 51.1 16.4 1.67 50.8
logit + GAK 55.0 22.1 3.00 51.2
logit + sig kernel 50.3 20.5 -6.15 46.9

Technology Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 54.1 18.0 2.7 51.4
SVM + signature 55.0 17.2 0.94 50.34
SVM + GAK 53.1 21.4 -2.1 49.1
SVM + sig kernel 52.2 23.5 -4.18 48.2
logit + signature 51.7 20.17 1.28 50.64
logit + GAK 51.9 21.6 -5.27 47.7
logit + sig kernel 50.3 19.1 -10.6 44.7

Transportation Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 55.0 20.4 7.8 54.1
SVM + signature 55.0 17.6 0.9 50.3
SVM + GAK 54.4 23.7 -1.02 49.6
SVM + sig kernel 55 22.3 1.87 50.9
logit + signature 51.7 20.2 1.3 50.6
logit + GAK 58.3 22.7 3.03 51.3
logit + sig kernel 51.7 22.0 -4.16 47.9

Other Industrial Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 55.2 14.1 1.85 51.0
SVM + signature 51.4 14.0 1.8 50.9
SVM + GAK 58.1 18.3 7.35 53.3
SVM + sig kernel 54.4 17.9 -5.7 48.2
logit + signature 54.1 16.9 6.5 53.2
logit + GAK 58.1 18.6 6.98 53.1
logit + sig kernel 51.4 18.1 -1.70 49.2

Table A.1: Performance metrics for the classifiers - validation data
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A.2 Performance metrics - test data

Financial services Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 58.3 17.2 6.1 53.5
SVM + signature 60.2 18.9 19.7 60.0
SVM + GAK 52.3 20.5 -3.48 48.5
SVM + sig kernel 52.2 16.8 1.53 50-8
logit + signature 57.5 20.7 14.0 57.0
logit + GAK 53.4 20.4 -4.56 48.4
logit + sig kernel 57.4 19.8 15.1 57.6

Utility Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 59.9 15.7 19.6 59.7
SVM + signature 56.0 24.1 9.7 54.8
SVM + GAK 51.7 20.4 -4.56 47.9
SVM + sig kernel 55.7 18.4 11.3 55.7
logit + signature 52.7 24.6 3.26 51.6
logit + GAK 57.4 19.1 5.63 52.5
logit + sig kernel 59.7 22.1 8.38 54.2

Basic Industry Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 57.8 17.3 0.45 48.5
SVM + signature 55.7 18.3 9.09 54.6
SVM + GAK 55.1 23.1 -1.89 49.2
SVM + sig kernel 56.8 21.6 10.8 55.4
logit + signature 54.2 19.2 6.5 53.2
logit + GAK 58.5 22.1 1.1 50.4
logit + sig kernel 59.6 20.6 12.6 56.3

Capital Goods Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 63.5 15.0 15.0 59.5
SVM + signature 57.3 17.9 0.34 50.1
SVM + GAK 57.4 17.5 1.46 50.4
SVM + sig kernel 50.0 18.8 -1.39 49.3
logit + signature 56.4 17.1 9.64 54.8
logit + GAK 57.4 17.5 -1.76 49.6
logit + sig kernel 52.3 13.6 4.60 52.3

Communications Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 53.6 19.0 0.74 50.4
SVM + signature 52.1 18.5 2.82 51.4
SVM + GAK 50.6 20.11 -5.1 48.0
SVM + sig kernel 54.0 18.6 1.22 50.2
logit + signature 53.3 19.6 5.90 52.9
logit + GAK 51.7 20.0 -3.47 48.8
logit + sig kernel 50.3 22.0 -5.70 47.1

Consumer Cyclical Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 52.1 16.3 13.1 49.6
SVM + signature 56.4 18.6 11.7 55.8
SVM + GAK 54.5 19.0 2.0 50.8
SVM + sig kernel 48.3 20.4 1.12 50.6
logit + signature 59.2 20.8 17.4 58.7
logit + GAK 54.5 19.0 -1.2 49.6
logit + sig kernel 57.9 17.9 16.37 58.3

Consumer Non-Cyclical Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 56.1 18.8 0.98 55.9
SVM + signature 50.9 17.8 1.15 50.6
SVM + GAK 52.3 17.1 -1.61 49.4
SVM + sig kernel 54.0 18.2 8.74 54.4
logit + signature 50.9 17.8 1.02 50.5
logit + GAK 53.4 16.9 -1.08 49.7
logit + sig kernel 50.0 17.8 2.91 51.5

Energy Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 52.4 18.1 3.3 51.6
SVM + signature 58.1 17.8 14.4 57.2
SVM + GAK 58.5 18.6 6.35 51.4
SVM + sig kernel 58.5 16.2 6.54 51.6
logit + signature 57.0 22.1 12.8 56.3
logit + GAK 58.0 18.7 3.52 50.7
logit + sig kernel 51.7 20.4 5.13 52.6

Technology Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 56.8 18.5 0.9 55.1
SVM + signature 53.5 13.2 6.65 53.2
SVM + GAK 50.6 17.9 -6.79 47.7
SVM + sig kernel 51.7 16.6 3.97 52.0
logit + signature 54.8 21.61 9.20 54.6
logit + GAK 51.7 17.8 -3.48 48.8
logit + sig kernel 46.0 18.8 -3.11 48.4

Transportation Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 55.7 17.9 4.36 52.3
SVM + signature 60.8 0.24 20.6 60.3
SVM + GAK 55.1 20.5 -6.56 48.1
SVM + sig kernel 56.8 17.2 -3.84 49.1
logit + signature 57.3 24.8 14.6 57.3
logit + GAK 58.5 19.3 0.00 50.0
logit + sig kernel 54.0 21.8 8.87 54.5

Other Industrial Accuracy(%) Accuracy std (%) MCC(%) Balanced accuracy (%)
XGBoost 61.3 17.54 14.1 57.9
SVM + signature 57.9 17.4 12.5 56.3
SVM + GAK 50.0 23.5 -8.96 46.2
SVM + sig kernel 51.1 23.8 -8.5 46.
logit + signature 60.6 17.4 17.6 58.8
logit + GAK 52.3 23.4 7.9 47.3
logit + sig kernel 51.1 22.9 -2.17 48.9

Table A.2: Performance metrics for the classifiers - test data
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A.3 Excess returns by sector

Financial Services Avg excess returns (%) Std (%) Skewness Information ratio
Buy & hold 0.52 6.04 -1.34 0.09
XGBoost 1.73 6.04 -0.93 0.29
SVM + signature 3.71 6.02 1.05 0.616
SVM + GAK -1.31 6.04 -1.20 -0.217
SVM + sig kernel 0.71 6.04 -1.15 0.117
logit + signature 3.27 6.03 1.07 0.544
logit + GAK -1.74 6.04 -1.21 -0.289
logit + sig kernel 5.24 6.00 1.84 0.874

Utility Avg excess returns (%) Std (%) Skewness Information ratio
Buy & hold 0.32 7.47 -2.52 0.043
XGBoost 4.22 7.50 -1.51 0.565
SVM + signature 4.13 7.47 3.60 0.578
SVM + GAK -1.22 7.50 -2.37 -0.164
SVM + sig kernel 3.46 7.47 2.32 0.464
logit + signature 2.35 7.49 3.34 0.315
logit + GAK -2.32 7.49 -2.43 -0.310
logit + sig kernel 3.58 7.48 3.22 0.479

Basic Industry Avg excess returns (%) Std (%) Skewness Information ratio
Buy & hold 1.21 7.28 -2.34 0.163
XGBoost 2.46 7.30 -1.66 0.338
SVM + signature 8.18 7.30 2.71 1.133
SVM + GAK -0.44 7.22 -2.25 -0.061
SVM + sig kernel 2.25 5.78 -0.80 0.390
logit + signature 4.87 7.24 2.73 1.061
logit + GAK 1.19 7.30 -2.35 0.163
logit + sig kernel 2.12 7.28 2.43 0.668

Capital Goods Avg excess returns (%) Std (%) Skewness Information ratio
Buy & hold 1.09 6.67 -2.37 0.163
XGBoost 1.56 6.66 -2.42 0.234
SVM + signature 1.68 6.66 -2.33 0.253
SVM + GAK 0.14 6.65 -2.32 0.021
SVM + sig kernel 2.94 6.67 -2.43 0.442
logit + signature 1.52 6.66 1.30 0.227
logit + GAK -0.13 6.66 -2.30 0.413
logit + sig kernel 2.74 6.67 2.91 -0.020

Communications Avg excess returns (%) Std (%) Skewness Information ratio
Buy & hold 0.72 8.46 -0.38 0.085
XGBoost 4.04 8.44 2.21 2.21
SVM + signature 3.29 8.44 2.11 0.390
SVM + GAK -0.88 8.45 -0.225 -0.105
SVM + sig kernel 3.38 7.30 0.007 0.463
logit + signature 5.70 8.42 2.10 0.677
logit + GAK -0.89 8.45 -0.225 -0.105
logit + sig kernel 1.80 8.45 -0.225 0.213

Consumer Cyclical Avg excess returns (%) Std (%) Skewness Information ratio
Buy & hold 0.41 7.28 -1.77 0.056
XGBoost 0.880 7.28 1.64 0.128
SVM + signature 2.92 7.27 -0.43 0.401
SVM + GAK -1.14 7.28 -1.64 -0.156
SVM + sig kernel 1.52 7.28 -1.81 0.210
logit + signature 3.62 7.26 -0.468 0.499
logit + GAK -1.04 7.28 -1.69 -0.143
logit + sig kernel 0.89 7.28 -1.78 0.123

Consumer Non-Cyclical Avg excess returns (%) Std (%) Skewness Information ratio
Buy & hold 1.07 6.89 -0.580 0.155
XGBoost 1.82 6.88 -0.643 0.264
SVM + signature 1.20 6.89 -0.518 0.174
SVM + GAK -0.86 6.89 -0.393 -0.125
SVM + sig kernel 1.10 6.71 0.560 0.164
logit + signature 1.63 6.88 2.280 0.236
logit + GAK -0.86 6.89 -0.393 -0.558
logit + sig kernel -3.84 6.88 0.499 -0.125

Energy Avg excess returns (%) Std (%) Skewness Information ratio
Buy & hold 0.13 11.2 -3.84 0.011
XGBoost 9.46 11.1 0.917 0.851
SVM + signature 5.78 11.2 -0.097 0.518
SVM + GAK 0.40 11.2 -3.75 0.036
SVM + sig kernel 7.29 11.1 3.76 0.655
logit + signature 0.99 11.2 -0.371 0.088
logit + GAK -0.427 11.0 -3.82 -0.038
logit + sig kernel 18.51 11.2 4.13 1.68

Technology Avg excess returns (%) Std (%) Skewness Information ratio
Buy & hold 0.87 5.92 -0.468 0.147
XGBoost 7.04 5.82 3.05 1.21
SVM + signature 1.06 5.92 1.90 0.180
SVM + GAK -1.15 5.91 -0.283 -0.195
SVM + sig kernel 1.90 5.78 0.285 0.329
logit + signature 1.85 5.91 1.87 0.312
logit + GAK 0.85 5.92 -0.358 0.144
logit + sig kernel 2.23 5.91 1.20 0.378

Transportation Avg excess returns (%) Std (%) Skewness Information ratio
Buy & hold 0.92 8.20 -1.24 0.113
XGBoost 3.92 8.18 -0.978 0.479
SVM + signature 4.90 8.18 -0.257 0.599
SVM + GAK -0.71 8.20 -1.08 -0.086
SVM + sig kernel 5.99 8.15 0.970 0.734
logit + signature 3.49 8.20 -0.177 0.426
logit + GAK -0.71 8.20 -0.985 -0.086
logit + sig kernel -3.50 8.20 -1.07 -0.427

Other Industrial Avg excess returns (%) Std (%) Skewness Information ratio
Buy & hold 0.033 6.99 -5.27 0.005
XGBoost 1.67 6.99 -5.27 0.240
SVM + signature 3.64 6.95 -2.99 0.524
SVM + GAK -2.06 6.98 -5.17 -0.296
SVM + sig kernel 4.39 6.87 5.30 0.640
logit + signature 3.64 6.95 -3.00 0.524
logit + GAK -1.72 6.97 -5.17 -0.246
logit + sig kernel 2.75 6.97 4.98 0.394

Table A.3: Comparison between the different classifiers in terms of annualized excess returns,
annualized standard deviation of the excess returns, skewness of the excess returns and annualized
information ratio
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A.4 Excess returns by sector - plots
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