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Abstract

Current volatility models fail to both simultaneously capture the true shape of the implied volatility
surface, and deliver realistic dynamics for the volatility surface. The Rough Bergomi model, a
popular rough volatility model, attempts to fulfil both of these criteria and is able to fit a wide
range of volatility surfaces with just 3 parameters, outperforming most conventional Brownian
motion-based stochastic volatility models. Rough volatility models, first popularised by Gatheral
et al. [1], replace the traditional Brownian motion within an assets variance process, with a
fractional Brownian motion. The development of rough volatility models, their simulation, and
their calibration has become popular as of late within quantitative finance. In this work, we present
a thorough investigation, implementation, and calibration of a Rough Bergomi model. We begin
with a summary of the motivation behind rough volatility models, before covering the pathway
towards the specification of Bayer et al.’s [2] Rough Bergomi model. We subsequently delve into the
requisite theory of fractional calculus and fractional Brownian motion, the process driving rough
volatility models. Finally, we present calibration methodologies for the Rough Bergomi model,
including a novel grids-based framework, and subsequently the results of these calibration schemes
to the SPX index.
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Chapter 1

Introduction

In 2014 Gatheral et al. [1] published an analysis of the roughness of realised variance, and sub-
sequently, they proposed a Rough Fractional Stochastic Volatility model. Building upon this, in
2015 Bayer et al. [2] proposed the Rough Bergomi model, a specific case of Gatheral et al.’s model.
In this thesis, we shall explore the Rough Bergomi model, and present an implementation and
calibration of the model to the SPX volatility surface.

Here, we shall briefly provide an overview of the various chapters within this work. We be-
gin with Chapter 2, which details some of the relevant background theory and terminology used
throughout the paper. Chapter 3 then proceeds to describe some of the relevant motivations for
the development of rough volatility models, a class of volatility models of which the Rough Bergomi
model is a part of. Chapter 4 introduces fractional Brownian motion and the theory surrounding
it. This chapter is particularly important as fractional Brownian motion is the process driving
rough volatility models. With this knowledge of fractional Brownian motion at hand, we proceed
to Chapter 5, which details an investigation into the roughness of the realised variance process
of several equity indices. With all of the motivation and theory covered, we then turn to the
specification of the particular models we are going to explore. Chapter 6 briefly covers Gatheral
et al.’s [1] Rough Fractional Stochastic volatility model, which can be viewed as both an extension
of Comte and Renault’s [4] model and a precursor to Bayer et al.’s Rough Bergomi model [2]. In
Chapter 7 we introduce the main focus of this work, namely the Rough Bergomi model. We detail
the pathway towards the development of the Rough Bergomi model and detail the specification
of the model. With this model at hand, we explore relevant simulation techniques in Chapter 8,
and in Chapter 9 we investigate the effects of the various parameters of the model. In Chapter 10
we detail 2 calibration methodologies for the Rough Bergomi model, including a novel grid based
calibration method. We then proceed to calibrate the Rough Bergomi model to the SPX volatility
surface, using both methodologies considered, and present the results in Chapter 11.
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Chapter 2

Preliminaries

In this chapter, we shall briefly introduce certain concepts that will be used within this paper.
This is not meant to be an exhaustive list of required theory, however, it is intended to serve as an
introduction or reminder of key areas that we shall build upon.

2.1 Brownian motion

A ’standard Brownian motion’, often called a Wiener process, is arguably the most important
Stochastic process within mathematical finance. Brownian motion is used to model randomness
or noise within a system, and is the process driving many of the stochastic differential equations
(SDEs) we shall see within this paper. As it is such an important process, we begin by recalling
the following definition:

Definition 2.1.1 (Brownian motion). The Brownian motion (Wt)t∈[0,∞) is the continuous time
stochastic process that satisfies the following:

1 W0 = 0,

2 Wt is almost surely continuous,

3 Wt has stationary and independent increments,

4 The increment Wt −Ws ∼ N (0, t− s) for all 0 ≤ s ≤ t.

In addition to this definition, we state (without proof) the following two well-known facts of
Brownian motion :

1 The quadratic variation of a Brownian motion, [Wt,Wt] = t,

2 Wt is a continuous Martingale.

2.2 Volatility Modelling

In 1973, Black and Scholes [5] published the Black-Scholes model, the associated Black-Scholes
equation, and the closed-form Black-Scholes formulae. Their work revolutionised the derivatives
pricing landscape of the global financial market. Derivatives exploded in popularity, and as a result
derivatives pricing became a key focus of financial institutions worldwide.
When pricing derivatives, we often utilise a pricing approach based upon martingale theory, by
modelling certain processes as martingales. One of the key assumptions of derivatives pricing, is
that the discounted price-process of an asset is a martingale under the risk-neutral measure. With
this in mind, we often model the logarithm of an asset’s price as a continuous semi-martingale [1,
Section 1.1 Page 1]. Given an asset St, the price process of the asset can be modelled as follows

dSt = µtStdt+ σStdWt (2.2.1)

where µt denotes the drift process, σt the volatility process, and Wt a one-dimensional Brownian
motion.

8



The specification of the volatility process is central to determining the dynamics of the asso-
ciated model. The volatility process not only affects the prices generated at inception, but also
underpins the dynamics of the model as time progresses.

2.2.1 Implied Volatility

Option prices are often discussed with regard to their implied volatility. The implied volatility,
or Black-Scholes implied volatility, is the unique value of the volatility parameter such that the
Black-Scholes pricing formula is equal to the the given price of a specific option [6, Setion 1 Page
1]. The Black-Scholes formula for a European Call option is defined as follows:

CBS(σ) := CBS(St, t,K, T, σ) := StN (d+)−Ke−r(T−t)N (d−), (2.2.2)

where

d+ =
1

σ
√
T − t

[
ln

(
St

K

)
+

(
r +

σ2

2

)
(T − t)

]
d− = d+ − σ

√
T − t,

St is the price of the asset at time t, K is the options strike, T is the maturity of the option, t is
the current time of pricing, and σ is the volatility parameter [6, Section 1.3 Page 3].

Now, given an observed call option price C(K,T ), the implied volatility for strike K and
maturity T is defined as the value σBS(K,T ) that solves [6, Equation 1.6 Page 3]

C(K,T ) = CBS
(
K,T, σBS(K,T )

)
.

This solution will be unique as the function CBS is strictly increasing in σ.
Implied volatilities are used to calculate the volatility surface of a certain asset within a specific

market. To construct such a surface, implied volatilities are calculated from a range of liquid
options traded in the market. These implied volatilities can then be plotted on a grid of maturity
against strike (or moneyness). These points can then be used to construct a surface, which can be
used to calibrate various volatility models, with certain models requiring a smooth arbitrage-free
surface for calibration, and others making do with a bare grid of points in space. The surface
is used for calibration, as for a model to generate prices consistent with those in the market, its
model-generated implied volatility surface must match the implied volatility surface of the market.

2.2.2 Features of the Implied Vol Surface

Certain features of the shape of the implied volatility surface are of particular interest within the
field of volatility modelling. A feature of the implied volatility surface that can be particularly
difficult for certain models to replicate is the term structure of the at-the-money (ATM) volatility
skew. To explore this feature, we first need to define the following:

Definition 2.2.1 (Volatility Skew). The volatility skew is the partial derivative of the implied
volatility with respect to strike

ϕ(k, T ) :=
∂

∂k
σBS(k, T ).

Definition 2.2.2 (Forward). Let St be the price of an asset at time t, whose dynamics follow
(2.2.1) under the risk-neutral measure Q. Then the forward at time t with maturity T , F (t, T ),
can be expressed as

F (t, T ) = EQ

[
St × exp(

∫ T

t

µsds)

∣∣∣∣∣Ft

]
= St × EQ

[
exp(

∫ T

t

µsds)

∣∣∣∣∣Ft

]
.

Furthermore, in the case that µt is a deterministic drift term, we can remove the integral from
the expectation, obtaining

F (t, T ) = St × exp(

∫ T

t

µsds)
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Definition 2.2.3 (At-The-Money (Forward) Volatility Skew). The ATM volatility skew, a function
of τ := T − t, is the partial derivative of the implied volatility with respect to strike, evaluated at

log-moneyness equal to zero, that is ln(M) := ln(F (t,T )
K ) = 0. The ATM (forward) volatility skew

is defined as:

ψ(τ) :=

∣∣∣∣∣ ∂∂kσBS(k, τ)

∣∣∣∣∣
ln(M)=0

.

With this at hand, we can plot the term structure of the ATM volatility skew. The term structure
of the ATM volatility skew is obtained by plotting the ATM forward skew against time to expiry
τ . These plots show how the gradient of the surface, with respect to log-moneyness, varies with
time to maturity.

Capturing the shape of the implied volatility surface at inception is important in order for
model-generated vanilla prices to be consistent with the market. Furthermore, it is important for
the model to deliver realistic implied volatility surfaces over time. In particular, when dealing with
exotic equity derivatives, many products, such as cliquets and autocallables are sensitive to the
dynamics of the implied volatility surface, thus proper dynamics of the model delivered implied
volatility surface are integral to ensure proper pricing and hedging.

2.3 Useful Products

As alluded to above, certain exotic equity derivatives require specific features from a volatility
model. As we shall soon see, the pricing of these products plays a large role in the motivation
behind the development of rough volatility models. Moreover, for the purpose of the Rough
Bergomi model, certain products are used to construct the forward variance curve which is taken
as an input for the model. With this in mind, we shall briefly introduce some of these products
products and their associated payoffs.

2.3.1 Cliquet Options

A cliquet options is an exotic option which consists of a series of consecutive forward starting
options. The first option within the cliquet is active at the inception of the product, and expires
at a pre-determined maturity. Upon the expiry of the first option, the holder of the cliquet, then
obtains a second option, with strike equal to the current price of the underlying. At the expiry
of the second option, a third options contract is entered into, again with the strike being equal to
the current asset value at the time of the second options expiration. The exact number of options
and their payoffs vary depending on the exact specification of the cliquet product. In general,
cliquet products can be thought of as a series of ATM options, which are pre-purchased, and which
become active in turn.

The payoff structure of cliquet options makes them very sensitive to the dynamics of the implied
volatility surface. As the holder of the option receives an option at a future time, the value of this
option will be linked to the future implied volatility surface. Furthermore, the ATM forward skew
is of particular importance, as the forward-starting options within a cliquet are typically ATM
options. As a result of this dependence on the forward skew and forward volatility, two market
models, which are both consistent with vanilla options prices at inception, can price cliquet style
product very differently, if they produce different dynamics for the implied volatility surface.

2.3.2 Variance Swaps

A variance swap (VS) is a product that allows a market participant to directly expose themselves
to the volatility of an asset. A VS involves two participants, with one side paying out the realised
variance of an underlying, and the other paying out a predetermined strike, quoted at the inception
of the swap. The strike of a variance swap is typically chosen to be the ’fair-strike’ of the swap,
which is that strike such that the initial value of the VS is zero. A VS is settled at the maturity
of the swap, with one side receiving (RVar0,T −KVar), and the other (KVar−RVar0,T ). Although
variance swaps are products of realised variance, the fair strike of a variance swap is usually quoted
in terms of volatility.

In the context of a VS, the realised variance of an asset is usually the annualised realised
variance.

10



Definition 2.3.1 (Annualised Realised Variance). Consider a underlying asset with price process
(St)t≥0, observed at the close of trading each day for n trading days, over a period [0, T ], with
0 = t0 < . . . , < tn = T . Then, the annualised realised variance over the n trading days is

RVar0,T :=
d

n

n∑
i=1

[
log

(
Sti

Sti−1

)]2
, (2.3.1)

where d is the number of trading days per year, usually taken to be fixed as d = 252.

Now, denote by V T
t the price of a variance swap with maturity T , viewed at time t. Then under

Q we have that
V T
t = EQ

t [RVar0,T ] .

Variance Swaps are useful as the fair strikes of variance swaps within a market allow us to
determine a forward variance curve. We shall expand on this idea later when we study the Bergomi
and Rough Bergomi models, as the forward variance curve plays a key role in the dynamics of these
models.
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Chapter 3

Motivation

In this chapter we will explore some of the motivation behind the recent development of rough
volatility models. We will primarily delve into some of the shortcomings of traditional volatility
models, before also addressing certain features of the implied volatility surface that are problematic
to fit.

Exotic derivative instruments are becoming increasingly popular financial instrument, and thus
the pricing and risk management of such instruments has grown in importance within banks and
other institutions. Exotic derivatives are hedged by using vanilla options as hedging instruments,
in doing so the hedger lowers their exposure to realised volatility. However, the hedger acquires an
exposure to the dynamics of the implied volatilities, as the value of their hedging instruments now
depends upon these implied volatilities. Volatility models for exotic derivatives are therefore built
with the aim of properly simulating the implied volatilities of vanilla options in a market, rather
than to model the actual dynamics of realised volatility [7, Section 1.3 Page 18]

In order for a volatility model to properly simulate these implied volatilities, we need the model
to both fit the market implied volatility surface at inception, and to predict realistic dynamics for
the surface over time. We will begin by examining commonly used volatility models and assessing
their strengths and limitations with regard to these criteria.

3.1 The Black-Scholes Model

In the Black-Scholes model, the underlying asset follows a Geometric Brownian motion. That is,
given a probability space (Ω,F ,P) supporting a one-dimensional Brownian motion (Wt)t≥0. The
asset price process (St)t≥0 is the unique strong solution to the following SDE:

dSt = rStdt+ σStdWt, S0 > 0, (3.1.1)

where r > 0 is a constant risk-free interest rate and σ > 0 is a constant instantaneous volatility.
While the Black-Scholes model is elegant, it does not perform well in practice. Crucially, by
modelling the volatility as a deterministic constant the Black-Scholes model delivers a flat implied
volatility surface. The volatility surface delivered by the Black-Scholes model fails to capture any
of the volatility smile or volatility skew that we see in market implied volatility surfaces, as the
volatility of the Black-Scholes model varies neither with time, nor moneyness. As a reult of this,
option prices generated by the Black-Scholes model are inconsistent with most market-observed
prices [6, Section 1 Page 1]. Though the Black-Scholes model is still widely used in certain areas
of derivatives pricing, most notably to calculate the implied volatility of a particular option’s
market price, it has little to no place within the modelling of exotic products. Volatility is not
deterministic, it is itself a stochastic process and should be modelled as such.

3.2 Local Volatility

The simplest and most widely used class of stochastic volatility model are local volatility models
[7, Section 2.1 Page 25]. In a local volatility model, the local volatility σ(St, t) is a deterministic
function of the t and St. Local volatility is a ’stochastic volatility model’, as the volatility depends
on the spot price of the asset, which is itself stochastic. Local volatility was introduced as an
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extension of the Black-Scholes model, which can easily be calibrated to the entire implied volatility
surface at inception [7, Section 2.1 Page 25].

In a local volatility model, we have the following SDE for St :

dSt = (r − q)Stdt+ σ(t, St)StdWt (3.2.1)

, where we now choose to include the effect of the borrow rate q. The dynamics of the asset within
a local volatility model are synonymous with the Black-Scholes model, with the adjustment that
σ(t, s) replaces σ. Consequently, the pricing equation of a vanilla option is identical to that of the
Black-Scholes model, with the aforementioned adjustment to the volatility term. Thus, we have :

dp

dt
+ (r − q)S

dP

dS
+
σ(t, S)2

2
S2 d

2P

dS2
= rP [7, Equation 2.3 Page 26]. (3.2.2)

From (3.2.2), given a choice of local volatility function σ(t, S), we can price a vanilla option by
setting P (t = T, S) equal to the terminal payoff of the option, and then solving (3.2.2) backwards
from T to t, to obtain P (t, S) [7, Section 2.1.1 Page 26].

The local volatility function is chosen to match the implied volatility surface generated by the
market prices of vanilla options of the desired underlying. The specification of the local volatility
function is obtained through the use of market vanilla options prices and the Dupire Formulae,
formulated by Bruno Dupire.

Theorem 3.2.1. Let St follow (3.2.1), and C(K,T ) denote the price of a European Call option
with strike K and maturity T , then

σ(t, S)2 = 2
dC
dT + qC + (r − q)K dC

dK

K2 d2C
dK2

∣∣∣∣∣
K=S,T=t

[7, Equation 2.3 Page 26]. (3.2.3)

Proof. A proof of 3.2.1 can be found in Section 2.2.1 of Lorenzo Bergomis book ’Stochastic Volatility
modelling’ [7, Section 2.2.1 Page 27].

The characteristic feature of these models is that they have the ability to perfectly match any
market-implied volatility surface provided that it is free of arbitrage. Unfortunately, the simplicity
of the model comes as a price, with the model producing dynamics of the implied volatility surface
that are highly unrealistic. The dynamics of the implied volatility surface generated by a local
volatility model are entirely determined by the implied volatility surface it is fit to at inception. The
model delivers implied volatility surfaces that change shape substantially as time passes, notably
lacking a persistent skew. The surfaces generated by local volatility models do not fulfil a stylised
fact of implied volatility surfaces, that although the level and orientation of the implied volatility
surface may vary over time, the general shape itself is rather time invariant [1, Section 1.3 Page4].
While this model is still widely used, especially for products that are not sensitive to the dynamics
of the implied volatility surface, it is seldom used for products that are sensitive to these dynamics.

3.3 Other Stochastic Volatility Models

As volatility is not deterministic and is in fact stochastic, it is natural to attempt to model the
volatility process of an asset, as a stochastic process. Stochastic volatility models attempt to
capture the stochastic nature of volatility, by modelling the volatility process as a continuous
Brownian semi-martingale [1, Section 1.1 Page 2]. Many different variations of stochastic volatility
models have been developed and utilised, including the Heston Model, the Hull and White Model,
and the Bergomi model.

3.3.1 Heston Model

The Heston model in particular is popular due to its tractability, given that the model presents a
semi closed-form solution for the price of European call options. The Heston model, first published
by Steven Heston in 1993 [8], relaxes the assumption of constant volatility, present in the Black-
Scholes model, and instead utilises an instantaneous stochastic variance process. The asset and
variance processes in the Heston model adhere to the following SDEs,
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dSt = rStdt+ St

√
VtdW

S
t , S0 = s ≥ 0,

dVt = κ(θ − Vt)dt+ ν
√
VtdW

V
t , V0 = v0 ≥ 0,

d⟨WS ,WV ⟩t = ρdt,

where St represents the price of the asset at time t, Vt is the instantaneous variance at time t,
r is the risk-free rate of return, θ the long term average variance, κ the speed of mean version,
and ν the volatility of the variance process. Furthermore, WV

t and WS
t are two Brownian motions

under the risk-neutral measure Q, correlated with instantaneous correlation ρ [9, Chapter 2 Page
681]. The Heston model explicitly models the variance process as a mean-reverting process, which
is consistent with stylised facts of realised variance of financial assets.

The Heston model is able to capture a wide range of smile and skew patterns, with its 4
parameters [10, Section 1 Page 3], however, the model is unable to fit a wide range of volatility
surfaces with a degree of fit comparative to local volatility models.

More generally, stochastic volatility models are praised for their ability to deliver implied volatil-
ity surfaces with more realistic dynamics, in particular, delivering surfaces that retain their general
shape as time passes. However, they often struggle to fully fit the market-implied volatility surface
at inception. As a consequence of this, the prices for vanillas generated will not be consistent
with the market, and thus hedges and subsequently prices of exotic options will not be modelled
correctly. Moreover, stochastic volatility models are often unable to capture the steepness of the
term structure of the ATM forward skew, for short expiry’s [1, Section 1.3 Page 4].

3.4 Term Structure of the ATM Forward Skew

When assessing the goodness of fit of a stochastic volatility model to the market-implied volatility
surface, we often focus on the fit of model-generated volatility smiles or volatility skews. The
term structure of ATM skew is a particular feature that has proven to be intimately related to the
underlying volatility dynamics [2, Section 1 Page 3], while also being notoriously hard to fit.

Figure 3.1: Plot of the term structure of ATM skew for the S&P 500 Index, as of June 20, 2013.
The black dots are non-parametric estimates of the S&P ATM volatility skews, the red curve is a
power-law fit ψ(τ) = Aτ−0.4 [1, Figure 1.2 Page 5]

.

Figure 3.1 from the paper ’Volatility is Rough’ [1, Figure 1.2 Page 5] shows a typical shape of
the term structure of the ATM skew, for equity volatility surfaces. We can observe that a power-law
function of time to expiry τ provides a good approximation of the term structure, and in particular
is able to capture the ’explosion’ of skew as time to expiry approaches 0. Unfortunately, traditional
stochastic volatility models, with a Brownian motion driving their variance processes, have as of
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yet been largely unable to capture this rapid increase in ATM Skew as time to expiry approaches
0. Traditional stochastic volatility models usually generate a term structure that is ”constant for
small τ , and behaves as a sum of decaying exponentials for larger τ” [1, Section 1.3 Page 5]. The
term structures generated by these models are unlike those we see within the market.

Interestingly, an analysis by Fukasawa [11, Section 3.3 Page 647], showed that a stochastic
volatility model driven by a fractional Brownian motion with Hurst parameter H, generates an
ATM forward volatility skew of the form ψ(τ) ∼ τH− 1

2 , for small τ . Thus, a term structure gener-
ated by such a model for very small H could potentially fit the empirical term structure well, as it
replicates the power-law behaviour we see. This also provides evidence to dispute the belief that
the explosion in skew observed as τ → 0 requires a model with the presence of jumps.

From our analysis, we can see that neither local volatility nor traditional stochastic volatility
models are able to simultaneously deliver realistic dynamics for the implied volatility surface,
while also providing a satisfactory fit to the shape of the surface. Models such as Local-Stochastic
Volatility have been proposed as a way to remedy this issue, these usually consist of a stochastic
volatility model with a local volatility add-on, allowing the model to fit the surface perfectly while
delivering appropriate dynamics. However, another approach is to search outside the realm of
traditional Brownian motion-based stochastic volatility models. In particular recent work from
Jim Gatheral and other prominent members in the field of quantitative finance have suggested
that perhaps a traditional Brownian motion is not the correct driver for the volatility process.
With this in mind, perhaps a model driven by a fractional Brownian motion could be the solution.
This idea was the main motivation for the development of rough volatility models.

We conclude for now this overview of the motivation for rough volatility models. We will, in
Chapter 5, present a final motivating factor. However, we now turn our attention to fractional
Brownian motion and the theory surrounding it.
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Chapter 4

Fractional Brownian motion

Fractional Brownian motion is the process driving fractional stochastic volatility models, a class
of models that includes rough volatility models. In this chapter, we will delve into the theory of
fractional Brownian motion. We begin with the definition of a fractional Brownian motion and
then explore various characteristics and representations of fractional Brownian motion and some
related processes.

4.1 Definition and Elementary Properties

Fractional Brownian motion was first introduced by Kolmogorov in 1940, and serves as a gener-
alisation of the standard Brownian motion. It is widely used within financial mathematics (see
[1],[2]), physics (see [12]), and network research (see [13]) among other areas, primarily as a model
for both short-range and long-range dependence, or for systems involving Gaussian noise, where a
standard Brownian motion will not suffice.

When considering fractional Brownian motion (fBm) we shall adopt the convention laid out by
Picard in [14] and refer to both type 1 and type 2 fractional Brownian motions in turn. However,
unless explicitly stated otherwise, any reference to ’fractional Brownian motion’ refers to a type 1
fBm, as this is the prevailing ’standard’ type.

Definition 4.1.1 (Gaussian process). A process X = {Xt, t ∈ R≥0} is said to be Gaussian if for
any t1, . . . , tn ∈ R≥0, we have that Xt1 , . . . , Xtn has a multivariate Normal distribution. Xt is
called a centred Gaussian process if E(Xt) = 0 for all t ≥ 0.

Definition 4.1.2 (Fractional Brownian motion). Let (Ω,F , P ) be a complete probability space.
The (type 1) fBm with Hurst parameter/index H ∈ (0, 1) is the centred Gaussian process BH ={
BH

t , t ∈ R
}
on (Ω,F , P ), having the following properties [15, Section 1.2 Page 7]

(i) BH
0 = 0,

(ii) E
(
BH

t

)
= 0, t ∈ R,

(iii) E
(
BH

t B
H
s

)
= 1

2

(
|t|2H + |s|2H − |t− s|2H

)
, s, t ∈ R.

Remark 4.1.3. In order to specify the distribution of a Gaussian process, it is sufficient to specify
its mean and covariance function, this fact will be used to prove some of the properties of a type
1 fBm. Furthermore, as type 1 fBm is a Gaussian process, we have that, for each fixed H, the
distribution of BH is uniquely determined by the definition of type 1 fBm. However, this does not
guarantee the existence of the fBm. In order to show the fBm exists we need to show that the
covariance function is non-negative definite [3, Section 2.2 Page 2]

Remark 4.1.4. In the case of H = 1
2 , the covariance function is E

(
B

1
2
t B

1
2
s

)
= t ∧ s, therefore

B
1
2 = W is a ”standard Brownian motion”, otherwise known as a Wiener process. Thus, we can

see that fBm is simply a generalisation of the widely used Wiener process, where the increments
of the process are permitted to no longer be independent of each other. Moreover, we must note
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that for H ̸= 1
2 , B

H is neither a martingale nor a Markov process, and it is not a semimartingale
(we shall return to this fact later).

From (iii) of definition 4.1.2, we can obtain the following representation for the covariance
structure of the increments of fBm,

E
[(
BH

t1 −BH
s1

) (
BH

t2 −BH
s2

)]
=

1

2

(
|t1 − s2|2H + |t2 − s1|2H − |t2 − t1|2H − |s2 − s1|2H

)
. (4.1.1)

We will proceed to show some elementary properties of the (type 1) fBm.

4.1.1 Self-Similarity

Definition 4.1.5 (Self-similarity). Let b ≥ 0. Then, a stochastic process X = {Xt, t ∈ R≥0} is
called b-self-similar if for any a ≥ 0

{Xat, t ∈ R≥0}
d
=
{
abXt, t ∈ R≥0

}
with d referring to finite-dimensional distributions [15, Section 1.2.5 Page 7]. We can represent
this definition concisely by writing

Xat ≃ abXt.

To put it in less formal words, a self-similar stochastic process is one that has a probability
distribution that is invariant under suitable scaling in time and space.

Proposition 4.1.6. Type 1 fBm is H-self-similar.

Proof. Consider for fixed a ≥ 0, the process Zt = BH
at. Now using the definition of type 1 fBm, we

have that

Cov(Zt) = E
(
BH

atB
H
as

)
=

1

2

(
|at|2H + |as|2H − |a(t− s)|2H

)
=
a2H

2

(
|t|2H + |s|2H − |t− s|2H

)
= Cov(aHBH

t ).

Then as Zt = BH
at and a

HBH
t have the same covariance structure and expectation, they are equal

in distribution. Thus we have that BH
t is H-self-similar.

4.1.2 Stationary Increments

Definition 4.1.7. A stochastic process X = {Xt, t ∈ R≥0} is said to have stationary increments
if for any s, t ∈ R

(Xt+s −Xs)
d
= Xt.

We think of a stochastic process with stationary increments as processes where the probability
distributions of its increments are invariant under a shift in time.

Proposition 4.1.8. Type 1 fBm has stationary increments.

Proof. From the definition of type 1 fBm we have that

E
((
BH

t −BH
s

)2)
= E

((
BH

t

)2)
+ E

((
BH

s

)2)− 2E
(
BH

s B
H
t

)
= t2H + s2H −

(
t2H + s2H − |t− s|2H

)
= |t− s|2H

so BH
t −BH

s ∼ N
(
0, |t− s|2H

)
. Therefore, BH has stationary increments.

Remark 4.1.9. BH is not itself stationary, though it does have stationary increments.
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4.1.3 Dependence of Increments

In this subsection will will show some properties of the dependence of the increments of fBm, and
also exhibit when the fBm has long-range dependence (long-memory).

Consider the following discrete-time Gaussian process Xn = BH
n − BH

n−1, n ∈ N, known as
a fractional Gaussian noise, a generalisation of a traditional white noise corresponding to the
case where H = 1

2 . Here Xk is a sequence of N(0, 1) random variables that are not neccesarily
independent of one another.

If we consider ρn = E (Xk+nXk), we can observe that it depends only on n, and not k. We
have that

ρn = E (Xk+nXk) = E
((
WH

k+n −WH
k+n−1

) (
WH

k −WH
k−1

))
= RH(k + n, k) +RH(k + n− 1, k − 1)−RH(k + n, k − 1)−RH(k + n− 1, k)

=
1

2

[
(n+ 1)2H − n2H −

(
n2H − (n− 1)2H

)]
.

Remark 4.1.10. Consider the function g(n) = n2H , which is convex when H ∈ ( 12 , 1), and
concave when H ∈ (0, 12 ). Then, we can see that E (Xk+nXk) > 0 for H ∈

(
1
2 , 1
)
. In this case we

see thatXk+n andXk will be positively correlated, and we say that the process displays persistence.
Conversely, for H ∈ (0, 12 ) we see that E (Xk+nXk) < 0, and thus Xk+n and Xk are negatively
correlated, and we say that the process displays anti-persistence.

Now using Taylor’s theorem, with a small ϵ = 1
n we can re-write ρn as follows

ρn =
1

2
n2H

[(
1 +

1

n

)2H

+

(
1− 1

n

)2H

− 1− 1

]

=
1

2
n2H

[
2H

1

n
+

1

2
· 2H(2H − 1)

1

n2
− 2H

1

n
+

1

2
· 2H(2H − 1)

1

n2

]
∼ H(2H − 1)n2H−2 (n→ ∞)

= 2αHn2α−1.

This is one way to derive the autocovariance function of the fractional Gaussian noise. Let us now
consider an alternative derivation, presented by Mishura [15, Section 1.3 Page 8].

Consider H ∈
(
0, 12

)
∪
(
1
2 , 1
)
and t1 < t2 < t3 < t4, then, it can be shown from (4.1.1) for

α = H − 1/2 that

E
(
BH

t4 −BH
t3

) (
BH

t2 −BH
t1

)
= 2αH

∫ t2

t1

∫ t4

t3

(u− v)2α−1dudv [15, Section 1.3 Page 8].

From this, we can again see that the increments of fBm are positively correlated for H ∈
(
1
2 , 1
)

and negatively correlated for H ∈
(
0, 12

)
.

Then, taking t1 = 0, t2 = 1, t3 = n, and t4 = n + 1, for any n ∈ Z\{0}, we have that the
autocovariance function is given by

ρn := E
[
BH

1

(
BH

n+1 −BH
n

)]
= 2αH

∫ 1

0

∫ n+1

n

(u− v)2α−1dudv

∼ 2αHn2α−1, n→ ∞ [15, Section 1.3 Page 8].

With this expression for ρn at hand, we can see the long-range dependence properties of fBm.

• If H ∈
(
1
2 , 1
)
, then

∑∞
n=1 |ρn| ∼

∑
n∈Z\{0} |n|2α−1 = ∞. This is what is known as long-range

dependence (long-memory).

• If H ∈
(
0, 12

)
, then

∑
n∈Z |ρn| ∼

∑
n∈Z\{0} |n|2α−1 < ∞. In this case, the fBm does not

exhibit long-range dependence.
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4.1.4 Additional Properties

As alluded to earlier, a key property of fBm is that it is not a semimartingale. This is a particularly
important property, as it prevents us from utilising regular Itô calculus when handling fBm.

To prove this fact, we first recall the definition of a semimartingale.

Definition 4.1.11 (Semimartingale). A process X = Xt, t ≥ 0 with associated filtration Ft is
called a semimartingale if it admits the following representation:

Xt = X0 +Mt + Yt,

where X0 is F0-measurable, M is a Ft-local martingale with M0 = 0, and Yt is a process of
locally bounded variation.

Lemma 4.1.12. A semimartingale Xt has bounded quadratic variation.

With this at hand, we can address the non-semimartingale property of fBm.

Theorem 4.1.13. Let BH
t be a fBm with Hurst index H ∈ (0, 1). Then, for H ̸= 1

2 , B
H
t is not a

semimartingale.

Proof. Consider the interval [0, T ], for T > 0, and let BH
t be a fBm with Hurst index H defined on

said interval. Furthermore, let πn(T ) :=
{
tnk = kT

n |0 ≤ k ≤ n
}
, n ∈ N be a sequence of equidistant

partitions of [0, T ].
For p ≥ 1 the p-variation of BH

t is

Vp(B) = lim
n→∞

vp(B
H , πn(T )),

where

vp(B
H , πn(T ) :=

n−1∑
k=0

|Btnk+1
−Btnk

|p.

Now, we present the next two formulae without proof. Using the self-similarity of BH
t , we have

that

vp(B
H , πn(T ))

d
=

n−1∑
k=0

1

n

pH−1

T pH
|Btnk+1

−Btnk
|p

n
[16, Section 2.2 Page 3].

And from this we have that

Vp(B) =


+∞ if H < 1

p

T · EP
(∣∣BH

1

∣∣) 1
H if H = 1

p

0 if H > 1
p

[16, Section 2.2 Page 3]. (4.1.2)

The proof of the previous two relations requires the use of the Ergodic Theorem, and an under-
standing of Ergodic theory. For this reason, we have omitted these interim steps in the proof. A
full proof can be found in Jost [16, Section 2.2 Page 3].

Now, we shall proceed using the fact that if p < q, then Vq ≤ Vp.
We first consider the case where H < 1

2 . Choosing p > 2, from (4.1.2), we see the p-variation of
BH is infinite when H < 1

p . This implies, in particular, that the quadratic (p=2) variation of BH

must be infinite. Hence the quadratic variation of BH is unbounded, and thus by Lemma 4.1.12
BH is not a semimartingale.

Now, turning to the case that H > 1
2 , we begin by assuming that the quadratic variation of

BH is finite. Then, taking p ∈ ( 1
H , 2) so that H > 1

p , and using (4.1.2), we see that the p-variation

of BH is 0. Therefore for any p ≥ 2, the p-variation must be 0, and thus BH has a quadratic
variation of 0.

As BH has a quadratic variation of 0, it must be a process of finite variation. However, if we
now take p ∈ (1, 1

H ) such that H < 1
p , we see that the p-variation of BH is infinite, and thus BH

t

cannot have finite quadratic variation, thus we have a contradiction. Therefore our assumption
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was false, and BH must have unbounded quadratic variation. Then, again using Lemma 4.1.12 we
have that BH is not a semimartingale.

4.2 Hölder Continuity

Traditional Brownian motion and fBm are part of a group of processes which are said to have
’rough paths’. These processes have paths that are continuous, but nowhere differentiable. When
dealing with such processes of varying levels of continuity and smoothness, a crucial tool we can
use is the notion of Hölder continuity. Hölder continuity is a property that a process or function
can posses if it fulfils the Hölder condition.

Definition 4.2.1 (Hölder Condition). Let f : Rn → Rn be a function such that for real constants
C ≥ 0, a ∈ (0, 1), we have

|f(x)− f(y)| ≤ C||x− y||α (Hölder Condition)

for all x and y in the domain of f . Then, f satisfies the Hölder condition with exponent α, and
we say that f is α-Hölder continuous[17, Section 15.1 Page 143]. We note that when α = 1 this is
equivalent to the Lipschitz condition.

With this notion in mind, we can proceed to define Hölder spaces.

Definition 4.2.2 (Hölder Space). Let Ω be an open set in Rn and 0 < α < 1. A function
f : Ω → Rn is uniformly Hölder continuous with exponent α in Ω if

[f ]α,Ω = sup
x,y∈Ω
x ̸=y

|f(x)− f(y)|
|x− y|α

is finite [18, Section 2.1 Page 283]. A function f : Ω → R is locally uniformly Hölder continuous
with exponent α in Ω if [f ]α,Ω′ is finite for every Ω′ ⋐ Ω. We denote by C0,α(Ω) the space of
locally uniformly Hölder continuous functions with exponent α in Ω[18, Section 2.1 Page 283],
which we call a Hölder space. If Ω is bounded, we denote by C0,α(Ω̄) the space of uniformly
Hölder continuous functions with exponent α in Ω. We will often use the shorthand notation Cα

to refer to C0,α(Ω̄) .

With these definitions at hand, we can investigate the continuity of fBm.

4.2.1 Continuity of Fractional Brownian Motion

Of the methods to derive the Hölder continuity of type-1 fBm, the most popular method is to
utilise the following theorem.

Theorem 4.2.3 (Kolmogorov-Chentsov Continuity Theorem). Let {Xt, t ≥ 0} be a Stochastic
process. If for Xt there exist such K > 0, p > 0, β > 0 such that for all t ≥ 0, s ≥ 0

E [|Xt −Xs|p] ≤ K|t− s|1+β

Then the process X has a continuous modification. That is a process
{
X̃t, t ≥ 0

}
with the

same index set, state space and probability space as X, such that X̃ ∈ C[0,∞) and for all t ≥
0,P

(
Xt = X̃t

)
= 1. Furthermore, for any α ∈ (0, β/p) and T > 0 the process X̃ is α-Hölder

continuous on [0, T ] [19, Section 2.8 Page 53].

With this theorem in mind, we can determine the continuity of type 1 fBm.

Proposition 4.2.4. The type 1 fBm BH has a continuous modification. Furthermore, this modi-
fication is locally α-Hölder continuous for all α ∈ (0, H).
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Proof. For a type 1 fBm, we have that

E
∣∣BH

t −BH
s |p
]
= |t− s|pHE

[
|BH

1 |
]

thus taking a fixed p := 1+R
H fo0r a fixed constant R, K = E

[
|BH

1 |p
]
, and β = pH − 1 = R, we

fulfil the Kolmogorov-Chentsov Continuity Theorem. Therefore BH has an α-Hölder continuous
modification for all

α <
β

p
= H

R

1 +R
,

and as R is arbitrary we can obtain a modification for Hölder exponent α < H.

As type 1 fBm has a modification which is α-Hölder continuous for α ∈ (0, H), we shall always
choose to use this modification, and this will be the default from now onward.

Lemma 4.2.5. Let H ∈ (0, 1). Then the type 1 fBm BH
t has sample paths that are almost surely

Holder continuous up to order H − ϵ, for arbitrarily small ϵ.

4.3 Hurst Index

We can now consolidate the information we have gained as to the effect of the Hurst index on fBm.
The Hurst index controls the following:

1 Dependence Structure - The Hurst index controls the dependence structure of the incre-
ments of fBm. For H < 1

2 we have that the increments of BH are negatively correlated, and
conversely for H > 1

2 we have that the increments are positively correlated. Finally, in the
case that H = 1

2 , B
H is a ”standard Brownian motion” and the increments are independent.

2 Memory For H > 1
2 , B

H has long-range dependence (long-memory).

3 Smoothness The paths of BH are almost surely α-Hölder continuous for α < H.

From Figure 4.1 we can see a visual demonstration of how H affects the smoothness of the
paths of fBm.

4.4 Integral Representations

It is often useful to be able to represent BH as a linear function of a Wiener process. In order to
do this we search for appropriate kernel functions kH(t, s) such that the Wiener-Itô integral

BH
t =

∫
kH(t, s)dWs (4.4.1)

is a fBm with Hurst parameter H.

In this section, we will show some representations of type 1 fBm, in terms of integrals of a
standard Brownian motion, or in terms of a Gaussian measure. We must first recall the Gamma
function which will be utilised in the representations to come.

Definition 4.4.1 (Gamma Function). For the purposes of this paper, we only need to consider
the Gamma function on R. The gamma function, Γ(z) : R → R, is defined as follows

Γ(z) =

∫ ∞

0

e−ttz−1dt [20, Equation 5.2.1] (4.4.2)

Lemma 4.4.2. For z ∈ R,
Γ(z + 1) = zΓ(z). (4.4.3)
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Figure 4.1: Paths of fBm for varying value of H [3, Figure 1 Page 5].

Proof. Starting from the definition (4.4.2) and then using integration by parts we have

Γ(z + 1) =

∫ ∞

0

e−ttzdt

= −e−ttz
∣∣∣t=∞

t=0
+ z

∫ ∞

0

e−ttz−1dt

= zΓ(z).

Lemma 4.4.3.

Γ(n+ 1) = n!, n = 0, 1, 2, . . . . (4.4.4)

Proof. It is clear from (4.4.2) that Γ(1) = 1. Using this and (4.4.3) we can use mathematical
induction to obtain the desired expression.

Before we begin exploring various integral representations of fBm, we will introduce the idea of
a canonical representation. An integral representation of the form (4.4.1), is denoted as canonical
if Ft

(
BH
)
= Ft (W ). Therefore, a canonical representation is one in which the final generated

process and the process driving the integral generate the same filtration, and can be said to be
deduced from one another. We can also think of a canonical representation as one where BH

t

depends on past valuesWs for s ≤ t, or equivalently that the infinitesimal increment dBH
t depends

on past increments dWs for s ≤ t [14, Section 1 Page 3]. We often seek canonical representations,
and they are often found by restricting t to a subset of R. Moreover, we often choose to restrict t
in this way so that in order to produce our process BH on an interval [0, T ], we only require values
of W on the same interval.
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4.4.1 Riemann-Liouville operators

The Riemann-Liouville operators Iα± are important tools for the stochastic calculus of fBm. These
operators can be defined for any real index α.

Operators with finite horizon

Definition 4.4.4. For τ ∈ R and α > 0, the Riemann-Liouville operators are defined as

Iατ+f(t) =
1

Γ(α)

∫ t

τ

(t− s)α−1f(s)ds, Iατ−f(t) =
1

Γ(α)

∫ τ

t

(s− t)α−1f(s)ds,

respectively for t > τ and t < τ [14, Section 2.2.1 Page 10].

Remark 4.4.5. These Riemann-Liouville operators are fractional integral operators, where α
represents what order of integral we are taking. Fractional integral operators are fractional-order
generalisations of regular integral operators. In the case that α = 1 we are simply calculating the
anti-derivative, with a constant factor in front, in this case we simply have a standard integral
operator. Fractional integral operators are one way of defining what 1

2 an integral is, i.e what
is inbetween a function and its anti-derivative. Furthermore, if we take α = 2, we are in effect
integrating our function twice. The Riemann-Liouville operators are part of a broader class of
generalised fractional operators, for a more in-depth introduction to them see [21, Definition 1.1
Page 3].

Operators with infinite horizon

In the case of integral representations of fractional Brownian motion, we often utilise an infinite
time horizon.

The infinite time horizon Riemann-Liouville operators Iα± are defined by letting τ → ∓∞ in
Iατ±. However, we are often more interested in the modified operators, defined by

Ĩα±f(t) = Iα±f(t)− Iα±f(0) = lim
τ→∓∞

(
Iατ±f(t)− Iατ±f(0)

)
when the limit exists [14, Section 2.2.2 Page 14].

4.4.2 The Mandelbrot-Van Ness Representation

Recall that the two-sided Wiener process is the Gaussian process with independent increments
satisfying E(Wt) = 0 and E(WtWs) = s ∧ t, s, t ∈ R.

In 1968 Mandelbrot and Van Ness [22] derived an expression for the two-sided fBm, in terms
of the two-sided Wiener process.

Theorem 4.4.6 (Mandelbrot & Van Ness, 1968). Let W = {Wt, t ∈ R} be the two-sided Wiener
process, and let kH(t, u) := (t−u)α+−(−u)α+, where α = H− 1

2 . Then the process B̄H =
{
B̄H

t , t ∈ R
}

defined by

B̄H
t := CH

∫
R
kH(t, u)dWu, H ∈

(
0,

1

2

)
∪
(
1

2
, 1

)

where CH =

(∫
R+

((1 + s)α − sα)
2
ds+

1

2H

)− 1
2

=
(2H sin(πH)Γ(2H))1/2

Γ(H + 1/2)
,

has a continuous modification which is a normalized two-sided fBm [15, Theorem 1.3.1 Page 9].

Proof. This shortened proof is based on the proof by Mishura [15, Theorem 1.3.1 Page 9].
The two-sided Wiener process is a Gaussian process, and therefore B̄H being an integral of the

kernel function with respect to a Gaussian process, is also a Gaussian process. Furthermore, we
can see that B̄H

0 = 0 and E(B̄H
t ) = 0. Therefore, B̄H is a centred Gaussian process.

Now, to show that B̄H has stationary increments, we rely on the fact that the Wiener process
has stationary and independent increments. Taking a constant s > 0, we calculate an increment
of our process B̄H
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(
B̄H

t − B̄H
s

)
=

(
CH

∫
R

(
(t− u)α+ − (s− u)α+

)
dWu

)
=

(
CH

∫
R

(
(t− s− v)α+ − (−v)α+

)
dWv+s

)
d
=

(
CH

∫
R

(
(t− s− v)α+ − (−v)α+

)
dWv

)
=
(
B̄H

t−s

)
.

Therefore, B̄H has stationary increments. Now it remains to show that B̄H is a type 1 fBm, by
showing that it possesses the defining covariance structure from Definition 4.1.2.

Take t ∈ R\{0}, then by substituting y := s
t for t > 0 and y := 1− s

t for t < 0 that

E
(
ZH
t

)2
= (CH)

2
∫
R

(
(t− s)α+ − (−s)α+

)2
ds

= (CH)
2 |t|2H

∫
R

(
(1− y)α+ − (−y)α+

)2
dy

= (CH)
2 |t|2H

(∫ 0

−∞
((1− y)α − (−y)α)2 dy +

∫ 1

0

(1− y)2αdy

)
= |t|2H

Finally, combining the above facts we can deduce that

E
(
B̄H

s , B̄
H
t

)
=

1

2

(
EP
(
B̄H

s

)2
+ EP

(
B̄H

t

)2 − EP
(
B̄H

s − B̄H
t

)2)
=

1

2

(
|s|2H + |t|2H − |t− s|2H

)
, s, t ∈ R.

And therefore B̄H is a type 1 fBm.

Remark 4.4.7. The Mandelbrot-Van Ness representation is popular, due to the simplicity of
the Kernel function. Unfortunately, the natural filtrations of the Wiener process driving the
representation, and the resulting type 1 fBm do not coincide. Therefore, it is a non-canonical
representation, reducing its usefulness in certain applications [16, Section 3.5.2 Page 8].

Remark 4.4.8. The kernel function kH(t, s) used in the Mandelbrot-Van Ness representation is
not a proper convolution kernel, as it has an additional term preventing it from being written in
the form kH(t− s). The search for an integral representation of fBm with a convolution kernel will
lead us to type 2 fBm.

The Mandelbrot-Van Ness representation can be generalised to the following representation

BH
t = κ

∫ +∞

−∞

(
(t− s)

H−1/2
+ − (−s)H−1/2

+

)
dWs

for κ a positive parameter depending only on the value of H. Given a fixed H, κ is merely
a constant scaling the process. It is easy to show that, like above the resulting process is a fBm.
As we work through the literature, we will see many different constant (given a fixed H) terms
utilisied in various expressions.

We shall now, as done by Mandelbrot and Van-Ness in [22], consider the case of

κ = κ(H) = 1/Γ(H + 1/2).

This choice was made to ensure that the variance of the process at time t = 1 is equal to the
following

Var(BH
1 ) = ν(H) = −2

cos(πH)

π
Γ(−2H), ν(1/2) = 1 [14, Section 4.1 Page 23].

This choice of κ also allows us to present the following result, using the infinite horizon modified
Riemann-Liouville operators
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Lemma 4.4.9. The Mandelbrot-Van Ness representation of fBm, with κ = 1/Γ(H + 1/2) can be
written as

BH = Ĩ
H−1/2
+ W [14, Theorem 4.1 Page 23]. (4.4.5)

Proof. A full proof can be found on Page 23 of ’Representation formulae for the Fractional Brownian
motion’ by Jean Picard [14, Theorem 4.1 Page 23]. It has been omitted here for brevity.

A useful property of expression (4.4.5) is that it can be restricted to R−, therefore in order to
know the path of BH on R−, we only need to know the path of W on R−. While this is useful
theoretically, for most purposes we are mainly concerned with positive time indexing, thus we
would hope we have a similar relation on R+. Unfortunately, (4.4.5) cannot be restricted to R+

[14, Section 4.1 Page 23]. If we desire knowledge of the paths of BH on R+, we need to know W
on the entire real line R. An attempt to circumvent this issue can be to reverse the time index
(t → −t) of all the processes. This reversal, allows us to obtain the following backward formulae
on R+

BH
t =

1

Γ(H + 1/2)

∫ ∞

0

(
sH−1/2 − (s− t)

H−1/2
+

)
dWs. [14, Equation 54 Page 24]

However, this does not solve our issues completely. If we want to know the value of BH at a single
time t > 0, we require knowledge of the path of W on the whole of R+. This is very impractical,
and thus we search for a representation of fBm where we would only require the path of W on [0, t]
in order to obtain the value of BH

t . This brings us to our next representation formulae.

4.4.3 Canonical Representation on R+

Theorem 4.4.10 (Canonical Representation of Fractional Brownian motion on R+). Define

φJ,H(u) = (H − J)

∫ u

1

(
vH+J−1 − 1

)
(v − 1)H−J−1dv + (u− 1)H−J

for 0 < J,H < 1 and u > 1, and let

KJ,H
0+ (t, s) =

1

Γ(H − J + 1)
φJ,H

(
t

s

)
sH−J ,

Then on R+,the fBm BH can be represented by the following Itô integral

BH
t =

∫ t

0

K
1/2,H
0+ (t, s)dWs (4.4.6)

Proof. The proof is lengthy and has been left out for brevity. It can be found on Page 25 of
’Representation formulae for the fractional Brownian motion’ by Jean Picard [14, Theorem 4.3
Page 25].

Lemma 4.4.11. The representation of fBm given by (4.4.6) is canonical, with BH and W gener-
ating the same natural filtration.

4.4.4 Molchan-Golosov representation

The third and final representation of type 1 fBm is the Molchan-Golosov representation, which is
also often called the Volterra-type representation, not to be confused with the type 2 fBm we shall
explore next. An advantage of this representation is that the kernel function used has compact
support and that the representation is canonical (on R+).

The following theorem was presented by Molchan and Golosov in 1969 [23], however this rep-
resentation is based on a translated version by Jost [16, Section 3.1 Page 5].

Theorem 4.4.12 (Molchan & Golosov). Let t ∈ [0,∞), and H ∈ (0, 1). Then define XH
t as

(
XH

t

)
=

(∫ t

0

zH(t, s)dWs

)
.
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Where, for H > 1
2 ,

zH(t, s) :=
C(H)

Γ
(
H − 1

2

)s 1
2−H

∫ t

s

uH− 1
2 (u− s)H− 3

2 du, 0 < s < t <∞.

And for H ≤ 1
2 ,

zH(t, s) :=
C(H)

Γ
(
H + 1

2

) ( t
s

)H− 1
2

(t− s)H− 1
2

− C(H)

Γ
(
H − 1

2

)s 1
2−H

∫ t

s

uH− 3
2 (u− s)H− 1

2 du, 0 < s < t <∞.

In both cases

C(H) :=

(
2HΓ

(
H + 1

2

)
Γ
(
3
2 −H

)
Γ(2− 2H)

) 1
2

.

Then XH
t is a type 1 fBm with Hurst parameter H.

Proof. The proof is lengthy, and can be found on page 6 of ’Integral Transformations of Volterra
Gaussian processes’ by Jost [16, Theorem 3.1 Page 6].

The Molchan-Golosov representation has been widely used since its inception, and many sub-
sequent results in the study of fBm have been based on this representation, including the notable
Lévy characterisation of fBm.

4.5 Type 2 Fractional Brownian motion

Riemann-Liouville processes are often referred to as a type 2 fBm. They are constructed from a type
1 fBm by applying Riemann-Louivlle fractional operators, in contrast to the weighted fractional
operator used in the Mandelbrot-Van Ness representation of type 1 fBm.

Type 2 fBm is also often referred to as Volterra-type fBm, due to it being a Volterra Gaussian
process. Before we delve into type 2 fBm, we will first define Volterra Gaussian processes.

4.5.1 Volterra Gaussian processes

Voltrerra Gaussian processes are a generalisation of a standard Wiener process. Furthermore, a
Volteraa Gaussian process can also be thought of as a generalisation of the Molchan and Golosov
representation of type 1 fBm, where we allow arbitrary Volterra kernel functions. While fBm is the
unique Gaussian process that provides a model for both self-similarity and long-range dependence
[16, Section 1 Page 1], Volterra processes allow for more flexibility when modelling only self-
similarity is required.

Definition 4.5.1 (Volterra Kernel ). Let zX ∈ Ln
loc ([0,∞)n).

Then we call zX a Volterra Kernel on [0,∞)n if it satisfies the causality condition, which is as
follows

zX(x1, x2, . . . , xn) = 0 if any of x1, x2, . . . xn < 0

Furthermore, in the context of fBm, we frequently use convolution kernels of the form zX(t − s),
in this in order for zX to be a Volterra kernel we must also have that

zX(x1, x2) = 0, if x1 < x2.

[16, Definition 6.1 Page 17]

With that in mind, we can continue to define a Volterra Gaussian process.
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Definition 4.5.2 (Volterra Gaussian process). Let (Wt)t∈[0,∞) be a standard Brownian motion.

Then, a Gaussian process (Xt)t∈[0,∞) is called Volterra, if there exists a Volterra kernel zX ∈
L2
loc

(
[0,∞)2

)
, such that

Xt =

∫ t

0

zX(t, s)dWs

[16, Definition 6.1 Page 17]

Theorem 4.5.3. Let Xt be a Volterra Gaussian process. Then the following hold

1 Xt is a centred Gaussian.

2 Xt has the following covariance function

RX(s, t) =

∫ s∧t

0

zX(t, u)zX(s, u)du, s, t ∈ [0,∞) [16, Section 6.2 Page 16].

Notable Volterra Gaussian processes include the Molchan-Golosov representation of type 1 fBm
(see 4.4.4), and the Riemann-Liouville processes (see 4.5.2), also known as type 2 fBm. To avoid
confusion, any reference to ’Volterra-type’ fBm will refer to the Riemann-Liouville processes, which
we shall now explore.

4.5.2 The Riemann-Liouville processes

Definition 4.5.4 (Riemann-Liouville processes). Let t ∈ R+, then define

XH
t =

1

Γ(H − 1/2)

∫ t

0

(t− s)H−1/2dWs. (4.5.1)

Then XH
t is a Riemann-Liouville process with Hurst Index H. Furthermore, the paths of Xt are

almost surely α-Hölder continuous for α < H [14, Section 5.1 Page 34].

Remark 4.5.5. From the definition, we can see for a fixed H that the Riemann-Liouville process
and the type 1 fBm, are of the same Hölder continuity.

These Riemann-Liouville processes are very similar to type 1 fBm, hence why they are often
referred to as type 2 fBm. We have already established that type 1 and type 2 fBm share the same
smoothness for a given H, if we want to further quantify the similarity of the paths of these two
processes, we can utilise the following result.

Theorem 4.5.6. Let 0 < H < 1, then both type 1 and type 2 fBm exist, and we can jointly realise
both processes

(
XH , BH

)
on R+, where BH is a type 1 fBm, and XH is a type 2 fBm. Then

XH −BH is C∞ on R+. Furthermore, for T > 0, S > 0 and 1 ≤ p <∞, we have that∥∥∥∥ sup
0≤t≤T

∣∣(XH
S+t −XH

S

)
−
(
BH

S+t −BH
S

)∣∣∥∥∥∥
p

≤ CpS
H−1T (4.5.2)

(where ∥·∥p denotes the Lp(Ω)-norm of the underlying probability space) [14, Theorem 5.1 Page
35].

Proof. A full proof can be found on Page 35 of Picard [14, Theorem 5.1 Page 35].

Remark 4.5.7. Inequality (4.5.2) indicates that the process of the increments of type 2 fBm,

XS,H
t = XH

S+t −XH
S , is close to that of a type 1 fBm when S is sufficiently large.

While type 1 and type 2 fBm are quite similar, there are notable differences in their behavior.

27



Differences between type 1 and type 2 Fractional Brownian motion

Consider a Riemann-Liouville process of the form

V (t) =

∫ t

0

(2H(t− s)H−1/2)dWs (4.5.3)

For this choice of process Vt, we have that Var(Vt) = t2H , which coincides with that of type 1
fBm.

Remark 4.5.8. Here we again reiterate that the choice of constant factor in front of the integral
in the definition of fBm processes, simply scales the process, changing its variance. What is
important are the terms within the integral, even with different constant factors the paths of the
process still have the same properties. Practitioners often choose the constant term to ensure a
specific expressing for the variance of the process.

While the variance of this type 2 fBm and type 1 fBm match, we unfortunately get a rather
different covariance structure for type 2 fBm.

Let 0 < s < t, then we have that

E[V (t)V (s)] = 2Hs2H
∫ 1

0

(1− u)H−1/2

(
t

s
− u

)H−1/2

du = s2HG

(
t

s

)
, (4.5.4)

where, for x ≥ 1

G(x) =
2H

H + 1/2
x1/2−HF1(1, 1/2−H,H + 3/2, x), [2, Equation 4.1 Page 15],

with 2F1 denoting the Gaussian hypergeometric function (see [16, Section 3.3.1 Page 7]).

Remark 4.5.9. Substituting v = u = t into equation (4.5.4), we obtain Var(Vt) = t2H .

Another major difference between the two types of fBm, is that the Riemann-Liouville process
no longer has stationary increments. However, an interesting paper by Lim [24] shows that under
various conditions that the increments of the Riemann-Liouville process can be stationary. Thus,
the Riemann-Liouville does not totally lack the property of stationary increments. We encourage
the reader to consult the Lim paper [24] if interested, however it is out of the scope of this
investigation.

Even with these differences, the Riemann-Liouville processes still allow us to capture the rough-
ness and long-term dependence of type 1 fBm. In fact, the Riemann-Liouville processes are arguably
more important than type 1 fBm within mathematical finance, as they are more frequently used
for the purpose of modelling. Though the standard type 1 fBm possesses useful properties such
as stationary increments and self-similarity, it is often not used for modelling purposes as it does
not represent a casual time-invariant system. On the other hand, the type 2 fBm can be viewed a
system driven by a white noise process [24, Section 1 Page 1302].

Therefore, practitioners often choose to utilise Riemann-Liouville processes, and their paths
are often considered similar enough to type 1 fBm. As a result of this, these Riemann-Liouville
processes will be the processes that we shall use within our construction of a Rough Volatility
model.

Now that we have introduced fBm, and covered some of the theory regarding Hölder continuity
and the Hurst parameter, we can proceed in the next chapter to introduce the final motivating
factor for the development of rough volatility models. This motivating factor will be introduced
in the form of an investigation into the roughness of the variance process of several equity indices.
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Chapter 5

Additional Motivation: Assessing
the Roughness of Volatility

Now that we have covered the requisite theory on fBm, we can delve into an additional motivating
phenomenon towards the development of rough volatility models. In this chapter, we will display
an investigation into the roughness of the realised volatility processes of various equity indexes.
The conclusion from this investigation will serve as our final motivating factor for the development
of rough volatility models.

5.1 Smoothness of a process

How does one determine the smoothness of a continuous time process? The literature concerning
the smoothness of process as of recent has supported the notion of utilising Besov spaces, as a
’natural framework to study the smoothness of the sample paths of a continuous time random
process’ [25, Section 1 Page 55].

5.1.1 Besov Spaces

A Besov space is a complete function space, that can be viewed as containing functions/processes
of a certain smoothness. In order to define a Besov space, we first let ∆n

h be the operator defined
by ∆1

hf(x) = f(x+ h)− f(x) and ∆n
hf(x) = ∆1

h

(
∆n−1

h

)
f(x) [25, Appendix A.1 Page 61].

Now we must also associate a modulus of smoothness/continuity. A modulus of smoothness is
a function used to quantify the uniform continuity of a function. We shall utilise the nth order Lp

modulus of smoothness of f on [0, 1] , defined as

ωn(f, t)p = sup
|h|≤t

∥∆n
hf∥Lp(Ωh,n)

,

where Ωh,n = {x ∈ [0, 1];x+ kh ∈ [0, 1], k = 0, . . . , n} [25, Appendix A.1 Page 61].

Furthermore, let us define the following sequence space lp:

Definition 5.1.1 (lp Sequence Space). Let 0 < p < ∞, then lp is the space consisting of all
sequences (xn)n∈N such that ∑

n

|xn|p <∞.

We can now proceed to define a Besov Space.

Definition 5.1.2 (Besov Space). Let s > 0, 0 < p, and q < +∞, then the the Besov space
Bs

p,q([0, 1]) consists of those functions f ∈ Lp[0, 1] such that{
2sjωn

(
f, 2−j

)
p

}
j≥0

∈ lq,

where n ∈ N such that s < n.
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(i) Additionally, if p, q ≥ 1 then the Besov space is a Banach space when equipped with the
norm

∥f∥Bs
p,q([0,1])

= ∥f∥Lp +

∥∥∥∥{2sjωn

(
f, 2−j

)
p

}
j≥0

∥∥∥∥
qq

.

(ii) For p or q less than 1 and s > max{1/p− 1, 0}, the Besov space Bs
p,q([0, 1]) is only a quasi-

Banach space [25, Appendix A.1 Page 61].

(iii) In the case that q = +∞, s > 0, and 1 ≤ p ≤ +∞ the Besov Space Bs
p,∞([0, 1]) consists of

those functions f ∈ Lp[0, 1] such that

supj≥0

{
2sjωn

(
f, 2−j

)
p

}
j≥0

<∞,

where n ∈ N such that s < n [26, Appendix Page 899].

While Besov spaces are useful we are mainly concerned with Hölder continuity. In order to link
Besov Spaces to Hölder-Spaces and Hölder continuity, we shall use the following Theorem.

Theorem 5.1.3 (Besov to Hölder Embedding). Let f belong to Bs
p,∞ for any p > 0. Then f

belongs to the Hölder space Cα and is α-Hölder continuous for s < α [1, Section 2.1 Page 7].

5.1.2 Regularity Measures

Now that we have defined a Besov (smoothness) space, we wish to find quantities which allow us
to derive Besov smoothness proprieties for the paths of various continuous time processes. We
make use of the novel regularity measure proposed by Rosenbaum in his 2011 paper, titled ’ A new
microstructure noise index’ [26, Equation 3 Page 884].

For a given p ∈ R, we consider the following function

q → Sp
q

with

Sp
q =

1

p

{
1 + log2

(
V p
q+1

V p
q

)}
[26, Equation 3 Page 884]

where

V p
q =

T2N−q−1∑
k=0

∣∣Y(k+1)2q−N − Yk2q−N

∣∣p [26, Equation 3 Page 884].

Rosenbaum showed that Sp
q can be considered a regularity measure of a process, with the

associated sampling frequency of 2N−q. The interpretation of Sp − q as a regularity measure, laid
out by Rosenbaum in [26], is as follows. Let T = 1, and use the Besov smoothness space Bs

p,∞([0, 1]).
Furthermore, assume a process Yt belong to Bs

p,∞([0, 1]) and does not belong to Bs+ε
p,∞([0, 1]), for

any ε > 0. Then under the assumptions laid out in [25], we can consider the following asymptotic
approximation

V p
q ≃ c2(q−N)(ps−1), [26, Equation 3 Page 884]

with c > 0. Utilising this approximation, we have that

Sp
q ≃ 1

p

{
1 + log2

(
c2(q+1−N)(ps−1)

c2(q−N)(ps−1)

)}
Sp
q ≃ 1

p

{
1 + log2

(
c2ps−1

)}
Sp
q ≃ s

From, above we can see that Sp
q is the value of s such that Yt belongs to the Besov smoothness

space Bs
p,∞([0, 1]) , and does not belong to a smoother space. Therefore in the circumstances
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above, Sp
q is approximately a measure of the smoothness of Yt, providing an upper bound in terms

of smoothness and associated Besov smoothness space for the process.
One can utilise the index Sp

q as follows: take a process Yt, calculate S
p
q , then s = Sp

q is the
maximum value of s such that Yt is a member of the Besov smoothness space, Bs

p,∞([0, 1]).

Proposition 5.1.4. Let Yt be a continuous semimartingale. Then for any p, Sp
q is asymptotically

equal to 1
2 [26, Section 2.2 Page 885].

Proof. See Jacod 2008 for a proof [27].

Proposition 5.1.5. Let T be fixed, N → ∞, and 1
2 < H < 1. Then for any p > 0, Sp

q for a fBm
with Hurst Parameter H, converges almost surely to H.

5.2 Realised Volatility and Variance

Consider a simple stochastic volatility model,

dSt = µtStdt+ σtStdWt (5.2.1)

Unfortunately, the instantaneous volatility process σt is not directly observable within the
market, thus in order to analyse its properties, and in particular its roughness, we must estimate
it somehow. A natural choice is to examine the realised variance and realised volatility of a price
process.

Definition 5.2.1 (Realised Variance & Volatility). Let πn be the time partition defined as the
sequence π1, π2 . . . πn, such that πi < πi+1 for all i, and t = π1, πn = t + δ. Then, the realised
variance of a price process S over [t, t+ δ] sampled along the time partition πn is defined as

RVart,t+δ (π
n) =

∑
πn∩[t,t+δ]

(
logStni+1

− logStni

)2
,

and subsequently, the realised volatility is defined as

RVt,t+δ (π
n) =

√√√√ ∑
πn∩[t,t+δ]

(
logStni+1

− logStni

)2
.

Furthermore, let us define the integrated variance of a price-process,

Definition 5.2.2 (Integrated Variance). Let S follow (5.2.1). Then the integrated variance is
defined as [28, Equation 3 Page 254]

IVar0,t = σ2,∗
t =

∫ t

0

σ2
sds.

We can easily calculate the realised variance and volatility of an asset’s price process. As we
wish to utilise these quantities as estimates for the instantaneous variance σ2

t and instantaneous
volatility σt, we shall utilise the following results from Barndorff-Nielsen and Shepard [28].

Proposition 5.2.3. Let S follow (5.2.1), then as the size of the mesh of the time partition πn

approaches 0

1 RVart,t+δ (π
n) converges in probability to IV art,t+δ [28, Section 2.1 p257]

2 RVart,t+δ (π
n) is a consistent estimator of σ2

t as δ → 0[28, Equation 7 Page 255]

With these at hand, we can proceed to our investigation into the roughness of the realised
variance process of several equity indices.
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5.3 Analysis of the volatility process

5.3.1 Framework of the Investigation

We present an investigation of the roughness of the volatility process, based on the work of Gatheral,
Jaisson, and Rosenbaum, in their 2014 paper titled ”Volatility is rough” [1, Section 2 Page 6-13].

In order to develop a framework for assessing the roughness of the volatility process, we shall
begin working under the pretense that we have direct discrete observations of the volatility process.
These observations of σt are taken on a time grid with mesh ∆ on [0, T ], such that we have:

σ0, σ∆, . . . , σk∆, . . . ,

with k ∈ {0, [T/∆]}.
We wish to calculate, for some q ≥ 0, the following quantity:

E[ | log(σ∆)− log(σ0)|q]. (5.3.1)

Now assuming the increments of log-volatility process are stationary and that the law of large
numbers holds, we can approximate (5.3.1), via the following:

m(q,∆) :=
1

N

N∑
k=1

| log(σk∆)− log(σ(k−1)∆)|q [1, Section 2.1 Page 7]. (5.3.2)

Building on Rosenbaum’s 2009 smoothness index, detailed above in Section 5.1.2, Gatheral, Jaisson
and Rosenbaum explored the following smoothness estimate, based on m(q,∆).

Working under the assumption that for some sq > 0 and bq > 0, as ∆ → 0,

NqSqm(q,∆) → bq [1, Equation2.1Page7]. (5.3.3)

Under suitable technical conditions, laid out in Rosenbaum’s 2009 paper ’A new microstructure
noise Index’ [26], if (5.3.3) holds, we have that σt belongs to Besov smoothness space B

sq
q,∞, but

does not belong to Besov smoothness space B
sq+ϵ
q,∞ for any ϵ > 0. Furthermore, sample paths of σt

will belong to B
sq
q,∞ almost surely [1, Section 2.1 Page 7] . We view sq as the smoothness of the

volatility process, with regard to the lq norm, and crucially note that if σt ∈ B
sq
q,∞, for q > 0, then

σt is α holder continuous for α < sq [1, Section 2.1 Page 7].

5.3.2 Empirical Calculations

As previously mentioned, unfortunately we are not able to directly observe the volatility process
σt, thus we must find a proxy for spot volatility σt, to be able to compute approximate values
for σt. Inspired by ’Volatility is Rough’, we chose to proxy daily integrated variances by using
daily realized variance estimates from the Oxford-Man Institute of Quantitative Finance Realized
Library [29]. Unfortunately this data set was discontinued, however we found the data through an
archive, containing values from January 3rd 2000, to the June 27th 2018, corresponding to 4714
trading days. As these pre-computed integrated variance estimates are calculated for the entire
trading day, we take note of the bias pointed out in ’Volatility is Rough’, where the authors warn
of an upwards bias in the smoothness of the volatility process, as integration is a regularizing
operation [1, Section 2.1 Page 8]. Figure 5.1 shows a plot of the realised volatility, calculated from
the realised variance estimates, for the SPX Index.

We proceed to estimate the smoothness of the volatility processσt, by estimating m(q,∆) with
a proxy for σt, for several different values of ∆. From this point onward, We will utilise the the
notation σt and m(q,∆), with the understanding that we are utilising the appropriate proxies. We
subsequently shall regress logm(q,∆) against log∆, and plot these regressions for various values
of q.

We performed this investigation for 30 Stock Indices within the Oxford-Man data set. Figure
5.2 shows a plot of the scaling of logm(q,∆) against log∆ for various q, for the SPX Index. From
this plot we can see that the points are well clustered around their respective linear regression
lines, with a improved fit to the regression line being seen for lower values of q. If we consider
the regression lines a good fit for each q, then for all q the points can be viewed as having an
approximately linear relationship. Under stationary assumptions, this linear relationship implied
the following scaling property:
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Figure 5.1: Plot of the Daily Realised Volatility of the S&P 500 Index, between January 3rd 2000,
to the June 27th 2018

.

Figure 5.2: Plot of estimates of logm(q,∆) against log∆ for various q, with accompanying linear
regression lines, for SPX data

.

E [|log(σ∆)− log(σ0)|q] = Kq∆
ζq [1, Section 2.2 Page 9],

with ζq = ∂ logm(q,∆)
∂ log(∆) Yq, where Yq is the regression line associated with q. This suggests that

our smoothness index Sq ≈ ζq
q . Therefore, a plot of ζq against q should reveal an estimate of

the smoothness index of our volatility process. Figure 5.3 shows such a plot, for the same SPX
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data. The gradient of this line represent the smoothness of the underlying volatility process. If
the volatility process was driven by a standard Brownian motion, we would expect to see a value
of Sq = 1

2 , however this is not what we observe in practice. Ultimately, we obtain a estimate of
Sq = 0.105 for the SPX Index, this value also corresponds to the Hurst parameter H such that the
fBm with Hurst Parameter H, will have sample paths of H-Holder continuity. This process was
repeated for all 30 indices, and the resulting estimates for H are shown in Table 5.1.

Figure 5.3: Plot of ζq against q, with accompanying linear regression line, for SPX data
.

Index H Estimate
AEX 0.116
AORD 0.072
BFX 0.124
BSEN 0.094
BVLG 0.094
BVSP 0.128
DJI 0.100
FCHI 0.118
FTMIB 0.127
FTSE 0.094
GDAXI 0.110
GSPTSE 0.077

HSI 0.082
IBEX 0.097
IXIC 0.119

Index H Estimate
KS11 0.101
KSE 0.105
MXX 0.066
N225 0.098
NSEI 0.092

OMXC20 0.097
OMXHPI 0.084
OMXSPI 0.102
OSEAX 0.096
RUT 0.089
SMSI 0.114
SPX 0.105
SSEC 0.113
SSMI 0.140

STOXX50E 0.113

Table 5.1: Hurst Parameter Estimates for Stock Indices

From Table 5.1, we can see that the estimate for H for each index is significantly below 0.5,
suggesting that the variance processes of each of these indexes are rougher than a traditional
Brownian motion. With this in mind, it seems natural to attempt to model the variance process
of each asset as a rough process, driven by a process such as a fBm with H < 1

2 . As a result of this
investigation, and further discoveries during their paper titled ’Volatility is Rough’, Gather et al.
[1] proposed the Rough Fractional Stochastic volatility model, which we shall explore in the next
chapter.

Comparing our results to those of Gatheral et al. [1, Table B.1 Page 34], we see that our H
estimates are more or less in line, while noting that each of our estimates is slightly lower for each
index considered. However, we must recall that our investigation was performed on data from the
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Oxford-Man data set from January 3rd 2000, to the June 27th 2018, whereas Gatheral et al. [1]
used only up to March 31st 2014. Our estimates can thus be viewed as an updated version of the
estimates from Gather et al. [1].

Remark 5.3.1. We stress that the aim of this investigation was to demonstrate that equity indexes
have variance processes that are likely rougher than a traditional Brownian motion, rather than a
thorough investigation to determine the exact Hurst parameter H to be used in any future rough
volatility models. As mentioned in Section 5.3.2, these estimates are likely to be upwardly biased.
Nevertheless, while we don’t stress too heavily the exact value of each estimate for H, we shall
utilise them somewhat as starting values for calibration attempts for the Rough Bergomi model
(see Chapter 10), unless another suitable H is provided, for example from a previous calibration.
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Chapter 6

The Rough Fractional Stochastic
Volatility Model

In this chapter, we will explore the Rough Fractional Stochastic Volatility (RFSV) model, proposed
by Gatheral, Jaisson and Rosenbaum [1, Section 3.1 Page 14]. As a precursor to the RFSV model,
we will explore the FSV model of Comte and Renault [4], which the RFSV model was based upon.

6.1 The Fractional Stochastic Volatility Model

The Fractional Stochastic Volatility model (FSV) was proposed by Comte and Renault in 1998
[4]. The idea of the model was to replace the standard Brownian motion found in most stochastic
volatility models, with a fBm (with H > 1

2 ), in order to better capture the long-memory property
of volatility. The long-memory of volatility was at the time seen as a stylised fact of volatility,
however, as we shall later see, this notion may not be entirely accurate. Nevertheless, we shall
briefly explore the FSV, before moving on to the more recent Rough Fractional Stochastic Volatility
Model (RFSV).

The FSV model considers the following fractional stochastic differential equation [4, Section
2.1 Page 295]

dXt = −κXtdt+ σdBα
t x0 = 0, κ > 0, α := H − 1

2
, 0 < α <

1

2
(6.1.1)

Remark 6.1.1. The FSV utilises H > 1
2 , in order to capture the long-memory property of

volatility. Recall that for H > 1
2 , the increments of BH are positively correlated, and thus in order

to obtain a mean-reverting volatility process, a mean reversion term must also be included in the
model. We will later see that models utilising BH with H < 1

2 , have this mean-reverting feature
’built-in’ to the model, without needing explicit mean-reversion terms.

The solution to (6.1.1), derived by Comte and Renault [4, Section 2.1 Page 295], is as follows

Xt =

∫ t

0

e−κ(t−s)σ dBα(s)

Remark 6.1.2. We must be careful as integration with respect to BH is not always well-defined.
Integration with respect to BH for H ̸= 1

2 is defined only in the Wiener L2 sense, and only for the
integration of deterministic processes [4, Section 2.1 Page 295].

Furthermore, we can express this solution in terms of a Volterra-Gaussian process, with a
suitable choice of kernel function, as follows

Xt =

∫ t

0

z(t− s)dWs [4, Section 2.2 Page 295] (6.1.2)
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where

z(x) =
σ

Γ(1 + α)

d

dx

∫ x

0

e−κu(x− u)αdu

=
σ

Γ(1 + α)

(
xα − κe−κx

∫ x

0

eκuuαdu

)
.

This allows us to express the solution as an integral with respect to a standard Wiener process,
resulting in a substantially easier to work with form.

Now within their FSV model, Comte and Renault worked under the assumption that the
logarithm of volatility was the solution to (6.1.1), i.e that lnσ(t) = Xt.

Under this assumption, they obtain the following expression for the volatility process [4, Section
2.7 Page 296]

∼
σ(t) = exp

(∫ t

∞
e−κ(t−s)γ dBα(s)

)
.

Comte and Renault chose to use a ’stationary’ version of Xt, by choosing to integrate from −∞
to t, in order to produce an asymptotically stationary volatility process.

This FSV model inspired the RFSV model proposed by Gatheral, Jaison and Rosenbaum in
their paper ’Volatility is Rough’ [1], however, they chose to utilise BH with H < 1

2 . We shall now
explore the RFSV model.

6.2 RFSV Model

In their paper ’Volatility is Rough’ [1], Gatheral, Jaison and Rosenbaum found, through an empiri-
cal analysis of realised volatility, that the increments of log-volatility were approximately normally
distributed [1, Section 3.1 Page 14]. Furthermore, they discovered that the increments displayed a
scaling property with a constant smoothness parameter [1, Section 3.1 Page 14]. These two results
led them to propose their novel RFSV model, an adaptation of the aforementioned FSV.

6.2.1 Specification of the RFSV model

Gatheral, Jaisons and Rosenbaum’s RFSV model is a FSV model, with a choice of Hurst Parameter
H < 1

2 , chosen to be consistent with their roughness estimates of realised volatility [1, Section 2
Page 6-13].

Gatheral, Jaisons and Rosenbaum initially propose a simple model, which assumes the following
underlying dynamics of the increments of log-volatility

log σt+∆ − log σt = ν(BH
t+∆ −BH

t ) [1, Equation 3.1 Page 14] (6.2.1)

where BH is fBm with H < 1
2 and ν > 0. This permits the following equivalent expression for σt

σt = σ exp(νBH
t ) [1, Equation 3.2 Page 14] (6.2.2)

for some constant σ > 0.
Unfortunately, as noted by Gatheral, Jaisson and Rosenbaum, this model is not-stationary [1,

Section 3.1 Page 14]. A reminder of the definition of a stationary stochastic process is presented
below.

Definition 6.2.1 (Stationary process). Let (Xt) be a stochastic process, with FX(xt1 , xt2 , . . . , xtn)
representing the cumulative distribution function of the unconditional joint distribution of (Xt) at
times t1, t2, . . . , tn. Then , we call (Xt) stationary if the following holds:

FX(xt1 , xt2 , . . . , xtn) = FX(xt1+s, xt2+s, . . . , xtn + s).

Therefore FX is invariant under a shift in time.

Stationarity in a model is desirable as it helps to ensure the model is still valid over large time
periods, and also makes the model more tractable and easy to deal with. In an attempt to find such
a stationary model, Gatheral, Jaisson and Rosenbaum chose to model log-volatility as a fractional
Ornstein-Uhlenbeck (fOU) process, with a long reversion time scale [1, Section 3.1 Page 14].
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Definition 6.2.2 (Fractional Ornstein-Uhlenbeck process). A stationary fOU process (Xt) is de-
fined as the stationary solution of the following SDE, known as the Fractional Ornsetin-Unlenbeck
SDE :

dXt = νdBH
t − κ(Xt −m)dt [1, Section 3.1 Page 14], (6.2.3)

where m ∈ R and ν, κ > 0.

Gatheral, Jaisson and Rosenbaum subsequently proposed the following model

σt = exp(Xt), t ∈ [0, T ], [1, Equation 3.4 Page 15] (6.2.4)

where (Xt) satisfies the fractional SDE (6.2.3) for some appropriate choice of parameters.
Intuitively, κ represents the speed of mean reversion towards the long-term mean m.

Remark 6.2.3. Under the RFSV model (6.2.4), if κ = 0 we observe that Xt−Xs = ν(BH
t −BH

s ),
and thus we recover our non-stationary model described by (6.2.1).

Furthermore, the solution to (6.2.3) can be written in the following explicit form

Xt = ν

∫ t

−∞
e−κ(t−s)dBH

t +m [1, Equation 3.3 Page 14]. (6.2.5)

Remark 6.2.4. The stochastic integral with respect to fBm in (6.2.5) is a path-wise Riemann-
Stieltjes integral.

The RFSV model specified by (6.2.4) is a stationary model [1, Section 3.1 Page 15]. Further-
more, for κ ≪ 1

T , we observe that log(σt) behaves locally as a fBm [1, Section 3.1 Page 15]. This
notion is formalised by the following proposition:

Proposition 6.2.5. Let BH be a fBm and Xκ be the process defined by (6.2.5) for a given κ > 0.
Moreover, let q > 0, t > 0,∆ > 0.Then, as κ tends to zero,

1 E
[
supt∈[0,T ]

∣∣Xκ
t −Xκ

0 − νBH
t

∣∣]→ 0 [1, Proposition 3.1 Page 15].

2 E
[
|Xκ

t+∆ −Xκ
t |q
]
→ νqKq∆

qH [1, Corollary 3.1 Page 15].

Proof. A full proof can be found in Appendix A.1/2 of ’Volatility is Rough’ [1, Appendix A.1/2
Page 32].

From Proposition (6.2.5) we observe that if κ≪ 1
T , then we can assume that the log-volatility

process behaves as a fBm within our interval of interest [0, T ]. Furthermore, from part 2 of
proposition (6.2.5) , we can see that the scaling property of fBm, is approximately reproduced by
the fOU process for very small κ [1, Corollay 3.1 Page 15]. Therefore the RFSV model allows us to
have a stationary model, which can also replicate the empirical smoothness of the volatility process
and the scaling behavior of fBm. With this in mind, it seems theoretically suitable to model the
log-volatility process in such a way as described by (6.2.4).

Remark 6.2.6. Long-memory had previously been well regarded as a stylised fact of volatility.
However, Gatheral et al. [1, Section 4 Page 23], showed that their RFSV model, which did not
have long-memory by construction, would still seem to have the property of long-memory when
analysed by classic estimation procedures used to test for long-memory. They therefore propose
that perhaps these classical estimation procedures are not entirely accurate, and perhaps volatility
does not have long-memory. This serves as additional justification for their RFSV model, which
utilises H < 1

2 , and does not have long-memory by design.

6.3 Comparison with the FSV Model

As mentioned before, the RFSV model is a particular case of the FSV model. The main difference,
however, is that for their RSFV model in line with the empirical observations of the smoothness of
the volatility process, we take H < 1

2 and κ≪ 1/T , while the FSV model takes H > 1
2 , to satisfy
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the long memory assumption. This difference in the value of H has a large number of implications
on the relative behaviour of the models.

As mentioned before in Section 3.4, Fukasawa found that a stochastic volatility model driven
by a fBm BH , generates a term structure of ATM forward skew of the form ψ(τ) ∼ τH− 1

2 , for
small τ , where τ = T − t, the time to maturity. From this we can see that if we take H > 1

2 , as
in the FSV model, then we obtain a term structure that is increasing for small τ . Such a term
structure is inconsistent with the general empirically observed term structure.

In contrast, Gatherl et al. showed that the RFSV is both able to reproduce a realistic term
structure of the ATM Forward volatility skew, while also matching the observed smoothness of the
realised volatility process [1, Section 3.1 Page 14]. Furthermore, the choice of H < 1

2 allows the
model to have ’mean-reverting’ properties, consistent with those observed empirically.

Ultimately, investigations into the RFSV model led to the development of a specific case of the
RFSV model, known as the Rough Bergomi model. This will be the main model we explore within
this work, and we will begin by introducing the Rough Bergomi model in the next chapter.
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Chapter 7

The Rough Bergomi Model

In this chapter we present the main model of this paper, the Rough Bergomi Model. We shall
describe both the pathway taken to specify the model, and the specification of the model itself.

7.1 The Path to the Rough Bergomi Model

Building upon the work of Gatheral et al. in [1], Bayer et al. showed how the RFSV model can
lead to a natural model for option pricing, in their paper ’Pricing Under Rough Volatility’ [2].

Consider the following non-stationary RFSV model, with κ = 0, and H < 1
2 :

log σt+∆ − log σt = ν(BH
t+∆ −BH

t ). (7.1.1)

Now, turning to our choice of representation for BH , we shall initially use the following
Mandelbrot-Van Ness representation:

BH
t = CH

{∫ t

−∞

dW P
s

(t− s)α
−
∫ 0

−∞

dW P
s

(−s)α

}
[2, Section 2.0 Page 8], (7.1.2)

where α = 1
2 −H, and

CH =

√
2HΓ(3/2−H)

Γ(H + 1/2)Γ(2− 2H)
.

Then, if we let vt = σ2
t and substitute equation (7.1.2) into (7.1.1), we obtain the following

model for vt under P:

log vu − log vt =2νCH

{∫ u

−∞

dW P
s

(u− s)α
−
∫ t

−∞

dW P
s

(t− s)α

}
=2νCH

{∫ u

t

1

(u− s)α
dW P

s +

∫ t

−∞

[
1

(u− s)α
− 1

(t− s)α

]
dW P

s

}
=2νCH {Mt(u) + Zt(u)} [2, Equation 2.2 Page 9].

Here Zt(u) is Ft-measurable, while Mt(u) is independent of Ft as it depends on the integral of
Ws from t to u. Furthermore, Mt(u) is a centred Gaussian.

If we now introduce the following Riemann-Liouville process

B̃P
t (u) :=

√
2H

∫ u

t

dW P
s

(u− s)α
, (7.1.3)

we can observe that

Mt(u) =
1√
2H

B̃t.

Therefore, taking η = 2νCH√
2H

we have

log vu − log vt = ηB̃P
t (u) + η

√
2HZt(u),
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and subsequently that

vu = vt exp
(
ηB̃P

t (u) + η
√
2HZt(u)

)
. (7.1.4)

Now as B̃H is a centred Gaussian, exp(B̃H(u) is a log-normal random variable.
Therefore, as vt and Zt(u) are Ft-measurable, we have the following

EP [vu | Ft] = vt exp
(
η
√
2HZt(u)

)
× exp

(
V(νB̃tP(u))

)
= vt exp

{
η
√
2HZt(u) +

1

2
η2E

∣∣∣B̃P
t (u)

∣∣∣2} [2, Equation 2.4 Page 9]. (7.1.5)

Now, substituting (7.1.5) into (7.1.4), we obtain

vu = vt exp
(
ηB̃P

t (u) + η
√
2HZt(u)

)
(7.1.6)

= vt exp

{
η
√
2HZt(u) +

1

2
η2E

∣∣∣B̃P
t (u)

∣∣∣2}× exp

{
ηB̃P

t (u)−
1

2
η2E

∣∣∣B̃P
t (u)

∣∣∣2}
= EP [vu|Ft] E

(
ηB̃P

t (u)
)

[2, Equation 2.4 Page 9], (7.1.7)

where E represents the Wick stochastic exponential.
From equation (7.1.6), we can see that vu is non-Markovian, as we recall that Zt(u) depends on

the full history of W P
t up to time t. However, from (7.1.7) we see that the conditional distribution

of vu is only dependent on Ft, through the term EP [vu|Ft], which corresponds to the instantaneous
variance forecast at time t < u [2, Section 2 Page 9].

With equation (7.1.7) in mind, Bayer et al. proposed the following model , under the physical
probability measure P:

dSu

Su
= µudu+

√
vudZ

P
u,

vu = vt exp
{
ηB̃P

t (u) + 2νCHZt(u)
}

[2, Equation 2.5 Page 10]

(7.1.8)

where ZP is another Wiener process, which is correlated to the Wiener process W P driving Zt(u),
with correlation coefficient ρ. Moreover, µu is an appropriate drift term, µ = µ(u, ω).

7.1.1 Change of Measure

The pricing of derivatives is usually conducted under the risk-neutral measure Q, an equivalent
martingale measure 1 Q ∼ P on [t, T ]. Using such a measure Q, we ensure that the discounted
asset price process St is a martingale under Q. Thus, in our case, and without loss of generality
assuming interest rates are zero, we would have the following price process dynamics under Q:

dSu

Su
=

√
vudZ

Q
u , t ≤ u ≤ T.

Therefore, we now to find a suitable change of measure to obtain a model under Q.
Utilising Girsanov’s theorem, we obtain the following change of measure on [t, T ] :

dZQ
u = dZP

u +
µu√
vu
du, t ≤ u ≤ T. (7.1.9)

We now turn our attention to a change of measure for B̃P, our Riemann-Liouville process.
Recall that B̃P is constructed from W P a Wiener process, which was correlated with ZP

u with
correlation coefficient ρ, usually taken to be ρ ∈ (−1, 0). Therefore, we can represent W P in terms
of ZP and another Wiener process Z ′,P that is independent of ZP. In doing so, we obtain the
following relation:

W P = ρZP +
√
1− ρ2Z ′,P. (7.1.10)

1Two Measure P and Q on (Ω,F),are equivalent if for all A ∈ F , P(A) = 0 if and only if Q(A) = 0
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We shall use equation (7.1.10) to derive our change of measure for B̃P, by first finding a change
of measure for W P. In order to do this we turn to the components of W P, from equation (7.1.10).
Now, we already have a change of measure for ZP, thus we simply need a change of measure for
Z ′,P. We shall utilise the general change of measure given by Bayer et al. [2, Section 2.1 Page 11],
this is given by:

dZ ′,Q
u = dZ ′,P

u + γudu, (7.1.11)

where γ is a suitably chosen adapted process of the form γ = γ(u, ω), for u ∈ [t, T ], called the
’market price of volatility risk’ [2, Section 2.1 Page 11].

We proceed by substituting (7.1.9) and (7.1.11) into (7.1.10), to obtain a change of measure
for W P,

dWQ = ρdZQ +
√

1− ρ2dZ ′,Q

= dW P
u +

(
ρµu√
vu

+
√
1− ρ2γu

)
du.

Which can be represented in the form

dW P
s = dWQ

s + λsds [2, Equation 2.6 Page 11].

Here, the choice of λs specifies our change of measure. We shall choose to take a simple change
of measure, where λs = λ(s) is a deterministic function of s.

As we now have the required change of measure terms, we can take our expression for vu under
P(7.1.7), and write it in under Q as

vu = EP [vu | Ft] exp

{
η
√
2H

∫ u

t

1

(u− s)γ
dW P

s − η2

2
(u− t)2H

}
= EP [vu | Ft] E

(
ηB̃Q

t (u)
)
exp

{
η
√
2H

∫ u

t

λ(s)

(u− s)γ
ds

}
[2, Equation 2.8 Page 11]

= ξt(u)E
(
ηB̃Q

t (u)
)
,

(7.1.12)

where ξt(u) = EP[vu|Ft], known as the forward variance curve. We can decompose ξt as follows

ξt(u) = EP [vu | Ft] exp

{
η
√
2H

∫ u

t

1

(u− s)γ
λ(s)ds

}
[2, Section 3 Page 13],

where we recognise that the first term depends on the history of the driving Brownian motion,
and the latter term depends on the price of risk λ(s).

7.2 The Rough Bergomi Model

Now that we have the relevant dynamics under Q, we can specify the Rough Bergomi model of
Bayer et al. [2].
Let St denote our price process, and let vt be our variance process, then we specify the Rough
Bergomi by the following dynamics

St = S0E
(∫ t

0

√
vudZ

Q
u

)
(7.2.1)

vu = ξ0(u)E
(
η
√
2H

∫ u

0

1

(u− s)γ
dWQ

s

)
= ξ0(u)E

(
ηB̃Q

u

)
[2, Section 4 Page 14]. (7.2.2)

Remark 7.2.1. Recall that ZQ
t = ρWQ

t +
√

1− ρ2W ′,Q
t . Here ρ allows us to model the correlation

between the price process and the volatility process. This correlation is usually observed to be an
negative correlation and thus we typically take ρ ∈ (−1, 0).
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We note here that this (1-factor) Rough Bergomi Model is a non-Markovian generlisation
of the 1-factor Bergomi Model (see [30]). It is non-Markovian in the instanatenous variance
vt as EQ[vu|Ft] ̸= EQ[vu|vt]. However, it is Markovian in the infinite-dimensional state vector
EQ[[vu|Ft] = ξt(u) [2, Section 3 Page 13].

It is also interesting to note that, in the Rough Bergomi model, options prices when viewed
from time t only depends on the forward variance curve ξt(u) and the three parameters H, η, and
ρ [2, Remark 3.1 Page 14].

7.2.1 The Bergomi Model

In order to better understand the Rough Bergomi, we shall briefly explore the traditional Bergomi
Model.
Bergomi [30], in an attempt to better capture forward volatility and forward skew risks accurately,
decided to model the dynamics of forward variance, instead of instantaneous variance. He proposed
a general framework for modelling forward vairances, which when combined with appropriate
dynamics of the price process, result in the Bergomi Model.

Bergomi proposed various models, with the differences lying in the number of Brownian motions
used within the dynamics of the forward variance process. Though the models do differ in their
specification of the forward variance dynamics, all of Bergomis models have the following dynamics
for the price process :

dSt = (r − q)Stdt+
√
ξt(t)StdW

S
t [30, Section 3.1 Page 4].

Remark 7.2.2. In each of the variations of the Bergomi model, the Brownian motion driving the
price process will be correlated with each of the Brownians driving the forward variance process,
each with a potentially unique coefficient. Furthermore, in the multi-factor case, the Brownian
motions within the SDE for the forward variance process, will have a correlation matrix specifying
the correlation between each pair of Brownian motions.

7.2.2 1-factor model

The one-factor Bergomi model utilises a single Brownian motion in the dynamics of the forward
variance curve ξT (t).

With the requirement that ξT (t) is driftless, Bergomi chooses to further assume that ξT (t) is
log-normally distributed and that the volatility of ξT (t), ω is a function of T−t := ρ. Consequently,
Bergomi specifies the following SDE for ξt:

dξT = ω(T − t)ξT dWt [30, Section 2.1 Page 2]. (7.2.3)

Bergomi then proceeds to specify that ω(ρ) = ωe−kρ. With this choice,applying Ito’s lemma,
the solution to the SDE is given by :

ξT (t) = ξT (0)e

(
ωe−k(T−t)Xt−ω2

2 e−2k(T−t)EQ[X2
t ]

)
[30, Equation 2.1 Page 2], (7.2.4)

where Xt is an Ornstein-Ühlenbeck process with the following dynamics:

dXt = −kXtdt+ dWt

X0 = 0.

Consequently, Xt and its variance are given by:

Xt =

∫ t

0

e−k(t−u)dWu

E
[
X2

t

]
=

1− e−2kt

2k
.

Using this, the solution of the SDE given by equation (7.2.3) is as follows:
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ξTt = ξT0 exp

(
ωe−k(T−t)Xt −

ω2

2
e−2k(T−t)E

[
X2

t

])
.

In order to generate the Forward Vairance curve, Bergomi suggests the following procedure [30,
Section 2.1 Page 3]:

1 Let xδ be a centred Gaussian such that E[x2δ ] =
1−e−2kδ

2k .

2 Start from known values of Xt and E(X2
t ] at time t, and calculate ξT (t) using equation

(7.2.4).

3 Generate the Forward Variance curve incrementally, using time steps of size δ using the
following relationship

Xt+δ = e−kδXt + xδ

E[X2
t+δ] = e−2kδE[X2

t ] +
1− e−2kδ

2k
,

and equation (7.2.4).

Remark 7.2.3. We can see that through our choice of an exponential kernel function ω, we have
obtained a Markovian model, with all ξt(t) being a function of a single Wiener process W [30,
Section 2.1 Page 3].

N-factor model

In order to have more flexibility to fit various term-structures of forward volatility, Bergomi also
proposed the more general multi-factor model [30, Section 2.2 Page 3] The general Bergomi model
framework utilises N-Brownian motions within the dynamics of the forward variance curve xiTt =
EQ(vT |vt). The N-factor model has the following SDE:

dξTt = ωαωξ
T
t

∑
i

ωie
−κi(T−t)dW i

t [30, Section 2.4 Page 4] (7.2.5)

where αω is a normalising factor. The N Brownian motions are correlated using a correlation
matrix such that ρi,j is the correlation between W i and W j .

The solution of (7.2.5) is then given by

ξTt = ξT0 exp

ω∑
i

ωie
−ki(T−t)Xi

t −
ω2

2

∑
ij

ωiωje
−(ki+kj)(T−t)EQ

[
Xi

tX
j
t

] [31, Equation 2.1 Page 2],

where Xi
t are N Orenstein-Ühlenbeck processes defined by the following dynamics:

dXi
t = −kiXi

tdt+ dW i
t , Xi(0) = 0.

As proposed by Bayer et al. [2, Section 3.1 Page 14], now that the Rough Bergomi model exists,
we can view the traditional N -factor Bergomi model as a Markovian approximation to the Rough
Bergomi Model. The N -factor Bergomi model has less realistic exponential kernels, that can be
viewed as approximating the power-law kernel present in the Rough Bergomi model.

Now that we have introduced the Rough Bergomi model and its predecessor the Bergomi model,
we proceed in the next chapter to investigate how we utilise the Rough Bergomi model for the
purpose of derivatives pricing.
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Chapter 8

Simulation Techniques

This chapter will detail the relevant simulation techniques used to simulate the Rough Bergomi
model, with an emphasis on the techniques used to simulate the Riemann-Liouville process driving
it.

8.1 Preliminaries

Now that we have defined the Rough Bergomi model, we can proceed with considering how to
utilise the model for derivatives pricing. Unfortunately, because of the non-Markovian nature of
the model, we cannot derive a semi-closed or closed form solution under Itô calculus nor Heston’s
framework [32, Section 2.1 Page 5]. Therefore, in order to be able to price derivatives, we must
forced to simulate the price process of the Rough Bergomi model using Monte Carlo simulations.

8.1.1 Monte Carlo Simulations

Consider a European call option with strike K and maturity T . We can express the price Ct of
this call option at time t, as

Ct = e−r(T−t)EQ
[
(ST −K)

+
]
.

If we cannot calculate the exact value of EQ
[
(ST −K)

+
]
, we can construct an estimate of the

price of the options via Monte Carlo simulations.
This involves generating m sample paths of the stock price process S, under the appropriate

dynamics and risk-neutral measure. Then, we can construct the following estimator

Ĉ(t) = e−r(T−t) 1

m

m∑
i=1

((ST )i −K)
+
, (8.1.1)

where (ST )i denotes the i-th simulated path.
This estimator converges to the true value of Ct at a rate of convergence of O

(
m−1/2

)
[32,

Section 3.1 Page 5].
Now in order to construct the stock price path, we first must generate paths of the Brownian

motion and fBm driving our model of choice, and subsequently the variance and price processes.

8.1.2 Dependence Structure

With this in mind, we turn our attention back to the Rough Bergomi model. Recall that, in
contrast to a standard Brownian motion, fBm has correlated increments. Thus, when simulating
the paths of the fBm we require a much more complicated covariance matrix than would be
necessary for simulating a standard Brownian motion. When we discretise our time interval, we
will require the covariance of the fBm at each point in time, with all other points in time. Thus,
in order to simulate the fBm and subsequently the price and variance processes, we need to have
the dependence structure of the fBm with itself, and also with the Brownian motion driving the
price-process.
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Remark 8.1.1. Henceforth all formulae stated will be under the Risk-Neutral Measure Q. There-
fore, we shall drop the explicit reference to Q.

Taking the initial time as t = 0, we recall the specification of the Rough Bergomi model as:

St = S0E
(∫ t

0

√
vudZu

)
vu = ξ0(u)E

(
η
√
2H

∫ u

0

1

(u− s)γ
dWs

)
= ξ0(u)E

(
ηB̃u

)
.

We shall proceed, by obtaining the various dependence structures of our processes. Taking ρ as
our correlation coefficient, the covariances of the Brownian motion Z with the Riemann-Liouville
process B̃, for v ≥ u are given by

E
[
B̃vZu

]
= ρDH

[
vH+ 1

2 − (v − u)H+ 1
2

]
,

E
[
ZvB̃u

]
= ρDHu

H+ 1
2 [2, Section 4 Page 15],

where we define

DH =

√
2H

H + 1
2

.

We can combine these two formulae to obtain:

E
[
B̃vZu

]
= ρDH

[
vH+ 1

2 − (v −min(u, v))
1
2

]
[2, Section 4 Page 15]. (8.1.2)

For convenience we shall also restate (see (4.5.4)) the covariance structure of the Riemann-
Liouville process, where, for v ≥ u,

E
[
B̃vB̃u

]
= u2HG

( v
u

)
,

where, for x ≥ 1,

G(x) = 2H

∫ 1

0

ds

(1− s)
1
2−H(x− s)

1
2−H

=
2H

1
2 +H

x
1
2−H

2F1(1,
1

2
−H,

3

2
+H,x),

where 2F1(.) is again the Gaussian Hypergeometric function.
Finally, as Z is a Wiener process, we have that

E[ZuZv] = u ∧ v.

Now that we have these dependence structures, we can tackle the simulation of the price path of
the Rough Bergomi Model. The main challenge of simulating the Rough Bergomi model is finding
an efficient method to simulate the Riemann-Liouville process that is driving the variance process.
As allused to above, the simulation of a type 1 or type 2 (Riemann-Liouville) fBm is much more
computationally intensive than a standard Brownian motion, as the increments of the fBm are not
independent, thus we must correlate multiple Normal random variables appropriately to form the
fBm. The next section will explore different method for simulating the Riemann-Liouville process.

8.2 Simulating the Riemann-Liouville process

Here we will present 3 different methods for simulating the Riemann-Liouville process, used in the
Rough Bergomi model. The first of these methods involves utilising the Cholesky decomposition
of the covariance matrix of the Riemann-Liouville process. This method is an exact method with
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no approximation. On the other hand, the second method known as the ’Hybrid scheme’, involves
certain integral approximations. While this method is not exact, it does improve the speed of
computation. Similarly, the third method also involves an approximation, and is not exact in
nature.

We must note that there are many other ways to simulate the Riemann-Liouville process.
However, not all methods are suitable for the purpose of the stochastic volatility models. In the
Rough Bergomi, as in many other fractional stochastic volatility models, the Brownian motion
driving the price-process is correlated with the Brownian motion driving the Riemann-Liouville
process. We therefore require a method to generate the Riemann-Liouville process that explicitly
utilises the integral form of a Riemann-Liouville process, with respect to a standard Brownian
motion. This will enable us to model the proper dependence structure between the two Brownian
motions.

8.2.1 Cholesky Decomposition Method

The Cholesky decomposition is a decomposition of a Hermitian positive semi-definite matrix. It
is used frequently within Monte Carlo simulations as a way of decomposing covariance matrices,
as they satisfy the aforementioned criteria. The covariance matrix is decomposed, giving a lower-
triangular matrix L, we then take a Normal random vector v, and calculate Lv to obtain a vector
of correlated random variables.

Definition 8.2.1 (Cholesky Decomposition of Real-valued Matrix). Let A be a n × n positive
semi-definite matrix with entries in R. Then the Cholesky decomposition of A exists and is

A = LLT ,

where L is a n× n lower-triangular matrix.

Remark 8.2.2. There are multiple algorithms for computing the Cholesky Decomposition of a
target matrix, examples of these can be found in [33].

The Cholesky Decomposition method utilises the Cholesky decomposition of the covariance ma-
trix of the process that is to be simulated, in our case he Riemann-Liouville process defined by equa-
tion (7.1.3). We consider a discrete realisation of our Riemann-Liouville process B̃H

t0 , B̃
H
t1 , . . . , B̃

H
tn

on time grid 0 = t0 < t1 < . . . < tn = T , with time step h = T
n .

We now proceed by constructing the n× n covariance matrix for B̃H
t , utilising the dependence

structure specified in Section 8.1.2. The covariance matrix is constructed as follows:

Γ =


E
[
B̃H

t1 B̃
H
t1

]
E
[
B̃H

t1 B̃
H
t2

]
. . . E

[
B̃H

t1 B̃
H
tn

]
E
[
B̃H

t2 B̃
H
t1

]
E
[
B̃H

t2 B̃
H
t2

]
) . . . E

[
B̃H

t2 B̃
H
tn

]
...

...
. . .

...

E
[
B̃H

tnB̃
H
t1

]
E
[
B̃H

tnB̃
H
t2

]
. . . E

[
B̃H

tnB̃
H
tn

]

 .

Γ is a symmetric positive definite matrix, and thus we can compute its Cholesky decomposition

Γ = LLT

where L ∈ Rn x n is a lower triangular matrix with positive real entries. L is of the form

L =


l1,1 0 . . . 0
l2,1 l2,2 . . . 0
...

...
. . .

...
ln,1 ln,2 . . . ln,n

 .

If we then generate a Normal Random vector V T = (v1, . . . , vn), where vi are i.i.d samples of
standard Normal random variables, we can compute

XH
i =

n∑
k=0

li,kvk.
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Then the vector (0, XH
1 , X

H
2 , . . . , X

H
n ) is a sample path of the Riemann-Liouville process. We can

also represent this path as (0, (LV )1, (LV )2, . . . , (LV )n) where LV is a vector computed by the
matrix product of L and V .

When simulating multiple paths, we proceed in a similar fashion. To compute m paths of the
Riemann-Liouville process, generate m normal random vectors Vi, then store these vectors in a
matrix A = [V1, V2, . . . , Vm] = (vi,j). We then compute

X = LA,

and append a row of zeros as the new 1st row of X. Then XT is a m× (n+1) matrix consisting
of m paths of the Riemann-Liouville process, with each path being a row of XT .

To summarise, the algorithm for computing m paths of the Riemann-Liouville process is given
below:

1 Construct an evenly spaced discrete time-grid 0 = t0 < t1 < . . . < tn = T on our time
interval of interest [0, T ], with time-step h = T

n .

2 Construct the covariance matrix Γ for our given time-steps and Hurst parameter H.

3 Find the Cholesky decomposition Γ = LLT (see [33] for a range of methods to do so).

4 Generate Random Normal Matrix A of size n×m.

5 Compute X = LA.

6 Append a row of zeros as the first row of X.

7 XT now contains m paths of our Riemann-Liouville process.

Remark 8.2.3. Them×nmatrix of increments of the Wiener processW that drives the Riemann-
Liouville process, can be obtained as ∆W =

√
hAT .

While this method does produce a discrete process with the exact covariance structure specified,
it is very computationally intensive. The time complexity of this simulation method is of O(n3) [32,
Section 3.2.1 Page 7]. Furthermore, this method is also demanding on memory, as the covariance
matrix grows with space complexity of O(n2). However, a benefit of this method is that the
generation of the covariance matrix and subsequent Cholesky decomposition need only be done
once, even when many sample paths are required.

8.2.2 Hybrid Scheme Method

The Hybrid scheme and its variants are methods introduced by Bennedsen, Lunde and Pakkanen
in 2017 [34], as a way to approximately simulate a class of processes known as ’Brownian semi-
stationary’ (BSS) processes. For the purpose of the simulating the Riemann-Liouville process,
we are specifically interested in the variant of the scheme used to simulate ’Truncated Brownian
semi-stationary’ (TBSS) processes.

Definition 8.2.4 (Brownian Semistationary process). Let (Ω,F , (Ft)t∈R,P) be a filtered prob-
ability space, supporting a standard Brownian motion Wt, and fulfiling the usual conditions for
such a space.

i. Then a Brownian semistatioary process is a stochastic process of the form

Xt =

∫ t

−∞
g(t− s)v(s)dWs [34, Equation 2.1 Page 934], (8.2.1)

where v = (v− t)t∈R is an (Ft)t∈R- predictable process with locally bounded trajectories that
drive the volatility of the process, and g : (0,∞) → [0,∞) is a Borel-measurable function
[34, Section 2.1 Page 934].

ii. Then a truncated Brownian semistationary process is a stochastic process of the form

Yt =

∫ t

0

g(t− s)v(s)dWs t ≥ 0 [34, Equation 2.14 Page 943], (8.2.2)

where v and g fulfil the same conditions as (8.2.1). Yt is known as a TBSS as it is obtained
from truncating the stochastic integral of a BSS such as Xt, at 0.
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If we now turn our attention back to the Riemann-Liouville process used within the Rough
Bergomi model (see (7.1.3)), we can see that

B̃H
t :=

√
2H

∫ t

0

(t− s)H− 1
2 dWs, (8.2.3)

is in fact a TBSS, with kernel function g(x) =
√
2HxH− 1

2 and v = 1.
For a description of how the Hybrid scheme operates, we utilise the words of Bennedsen et

al., who stated that the Hybrid scheme works by ”approximating the kernel function by a power
function near zero and by a step function elsewhere. The resulting approximation of the process is
a combination of Wiener integrals of the power function and a Riemann sum” [34, Abstract Page
931].

For the purpose of generating our Riemann-Liouville process (8.2.3) , the basis of the scheme
proceeds in the following way [34, Section 2.5 Page 943].

Construct a time grid πn
t :=

{
t, t− 1

n , t−
2
n , . . .

}
for the discretisation of the Riemann-Liouville

process, and let κ ≥ 1 be an integer . Then, the discretisation of the Riemann-Liouville process
(8.2.3) can be represented as

Yt =

∞∑
k=1

√
2H

∫ t− k
n+ 1

n

t− k
n

(t− s)H− 1
2 dWs [32, Section 3.3.2 Page 8].

Now, for k ≤ κ, we do not proceed with any further approximation for g(t− s) = (t− s)H− 1
2 .

However for k > κ, we approximate

(t− s)H− 1
2 ≈

(
bk
n

)H− 1
2

, t− s ∈
[
k − 1

n
,
k

n

]
where bk ∈ [k − 1, k]. Applying these approximations, we obtain

Yt ≈
√
2H

(
κ∑

k=1

∫ t− k
n+ 1

n

t− k
n

(t− s)H− 1
2 dWs +

∞∑
k=κ+1

(
bk
n

)H− 1
2
∫ t− k

n+ 1
n

t− k
n

dWs

)
[32, equation 19 Page 7].

(8.2.4)
At this point we see that the second sum in (8.2.4) is infinite. Therefore, in order to have a

feasible numerical approximation, we truncate this second sum at an appropriate value Nn ≥ κ+1,
so that both sums have the same number of terms in total.

For the choice of bk, Bennedsen et al. provide the formulae for the values of bk that minimizes
the mean square error induced by the discretisation . These optimal bk are given by

b∗k =

(
kH+ 1

2 − (k − 1)H+ 1
2

H + 1
2

) 1

H− 1
2

, k ≥ κ+ 1 [34, Proposition 2.8 Page 941].

By choosing bk = b∗k and truncating the second sum as described, we arrive at the Hybrid
scheme approximation

Y n
t :=

∨
Y

n

t +
∧
Y

n

t ,

where

∨
Y

n

t =
√
2H(

κ∑
k=1

∫ t− k
n+ 1

n

t− k
n

(t− s)H− 1
2 dWs, (8.2.5)

∧
Y

n

t =

Nn∑
k=κ+1

(
b∗k
n

)H− 1
2
∫ t− k

n+ 1
n

t− k
n

dWs =

Nn∑
k=κ+1

(
b∗k
n

)H− 1
2 (
Wt− k

n+ 1
n
−Wt− k

n

)
[34, section 2.3 Page 938].

(8.2.6)

Let us for now consider a practical implementation of the first order of approximation only,
corresponding to κ = 1. In this case to apply the Hyrbid scheme to the simulation of our Riemann-
Liouville process B̃H

t we follow the following procedure:
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Algorithm 8.2.5 (Hybrid scheme with κ = 1). 1 Create an equidistant time-grid ti =
iT
n , i =

0, 1, 2, . . . , n, with n time-steps in the interval of interest [0, T ]. On this time-grid, the Hybrid
scheme will generate Yi, i = 0, 1, . . . , n.

2 Now (with κ = 1), the numerical Hybrid scheme for the Riemann-Liouville process can be
written as

Yi =
√
2H

(
Wmax{i−1,0},1 +

i∑
k=2

(
b∗k
n

)H− 1
2

Wi−k,2

)
[32, Euqation 20 Page 8] (8.2.7)

where for each i = 0, 1, 2, . . . , n, Wi,1 and Wi,2,, are two i.i.d random vectors from a centred
bivariate normal distribution with covariance matrix Γ

Γ =


1
n

1

(H+ 1
2 )n

(H+1
2 )

1

(H+ 1
2 )n

(H+1
2 )

1
2Hn2H

 [32, Section 3.2.2 Page 8].

Thus, we now generate the required matrix Γ, then draw Wi,1 and Wi,2 for each i, from the
multivariate Gaussian distribution N(0,Γ).

3 Then we compute each Yi using our vectors Wi,1 and Wi,2, and equation (8.2.7).

Remark 8.2.6. As laid out by Matas and Pospisil [32, Section 3.2.2 Page 8], we can represent
the right-hand sum of equation (8.2.7) by

i∑
k=2

(
b∗k
n

)
Wn

i−k,2 =

i∑
k=1

ΓkΞi−k = (Γ ⋆ Ξ)i [32, Section 3.2.2 Page 9],

where Γ ⋆ Ξ stands for discrete convolution and

Γk :=

 0, k = 1,(
b∗k
n

)H− 1
2

, k = 2, . . . , i,

Ξk :=Wk,2, k = 0, 1, . . . , n− 1.

Then we can represent the approximation for each Yi from the Hybrid scheme as

Yi =
√
2H
(
Wmax{i−1,0},1 + (Γ ⋆ Ξ)i

)
.

This is a useful form in particular because the discrete convolution can be effectively calculated
using the Fast Fourier Transform (see [35, Section 3.3.4]). Furthermore, under these circumstances,
the complexity of the time complexity of the Hybrid scheme is O(n log n) [34, Remark 3.2 Page
947].

8.2.3 Rough Donsker Scheme

The Rough Donsker (rDonsker) scheme was introduced by Hovarth, Jacquier and Muguruza in
2017 [21], as an alternative approach to the Hyrbid scheme (see 8.2.2). The rDonsker scheme
is based on an extension of Donsker’s theorem (see [36]). As described by Horvath et al. [21,
Introduction Page 1], the rDonsker scheme produces an approximating sequence for a Brownian
semistationary process, while also keeping track of the underlying Brownian motion. This allows
one to easily obtain the path of the driving Brownian motion, and correlate this Brownian motion
with additional Brownian motions in a stochastic volatility models as needed. A thorough descrip-
tion of the appropriate theory and convergence of the scheme is laid out in chapters 1-3 of [21,
Chapters 1-3], which we encourage the reader to review.

Henceforth, we shall proceed by laying out a practical algorithm for simulating our Riemann-
Liouville process B̃H

t using the rDonsker scheme. This algorithm was proposed by Horvath,
Jacquier and Muguruza as ’Algorithm 3.3’ [21, Algorithm 3.3 Page 12], and has been adapted
as per the authors instructions for our specific choice of process.
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Algorithm 8.2.7 (Simulation of Riemann-Liouville process (8.2.3) using rDonsker Scheme). Con-
sider an equidistant time partition ti

n , i = 0, 1, 2, . . . , n, for a fixed n ∈ N, on our interval of interest

[0, T ]. On this time-grid we shall generate m paths of Riemann-Liouville process B̃H
t . Let Y j

i

denote the j-th discrete approximation j = 1, . . . ,m of B̃H
t , evaluated at ti, i = 0, 1, 2, . . . , n.

Furthermore, as in the Hybrid scheme setting, let g(x) =
√
2HxH− 1

2 .Then we proceed as follows:

1 Simulate two N (0, 1) matrices {ξj,i}j=1,...,m
i=1,...,n

and {ζj,i}j=1,...,m
i=1,...,n

, with corr(ξj,iζj,i) = ρ.

2 Denote

∆W j
i =

√
T

n
ζj,i, i =, 1, . . . , n, quad, j = 1, . . . ,m.

3 Simulate m paths of the Riemann-Liouville process Y by

Remark 8.2.8. Note that the Normal Matrix ξj,i, will be used later to obtain the increments
of the Brownian motion within the log-price process simulation. It is more convenient to
generate two matrices with correlation coefficient ρ at inception here, rather than correlating
two processes later.

Y j
i =

i∑
k=1

g (ti−k+1)∆W
j
k =

i∑
k=1

g (tk)∆W
j
i−k+1, i = 1, . . . , n, and j = 1, . . . ,m,

As in the Hybrid scheme case, we complete this step using discrete convolution with com-
plexity O(n log n) (see [21, Appendix B Page 26].

8.2.4 Comparing Simulation Methods for the Riemann-Liouville process

Accuracy of computation

As both the rDonsker and Hybrid scheme methods are approximations, it is prudent to investigate
whether the paths produced by these schemes behave in the way we would expect the Riemann-
Liouville process to behave. Matas and Pospisil [32, Section 4.1 Page 11], conducted such an
investigation, comparing the absolute sample moments of Riemann-Liouville paths generated by
the Cholesky decomposition ,rDonsker and Hybrid schemes, with the theoretical moments of the
Riemann-Liouville process. Here the Cholesky decomposition method is taken as a benchmark, as
the discrete-time paths generated by it will have the exact covariance structure of a discrete-time
Riemann-Liouville process, and thus should be our ’best’ approximation to the continuous time
Riemann-Liouville process. Rather remarkably, Matas and Pospisil found that the sample paths
generated by the approximate schemes (rDonsker and the Hybrid scheme), were of a similar quality
to those generated by the exact Cholesky decomposition method [32, Section 4.1 Page 12]. As all
these methods can be considered to generate paths which resemble a Riemann-Liouville process
equally well, we must turn to another metric to deduce which method of simulation may be more
appropriate or optimal.

Speed of computation

From the descriptions of the methods above, we can already compare the asymptotic time com-
plexity of the simulation of one path of the Riemann-Liouville process for our various methods.
Under big O notation, and with n being the number of time-steps within our interval of in-
terest, we saw that the Cholesky decomposition method had a asymptotic time complexity of
O(n3), whereas the Hybrid-scheme and rDosker method shared an asymptotic time complexity
of O(n log n). Therefore, we can see that the approximate methods are more efficient than the
exact Cholesky decomposition method. However, as noted by Matas and Pospisil [32, Section 4.1
Page 13], the asymptotic time complexity does not convey which method is superior at generating
m paths when m is large. We must then, for each method, consider the effect of increasing the
number of paths m, rather than the number of time-steps n.

If we first consider the Cholesky decomposition method, we can see that this method is easily
vectorised. In fact, through the use of matrix notation, the method is vectorised implicitly [32,
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Section 4.1 Page 13]. When we perform the Cholesky decomposition method, we only need to
compute the required covariance matrix Γ and subsequent Cholesky decomposition once. Further-
more, the size of the covariance matrix is only affected by a change in n, and not a change in m.
Once we have computed the Cholesky decomposition Γ = LLT , we must matrix multiply L with
A, the n×m Normal random matrix. Here, we see that the size of A is affected by an increase in
m, and subsequently we can deduce that increasing the number of paths m will increase the time
of computation, through the time required to generate A and the time required for the matrix
multiplication.

Conversely, neither the Hybrid scheme nor the rDonsker scheme is easily vectorised, due to the
discrete convolutions that is required [32, Section 4.1 Page 13]. Therefore, in order to compute
m paths, we must loop the computation of a single path m times. Therefore, the runtime for m
paths should increase linearly in m.

Matas and Pospisil [32, Section 4.2 Page 14] subsequently performed an empirical investigation
into the run-times of the aforementioned simulation methods. The authors measured the run-time
of producing m paths with n steps of the Riemann-Liouville process, for 100 ≤ m ≤ 150, 000 and
250 ≤ n ≤ 10, 000. We summarise their findings below [32, Section 4.2 Page 14]:

1 For m < 100 we see that the rDonsker scheme is the fastest for all n considered, closely
followed by the Hybrid scheme.

2 As m increases, we see that the Cholesky decomposition becomes the fastest. If we denote
the value of m for which the Cholesky decomposition becomes the fastest as m∗, we see that
m∗ varies on n, with m∗ being in the range 1000 < m∗ < 10, 000.

3 For m ≥ 10, 000 the Cholesky decomposition is the fastest, for all n considered, followed by
the rDonsker.

For the purpose of derivatives pricing, we typically use at least 50,000 paths. Therefore, for
any m of practical use we can see that the Cholesky decomposition method is in fact the fastest,
for any n.

Although the asymptotic time complexity of the Cholesky decomposition method is much
larger than that of the rDonsker and Hyrbid schemes, we saw that once large number of paths
m are considered, that the Cholesky decomposition method becomes the fastest. Therefore, given
that the Hybrid scheme and rDonsker method are approximations and slower than the Cholesky
decomposition method, it seems appropriate to utilise the Cholesky decomposition for most cases.
We do note that the rDonsker or Hybrid scheme may be more optimal in a situation where we
need to generate few paths m, but with a high granularity.

8.2.5 Choice of Riemann-Liouville process simulation technique

While the analysis of Matas and Posṕı̌sil [32, Figure 2 Page 15] suggests that for the Cholesky
decomposition may be faster than the rDonsker and Hybrid scheme method, we shall not proceed
with this method due to memory constraints. Memory constrains come about when utilising the
Cholesky decomposition method due to the generation of the large covariance matrix. Unfortu-
nately, due to memory constrains on each core we have available, we are forced to make use of
the less memory-demanding techniques such as the rDonsker method or the Hybrid scheme. Now,
left with the choice of the two remaining schemes, we choose to utilise the Hybrid scheme at this
point, and leave an exploration of the rDonsker scheme to further research. We choose the Hybrid
scheme due to the availability of literature on the method, from which we can corroborate our
results with.

8.3 Simulating the Rough Bergomi Model

Once we have simulated the Riemann-Liouville process B̃H
t using one of the aforementioned meth-

ods, we are left to simulate the variance process, and subsequently the price process of the model.
For this, we will rely on using the Euler scheme, and proceed by utilising the following algorithm.

Algorithm 8.3.1 (Simulation of the Rough Bergomi Model). Again, we consider the same equidis-
tant time partition 0 = t0 < t1 < . . . < tn = T on our time interval of interest [0, T ], with time-step
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h = T
n , for a fixed n ∈ N, as we used for the generation of the Riemann-Liouville process. On

this time-grid we shall generate m paths of the variance process and price process of the Rough
Bergomi model. Furthermore, let Y j

i , v
j
i , S

j
i denote the j-th discrete approximation j = 1, . . . ,m of

the Riemann-Liouville process B̃H
t , variance process vt and price process St respectively,evaluated

at ti, i = 0, 1, 2, . . . , n. For the purpose of this algorithm all i will be i = 0, 1, 2, . . . , n, and all j
will be j = 1, . . . ,m, and without loss of generality we consider the risk-free rate r = 0 for the
time-being.

1 Simulate m sample paths of the Riemann-Liouville process Y j
i , by one of the aforementioned

simulation methods (we shall utilise the Hybrid scheme method). Then, for each method we
also store the increments of the Wiener process driving the Riemann-Liouville process, we
denote these as ∆W j

i .

2 At each time-step ti compute m values of the variance process using vjti = ξ0(ti)E(ηY j
i ).

3 Simulate m paths of an independent Wiener process W ′,j
i , with increments ∆W ′,j

i . Then
construct

Zj
i = ρW j

i +
√

1− ρ2W ′,j
i ,

whose increments we denote as ∆Zj
i . We note that this step was already implicitly performed

in Step 1 of the rDonsker Algorithm (8.2.7), thus we can simply utilise the stored increments
within the second Normal matrix we generated.

4 Utilise the forward Euler scheme to simulate m sample paths of our price-process S by

Sj
i+1 = Sj

i +

√
vjiS

j
i (∆Z

j
i ).

8.3.1 Pricing Multiple Options

For the purpose of calibration, and also just for general use, it is useful to price multiple vanilla
options using a single set of simulations.

Consider the following example, where we wish to price 2 call options, C1 and C2, with strikes
k1 and k2 respectively, and maturities T1 and T2 respectively. We could proceed with the simple
approach of simulating m paths of the price-process up to T1 and pricing C1, and then simulating
another m paths to price C2. However, it is much more efficient to simply simulate m paths of the
price-process up to max(T1, T2), and store ST1 and ST2 for each path. Then we can evaluate the
payoff of each option at their respective maturities, and price each option using one single set of
m paths. The efficiency of this techniques becomes even more apparent as we add more options.
Consider the case where we would like to price options C1, . . . , Cn, where there are n

k strikes
considered for each of the k maturities. We simply simulate m paths of the Rough Bergomi price
process up to max(T1, . . . , Tk), and store STi for each of the m paths at each of the k maturities.
Then for each path we can evaluate each of the n

k payoffs at each maturity, and finally compute the
prices of the n options. Therefore, we can price an arbitrarily large number of options with a single
set of m simulations, provided that we have enough available memory to store the values of the
price-process as each desired maturity. We can think of this technique as pricing a maturity-strike
grid of options all at once, and will refer to it as ’grid-pricing’ throughout this paper.

8.3.2 Parallelisation

As we will be generating a large number of sample paths for the purpose of Monte Carlo simulation,
it is extremely useful to consider parallelisation. To put it briefly, we shall distribute the m sample
paths that we wish to simulate into b batches, with each batch running on a different core. This
works well with Monte Carlo price simulations, as no information is needed from the other m− 1
paths, for the purpose of generating one path. Once all the m

b paths are generated for each batch,
we simply store the values of the paths at the times of interest, typically the maturities of the
options we wish to simulate. We can then take a batch-wise average of each payoff we wish to
evaluate, and then take a final average of the b batch-wise averages, to generate our final price
estimate.

Parallelisation is also easily applied to the grid-pricing methodology. We again split our required
m simulations into b batches. Once each batch generates a price-grid of options, we simply take
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a component-wise average of all b price-grids, to obtain our final price-grid of Monte Carlo prices.
For the rest of this paper, we shall be parallelising our Monte Carlo simulations in this way, to
speed up the computation.

8.3.3 Variance reduction - ”Turbocharging” Monte Carlo

Unfortunately, simulating rough volatility models by Monte Carlo simulations can be time-demanding,
as the estimators produced have a high variance and thus a large number of simulations is needed
to have precision. To remedy this issue, we can consider a range of variance reduction techniques,
to reduce the variance of the estimator, so that we require less simulations to reached our desired
level of precision. Notable variance reduction techniques include antithetic sampling, importance
sampling, and control variates. These are all standard techniques that have been implemented
in various ways across different models. In this subsection we will briefly explore a notable vari-
ance reduction technique designed specifically for Rough Volatility models, that was proposed by
McCrickerd and Pakkanen in 2018 [37].

Mccrickerd and Pakkanen [37] refer to their variance reduction technique as ”turbocharging”.
The idea of ”turbocharging”, in the context of option pricing, is to construct a mixed estimator
for the price of an option, instead of using he standard Monte Carlo estimator (8.1.1).

Suppose we are in the framework of Section 8.1.1, and again wish to price the European Call
Option with strike K and maturity T .

In the context of the Rough Bergomi model, this mixed estimator is calculated by first consid-
ering the orthogonal separation of the price process St, into S

1
t and S2

t where

S1
t : = E

(
ρ

∫ t

0

√
vudW

1
u

)
S2
t : = E

(√
1− ρ2

∫ t

0

√
vudW

2
u

)
[37, Section 2 Page 5]

Remark 8.3.2. W 1
t is the Brownian motion driving the Riemann-Liouville process used in the

Rough Bergomi Model.

We can see that this notion of orthogonal separation comes about naturally, by writing the
Rough Bergomi model (with S0 = 1) in the following way:

St = E
(∫ t

0

√
vud(ρW61u +

√
1− ρ2W 2

u

)
vt = ξ0(t)E

(
ηB̃H

t

)
B̃H

t : =
√
2H

∫ t

0

(t− u)H− 1
2 dW 1

u

Then, the ”turbocharging” mixed MC estimator of Mccrickerd and Pakkanen, for m sample
paths,is defined as:

C̃(t) =
1

m

m∑
i=1

(Xi + ω̂Yi)− ω̂E[Y ]

X = BS

(
S1
t ,K, T,

(
1− ρ2

) ∫ t

0

vu du, t

)
Y = BS

(
S1
t ,K, T, ρ

2

(
Q̂−

∫ t

0

vu du

)
, t

)
, [32, Equation 21 Page 11],

where BS(·) is the standard Black-Scholes formula for a call option, where we note the integral
expressions are being used as the volatility value within the formulae. Furthermore, ω̂ and Q̂ are
constants computed post-simulation, with ω̂ in particular being calculated from sampled Xi and
Yi values. ω̂ and Q̂ are defined as follows:
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ω̂ = −

∑m
i=1

(
Xi − X̂

)(
Yi − Ŷ

)
∑m

i=1

(
Yi − Ŷ

)2
Q̂ = max

{(∫ t

0

vu du

)
i

: i = 1, . . . ,m

}
, [32, Equation 23 Page 11].

The mixed estimator C̄(t) is always a biased estimator of C(t), as the Black-Scholes formulae
is non-linear [32, Section 3.3 Page 11]. However, McCrickerd and Pakkanen state that, for m >
1000 the bias is not practically significant [37, Section 3.2 Page 10]. Futhermore, McCrickerd
and Pakkanen found that their ”turbocharged” estimator reduces the run-time of Monte Carlo
simulations, until a specific standard deviation of estimator is reached, by up to 34 times, when
compared to the base Monte Carlo estimator [37, Section 3.2 Page 10].

In their 2018 paper [37], McCrickerd and Pakkanen applied their ”Turbocharging” method
to the simulation of the Rough Bergomi model, where the Hybrid scheme with κ = 1 was used
for the generation of the Riemann-Liouville process. However, we note that the turbocharging
method is not meant to be exclusively used in conjunction with the Hybrid method [32, Section
3.3 Page 11].The turbocharging variance reduction technique can be utilised with a simulation of
the Riemann-Liouville process by the rDonsker method or the Cholesky decomposition method.

While the use of ’turbocharging’ does seem promising, the recent work of Matas and Posṕı̌sil
[32] brought some drawbacks of the method to light. Matas and Posṕı̌sil found that, with certain
parameter choices, the ’turbocharging’ methodology produced negative prices for vanilla options
[?], suggesting that the method is malfunctioning in some way. Furthermore, Matas and Posṕı̌sil
found that for deep OTM options, the variance was actually increased when compared to the
standard Hybrid scheme, and that the bias of the price estimates was large [32, Figure 5 Page
19]. Therefore, as a result of this analysis, we have decided not to utilise the ’tubrocharging’
methodology in its current state, due to it’s lack of tractability, the potential presence of bias, and
the potential presence of negative prices.

8.4 Market Information

Up to now, we have not included the use of any market information into the simulation of the
Rough Bergomi model. In order for us to calibrate the model, and for us to utilise it for the
pricing of derivatives, we must incorporate appropriate market information into the simulation
of the Rough Bergomi model. Furthermore, for the purpose of calibration, we will make use of
information provided by the market implied volatility surface of our chosen asset.

Given a specific date, which we shall utilise as our initial time t0 = 0, and a specific asset, the
first and most obvious piece of market information we will utilise is the spot price of the asset. We
will take the closing price of our asset on this date as our initial value S0. Moreover, we choose to
take the closing value of any market information on a specified date as the value for that date. The
spot value is integral to our diffusion as it specifies the initial value of our price-process. Aside from
the spot value, we require knowledge of the Forward curve, Discount curve and Forward variance
curve for the simulation of both our price and variance diffusion processes.

8.4.1 Forward Curve

Up to this point we had largely ignored the effect of interest rates within our diffusion for the price-
process. We rationalised this by choosing to only consider deterministic interest rates, and then
without loss of generality we set these rates equal to zero. Unfortunately, real markets rarely have
interest rates equal to zero, and thus in order for our model to properly simulate our chosen assets
price process we must utilise the appropriate interest rate. In a simplified market, the constant
risk-free rate is the drift coefficient of our assets price-process once we have changed from the
real-world probability measure P to the risk-neutral measure Q. However, in real equity markets
we do not in practice observe a constant risk-free rate, instead the risk-free rate changes over time.
Therefore, for the purpose of using the Rough Bergomi model for pricing equity derivatives, we
continue under the assumption of deterministic interest rates, but we no longer operate under the
assumption of a constant risk free rate. To complicate things more, equity markets also often
operate with the presence of dividends and borrow rates. Fortunately, all of the information about

55



the borrow rate of an asset, it’s dividends, and the risk-free rate can be approximated from the
forward curve of the chosen asset.

Remark 8.4.1. We shall consider dividends in the form of continuous dividends, such that we
avoid large jumps in our price process.

We will work under the assumption that at t = 0, the risk-free rate rt, the borrow rate bt and
the continuous dividend qt, are all built into the forward curve of our asset for t ∈ [0, T ].

Now, with the inclusion of non-zero r, b, q, in the Rough Bergomi model under Q we have that:

dSt = µtStdt+
√
vtStdZt,

where µt = rt − bt − qt.
Let us denote denote the forward price of S at time T , viewed at time t, as F (t, T ). Then,

given deterministic r, b, q we have that

F (t, T ) = St × exp(

∫ T

t

µsds)

Now, let πn be the time partition defined as the sequence t1, t2 . . . tn, such that ti < ti+1 for all
i, , 0 = t0, tn = T , and ti+1 − ti =

T
n . The sequence πn will be the discrete time-grid used for

our asset diffusion. Now, at time t = 0, we can observe the forward price F (0, t) of our asset,
for discrete times t ∈ {t̄1, t̄2, . . . t̄n} ∈ [0, T ] where T is our final date of interest. Forward prices
may only be observable from the market at discrete dates, therefore we shall construct a forward
curve such that we have a approximate forward value at each of the time-steps of our diffusion
process. Given discrete forward prices {F (0, t) : t ∈ {t̄1, t̄2, . . . t̄n}}, we can construct a forward
curve through interpolation. The exact choice of methodology for the construction of the forward
curve is outside of the scope of this paper. We shall assume that we have obtained a continuous
forward curve, through an appropriate interpolation or boot-strapping scheme. The continuous
forward curve will the contain approximate forward prices for all t ∈ [0, T ] , and from this we can
extract a forward value for each time-step of our diffusion. Now that we have F (0, ti) for all ti in
our diffusion-time grid, we assume the drift term µti is constant on the interval [ti, ti+1) for all i,
then we can approximate the discrete drift term µti via the following:

F (0, ti+1) = S0 × exp(

∫ ti+1

0

µsds) = S0 × exp(

∫ ti

0

µsds+

∫ ti+1

ti

µsds)

=⇒ F (0, ti+1)

F (0, ti)
=
S0 × exp(

∫ ti
0
µsds+

∫ ti+1

ti
µsds)

S0 × exp(
∫ ti
0
µsds)

= exp(

∫ ti+1

ti

µsds)

=⇒ ln

(
F (0, ti+1)

F (0, ti)

)
=

∫ ti+1

ti

µsds.

Then, as we assumed µti is constant on the interval [ti, ti+1), we have that

ln

(
F (0, ti+1)

F (0, ti)

)
=

∫ ti+1

ti

µsds = µti × (ti+1)− µti × (ti) = µti∆t (8.4.1)

where ∆t = ti+1 − ti.
While this is still an approximation, as we have assumed that µt is constant on the interval

[ti, ti+1), we shall use (8.4.1) and our interpolated forward curve to obtain the drift term for
each time interval in our Euler scheme for the assets price-process. Therefore, we were able to
incorporate all of the information about r, b, and q, all from a set of forward prices observable in
the market at t = 0.

8.4.2 Variance Swap Curve

The Rough BergomimModel, being a modification of the Bergomi model, is a forward variance
model, requiring as an input, the forward variance curve at time t = 0. In order to obtain the
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forward variance curve, we make use of the forward variance swap curve, constructed from the
fair-strikes of variance swaps for increasing maturities. As stated by Bayer et al. [2, Section 5.1
Page 17], ”Variance swaps are actively traded so in principle, computation of the forward variance
swap curve should be straightforward”. Unfortunately, reliable variance swap quotes are only
obtainable for a selection of dates. Thus, in order to construct a variance swap curve, we need
to find a way to estimate the fair strike of variance swaps for intermediary maturity dates. One
way to construct the forward variance swap curve is perform a monotonic spline to interpolate
between existing variance swap fair strikes, as done so in [2, Section 5.1 Page 17]. Another way
to construct the curve is to price variance swaps at the intermediary maturity dates that we are
interested in, using information obtained from the implied volatility surface, and then perform a
suitable interpolation technique. There are numerous other ways to construct such the forward
variance swap curve, including techniques which derive the curve directly from observed vanilla
options (see [38]), however the specifications of these methods are out of the scope of this work.
For the purpose of this work, we proceeded with the monotonic spline interpolation laid out by
Bayer et al. in [2, Section 5.1 Page 17].

Once we have obtained an interpolated curve of the fair strikes of variance swaps for varying
maturities within our time span of interest [0, T ], we can extract forward variance curve, via the
following relation

ξT (t) = ∂TV
T
t , T ≥ t ≥ 0 [39, Section 1.1 Page 3]

where we recall from (2.3.1) that V T
t is the price of a variance swap with maturity T viewed at

time t, and we recall from (7.1.12) that ξT (t) is the forward variance curve. For a more in-depth
discussion of forward variance dynamics see [39].

8.4.3 Discount Curve

Now, given that we have completed the simulation of our assets price-process, and computed
payoffs of interest, we are left to discount the payoffs back to t = 0. Unfortunately, we no longer
work under the assumption of a constant risk-free rate, and thus in order to do this, we need to
know the discount curve of our market. Discount curves can be constructed via observing certain
interest rate products, such as swaps, and bootstrapping a curve together. The specifications of
the various methodologies of bootstrapping a discount curve are out of the scope of this paper,
and thus we shall work under the pretense that we have obtained a bootstrapped discount curve
containing discount factors for each time-step in πn, the time-grid for our discrete diffusion. With
this curve at hand, we can simply utilise the appropriate discount factor for each payoff of interest,
discounting that payoff back to t = 0 to obtain our price estimate for the derivative.

8.4.4 Implied volatility surface

The market-implied volatility surface, for a given asset, is important for the construction of the
variance swap curve (as described in 8.4.2), and for calibration of the model. For the purpose of
model calibration, the market implied volatility surface is used to asses the ’goodness of fit’ of the
model generated implied volatility surface. The exact cost function and calibration methodologies
will be covered later in 10. Certain calibration methodologies may require a smooth, arbitrage-free,
parameterised surface, such as the one provided by the SVI parameterised volatility surface (see
[40]), while other calibration methodologies simply require implied volatilities on a discrete strike
by maturity grid. We need at minimum a selection of implied volatility estimates, whether they
be interpolated or directly observed in the market, for each of the options we will use for our
calibration. Again, the construction of an implied volatility surface is outside of the scope of this
paper, and we choose to operate under the pretense that we have been provided with a suitable
implied volatility surface for our asset at t = 0. Then, we may utilise the surface for the purpose
of calibrating our Rough Bergomi model.

With market data at hand and a simulation method chosen, we can begin to simulate the
Rough Bergomi model. Before we delve into calibrating the model, we shall explore the effects of
the parameters of the mode, through the use of our chosen simulation technique.
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Chapter 9

Parameters of the Rough Bergomi
Model

The Rough Bergomi model has been praised for its ability to fit a wide range of shapes of volatility
surfaces with just three parameters: H, η and ρ. Before we proceed the calibration of the model,
we shall explore the effect of each parameter on the behaviour of the model.

9.1 Exploring the Effect of the Rough Bergomi Parameters

In order to explore the effect of each parameter, we have generated volatility smiles and skews, while
varying individual parameters of the Rough Bergomi model or combinations of them. All of the
Riemann-Liouville process paths utilised in this analysis were generated using the Hybrid scheme
method. Traditional Monte Carlo option price estimators were used to calculate the price of each
option, from which the implied volatilities and subsequently skews were calculated. Each option
price was calculated using 200,000 simulated stock price paths, with each path using daily time-
steps for 252 trading days per year, up to a time horizon of 5 years. Moreover, for the purpose of
this exploratory investigation, a flat forward variance curve was utilised, and deterministic interest
rates of r = 0 were used, unless otherwise stated.

9.1.1 The effect of H

In each of the following plots, we fix ρ, η, ξ and vary H.
Unfortunately, it is hard to deduce much about the effect of H from Figure 9.1. Nonetheless,

we can begin to see that the minimum of each smile moves upwards as H decreases. In order to
deduce more about the effect of H, we turn to the term structure of the model generated ATM
forward skew. For the following plots of the ATM Skew, the forward variance curve, discount curve,
forward price curve, and stock initial value, used in the diffusion for both the variance process and
asset price process were all constructed from data for the SPX Index on the 30th May 2022.

Figure 9.2 shows the effect of varying H on the term structure of the model generate ATM
forward skew. From Figure 9.2(a) we can see that as we begin to decrease H, we see that the model
delivers a lower long-term skew, with a steeper increase in the term structure of the short-term
skew, and a higher value for the skew in the extreme short-term. However, we do see slightly
different behaviour once H ≤ 0.10. Figure 9.2(b) and Figure 9.2(c) were then plotted to explore
the difference in the behaviour of the term structure of the skews, above and below H = 0.10
respectively. From Figure 9.2(b) we can confirm the behaviour we saw in Figure 9.2(a), with
decreasing values of H leading to a sharper decay in skew for small τ . Turning to Figure 9.2(c)
we begin to see that further decreasing the value of H, again leads to a lower long-term skew, but
also leads to a noticeably less steep term-structure in the short term, with the skew reaching a
lower maximum value in the extreme-short term. We conclude that the most notable effect of H,
is to control the steepness of the term-structure. However we note that for H ≤ k, with k ≈ 0.10
for our parameter choices, we see that a decrease in H no longer increasing the steepness of the
term-structure for small τ , but in fact decreases the steepness.

In order to further investigate how H affects the ATM Forward skew, we can search for a
closed form approximation of the ATM skew. Under the special case of a flat variance curve,
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(a) T = 6 months. (b) T = 1 Year.

(c) T = 2 Years.

Figure 9.1: Implied volatility smiles generated by the Rough Bergomi Model (Hybrid scheme
method), with varying values of H, and fixed ρ = −0.9, η = 1.9, ξ = 0.055
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(a) ATM forward skew, 0 < H < 0.5. (b) ATM forward skew, 0.10 ≤ H < 0.5.

(c) ATM forward skew, H ≤ 0.10.

Figure 9.2: Term structures of Rough Bergomi (Hybrid scheme method) ATM forward skew, with
varying values of H, and fixed ρ = −0.9, η = 1.9, ξ constructed from SPX Data from the 30th
May 2022 (Note: The shortest time to maturity considered here is 5 business days).
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where ξ0(u) = σ̄2, Gatheral et al. [2, Section 7.1 Page 28] derived the following expression for the
ATM forward volatility in the Rough Bergomi model, up to the second order in η:

ψ(τ) =
ρη

2
EH

1

τ
1
2−H

+
1

4
ρ2η2σ̄τ2H

[
D2

H

1 +H

(
1 +

Γ(H + 3
2 )

2

Γ(2H + 3)

)
− 3

2
E2

H

]
, (9.1.1)

where EH = DH

H+ 3
2

and DH =
√
2H

H+ 1
2

[2, Equation 7.6 Page 28].

With this expression at hand, we can plot the value of the ATM Forward Skew for varying
values of H, and gain further insight into how H affects the value of the skew, particularly for
small τ .

Figure 9.3: Plots of the approximate ATM forward skew as a function of H, for varying τ . Each
plot has the value of H that maximises ψ(τ). These values were generated using equation (9.1.1),
with ρ = −0.9, η = 1.9, ξ = 0.04 (flat forward variance curve)

.

Figure 9.3 shows clearly that,for small τ , the approximate ATM forward skew decreases rapidly
once H passes a value around 0.10 as it approaches 0. While we must note that this is only an
approximation to the special case of a flat variance curve, we do see that Figure 9.3 explains
the change in behaviour we see as we decrease H past 0.10 that we saw in Figure 9.2(a). This
phenomena is important as one of the primary goals of the Rough Bergomi model is to fit the
rapid increase observed in the term structure of the ATM forward skew. Without knowledge of
this phenomena, a practitioner may naively choose an extremely low value of H, in an attempt to
maximise the short-term ATM forward skew.

Furthermore, if we let the value of H that maximises the approximate forward skew at maturity
τ be H∗(τ), a function of τ , then from Figure 9.3 we see that H∗

τ is increasing in τ . We can then
plot H∗(τ) against τ , to learn more about the behaviour of H∗(τ).

Figure 9.4 shows the value of H∗(τ) as τ increases. Initially we only considered H∗ ∈ (0, 12 ) as
this is the applicable range of H for the Rough Bergomi model. While the approximation formulae
given by equation (9.1.1) was derived specifically for the Rough Bergomi model, where H ∈ (0, 12 ),
it is interesting to gently explore the behaviour of H∗(τ) ∈ (0, 1). In both cases, we see that in
order to maximise ψ(τ) at increasingly longer maturities, we must increase H. Furthermore, in
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Figure 9.4: Plot of H∗(τ) as a function of τ , considering both H∗ ∈ (0, 12 ) and H
∗ ∈ (0, 1). These

values were generated using equation (9.1.1), with ρ = −0.9, η = 1.9, ξ = 0.04 (flat forward
variance Curve)

.

both cases we see the value of H∗(τ) increases approaching 0.5 and 1 respectively. These plot also
serve to explain the decrease in long-term ATM forward skew that we saw when decreasing H in
Figure 9.2(a).

To conclude, the main effect of H is to control the decay of the ATM forward skew for small τ .
Starting from H = 0.49, decreasing H leads to a steeper term structure of the ATM forward skew
for small τ , up until a point, after which further decreases in the value of H lead to a shallower
term structure of the ATM forward skew for small τ . Further analysis into the behaviour of the
Rough Bergomi model for extremely small H can be found in [41] and [42].

9.1.2 The effects of ρ and η

The effects of ρ and η on the Rough Bergomi model are intertwined and thus we shall consider
them together. Fortunately, in contrast to what we experienced when investigating the effect of
H, we can gain a large insight into the effects of ρ and η through plotting volatility smiles.

From Figure 9.5(a) we can see that the minimum of the smile decreases in value and moves
further along the strike axis as ρ decreases. Turning to Figure 9.5(b) we can see that a decrease in
η causes a similar movement in the smile, with the minimum once again dropping and moving to
the right. Finally, from Figure 9.5(c), we see that, even with ρ×η fixed, a decrease in ρ still results
in a move of the minimum of each smile to the right, with the value of said minimum decreasing.

When consider ρ, it is tempting to think of it as the correlation between the process driving
the price-process and the process driving the variance process, as it is in many other traditional
stochastic volatility models. However, we must recall that this it not true in our case. Recalling
equation (7.2.1), we see that ρ is the correlation coefficient between Zt the Brownian motion driving
the price-process, and Wt the Brownian motion driving the Riemann-Liouville process. With this
in mind, if we wish to calculate the correlation between Zt and B

H
t we can proceed as follows:

From equation (8.1.2), we can substitute u = v = t to obtain the following

E
[
BH

t Zt

]
= ρDHt

H+ 1
2 ,

where we recall DH =
√
2H

H+ 1
2

. Now, from remark 4.5.9 we know that Var(BH
t ) = t2H , and we also

recall that for a Brownian motion we have that Var(Zt) = t.
Then, we can calculate the correlation between Zt and B

H
t as

ρBH
t ,Zt

=
E
[
BH

t Zt

]
Var(BH

t )Var(Zt)
=
ρDHt

H+ 1
2

tHt
1
2

= ρDH .
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(a) Smiles with varying ρ.
T = 2 years, H = 0.1,η = 1.9,
ξ = 0.055 (Flat Variance Curve)

(b) Smiles with varying η.
T = 2 years, H = 0.1,ρ = −0.91,
ξ = 0.055 (Flat Variance Curve).

(c) Smiles with fixed product ρ× η and varying ρ.
T = 1 year, ρ× η = −1.71, H = 0.1.

Figure 9.5: Implied Volatility Smiles generated by the Rough Bergomi Model (Hybrid scheme
method), with varying values of ρ or η. Note: Smiles for a wider range of maturities are included
in Appendix A.1, they have been omitted here as a single maturity is sufficient to show the desired
effects.
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Therefore we can see that the actual correlation between the processes driving the price-process
and variance process is equal to ρ × DH . If we plot DH against H we can begin to gain some
insight as to the behaviour of ρBH

t ,Zt
, as H varies.

Figure 9.6: Plot of DH against H
.

From Figure 9.6 we can see that DH increases with H. The ’spot-vol’ correlation is being scaled
by the factor DH which is dependent on the smoothness of the Riemann-Liouville process. In the
case that H = 1

2 , we see that DH = 1, and thus ρB0.5
t ,Zt

= ρ. Therefore, in this case we do have
that ρ is the ’spot-vol’ correlation. On the other hand, as we decrease H below 0.10, we will have
a rapid decrease in DH and subsequently a rapid decrease in the ’spot-vol’ correlation ρBH

t ,Zt
.

From this chapter we have gained an idea of the effects of each of the 3 parameters in the Rough
Bergomi model. This knowledge will be useful for the purpose of calibrating the Rough Bergomi
model, which we shall cover in the next chapter.
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Chapter 10

Calibration of the Rough Bergomi
Model

Now that we have covered the effects of each parameter within the Rough Bergomi model, we can
begin to examine how we will calibrate the model. With proper knowledge of the effect of each
parameter, we could in effect make educated guesses for the appropriate value of each parameter.
This notion is corroborated by a quote from Bayer et al. stating that ’Rough Bergomi parameters
can be guessed in practice’ [2, Section 5 Page 16]. Furthermore, Bayer et al. [2, Section 5.2 Page
18] showed, with proper knowledge of the effects of each parameter, that ’guessing’ the parameters
of the Rough Bergomi model provides a relatively good fit to the implied volatility surfaces of
SPX options. Building on this, they proposed certain methods to estimate H directly from the
term structure of the ATM forward skew. However, for the purpose of this paper we shall proceed
with calibration methods that endeavor to systematically obtain a good fit to the market-implied
volatility surface. This should allows us to consistently achieve a good fit to a wide range of
volatility surfaces.

10.1 Existing Methods

The existing literature on calibration of the Rough Bergomi presents two main styles of calibration
methodologies: Numerical minimisation of a chosen cost function, or direct fitting to a market
observable quantity with a closed form solution under the model. We shall briefly explore an
example of the latter style of calibration, before proceeding with a description of the main cali-
bration methodologies used in this work, both of which belong to the former style of calibration
methodologies.

10.1.1 Variance Swap Calibration

In his 2018 presentation, Gatheral [43], proposed the idea of calibrating the Rough Bergomi through
market observable quantities, such as variance swaps, that could also be calculated via a closed form
formulae under the Rough Bergomi model. Variance swaps were deemed an appropriate quantity,
as they can in principle be observed from an asset’s implied volatility surface. Furthermore, based
on the expectation decomposition formulae of Alòs [44, Theorem 2.2 Page 406], Gatheral set
out the theoretical basis to calibrate the Rough Bergomi, from leverage swaps [43, Slide 60-66].
Gatheral showed that leverage swaps, which are products that can be decomposed into variance
and gamma swaps, can, in theory, be computed in any stochastic volatility model, and they can
also be estimated from the market-implied volatility surface [43, Slide 66]. While promising, this
calibration scheme will not be utilised for the calibration of the Rough Bergomi model in this
paper.

For the purpose of this work, we shall proceed with the following two calibration methodologies,
a Sequential Least Squares Programming minimisation of a chosen cost function, and a novel
Sequential Refined Grids Calibration method. Both of this methodologies seek to minimise a
chosen cost function, with the latter of the methods searching for a minimising value on a discrete
parameter space, rather than searching for a global minimum. For the purpose of both methods,
we shall introduce the setup and choice of our chosen cost function.
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10.2 Calibration Setup & Cost function

Our goal is to calibrate the 3 parameters of the Rough Bergomi model, such that the model
generated implied volatility surface at inception, is similar to that of the market implied volatility
surface. While models such as the local-volatility can fit the market volatility surface perfectly,
the Rough Bergomi model may not be able to fit every shape of surface exactly. However, we hope
that the Rough Bergomi model can fit a wide range of surfaces better than a traditional stochastic
volatility model, while also delivering more realistic long-term dynamics when compared to a local-
volatility model.

As we are attempting to fit the market implied-volatility surface, it is an obvious choice to try
and minimise the difference between the implied volatilities generated by the Rough Bergomi model,
and the market implied volatilities. In order to calibrate in a practical and timely manner, we
choose to minimise the difference between market implied volatilities , σMarket, and model generated
implied volatilities, σRB, on a selection of 30 points on the respective surfaces, corresponding to
30 unique strike-maturity pairings.

We choose to minimise the following cost function

c(H, ρ, η,G) =

30∑
i=1

(σi,Market − σi,RB)
2
, (10.2.1)

where G is our collection of 30 options.
Our choice of G will be determined by which areas of implied volatility surface we are most

interested in fitting to. A specification of G that includes only ATM options would naturally
lead to a surface that has a closer fit ATM, and conversely if we wished to fit the wings of the
implied-volatility surface better, we would choose G to include significantly OTM options. We can
represent our choice of options G, on a maturity-strike matrix, with a 1 signalling that the options
is within G, and a 0 signalling that option is not included. We will proceed by using the choice of
grid G, represented as both a matrix and a table:

G1 =


0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0 0

 , (10.2.2)

Strike
(as % of forward)

60% 70% 80% 80% 100% 110% 120% 130% 140%
1 Month x
3 Months x x x
6 Months x x x x x
1 Year x x x x x x x x x
2 Years x x x x x x x

M
a
t
u
r
i
t
y 5 Years x x x x x

Table 10.1: Table representing the choice of options in grid G1. Cells in green with an x in them
indicate options we will consider in G1, for the purpose of calibrating our model

G1 is a fairly balanced grid of options, placing a higher emphasis on options near the money,
but also ignoring extremely OTM or ITM options for short-expiries. G1 is used for fitting the whole
surface, with a larger emphasis on the ’centre’ of the surface. With our choice of cost function ,
equation (10.2.1), we have chosen to weight each option within G equally. If we wished to achiever
a more precise fit on certain areas of the grid, we could weight those points more heavily. This can
be achieved by multiplying a constant factor wi to each (σi,Market − σi,RB)

2
.

Now for a fixed G, our cost function, c(H, ρ, η,G) (equation (10.2.1)) becomes a function of
H, ρ and η, and thus we seek the triplet of parameters that minimises c(H, ρ, η).

To proceed, we will use the Rough Bergomi model and the grid-pricing method to generate
options prices for the specified strikes and maturities in the chosen G that we consider. We at
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this point must note that we shall only consider OTM options for the purpose of our calibration.
Thus for strikes below 100% of the forward, we price a put option, and for all other strikes we
price a call option. This is motivated by a remark from McCrickerd and Pakkanen, stating that
”The implied volatilities generated when exclusively considering call or put option estimators are
significantly noisier when they are respectively in-the-money”[37, Footnote 1 Page 2]. The variance
of the Monte Carlo estimators for option prices in the Rough Bergomi model are already very high,
thus we choose exclusively OTM options in an attempt to reduce this variance. For the purpose
of calibration we are very concerned with reducing the variance of the price estimate, as these
translate to a high variance in the implied volatilities, which subsequently makes it difficult for
any minimisation scheme to find the minimum of our cost function. This is in-fact one of the main
’issues’ with rough volatility models currently, the variance of the estimators is rather high, and
as a result of this many sample paths are required to get the variance down to a level that allows
resolution of the minimum of the cost function.

Once we have obtained our selection of option prices, we utilise the Black-Scholes formula
(2.2.2) to solve for the implied volatilities. We then can compute our cost function, comparing
the model generated implied volatilities observed directly from the market, or from a synthesised
arbitrage free volatility surface. As we are now able to obtain a cost function value for a given
triplet (H, ρ, η), we can proceed to selecting an appropriate minimisation algorithm.

10.3 High Variance Issues

Here we briefly expand upon the issue of the high variance of the traditional Monte Carlo price
estimates under the Rough Bergomi model. As alluded to above, the Rough Bergomi model, due
to the inclusion of a fBm within the variance process, produces Monte Carlo price estimates which
have a high variance. Let us consider the case of simulating a Rough Bergomi model with a fixed
parameter triplet, and utilising this model to price a call option of fixed strike k and fixed maturity
T . We utilise m paths in the simulation of the model, and receive a price C(T, k) as an output.
Traditionally in other volatility models, m = 200, 000 would have been a sufficient number of paths
such that on subsequent repricing of the same call option, we would have a low variance in the
Monte Carlo price estimate. Unfortunately this is not the case in the Rough Bergomi model, as the
variance of the paths is so high. We performed an analysis of this to obtain an empirical estimate
for the standard deviation of repeated Monte Carlo pricings of a call option with maturity of T = 5
years, and a strike of 100% of the forward.

H σ of C(T = 5, k = 100%) (as % of mean)
0.1 0.34
0.15 0.32
0.2 0.27

Table 10.2: Table of standard deviation of 20 Monte Carlo pricings of a call option with maturity
of 5 Years and strike of 100% of the forward, for varying H. Each pricing utilised 200,000 paths,
and the standard deviation is expressed as a % of the mean price for each batch of 20 pricings.
Parameters used : ρ = −0.7, η = 2. SPX data from 30th May 2022 was utilised for these simula-
tions.

We can see from Table 10.2 that the standard deviation is rather high, especially for H = 0.1.
We also see that the standard deviation increases as the fBm within the Rough Bergomi model
gets rougher. It is far from ideal that, even after utilising 200,000 simulation paths, 20 subsequent
price estimates for a single option have a standard deviation of as much as 0.34% of the mean of
the 20 prices. This will prove to be an issue for the purpose of calibration, and for the purpose
of merely generating consistent derivatives prices. The high variance of the price estimates will in
turn translate to a high variance in the implied volatilities obtained from each options price, and
this variance will in turn affect the evaluation of the cost function used for calibration. In order to
investigate the magnitude of this effect, we fixed a parameter triplet for the Rough Bergomi model
and calculated our cost function (10.2.1) over our calibration grid G1.
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H σ of c(H, ρ, η,G1) (as % of mean)
0.1 9.53
0.15 2.82
0.2 1.23
0.3 0.54

Table 10.3: Table of standard deviation of 20 evaluations of cost function c(H, ρ, η,G1) , for
varying H. Each pricing within a cost function evaluation utilised 200,000 paths, and the standard
deviation is expressed as a % of the mean cost function value for each batch of 20 evaluations.
The SPX volatility surface on the 30th May 2022 was utilised for the market volatilities within the
cost function, and appropriate market data was also taken from this index on the specified date.
Parameters used : ρ = −0.9, η = 1.9.

Now from Table 10.3 we can see that this variance is going to be a large issue when performing
calibration. We note here that H = 0.1 is close to the minimising value of H for these evaluations
of the cost function on the SPX surface on the 30th May 2022, as we shall discover later in Chapter
11. We see that as H decreases, the standard deviation of the cost function evaluations reaches
as high as 9.5% of the mean cost function evaluation. This results in an extremely high noise to
signal ratio for any minimisation scheme, which will make it hard for the scheme to find the true
minimum. We cannot at this time differentiate as to whether the standard deviation, as a % of
the mean cost function evaluation, is increasing as the paths of the fBm are becoming increasingly
rough, or because we are sufficiently close to the minimising value. Unfortunately, as we saw from
our estimates for H in Chapter 5, we will likely find that H is close to 0.1 for many indices that we
wish to simulate, and thus this high standard deviation in the cost function evaluations is likely
something that we will encounter during the calibration of any index we considered.

We will see, in Chapter 11, that this variance in the cost function will be one of the main issues
we face. Nevertheless, we still for now proceed by attempting to minimise our chosen cost function.
We now turn to the choice of an appropriate minimisation scheme.

10.4 Minimisation Algorithms

In order to select an appropriate minimisation algorithm, it would serve us well to understand
the behaviour of our chosen cost function c(H, ρ, η). The cost function c returns a value for each
choice of triplet (H, ρ, η), and thus we can consider the four-dimensional surface, with co-ordinates
given by (H, ρ, η, c(H, ρ, η)). Unfortunately, it is rather hard to visualise such a surface in four-
dimensions. Therefore, we shall resort to fixing one parameter value, for example H = H̄, and
plotting the surface with co-ordinates given by (ρ, η, c(H̄, ρ, η)). In plotting these surfaces, we are in
particular looking for the presence of large local-minima, which may prevent certain gradient-based
minimisation schemes from finding the global-minimum.

The following surfaces were generated by simulating the Rough Bergomi model using the Hybrid
scheme, with market data taken from the 30th May 2022 for the SPX. Moreover, grid G1 was
utilised in the specification of the cost function c.

Remark 10.4.1. The cost function grids used to generate these surfaces are in Appendix A.2.

From Figure 10.1 we can observe that the surfaces plotted are relatively smooth, suitably
convex, and do not contain any noticeable local minima. While these surfaces are not the actual
four-dimensional cost function surface we are interested in, and plotting one specific set of three-
dimensional surfaces is certainly not an exhaustive investigation, we can still use these surfaces
plotted as weak evidence to suggest that a gradient-based minimisation algorithm may be feasible.

10.5 SLSQP Minimisation

We, shall proceed with using the Sequential Least Squares Programming (SLSQP) scheme for the
minimisation of our cost function. The SLSQP algorithm, proposed by Dieter Kraft [45], min-
imises a function of several variables, and can be used with combinations of bounds, equality and
inequality constraints. For SLSQP we require that the cost function is at least twice continuously
differentiable, and the surfaces from Figure 10.1 suggest that this is true. SLSQP uses a method
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(a) Cost Function surface for varying values of H and η, with fixed ρ = −0.7

(b) Cost Function surface for varying values of H and ρ, with fixed η = 3

(c) Cost Function surface for varying values of ρ and η, with fixed H = 0.1

Figure 10.1: Cost function surfaces for fit to the SPX implied volatility surface on 30th May 2022,
using grid G1, for varying parameter values. The Hybrid scheme method was used to simulate the
Rough Bergomi model which was utilised for these cost function evaluations.
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known as Sequential Quadratic Programming (SQP), which is not a single algorithm itself, but
rather a method from which numerous minimisation algorithms have evolved. For a detailed ex-
planation of SQP and SLSQP see [46]. SQP can be viewed as a natural extension of Newton-like
methods [46, Section 1 Page 2], and as such can be expected to share some of the same character-
istics of Newton-like methods; such as rapid convergence when iterations are close to the minima,
but potentially erratic behaviour far from the minima.

Now that we have chosen our minimisation scheme, we must define our domain of calibration.
For the purpose of the parameters of the Rough Bergomi model for equity derivatives, we shall
define the calibration domain D as

D = [Hmin, Hmax]× [ρmin, ρmax]× [ηmin, ηmax]

= [0.01, 0.49]× [−0.99,−0.01]× [0.5, 5.5]
(10.5.1)

With this in mind, we describe the calibration process as follows:

Algorithm 10.5.1 (SLSQP Calibration Method). 1 Simulate 30 options specified by choice
of grid G, using both grid-pricing and the Hybrid scheme method.

2 Solve for the implied volatility of each option.

3 Use SLSQP to minimise the cost function c(H, ρ, η) to obtain the minimising triplet (H∗, ρ∗, η∗).

This calibration method was used to calibrate the Rough Bergomi model to the SPX implied
volatility surface, with data from the 30th May 2022. Before we proceed to calibration results, we
shall introduce an additional calibration method.

10.6 Sequential Refined Grids Calibration Method

We now present a novel calibration method, which to the best of our knowledge is not published
in the existing literature. We call this method the ’Sequential Refined Grids’ (SRFG) method,
and present it as general framework for a class of methods that differ depending on the number of
cycles and grid refinements considered.

The methodology consists of sequential calibration of the model parameters on increasingly
refined discrete parameter grids. An important principle of this method is that the minimum of
each grid is included as a point within the next grid considered, this ensures that the minimising
value in a grid is larger than that of all subsequent grids. As a result of this, we can guarantee
that the minimising value on the final discrete grid is the minimum of all discrete parameter
combinations over all grids considered.

Algorithm 10.6.1 (Sequential Refined Grids Calibration). This method can be applied with
numerous choices of cost functions, however, we shall proceed with the cost function defined by
equation (10.2.1). We utilise the domain of calibration D as specified by (10.5.1).

1 First Calibration Cycle: In the first calibration cycle, an optimisation is done in (ρ, η),
with H set to an appropriate value. The initial value of H could be chosen from an analysis
of the roughness of the realised variance of the asset in question (see Chapter 5) or from
previous calibrated values of H.

1(a) Fix the value of H = H0 to a suitable value.

1(b) Construct a coarse grid, Dρ,η, of size N1 × M1, defined via the discretisation of the
intervals [ρmin, ρmax],[ηmin, ηmax]:

Dρ,η :=

{
ρmin +

(
i

N1 − 1
×∆ρ

)}N1−1

i=0

×
{
ηmin +

(
j

M1 − 1
×∆η

)}M1−1

j=0

with ∆ρ := (ρmax − ρmin) = 0.98, ∆η := (ηmax − ηmin) = 5 For convenience we denote,
l := | 1

N1−1 ×∆ρ| and k := | 1
M1−1 ×∆η|.

1(c) For each point (ρi, ηj) ∈ Dρ,η simulate 30 options prices specified by options grid G,
using the Rough Bergomi model with parameter choices (H0, ρi, ηj), using the Hybrid
scheme method. Solve for the implied volatility of each option, and subsequently calcu-
late the value of the cost function ci,j(H0, ρi, ηj) and store its value.
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1(d) Once all points (ρi, ηj) have been considered, find the minimum value of ci,j(H0, ρi, ηj)
and denote

(ρ̄, η̄) := argmin
ρi,ηj∈Dρ,η

c (H0, ρi, ηj , )

1(e) LetN2,M2 both be odd integers. Then, we construct a refined grid, Dρ,η of sizeN2×M2,
defined via the discretisation of intervals of length 2l and 2k respectively, centred around
ρ̄, η̄:

Dρ,η :=

{
ρ̄− l +

(
i× 2l

N2 − 1

)}N2−1

i=0

×
{
η̄ − k +

(
j × 2k

M2 − 1

)}M2−1

j=0

.

By taking N2,M2 as odd integers, the point (ρ, η) is included in Dρ,η by construction.
This ensures that

argmin
ρi,ηj∈Dρ,η

c (H0, ρi, ηj , ) ≤ argmin
ρi,ηj∈Dρ,η

c (H0, ρi, ηj , ) .

If we have, for a point(ρi, ηj) ∈ Dρ,η, that (ρi, ηj) /∈ [ρmin, ρmax]× [ηmin, ηmax], we simply
ignore the point and do not include it in our grid Dρ,η.

1(f) Repeat steps 1(c)-1(d), and denote

(ρ, η) := argmin
ρi,ηj∈Dρ,η

c (H0, ρi, ηj , ) .

2 Second Calibration Cycle: We now optimise over (H, ρ) with η fixed to η = η obtained
from 1(f). We let ∆ρ = min(|ρ−ρmin|, |ρ−ρmax|) and ∆H = min(|H0−Hmin|, |H0−Hmax|).

2(a) Let N ′
1,M

′
1 be odd integers. Then we construct a coarse grid D1

H,ρ, of size N
′
1 ×M ′

1,
defined via the discretisation of the intervals, [H0− 1

2∆H,H0+
1
2∆H], [ρ− 1

2∆ρ, ρ+
1
2∆ρ]:

D′
H,ρ :=

{
H0 −

1

2
∆H +

(
i

N ′
1 − 1

×∆H

)}N ′
1−1

i=0

×
{
[ρ− 1

2
∆ρ+

(
j

M ′
1 − 1

×∆ρ

)}M ′
1−1

j=0

.

This is a grid, centred around (H0, ρ). We have by construction chosen to include
the point (H0, ρ), so that the minimising triplet from 1(f) (H0, ρ, η) is a discrete point

within D1
H,ρ, when we extend to the triplet by including the fixed value η. Therefore,

we ensure that

argmin
Hi,ρj∈D′

H,ρ,

c
(
Hi, ρj , η,

)
≤ argmin

ρi,ηj∈Dρ,η

c (H0, ρi, ηj , ) .

For convenience we denote, l′ := | 1
N ′

1−1 ×∆H| and k′ := | 1
M ′

1−1 ×∆ρ|.

2(b) For each point (H, ρj) ∈ D′
H,ρ simulate 30 options prices specified by options grid

G, under the Rough Bergomi model with parameter choices (Hi, ρj , η), using the Hy-
brid scheme method. Solve for the implied volatility of each option, and subsequently
calculate the value of the cost function ci,j(Hi, ρj , η) and store its value.

2(c) Once all points (Hi, ρj) have been considered, find the minimum value of ci,j(Hi, ρj , η)
and denote(
H̄, ρ̄′

)
:= argmin

Hi,ρj ,∈D′
H,ρ

c
(
Hi, ρj , η,

)
.

2(d) Let N ′
2,M

′
2 both be odd integers . Then, we construct a refined grid, D′

H,ρ of size
N ′

2×M ′
2, defined via the discretisation of intervals of length 2×l′ and 2×k′ respectively,

centred around H̄, ρ̄′:

D′
H,ρ :=

{
H̄ − l′ +

(
i× 2l′

N ′
2 − 1

)}N ′
2−1

i=0

×
{
ρ̄′ − k′ +

(
j × 2k′

M ′
2 − 1

)}M ′
2−1

j=0

.
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By taking N ′
2,M

′
2 as odd integers, the point (H̄, ρ′) is included in D′

H,ρ by construction.
This ensures that

argmin
Hi,ρj∈D′

H,ρ

c
(
Hi, ρj , η,

)
≤ argmin

Hi,ρj∈D′
H,ρ

c
(
Hi, ρj , η,

)
.

If we have, for a point(H,ρj) ∈ D′
H,ρ, that (Hi, ρj) /∈ [Hmin, Hmax] × [ρmin, ρmax], we

simply ignore the point and do not include it in our grid D′
H,ρ.

2(e) Repeat steps 2(b)-2(c), and denote

(H, ρ′) := argmin
Hi,ρj∈D′

H,ρ,

c
(
Hi, ρj , η,

)
.

3 We then have a triplet of parameters (H, ρ′, η), which we take as our final calibrated param-
eters.

By the construction of our grids, we have ensured that the triplet (H, ρ′, η) will be the min-
imising set of parameters for the cost function, for all of the triplets we have considered over the
associated 4 grids. This ensures that we do not necessarily need to store all of the cost function
values for each triplet as we move from one grid to another, as we can be certain the final value
will be the minimising value for the discrete set of values considered.

Remark 10.6.2. This scheme can be adapted to include more rounds of calibration, or a larger
number of increasingly refined grids per cycle. For example, a third calibration cycle could be
performed, optimising over a grid of (H, η) while fixing ρ = ρ′. Various cycles and grids can be
added, though one must take care to include the minimising triplet from a previous grid, into
the next grid, if they want to ensure the final triplet is the minimum over the discrete values
considered. We have chosen to use 2 calibration cycles, with 2 grids in each cycle, as we deemed
this to provide a reliable level of calibration accuracy in terms of minimising the cost function.
Further numerical investigations could be done into the computation time and calibration accuracy,
of various combinations of the number of calibration cycles and the number of increasingly refined
grids per cycle.

While this method does not guarantee we find a minimum of the cost function over our pa-
rameter space D, it does lead to a minimising value on the final discrete refined grid, and this
value is the minimising value of all discrete parameter values considered. The method should not
be viewed as a proper minimisation scheme, as we are in effect just using brute force to try and
find a minimising parameter triplet on a discrete parameter cube. However, the method does still
seem to have some merits, specifically in the context of calibrating the Rough Bergomi model,
as traditional minimisation schemes do not seem to have been very effective in both our testing
and the current literature. The benefit of this methodology is that, if we fix the size of each grid
considered to consist of N (N being an odd integer )points, then we are only required to simulate
the Rough Bergomi model a total of 4 × N2, to obtain our final optimising triplet. A notable
benefit of this method is that it is easily parallelised, with each core being able to compute the
cost function of a point on each grid in parallel, before recombining the values to find the min-
imum. This is in contrast to the SLSQP method, which requires information from the previous
cost function analysis before a subsequent analysis can be conducted. Given sufficient cores, we
can compute each grid in approximately the same amount of time as one cost function evaluation,
and thus we can evaluate k grids in a similar amount of time as k iterations in the SLSQP method.
This becomes even more powerful when we consider that as we are utilising grid pricing, where
each cost function evaluation over our grid G of options only requires one set of m paths and thus
is computed in approximately the same amount of time as the computation of one option up to
a final maturity time of T , if we were not using the grid-pricing method. Therefore, with k grids
being utilised, we can calibrate the entire model in approximately the time required to generate k
options prices for a maturity of T if we were not using grid-pricing. A disadvantage of this method
is that we evaluate the cost function a large number of times far from the discrete minimum of each
grid. However, the decreased computation time from parallelisation of this method does seem to
alleviate this issue, at least from a computation time point of view. Further development into this
model could try to reduce the number of ’wasted’ cost function evaluations, perhaps by integrating
algorithms which restrict cost function evaluations in certain areas of the grid if the minimum
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value is deemed unlikely to be in such an area. Figure 10.2 shows a visual representation of the
method, for the case where we use 2 calibration cycles consisting of 2 grids each, and is shown to
aid the readers understanding of the method.

Figure 10.2: Visual representation of the SRFG Calibration Method of H, ρ, η on the parameter
domain D represented by a parameter cube. Here we have utilised 2 calibration cycles, with 2
grids per cycle.

.

We utilised both the SLSQP and SRFG method to calibrate the Rough Bergomi model to the
SPX volatility surface on the 30th May 2022, with the grid G1. We shall now proceed to explore
the results of these calibrated models.
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Chapter 11

Calibration results

We will now show results from the calibration of the Rough Bergomi model, utilising both the
SLSQP calibration method, and the SRFG method. In both methods, we utilise Grid-pricing
and the Hybrid scheme to generate the option prices, and the cost function chosen is specified by
(10.2.1). Furthermore, both calibration methods were performed on the SPX volatility surface on
the 30th May 2022, and used market data from the same date.

11.1 SLSQP Calibration

The following results were obtained through SLSQP calibration, on the stike-maturity grid, G1,
specified by (10.2.2). For the purpose of calibration, 200,000 paths were used to price each grid of
options.

H 0.0996
ρ -0.848
η 1.991

Final Cost Function Value, c(H, ρ, η,G1) 0.00112
Mean Squared Error 0.0000373

Table 11.1: Calibration results from SLSQP calibration of Rough Bergomi Model to SPX Implied
volatility surface on the 30th May 2022, utilising options grid G1.

Table 11.1 displays the values of our calibrated parameters, the corresponding final cost func-
tion value, and the corresponding mean squared error of the model generated implied volatilities
compared to the market implied volatilities. Unfortunately, as mentioned before, the high variance
of the prices and subsequent implied volatilities generated by the Rough Bergomi model, makes
it hard for the SLSQP scheme to obtain the minimising parameter triplet. The SLSQP scheme
rapidly approached a neighbourhood of our minimising parameter triplet, but then the scheme
found it difficult to find a precise minimising point, as the variance of the cost function value is
high even within a narrow range of parameters. To remedy this, we would like to utilise more paths
per evaluation of the cost function, so that we would see a decrease in the variance, and the SLSQP
scheme would be able to find a minimising point more quickly and accurately. Unfortunately, we
could not utilise more than 200,000 paths while simulating up to a maturity of 5 years, due to
memory constraints. As we lower the maximum maturity, we will be able to utilise more paths,
and thus we should see that the cost function can be minimised more quickly and to a lower value.

Now that we have obtained calibrated parameters for the Rough Bergomi model, we can use
the model to price a set of options, and compare the implied volatilities obtained from the model,
with the market implied volatilities. We note that, we will now generate model-delivered implied
volatilities for points on the strike × maturity plane that were not necessarily considered in our
calibration grid.
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Maturity Strike Absolute Error

1 Month

70% 0.00421
80% 0.01837
90% 0.01037
100% 0.01662
110% 0.00834
120% 0.00251
130% 0.01659

3 Months

60% 0.01777
70% 0.00232
80% 0.00380
90% 0.00025
100% 0.00504
110% 0.00482
120% 0.00395
130% 0.00275
140% 0.00828

6 Months

60% 0.00551
70% 0.00354
80% 0.00591
90% 0.00196
100% 0.00172
110% 0.00033
120% 0.01075
130% 0.01412
140% 0.01061

Maturity Strike Absolute Error

1 Year

60% 0.00356
70% 0.00636
80% 0.00589
90% 0.00337
100% 0.00164
110% 0.00402
120% 0.00847
130% 0.00883
140% 0.00500

2 Years

60% 0.00807
70% 0.00777
80% 0.00632
90% 0.00405
100% 0.00205
110% 0.00180
120% 0.00238
130% 0.00155
140% 0.00129

5 Years

60% 0.00205
70% 0.00092
80% 0.00399
90% 0.00679
100% 0.00831
110% 0.01011
120% 0.01074
130% 0.01047
140% 0.01031

Table 11.2: Table of absolute error of the SLSQP calibrated Rough Bergomi model delivered
implied volatility estimates, compared to the market implied volatility values. Strikes are expressed
as % of the forward price. In this simulation, the Rough Bergomi utilised the calibrated parameters,
H = 0.0996, ρ = −0.847, η = 1.991, and 200,000 simulation paths were used. Market data and the
implied volatility surface were taken from the SPX index on the 30th May 2022.

Maturity Mean Absolute Error Standard Deviation of Absolute Error
1 Month 0.0110 0.00636
3 Months 0.00544 0.00512
6 Months 0.00605 0.00478
1 Year 0.00524 0.00239
2 Years 0.00392 0.00276
5 Years 0.00708 0.00386

Table 11.3: Table of mean absolute error and standard deviation of absolute error for each maturity
considered in Table 11.2.
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Strike (As % of Forward) Mean Absolute Error Standard Deviation of Absolute Error
60% 0.00739 0.00633
70% 0.00418 0.00356
80% 0.00738 0.00549
90% 0.00447 0.00362
100% 0.00590 0.00586
110% 0.00494 0.00374
120% 0.00647 0.00398
130% 0.00905 0.00601
140% 0.00710 0.00394

Table 11.4: Table of mean absolute error and standard deviation of absolute error for each strike
considered in Table 11.2.

Table 11.2 shows the absolute error of the model delivered implied volatility compared to the
market implied volatility, for a set of options. The mean of the absolute errors is 0.00628 and the
standard deviation is 0.00462. Moreover, Table 11.3 and Table 11.4 show the mean and standard
deviations of the absolute errors for each maturity and strike considered, respectively. This allows
us to observe how the distribution of absolute error varies by both strike and maturity. From Table
11.1, recalling our grid of options G1 which we used for our calibration, we can see that the implied
volatilities for options that were not present within the calibration grid have higher absolute errors.
This is to be expected. Our calibration scheme sought to minimise the error over these specific
points on the implied volatility surfaces, thus it makes intuitive sense that upon re-simulation with
calibrated parameters, that these points will have a lower absolute error. Furthermore, from Table
11.3, we can see that the 1 month maturity has the highest mean absolute error, this corroborates
our previous statement, as the 1 month maturity had the least number of options present within our
calibration grid G1. Unfortunately, not much can be deduced from Table 11.4, with no clear trend
being present. We likely can attribute this to the high variance of the option price and subsequent
implied volatility estimate of our current version of the Rough Bergomi model. Ultimately, most
of the trends we see in Tables 11.2-11.4 are due to our choice of calibration grid G, and should
not differ between the SLSQP method and the SRFG method. While we again expect to see
larger errors for options not considered in the calibration grid,it is more interesting to look at
the difference in magnitude of the absolute errors between the two methods, corresponding to a
difference in goodness of fit. We shall explore a comparison of the two calibration methodologies
later.

Given the data presented in Tables 11.6-11.4, the plotting of smiles would provide us with
little additional information about the goodness of fit of the model. Nevertheless, we shall plot a
selection of smiles for the maturities we considered, to allow us to visualise the fit of the model
delivered implied volatilities to the market implied volatility surface.

Figure 11.1 shows the model delivered and market smiles for varying maturities. By plotting
these smiles we can easily visualise the data from Table 11.2, and see the different shapes of smiles
present for each maturity. We can again see that the model delivered implied volatilities for options
considered within our grid G1 are closer to that of the market implied volatilities, corroborating
what we learnt from Tables 11.6-11.4.

As discussed in Chapter 3, one of our main goals with the Rough Bergomi model was to better
fit the term structure of the ATM forward volatility skew. Therefore, it is only natural that we
should plot term structures of the skew generated by our calibrated model, and see how well they
fit the market term structure. Furthermore, it is also useful to plot the term structure of the ATM
volatility delivered by our calibrated model, as this is not only a quantity closely related to the
skew, but also an important quantity for pricing exotic options such as cliquet options (see 2.3.1).
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Figure 11.1: Plots of volatility smiles for varying maturities, for both market implied volatilities,
and SLSQP calibrated Rough Bergomi model delivered implied volatilities. The Rough Bergomi
model was simulated with the following parameters obtained from the SLSQP calibration to the
SPX volatility surface on the 30th May 2022: H = 0.0996, ρ = −0.848, η = 1.991.
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(a) Term structure of SLSQP calibrated Rough Bergomi model delivered ATM forward skew with estimates for market ATM
forward skew.

(b) Term structure of SLSQP calibrated Rough Bergomi model delivered ATM forward volatility with estimates for market
ATM forward volatility.

Figure 11.2: Term structures of ATM forward volatility and skew from SLSQP calibrated Rough
Bergomi Model, with H = 0.0996, ρ = −0.848, η = 1.991. Market data from the SPX volatility
surface on the 30th May 2022 was used to plot market estimates for ATM forward volatility and
skew, and for calibration of the Rough Bergomi model.
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Figure 11.2 displays the calibrated model-generated term structure of the ATM forward skew
and the ATM forward volatility. From Figure 11.2(a) we see that the calibrated model fits the
market skew well initially in the very short term, however, it then has a larger error for maturities
of up to 3 years, after which we then see the error decrease. On the other hand, from Figure
11.2(b), we see an initially poor fit for very short maturities, followed by an improvement in fit for
maturities between 5 months and 1.5 years, and then a decrease in the quality of fit.

Overall, we can see that the Rough Bergomi model calibrated by the SLSQP method is able
to fit the market-implied volatility surface well, fitting empirical smiles and skews decently, with
just 3 parameters. The fit could be better, but unfortunately, the SLSQP method had difficulty
finding the true minimising parameter triplet due to the large amount of noise present in each cost
function evaluation, coming from the variance of the Monte Carlo estimator for the Rough Bergomi
model. Moreover, even with knowledge of the true minimising parameters of ur cost function, due
to the high levels of variance present in the Rough Bergomi model, we cannot guarantee that upon
re-simulation we will have an optimal fit. We will expand more upon this in section 11.3.

11.2 Sequential Refined Grids Calibration

We now turn to calibration results from the SRFG calibration method. We utilised the 4 grid
variant of the SRFG method, with N1,M1 = 10, and N2,M2, N

′
1,M

′
1, N

′
2,M

′
2 = 11, on domain

D (see (10.5.1)), and H0 = 0.1. Furthermore, 200,000 paths were used to simulate each grid of
options, and all market data was taken from the SPX volatility surface on the 30th May 2022.

H 0.0946
ρ -0.896
η 1.944

Final Cost Function Value, c(H, ρ, η,G1) 0.00104
Mean Squared Error 0.0000345

Table 11.5: Calibration results from SRFG calibration of Rough Bergomi Model to SPX Implied
volatility surface on the 30th May 2022, utilising options grid G1.

From Table 11.5, we see that the SRFG method actually resulted in a lower final cost function
value than the SLSQP method, corresponding to a lower mean squared error over the grid G1.
Unfortunately, as we will see, this lower mean squared error on calibration does not always translate
to a better fit upon re-simulation. This is due to the high variance of the Rough Bergomi prices,
which even with fixed parameters, produce varying price and implied volatility estimates upon
each re-simulation (see 10.3). Therefore, even if we have two parameter triplets p1 = (H1, ρ1, η1)
and p2 = (H2, ρ2, η2) with c(p1) < c(p2), we do not necessarily get that a Rough Bergomi model
with parameters p1 will fit the market better than p2 upon re-simulation. It seems that due to
the high variance we are currently presented with, we are only able to calibrate the model to a
certain level of fit, where the noise generated from the variance of the price estimations prevents
minimisation schemes from finding the true minimum. With this in mind, the SRFG method seems
more effective given the current circumstances than the SLSQP method. Both methods are able
to calibrate to a similar level of accuracy, which is limited by the variance of the price estimation,
which is in turn limited by memory constraints. However, the SRFG method with 4 grids can
be parallelised such that it can run much faster than the SLSQP method, and therefore, we can
obtain a similar level of fit in significantly less time.

Upon re-simulation using the calibrated parameters from the SRFG method, we obtain Table
11.6, displaying the absolute errors or the options considered. The mean of the absolute errors is
0.00655 and the standard deviation is 0.00488. We note that, compared to the absolute errors when
we re-simulated the SLSQP method, the SRFG method produced higher mean absolute errors and
a higher standard deviation of absolute error, even though the cost function was lower. This, as
suggested above, supports the idea that given the high variance of the price estimates from the
Rough Bergomi model, a lower calibration cost function value does not necessarily guarantee a
better fit upon re-simulation, if we only consider one re-simulation attempt.

We once again display analogous tables and figures to those of the SLSQP method. The
general trends of these tables and figures seem to be consistent with those of the SLSQP method,
reinforcing the notion that the trends we see with regard to the fit at each strike and maturity
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Maturity Strike Absolute Error

1 Month

70% 0.00033
80% 0.02139
90% 0.01320
100% 0.01665
110% 0.01262
120% 0.00564
130% 0.01774

3 Months

60% 0.01700
70% 0.00046
80% 0.00563
90% 0.00221
100% 0.00406
110% 0.00784
120% 0.00299
130% 0.00951
140% 0.01575

6 Months

60% 0.00653
70% 0.00383
80% 0.00719
90% 0.00355
100% 0.00042
110% 0.00066
120% 0.00556
130% 0.00679
140% 0.00254

Maturity Strike Absolute Error

1 Year

60% 0.00373
70% 0.00710
80% 0.00716
90% 0.00479
100% 0.00303
110% 0.00427
120% 0.00594
130% 0.00325
140% 0.00306

2 Years

60% 0.00982
70% 0.00989
80% 0.00867
90% 0.00649
100% 0.00449
110% 0.00342
120% 0.00229
130% 0.00098
140% 0.00612

5 Years

60% 0.00514
70% 0.00245
80% 0.00038
90% 0.00305
100% 0.00600
110% 0.00798
120% 0.00926
130% 0.01020
140% 0.01149

Table 11.6: Table of absolute error of the SRFG calibrated Rough Bergomi model delivered implied
volatility estimates, compared to the market implied volatility values. Strikes are expressed as %
of the forward price. In this simulation, the Rough Bergomi utilised the calibrated parameters,
H = 0.0996, ρ = −0.848, η = 1.991, and 200,000 simulation paths were used. Market data and the
implied volatility surface were taken for the SPX index on the 30th May 2022.

are more heavily affected by the choice of our grid G. We again see that options considered in
our grid have a lower absolute error. Overall we again see that the Rough Bergomi model with
SRFG calibrated parameters fits the market implied volatility surface well, fitting empirical smiles
and skews. The quality of fit of the SRFG model does not seem to be notably different from the
SLSQP calibrated model, and the difference between the mean error of both models is likely due
to the variance of the price estimators, rather than any difference in the calibration schemes.

Maturity Mean Absolute Error Standard Deviation of Absolute Error
1 Month 0.0125 0.00730
3 Months 0.00727 0.00587
6 Months 0.00412 0.00257
1 Year 0.00470 0.00166
2 Years 0.00580 0.00325
5 Years 0.00622 0.00380

Table 11.7: Table of Mean absolute error and standard deviation of absolute error for each maturity
considered in Table 11.6.
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Strike (As % of Forward) Mean Absolute Error Standard Deviation of Absolute Error
60% 0.00844 0.00529
70% 0.00401 0.00381
80% 0.00840 0.00699
90% 0.00555 0.00403
100% 0.00578 0.00564
110% 0.00613 0.00422
120% 0.00528 0.00248
130% 0.00808 0.00592
140% 0.00779 0.00570

Table 11.8: Table of Mean absolute error and standard deviation of absolute error for each strike
considered in Table 11.6.

Figure 11.3: Plots of volatility smiles for varying maturities, for both market implied volatilities,
and SRFG calibrated Rough Bergomi model delivered implied volatilities. The Rough Bergomi
model was simulated with the following parameters obtained from the SRFG calibration to the
SPX volatility surface on the 30th May 2022: H = 0.0946, ρ = −0.896, η = 1.944.
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(a) Term Structure of SRFG Calibrated Rough Bergomi Model Delivered ATM Forward Skew With Estimates for Market ATM
Forward Skew.

(b) Term Structure of SRFG Calibrated Rough Bergomi Model Delivered ATM Forward Volatility With Estimates for Market
ATM Forward Volatility.

Figure 11.4: Term structures of ATM Forward volatility and skew from SRFG calibrated Rough
Bergomi Model, with Rough Bergomi Model, with H = 0.0946, ρ = −0.896, η = 1.944. Market
data from the SPX volatility surface on the 30th May 2022 was used to plot market estimates for
ATM forward volatility and skew, and the market data was used for calibration.
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11.3 Comparison of SLSQP and SRFG methods

Analysing the results from Section 11.1 and 11.2 we see that both schemes manage to minimise
the cost function down to a similar level. The SLSQP method resulted in a final mean squared
error of 3.73×10−5 of over the 30 options considered, whereas the SRFG scheme resulted in a final
mean squared error of 3.45 × 10−5. While both schemes manage to get this mean squared error
down to a low level, there is still a fundamental issue with the calibration of the Rough Bergomi
model through the minimisation of our chosen cost function. As alluded to earlier, our main issue
is that, given the constraint of a maximum of 200,000 paths, the Rough Bergomi model produces
Monte Carlo price estimates that still have a high level of variance. This high variance of the price
estimates results in a high variance within the implied volatility estimates, and consequently within
our cost function evaluations. Therefore, both schemes find it hard to detect the true minimising
parameters of the cost function, due to the presence of this large amount of noise. The SLSQP
scheme performs repeated evaluations of the cost function with small variations in the parameters.
The variance in the cost function value at each evaluation is high enough such that once the cost
function is minimised down to a magnitude of 10−3, it has difficulty determining which direction
to move the parameter estimate towards. Similarly, the SRFG method evaluates each parameter
combination on its grids only once, and thus the minimum value for each grid can easily change
upon reevaluation of the cost function over the grid. The minimising triplet obtained from each
grid, especially for the more refined grid, is thus not necessarily the actual minimising triplet over
that grid. Essentially, both schemes are able to successfully find a neighbourhood of the true
minimising parameter triplet, but once they are here the noise is too great to allow them to find a
more precise estimate. Furthermore, as displayed in Section 10.3, upon re-simulation of the model,
we have a high variance in the price estimates, which can lead to a large variance of the fit of
the model to the market implied volatility surface. Even if the parameters chosen were the true
minimising parameters of our cost function, a simulation of the Rough Bergomi model could likely
provide a worse fit than another simulation with other parameters.

Ultimately the issues regarding fit are currently to do with this variance problem, and this
should be the first thing we endeavour to address. The obvious solution is to utilise more simulation
paths, and if memory constraints were not present then we would have utilised this approach.
Variance reduction techniques would also be extremely useful here, however, as discussed we chose
not to utilise the ’turbocharging’ technique due to the bias in the estimators. The addition of
an appropriate variance reduction technique that is both tractable and without large bias, would
greatly enhance the feasibility of calibration of the Rough Bergomi method in this way. With
effective variance reduction techniques and more simulation paths, we could reduce the variance of
the price estimates sufficiently such that the signal-to-noise ratio of our cost function evaluations
would improve significantly. This would allow the SLSQP method would be able to find more
accurate minimising parameters for the Rough Bergomi model. Furthermore, if we managed to
reduce the variance down to a suitable level, the SLSQP methodology would likely become much
more effective than the 4 grid variant of the SRFG method. With the variance reduced, we will
still encounter the following issue with the SRFG method. That issue being, that if we perturb
the initial guess for H0 in the SRFG method, then the calibration will produce different parameter
values, as all of the grids have been shifted. The SRFG method’s parameter outputs are linked to
the chosen grids, whereas the SLSQP method should produce similar parameter outputs provided
we choose an appropriate starting value for our parameters. Furthermore, even after reducing
the variance of the Rough Bergomi model, the SRFG method would likely only take us to a
neighbourhood of the minimising parameters, due to the discrete nature of the grids it utilises,
whereas the SLSQP method should be able to output the actual minimising parameters. Overall,
due to the currently present high variance of the model, the SRFG method is able to produce a
similar level of calibration in much less time. However, as improvements are made to the variance
reduction of the model, we should see that the SLSQP method provides a much better quality of
fit.

On the other hand, it is likely also worth exploring other calibration methodologies in more
detail. Additional calibration methodologies, such as fitting to market quantities such as variance
swaps (see 10.1.1), may prove to be more effective than minimising our chosen cost function. We
thus await more research on the efficacy of such methods.

Despite the issues with the current calibration methodologies, the Rough Bergomi model still
shows large signs of promise. We were able to achieve a decent fit to the market-implied volatility
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surface, with only 3 parameters. The model is able to not only fit smiles from different maturities
but also able to reproduce realistic term structures of ATM forward skew, an issue that has long
plagued other stochastic volatility models.
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Conclusion

We have displayed a thorough overview of the Rough Bergomi model, from the motivation behind
its creation to the calibration of the model to the SPX volatility surface. The Rough Bergomi
model has the power and flexibility to fit numerous shapes of volatility surfaces, with just three
parameters. Furthermore, the Rough Bergomi model can produce realistic term structures of
ATM forward skew and produces realistic consistent dynamics for the model delivered implied
volatility surface. The model is thus able to combine the benefits of both local volatility models
and stochastic volatility models, without the need for a model add-on or adjustment.

We displayed two calibration methodologies for the Rough Bergomi model, an SLSQP based
calibration scheme, and a novel SRFG scheme. Due to the high variance of the Rough Bergomi
model’s price estimates, both schemes were able to calibrate to a similar level, both providing a
good fit to the implied volatility surface in the form of smiles and term structures of skews. With
advances in variance reduction techniques, we expect faster and more accurate calibration of the
model to become possible.

Further research into novel variance reduction techniques or additional calibration schemes will
help to allow for the Rough Bergomi model to find its place within production environments in
industry. Furthermore, the multi-factor Rough Bergomi model (see [47]) is a particular area of
interest for further research. This multi-factor model combines the benefits of a more realistic
power-law kernel, obtained through the use of fBms, and the presence of additional factors for
the purpose of flexibility. The flexibility gained from the inclusion of multiple fBm factors allows
the model to fit the implied volatility surface of equity indices and of the Volatility Index (VIX),
which the Rough Bergomi model currently struggles with [2, Chapter 9 Page 36]. Unfortunately,
the multi-factor model is even more difficult to calibrate, due to the large number of parameters
present. Nonetheless, some interesting developments have been made in the calibration of the
multi-factor Rough Bergomi model, most notably the work of Jacquier et al. [47], which presented
explicit formulae for the ATM volatility and skew, in terms of the parameters of the model, thus
allowing for efficient calibration of the model.

Although efficient calibration of the Rough Bergomi and multi-factor Rough Bergomi model still
remains partially unsolved, we remain overtly optimistic about future research. Rough volatility
models remain a thriving area of academic interest, and with further research, they will without
doubt become increasingly important models for the purposes of derivatives pricing, particularly
for exotic derivatives.
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Appendix A

Additional Figures

A.1 Effect of Rough Bergomi Parameters

Here we display some additional figures generated for the investigation into the effect of the pa-
rameters of the Rough Bergomi model, performed in Chapter 9.

(a) Smiles with varying ρ.
T = 6 months, H = 0.1,η = 1.9,
ξ = 0.055 (Flat Variance Curve).

(b) Smiles with varying ρ.
T = 1 year, H = 0.1,η = 1.9,
ξ = 0.055 (Flat Variance Curve)

(c) Smiles with varying ρ.
T = 2 years, H = 0.1,η = 1.9,
ξ = 0.055 (Flat Variance Curve)

Figure A.1: Implied Volatility Smiles generated by the Rough Bergomi Model (Hybrid scheme
Method), with varying values of ρ.
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(a) Smiles with varying η.
T = 6 months, H = 0.1,ρ = −0.91,
ξ = 0.055 (Flat Variance Curve).

(b) Smiles with varying η.
T = 1 year, H = 0.1,ρ = −0.91,
ξ = 0.055 (Flat Variance Curve)

(c) Smiles with varying η.
T = 2 years, H = 0.1,ρ = −0.91,
ξ = 0.055 (Flat Variance Curve)

Figure A.2: Implied Volatility Smiles generated by the Rough Bergomi Model (Hybrid scheme
Method), with varying values of η.
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A.2 Cost Function Heat Maps

Here we display heat maps of the values of the cost function on discrete parameter grids, these
values were used to generate the cost function surfaces (see 10.1) in Chapter 10.

(a) Heat map of Cost Function values for varying values of H and η, with fixed ρ = −0.7

(b) Heat map of Cost Function values for varying values of H and ρ, with fixed η = 3

(c) Heat map of Cost Function values for varying values of ρ and η, with fixed H = 0.1

Figure A.3: Heat maps of cost function values for fit to the SPX implied volatility surface on 30th
May 2022, using grid G1, for varying parameter values.
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