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Abstract

Interest rate benchmarks play a pivotal role within the global financial system, serving as essen-
tial reference points that guide various financial activities. However, the credibility of Interbank
Offered Rates (IBORs) has been called into question due to issues such as liquidity constraints
and manipulation. As a result, regulatory bodies and central banks have taken significant steps to
overhaul the interest rate markets, aiming to address these concerns.

In response to these challenges, the financial industry is seeking a more dependable alternative to
replace IBORs, which has led to the emergence of Risk-Free Rates (RFRs).

This research delves into the critical transition from the London Interbank Offered Rate (LIBOR)
Market Model (LMM) to the Forward Market Model (FMM). By refining discount factor defini-
tions, converting forward-looking rates into their backward-looking equivalents, and introducing
decay functions to emulate the dynamic behavior of these backward-looking rates, a comprehensive
framework for the transition process is established. To express these intricate shifts, the Bachelier
and Black models are employed as effective frameworks.

In this study, the adaptable Bachelier model is harnessed for cap pricing. The research encompasses
the thorough examination of three distinct parameter setups against market prices sourced from
Bloomberg. Through this analysis, the effectiveness and accuracy of the proposed model transitions
are rigorously evaluated.
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Introduction

Interest rate benchmarks are crucial linchpins in the financial world, acting as vital reference points.
Unfortunately, their reliability has been shaken by liquidity constraints and rigging etc. This has
led to a erosion in trust concerning the dependability and robustness of these benchmarks. Conse-
quently, regulatory authorities and central banks are orchestrating substantial reforms within the
interest rate markets. These efforts are directed at facilitating a seamless transition toward inno-
vative alternative benchmark rates that are in alignment with updated standards, as highlighted
by LBR [8, page 4].

It’s noteworthy that the UK Financial Conduct Authority (FCA), the supervisory body responsible
for overseeing the LIBOR benchmark, has publicly indicated its stance against coercing financial
institutions to continue issuing LIBOR rates beyond 2021, as reported in the FCA2019 document [9,
section 8]. This decision marks a significant turning point, given that pricing models, the intricate
financial landscape, and the foundational market infrastructure have become closely interwoven
with the LIBOR benchmark over the span of decades. There are several examples of RFR rates
for different currencies in Figure 1.

Figure 1: Source: Schrimpf Andreas and Sushko Vladyslav (2019)[1, page 35], The new benchmark
rates

This transition to new benchmark rates is posing one of the most monumental challenges the finan-
cial industry has faced. As the sector navigates this profound transformation, careful consideration
is being given to preserve the integrity and efficiency of the financial markets, thus ushering in an
era of increased transparency and renewed investor confidence.
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0.1 The Meaning of LIBOR

The ”London Interbank Offered Rate”(LIBOR) is a widely adopted benchmark interest rate. This
rate signifies the average interest rate which is used by major global banks engage in interbank to
lend within the London market. LIBOR spans various currencies, ranging from overnight to one
year, and it is updated daily[10, section 3, page 1].

In the realm of finance, the London Interbank Offered Rate (LIBOR) holds a pivotal role as a crit-
ical reference indicator. It plays a vital role in determining the interest rates for different financial
instruments such as loans, derivatives, and bonds. Its influence is particularly significant in the
realm of pricing variable-rate loans[11, section 1].

Greek banker Minos Zombanakis carefully orchestrated syndicated loans tied to the six-month
interbank rate in London during the 1960s. This initiative paved the way for the emergence of the
London Interbank Offered Rate (LIBOR). Initially designed for evaluating variable-rate notes, it
gained formal recognition from the British Bankers’ Association in 1986. Over time, its influence
expanded across major currencies including USD, GBP, EUR, JPY, and CHF, encompassing a
variety of loan tenures[12].

Although LIBOR is important, we are not going to use it anymore.

0.2 Reasons Why Not to Use LIBOR

The first reason is rigging.The mounting body of evidence concerning the manipulation of LIBOR
is being augmented by diverse legal actions, stemming from the initial revelation of LIBOR rig-
ging through a settlement involving Barclays Bank and the Financial Services Authority in June
2012[13, abstract].

Following the financial crisis, the LIBOR gauged market has experienced a decline in activity.
This decrease in transaction volume has eroded LIBOR’s reliability as a benchmark. The market’s
response which is due to the Covid-19 accentuated the weaknesses of LIBOR and emphasized the
necessity for financial markets to adopt alternative benchmarks.

Amid the market turbulence in 03/2020, which was triggered by the pandemic, the market activity
that supports LIBOR diminished a lot. As a result, the determination of rates relied heavily on
expert judgment from banks (as illustrated in Figure 2).

Figure 2: Source: BOE (2020)[2, Chart A], The low number of transactions

LIBOR rates, and subsequently borrowing costs, increased, while Bank Rate became some new
low levels, rendering more affordable funding accessible to banks (depicted in Figure 3). However,
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the GBP risk-free-rate SONIA shown the same trend with Bank Rate[2].

Figure 3: Source: BOE (2020)[2, Chart B], LIBOR, SONIA and Bank Rate

0.3 The Differences Between LIBOR and RFR

Initially, IBORs encompass interest rates applicable to unsecured interbank loans spanning various
timeframes, encompassing an embedded credit spread. Conversely, RFRs denote overnight interest
rates that inherently involve minimal to no credit-related risks. By the characteristic of their
definition, the differences are as follows[14, page 2]:

• Forward-looking vs. Backward-looking

– IBORs are forward-looking term rates. They are calculated at the accrual period start.

– RFRs are backward-looking rates. They are calculated by the historical data and pro-
vided at the end of the day or the next business day.

• In Arrears Calculations

– Because IBORs are forward-looking rates, the payoff at the payment date of a instrument
such as cap can be known at the start of a period.

– RFRs are backward-looking rates, so they are not known in advance. Thus, calculations
for products linked to RFRs are typically done in arrears.

Due to the nature of RFR rates, it can effectively circumvent the shortcomings of IBOR rates
proposed in Section 0.2:

• Because RFR rates are released at the end of a period based on historical data, it can
effectively avoid the risk of fraud.

• The trading volume of derivatives based on RFR rates is also much larger in the market.

Because of these distinctions separating IBORs and RFRs, and with the intention of valuing inter-
est rate instruments within the RFR framework, our aim is to formulate forward RFR term rates
that can replace IBOR.

0.4 The Impact of LIBOR transition

As the transition from IBORs to RFRs takes place, it’s essential to consider how contracts tied to
IBORs will be impacted. For contracts that continue to reference LIBOR after the end of 2021,
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there’s a possibility that the relevant LIBOR benchmark might no longer be available or appropri-
ate.

Some banks advocate for credit-sensitive alternatives to RFRs like SOFR. The adoption of such
rates can help banks manage potential situations where their cost of funds rises while their lending
rates remain static or fall. Nowadays, various groups have create their own benchmark rates that
consider credit sensitivity (see Figure 4). These rates are developed as alternatives to SOFR[3,
section 4].

Figure 4: Source: ChathamFinancial (2022)[3, section 4], Proprietary credit-sensitive benchmark
rates

In essence, the thesis aims to introduce mathematical models for valuing interest rate instruments,
particularly focusing on SONIA caps in the RFR framework, along with model calibrations, but
also mentions swaps and swaptions. Additionally, it serves as theoretical support for integrating
a vanilla RFR cap pricing module into the Valuation Platform, a Python-based toolkit developed
for pricing interest rate instruments.
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Chapter 1

Mathematical Framework

In this section, we first introduce some basic definitions for calculating interest rate instruments.
Then we recall change of numeraire which is used to derive forward rates, the dynamic in FMM
and finally the pricing model.

1.1 Basic Definitions

Assume the instantaneous risk-free rate at time t is r(t). Then the dynamic of bank account B(t)
can be written as

dB(t) = r(t)B(t)dt

where B(0) = 1, which equals to

B(t) = e
∫ t
0
r(u)du

The risk-neutral measure of numeraire B(t) is denoted as Q. The associated expectation is written
as E to simplify and a family of σ-fields {Ft} is defined to be a filtration. We denote the price
P (t, T ) which represents a zero-coupon bond price with maturity T and final payoff 1, and for
t ≤ T ,

P (t, T ) = E[e−
∫ T
t

r(u)du|Ft] (1.1.1)

A.Lyashenko and F.Mercurio[15, section 2, page 4] extended equation (1.1.1) for t > T ,

P (t, T ) = E[e−
∫ t
T
r(u)du|Ft] = e−

∫ t
T
r(u)du =

B(t)

B(T )
(1.1.2)

Because e−
∫ t
T
r(u)du is Ft-measurable. Then P (t, T ) can be extended to be a new numeraire.

The extended T-forward measure QT is a blended measure that merges the traditional T-forward
measure up to the maturity T with the risk-neutral measure Q after T[15, section 2.1, page 4].

1.2 Change of Numeraire

Recall the change of numeraire

Definition 1.2.1 (Equivalent measures[16, page 119]). Two measures P and Q on the space (Ω,F)
are considered equivalent if they share the same assessment of events with zero probability.

Definition 1.2.2 (Radon-Nikodym derivative dQ
dP [16, page 120]). This refers to a stochastic vari-

able such that, for any other stochastic variable X, the expected value under Q can be expressed
as:

EQ[X] =

∫
XdQ =

∫
X

dQ
dP

dP = EP
[
X

dQ
dP

]
Theorem 1.2.3 (Girsanov’s theorem[16, page 121]). If the dynamic of measure P is dXt =
fP(Xt)dt+ σP(Xt)dW

P
t , we define for all t ∈ [0, T ]

dQ
dP

∣∣∣∣
Ft

:= exp[−1

2

∫ t

0

(
fQ(Xs)− fP(Xs)

σP(Xs)
)2ds+

∫ t

0

fQ(Xs)− fP(Xs)

σP(Xs)
dW P

s ]
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then
dXt = fQ(Xt)dt+ σP(Xt)dW

Q
t

Here, WQ represents a Brownian Motion (BM) under Q, while the measures P and Q are considered
to be equivalent. An adequate requirement for this situation to be valid is the fulfillment of the
Novikov criterion.

E

[
exp(

1

2

∫ T

0

(
fQ(Xs)− fP(Xs)

σP(Xs)
)2ds)

]
< +∞

Theorem 1.2.4 (Ito’s formula[16, page 81]). If the dynamic is dXt = f(Xt)dt + σ(Xt)dWt, we
have

dφ(t,Xt) =
∂φ

∂t
dt+

∂φ

∂X
dXt +

1

2

∂2φ

∂X2
dXtdXt

Here is the derivation of how to change numeraire.

Let’s consider the scenario following Brigo’s train of thought[17, page 292-301], where we want
to express the evolution of X using the benchmark of S, but now we wish to switch to a new
benchmark U . This will lead to the modified dynamics given by dXt = µU

t (Xt)dt+σt(Xt)CdWU
t .

Here we denote WU as a multi-dimensional standard Brownian motion according to the measure
QU .

Girsanov’s theorem (referred to as Theorem 1.2.3) is used to derive the Radon-Nykodim derivative
(defined as in Definition 1.2.2) between QU and QS by comparing the X’s dynamics under these
distinct measures:

ζT :=
dQS

dQU

∣∣∣∣
FT

= exp(−1

2

∫ T

0

|(σt(Xt)C)−1[µS
t (Xt)− µU

t (Xt)]|2dt

+

∫ T

0

{(σt(Xt)C)−1[µS
t (Xt)− µU

t (Xt)]}′dWU
t )

We can express ζt as
dζt = αtζtdW

U
t (1.2.1)

where αt = {(σt(Xt)C)−1[µS
t (Xt) − µU

t (Xt)]}′. Conversely, as per the definition of QS , for any
asset whose price is Z,

EQS

0

[
ZT

ST

]
= EQU

0

[
U0

S0

ZT

UT

]
=

Z0

S0
(1.2.2)

According to the Radon-Nykodym derivative’s definition (as provided in Definition 1.2.2), it is also
clear that for any Z,

EQS

0

[
ZT

ST

]
= EQU

0

[
ZT

ST

dQS

dQU

]
(1.2.3)

Upon contrasting equations (1.2.2) and (1.2.3), we derive that

ζT =
dQS

dQU

∣∣∣∣
FT

=
U0

S0

ST

UT

because ζ constitutes a martingale under the QU measure

ζT = EQU

t ζT = EQU

t

[
U0

S0

ST

UT

]
=

U0

S0

St

Ut
(1.2.4)

This can be deduced through differentiation, resulting in

dζT =
U0

S0
d
St

Ut
=

U0

S0
σ
S/U
t CdWU

t (1.2.5)

Here, considering that the ratio S/U maintains a martingale property under the QU measure, we
have made an assumption about the subsequent dynamics of martingales:

d
St

Ut
= σ

S/U
t CdWU

t

10



Analyze equations (1.2.1) and (1.2.5) in conjunction which infer that

αtζt =
U0

S0
σ
S/U
t C

Considering equation (1.2.4), we arrive at the outcome

St

Ut
αt = σ

S/U
t C

Recall α and substituting it into the equation,

µU
t (Xt) = µS

t (Xt)−
Ut

St
σt(Xt)ρ(σ

S/U
t )′

utilize ρ = CC ′. It provides change into the alteration of a stochastic process’s drift during the
transition from the benchmark of U to that of S. Additionally, if we make the further assumption

dSt = (...)dt+ σS
t CdWU

t

dUt = (...)dt+ σU
t CdWU

t

By Ito’s formula (Theorem 1.2.4) we have

σ
S/U
t =

σS
t

Ut
− St

Ut

σU
t

Ut

so that

µU
t (Xt) = µS

t (Xt)− σt(Xt)ρ(
σS
t

St
− σU

t

Ut
)′

What’s more,
µU
t (Xt)dt+ σt(Xt)CdWU

t = µS
t (Xt)dt+ σt(Xt)CdWS

t

so we also have

CdWS
t = CdWU

t − ρ(
σS
t

St
− σU

t

Ut
)′dt

And then we can use ”DC” to represent the vector diffusion coefficient. What’s more, we can use
dZ = CdW to represent the correlated Brownian motion, we can express the final equation as

dZS
t = dZU

t − ρ(
DC(S)

St
− DC(U)

Ut
)′dt

and

DC(S)

St
− DC(U)

Ut
= DC(log(S))−DC(log(U))

= DC(log(S)− log(U))

= DC(log(S/U))

This will be used in Section 1.4 to calculate the drift.

1.3 RFR Rates

The Risk-Free Rate (RFR) is a daily published interest rate based on the latest available data.
For instance, the Bank of England releases its previous working day’s SONIA rate on the following
working day[18, section 2]. Our upcoming discussion will focus on how to construct the term struc-
ture of RFR rates, and display the final expression. The theoretical framework is mainly based on
Andrei Lyashenko and Fabio Mercurio’s article[15, page 5-7].

For the sake of clarity in our subsequent discussions, we introduce the following definitions for
the symbols we will be using: Our observation points are denoted as Ti, i = 0, 1, . . . ,M , and the
year fraction is represented by τj , which corresponds to the time interval of [Tj−1;Tj). To simplify

11



matters, we will use Pj(t) to signify the bond price P (t, Tj).

The actual daily-compounded setting-in-arrears rate which is calculated during [Tj−1;Tj) is given
by

R(Tj−1, Tj) =
1

τj

[
n∏

i=1

(1 + riδi)− 1

]
Here, the multiplication encompasses the business days within the interval [Tj−1, Tj), and ri rep-
resents the RFR daily rate on date i, with its corresponding day-count fraction denoted as δi. If
we converge δi towards zero, we arrive at the approximation captured in Equation (1.3.1).

R(Tj−1, Tj) =
1

τj

[
e
∫ Tj
Tj−1

r(u)du − 1

]
=

1

τj

[
B(Tj)

B(Tj−1)
− 1

]
=

1

τj
[Pj−1(Tj)− 1] (1.3.1)

Next, we clarify the concepts of forward-looking and backward-looking rates:

• Backward looking rate: This pertains to the compounded rate calculated retrospectively over
a term, known as the arrears term rate.

• Forward looking rate: This involves the par rate over the accrual period.

Moving forward, we can establish a forward-looking rate whose maturity is Tjand valuation date
is Tj−1, which we denote as F (Tj−1, Tj).

F (Tj−1, Tj) = ETj [R(Tj−1, Tj)|FTj−1 ] (1.3.2)

The backward-looking forward rate Rj(t) at time t can be denoted as

Rj(t) = ETj [R(Tj−1, Tj)|Ft] (1.3.3)

Drawing upon Equation (1.3.2) and (1.3.3), we can establish that F (Tj−1, Tj) is identical to Rj(t)
at time t = Tj−1 for each j = 1, . . . ,M . This relationship can be expressed as:

F (Tj−1, Tj) = Rj(Tj−1)

Altering the measure to Q, we have

1 + τjRj(t) = ETj

[
e
∫ Tj
Tj−1

r(u)du|Ft

]
=

1

Pj(t)
E
[
e−

∫ Tj
t r(u)due

∫ Tj
Tj−1

r(u)du|Ft

]
=

1

Pj(t)
E
[
e−

∫ Tj−1
t r(u)du|Ft

]
=

Pj−1(t)

Pj(t)

Therefore, the forward rate is

Rj(t) =
1

τj

[
Pj−1(t)

Pj(t)
− 1

]
Finally,

Rj(t) =



1

τj

[
Pj−1(t)

Pj(t)
− 1

]
, t ≤ Tj−1,

1

τj

[
B(t)/B(Tj−1)

Pj(t)
− 1

]
, Tj−1 < t < Tj ,

1

τj

[
B(Tj)

B(Tj−1)
− 1

]
, t ≥ Tj .

(1.3.4)

• For t ≤ Tj−1, Pj−1(t), Pj(t) are discount factors which the calculation method is the same
as LIBOR rates and the only difference is the curve.

• For Tj−1 < t < Tj , Pj−1(t) = B(t)/B(Tj−1) which becomes daily compounding rate.

• For t ≥ Tj ,Rj(t) =
1
τj
[Pj−1(Tj)−1] where Pj−1(Tj) =

B(Tj)
B(Tj−1)

is the daily compounding rate

which is already known.

This forward FMM rate is the rate we use to price RFR instruments.
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1.4 Decay volatility

Following the article written by Andrei Lyashenko and Fabio Mercurio’s article[15, page 9-11], due
to the relationship described in Equation (1.3.3), the forward rate Rj(t) maintains a martingale
property within its associated Tj-forward measure, where j = 1, . . . ,M . In this context, we consider
the QTj -dynamics as given by (1.4.1):

dRj(t) = σj(t)11{t≤Tj}dWj(t) (1.4.1)

In the context of each j = 1, . . . ,M , Wj(t) represents a standard Brownian motion, while σj(t) is
considered as the state of the adapted process σj = (σs

j )s≥0 at time s = t, where dWi(t)dWj(t) =
ρi,jdt. Because for time t > Tj the rate is already known, so we use 1t≤Tj

to express.

However, the rate Rj(t) is daily compounded during the accrual period, so it will decrease towards
zero. The simplest form of such decay is linear. Thus, (1.4.1) is not used anymore, and instead,
a function gj is selected as per A. Lyashenko and F. Mercurio [15, section 3, page 9]. Specifically,
gj(t) satisfies the conditions:

• gj(t) = 1, t ≤ Tj−1

• gj(t) monotonically decreases within the interval [Tj−1, Tj ]

• gj(t) = 0, t ≥ Tj

The currently widely used function gj is:

gj(t) = min

{
(Tj − t)+

Tj − Tj−1
, 1

}
Subsequently, we can express the dynamic of Rj(t) as:

dRj(t) = σj(t)gj(t)dWj(t)

Here are images of the RFR rate simulated with normal model (see Figure 1.1(a)) and lognor-
mal model (see Figure 1.1(b)) using Monte Carlo respectively. We set R(0) = 0.04, σ = 0.01,
Tj−1 = 0.75 (time increments=75) and Tj = 1 (time increments=100). It can be observed that the
volatility gradually decreases after entering the interval [Tj−1, Tj ], and the curve becomes almost
a horizontal line at the end, which means that the volatility finally approaches 0.

Following Andrei Lyashenko and Fabio Mercurio’s guidance [15, page 10-12], we’re unifying the
dynamics of each Rj(t) under a common measure. Using the numeraire (B(t), Q), we apply the
discussed numeraire change in Section 1.2 to derive:

µQ
j (t) =

dRj(t)d log(B(t)/P (t, Tj))

dt

By the definition of P ,

log
B(t)

P (t, Tj)
= log

P (t, 0)

P (t, Tj)

= log

j∏
i=1

P (t, Ti−1)

P (t, Ti)

= log

j∏
i=1

[1 + τiRi(t)]

=

j∑
i=1

log[1 + τiRi(t)]

13



(a) Normal Model.

(b) Lognormal Model.

Figure 1.1: Dynamic of RFR Rates with Decay Volatility.

14



The drift can be

µQ
j (t) =

dRj(t)d log(B(t)/P (t, Tj))

dt

=
dRj(t)d

∑j
i=1 log[1 + τiRi(t)]

dt

=

j∑
i=1

τi
1 + τiRi(t)

dRj(t)dRi(t)

dt

=

j∑
i=1

τi
1 + τiRi(t)

σj(t)gj(t)dWj(t)σi(t)gi(t)dWi(t)

dt

= σj(t)gj(t)

j∑
i=1

τi
1 + τiRi(t)

ρi,jσi(t)gi(t)dt

dt

= σj(t)gj(t)

j∑
i=1

τiρi,jσi(t)gi(t)

1 + τiRi(t)

Hence, the dynamics of Rj under the Q measure become

dRj(t) = σj(t)gj(t)

j∑
i=1

τiρi,jσi(t)gi(t)

1 + τiRi(t)
dt+ σj(t)gj(t)dW

Q
j (t)

This type of change of numeraire can be used to complete the generalized forward market model.
We can find more details in Lyashenko Andrei and Mercurio Fabio’s article[19].
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Chapter 2

RFR Instruments Pricing Formula

In this section, we will begin by presenting the description of RFR caps, swaps and swaptions.
Following that, we will illustrate two distinct pricing equations derived by Bachelier and Black
models for caps.

2.1 RFR Cap

An interest rate cap provides the holder with the ability to set a maximum limit on payment. It
is structured as a sequence of caplets with a certain payment frequency. We can envision a caplet
to be a Call option on the forward rate with a designated strike price K. In a broader context,
the value of a cap in the present is computed as the product of the discount factor P (t, T ) and the
anticipated payoff at time t.

Consider a sequence of time intervals given by 0 ≤ t ≤ T0 ≤ · · · ≤ Tn = T , where (Tk)
n
k=1 repre-

sents the payment dates. Define τj as 1
Tj−Tj−1 . Let K be a constant, referred to as the cap strike,

with the condition K ≥ 0.

Due to the backward-looking nature of RFRs, we can establish two types of caplets over the interval
[Tj−1, Tj ] utilizing a strike value of K[15, section 6.3, page 18]. The resulting payoffs at Tj are as
follows:

• τj [Rj(Tj−1) − K]+, where Rj is known at the beginning of the period Tj−1 because of it’s
forward-looking nature.

• τj [Rj(Tj) −K]+, where Rj is known at the end of the period Tj because of it’s backward-
looking nature.

The cap term can be shown as Figure 2.1

Figure 2.1: Source: Ioannis Rigopoulos (2023)[4], Cap term
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The caplet price on [Tj−1, Tj ] is

Vcaplet(t) = τjP (t, Tj)ETj [(Rj −K)+|Ft]

The determination of this valuation is contingent upon the approach employed to model the ret-
rospective risk-free-rate Rj(t). As articulated by Andrei Lyashenko and Fabio Mercurio (reference
[15, section 6.3, page 18]), it has been observed that caplets with a backward-looking charac-
teristic tend to possess a higher value compared to caplets with a forward-looking aspect. This
phenomenon can be inferred by considering the following factors:

ETj [(Rj(Tj)−K)+|Ft] = ETj [ETj [(Rj(Tj)−K)+|FTj−1
]|Ft]

≥ ETj [(ETj [Rj(Tj)|FTj−1 ]−K)+|Ft]

= ETj [(Rj(Tj−1)−K)+|Ft]

Because Rj is calculated in-arrears for the backward-looking case, RFR caps often have a look-back
period which is 5D or 2D before the payment date to calculate the rate Rj . According to the pdf
published by Bank of England [5, page 4], there are two types of look-back conventions:

• Look-back without Observation Shift

• Look-back with Observation Shift

The main difference of these two method is whether we consider holidays. The recommended
method is look-back without observation shift which doesn’t consider holidays. The process is
explained in details as Figure 2.2.

Figure 2.2: Source: BOE (2020)[5, page 6], Look-back without Observation Shift

Next, we are going to introduce two models used for valuation: Bachelier model (see Section 2.1.1)
and Black model (see Section 2.1.2).

2.1.1 Bachelier Model

Becasue of the backward property of RFRs, we recall the Forward Market Model (FMM)

dRj(t) = σj(t)gj(t)dWj(t)

17



And gj(t) is given as:

gj(t) = min

{
(Tj − t)+

Tj − Tj−1
, 1

}
Assume that the dynamics of Rj(s) is normal with constant volatility σj and decaying function
gj . Then we have

dRj(s) = σjgj(s)dW
Tj (s)

where WTj (s) is Brownian motion under QTj and Rj is a martingale. Then we are going to deduce
the pricing formula following Yan’s process[14, section 3.1, page 15-17]. Therefore, we have

Rj(Tj−1) = Rj(t) +

∫ Tj−1

t

σjgj(s)dW
Tj
s (forward rate)

Rj(Tj) = Rj(t) +

∫ Tj

t

σjgj(s)dW
Tj
s (backward rate)

Then the mean for both rates is Rj(t) (deterministic) based on the property of martingale.

By Ito’s formula, variances are

E

[∫ Tj−1

t

(σjgj(s)dWs)
2

]
=

∫ Tj−1

t

(σjgj(s))
2ds (forward looking)

E

[∫ Tj

t

(σjgj(s)dWs)
2

]
=

∫ Tj

t

(σjgj(s))
2ds (backward looking)

Thus,

Rj(Tj−1) ∼ N (Rj(t),

∫ Tj−1

t

(σjgj(s))
2ds) (forward looking)

Rj(Tj) ∼ N (Rj(t),

∫ Tj

t

(σjgj(s))
2ds) (backward looking)

And we can write Rj as Rj(t)− vZ where Z is a standard normal distribution N (0, 1) and

• v2 =
∫ Tj−1

t
σ2
jds = σ2

j (Tj−1 − t) for forward-looking rate.

• For the backward-looking rate, when t ≤ Tj−1

v2 =

∫ Tj

t

σ2
j gj(s)

2ds

=

∫ Tj

t

σ2
j min

{
(Tj − s)+

Tj − Tj−1
, 1

}
ds

= σ2
j

∫ Tj

Tj−1

(
Tj − s

Tj − Tj−1

)2

ds+

∫ Tj−1

t

ds

= σ2
j

(
1

3
(Tj − Tj−1) + (Tj−1 − t)

)
• For the backward-looking rate, when Tj−1 < t < Tj

v2 =

∫ Tj

t

σ2
j gj(s)

2ds

=

∫ Tj

t

σ2
j min

{
(Tj − s)+

Tj − Tj−1
, 1

}
ds

= σ2
j

∫ Tj

t

(
Tj − s

Tj − Tj−1

)2

ds

=
σ2
j (Tj − t)3

3(Tj − Tj−1)2
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The expected payoff under Bachelier Model is:

ETj
[
(Rj(T )−K)+|Ft

]
= ETj

[
(Rj(T )−K)1{Rj(T )>K}|Ft

]
= ETj

[
(Rj(t)− vZ −K)1{Rj(t)−vZ>K}|Ft

]
= ETj

[
(Rj(t)− vZ −K)1

{Z<
Rj(t)−K

v }
|Ft

]
= (Rj(t)−K)ETj

[
1
{Z<

Rj(t)−K

v }
|Ft

]
− vETj

[
Z1

{Z<
Rj(t)−K

v }
|Ft

]
= (Rj(t)−K)Φ

(
Rj(t)−K

v

)
− vETj

[
Z1

{Z<
Rj(t)−K

v }
|Ft

]

= (Rj(t)−K)Φ

(
Rj(t)−K

v

)
− v

∫ Rj(t)−K

v

−∞
zϕ(z)dz

= (Rj(t)−K)Φ

(
Rj(t)−K

v

)
− vϕ

(
Rj(t)−K

v

)

where Φ is the cumulative density function(cdf) of standard normal distribution while ϕ(z) =
1√
2π

exp− z2

2 is the probability density function (pdf) of standard normal distribution. 1{z<x} is

the indicator function which takes value 1 when z < x and 0 otherwise.

Therefore, we have the valuation for each caplet:

• Forward-looking caplet:

V F
caplet(t) = τjP (t, Tj)((Rj(t)−K)Φ

(
Rj(t)−K

v

)
+ vϕ

(
Rj(t)−K

v

)
where v2 = σ2

j (Tj−1 − t)

• Backward-looking caplet:

V B
caplet(t) = τjP (t, Tj)((Rj(t)−K)Φ

(
Rj(t)−K

v

)
+ vϕ

(
Rj(t)−K

v

)

where v2 =


σ2
j

(
1

3
(Tj − Tj−1) + (Tj−1 − t)

)
, t ≤ Tj−1,

σ2
j (Tj − t)3

3(Tj − Tj−1)2
, Tj−1 < t < Tj .

2.1.2 Black Model

Assume that the dynamics of Rj(t) is lognormal with constant volatility. That is

dRj(t) = σjRj(t)gj(t)dW
Tj (t)

Firstly, we explain the Black pricing Here we mainly forcus on Call options whose strike is K and
maturity is T . St represents the asset price at time t. The payoff function is

Payoff = max(ST −K, 0)

Black-Scholes model set the dynamic of St to be

dSt

St
= µdt+ σdWt

Here µ and σ represents drift and volatility respectively.
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The pdf of St at maturity T is calculated from the lognormal distribution:

f(ST ) =
1

STσ
√
2πT

exp

(
−
(ln(ST /S0)− (µ− σ2

2 )T )2

2σ2T

)

Taking expectation, the price at time t becomes :

BlackCallPrice = EQ[max(ST −K, 0)]

and then we have:

BlackCallPrice =

∫ ∞

0

max(ST −K, 0)f(ST )dST

Solving this integral, we arrive at the final pricing formula

BlackCallPrice = Ste
r(T−t)Φ(d1)−KΦ(d2)

where

d1 =
log
(
St

K

)
+ (r + σ2

2 )(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

Thus, the expected payoff for caplet under Black Model is:

ETj
[
(Rj(T )−K)+|Ft

]
= Rj(t)Φ(d1)−KΦ(d2)

where d1,2 =
log(Rj(t)/K)±v2/2

v and Φ is the cdf of standard normal distribution.

Then the valuation for caplet is:

• Forward-looking caplet:

V F
caplet(t) = τjP (t, Tj)[Rj(t)Φ(d1)−KΦ(d2)], t ≤ Tj−1

where v2 = σ2
j (Tj−1 − t)

• Backward-looking caplet:

V B
caplet(t) = τjP (t, Tj)[Rj(t)Φ(d1)−KΦ(d2)], t ≤ Tj

where v2 =


σ2
j

(
1

3
(Tj − Tj−1) + (Tj−1 − t)

)
, t ≤ Tj−1,

σ2
j (Tj − t)3

3(Tj − Tj−1)2
, Tj−1 < t < Tj .

After we get the price of each caplet, we can add them up and we will have the value of a cap in
the RFR world.

In general, the valuation of RFR caps is similar to the valuation of IBOR caps but need to consider
decay volatility. We can still use Black and Bachelier model which is the special case of FMM.

2.2 RFR swaps

An interest rate swap (fixed-floating) provides the holder with the ability to exchange cash flow
with fixed/floating rates. Following Andrei Lyashenko and Fabio Mercurio’s guidance [15, section
6.2, page 17]

Consider a sequence of floating leg payment dates Tj , where j = a + 1, . . . , b. And a sequence of
fixed leg payment dates T ′

j , where j = c + 1, . . . , d. Start date Ta = T ′
c, and end date Tb = T ′

d.

Define τj as 1
Tj−Tj−1

and τ ′j as 1
T ′
j−T ′

j−1
. Let K be a constant, referred to as the fixed rate. Rj(t)
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is the risk-free rate.

Looking at the payoff at t < Ta+1 from the standpoint of the fixed-rate payer

b∑
j=a+1

τjP (t, Tj)Rj(t)−K

d∑
j=c+1

τ ′jP (t, T ′
j)

When valuing swaps, our primary focus lies on assessing the cash flows associated with fixed and
floating legs. These cash flows are directly derived from forward rates. It’s important to note that
a swap is not an option, which means there’s no need to factor in decay volatility for its pricing.
Instead, we solely rely on the forward rates obtained from the market. Consequently, the pricing
methodology closely resembles that of LIBOR-based swaps. However, one crucial aspect requires
attention. If the valuation date is on or before the accrual period’s commencement, we utilize
the forward rate for pricing. If the valuation date falls within the accrual period, we employ the
compounded rate within the interval [Ta, Ta+1].

The swap rate, which we select a proper K such that the payoff function to be 0 at time t, is
denoted as:

S(t) =

∑b
j=a+1 τjP (t, Tj)Rj(t)∑d

j=c+1 τ
′
jP (t, T ′

j)
=

P (t, Ta)− P (t, Tb)∑d
j=c+1 τ

′
jP (t, T ′

j)
(2.2.1)

2.3 RFR swaptions

An RFR swaption, whether in the role of the payer or the receiver, is essentially a contract that
provides the choice to engage in a spot RFR swap once the maturity date of the swaption is reached.

Looking at the payoff at time Ta from the standpoint of the fixed-rate payer[15, section 6.4, page
19]

[S(Ta)−K]+
d∑

j=c+1

τ ′jP (t, T ′
j)

where S(t) is defined as Equation (2.2.1).

We need to calculate the dynamic of S(t) to get the price. Just like a swap rate based on LIBOR,
an RFR swap rate follows a martingale pattern under the forward swap measure linked to its
annuity numeraire[20, section 3, page 5-6]. Consequently, we can hypothesize certain behaviors of
S(t) within this framework and value swaptions accordingly. For the convenience of representation,
we assume that the term sheets of the fixed leg and the floating leg are the same. The volatility
is needed for the option’s valuation. The dynamic of S(t) in swap model (SMM) can be[17, page
403]

dSα,β(t) = σ(α,β)(t)Sα,β(t)dW
α,β
t (2.3.1)

In LIBOR case, we approximate the volatility σ(α,β) in SMM by using LMM. For the technical
proof details we can find it in A.1 which is provided by Brigo[17, page 403-407].

The final estimated variance calculated by LMM is

(vLMM
α,β )2 =

∫ Tα

0

(d lnSα,β(t))(d lnSα,β(t))

=

β∑
i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j
1

Sα,β(0)
2

∫ Tα

0

σi(t)σj(t)dt.

Using the previous notation, if we change the time of freezing drift from 0 to valuation date t, we
have

(vLMM
α,β )2 =

β∑
i,j=α+1

wi(t)wj(t)Fi(t)Fj(t)ρi,j
1

Sα,β(t)
2

∫ Tα

t

σi(s)σj(s)ds.
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This variance can be used in the lognormal dynamic of Equation (2.3.1) to calculate the final
price. For RFR swaptions, same as caps in Section 2.1, we can consider the case of forward-looking
interest rates and backward-looking interest rates separately.

As in Section 2.1.2, set the dynamic of forward rates to be

dRj(t) = σjRj(t)gj(t)dW
Tj (t)

where

gj(t) = min

{
(Tj − t)+

Tj − Tj−1
, 1

}
Then we have the variance

• Forward-looking:

(vLMM
α,β )2 =

β∑
i,j=α+1

wi(t)wj(t)Ri(t)Rj(t)ρi,j
1

Sα,β(t)
2

∫ Tα

t

σi(s)σj(s)ds

=

β∑
i,j=α+1

wi(t)wj(t)Ri(t)Rj(t)ρi,j
1

Sα,β(0)
2σiσj(Tα − t)

• Backward-looking:

(vLMM
α,β )2 =

β∑
i,j=α+1

wi(t)wj(t)Ri(t)Rj(t)ρi,j
1

Sα,β(t)
2

∫ Tα+1

t

σi(s)σj(s)ds

=

β∑
i,j=α+1

wi(t)wj(t)Ri(t)Rj(t)ρi,j
1

Sα,β(0)
2 v

2

where v2 =


σiσj

(
1

3
(Tα+1 − Tα) + (Tα − t)

)
, t ≤ Tα,

σiσj(Tα+1 − t)3

3(Tα+1 − Tα)2
, Tα < t < Tα+1.
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Chapter 3

Calibration

In this section, we would like to focus our analysis on SONIA index and the RFR cap quoted on
Bloomberg. According to [21, page 7], the normal model can more appropriately reflect historical
data, and it allows negative interest rates. Thus, we mainly focus on Bachelier model.

3.1 Yield Curve Calibration

Yield curve calibration involves deducing discount factors P (t, T ) and then calculate forward-
forward rates. These instruments can include swaps, cash instruments, and various discount fac-
tors, among others. In this context, we opt to directly utilize the discount factor P (t, T ), which is
readily accessible from Bloomberg, for yield curve computation.

After acquiring the discount factor P (t, T ), the initial consideration pertains to the interpolation
method. This interpolation can be executed using either the zero rate z or the discount factor
P (t, T ). This concept can be illustrated by Equation (3.1.1):

P (0, t) = exp(−zt) (3.1.1)

The typical interpolation state variables include[8, section 4.3.4, page 31-33]

• Discount Factors

• Log of Discount Factors

• Zero Rate

• Zero Rate times Time

The outcome of the interpolation on zero rate times time is the same as it on log of discount factors
because of Equation (3.1.1). The interpolation method we can choose are

• Piecewise-Constant
In this method, forward rates maintain a constant value between two pillars, resulting in a
piecewise-constant pattern.

• Linear
The rates are interpolated by linear function between two pillars.

• Smooth
This approach assumes that forward rates show a smooth pattern by using tension-spline
interpolation method.

For curves with a mixture of futures and swaps we require a mixed linear and smooth interpolator
as explained by Burgess [8, section 4.3.4, page 32], see in Table 3.1. However, here we only consider
the simplest case which uses discount factor and single interpolation method to calibrate.

Ametrano [6, section 4.5, page 42] provides a visual representation of how interpolation affects the
shape of the curve, as demonstrated in Figure 3.1.
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Instrument Tenor Quote Interpolation Style
Cash Deposit 1D 2.0248 Linear
OIS swap 6M 7.7345 Spline
OIS swap 1Y 1.5989 Spline
OIS swap 18M 1.5205 Spline
OIS swap 2Y 1.4605 Spline
OIS swap 5Y 1.369 Spltne
LIBOR-OIS Basis swap 7Y 0.26563 Spline
LIBOR-OIS Basis swap 10Y 0.26063 Spline
LIBOR-OIS Basis swap 15Y 0.255 Spline
LIBOR-OIS Basis swap 20Y 0.25375 Spline
LIBOR-OIS Basis swap 30Y 0.25375 Spline
LIBOR-OIS Basis swap 40Y 0.25375 Spline
LIBOR-OIS Basis swap 50Y 0.25375 Spline

Table 3.1: Source: Burgess (2019)[8, section 4.4.1, page 38], OIS Curve Calibration Instruments,
USDOIS

Figure 3.1: Source: Ametrano (2013)[6, section 4.5, page 42], The impact of interpolation on curve
shape

We choose linear on zero rates and logcubic on discount factors to compare the results with
Bloomberg.

3.2 Boot-stripping RFR Caplet Volatility

In this section we are using Bachelier model in Section 2.1.1. Thus, the caplet pricing formula
becomes

Vcaplet(t) = τjP (t, Tj)((Rj(t)−K)Φ

(
Rj(t)−K

v

)
+ vϕ

(
Rj(t)−K

v

)
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where v2 =


σ2
j

(
1

3
(Tj − Tj−1) + (Tj−1 − t)

)
, t ≤ Tj−1,

σ2
j (Tj − t)3

3(Tj − Tj−1)2
, Tj−1 < t < Tj .

At present, the cap volatility matrix accessible on Bloomberg offers par volatility, calculated using
the Bachelier model [22, section 4.2, page 11]. This volatility matrix is constructed based on the
presumption of a 3M payment frequency. When we are using ”par volatility”, it means that the
volatility is a constant value for each 3M caplet from valuation date to the quoted maturity.

Note that for RFR volatility matrix quoted by Bloomberg it doesn’t consider the decay function
when calculating the par volatility. Thus v2 = σj(Tj − t), which is different from v2 for both
forward-looking and backward-looking formula. We represent v2 = σj(Tj − t) as Capletpar.

The relationship between par volatility and forward volatility is:

Cap(Tn) =

n∑
i=1

Capletpar(Ti, σpar(Ti),Ki) =

n∑
i=1

Caplet(Ti, σforward(Ti),Ki)

Our aim is to calculate the σforward from σpar. We can first calculate the cap price for each maturity
using par volatility σpar. Then calculate the difference between two cap price with neighboring
maturities[23, section 2]. The difference we get is the caplet price for a certain period, and the
price is the same as the price calculated by forward volatility with a decay pattern.

The calculation is following the bootstrapping method expressed by Yan[14, section 4.2, page 20]:

• Because the volatility is the same for each caplet, we can sum Capletpar to get the cap price

Cap(Tn) =

n∑
i=1

Capletpar(Ti, σpar(Ti),Ki)

• For the first cap which is also the first caplet (T1 ≈ 0.25), the pricing formula is different
when calculating σpar and σforward, so we still need to use root-finding method to calculate
σforward

Cap(T1) = Capletpar(T1, σpar(T1),K1) = Caplet(T1, σforward(T1),K1)

• And then, for the index i = 2, ..., n

– In real situations, we can get the cap price by adding up the price of each caplets whose
volatility is σforward with decay pattern. It can be shown as:

Cap(Ti−1,Ki) =

i−1∑
j=1

Caplet(Tj , σforward(Tj),Ki)

– The difference we get is the caplet price for a certain period:

Caplet(Ti, σforward(Ti),Ki) = Cap(Ti,Ki)− Cap(Ti−1,Ki)

– To get the value of σforward, we can use the Newton–Raphson method (see Figure 3.2).
The Newton–Raphson method can be expressed as:

σn+1 = σn − f(σn)

f ′(σn)

It’s important to highlight that, when pricing IBOR caps, the rate for the first caplet is already
known which means that the caplet price is alreadt known as well. Thus, we don’t consider the
first caplet when pricing. In contrast, if we are pricing RFR caps, we can’t no the rate for the
first caplet because it’s daily compounded and back-ward looking. So we need to consider the first

25



Figure 3.2: Source: Olegalexandrov (2008)[7], Newton–Raphson method

Term 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
31/05/2024 207.27 203.24 199.08 194.79 190.39 185.87 176.46 166.5 155.76 143.88 130.72 118.64 113.1 112.66 113.13
02/06/2025 190.54 187.9 185.18 182.4 179.57 176.69 170.82 164.82 158.66 152.12 144.9 137.56 133.23 132.94 135.04
01/06/2026 175.97 173.56 171.1 168.63 166.16 163.71 158.95 154.52 150.58 147.14 143.95 141.08 140.33 142.81 147.76
01/06/2027 163.77 161.65 159.51 157.38 155.29 153.25 149.46 146.25 143.88 142.41 141.63 141.4 142.87 146.95 153.19
31/05/2028 156.07 154.21 152.36 150.53 148.76 147.07 144.06 141.76 140.43 140.15 140.73 141.96 144.68 149.63 156.43
31/05/2029 149.6 147.9 146.21 144.56 142.98 141.49 138.91 137.12 136.36 136.76 138.13 140.24 143.68 149.01 155.92
31/05/2030 142.47 141.01 139.56 138.17 136.85 135.63 133.64 132.46 132.33 133.37 135.39 138.13 142.05 147.58 154.46
02/06/2031 137.21 135.87 134.56 133.31 132.14 131.08 129.44 128.65 128.96 130.45 132.95 136.19 140.49 146.21 153.11
01/06/2032 130.66 129.65 128.67 127.77 126.94 126.23 125.26 125.08 125.87 127.72 130.47 133.89 138.22 143.76 150.3
31/05/2033 125.39 124.61 123.87 123.2 122.61 122.14 121.62 121.84 122.96 125.05 127.96 131.49 135.81 141.17 147.39
31/05/2035 117.6 117.12 116.68 116.3 116.02 115.84 115.87 116.57 118.07 120.41 123.48 127.08 131.32 136.36 142.06
01/06/2038 110.46 110.44 110.43 110.46 110.53 110.67 111.18 112.14 113.65 115.77 118.41 121.42 124.85 128.79 133.11
01/06/2043 102.54 102.88 103.22 103.56 103.94 104.34 105.31 106.57 108.2 110.27 112.72 115.41 118.36 121.62 125.09
01/06/2048 97.18 97.47 97.81 98.19 98.63 99.16 100.48 102.23 104.45 107.15 110.24 113.58 117.17 121.04 125.14
02/06/2053 93.72 94.04 94.42 94.87 95.4 96.02 97.59 99.64 102.18 105.19 108.58 112.22 116.09 120.22 124.56

Table 3.2: The par volatility surface

caplet when dealing with RFR case.

We use linear interpolation method and flat extrapolation method to strip 4 caplet volatility a year
with reset period 3M. Table 3.2 shows the par volatility surface.

There are several features we can see from the volatility matrix:

• Smile and Skew
As shown in the Figure 3.3, for a given maturity, volatility follows a U-shaped pattern across
various strike prices, with lower volatility near the current interest rate and higher volatility
for strikes further from the current rate.

• Maturities
With increasing maturity, volatility may progressively approach a relatively consistent level
(refer to Figure 3.4). This phenomenon can be attributed to the difficulty in precisely fore-
casting price expectations for distant future periods.
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Figure 3.3: Volatility smile

Figure 3.4: Volatility vs Maturity

The forward decay volatility is shown in Table 3.3. Because the forward decay volatility will de-
crease during a accrual period, the forward decay volatility is greater than par volatility when we
look at the first caplet. When it comes to pricing caplets, we use linear interpolation to get the
volatility for quarterly caplets.

Term 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
31/05/2024 229.12 224.83 220.42 215.88 211.24 206.50 196.74 186.66 176.31 165.76 154.99 144.47 136.33 131.02 128.90
02/06/2025 189.57 187.12 184.62 182.12 179.63 177.16 172.39 168.00 164.31 161.66 160.61 161.46 163.57 166.71 170.50
01/06/2026 168.95 166.04 163.08 160.12 157.18 154.31 148.88 144.24 140.89 139.48 140.42 144.01 150.38 159.11 169.55
01/06/2027 150.42 148.37 146.37 144.40 142.55 140.80 137.86 135.98 135.70 137.26 140.88 146.27 152.73 159.81 167.34
31/05/2028 147.26 145.43 143.67 141.96 140.33 138.88 136.55 135.33 135.51 137.41 141.02 146.15 152.76 160.60 169.09
31/05/2029 134.65 132.83 130.98 129.24 127.59 126.03 123.34 121.68 121.29 122.60 125.56 130.13 135.80 142.09 149.00
31/05/2030 120.11 119.08 118.08 117.23 116.44 115.82 115.39 115.93 117.82 121.05 125.49 130.74 136.87 143.65 150.82
02/06/2031 122.14 120.53 119.05 117.60 116.30 115.14 113.37 112.77 113.73 116.19 120.24 125.77 132.08 139.09 146.54
01/06/2032 92.43 93.62 94.70 96.02 97.25 98.67 101.76 105.20 108.54 112.01 115.35 118.66 122.08 125.55 129.16
31/05/2033 103.76 103.16 102.74 102.18 101.89 101.70 101.64 102.31 104.07 106.71 110.21 114.58 119.40 124.60 130.13
31/05/2035 90.31 90.78 91.18 91.74 92.41 93.10 94.87 97.07 99.51 102.22 105.27 108.37 111.85 115.51 119.34
01/06/2038 98.01 98.92 99.81 100.60 101.14 101.72 102.36 102.56 102.41 102.03 101.28 100.49 99.44 98.32 96.95
01/06/2043 80.46 80.69 80.95 81.21 81.83 82.33 84.07 86.37 89.14 92.44 96.40 100.54 105.14 110.07 115.36
01/06/2048 86.01 85.13 84.57 84.32 83.99 84.41 85.82 88.83 93.48 99.36 105.91 113.18 120.60 127.99 135.34
02/06/2053 77.92 78.66 79.31 80.05 81.22 81.93 84.25 86.83 89.47 92.21 95.32 98.52 101.99 105.86 109.90

Table 3.3: The forward decay volatility surface

The volatility at strike rates of 2% in Figure 3.5(a) and 5% in Figure 3.5(b) is compared. When
we compare the performance of par volatility and forward decay volatility, we observe that forward
decay volatility exhibits greater fluctuations, while par volatility remains relatively stable. This is
because par volatility is calculated based on the collective forward decay volatility for all maturities
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leading up to it, mitigating the individual impact of any single maturity.

(a) Volatility with strike=2%.

(b) Volatility with strike=5%.

Figure 3.5: Volatility Comparison Between Par & Fwd decay.

3.3 Data Processing

Once we have obtained the discount factors, volatility matrix, and historical rates from Bloomberg,
we can proceed to price caps in the Valuation Platform (VP). The data processing can be roughly
categorized into four main steps.

• Yield Curve
Firstly, we address the yield curve by interpolating the discount factors and calculating the
forward-forward rates.

• Volatility
Next, we manage the volatility matrix, converting par volatility to forward decay volatil-
ity. This allows us to select suitable interpolation methods for volatility extraction during
subsequent calculations.

• Contract
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Subsequently, we process the cap contracts input by extracting relevant parameters and
selecting appropriate interpolation techniques based on these parameters.

• Pricing
Lastly, we move on to the pricing process. We choose a pricing model according to the
specified parameters and establish the term structure. If the valuation date falls within the
period of the first caplet, historical rates are utilized for the calculations. Simultaneously, we
employ suitable interpolation methods to determine discount factors, forward-forward rates,
and volatility. These values are then incorporated into the model to ultimately derive the
cap’s price.
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Chapter 4

Pricing Results

To check if the pricing process we use is correct, we choose currency GBP and set the valuation
date to be 31/05/2023. We price caps for the following cases:

• spot starting (valuation date is Tj−1)

• start in the future (valuation date is before T0)

• valuation date in [Tj−1, Tj ]

The cap contract is set to be as Table 4.1. According to [21, page 7], the normal model can
more appropriately reflect historical data, and it allows negative interest rates. We set model
to be Bachelier for the rest. We use normalised error (4.0.1) to check the gap between VP and

Valuation currency GBP
Valuation Date 31/05/2023
Interpolation variable for yield curves modified following
Interpolation method modified following
Model for cap Normal
Cap strike in volatility surface Absolute
Interpolation for cap volatility surface strike axis Linear
Interpolation for cap volatility surface expiry axis Linear
Extrapolation for cap volatility surface strike axis Flat
Extrapolation for cap volatility surface strike axis Flat
Discount tenor for pricing OIS
Index tenor OIS
Start date modified following
End date modified following
Period Frequency 3 M
Notional 10,000,000
Cap Rate / Strike 4.00%
lookback period 0 D
Day counter Actual/365
Calendar Target
Stub short start
Payment lag 0 D

Table 4.1: Cap contract
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Bloomberg.

Normalised error(bp) =
|CapVP − CapBBG|

Notional ∗max(1,Time to Maturity)
∗ 10000 (4.0.1)

4.1 Spot Starting

For spot starting we set start date to be 31/05/2023 and end date to be 31/05/2025. In this case we
can use the volatility matrix which is directly collected from Bloomberg without any interpolation.
Therefore, we can check if the yield curve we get is correct. Then we check the reset rates and
cash flow. Finally we will know if the pricing process is correct.

One of the reasons that will cause errors is the interpolation method for yield curve. Thus we use
both linear method on zero rates and logcubic method to check with Bloomberg respectively.

4.1.1 Linear Method on Zero Rates

First we compare the cash flow calculated by VP (see Table 4.2) and Bloomberg (see Figure 4.1).

Start period End period Payment date Notional Strike Volatility Reset Rate Discount Price
31/05/2023 31/08/2023 31/08/2023 10000000 0.04 0.015499 0.047553 0.988156 19026.4
31/08/2023 30/11/2023 30/11/2023 10000000 0.04 0.015499 0.052259 0.975447 30674.16
30/11/2023 29/02/2024 29/02/2024 10000000 0.04 0.015499 0.05373 0.962553 34683.64
29/02/2024 31/05/2024 31/05/2024 10000000 0.04 0.015499 0.052696 0.949937 33815.78
31/05/2024 30/08/2024 30/08/2024 10000000 0.04 0.015639 0.049637 0.938324 29066.78
30/08/2024 29/11/2024 29/11/2024 10000000 0.04 0.015779 0.04882 0.927027 28933.91
29/11/2024 28/02/2025 28/02/2025 10000000 0.04 0.015919 0.046044 0.916506 25996.48
28/02/2025 30/05/2025 30/05/2025 10000000 0.04 0.016056 0.044703 0.906406 25363.33

Table 4.2: Cash flow with linear method on zero rate using VP when spot starting

Figure 4.1: Cash flow with linear method on zero rate using BBG when spot starting

The payment date is the same. There are only slight differences on discount and PV. Then we check
the normalized error to see if it’s within threshold. The cap price calculated by VP is 227, 560.48
GBP and by Bloomberg is 227, 738.14 GBP. The normalized error is 0.089 bps which means the
price is good.

4.1.2 Logcubic Method on Discount Factor

Then we compare the cash flow calculated by VP (see Table 4.3) and Bloomberg (see Figure 4.2).

The payment date remains the same, with only minor disparities in discount and present value.
We subsequently assess the normalized error to determine whether it falls within the specified
threshold. The cap price calculated by VP is 227, 684.41 GBP and by Bloomberg is 227, 830.94
GBP. The normalized error is 0.073 bps which means the price is good as well. From this we can
conclude that the pricing method is correct and then we can look at if the interpolation of volatility
matrix is acceptable.
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Start period End period Payment date Notional Strike Volatility Reset Rate Discount Price
31/05/2023 31/08/2023 31/08/2023 10000000 0.04 0.015499 0.047553 0.988156 19026.42
31/08/2023 30/11/2023 30/11/2023 10000000 0.04 0.015499 0.052259 0.975447 30674.24
30/11/2023 29/02/2024 29/02/2024 10000000 0.04 0.015499 0.05373 0.962553 34683.77
29/02/2024 31/05/2024 31/05/2024 10000000 0.04 0.015499 0.052706 0.949937 33834.79
31/05/2024 30/08/2024 30/08/2024 10000000 0.04 0.015639 0.050378 0.938147 30326.55
30/08/2024 29/11/2024 29/11/2024 10000000 0.04 0.015778 0.048088 0.927027 27783.69
29/11/2024 28/02/2025 28/02/2025 10000000 0.04 0.015917 0.046102 0.916493 26075.52
28/02/2025 30/05/2025 30/05/2025 10000000 0.04 0.016053 0.044643 0.906406 25279.43

Table 4.3: Cash flow with logcubic method on discount factor using VP when spot starting

Figure 4.2: Cash flow with logcubic method on discount factor using BBG when spot starting

4.1.3 Monte Carlo Results

We use Monte Carlo method to price the first caplet (See Figure 4.3). It can directly show the
dynamic of Ri using the real data. And can also help us to check the outcome. We set the reset
rate to be 0.047553, volatility to be 0.015499, discount factor to be 0.988156, strike to be 0.04,
notional to be 10000000 and time period to be 0.25 as shown in Table 4.2 and 4.3. Because it is
spot starting, we can see that the volatility decays during the process and finally becomes 0.

Figure 4.3: Monte Carlo of the first caplet

With a step size of 100 and 1000 paths, the caplet price computed using the Monte Carlo method
stands at 18,592.59. When compared to 19,026.42 from VP and 19,022.29 from Bloomberg, the
normalized errors are 0.217 bps and 0.215 bps, respectively, which is quite satisfactory.
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4.2 Start in The Future

The logcubic method exhibits smoothness, as evident in Figure 3.1. For the remaining calculations,
we’ve configured the interpolation method to be logcubic on the discount factor.

We set start date to be 31/07/2023 and end date to be 31/07/2025. In this case we need to use
linear interpolation method to extract volatility from the volatility matrix. Therefore, we can
check if this interpolation method is acceptable.

Start period End period Payment date Notional Strike Volatility Reset Rate Discount Price
31/07/2023 31/10/2023 31/10/2023 10000000 0.04 0.015499 0.051036 0.979727 27923.83
31/10/2023 31/01/2024 31/01/2024 10000000 0.04 0.015499 0.053792 0.966621 34946.03
31/01/2024 30/04/2024 30/04/2024 10000000 0.04 0.015499 0.053145 0.954118 33679.42
30/04/2024 31/07/2024 31/07/2024 10000000 0.04 0.015591 0.051233 0.941956 31782.54
31/07/2024 31/10/2024 31/10/2024 10000000 0.04 0.015733 0.048837 0.930502 28878.8
31/10/2024 31/01/2025 31/01/2025 10000000 0.04 0.015874 0.046688 0.91968 26818.49
31/01/2025 30/04/2025 30/04/2025 10000000 0.04 0.01601 0.04503 0.909691 24874.47
30/04/2025 31/07/2025 31/07/2025 10000000 0.04 0.015739 0.043967 0.899721 24959.58

Table 4.4: Cash flow priced by VP when starting in the future

Figure 4.4: Cash flow priced by Bloomberg when starting in the future

Then we compare the cash flow calculated by VP (see Table 4.4) and Bloomberg (see Figure 4.4).
We verify the normalized error to determine if it falls within the established threshold. The cap
price computed by VP is 233,863.17 GBP, while Bloomberg’s calculation yields 233,268.93 GBP.
The normalized error stands at 0.30 basis points (bps), indicating that the interpolation of the
volatility matrix is deemed acceptable.

4.3 Valuation Date in [Tj−1, Tj]

We set start date to be 31/03/2023 and end date to be 31/03/2025. In this case we need to
use compounded rate from 31/03/2023 to 31/05/2023 to calculate the price of the first caplet.
Therefore, we can check if this calculation is correct.

Start period End period Payment date Notional Strike Volatility Reset Rate Discount Price
31/03/2023 30/06/2023 30/06/2023 10000000 0.04 0.015499 0.043637 0.996304 9034.616
30/06/2023 29/09/2023 29/09/2023 10000000 0.04 0.015499 0.049407 0.9842 23542.68
29/09/2023 29/12/2023 29/12/2023 10000000 0.04 0.015499 0.05322 0.971312 33058.77
29/12/2023 28/03/2024 28/03/2024 10000000 0.04 0.015499 0.05354 0.958655 34164.78
28/03/2024 28/06/2024 28/06/2024 10000000 0.04 0.015542 0.05208 0.946234 32960.52
28/06/2024 30/09/2024 30/09/2024 10000000 0.04 0.015686 0.049651 0.934287 30434.69
30/09/2024 31/12/2024 31/12/2024 10000000 0.04 0.015825 0.047384 0.923262 27425.37
31/12/2024 31/03/2025 31/03/2025 10000000 0.04 0.015964 0.045522 0.913014 25410.76

Table 4.5: Cash flow priced by VP when valuation date in [Tj−1, Tj ]

Then we compare the cash flow calculated by VP (see Table 4.5) and Bloomberg (see Figure 4.5).
The cap price derived from VP is 216,032.19 GBP, while Bloomberg’s calculation yields 216,106.35
GBP. The normalized error is 0.037 basis points (bps), indicating that the compounding method
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Figure 4.5: Cash flow priced by Bloomberg when valuation date in [Tj−1, Tj ]

is considered acceptable.

In conclusion, the pricing difference between VP and Bloomberg is small enough which is within
the threshold. The pricing method we implemented in VP is reliable.
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Conclusion

We have constructed the transition from the LMM to the FMM based on the methodology de-
scribed in reference [15]. This process encompasses extending the definition of discount factors,
transforming forward-looking rates into backward-looking rates, and introducing decay functions
to simulate the dynamics of backward-looking rates within an interval. Subsequently, we presented
the expressions of this dynamic process for caps within the framework of both the Bachelier model
and the Black model. Also, we introduced some ideas for pricing RFR swaps and swaptions.

Furthermore, we employed the more widely used Bachelier model for pricing. We selected three
different parameter configurations and compared them with the prices from Bloomberg. The ob-
served differences in prices were quite small and fell within an acceptable range. This indicates
that the approach we employed is indeed acceptable.

Throughout this study, whether in the construction of the pricing model, the selection of yield
curve and volatility interpolation methods, or the approach to bootstrap the volatility matrix, we
have provided a comprehensive validation and practical implementation of these methods.

It is noteworthy that the volatility matrix provided on Bloomberg is specifically designed for caps
with a payment frequency of three months. For pricing caps with a different payment frequency,
such as six months, an adjustment is required using techniques like freezing drift and utilizing swap
rates. The exact implementation of these adjustments requires further investigation and research.
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Appendix A

Technical Proofs

A.1 Proof of LIBOR Swaption pricing

As discussed in Brigo’s lecture notes[17, page 403-407], the dynamic of S(t) in swap model (SMM)
can be

dSα,β(t) = σ(α,β)(t)Sα,β(t)dW
α,β
t

Then, we have∫ Tα

0

σ2
α,β(t)dt =

∫ Tα

0

σα,β(t)dWα,β(t)σα,β(t)dWα,β(t) =

∫ Tα

0

(d lnSα,β(t)) (d lnSα,β(t))

Sα,β(t) =

β∑
i=α+1

wi(t)Fi(t),

wi(t) = wi(Fα+1(t), Fα+2(t), . . . , Fβ(t))

=
τi
∏i

j=α+1
1

1+τjFj(t)∑β
k=α+1 τk

∏k
j=α+1

1
1+τjFj(t)

Freeze the values of the wi at time 0, we have

Sα,β(t) =

β∑
i=α+1

wi(t)Fi(t) ≈
β∑

i=α+1

wi(0)Fi(t).

Then

dSα,β ≈
β∑

i=α+1

wi(0)dFi = (. . .)dt+

β∑
i=α+1

wi(0)σi(t)Fi(t)dZi(t)

dSα,β(t)dSα,β(t) ≈
β∑

i,j=α+1

wi(0)σi(t)Fi(t)dZiwj(0)Fj(t)σj(t)dZj

=

β∑
i,j=α+1

wi(0)wj(0)Fi(t)Fj(t)ρi,jσi(t)σj(t)dt.

(d lnSα,β(t))(d lnSα,β(t)) =
dSα,β(t)

Sα,β(t)
· dSα,β(t)

Sα,β(t)

≈ 1

Sα,β(t)2

β∑
i,j=α+1

wi(0)wj(0)Fi(t)Fj(t)ρi,jσi(t)σj(t)dt.
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Here we use freezing drift method again to approximate. Set F (t) to be F (0)

(d lnSα,β)(d lnSα,β) ≈
β∑

i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j
1

Sα,β(0)
2σi(t)σj(t)dt.

Thus, the final estimated variance calculated by LMM is

(vLMM
α,β )2 =

∫ Tα

0

(d lnSα,β(t))(d lnSα,β(t))

=

β∑
i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j
1

Sα,β(0)
2

∫ Tα

0

σi(t)σj(t)dt.
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