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Abstract

This thesis delves into price impact modelling and optimal execution strategies within the frame-
work of electronic financial markets, particularly focusing on the futures market where the evolu-
tion from physical trading to electronic platforms has transformed market dynamics. The Discrete
Propagator Model (DPM) offers an alternative approach to traditional complex models, capturing
essential market impact characteristics with the ability to calibrate through regression on trade
data. This research extends the DPM to futures markets across various asset classes, revealing
insights into intraday liquidity changes and impact concavity.

The study’s core findings lie in optimising market impact parameters and exploring execu-
tion strategies for different financial instruments. The DPM’s calibration unveils intraday liquid-
ity shifts, cross-sectional impact differences, and an evolving Limit Order Book microstructure
- advocating a static recalibration approach. Optimal execution strategies, considering intraday
liquidity dynamics, highlight significant cost savings compared to industry benchmarks. Such exe-
cution strategies are particularly advantageous for mid-frequency institutions with a high portfolio
turnover.
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Introduction

Centralised exchanges have always played an important role in the trading of financial products,
bringing together buyers and sellers in one location to trade. Historically, traders and brokers
would physically gather and trade verbally on behalf of clients who would communicate orders to
the brokers via telephone. This practice has all but died out in modern day trading, with much
of the activity being moved to electronic markets where orders can be executed in a faster, more
accurate and transparent way [2, 3]. One common form of electronic market is a Limit Order Book
(LOB) [1] where market makers publicly post quotes of volume and price they would be willing to
trade at. Market participants seeking to trade instantly match these orders, taking liquidity from
the LOB and potentially affecting the best bid/offer price. With market orders impacting both
price and liquidity, careful thought needs to be put into how to optimally execute large volumes,
and this requires a comprehensive understanding of the dynamics between traded volume and
market impact.

With the evolution of market microstructure came the development of price impact models.
Beginning with simple permanent impact models [4], more features have been added over time
including temporary impact [5] and transient impact [6]. Over the years, accessibility to market
data and the capability to systematically analyse it has improved, leading to observed stylised facts
of market impact [1, 7, 8, 9] such as intraday liquidity changes, impact propagation and highly
concave instantaneous impact. Advances have been made using Order Flow Imbalance (OFI) to
both explain and predict price changes to a high degree of accuracy [10, 11]. Whilst these models
can be used by market makers and High Frequency Trading (HFT) firms to create sophisticated
dynamic execution algorithms [12], they require multiple levels of order book data to calibrate
and may not be useful for institutions without the data accessibility, technical ability and ex-
change connectivity. However, the use of regression to calibrate OFI models has been applied to
the Discrete Propagator Model (DPM) which can capture the aforementioned stylised facts whilst
requiring trade data only [13, 14]. We intend to further this research, with a particular focus on
the futures market - versatile instruments which provide large amounts of liquidity over a range of
asset classes, including Equity Index, Commodity, Currency and Interest Rate futures.

This thesis is structured as follows. In Chapter 1, we introduce the dynamics of the LOB and
briefly cover the important history of price impact models and optimal execution plans. We recount
some empirical observations found and introduce the DPM. In previous investigations into price
impact modelling, many papers have studied single stocks, and there is little evidence to support
the validity of such results in the futures market. In Chapter 2, we discuss the origin of futures
contracts and explain the rationale behind investors trading them, providing the motivation for
studying these instruments.

We introduce the data used for calibration in Chapter 3, and using tick level trade data from
Tick Data we reconstruct order signs and aggregate the data. We outline the data transformations
performed for model calibration and backtesting, and discuss the processes of creating synthetic
normalised futures.

In Chapter 4, we explain in detail the process of calibrating the model, including the method to
find an optimal scale (λ) and concavity (δ) of market impact. We find supporting evidence for the
existence of intraday liquidity changes in the futures market for all asset classes, and provide novel
investigation into the changes in liquidity and concavity throughout time. We evaluate the cross-
sectional differences of impact parameters, both between asset classes and futures within the same
asset class and show the model’s ability to explain the effects of periods of market dysfunction such
as the pandemic crash, and central bank rate hikes. We show however that the optimal calibration
is rarely stable throughout time, and find the optimal frequency and training length to recalibrate
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the model.
Using calibrated parameters, we turn to the problem of execution in Chapter 5 using the

SLSQP solver to find optimal trading schedules. We study the effectiveness and drawbacks of
this method, and discuss the optimal trading plan assuming constant liquidity under a wide range
of settings. Finally, we calculate the optimal execution schedule when accounting for intraday
liquidity changes, and find cost savings of over 80% compared to common industry benchmarks.
We also quantify the savings obtained by including intraday liquidity compared to assuming a
constant impact parameter, and find savings of up to 32% for some futures.

All code written for this thesis is made public on GitHub, including additional plots and
calibration results.
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Chapter 1

Literature Review

1.1 Electronic Markets and Limit Order Books

In modern day electronic markets, participants are generally categorised into two groups: liquidity
takers and liquidity providers. Liquidity takers decide if and when they want to trade, and look
for a counterparty who can provide the best price. On the other hand, liquidity providers provide
quotes of prices that they would be willing to both buy and sell at. Most liquidity providers
come in the form of market makers, market participants who stand ready to both buy and sell an
instrument at any and all times, but at a price they set themselves [1, Chapter 1]. Liquidity takers
are not guaranteed to find a market maker that is willing to trade with them at a price they are
happy with, and similarly market makers may not find a counterparty that is willing to trade with
them at their quoted prices.

In an electronic Limit Order Book (LOB), quotes are visible to all market participants at all
times (as opposed to RFQ markets) allowing for higher transparency. Quotes are provided by
submitting a limit order which contains the crucial information of order price, direction (buy/sell)
and quantity. Figure 1.1 shows a visual representation of limit orders in a LOB, with bid (buy)
quotes on the left and ask (sell) quotes on the right. The largest bid and smallest ask price are
called the best bid and best ask price respectively, with the difference between the two being known
as the bid-ask spread and the average known as the mid-price. The volume of a given order can
only be in integer multiples of the lot size, and order prices must be in integer multiples of the
tick size. One key way in which trades occur in a LOB exchange is when liquidity takers place
market orders, orders of a specific volume and direction that are instructed to be matched with
one or more limit orders immediately. Whilst there are a number of ways in which different types
of trades can be matched, we will only focus on market orders being matched with limit orders in
this thesis, but direct the reader to [1, Chapter 3] for a thorough explanation of LOB mechanics.

When a buy market order is submitted, a number of outcomes can occur depending on the
order volume compared to that of the current limit orders:

• If the volume is smaller than that of the volume at the best ask, the order will be matched
at the best ask price, reducing the volume at that level but leaving prices unchanged.

• If the volume is exactly equal to that of the best ask, the two orders will be fully matched
at the best ask price, but leaving the best ask price higher after taking liquidity.

• If the volume of the market order is higher than the volume at the best ask price, the limit
order at the best ask will be fully matched, and the remaining volume of the market order
will be traded with the new best ask price. In this instance the order will be matched at an
average price higher than the best ask.

Clearly, trading in the LOB can have a direct impact on price and for large orders this price
difference could be material. The increase in price for a buy order will adversely affect the liquidity
taker who is trying to buy for the lowest price possible, and so thought needs to be put into how
and when the order is executed. Not only can a market order push the price up for future trades,
but large enough orders can affect the average price of the current trade.

Studies have found that only a small fraction of the daily traded volume is actually quoted on a
LOB, with Bouchaud & Bonart [1, Table 4.1] finding that within 1% of the mid-price, total volume
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Figure 1.1: Schematic of a Limit Order Book [1, Figure 3.1].

quoted was between 1% and 3% of daily traded volume. Clearly, trading a large amount instantly
would drain liquidity from the order book, and so large single orders called are often split up into
many child orders, with whole parent order (or Meta-Order) being executed over a long period
of time. To attempt to construct an optimal trading strategy, one needs to first quantitatively
understand exactly how prices react to traded volume.

1.2 Definitions

Definition 1.2.1 (Trading Strategy). [15, Section 2.3] A continuous trading strategy Π is a
sequence of positions xt where at time t a trader holds a position of size xt in the underlying
security, namely

Π := {xt}Tt=0. (1.2.1)

The speed of trading at time t is vt =
dx
dt .

Definition 1.2.2 (Impact of trading). At time t, the expected impact of executing Π is

It := E [rt | Π] , (1.2.2)

where rt is some measure of price returns.

The definition of impact is somewhat loosely defined in the literature, with some studies
measuring the quantity with absolute returns St − S0, percentage returns St−S0

S0
, or log returns

ln(St)−ln(S0). Viewing impact as percentage or log returns can be helpful when comparing impact
across financial instruments with different prices. There is a dependence of Π on St as the price
of the asset will be impacted by the trades executed. The cost of future trades may be impacted
by the aggressiveness of trading up to that point, and to formalise the total cost incurred by the
trader’s own activity we define the following.

Definition 1.2.3 (Cost of Trading). [15, Section 2.3] The expected cost of executing Π is C[Π].

C[Π] := E

[∫ T

0

vtItdt

]
= E

[∫ T

0

vt(St − S0)dt

]
(1.2.3)

The definitions in discrete time are analogous with individual trades of size vi.
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1.3 Models

There is a rich history of price impact and optimal execution models in financial literature with
both markets and models evolving over time, and in this chapter we summarise some of the key
progress made from both a modelling and empirical view. For readability we attempt to keep
the notation consistent between different models, slightly deviating from the original papers when
required.

1.3.1 Kyle Model

Whilst the problem of optimal execution and price impact modelling is a thoroughly studied area of
modern day quantitative finance, its roots began with much simpler models in the 1900s. One of the
first papers to discuss a framework surrounding the problem emerged in 1985 where Kyle proposed
the optimal liquidation problem involving one noise trader and one insider. In equilibrium, the
price of an asset S would react to the aggregate trade of size v from the noise trader and insider
by the linear relationship [4, Theorem 2]

S1 = S0 + λv. (1.3.1)

The model implies that price is permanently affected by trades, and the scale of this impact λ
could be dependent on the variance of the noise trader. In the context of a LOB however, λ has
the interpretation of a liquidity parameter, with a smaller λ indicating smaller market impact and
therefore more liquidity. The notion of a liquidity parameter λ is a common theme in a number of
subsequent models, and is often referred to as Kyle’s lambda.

1.3.2 Almgren & Chriss

In [5], Almegren and Chriss develop a discrete time model including both permanent and temporary
market impact. In the original paper the trader’s objective is to liquidate an initial position X0

before time T ; however, for consistency we will present the problem from the point of view of a
trader who needs to buy a position of size X0 before time T . The time period [0, T ] is divided into
N intervals of length T/N with tj = τj. At time tj the trader’s position is xj , and between times
tj−1 and tj the trader buys vj stock. The price of the security evolves in response to a trader’s
trading schedule and through random fluctuations. [5, Eqn. 1]

Sj = Sj−1 + στ
1
2 ξj + τg(

vj
τ
), (1.3.2)

where g(
vj
τ ) represents the permanent market impact caused by average rate of trading between

tj−1 and tj , σ is the volatility of the security, and ξj are random variables drawn from a distribution
with 0 mean and unit variance. Whilst there is an effect of permanent price impact in the model,
part of the depletion of liquidity is assumed to be temporary and so the price that the trader can
purchase the asset for at time tj is [5, Eqn. 2]

S̃j = Sj−1 + h(
vj
τ
). (1.3.3)

After choosing g(x) = γx and h(x) = ϵsgn(x) + ηx, and optimising the mean variance problem
with coefficient λ, the optimal trading schedule under the AC model in the limit of τ → 0 is shown
to be

xj =

(
1− sinh(κ(T − tj))

sinh(κT )

)
X0 j = 0, ..., N (1.3.4)

where

κ =

√
λσ2

η
. (1.3.5)

In Figure 1.2a the effect of the parameter κ can be seen on the optimal trading schedule. As κ
becomes large, the trader becomes more risk averse and prefers to accumulate the position quickly
and eventually purchases the whole position in the first trading round. Conversely, as κ → 0, the
trader prefers to trade slowly in an attempt to minimise temporary transaction costs. In the limit
the trader will accumulate his position linearly throughout the time interval.

10



(a) Almgren & Chriss model, κ ∈ (0, 100]. (b) Obizhaeva & Wang model, ρ ∈ [0,∞).

Figure 1.2: Optimal buy schedules using AC and OW model.

1.3.3 Obizhaeva & Wang

Obizhaeva & Wang [6] view the problem of market impact through the lens of the limit order
book. They propose that a stock price has a fundamental value St, and the ask price At evolves in
response to a trader’s buy orders. A buy order of size v0 would “eat into” the ask side of the LOB
moving the price of the security higher, but over time more limit orders would come from market
participants and decrease the ask price. The speed of this replenishment of orders is described as
the resilience of the order book. They propose that not all of the limit orders will return to the
order book, but the ask price would tend to a new steady state higher than the original price,
indicating the initial trade of v0 had caused permanent market impact. Formally [6, Eqn. 6]

At = S0 + λv0 +
s

2
+ v0κe

−ρt, κ =
1

q
− λ, (1.3.6)

where s denotes the bid-ask spread of the security and ρ describes the resilience of the order
book, with a higher ρ indicating limit orders return to the order book quicker after a buy market
order. The density of the limit order book is represented by q; for a higher value of q there would be
less immediate market impact. Finally, λ represents the size of permanent market impact caused
by the trade.

To solve for the optimal buy schedule of size X0 the setup is similar to that of the Almgren &
Chriss model, however the price of the current trade is now affected by both the size of previous
buy orders and the time passed since the orders. We look to minimise the cost function, over the
set of buy orders vi [6, Eqn. 14].

min
{v0,v1,...,vN}

E

 N∑
j=0

[Sj +
s

2
+

j−1∑
i=0

(
λvi + viκe

−ρτ(j−i)
)
+

vj
2q

]vj


s.t.

N∑
j=0

vj = X0,

(1.3.7)

where Sj is the unaffected mid-price at time tj . We see in Figure 1.2b the optimal buy schedule
of the trader, and we will discuss this figure in more detail in the following section.

1.3.4 Transient Impact Model

Gatheral proposes a generic continuous time model for modelling the price of a stock given a
trader’s execution. [15, Eqn. 1]

St = S0 +

∫ t

0

G(t− s)f(vs)ds+ σ

∫ t

0

dWs, (1.3.8)

where vs is the rate of trading, f(vs) is the instantaneous market impact function, and G(t− s)
is the decay kernel allowing for the effect of trading at time s to be felt at some time t ≥ s.
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There are a number of special cases of the TIM. Permanent impact can be represented with
G(t − s) = 1, and temporary impact can be represented with G(t − s) = δ(t − s) (where δ(·)
denotes the Dirac delta function). Choosing G(t−s) = e−ρ(t−s) - an exponential decay kernel, and
f(vs) = λvs - linear market impact, yields the continuous time limit of the Obizhaeva & Wang
model [15, Section 2.4]. The continuous OW model benefits from including realistic characteristics
of transient market impact, and is one of the only continuous models that has explicit solutions
for the optimal execution plan. The cost of trading under the OW model is

C[Π] =

∫ T

0

vt

∫ t

0

λvse
−ρ(t−s)dsdt, (1.3.9)

and the optimal trading speed can be shown to be [6, Proposition 2]

v∗s =
X0

ρT + 2
[δ(s) + ρ+ δ(s− T )]. (1.3.10)

The execution strategy is made up of two block trades: one at the beginning and one at end of
the trading window, with continuous linear trading in between. The impact due to vs under the
OW model is

It = E[St − S0] =

∫ t

0

λvse
−ρ(t−s)ds, (1.3.11)

and when following the optimal execution strategy v∗s (Equation 1.3.10) we have I∗t = X0

ρT+2

for t ∈ [0, T ), and I∗T = 2X0

ρT+2 . The initial bulk trade is used to get to a desired impact state, and

the trades for t ∈ (0, T ) correspond to maintaining the desired impact state. The final bulk trade
leaves the trader at a higher impact state, but given there are no more trades after this, there will
be no future cost to the trader for this large bulk trade.

The parameter ρ represents the speed of impact decay, and we can see the effect of ρ on the
execution strategy in Figure 1.2b. ρ = 0 represents no impact decay, and the optimal strategy is
to buy X0

2 shares at the beginning of the trading period and X0

2 at the end. In this setting, any
strategy is an optimal strategy as the impact is permanent and the trader has no ability to wait
until prices have returned to their equilibrium. Conversely, as ρ → ∞ the decay of past trades
is immediate and the optimal execution plan is to trade linearly throughout time with no bulk
trades, and v∗(s) = X0

T for all t ∈ [0, T ].

1.4 Empirical Observations

Whilst it should be expected that buy market orders should cause prices to go up, it is not clear to
what extent they should rise. Both the Almgren & Chriss and Obizhaeva & Wang models assume
that market impact is linear as a function of trading speed, and the former assumes that impact
decays exponentially throughout time. The TIM (Equation 1.3.8) provides great flexibility in the
choice of both decay kernel and instantaneous impact function, and there have been a number of
studies to measure certain stylised facts.

1.4.1 Impact Concavity

Lillo et al. [7] study 1000 stocks traded on the NYSE during 1995-1998 using both trade and quote

data. They analyse the change of the log mid-price ∆Si = log
(

Si+1

Si

)
due to a trade of size Vi in

trade time. They find on average that ∆Si ∝ V δ
i with δ ∈ [0.1, 0.5] for buyer initiated trades, with

a higher exponent for smaller trade sizes in stocks with large market cap, and lower exponent for
large trades in small cap stocks. Similar results were found for seller initiated trades.

Bouchaud et al. similarly use both trade and quote data, but for a single French stock between
2001 and 2002. They also considered price changes in trade time, but looked to quantify the
average price change as a function of signed volume [8, Section 2.3].

R(l, V ) = ⟨(Si+l − Si) · ϵi⟩ |Vi=V ,

where ϵi is the sign of the i-th trade. The response function R(l, V ) is factorised into individual
components, and the following functional form is fit for the volume dependence.

R(l, V ) ≈ R(l)f(V ) ∝ R(l)lnV
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Both studies provide evidence for highly concave instantaneous market impact at the transaction
level, contradicting the linear impact used in previous theoretical models [5, 6] with analytic
solutions.

1.4.2 Impact Decay

Impact decay measures how the effect of a given trade ‘propagates’ throughout time. There have
been a number of investigations into the long-memory of order flow, which show a correlation
between the signs of order imbalance. Taranto et al. study the slowly decaying correlation of the
sign of order flow imbalance in trade time for two stocks (MSFT & AAPL) between February and
April 2013. For MSFT, the autocorrelation increased for small lags before reaching a peak [9,
Section 4.2]. The increasing autocorrelation could be attributed to market participants splitting
meta-orders up into smaller trades, or herding effects/copy-cat traders. The autocorrelation slowly
decayed for long time periods for both stocks.

Busseti & Lillo model price impact considering the log mid-price pn [16, Eqn. 17].

pn = p0 +

n−1∑
j=0

f(vj)G0(n− j) + ηj

G0(l) =
Γ0

(l20 + l2)β/2

The model parameters are calibrated to data in both trade time and aggregated real time, and β is
found to be between 0.07 and 0.23 [16, Table 2] for the calibration using 5 minute aggregated real
time. The fit varies when considering the different aggregations of time, with the highest R2 values
with 64 aggregated trades (0.229-0.440), and the worst with 5 minute aggregation (0.153-0.292).
The study provides reasonable evidence for the decay of market impact throughout time.

1.4.3 Coefficient of Impact

Whilst the shape of the decay kernel and impact function are important aspects of an impact
model, the scale of impact λ is also a key component to understand. A number of questions arise:
is this a universal quantity shared between all assets in an asset class, and does this quantity
change throughout time or throughout the day?

It is well known that the traded volume is extremely dependent on the time of day, with more
volume traded at the beginning and end of the trading day [1, Section 4.2.1]. In Figure 1.3a we
plot the average volume for each 30 minute period for an S&P futures contract over the period of
a month. We see that the volume is highest during US market hours, when the underlying index
constituents actively trade on the spot market. There is a U shaped pattern in this period, with
heightened volume at the start and end of the US trading session. Whilst there is less volume
traded in the Europe and Asia sessions, we still observe a U shape in these intervals.

Using Order Flow Imbalance (OFI) as a predictor for price change, Mertens et al. [11] found
extreme time of day effects for single stocks traded on the NASDAQ. We see in Figure 1.3b the
price impact being the highest at the start of the day, and decreasing to a minimum at the end of
the trading session. OFI is made up of market orders, limit orders and order cancellations, thus
providing more information about the state of the limit order book and trades than other empirical
studies. Using a linear model of the OFI in each 10 second window to explain the price change in
the same time period, the model was found to have an R2 of 83% when refitting for every hour of
the trading day for a single stock (MSFT) over a 125 day period in 2016 [11, Figure 1].

As λ is used to measure the scale of impact (ie the shallowness of the LOB), it seems reasonable
to assume this could change if underlying market liquidity were to change. A report from Goldman
Sachs [17] investigates the cost to buy a fixed amount of contracts for a variety of different futures.
This quantity is measured in basis points and studied across time, and shows a decreasing trend
between September 2022 and July 2023 for both equity indices and government bonds. For certain
futures, the maximum cost can be over four times bigger than the minimum cost measured during
the sample period, providing strong evidence for liquidity changes throughout time.
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(a) Average intraday volume for ESZ22 in Nov
2022.

(b) Average price impact using OFI for MSFT
[11, Figure 2].

Figure 1.3: Intraday volume and intraday price impact.

1.5 Limitations of Transient Impact Model

The Transient Impact Model (TIM) for price impact (Equation 1.3.8) provides a generic and
flexible framework in which we can incorporate the stylised facts of price impact that are discussed
in Section 1.4. The observed decay can be expressed in the TIM decay kernel, the nonlinear impact
in the impact function, and we can incorporate changes in order book depth with λ. Figure 1.2b
shows that the optimal execution schedule under the OW model consists of only buy orders and
this result is due to our choice of f(vs) and G(t − s), however in this section we will summarise
the results of [15] and discuss scenarios that result in unrealistic optimal schedules.

Definition 1.5.1 (Round trip trade). [15, Section 3]
A round trip trade is a trading strategy Π such that x0 = xT = 0. Equivalently,∫ T

0

vtdt = 0.

Definition 1.5.2 (Price Manipulation). [15, Section 3]
A round trip trade that has negative expected cost, ie. C [Π] < 0.

In the search for a price impact model that accurately describes the reaction of price to a trading
strategy in the real world, it is reasonable to seek a model that does not allow price manipulation.
Such a model implies a trader can repeatedly execute a strategy Π with positive expected returns
each time. We say a price impact model is consistent if it does not not induce price manipulation,
and in the setting of the TIM (Equation 1.3.8) this suggests that the relationship between f(·) and
G(·) defines whether a specific model is consistent.

Lemma 1.5.3. [15, Lemma 4.1] Under the transient impact model, if G(t − s) = e−ρ(t−s) and
f(v) is not linear in v, then the model is not consistent.

Example: [15, Section 4]
Let f(v) =

√
v, ρ = 1 and T = 1. Defining the trading strategy Π by vt = 0.2 on [0, 5

6 ) and vt = −1
on [ 56 , 1], then C [Π] = −0.001705.

Lemma 1.5.3 rules out exponential decay for the continuous TIM, removing one class of func-
tions from the possibility of choices. Gatheral proposes a more general result in [18].

Proposition 1.5.4. [18, Proposition 6] Under the transient impact model, if G(t−s) is finite and
continuous at 0, and f(v) is not linear in v, then the model is not consistent.

With this result, and the empirical observations found in Section 1.4.2, it would seem rea-
sonable to suggest a power law decay. Combing this with evidence for a power law function for
instantaneous market impact, a potential model could be

It =

∫ t

0

λ(t− s)γsgn(vs) |vs|δ ds. (1.5.1)
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However, there are necessary conditions for this model to be consistent.

Proposition 1.5.5. [15, Section 5.2, 5.3] If either of the following conditions are true, the model
(1.5.1) is not consistent:

• γ + δ ≤ 1

• γ ≤ γ∗ = 2− log(3)
log(2) ≈ 0.415

Given the empirical evidence of γ ∈ [0.07, 0.23] [16, Table 2] and δ ∈ [0.1, 0.5], any reasonable
combination of δ and γ in Equation 1.5.1 would result in condition 1 of Proposition 1.5.5 being
satisfied, leaving the model inconsistent. Whilst certain characteristics of market impact may be
described well, optimal execution will not be possible without forcefully imposing unidirectional
conditions on the trading velocity.

1.6 Discrete Propagator Model

As discussed in Section 1.4, a number of stylised facts have been observed regarding both the con-
cavity of volume traded on instantaneous market impact and the decay of this impact throughout
time. Whilst the continuous TIM (Equation 1.3.8) allows great flexibility in choosing both the
impact function and decay kernel, it is limited in it’s ability to calibrate to real world data where
individual trades are executed at discrete points in time.

Muhle-Karbe, Wang, and Webster discuss a framework for estimating a number of the param-
eters in the market impact model using the following discrete model: [13, Definition 2.1]

∆In = −β∆tIn−1 + f(∆Qn), (1.6.1)

where ∆In = In − In−1, ∆Qn is the signed volume traded in the interval [tn−1, tn), f ∈ C1 is an
odd function, concave on [0,∞), and ∆t = tn − tn−1. The term −β∆tIn−1 allows the impact to
propagate throughout time, and in the absence of further trades the impact will tend to 0. Due
to these characteristics, we will refer to the model as the Discrete Propagator Model (DPM). We
will slightly abuse the notation by letting In = Itn depending on the context in question. Unlike
other discrete transient models, the DPM has the advantage of a recursive relationship between
subsequent impacts

In = (1− β∆t)In−1 + f(∆Qn), (1.6.2)

allowing for the impact state at each time to be calculated in O(n) time. Other discrete models
such as the one discussed by Busseti & Lillo use a lower triangular toeplitz matrix to represent
the decay kernel [16, Eqn. 36], resulting in O(n2) to calculate the impact state. Whilst the DPM
shares similar characteristics of impact decay and concave instantaneous market impact as the
continuous TIM, we propose that these are in fact a separate class of models.

Proposition 1.6.1. For nonlinear market impact, the limit of the discrete propagator model (1.6.1)
is not equivalent to the continuous TIM with exponential decay (1.3.8).

Proof. (Outline)
Beginning with the continuous TIM (Equation 1.3.8):

It = E[St − S0] =

∫ t

0

G(t− s)f(vs)ds

dIt
dt

= G(t− t)f(vt) +

∫ t

0

d

dt
(G(t− s)f(vs))ds

= G(0)f(vt) +

∫ t

0

dG

dt
(t− s)f(vs)ds

Choosing G(t− s) = e−β(t−s)

dIt
dt

= f(vt) +

∫ t

0

−βe−β(t−s)f(vs)ds

= f(vt)− βIt

dIt = −βItdt+ f(vt)dt
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We compare this to the Discrete Propagator Model (Equation 1.6.1)

∆Itn = −βItn−1
∆t+ f(∆Qtn)

and conclude that, in general, the TIM is not the continuous time limit of the DPM, as for ∆t → 0,

f(∆Qtn) → f(dQt) ̸= f(vt)dt (1.6.3)

since vt =
dQt

dt .
It is worth noticing that for a linear f the identification in the limit holds true.

1.6.1 Parameter Estimation

Muhle-Karbe, Wang, and Webster calibrated the DPM on the constituent stocks of the S&P 500
in 2019. This calibration was performed by regressing onto observed market price changes, a
technique that has been used in other literature [10, 11]. Specifically, ∆hPn is regressed onto
∆hIn, where

∆hPn =
Pn+h − Pn

Pn
, (1.6.4)

∆hIn = In+h − In. (1.6.5)

The signed order flow ∆Qn over 10 second bins was used to predict the price returns ∆hPn

over a series of horizons, h =1, 15, and 60 minutes [13, Section 5]. A number of impact functions
were used, including linear impact f(∆Qn) = λ∆Qn, and strictly concave impact f(∆Qn) =
λsgn(∆Qn)

√
|∆Qn|. The predictive power of traded volume was found to be better at smaller

time horizons; the in-sample R2 decreased from 19% (1 minute) to 10% (60 minutes) for the best
performing model. The results also showed that the square root impact function outperformed
linear, with in-sample R2 of 19% and 11% respectively. Refitting the model to every hour in the
trading day resulted in an in-sample R2 of 25%, but Muhle-Karbe et al. do not go into further
detail on the magnitude of intraday impact λt.

Whilst an aim of [13] was to investigate using time dependent λt as a proxy for nonlinear
impact, the highest R2 value was obtained using both time dependent λt and square root impact,
indicating the benefit of both features in the model.
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Chapter 2

Futures

In the previous section, we have provided motivation for the problem of optimal execution and
discussed a number of models that can help to describe the relationship between traded volume
and price impact. A number of empirical studies have been performed to both observe impact
characteristics and calibrate models, but have focused largely on single stocks from the UK and
France, or constituents of the US-based S&P 500 Index. Fewer studies have been performed on
the derivatives market, least so the futures market. A thorough search of the relevant literature
yielded only one related article [19] in which Webb et al. study the intraday effect of price impact
for one Korean Index future. We provide a brief introduction to the futures market and it’s history,
with the intention to further the study of price impact when trading this type of instrument.

2.1 Origin of Futures

Futures are exchange traded contracts that give the buyer the obligation to buy and receive the
underlying asset for a pre-specified price at an agreed upon date. The trading futures contracts
has a rich global history, with the Dojima Rice Exchange opening in 1730 in Japan [20], which
gave local producers the ability to lock in a price for their rice months before the harvest and
delivery of their produce. Both the rice farmer and the wholesaler buying the rice are incentivised
to engage in a futures contract as it removes the volatility of spot rice prices in the future, giving
them financial certainty. However, each party could have received a better deal if they had traded
spot on the expiration date. If the spot price of rice had increased, the farmer would have been
able to sell the rice at a higher price, and conversely if the spot price had gone down, the wholesaler
would have been able to buy at a lower price.

The popularity of trading futures grew over the centuries with the opening of the New York
Cotton Exchange (NYCE) in 1870, London Metals and Market Exchange in 1877, and the Chicago
Mercantile Exchange (CME) in 1970. Modern day exchanges list contracts for not only commodi-
ties, but other asset classes, including FX, interest rates and equity indices [21]. These futures are
extremely standardised, with contracts coming in an exact quantity (e.g. 5000 bushels of wheat,
1000 barrels of WTI Crude Oil), and expiring on specific dates. Futures contracts often expire
on the third Friday of each month and, depending on the underlying spot, there will be a futures
contract expiring on specific months throughout the year. For example, WTI Crude Oil has futures
expiring every month of the year, whereas futures contracts on the S&P 500 Index expire quarterly.
Futures tickers are made up of three parts; for example, ESU22 is a contract on the S&P Index
(ES) expiring in September (U) 2022 (22).

Historically, on the expiration date of a future, one party was expected to deliver the agreed
upon cash amount and the other expected to deliver the agreed upon amount of the physical good.
Current contracts can also be cash settled, where the two parties exchange the difference between
the agreed future price and the current spot price allowing for simpler settlement.

2.2 Pricing of Futures

We define the price of a future at time t expiring at time T as F (t, T ). Clearly the price of a
future should be closely linked to the spot price of the underlying, however there are a number
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of additional factors to consider when pricing a future. Following the methodology of pricing by
replication, a replicator would have to borrow cash St to buy the underlying security at time t,
and at time T return the borrowed money plus any interest incurred.

The replicator may also incur extra fees - “the cost of carry” - whilst holding the asset between
times t and T , which can vary depending on the underlying asset. For example, purchasing barrels
of oil will require the replicator to pay for both storage costs and insurance costs for the duration
of the futures contract, and contracts with high carry fees will therefore often trade above the spot
price - in contango. There can also be financial benefits to holding the underlying asset. Replicating
equity index futures would require the replicator to buy a basket of stocks and hold them for the
duration of the contract, during which time the stocks are likely to issue dividends. In this case
the future may trade below the spot price - in backwardation. As the time to expiry decreases, the
price of the future will tend to the spot price of the underlying St, and F (T, T ) = ST .

2.3 Futures Traders

Futures traders are categorised into two types: hedgers and speculators. Hedgers, like the rice
farmer example in Section 2.1, look to hedge a risk they are exposed to, trading potential financial
upside for certainty. Speculators take on such risk, looking to make a profit from the price changes.
As mentioned in Section 2.2, futures prices are exposed to much more than the price of the
underlying asset, making them a versatile security to speculate on a number of different exposures.

If the speculator is only looking to get exposure to the price of the underlying instrument,
there are still a number of reasons why they would trade futures contracts instead of trading the
underlying spot [22]:

• Leverage - Given futures are agreements to trade cash for an underlying product on a
future date, there is no need to exchange cash when entering the contract, only on the expiry
date. To mitigate counterparty risk, futures exchanges require each participant to provide a
small amount of cash, called the margin, which is usually a small percentage of the futures
contract value. This allows futures traders to gain more exposure than the initial margin,
making them a leveraged security.

• Difficulty in spot trading - For some futures contracts it may be practically difficult to
trade the underlying. To replicate an equity index future, one would have to buy every
single stock in the index, which is much more expensive and less efficient. There may also be
practical difficulties in shorting stocks, including short selling bans or broker requirements.
Selling a future can give the seller positive exposure to the downside moves of the underlying,
without any of the difficulties of trading spot.

• Liquidity - Futures can be much more liquid than the spot exchange for certain instruments
[23], meaning institutional investors can enter and exit large positions with less fear of mov-
ing the market in an adverse direction. Futures contracts will often trade even when the
underlying spot market is closed, e.g. equity index futures.
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Chapter 3

Data Preparation

3.1 Motivation

Using the framework discussed in Section 1.6, we seek to calibrate a propagator model to different
securities. We chose to focus on futures contracts given the range of benefits they offer investors,
summarised in Section 2. Whilst [13] focused on impact exponents of 0.5 and 1, there is evidence to
show that the instantaneous market impact function is strongly concave, with exponents ranging
from 0.1 to 0.5. To calibrate the impact models we will need normalised binned data for both
price returns and volume, and the impact state to be calculated with λ = 1 for a range of impact
exponents. With a calibrated model for each security, we then intend to answer the underlying
question of ‘Given a security and an amount to trade, what is the optimal buy schedule that
minimises transaction costs due to market impact?’.

3.2 Tick Data

Tick Data provides both tick level trade data (last executed trade price & volume) and Level 1
Quotes (bid & ask prices with size) for over 280 futures contracts [24]. The company works directly
with exchanges (e.g. CBOE, ICE, CME) to consolidate and standardise consumption of separated
data sources. The time period for the data we use ranges from 2012 - present, and data is collected
for every trading day during this period. It is worth noting that Tick Data uses different codes for
some futures compared to Bloomberg, for example FTSE 100 Index futures are ‘FT’ in Tick Data
but ‘Z’ in Bloomberg. We will reference the Tick Data tickers for the purpose of this thesis, but
we provide a lookup between the two in Table A.3.

Table 3.1 describes the format of the trade data provided. We make use of the ‘Exclude Record
Flag’ by removing any trades that are flagged for exclusion. Tick Data provides a thorough report
on the reasons for needing exclusions and the methodology and algorithms behind the flag [25].
We also use the ‘Price’ column as the true price, as opposed to the ‘Unfiltered Price’ as Tick
Data recommends. To provide some context on the scale and frequency of the data being used,
we consider the trade data for the contract ESH23 on 02/17/2023. There are 520,057 individual
trades and when stored as a .csv, the file size is 27MB. Out of the 280 possible futures offered
by Tick Data, we consider only 61 of these from a variety of asset classes: Interest Rates, Equity
Indices, FX and Commodities.

3.2.1 Order Sign Reconstruction

An important quantity when modelling price impact is the sign of the trade volume, ie if the trade
was a buyer initiated market or seller initiated. Exchanges rarely provide data explicitly stating
who initiated the trade, and it is often up to additional data providers or practitioners to reconstruct
this information themselves. The trade file from Tick Data only contains unsigned volume data,
whereas previous studies [13, Section 5][11, Section 3] have used data from LOBSTER, which
provides signed volume [26]. There are a number of algorithms to reconstruct the signed order
flow such as the Lee and Ready algorithm used in [16], but this, and other algorithms, use Level
1 LOB (quote) data to infer trade volume sign. For example, if a trade of size 20 was recorded

19



Column name Data type Description
Date MM/DD/YYYY Date of the trade.
Time HH:MM:SS.000 Trade time to the nearest millisecond.
Price float Trade price per contract, up to 7 decimal places.

Volume integer Number of contracts traded.
Market Flag char(1) P (Pit Trade) or E (Electronic Trade).

Sales Condition char(4) Exchange specific Sales Condition code.
Exclude Record

Flag
char(4)

Identifies trades executed away from the exchange,
including block trades etc.

Unfiltered Price float Raw price before any Tick Data filtering (see [24])

Table 3.1: Tick Data trade file format.

in the trade data, and at the same time the volume at the first level of the bid side of the LOB
reduced by 20, this trade would be classified as seller initiated.

Whilst Tick Data provide such LOB data, we do not have access; therefore for the purpose
of this thesis will have to look for other algorithms to infer order signs. Holthausen et al. [27,
Section 3.3] describe what is now known as the tick classification rule, or tick test, an algorithm
for classifying trade direction based on trade data alone.
The sign ϵi = ±1 of trade i is defined as

ϵi =

{
-1, pi < pi−1

1, pi > pi−1 .

Clearly there are a number of drawbacks to this algorithm, most notably the inability to classify
trades that did not move the mid-price. Holthausen et al. [27, Table 4] were unable to classify
33.7% of their transactions, with most being trades of small volume. The tick test also creates the
risk of misclassifying buys as sells (or vice versa), as the mid-price can change due to new limit
orders being submitted and existing orders being cancelled. Extensions of this algorithm exist,
such as the using the previous tick change if there was no change to the current tick, or the reverse
tick rule which uses the next tick to classify the current trade [28, Section 1]. We chose not to use
these extensions as we prefer the risk of being unable to classify the order sign, compared to the
risk of misclassification. As such, we remove any data that we are unable to sign using the tick
test.

Whilst previous studies [9, 16] calibrate impact models in trade time, we opt to view the
problem in aggregated real time by aggregating the data into 10 second intervals. This follows the
approach taken in [13], and aims to strike a balance between detail retained and computational
efficiency. One disadvantage with this method is that aggregating signed volume further reduces
the absolute volume, ie if there were three trades in one time bin V1 = 1, V2 = −2, V3 = 2, the
aggregate volume would be Vbin = 1, giving the appearance that less volume had been traded in
the given time interval. We compare the traded volume for a number of futures at three different
stages:

• Original - Unsigned volume data from Tick Data.

• Tick test (gross) - Unsigned volume data with trade direction inferred from the tick test.

• Tick test (net) - Unsigned volume data with trade direction inferred from the tick test,
aggregated into 10 second bins.

For each of the above, we then look at the absolute volume traded at the end of each transfor-
mation. We find that amount of unclassified trades is higher for extremely liquid instruments where
there is a lot of volume quoted at the best bid and offer, and the netting effect is most notable
in frequently traded instruments such as S&P E-mini futures, where there are a large number of
signed trades that net in a 10 second interval.

Although there can be a sharp decrease in observed traded volume, we would ideally like to
see the intraday volume patterns remain. To analyse this decrease in volume, we plot the intraday
profiles of the above metrics, normalised by total volume traded. We see in Figure 3.1 that for
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Figure 3.1: Average 15 minute normalised volume in February 2023 for different volume methods.

a range of different futures, binned to 15m and averaged over all days in Feb 2023, the intraday
patterns from the original volume largely still remain after reduction from both the tick test and
netting.

3.3 Future Combining

For any given underlying, there are always a number of futures available to trade at a given time.
For example, in August for S&P futures, the soonest expiring contract is the September expiry,
but there is also open interest in the December contract, and the March, June and September
expiry contracts for the following year. Whilst there are reasons to trade multiple futures at once,
such as gaining exposure to interest rate and dividend risk, traders looking to gain exposure to the
underlying may choose to trade the most liquid contract, which could allow them to more easily
enter and exit large positions. The most liquid contract can either be defined as the contract with
the most open interest or the most actively traded volume, and whilst the most liquid contract is
often the one which expires the soonest, this is not always the case. Traders will often roll their
position before the current contract expires to avoid holding a contract to expiry, with common
rolling windows varying from contract to contract. With this in mind, we look to create a ‘synthetic’
future by slicing the volume and return data of many contracts for the same underlying, which
will represent the instrument traded by traders looking to trade the most active contract.

We will construct the synthetic future using rule based methods using observable patterns in
the exchange traded volume. We use volume instead of open interest as this is a key quantity used
in price impact modelling, however the process is slightly nuanced and very asset class dependant.
We explain some of the challenges and differences between futures and provide a complete list of
the rules in Table A.3.

• Expiration months and dates - Most equity indices will have contracts expiring quar-
terly. Figure 3.2 shows the extremely predictable three month roll of S&P futures, whereas
commodities such as Crude Oil and Natural Gas will have contracts expiring monthly. Food
commodity futures can have regular expiration contracts with extra dependant on the har-
vest, such as soybean futures that expire every other month as well as an extra contract
for August. For a given expiration month, futures usually expire on the third Friday of the
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Figure 3.2: Volume trends for futures contracts.

month, except Hang Seng Index futures, which expire on the last trading day of each month.

• Active Months - Even if a future exists, it may never be the most actively traded one. This
is observed in grain futures, such as corn. In Figure 3.2 we see how the September contract
is dominated by the December contract for both 2022 and 2021.

• Roll Time - Equity Index and other cash settled futures will usually roll 1-2 weeks before
expiration. Commodities such as Low Sulphur Gasoil and Cotton futures can roll 4+ weeks
prior to expiry due to the physical settlement of the underlying.

Figure 3.3: Synthetic Future based on rule-based roll.

Figure 3.3 displays the effect of applying our rules based method on the futures displayed in
Figure 3.2. We see for CN that the September contract is never used in the synthetic future and
the future chosen is usually the one with the largest daily traded volume. The same rules are
applied to the price time series.
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3.4 Data Normalisation

Market impact measures the change in price due to trades, but a number of different units of
measurements can be used. In older models such as Almgren & Chriss (Equation 1.3.2) the stock
price St was modelled, whereas in [7, 16] the log stock price is used. In [13], the change in impact
∆hIn is regressed on to ∆hPn (Equation 1.6.4), making impact a measure of return. Viewing
impact in this way is a step in the right direction towards being able to compare different calibrated
models, but more needs to be done. In both [13, Section 5.2] and [14, Section 4.1] a normalisation
of impact and volume is done, where traded volume ∆Qn is normalised by the average daily traded
volume for a security, and impact is normalised by the average standard deviation of 10s returns.
This transforms (1.6.1) into

∆In
σ

= −β∆t
In−1

σ
+ f

(
∆Qn

ADV

)
, (3.4.1)

∆In = −β∆tIn−1 + σf

(
∆Qn

ADV

)
. (3.4.2)

With this normalisation Muhle-Karbe et al. were able to fit a universal model to all stocks
in the S&P, with comparable in and out of sample performance to the stock specific calibration
[13, Table 3]. This implies that, once we have accounted for the standard deviation of returns and
average daily trading volume, different stocks roughly react the same to incoming market orders,
regardless of tick size, market cap, financial sector or other characteristics.

To use this method in practice we will need a volume and volatility normalisation that can be
known prior to our period of trading, and so we must enforce this for our historical backtest. We
define the quantities

ADV(m, k) =
1

k

k∑
j=1

Vm−j ,

σ(m, k) =
1

k

k∑
j=1

σm−j ,

ie. the k day moving average prediction for day m, where Vi is the gross volume on day i, and σi is
the standard deviation of binned returns on day i. This normalisation restricts our data usage by
requiring k days of data to calculate moving averages, meaning impact state can not be computed
for the first k days. In Figure 3.4 we see the effect of a 20 day simple moving average for the
synthetic future ES which will be used for normalising the binned data.

Using these normalising quantities, we explicitly redefine the DPM which we will use when
calibrating to market data in future sections.

∆Imn = −β∆tImn−1 + σ(m, 20)f

(
∆Qm

n

ADV(m, 20)

)
, (3.4.3)

where the superscript m is used to denote trading and impact activity on day m.
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Figure 3.4: 20 Day smoothing of ES synthetic future.
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Chapter 4

Model Calibration

4.1 Methodology

We aim to calibrate the model

∆Imn = −β∆tImn + σ(m, 20)f

(
∆Qm

n

ADV(m, 20)

)
. (4.1.1)

We drop the day superscript and moving average notation and assume a functional form of
f(x) = λsgn(x) |x|δ. We also assume that the impact state at the start of every trading day is
zero, ie Im0 = 0, ∀m. To emphasise the dependency of impact on it’s parameterisation, we have

∆In = ∆In(λ, δ, β) = −β∆tIn−1 + σλsign

(
∆Qn

ADV

) ∣∣∣∣∆Qn

ADV

∣∣∣∣δ . (4.1.2)

After fixing a value for δ and β, we assume that the observed price change (for any time horizon)
due to volume order flow is exactly equal to the expected impact, plus some random variable ϵ
with 0 mean and constant variance.

∆hPn = ∆hIn(λ, δ, β) + ϵ, (4.1.3)

where both quantities are defined in Equations 1.6.4 and 1.6.5. We note from Equation 4.1.2
that the quantity ∆In(λ, δ, β) is linear in λ, ie ∆In(λ, δ, β) = λ∆In(1, δ, β), which allows us to
pre-compute ∆In(1, δ, β), and then estimate λ using linear regression.

4.1.1 Impact Decay

One of the key parameters in Equation 4.1.2 is β, which allows us to control the speed of decay
of the impact caused. This is one of the notable stylised facts observed in previous studies, as
discussed in Section 1.4.2. In [13, Section 5.1], different decay speeds were tried with half lives
between 1 and 120 minutes with “negligible impact on the results”, and Hey et al. [14] went
further to quantify the effect of decay speed on the quality of fit to data. [14, Figure 3] shows
that a change in decay speed has little effect on the R2 compared to a similar scaled change in
the impact concavity. Whilst the model used is slightly different to Equation 4.1.2 (specifically,
the concavity is applied to the final impact state as opposed to the instantaneous impact), the
evidence suggested by both papers imply that the quality of fit is affected most by the coefficient
of impact λ and the concavity of impact δ. Due to the added computational complexity of jointly

calibrating all three parameters, we chose to fix β to have a half life of one hour (β = ln(2)
3600 ) and

optimise for (λ, δ) only.

4.1.2 Bin Size

Whilst there have been a number of studies prior calibrating price impact models, some even using
a regression-based framework, there is little consensus on the time intervals to consider. One
method is to compare price in trade time [16, 8], where price change is measured between every
individual trade. Alternatively, trades and volume can be aggregated into time bins of fixed size,
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such as 10 seconds [10, 13]. Mertens et al. found no conclusive difference in R2 between 60 and
300 second time bins [11, Table 3], and Busseti & Lillo found little difference in R2 between bins
of size 10 to 60 seconds [16, Figure 1]. Given these results, we chose to use ∆t = 10 seconds for the
calibration of 4.1.2, which should help to maintain as much of the volume information as possible,
and not lose information due to volume netting.

4.1.3 Prediction Horizon

For h = 1, the model is explanatory, it attempts to explain why the price changed in an interval due
to the volume traded in the same interval. For h > 1, the model becomes predictive, it attempts
to predict future price changes due to the volume in a previous interval. [13, Table 3] found the
model fit quality to decrease as h increased, which makes practical sense because the larger h is
the more the model is attempting to predict future order flow caused by current order flow. For
our initial analysis we fix h = 1 and try to quantify the explanatory capability of the model.

4.1.4 Optimising for (λ, δ)

As described, after fixing a δ we can find λ by linear regression. Optimising jointly for (λ, δ) is
more difficult because for each δ we try, we need to pre-compute the impact states ∆hIn(1, δ, β),
then fit for λ. Due to this computational constraint we choose to calculate the impact states for
δ ∈ {0.1, 0.15, 0.2, ..., 0.65, 0.7} and then fit a λ for each hour of the trading period. This range
for δ covers the range found in previous studies mentioned in Section 1.4. As for frequency of
calibration, previous studies have fit λ to a range of intervals including 90 minutes [13, Section
5.4], 30 minutes [10, Section 4.1] and 60 seconds [11, Section 4.1].

4.1.5 Test - Train Split

Whilst it is important to have a model which fits well to in-sample data, we plan to use the
calibrated model to decide volume schedules in the future. It is therefore important that we
understand how well our calibrated model performs on unseen data. It is natural due to the time
series nature of the data to train the model using n sequential months [29, Section 2] and then test
on the next m months, allowing the backtest strategy to best mimic the production use of such a
model. We demonstrate this in Figure 4.1 with a series of sliding windows.
A longer training window allows the regression to be trained on more data points, potentially
leading to a better understanding of the data. If the underlying relationship between the dependant
and independent variable changes over time, then a smaller training window may be preferred so
the model can train on more recent and relevant data. The length of the testing window largely
depends on both how the relationship changes over time, and the practicality of retraining the
model frequently. We arbitrarily choose the backtesting strategy to be a series of sliding windows
with 6 months training and 3 months testing, with each period rolling forward by 3 months.

Figure 4.1: Example sliding window.
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4.2 Calibration Results

4.2.1 Initial Observations

Table 4.1 displays the metrics we record for each model fit per future, δ and test start date. The
data shown is for ES, δ = 0.1 and test start 2022-01-01. We record the coefficient of impact λ and
the train and test R2 for each hour a regression was performed. In most cases, hour 0 represents
the first hour in the trading session, but for futures such as GL which begin and end trading in
one single day (BST), we leave the hour unchanged. We also plot some fit results for a selection
of futures in Figure 4.2, using 6 months training data and 3 months testing data, with the test
period starting on 2022-01-01. The in and out-of-sample R2 is plotted, along with the impact
coefficient λ. We chose to show the δ for each future that had the best average in-sample R2. For
each future we look to observe any intraday patterns in λ, the value and any intraday patterns in
the R2 values, and the relationship between train and test R2.

Hour λ Test R2 Train R2

0 1.90 0.30 0.45
1 1.89 0.35 0.49
2 1.94 0.34 0.46
3 1.90 0.34 0.45
4 1.82 0.34 0.51
5 1.86 0.37 0.57
6 1.89 0.33 0.55
7 2.03 0.32 0.48
8 1.98 0.35 0.44
9 2.04 0.30 0.35

10 1.88 0.31 0.40
11 1.87 0.33 0.42
12 1.89 0.31 0.42
13 1.72 0.30 0.40
14 1.69 0.26 0.30
15 1.59 0.17 0.13
16 1.56 0.17 0.13
17 1.39 0.18 0.14
18 1.30 0.19 0.17
19 1.31 0.19 0.17
20 1.43 0.18 0.17
21 1.54 0.18 0.16
22 1.27 0.16 0.22

Table 4.1: Example Calibration output for ES futures using 6 months training and 3 months testing
data. δ = 0.1.

For ES futures, the impact coefficient is highest for the first 14 hours of the trading session,
which represents the Asian and European market hours. As the US market opens, λ is still higher
at the start of the trading day and decreases throughout the day, coming to a minimum in the final
hour of trading. The calibration for NQ futures follows a very similar intraday pattern, possibly
due to the fact they are both equity index futures with US stocks as index constituents. The
minimum value for λ is 56% and 38% less than the maximum value for ES and NQ respectively,
potentially implying a trader could benefit from waiting for periods of low impact before executing
trades. As for the goodness of fit for both tickers, both have R2 values between 0.4 and 0.6
for pre-market hours, this is consistent throughout the whole day for NQ, but the quality of fit
drops substantially for the US market hours for ES. As for test train stability, both futures exhibit
similar R2 for both in and out-of-sample data, implying the model is able to generalise well and the
relationship between traded volume and price impact is similar between the train and test periods.

For GL (10-Year United Kingdom Government Bonds) and TU (2-Year United States Gov-
ernment Bonds) there appears to be much less intraday changes in impact, with the difference
between maximum and minimum impact being 20% for both futures despite the fact that TU
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Figure 4.2: Model fit and R2 for 6 futures using 6 months training and 3 months testing data.

trades outside US market hours, whereas GL generally does not trade outside UK market hours.
GL futures do see a small dip towards the end of the trading day, finding a minimum at hour 16
followed by a sharp increase in hour 17. It is worth noting that most UK trading ends at 16:30
when the London Stock Exchange closes, but GL futures trade until 18:00 making the last 90m
of trading similar to ‘out of market’ hours. Train and test R2 are very similar for GL, but for
TU there is a clear decrease in out-of-sample performance. This could be due to overfitting of the
model or changes in market regime between the test period and the train period. Given the simple
linear regression model used to optimise for λ, we suggest that there could be structural market
changes between these two time periods, and one potential remedy for this could be to reduce the
number of months used in the training and test period.

CL (Light Crude Oil) and GC (Gold) futures both exhibit stability between in and out-of-
sample performance and have large coefficients of price impact soon after the trading session
begins. Impact continues to decrease for CL once the US markets open, whereas GC’s impact
initially increases for US market open and decreases throughout the US trading day.

Whilst each future exhibits unique characteristics, there are some general themes we can see
throughout all examples above.

• Price impact is often higher during ‘out of market’ hours, and decreases during US trading
hours. This makes some sense as there is usually much less volume and liquidity during these
hours, meaning trades can eat deeper into the LOB causing a large price change.

• Price impact is often higher at the beginning of US trading hours, and decreases throughout
the day. At US market open (hour 14), λ often begins high and decreases throughout the
trading day which could be slightly counter-intuitive to traders who believe price impact is
only dependant on volume traded. US market open is one of the most traded times in the
day, but is one of the ‘worst’ times to trade. This analysis aligns with other studies such as
[1, Figure 4.2] where the volume at the best bid and ask quotes is higher nearer to the end
of the trading day, and [11, Figure 1] where impact is found to be highest at the start of
the trading session and lowest at the end. Possible reasons for low impact at the end of the
day include: market makers looking to offload inventory to reduce overnight risk, and ETF
providers trading nearer to the end of the day to reduce tracking error.

• R2 is often higher during illiquid hours. There is a general trend of higher R2 values in
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hours 0-16, and smaller values in US market open hours. Due to the smaller trading volume
and liquidity in overnight these hours, price impact seems to conform better to the concave
propagator model. In Section 3.2.1 we discussed some issues that arose when reconstructing
order signs, and the reduction in volume during overnight hours could have lead to a higher
rate of tick classification and lower effect of netting, allowing for less information loss.

4.2.2 Changes in λ throughout time

The difference between train and test R2 for TU in Figure 4.2 raises the possibility of λ changing
throughout time. This is an important feature of price impact to understand; if we are deciding
volume schedules for tomorrow from a model that has been trained on the last 6 months of data,
we would like to be confident that the shape and scale of impact will be similar between the two
time periods.

Figure 4.3: Coefficient of impact over time for 6 futures using 6 months training and 3 months
testing data.

Figure 4.3 shows how the fit for λ changes throughout the different backtest windows. One
thing that can immediately be seen in all plots is a stark change in λ for test periods starting in
mid-late 2020. This represents a model that has been trained on data in early-mid 2020 where most
equity markets crashed during the beginning of the COVID pandemic, as well as most interest rate
and commodities futures experiencing higher levels of both volume and volatility. However, not
all markets seem to have changed in the same way during this time. Looking at both ES and NQ,
there appears to be a period of slightly higher λ followed by a large decrease. The period of high
λ, where prices reacted very strongly to volume, could indicate lower liquidity during that time,
potentially due to more uncertainty from investors on the future direction of the global economy.
Government Bond futures GL and TU only show a decrease in λ during this period however,
implying price was less sensitive to traded volume.

Aside from the time period covering the beginning of the COVID outbreak, in some futures we
can see general long term shifts in λ. For TU in earlier years, the coefficient of impact is much
higher than more recent years. For GL we can see λ has been historically quite low, with distinct
increases in 2014 and 2017-2020, which could be attributed to uncertainty in the UK economy
regarding the effects of Brexit and the decoupling of the UK from the EU. The only periods of low
impact were in 2020 and late 2022, the latter of which could be caused by changes in interest rates
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by the Bank of England (BoE) in response to rising inflation during this period. We also see this
decrease in impact for TU but slightly earlier, which reinforces our suspicion that λ decreased in
this time due to central bank interest rate rises, as the Federal Reserve also increased interest rates
sharply and slightly before the BoE. We investigate this effect in further detail in Section 4.4.1.

Whilst the magnitude of λ changes over time for GL and TU, the intraday pattern persists
throughout time. This cannot be said for ES and TU however, with ES showing a steep decrease
in λ during US market close hours in 2018. This indicates a large structural change within the
overnight market whereas the US ‘market open’ impact remained relatively stable over a similar
period. NQ also experienced a change in overnight impact only in the years 2015-2018, where
λ increased making trades more impactful on price during this time. GC and CL experienced
decreased λ in 2015-2019, but during US market hours only.

Figure 4.3 provides evidence that frequent retraining of the price impact model is necessary
to capture frequent changes in λ. If retraining does not happen, then traders are at risk of the
following:

• Trading at the wrong time - if changes to the intraday pattern have not been captured by
re-calibrating, traders may trade too much at periods of high impact and too little during
periods of low impact, adding to their transaction costs.

• Trading the wrong size - some trading strategies are capacity constrained, meaning the strat-
egy only works up to a certain amount of volume, due to the fact that a higher volume can
erode the alpha the trader is intending to capture. If the model is not calibrated to recent
data and the future impact is less than the model assumes, then the trader would overesti-
mate their price impact and leave money on the table. Conversely, if a trader underestimates
their price impact they could trade too aggressively and erode their alpha, losing money.

4.2.3 Optimising for δ

So far we have thoroughly investigated the characteristics of λ, both in terms of its intraday profile
(Section 4.2.1) and how the scale and shape changes throughout time (Section 4.2.2). To do this
we chose a value of δ somewhat arbitrarily for each future, but many questions still remain about
the optimal choice for this parameter over time. In Figure 4.4 we plot the train R2 values for every
backtest window for a range of different deltas, using the same futures contracts we have studied
thus far, and using 6 month training window and a 3 month testing window. For each future we
look to see if there is any δ that is consistently optimal, if there are distinct regime changes in
optimal δ, or if there are frequent/sporadic changes.

The scale of δ implies certain properties about the order book for a given future. Extremely
small values mean that not much trading is required to have an impact, but there is little difference
in impact between a small trade and a big trade. This indicates that the volume quoted at the
best bid and offer could be quite thin, but with very large volume immediately after. Conversely
for higher values of δ, the difference in volume between each level of the order book is much less
extreme, with gradual increases in volume at each level.

For TU and GL (both government bond futures), there is a clear sequential nature to the
performance of each δ, with lower values performing better. For TU this is more pronounced with
each increase of δ providing a large increase in performance and δ = 0.1 giving the best fit in all
backtest windows. Given the optimal value is on the boundary of our delta grid, this implies we
could find a better fit for TU with δ ∈ [0, 0.1). For GL, however, the improvements are slightly
smaller, with a saturation level occurring at 0.6 R2 for δ ∈ {0.1, 0.15, 0.2}.

Similar behaviour of ‘lower δ is better’ can be observed for ES in the years before 2021 where
δ = 0.1 consistently outperformed other values of δ. However, in 2021 we can observe a distinct
regime change, where lower values of δ became worse and the optimal value of δ changed between
backtest windows taking values in {0.2, 0.25, ..., 0.5, 0.55}. Interestingly, δ = 0.1 is the worst
performer in these later years, despite being the best fit in previous years. In this period we can
see that the R2 increases as δ increases up to a critical value δ∗, after which the R2 begins to
decrease. For NQ, there is not a clear optimal value for δ for any large period of time. Pre 2019,
δ∗ ranges between 0.3 and 0.5, and in later years larger values for δ appear to fit the data best,
with δ = 0.65 being most often the best fit. There is one thing to note for both these futures: in
periods where δ∗ is changing frequently in consecutive backtest windows, there is little difference
in R2 between the top 5 performing values of δ.
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Figure 4.4: Train R2 over time for different δ using 6 months training and 3 months testing data.

For CL and GC the optimal δ often changes, but usually stays within the range [0.2, 0.5]. They
both exhibit similar traits with both the optimal delta and value of R2 being the same at a given
time. Whilst each future has unique characteristics, all seem to experience worse performance
during early-mid 2020 during the beginning of the COVID pandemic. We saw in Figure 4.3 that
this period caused clear changes in the value of λ, but here we see widespread deterioration in
model fit, further adding evidence that this was a clear period of market irregularity.

4.3 Model Selection

In the previous section, we saw there can be a lot of variability in the optimal value of both δ and
λ for a given future between months. As we will be creating volume schedules for the future based
on data from the past, we will need to choose one combination of (λ, δ) in each backtest window to
use in the next time period. We would like to be able to quantify for each backtest window if we
could (with perfect knowledge) have picked a different parameterisation, and if so, how good that
fit could have been relative to our chosen fit. We use a simple methodology for picking the ‘best’
parameters in a given backtest window - the combination of (λ, δ) that gave the highest train R2

score. We define the following:

• R2
train(λ, δ) : Average Train R2 over all hours for a given backtest window and λ, δ

• R2
test(λ, δ) : Average Test R2 over all hours for a given backtest window and λ, δ

• λ∗, δ∗ = argmaxλ,δ R
2
train(λ, δ) : Optimal parameters according to train R2

• λ
′
, δ

′
= argmaxλ,δ R

2
test(λ, δ) : Optimal parameters according to test R2

To help us understand the stability between test and train period, we consider the ‘Test Train
Ratio’ R2

test(λ
∗, δ∗)/R2

train(λ
∗, δ∗) for each backtest window. Values close to and above 1 indicate

that the optimal parameters chosen from in-sample data accurately describe out-of-sample data.
Whilst this metric helps to explain the stability of the model between test and train periods, it
does not provide any indication on the quality of our model selection; if the value is low, it could
be because there was an alternative parameterisation providing higher R2 in the test period, or
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Figure 4.5: Test Train Ratio using 6 months training and 3 months testing data.

it could be that all models performed poorly in the test period and we could not have selected
better. We also consider the metric ‘Max Test Regret’ R2

test(λ
′
, δ

′
)−R2

test(λ
∗, δ∗), for each backtest

window and future. This metric is bound below by 0 given both values are positive, and higher
values indicate a higher level of regret, suggesting we could have theoretically chosen a much better
model.

We see in Figure 4.5 that all futures have a test train ratio centred around 1, an ideal property
implying that on average the training dataset and fit accurately describes the testing set. There
are, however, some instances where the test R2 is much worse than that seen in the training data,
with ES and NQ both having test R2 75%+ worse than the train R2. Notably, these two instances
of poor out-of-sample performance relate to a test start date of 2020-04-01, where the model was
trained on the equity market crash caused by the COVID 19 pandemic. The other low performing
backtest window for ES was for the test start date of 2018-01-01. In Figure 4.3 we can see this was
the period where overnight hours transitioned from a period of extremely high impact to a period
of lower impact.

In Figure 4.6 we plot histograms for the ‘Max Test Regret’ metric. For futures GL and TU we
see that the model selection algorithm selects the best parameters for test R2 the vast majority of
the time, and when it does not the difference between chosen and best R2 is very small. This is
also largely true for the remaining four futures, but some have long right tails with ES having one
instance of a test regret of 0.1.

Summarising the results from both plots, we can make two conclusions.

• The model selection algorithm of picking (λ,δ) based on the best train R2 does a reasonably
good job, with rare instances of the model being able to pick a much better set of parameters
with perfect knowledge.

• There are a number of instances where the test R2 is much worse than the train R2. This
implies the training dataset does not characterise the testing data well and, given the sequen-
tial time series nature of the underlying data, supports the idea that it may be beneficial
to use a smaller training and testing window. This would mean a larger proportion of the
training dataset would be ‘relevant’ to the testing set, at the risk of reducing the amount of
data points seen by the model for training, allowing for potential overfitting.
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Figure 4.6: Max Test Regret using 6 months training and 3 months testing data.

4.4 Cross-Sectional λ Analysis

In [13, Table 3], it is suggested that all stocks in the S&P 500 could share a ‘universal’ price impact
coefficient, and out-of-sample R2 were found to be the same if not better than fitting a λ for each
specific stock. Based on evidence that we have seen in Figure 4.3, it is unclear whether this could
be true for the futures market. Each future plotted is for a different value of δ, so the λ are not
always comparable, but TU, GL and ES all have δ = 0.1 and the values of λ vary greatly between
the futures. In Figure 4.7, we show a similar plot but with all futures having the same δ = 0.3
allowing for easier comparison. One could make the case that the two commodities CL and GC
share the same coefficient of impact, possibly due to the fact they are both commodities. However,
just because two futures are in the same asset class, it does not mean they must have a similar
coefficient of impact. GL and TU are both government bond futures, but their values of λ are
greatly different. Whilst GL futures mostly trade during UK market open and TU futures trade
for 23 hours a day, it is only fair to compare the λ during the US market open hours of TU. Even
taking this into account, the US market open values of λ range between 15 and 25 for TU, but
for GL the values are all between 8 and 15. For the equity index futures ES and NQ, there is also
evidence that the two futures do not share a common λ, as during the US market open hours λES

ranges between 5 and 10, whereas λNQ frequently sees values of 10 to 16.
Whilst we do not find evidence against the results found in Muhle-Karbe et al. [13], we do find

empirical evidence that this result does not extend to all futures - even those in the same asset
class.

4.4.1 Interest Rate Futures

In Section 4.2.2 we observed the changes in market impact for some interest rate futures and
speculated that this could be due to changes in central bank policy. Here we investigate this
hypothesis further by expanding the analysis to a broader range of tenures and futures.

In Figure 4.8 we plot the average intraday λ for different interest rate futures from the UK,
Eurozone, and US using δ = 0.1. This is plotted for each backtest window using a one month
training period, and in general there is little change in the value of λ over time, which can be seen
especially in UK, EU 2/5 year and US 5/10/30 year futures. There also appears to be an inverse
relationship between tenure and λ, which can be seen in both US and Euro futures. This implies
that the price of shorter dated interest rate futures are more sensitive to trades compared to their
longer dated counterparts. If an investor is looking to get a large exposure to the fixed income
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Figure 4.7: Coefficient of impact over time with fixed δ for 6 futures using 6 months training and
3 months testing data.

Figure 4.8: Average intraday λ for interest rate futures with δ = 0.1, 1 month training data.

market, opting to trade longer dated futures may be more advantageous as Figure 4.8 implies their
trades would have less market impact.

In Figure 4.8 we also plot the central bank interest rate for the Federal Reserve, Bank of
England and European Central Bank. For interest rate futures with a tenure of less than 30 years,
we see that λ is extremely sensitive to sharp changes in interest rates. This can be seen most
prominently in 2022 when central banks began to raise interest rates in an attempt to reduce high
inflation, and during this time the value of λ decreased dramatically. During this period, the price
of bonds could have been dictated to a greater extent by investor expectations of central bank rate
changes, and to a lesser extent by an imbalance of supply and demand. Whilst we also see a drop
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in λ in early 2021, it is not clear if this is caused by the sharp reduction in central bank interest
rates (UK & US), because a similar drop is seen in all Euro futures where there was no change in
interest rates.

4.5 Recalibration Optimisation

Our analysis thus far has mainly consisted of using a training period of 6 months and a testing
period of 3 months. This decision was largely arbitrary, and in Figure 4.5 we saw examples of
some backtest windows having much worse performance in the testing period compared to the
training period, which implies that the data in the testing window has little resemblance to that
in the training. In an attempt to mitigate these examples of poor out-of-sample performance we
can reduce the length of both test and train windows.

Train months Test months Avg Train R2 Avg Test R2 Test Train Ratio Test Regret

2 1 0.6562 0.6504 0.9911 0.0029
1 1 0.6646 0.6495 0.9774 0.0028
4 2 0.6481 0.6439 0.9936 0.0040
6 3 0.6426 0.6363 0.9903 0.0042

Table 4.2: Comparison of model fit for varying lengths of training and testing.

In Table 4.2 we compare a number of metrics for the best model (as defined in Section 4.3)
averaged over all the futures and backtest windows. It can be seen that decreasing the train/test
period from (6, 3) allows for better in and out-of-sample performance, with (2, 1) giving the best
test R2. We also reduce the training window further by attempting (1, 1), and whilst this increases
the in-sample R2, the out-of-sample performance is worse. We also find the ‘Test Regret’ to be
smallest for (2, 1) and (1, 1) at a value of 0.003, meaning the model selection method of using
the best train R2 for the test period is on average 0.003 R2 worse than the theoretically best
performing model.
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Chapter 5

Optimal Execution

Returning to the problem of optimal execution, we aim to find the optimal trading schedule for a
trader wanting to buy a given volume X in a specific period of time. To do this we need to under-
stand how price reacts to volume traded, and to both formalise and calibrate a model to market
data. Assuming linear market impact, this problem has been solved under a number of different
frameworks. Under the continuous transient impact model with power law decay, Curato et al.
[30, Equation 2.8] derive an explicit formula for the optimal trading speed. Assuming exponential
decay, Obizhaeva & Wang [6, Proposition 2] also solve for the optimal execution plan, with the
continuous solution covered in Section 1.3. Both these solutions have similar characteristics with
higher speed of trading at the beginning and end of the trading session, and a symmetric trading
schedule.

Attempts have been made to further these models by including nonlinear market impact but,
as covered in Section 1.5, introducing nonlinear impact will yield a solution that induces price
manipulation. Dang [31, Section 5] proposed a numerical scheme and method for finding the
optimal trading schedule, but the absence of price manipulation was dependent on the parameters
used in both the decay and impact function. Curato et al. [30, Section 2.3, 3] also explored a
number of methods to derive an optimal trading schedule: a perturbative approach where the
linear impact solution was perturbed to find a solution for a slightly concave impact function
(f(v) = v1−ϵ, 0 < ϵ ≪ 1), a ‘Homotopy Analysis Method’ where an initial guess is iteratively
deformed, and a numerical cost optimisation method using a Sequential Quadratic Programming
(SQP) algorithm. In Figure 5.1a we can observe the effect that nonlinear market impact has on the
optimal trading schedule compared to linear impact. Whilst the linear solution is symmetrical, the
nonlinear solution shows asymmetry with faster trading at the beginning of the interval followed
by comparatively slower trading in the middle. There is a final faster burst at the end, which is
slower than the initial nonlinear speed.

SQP is a framework for solving nonlinear constrained optimisation problems using an initial
guess and an iterative scheme. With this method, convergence to local optimal values is guaranteed
providing they exist, but not convergence to global solutions. We do not go into full detail on the
theory of SQP, but we direct the reader to [32] for further detail. The implementation of SQP
that we use is from the python package ‘SciPy’, which implements Sequential Least SQuares
Programming (SLSQP) [33].

5.1 Optimal Execution for DPM

5.1.1 Problem Definition

We assume the price of an asset follows the Discrete Propagator Model (Equation 1.6.1), and the
trader has a mandate to buy X units of a security by time T . We look to minimise the excess cost
of the trade which is equivalent to:
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min
∆Qn

E

[
N∑

n=1

In∆Qn

]

s.t.

N∑
n=1

∆Qn = X

where In = (1− β∆t)In−1 + σλnsign (∆Qn) |∆Qn|δ

(5.1.1)

Note, we remove references to ADV and assume for this chapter that all volumes are quoted as
a proportion of their average daily volume. We also add a subscript of n to λ to express its
dependence on the time of day. Minimising the expected excess cost is equivalent to minimising

the total cost, because E
[∑N

n=1 In∆Qn

]
= E

[∑N
n=1 E [Sn/S0] ∆Qn

]
= E

[∑N
n=1 Sn∆Qn

]
/S0,

and so the two optimisation problems are equivalent up to the scaling constant S0.

5.1.2 Slightly Concave Impact

To our knowledge there are no papers exploring optimal execution using the DPM with nonlinear
price impact and, therefore, no equivalent benchmark to which we can reference our results. How-
ever, we can look to the results found in [30] due to the similarities between the continuous TIM
and the DPM. We compute using SQP the optimal volume schedule for both linear and slightly
concave instantaneous market impact in Figure 5.1b. We can see that despite the differences be-
tween the models, there are many shared characteristics between the optimal execution schedules.
For linear market impact, both solutions show a symmetrical output with high trading speeds
at the beginning and end of the trading and a steady speed in the middle. For slightly concave
impact, the DPM trades faster than its linear counterpart at the beginning, followed by slower
trading in the middle of the session, and finally a fast burst at the end but still slower than the
opening speed. Whilst the two models are different, they both attempt to capture the nonlinear
and transient nature of market impact, and so it is encouraging that the optimal volume schedules
are similar for slightly concave market impact.

(a) Optimal volume schedule for TIM with lin-
ear and slightly concave impact under power law
decay [30, Figure 2]. (b) Optimal volume schedule under DPM.

Figure 5.1: Optimal volume schedules for linear and slightly concave under TIM and DPM.

5.2 Concave Impact

In this section we explore the different output and limitations of using SLSQP under the DPM
when varying a number of the input parameters. To best align this analysis with the intention of
using the solutions for real world trading, we will use parameters similar to those we have found
during the calibration in Section 4. We chose to model the future NQ using σ = 0.0002, and for
each respective δ we will use the average intraday λ that has been fit via regression.
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5.2.1 Delta

Whilst Figure 5.1b shows sensible convergence for slightly concave impact (δ = 0.975), there is
strong evidence to suggest the convergence of such optimisation problems and absence of price
manipulation depends heavily on the non linearity of impact and the speed of impact decay. In
Figure 5.2 we plot the optimal volume schedule for δ ∈ {0.1, 0.3, 0.5, 0.7}.

For all values of δ the optimal strategy involves both buy and sell orders, exhibiting price
manipulation by using sell orders to force the price down. For δ = 0.7 there are still remnants
of some structure, similar to that in Figure 5.1b, with stronger buying at the beginning of the
trading session. For δ = 0.5, there is a clear structure to the trading strategy with periodic bursts
of buying with small but increasing sell orders between, similar to that of [30] (Figure 6). Both
δ ∈ {0.3, 0.1} show no real signs of structure with individual trades being larger than the intended
total volume of 0.1. Clearly none of these ‘optimal’ trading strategies are sensible for real world
trading, and the solutions display some of the limitations and drawbacks of both the DPM and
the method of solving for optimal solutions via SQP.

Figure 5.2: Optimal Execution for a range of δ.

5.2.2 Bid-Ask Spread

One unrealistic aspect of the model is the assumption that there is one price at which traders can
both buy and sell at. In reality there is a gap in the LOB separating the best and best ask limit
orders, called the bid-ask spread. A trader who buys then immediately sells an asset will make a
loss equal to the bid-ask spread, and including this in the model could help to penalise the selling
seen in Figure 5.2. To integrate this feature into the model, we can add a cost to the optimisation
problem (Equation 5.1.1) when the trader executes an order, regardless of the direction. This idea
has been implemented in a number of papers [30, Section 5.3][16, Section 6.2], and equates to
adding a Lasso penalty to the optimisation problem

min
∆Qn

E

[
N∑

n=1

In∆Qn

]
+

s

2

N∑
n=1

|∆Qn|

s.t.

N∑
n=1

∆Qn = X,

(5.2.1)

where s is the bid-ask spread. In Figure 5.3 we display the effect of adding spread cost on the
optimal volume schedule, where all plots use the same λ and δ of 0.5 and 80.76 respectively. The

38



0bps plot is identical to that in Figure 5.2 with periodic large buy orders followed by longer periods
of weak selling. Adding a 10bps spread reduces the magnitude of the sell orders as we had hoped,
but does not completely eliminate them. Adding 25 and 50bps further reduces the sell orders, and
100bps spread looks as if it completely eliminated the problem. However, in Table 5.1 we display
the negative volume (ie sell orders) for each execution plan, and there are still some negative trades
with 100bps of spread. One option when using the SLSQP solver is to restrict the solution space
to only positive values, which is a strategy used in [30, Section 4.3.3], and we display this solution
in the final plot of Figure 5.3. The solution involves large buy orders at the start of the trading
session, followed by semi-frequent buy orders and ending with a period of consistent buying.

Figure 5.3: Optimal Execution for a range of spreads.

Whilst adding a spread cost is useful in reducing the amount of negative trading, it does not
completely eliminate the problem. It requires a 100bps spread to reduce the amount of negative
trading to roughly 1% of the total traded volume, but is this amount of spread realistic for such a
liquid instrument such as NQ futures? At the time of writing, the most active NQ contract trades
with a bid-ask spread of one tick size, which equates to 0.17bps; this is much less than the values
used for Figure 5.3.

Adding a bid-ask spread makes the model more realistic to real life trading, but the constant
spread is somewhat unrealistic. After submitting a market buy order only the offer limit orders
will have been matched causing an increase in ask price but leaving the bid price unchanged. After
this, market makers can quickly react by increasing their best bid price, replenishing offer market
orders, or a combination of the two. Regardless, the spread will temporarily increase - a feature
that is not represented in the optimisation problem 5.2.1. In fact [1, Figure 4.2] shows that the
bid-ask spread for a number of stocks exhibits a pattern of higher spread at the beginning of the
trading day and lower towards the end.

5.2.3 Trading Frequency

Thus far we have used a trading frequency (∆t) of 15 minutes. As ∆t → 0 we would hope that the
optimal solution would tend also to a finite limit, as opposed to the individual trades ‘blowing up’
to infinity. In Figure 5.4 we can observe the effect of the trading frequency on the optimal solution
from a range of 5 to 60 minutes. The solution for 60 minutes looks to have similar characteristics to
the slightly concave example in Figure 5.1b, with 45 minutes being a more pronounced version of
this. However at 30 minutes we see the negative trades appearing in the optimal solution, inducing
price manipulation, and 20 and 10 minutes take this further with more structured patterns in the
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Spread (bps) Negative Volume

0 -0.031966
10 -0.015618
25 -0.007091
50 -0.002847
100 -0.000819

Table 5.1: Total negative volume in the optimal execution schedule.

selling periods. At the 5 minute trading frequency, we see the optimal solution behaving very
erratically with buy and sell orders multiple times larger than the intended total volume traded of
0.1.

Figure 5.4: Optimal Execution for a range of frequencies.

It is worth questioning at this point the practical limit of trading speed for buy side institutions
using this model for trading purposes. We do not claim that this model would be optimal at the
high frequency trading limit, where both market and limit orders could be dynamically submitted
at the millisecond frequency. The data used to train the model has been 10 second binned data
for both price and volume, a dataset of which any institution running intraday strategies could
already have in house. Institutions executing these strategies may not have the ability to submit
orders electronically, and could still rely on phone conversations with brokers and dealers making
the idea of communicating orders every 5 minutes impractical and unrealistic. With this in mind,
we argue that using a value for ∆t between 10 and 30 minutes could be realistic value for the
frequency of order execution for some traders.

5.2.4 Tolerance

SLSQP and other minimisation algorithms often work by evaluating the function to optimise
f(xn) and then trying to find a nearby xn+1 such that f(xn+1) < f(xn). Whilst this process
could continue forever as the values of xn slowly converge to a local minimum, there reaches a
point where the improvement gained from the next iteration is of little practical use. One common
method to counteract this is to use a ‘tolerance’ ϵ such that the minimisation algorithm ends
when |f(xn+1)− f(xn)| < ϵ, and often this can be defined by the user. SciPy’s minimize function
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provides this option, and so we compute the optimal volume schedule for a range of tolerances in
Figure 5.5.

Figure 5.5: Optimal Execution for a range of tolerances.

For a tolerance of 10−4 the optimiser does not even take one step in search for a better function
value, presumably because the relative decrease in cost is so small in comparison to the tolerance.
The resultant volume schedule is therefore the initial guess inputted into the optimiser, which
in our case is a TWAP strategy. Reducing the tolerance by an order of magnitude, the optimal
execution for a tolerance of 10−5 is a more extreme version of Figure 5.1b, with lower trading speeds
after the initial and before the last burst of trading. It is worth noting the kinks in this solution
are somewhat similar to the optimal volume schedule found in [16, Figure 5], which uses a slightly
different discrete propagator model with the addition of linear market impact and a risk aversion
parameter. 10−6 takes this a step further with the slower trading speed from before becoming
negative, and the solution for a tolerance of 10−8 is periodic buying followed by periods of weak
selling. Tolerance values outside this range were also tried, but values above 10−4 all resulted in
the TWAP strategy, and values below 10−8 showed no real change to that of the schedule for 10−8.

Whilst the strategy of restricting the tolerance to yield sensible results from the optimiser is
clearly effective, it is worth asking whether this is a reasonable approach or just numeric trickery.
In [30, Section 2.3], Curato et al. use a perturbative approach by slightly deforming an explicit
optimal solution for linear market impact (GSS) to find a solution for slightly concave impact, which
is shown in Figure 5.1b. They also use a homotopy approach, where a final trading speed is found
by the sum of many ‘homotopy derivatives’ using the GSS solution as initial input. To implement
this, the 7th order homotopy derivative was used, but this is a somewhat arbitrary choice and
any number of derivatives could have been used to further deform the initial guess. Both of these
methods are examples of beginning with an initial guess of the solution, and modifying it up to
a somewhat arbitrarily point. This places restrictions on the type output that the final optimal
output can have, and we argue that increasing the tolerance in the SLSQP function can achieve
the same objective of restricting the output to ‘sensible’ forms.

5.2.5 Summary

In this subsection we have thoroughly explored the limits of using SLSQP to solve for optimal
volume schedules using the DPM. We have seen similarities in the trading output to other studies
[30, 16] for both the ‘sensible’ and ‘non sensible’ outputs, despite the differences in the modelling
approach. We have found a number of effective ways to restrict the solver to yield results that
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could be acted upon by traders, and to avoid the price manipulation involving negative sells in
a buy order. These methods include changing the frequency of trading, adding a spread cost to
the model, and limiting the tolerance of the solver, all of which we have argued to be reasonable
methods.

5.3 Intraday λ

Until now, we have studied the optimal execution problem assuming that the coefficient of im-
pact is constant throughout the trading day. In Section 4 we found strong evidence against this
assumption, showing intraday patterns in market impact that persisted throughout time. In this
section we incorporate this feature into the optimisation problem and analyse the potential cost
savings compared to other industry benchmarks. To achieve this we use a combination of tolerance
limitation to give sensible trading output, and a reduction in the solution space to positive values
only to avoid price manipulation.

(a) Optimal Execution with intraday λ. (b) Example VWAP strategy for ES.

Figure 5.6: Optimal Execution with intraday λ & example VWAP schedule.

In Figure 5.6a we plot the optimal execution for fit values of (λ, δ) the future NQ. We use a
constant λ throughout the day by averaging the intraday values. The optimal execution schedule
has the familiar characteristics of asymmetry and kinks near the beginning and end of the trading
session. We also plot the optimal execution schedule after accounting for the intraday changes in
the coefficient of impact, which results in a much different pattern. The new schedule often avoids
trading during periods of relatively high impact, opting to trade more both before and after the
high impact period. A lot of volume is traded at the end of the session when the impact is lowest.
This period also has the added benefit of removing the need to trade immediately after the price
has been driven higher. Whilst there is trading at the beginning of the session, the activity is
much smaller compared to the baseline due to the the beginning of the session having the highest
impact in the day.

5.3.1 Cost Saving

One of the aims of this thesis is to find a volume schedule that minimises a trader’s cost of execution,
and so it is important that we can exactly quantify the costs incurred for a given volume schedule.
Ideally we would like to find a volume schedule that materially affects the cost incurred compared
to a standard benchmark, and saves sufficient money to make the cost of calibrating and retraining
the DPM worthwhile. To evaluate this, we will introduce a number of industry benchmarks that
can be used to execute a large order over a given period of time.

• TWAP - A Time Weighted Average Price (TWAP) strategy involves splitting the meta-order
up into identically sized child orders which are executed linearly throughout time. This is
the strategy we have used as our ‘initial guess’ thus far, and can be seen in the first plot of
Figure 5.5.
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• VWAP - A Volume Weighted Average Price (VWAP) strategy involves splitting the meta-
order up into child orders which mirror the shape of the expected gross volume traded in
each time bin. In Figure 5.6b we show an example VWAP strategy for ES using 15 minute
trading frequency, where our estimate for the volume traded in each bin is the average of the
gross volume traded for that bin for the previous 2 months.

• Market Open - A Market Open strategy is used by traders with a time urgency for the
execution of the meta-order. This strategy involves executing the entire meta-order at the
start of the exchange’s trading session, and so for our purpose the whole volume will be
traded in the first 15 minute bin.

In Section 4 we found strong evidence for λ changing throughout the day, a feature which
models do not often include. We would like to understand the cost of assuming λ is constant
throughout the day, and to do this we also consider the optimal execution plan assuming constant
λ. The λ we use is the average of intraday values found, and whilst this may not be the exact
value of λ that would be fit if using all the data, it should not matter as the optimisation problem
(5.1.1) will just be scaled by a constant, and therefore the optimal schedule would not change.

Spot X δ λ̄ TWAP VWAP Market Open Constant Intraday

TU 0.025 0.1 6.05 0.0419 0.0424 0.0126 0.0125 0.0125
TU 0.05 0.1 6.05 0.0898 0.0908 0.027 0.0266 0.0261
TU 0.1 0.1 6.05 0.1924 0.1947 0.0579 0.0579 0.0566
TU 0.25 0.1 6.05 0.5273 0.5335 0.1587 0.1586 0.1575
GC 0.025 0.45 44.41 0.1412 0.1615 0.2833 0.1211 0.1109
GC 0.05 0.45 44.41 0.3859 0.4412 0.774 0.3799 0.3488
GC 0.1 0.45 44.41 1.0542 1.2055 2.1145 1.1134 0.7534
GC 0.25 0.45 44.41 3.9806 4.5516 7.9842 3.7857 3.3708
NQ 0.025 0.65 256.8 0.1722 0.2014 0.6692 0.1366 0.1315
NQ 0.05 0.65 256.8 0.5404 0.632 2.1002 0.4392 0.4114
NQ 0.1 0.65 256.8 1.6959 1.9835 6.5912 1.4446 1.2962
NQ 0.25 0.65 256.8 7.6911 8.9955 29.8927 7.3162 5.8822

Table 5.2: Cost of different execution strategies (bps).

We display the cost of different strategies in Table 5.2, modelling the execution of different
volume sizes X ∈ {0.025, 0.05, 0.1, 0.25} using the best fit of (λ, δ) found previously for TU, GC,
and NQ. These futures allow us to see the effect of different benchmarks for a large range of deltas.
One thing that can be noticed immediately is the superior performance of a TWAP strategy
compared to a VWAP strategy, a result which could be due to the VWAP strategy trading too
much in the high impact periods of US spot open, and not enough in the overnight hours. We see
that the cost of a single strategy increases as the total volume X increases, a result that should
be expected as more volume traded will cause more market impact. Whist the cost of VWAP and
TWAP are often similar, the Market Open strategy is often much larger or much smaller depending
on the value of δ. For δ = 0.1 the Market Open strategy is substantially better due to the strong
concavity of instantaneous impact penalising small but positive trades, whereas for δ = 0.65 the
Market open strategy consistently causes 3 times more impact cost.

For δ = 0.1, the optimal schedules found are only slightly better than following the Market
Open strategy. In fact the optimal volume schedules found in this case trade almost all the total
volume in the first time bin, and then the remaining amount near the end of the trading session.

Table 5.3 shows for each benchmark the relative savings of using the ‘optimal’ strategy compared
to using that benchmark, with negative savings indicating the optimiser output did not converge
to a solution better than the benchmark. For extremely low values of δ we see that the optimal
solution is not much better than a Market Open strategy, and in some cases a Market Open
strategy may be close to the true optimal strategy. For higher values of δ, a better benchmark
to compare to is the TWAP strategy, where the optimal solution is often 20%+ better than the
benchmark.

We can also see the effectiveness of including intraday λ into the optimisation problem, with
the intraday optimal solution outperforming the constant λ̄ solution by up to 32.33%. This is a
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Spot X δ λ̄ TWAP VWAP Market Open Constant

TU 0.025 0.1 6.05 70.22% 70.57% 1.03% 0.4%
TU 0.05 0.1 6.05 70.91% 71.25% 3.31% 1.89%
TU 0.1 0.1 6.05 70.61% 70.96% 2.33% 2.3%
TU 0.25 0.1 6.05 70.12% 70.47% 0.71% 0.69%
GC 0.025 0.45 44.41 21.5% 31.34% 60.86% 8.45%
GC 0.05 0.45 44.41 9.61% 20.95% 54.94% 8.19%
GC 0.1 0.45 44.41 28.53% 37.5% 64.37% 32.33%
GC 0.25 0.45 44.41 15.32% 25.94% 57.78% 10.96%
NQ 0.025 0.65 256.8 23.63% 34.7% 80.35% 3.74%
NQ 0.05 0.65 256.8 23.87% 34.91% 80.41% 6.33%
NQ 0.1 0.65 256.8 23.57% 34.65% 80.33% 10.27%
NQ 0.25 0.65 256.8 23.52% 34.61% 80.32% 19.6%

Table 5.3: Savings from using the optimal strategy compared to benchmarks.

substantial amount of cost saving, and for funds with a high turnover who are fully entering and
exiting large positions on a regular basis, this cost saving can compound over time to a relatively
meaningful amount.

5.3.2 Summary

Using calibrated real world values to parameterise our market impact model, we have found the
optimal trading strategy in a number of different environments. In all but one case, we have found
that using the SLSQP output using intraday λ can provide costs savings to standard benchmarks.
We have quantified this cost saving, finding 80%+ savings compared to some benchmarks and also
found that including intraday λ saves on average 12.15% for higher δ values, compared to assuming
constant λ. We have also explored under which conditions different industry benchmarks are better
to use, finding the Market Open strategy to be better for lower values of δ, and the TWAP strategy
to outperform for higher δ. This can be a useful output alone as these benchmarks can be easily
communicated over the phone to brokers and can provide savings to institutions without needing
to trade a more complex SLSQP volume schedule.
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Conclusion

In this thesis, we explored two vital aspects of financial markets: price impact modelling and
optimal execution. After reviewing the empirical characteristics of nonlinear instantaneous impact,
intraday liquidity changes, and impact decay, we calibrated the Discrete Propagator Model on
futures data using aggregated tick level trade data, covering asset classes such as Equity Indices,
Commodities, Interest Rates and Currencies.

We calibrated the model using sliding windows over a period of 10 years and found the DPM
was effective at explaining price changes due to traded volume, achieving average in sample R2 of
up to 0.795. Strong evidence was found for intraday liquidity changes with a high coefficient of
impact in overnight hours, and examples of lower impact in spot trading hours falling to a minimum
at the end of the spot trading session. Whilst there were some comparable characteristics seen
between futures within the same asset class, we found significant differences between others such
as Interest Rate futures exhibiting highly concave (δ = 0.1) instantaneous impact whereas other
asset classes were generally much less concave. It is evident that a universal model (as suggested
in previous literature for single stocks) would not be appropriate for all futures.

We provided novel analysis of the stability of this calibration throughout time, showing common
occurrences of the scale of impact changing over time. There were also instances of the intraday
impact profile changing over time, with S&P E-mini futures showing a steep relative reduction in
overnight impact in 2018. We also found the concavity of instantaneous impact to change through-
out time, with the changes best fitting δ indicating regime changes in the market microstructure,
suggesting changes to the general shape of the LOB. We provided an in-depth analysis into the
change in impact throughout time in the Interest Rate futures asset class, revealing that impact
was negatively correlated with bond tenure and showing the effect of central bank interest rate
hikes on the respective bond futures. The effect of the pandemic crash on impact was also ob-
served, with less impact during this time for Interest Rate futures and higher impact for Equity
Indices and Commodities. To the best of my knowledge, the cross-sectional analysis of price impact
between futures of different asset classes, and the study of calibration changes over a decade, is a
novel contribution to the field.

Given the observed changes in impact throughout time, we looked to understand the optimal
train and test window length. We found that using a training period of two months was the optimal
balance between having a large training dataset and having a more recent and relevant training
set. Using this training length, a one month testing period, and a one month sliding window, we
were able to attain an average in and out-of-sample R2 of 0.6562 and 0.6504 respectively.

Using calibrated values of λ and δ, we explored the problem of optimal execution within the
framework of the DPM. Our findings closely paralleled those of earlier literature, albeit with the
application of different models. Notably, some instances revealed that the optimal trading schedule
could lead to price manipulation. We thoroughly investigated the sensitivity of input parameters
to the output schedule, and proposed effective solutions to remove price manipulation including
adding a bid-ask spread, reducing the solver tolerance and trading frequency, and restricting the
solver to find solutions only over the set of positive values. We quantified the impact of including
intraday liquidity dynamics in the optimal strategy on execution costs, comparing to common
industry benchmarks of TWAP, VWAP and Market Open. Using the optimal execution strategy
showed significant savings, with an average of 21% cost reduction compared to industry benchmarks
for higher values of δ. We found savings of 8.76% on average compared to assuming a constant
intraday impact coefficient, and showed that different benchmarks were better depending on the
concavity of impact.

Our insights hold significance for refining execution strategies, especially for institutions with
limited access to LOB data or exchange connectivity, and high turnover trading strategies.
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Appendix A

Futures

Table A.1 provides a lookup between the expiration rule used for futures contract expiration date
in Table A.3. Table A.2 provides a lookup between the month key used in futures tickers (ie.
ESU3).

Expiration Rule Rule Key

third friday 0
last business day 1

Table A.1: Expiration rules.

Month Key Month

F January
G February
H March
J April
K May
M June
N July
Q August
U September
V October
X November
Z December

Table A.2: Month key lookup.

Table A.3 proves further detail into the futures we cover in the analysis in this thesis. The
columns ‘Expiry Rule’, ‘Active Futures Month’, and ‘Roll Lookback Weeks’ are used to establish
how multiple futures are used to create one synthetic future. A contract is used in the synthetic
future if the expiration month is in ‘Active Futures Month’, in the time period prior to the expiry
date (as defined by the expiry rule) less the number of roll lookback weeks.
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Table A.3: Futures used.

tick
code

bbg
ticker

future
months

roll
lookback
weeks

expiry
rule

description
asset
class

AD AD Curncy HMUZ 1.0 0
Australian Dollar

Futures
Currency Futures

BP BP Curncy HMUZ 1.0 0
British Pound

Futures
Currency Futures

CD CD Curncy HMUZ 1.0 0
Canadian Dollar

Futures
Currency Futures

DX DX Curncy HMUZ 1.0 0
Dollar Index Futures

ICE
Currency Futures

EC EC Curncy HMUZ 1.0 0 Euro FX Futures Currency Futures
JY JY Curncy HMUZ 1.0 0 Japanese Yen Futures Currency Futures

NZ NV Curncy HMUZ 1.0 0
New Zealand Dollar

Futures
Currency Futures

SF SF Curncy HMUZ 1.0 0 Swiss Franc Futures Currency Futures

CL CL Comdty
FGHJKM
NQUVXZ

4.5 0
Light Crude Oil
Futures NYMEX

Energy Futures

CO CO Comdty
FGHJKM
NQUVXZ

8.0 0
Brent Crude Oil
Futures ICE

Energy Futures

GO QS Comdty
FGHJKM
NQUVXZ

4.0 0
Low Sulphur Gasoil

Futures ICE
Energy Futures

HO HO Comdty
FGHJKM
NQUVXZ

4.5 0
Heating Oil #2
Futures NYMEX

Energy Futures

NG NG Comdty
FGHJKM
NQUVXZ

4.0 0
Natural Gas Futures

NYMEX
Energy Futures

XB XB Comdty
FGHJKM
NQUVXZ

4.5 0
RBOB Gasoline
Futures NYMEX

Energy Futures

EI MES Index HMUZ 1.0 0
MSCI Emerging

Markets Mini Futures
Equity Index Futures

EN NI Index HMUZ 1.5 0
Nikkei 225 Futures

SGX
Equity Index Futures

ES ES Index HMUZ 1.0 0
S&P 500 E-Mini

Futures
Equity Index Futures

FT Z Index HMUZ 1.0 0
FTSE 100 Index

Futures
Equity Index Futures

HI HI Index
FGHJKM
NQUVXZ

0.5 1
Hang Seng Index

Futures
Equity Index Futures

MI FA Index HMUZ 1.0 0
S&P 400 MidCap
E-Mini Futures

Equity Index Futures

NE NK Index HMUZ 1.5 0
Nikkei 225 Futures

JPX
Equity Index Futures

NK NX Index HMUZ 1.0 0
Nikkei 225 Futures

CME
Equity Index Futures

NQ NQ Index HMUZ 1.0 0
NASDAQ 100 E-Mini

Futures
Equity Index Futures

NY NH Index HMUZ 1.0 0
Nikkei 225 Futures

Yen-Denominated CME
Equity Index Futures

PT PT Index HMUZ 1.0 0
S&P Canada 60

Futures
Equity Index Futures

SW SM Index HMUZ 0.0 0
Swiss Market Index

Futures
Equity Index Futures

TP TP Index HMUZ 1.5 0 TOPIX Futures JPX Equity Index Futures

VX UX Index
FGHJKM
NQUVXZ

5.0 0 VIX Futures Equity Index Futures

XP XP Index HMUZ 0.5 0
ASX SPI 200 Index

Futures
Equity Index Futures

XX VG Index HMUZ 0.0 0
EURO STOXX 50 Index

Futures
Equity Index Futures

CC CC Comdty HKNUZ 6.0 0 Cocoa Futures Food & Fiber Futures
CT CT Comdty HKNZ 5.0 0 Cotton #2 Futures Food & Fiber Futures
KC KC Comdty HKNUZ 5.0 0 Coffee C Futures Food & Fiber Futures

Continued on next page
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Table A.3: Futures used

tick
code

bbg
ticker

future
months

roll
lookback
weeks

expiry
rule

description
asset
class

SB SB Comdty HKNV 5.0 0 Sugar #11 Futures Food & Fiber Futures
BO BO Comdty FHKNZ 4.0 0 Soybean Oil Futures Grain Futures
CN C Comdty HKNZ 3.0 0 Corn Futures Grain Futures

KW KW Comdty HKNUZ 4.0 0
Hard Red Winter
Wheat Futures

Grain Futures

SM SM Comdty FHKNZ 4.0 0 Soybean Meal Futures Grain Futures
SY S Comdty FHKNX 4.0 0 Soybean Futures Grain Futures
WC W Comdty HKNUZ 4.0 0 Wheat Futures CBOT Grain Futures

AX XM Comdty HMUZ 1.0 0
Australian 10-Year

Bond Futures
Interest Rate Futures

AY YM Comdty HMUZ 1.0 0
Australian 3-Year
Bond Futures

Interest Rate Futures

BF OAT Comdty HMUZ 1.5 0 Euro-OAT Futures Interest Rate Futures

BL OE Comdty HMUZ 1.5 0
Euro-Bobl 5-Year

Futures
Interest Rate Futures

BN RX Comdty HMUZ 1.5 0
Euro-Bund 10-Year

Futures
Interest Rate Futures

BT IK Comdty HMUZ 1.5 0
Long-Term Euro-BTP

Futures
Interest Rate Futures

BX UB Comdty HMUZ 1.5 0
Euro-Buxl 30-Year

Futures
Interest Rate Futures

BZ DU Comdty HMUZ 1.5 0
Euro-Schatz 2-Year

Futures
Interest Rate Futures

CB CN Comdty HMUZ 3.0 0
Canadian 10-Year

Futures
Interest Rate Futures

FV FV Comdty HMUZ 3.0 0
US 5-Year T-Note

Futures
Interest Rate Futures

GL G Comdty HMUZ 3.0 0 Long Gilt Futures Interest Rate Futures

JB JB Comdty HMUZ 1.0 0
Japanese 10-Year
Bond Futures JPX

Interest Rate Futures

JBM BJ Comdty HMUZ 1.5 0
Mini 10-Year

Japanese Government
Bond Futures

Interest Rate Futures

TU TU Comdty HMUZ 3.0 0
US 2-Year T-Note

Futures
Interest Rate Futures

TY TY Comdty HMUZ 3.0 0
US 10-Year T-Note

Futures
Interest Rate Futures

UB WN Comdty HMUZ 3.0 0 Ultra T-Bond Futures Interest Rate Futures

US US Comdty HMUZ 3.0 0
US 30-Year T-Bond

Futures
Interest Rate Futures

LC LC Comdty GJMQVZ 5.0 0 Live Cattle Futures Meat Futures
GC GC Comdty GJMQZ 3.0 0 Gold Futures COMEX Metal Futures

HG HG Comdty HKNUZ 3.0 0
Copper High Grade
Futures COMEX

Metal Futures

PA PA Comdty HMUZ 3.0 0
Palladium Futures

NYMEX
Metal Futures

PL PL Comdty FJNV 3.0 0
Platinum Futures

NYMEX
Metal Futures

SV SI Comdty HKNUZ 3.0 0 Silver Futures COMEX Metal Futures
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Appendix B

Results

Table B.1 shows a summary of R2 results for all futures studied. In each backtest window we use
6 months for training the model and 3 months for testing. The values for R2 used in each backtest
windows are that of λ∗, δ∗, as defined in Section 4.3, and we average these values over the whole
backtest period. As we are unable to produce plots for all 61 futures, we provide further statistics
to understand the most common δ over time:

• δ̂ - the modal value of δ∗

• δ Freq - the frequency of δ̂ over the backtest window, with a value of 1 implying the optimal
value of δ never changed. Formally, 1

N

∑N
i=1 11{δ∗i =δ̂}

• Stability - The proportion of time the current best δ was the best in the next backtest window.
Formally, 1

N−1

∑N−1
i=1 11{δ∗i =δ∗i+1}.
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Table B.1: Average R2 results for best model with 6 months train, 3 months test.

Spot Description Train R2 Test R2 TT Ratio Test Regret δ̂ δ̂ Freq Stability

ES
S&P 500 E-Mini

Futures
0.403 0.389 0.972 0.008 0.100 0.419 0.524

HI
Hang Seng Index

Futures
0.442 0.436 0.991 0.003 0.350 0.326 0.595

XX
EURO STOXX 50 Index

Futures
0.459 0.438 0.965 0.017 0.100 0.884 0.833

VX VIX Futures 0.496 0.484 0.978 0.004 0.100 0.683 0.725

MI
S&P 400 MidCap
E-Mini Futures

0.507 0.495 0.978 0.003 0.450 0.302 0.452

XB
RBOB Gasoline
Futures NYMEX

0.511 0.506 0.992 0.001 0.450 0.442 0.619

BT
Long-Term Euro-BTP

Futures
0.521 0.520 1.017 0.005 0.150 0.302 0.357

HO
Heating Oil #2
Futures NYMEX

0.528 0.523 0.993 0.001 0.500 0.512 0.571

CL
Light Crude Oil
Futures NYMEX

0.529 0.520 0.985 0.007 0.350 0.209 0.429

NQ
NASDAQ 100 E-Mini

Futures
0.541 0.527 0.975 0.003 0.650 0.302 0.548

GC Gold Futures COMEX 0.542 0.536 0.990 0.005 0.450 0.209 0.405

PA
Palladium Futures

NYMEX
0.553 0.554 1.004 0.003 0.450 0.488 0.500

PL
Platinum Futures

NYMEX
0.554 0.553 1.000 0.001 0.400 0.488 0.714

CT Cotton #2 Futures 0.568 0.572 1.007 0.001 0.400 0.372 0.738
EC Euro FX Futures 0.571 0.567 0.998 0.004 0.300 0.256 0.452

BX
Euro-Buxl 30-Year

Futures
0.584 0.578 0.996 0.004 0.100 0.302 0.524

FT
FTSE 100 Index

Futures
0.594 0.597 1.010 0.003 0.450 0.214 0.463

GL Long Gilt Futures 0.595 0.594 1.006 0.001 0.100 0.837 0.833
JY Japanese Yen Futures 0.596 0.592 0.999 0.006 0.200 0.279 0.333

CO
Brent Crude Oil
Futures ICE

0.599 0.604 1.013 0.002 0.250 0.279 0.571

SW
Swiss Market Index

Futures
0.602 0.597 0.995 0.003 0.200 0.302 0.524

BF Euro-OAT Futures 0.606 0.595 0.991 0.003 0.100 0.786 0.780

BP
British Pound

Futures
0.617 0.614 1.000 0.004 0.250 0.442 0.429

TY
US 10-Year T-Note

Futures
0.620 0.616 0.997 0.000 0.100 1.000 1.000

TP TOPIX Futures JPX 0.632 0.623 0.994 0.004 0.100 0.814 0.833

NG
Natural Gas Futures

NYMEX
0.634 0.625 0.990 0.012 0.300 0.186 0.381

LC Live Cattle Futures 0.654 0.641 0.980 0.004 0.200 0.286 0.154

HG
Copper High Grade
Futures COMEX

0.665 0.661 0.997 0.004 0.400 0.233 0.405

JB
Japanese 10-Year
Bond Futures JPX

0.669 0.657 0.988 0.003 0.100 0.907 0.881

FV
US 5-Year T-Note

Futures
0.670 0.661 0.990 0.001 0.100 1.000 1.000

EN
Nikkei 225 Futures

SGX
0.670 0.662 0.994 0.010 0.100 0.209 0.476

AD
Australian Dollar

Futures
0.677 0.670 0.994 0.006 0.100 0.302 0.571

DX
Dollar Index Futures

ICE
0.677 0.673 0.995 0.004 0.400 0.302 0.405

KC Coffee C Futures 0.678 0.685 1.012 0.003 0.350 0.308 0.583

PT
S&P Canada 60

Futures
0.678 0.632 0.942 0.016 0.450 0.186 0.500

Continued on next page
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Table B.1: Average R2 results for best model with 6m train, 3m test.

Spot Description Train R2 Test R2 TT Ratio Test Regret δ̂ δ̂ Freq Stability

CB
Canadian 10-Year

Futures
0.678 0.674 0.998 0.002 0.100 0.581 0.690

JBM
Mini 10-Year

Japanese Government
Bond Futures

0.680 0.666 0.986 0.003 0.100 0.480 0.500

BL
Euro-Bobl 5-Year

Futures
0.684 0.667 0.979 0.004 0.100 1.000 1.000

NE
Nikkei 225 Futures

JPX
0.690 0.673 0.981 0.006 0.100 0.953 0.952

KW
Hard Red Winter
Wheat Futures

0.694 0.686 0.994 0.002 0.150 0.476 0.600

CC Cocoa Futures 0.695 0.702 1.011 0.002 0.300 0.500 0.444

NZ
New Zealand Dollar

Futures
0.697 0.692 0.996 0.004 0.100 0.279 0.595

SY Soybean Futures 0.699 0.710 1.016 0.002 0.350 0.556 0.625
SV Silver Futures COMEX 0.701 0.697 0.998 0.007 0.100 0.233 0.405
SF Swiss Franc Futures 0.705 0.701 1.004 0.007 0.100 0.209 0.476

BZ
Euro-Schatz 2-Year

Futures
0.710 0.696 0.982 0.000 0.100 1.000 1.000

CD
Canadian Dollar

Futures
0.712 0.705 0.992 0.004 0.150 0.488 0.595

NY
Nikkei 225 Futures

Yen-Denominated CME
0.715 0.693 0.980 0.017 0.100 0.349 0.548

UB Ultra T-Bond Futures 0.717 0.710 0.994 0.005 0.100 0.581 0.738

US
US 30-Year T-Bond

Futures
0.721 0.716 0.995 0.003 0.100 0.953 0.952

BO Soybean Oil Futures 0.721 0.732 1.015 0.001 0.300 0.667 0.750
SM Soybean Meal Futures 0.723 0.738 1.022 0.001 0.450 0.857 0.833

NK
Nikkei 225 Futures

CME
0.723 0.704 0.977 0.013 0.200 0.326 0.429

XP
ASX SPI 200 Index

Futures
0.731 0.725 0.994 0.006 0.250 0.209 0.524

SB Sugar #11 Futures 0.748 0.750 1.004 0.000 0.100 0.714 0.833
WC Wheat Futures CBOT 0.749 0.756 1.010 0.003 0.300 0.444 0.500
CN Corn Futures 0.755 0.755 1.003 0.000 0.100 0.692 0.750

GO
Low Sulphur Gasoil

Futures ICE
0.768 0.761 0.993 0.003 0.150 0.279 0.381

AX
Australian 10-Year

Bond Futures
0.771 0.765 0.994 0.000 0.100 1.000 1.000

TU
US 2-Year T-Note

Futures
0.775 0.759 0.980 0.000 0.100 1.000 1.000

AY
Australian 3-Year
Bond Futures

0.795 0.790 0.994 0.000 0.100 1.000 1.000
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