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Abstract

The use of option price data is widespread in finance, ranging from risk management applications
to the development of trading strategies. The existence of arbitrage within this data can signifi-
cantly impede the effectiveness or even result in the failure of these tasks. This results in a need for
preprocessing to remove arbitrages. Historically, most research has been devoted to arbitrage-free
smoothing and filtering (i.e. removal) of data. Recently a framework to repair quotes using linear
programming has been developed. These type of methods result in sparse perturbations that keep
most prices within its bid-ask bounds. Furthermore, they are shown to be fast when applied to
real world large-scale problems and to improve model calibration.

A shortcoming of this repair method is that it only makes use of European call prices. This
severely limits the range of strikes for which the volatility surface can be repaired, since calls at
low strikes are not liquid enough to be a good representation of the implied volatility. To overcome
this, we extend the method to include European put prices in a natural manner. It considers
both call and put price data and weighs them on the basis of their bid-ask spread to arrive to an
improved implied volatility estimate. The method is shown to be accurate on a significantly wider
range of strikes, while retaining all the benefits of the original one.

The method is then further extended to include American options, which is the type most com-
monly found on single-name stocks. This is more challenging, since put-call parity does not hold
and their arbitrage conditions cannot be written as a system of linear inequalities. These challenges
are resolved by adding the early exercise premium as a variable in the linear program. Using the
same principles as for the European case, a linear programming problem is constructed that this
method leads to reasonable implied volatility surfaces as well.

Finally, applications of these repair methods are outlined. In this context, it is shown that the
developed methods lead to a more robust calibration of the Merton jump-diffusion model. Ad-
ditionally, it is shown that these methods can detect executable arbitrage, and some important
details that were previously overlooked are clarified.
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Introduction

The implied volatility surface is an essential tool used by traders, risk managers and other market
participants. For a variety of applications it is imperative that the implied volatility surface be
arbitrage-free. Until recently, there were two main methods used to construct arbitrage-free implied
volatility surfaces: smoothing and filtering [12]. Smoothing methods use parametric interpolation
to remove noise from options data and to extrapolate the surface to prices that are not (or not
liquid enough) in the market. Examples of smoothing methods can be found in [1], [16], [19]
and [27]. However, the main goal of smoothing is to produce a C1,2 implied volatility function
(T,K) 7→ σ(T,K), while it can be argued that obtaining arbitrage-free data is merely a by-product
[12]. Additionally, for smoothing usually an l2-norm penalization is used, resulting in a change of
nearly all data.

The other class of methods are filtering methods, summarized in [23] and [29]. This filtering
of data refers to simply removing data that is perceived to be of low-quality. This is typically
done according to criteria in terms of moneyness, expiration, trading volume, etc. However, filter-
ing is relatively subjective, causes information loss and is not always feasible (e.g. in OTC markets).

Recently, a new framework was developed in which the raw call price quotes are made arbitrage-
free by solving a constrained linear program [12]. This repair method has an L1-norm type penalty
function which punishes deviations from the market prices. In addition, the marginal cost of devi-
ating outside of the bid-ask spread is made higher than inside the spread. Moreover, the authors
constructed the static no-arbitrage constraints as a matrix inequality, thereby ensuring the solution
to be arbitrage-free. This solution is both sparse (not too many quotes are changed) and has most
quotes within the bid-ask spread. The authors then demonstrate the usefulness of this method,
primarily as a pre-processing tool for option price calibration or as a way to detect executable
arbitrage.

This dissertation is structured as follows. In Chapter 1, we start with a summary of European and
American option pricing theory. This treatment is descriptional and not fully rigorous, since that
would take us too far. It includes an overview of the Black-Scholes model, risk-neutral pricing,
Black’s model and binomial tree pricing. Furthermore, we show how to derive a robust estimate
of the forward price and discount factor from real market data. Next, we state the no-arbitrage
conditions for European options and observe that it can be written as a matrix inequality, following
[12]. We conclude with a deeper investigation of the implied volatility surface, its typical shape
and the reasons that it is almost guaranteed to contain arbitrage when not pre-processed.

In Chapter 2, we investigate in detail the repair method L1BA, developed in [12]. We analyze
its behavior on real market data, thus verifying that the method works. However, we spot one
big problem with the method: since it only uses call price data it cannot be applied for a wide
range of strikes. This is because calls with small strikes are rarely traded, resulting in low liquidity,
a big bid-ask spread and thus inaccurate price data. Usually, implied volatility at low strikes is
calculated with puts, while calls are used only for high strikes. It is therefore an obvious idea
to add put prices to the framework, but we must be careful to ensure that put-call parity holds.
We develop a method called L1BA-PC that is a straightforward extension of the L1BA method,
includes put prices and preserves put-call parity. The properties of this method are then discussed
and an intuitive explanation is provided. Finally, we compare the two methods and find that the
extended method L1BA-PC produces meaningful results over a wider range of strikes. This is due
to the much higher accuracy for low strikes while maintaining the same accuracy for high strikes.
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In Chapter 3 we make an attempt to extend this framework to American options. This is much
more challenging because put-call parity doesn’t necessarily hold and there is no system of linear
inequalities describing the no-arbitrage constraints. The first repair method we develop is straight-
forward: use the pseudo-European option quotes as input for the previously developed L1BA-PC
method. This method is quite problematic and does not give satisfactory results mainly because
of the noisiness of the early exercise premium estimates. They key insight to solve this problem
is to add the early exercise premium inside the optimization framework. This allows us to implic-
itly convert American option quotes to corresponding (pseudo-)European option quotes, for which
put-call parity and the no-arbitrage constraints are valid. In addition, we can take advantage of
the fact that the early exercise premiums should be monotonic as a function of strike. By adding
the put-call parity constraint and penalties that discourage deviations from early exercise premium
estimates, we arrive at the L1BAA-OPT-PC method. We compare our methods on real market
data, including a complex case where a significant dividend is about to be paid. In the end, we
can conclude that the L1BAA-OPT-PC method also gives reasonable results.

Finally, in Chapter 4, we discuss some applications in which repair methods are useful: enabling
more robust model calibration and the detection of executable arbitrage. In [12] it is shown that
pre-processing option price data to make it arbitrage-tree results in less variation in the parameters
of a calibrated Heston model. We test this with the Merton jump-diffusion model and our own
L1BA-PC method. We reach the same conclusions, and show that adding put prices (as L1BA-PC
does implicitly) further improves model calibration. Hereafter, we investigate how repair methods
can be used to detect executable arbitrage (where we buy at ask and sell at bid). But, we observe
that in order to guarantee this, the parameter δ0 needs to be chosen infinitesimally small, a fact
that was overlooked in [12]. We show with real market data that otherwise the repair method
might result in false positives and propose a value of δ0 which significantly reduces this.
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Chapter 1

Option pricing theory

In this chapter we will summarize the basics of option pricing theory, more specifically for Euro-
pean and American vanilla options. This summary is by no means exhaustive and contains only
the theory necessary to understand the rest of this thesis. For a more comprehensive treatment,
we refer to [34] and [35]. For an introduction to measure-theoretic probability theory, see [39].

We first start with the absolute basics of options, mostly to establish notation. Hereafter, we
look at the pricing of European options in the Black-Scholes model. In the next section, the
pricing of American options is outlined and its framework is compared with the European equiv-
alent. In Section 1.4, no-arbitrage conditions for calls are derived. Finally, we investigate the
implied volatility surface, consider why there is often arbitrage present and summarize methods to
overcome this.

1.1 Option basics

We start with considering a stock S, with price St at time t. A (European) call option on S, with
strike K and maturity T , is a contract that gives the owner the right (but not the obligation) to
buy S at time T for a price K. A (European) put option on S, with strike K and maturity T , is a
contract that gives the owner the right to sell S at time T for a price K. Since the value of both
contracts clearly depends on the underlying S, these European options are considered derivative
contracts.

Since the owner of a call can buy the underlying at time T for a price of K, if the stock price at
that time is greater than K, the owner can easily draw in a profit of ST −K by exercising the call
(i.e. buying the stock for a price of K) and immediately selling it in the market for ST . However,
since the owner of the call has the right but not the obligation to exercise, if the price at expiration
is less than K, they will simply not exercise it. This means that the payout of a call option is
(ST−K)+ := max(ST−K, 0). Similarly, the payout of a put option is (K−ST )

+ := max(K−ST , 0).
This implies that a holder of a call option profits when the stock prices moves up, while the holder
of a put option wants the stock price to decrease.

The value of options can be separated in two parts: the intrinsic value is the value of the op-
tion if it where exercised right now (e.g. (St − K)+ for a call at time t). The intrinsic value
conveys how deep in the money the option is. Options for which intrinsic value is (significantly)
positive are called in the money (ITM), options with strike close to spot are called at the money
(ATM), while options that are not close to being in the money are called out of the money (OTM).
It follows that for low strikes calls are ITM and puts are OTM, for strikes around spot both calls
and puts are ATM, and for high strikes calls are OTM and puts ITM.

The extrinsic value (or time value) is the remaining portion of an options value that is not ac-
counted for by its intrinsic value. It is affected by factors such as time to expiration, market
volatility, interest rates, and other market dynamics. Extrinsic value is generally positive, to ac-
count for the fact that the option might gain in value in the future, but is negative in some special
cases.
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1.2 European option pricing

One of the earliest accounts about options is that of the ancient Greek mathematician and philoso-
pher Thales, who bought something similar to a call option to profit from a larger than usual
olive harvest [33]. In London, they have been traded from at least the 1690s, mainly as insur-
ance products [36]. In 1973 the famous the Black-Scholes model was developed [7], [30]. Using a
no-arbitrage argument, they derived a closed form solution to option prices as a function of the
underlying asset’s price, the option’s strike price, time to expiration, volatility of the underlying
asset, and risk-free interest rate. Before the Black-Scholes model, there was no widely accepted
method for valuing options, which led to inconsistencies and pricing inefficiencies in the options
market. However, others argue that very similar methods were already used before and that the
model resembles an economic argument rather than an option pricing formula [20]. However, the
model’s elegant solution helped standardize and rationalize options pricing, which was a major
advancement in financial theory. Nowadays, it is not really used for option pricing, but rather for
mapping market option prices to a single real number, implied volatility. Instead, extensions and
variations of the original model have been developed to better capture real market dynamics such
as dividends, transaction costs, non-constant volatility and jumps [24].

1.2.1 Black-Scholes model

From looking at historical data it is abundantly clear that stock prices don’t move in a determin-
istic way, but rather in a stochastic manner. This is a consequence of the complex interplay of
various factors and participants in the financial markets that move stock prices: information flow,
heterogeneity of market participants, macro- and micro-economic factors and psychological factors
such as market sentiment and herd behaviour. It therefore makes sense to model stock prices as
a stochastic process in some probability space. The following introduction to the Black-Scholes
model is mainly based on [8].

Let’s define the underlying stock price process (St)t≥0 on a probability space (Ω,F ,P), on which
(Wt)t≥0 is a standard Wiener process. In the Black-Scholes model, we model the stock price as a
geometric Brownian motion [7]:

dSt = µStdt+ σStdWt, (1.2.1)

where µ is the expected rate of return for the stock and σ is its volatility, which is assumed to
be constant. The idea of this model is that in some small time step ∆t, the stock price return
St+∆t−St

St
is normally distributed with mean µ∆t and standard deviation σ

√
∆t.

Next to this asset containing risk, we consider a riskless asset, the bond Bt whose price process
moves deterministic according to:

dBt = Btrdt, B0 = 1. (1.2.2)

where r is the risk-free rate. Finally, in this model one considers the Black-Scholes ideal conditions:

• There are no transaction costs in trading the stock.

• The stock pays no dividends.

• Shares are infinitely divisible.

• Short selling is allowed without any restriction or penalty.

Next, we consider a pair of stochastic processes ϕ = (ϕB , ϕS) on (Ω,F ,P), called the trading
strategy. The idea is that these processes describe the amount of bonds and stocks to be held at
time t. This is mathematically represented through the value process V , which describes the value
of the portfolio constructed by following the strategy ϕ:

Vt(ϕ) = ϕB
t Bt + ϕS

t St. (1.2.3)

It is clear that in practice a trading strategy can only be dependent on information that is known
at time t. To translate this mathematically, we consider a filtration (Ft)t≥0 ⊂ F which represents
all known information on (St) at time t, and require (ϕt)t≥0 to be Ft-adapted.
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In this context, we are most interested in self-financing strategies. The main idea of such a
strategy ϕ is that the changes in value of the portfolio described by ϕ is only due to gains/losses
coming from price movements (in B and S), without any cash inflow or outflow. This can be
expressed in differential terms as:

d(ϕB
t Bt + ϕS

t St) = ϕB
t dBt + ϕS

t dSt (1.2.4)

Finally, to construct the option pricing problem in the context of no-arbitrage, we need a few extra
concepts.

Definition 1.2.1. A contingent claim Y for the maturity T is any-square integrable and positive
random variable in (Ω,FT ,P), which is in particular FT -measurable.

The idea behind a claim is that it represents an amount that will be paid at maturity to the holder
of the contract. The European options described earlier are clearly examples of contingent claims.

Definition 1.2.2. A contingent claim Y is attainable if there exists a self-financing strategy ϕ
such that VT (ϕ) = Y .

Definition 1.2.3. An arbitrage strategy is a self-financing strategy ϕ such that:

ϕB
0 B0 + ϕS

0S0 = 0,

but P(ϕTBT + ϕSST > 0) > 0,

and P(ϕTBT + ϕSST ≥ 0) = 1.

In other words, an arbitrage strategy is a strategy which creates a positive cash inflow, starting
from nothing, with positive probability and never creates a loss. One of the core ideas of financial
markets on which basically all pricing methods are built is that there is no arbitrage, since when
an arbitrage opportunity would exist, it is immediately exploited by fast and specialized market
participants, after which the arbitrage opportunity is no longer there.

Moreover, if we for now assume that European options are attainable contingent claims, to avoid
arbitrage opportunities, the corresponding initial portfolio value V0(ϕr) of a self-financing strategy
ϕr (also known as a replicating strategy) must be equal to the initial price of the claim to avoid
arbitrage opportunities (this is usually called the Law of one price). This is the main idea of
the Black-Scholes model: we create a (dynamically) replicating self-financing strategy using only
the underlying and a risk-free asset. This portfolio is guaranteed to match the options’ payoff at
maturity, and using no-arbitrage arguments it follows that the initial price of the option should be
equal to the initial price of the replicating portfolio.

To construct this self-financing strategy, let C(t, St) be the option value at time t. We now assume
for the function C(t, St) to have regularity: C ∈ C1,2([0, T ] × R+), so we can apply Ito’s Lemma
[39]:

dC(t, St) =
∂C(t, St)

∂t
dt+

∂C(t, St)

∂S
dSt +

1

2

∂2C(t, St)

∂S2
dStdSt (1.2.5)

=

(
∂C

∂t
(t, St) +

∂C

∂S
(t, St)µSt +

1

2

∂2C

∂S2
(t, St)σ

2S2
t

)
dt+

∂C

∂S
(t, St)σStdWt (1.2.6)

Now construct the trading strategy (ϕ)t = (ϕB
t , ϕ

S
t ) defined as:

ϕS
t =

∂C

∂S
(t, St), ϕB

t = (Vt − ϕS
t St)/Bt. (1.2.7)

It is immediately clear that this trading strategy is replicating, since Vt(ϕt) = Ct. If we now require
ϕ to be self-financing, we obtain:

dVt = ϕB
t dBt + ϕS

t dSt (1.2.8)

=

[
V (t, St)−

∂C

∂S
(t, St)St

]
rdt+

∂C

∂S
(t, St)St(µdt+ σdWt) (1.2.9)
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If we now equate (1.2.6) and (1.2.9), while taking into account that Vt = Ct, we obtain the famous
Black-Scholes PDE:

∂V

∂t
(t, St) +

∂V

∂S
(t, St)rSt +

1

2

∂2V

∂S2
(t, St)σ

2S2
t = rV (t, St), (1.2.10)

with terminal condition VT = (ST −K)+. In the case of a European put, this terminal condition
becomes VT = (K − ST )

+.

We also note that the trading strategy is made a replicating one, by choosing ϕS
t in that way

that the stochastic component of Vt corresponds exactly to the stochastic component of C, namely
∂C
∂S (t, St)σStdWt. However, in doing so, it also replicates a part of the deterministic part of C,

namely ∂C
∂S (t, St)µSt. In the end, this results in the drift term µ not appearing in the Black-Scholes

PDE (1.2.10), which means that the option price is not dependent on the drift of the stock price
process. This is the basic principle of risk-neutral pricing, which we will now investigate.

1.2.2 Risk neutral pricing

A way to obtain the solution of the Black-Scholes PDE (1.2.10) is by using the Feynman-Kac
Theorem. This theorem allows to interpret the solutions of a parabolic PDE as the expected value
of a diffusion process.

Theorem 1.2.4. Feynman-Kac: Given suitable regularity and integrability conditions, the solution
of the PDE

∂V

∂t
(t, x) +

∂V

∂x
(t, x)b(x) +

1

2

∂2V

∂x2
(t, x)σ2(x) = rV (t, x), V (T, x) = f(x),

can be expressed as
V (t, x) = e−r(T−t)EQ[f(XT ) | Ft]

where the probability measure Q is taken such that X is an Ito process driven by

dXs = b(Xs)ds+ σ(Xs)dW
Q
s , s ≥ t, Xt = x,

and (WQ
t )t≥0 is a standard Wiener process under Q.

By substituting b(x) = rx, σ(x) = σx, we let the Black-Scholes PDE coincide with the one in
the Feynman-Kac theorem. This theorem then implies that the value of a payout g(·) at time t
can be expressed as

V (t) = EQ[e−r(T−t)g(ST ) | Ft], (1.2.11)

where the expectation is taken with respect to the so-called martingale measure Q, a probability
measure Q ∼ P under which the discounted stock price St/Bt = e−rtSt is a martingale. This is
equivalent to S having drift rate r under Q:

dSt = rStdt+ σStdW
Q
t . (1.2.12)

Using Girsanov’s theorem [39] an explicit conversion from the physical measure P to the pricing
measure Q can be obtained:

dQ
dP

= exp

(
−1

2

(
µ− r

σ

)2

T − µ− r

σ
WT

)
. (1.2.13)

The main conclusion follows from Equations (1.2.11) and (1.2.12): we can view the option price
as the expected value of the discounted payoff of the option. However, this expectation is taken
with respect to the pricing measure Q, under which the stock price process has risk-neutral drift,
and not with respect to the physical measure P. Again, we observe that the drift term µ doesn’t
influence the option price. This indicates that investors, though having different risk preferences or
predictions about the future stock price behaviour, must agree on the option price. Equivalently,
one can state that the measure Q defines the risk-neutral world, in which the expected rate of
return on all securities is the risk-free interest rate r, implying that investors do not require any
risk premium for trading stocks.
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1.2.3 Black-Scholes formula

Since the solution of (1.2.12) is:

St = S0 exp

(
(r − 1

2
σ2)t+ σWQ

t

)
, (1.2.14)

we obtain that ST is log-normally distributed under the risk-neutral measure. Plugging this in
into (1.2.11), one obtains the famous Black-Scholes formula:

C0 = S0N (d1)−Ke−rTN (d2), (1.2.15)

P0 = Ke−rTN (−d2)− S0N (−d1), (1.2.16)

where

d1 =
log(S0/K) + (r + 1

2σ
2)T

σ
√
T

d2 = d1 − σ
√
T

where N is the normal cumulative distribution function. This formulation is widely regarded as
one of the main results in option pricing and financial mathematics in general. It was the first
widely accepted mathematical model to determine the fair market value of options, which were
relatively new and poorly understood financial instruments at the time.

1.2.4 Extensions of the Black-Scholes model

The Black-Scholes model is arguably the most basic model in option prices, and relies on some
strong assumptions that are clearly not realistic. We here present an extension to the original
model called Black’s model. It allows us to handle non-constant risk-free interest rates and discrete
dividend payments.

Stochastic interest rates

In practice, there is not such a thing as a constant risk-free rate. The risk-free asset changes with
an interest rate that changes over time (i.e. is stochastic):

dBt = Btrtdt, B0 = 1. (1.2.17)

This gives a solution Bt = exp(
∫ t

0
rsds), which is stochastic since it is not F0 measurable. The bank

account Bt is the value of risk-free money at time t. When considering payouts at time t, it makes
sense to discount them by comparing them to the value of the bank account. In other words, we
multiply by the stochastic discount factor 1/Bt to discount future payouts. From Feynman-Kac,
one can derive that the value of a future derivative payout g(·) becomes:

V (t) = EQ[
Bt

BT
g(ST ) | Ft], (1.2.18)

or in other words, (Bt)t≥0 is the numeraire corresponding to the risk-neutral measure Q which
makes the stock price a martingale. Additionally, we consider the (risk-free) T–maturity zero–coupon
bond P0,T , a contract which guarantees the payment of one unit of currency at time T . From
(1.2.18) it follows that:

P0,T = EQ[
1

BT
.1],

= EQ[exp

(
−
∫ t

0

rsds

)
].

This price P0,T is known from the market’s yield curve, it contains the market’s expectation of the
risk-neutral rate in the future, see Section 1.2.5. To avoid confusion with the notation for a put,
we will write it as the discount factor DT := P0,T .
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Forwards and put-call parity

A forward contract is a derivative contract in which two parties agree to buy or sell an asset at a
specified price F on a future date T . At time T it has a payoff ST −F , where ST is the asset price
at time T . In general, when one refers to the forward or forward price, we mean the pre-agreed
price F which makes this contract fair (i.e. without money needing to be exchanged now). Since
at the conception of the forward no money is exchanged, for the contract to be fair, the expected
value of the discounted payout under the risk-neutral measure should be zero. This leads to:

EQ[
1

BT
(ST − F )] = 0,

⇐⇒ EQ[
ST

BT
] = FEQ[

1

BT
],

⇐⇒ F =
EQ[ST /BT ]

EQ[1/BT ]
,

⇐⇒ F =
S0

DT
,

where we used the definition of the discount factor and the fact that ST /BT is a martingale under
the risk-neutral measure Q.

A very important property of European options is that a call can be converted into a put and
vice versa.

Theorem 1.2.5. Put-call parity: For European options, the following equality holds:

C0 − P0 = DT (FT −K), (1.2.19)

where C0 and P0 are the price of a call and put with strike K and expiration T , DFT is the
corresponding discount factor and FT is the corresponding forward price.

Proof. We start by looking at the payout of the left hand side in (1.2.19) at expiration T :

CT − PT = (ST −K)+ − (K − ST )
+,

= ST −K.

In other words, by buying a call and selling a put with the same expiration and strike, we create a
synthetic long position. Multiplying both sides by 1/BT and taking the risk-neutral expectation:

EQ[CT /BT ]− EQ[PT /BT ] = EQ[ST /BT ]− EQ[K/BT ],

⇐⇒ C0 − P0 = EQ[ST /BT ]−KEQ[1/BT ],

⇐⇒ C0 − P0 = DT (FT −K),

where we used the definitions of the forward and the discount factor.

Handling income streams

The majority of assets provide an income stream for investors that hold the asset, typically in the
form of dividend payments. These payments influence the price of the underlying in the future and
therefore also the price of a forward contract. This is because an investor who buys the forward
and hedges by selling the stock, needs to be compensated for missing the income that comes with
owning the stock. For a forward at time T , we define the income streams as (Ik)

N
k=1, paying at

time (tk)
N
k=1, where tk ∈ [0, T ] for k = 1, ..., N . From no-arbitrage theory it then follows that:

DTFT +

N∑
k=1

DtkIk = S0 (1.2.20)

⇐⇒ FT =
S0 −

∑N
k=1 DtkIk
DT

. (1.2.21)
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We can also consider the case where the asset provides a continuous income stream with a known
yield q rather than a known cash payment I. Mathematically this means that a when one buys S0

amount of a stock at time 0, it will have accrued to Ste
qt at time t. This corresponds to a forward

price:

FT =
S0e

−qT

DT
, (1.2.22)

which is equal to S0e
(r−q)T in the case of a constant risk-free interest rate r.

Black’s model

In the case of non-constant interest rates and discrete dividend payments, the relationship between
the spot price and the forward price is not as clear. The main insight of Black was to generalize
the Black-Scholes formula (1.2.16) to Black’s formula [6], which describes options on futures. It
can be seen as an extension of Black-Scholes, where we use the discounted forward price instead of
the spot price. The forward prices implicitly takes into account interest rates, dividend payments,
borrowing costs,... This leads to:

C0 = DT (FTN (d1)−KN (d2)), (1.2.23)

P0 = DT (KN (−d2)− FTN (−d1)), (1.2.24)

where

d1 =
log(FT /K) + 1

2σ
2T

σ
√
T

d2 = d1 − σ
√
T

and with N the normal cumulative distribution function. It is this formula that we will use to
calculate implied volatilities of European options. However, in order to do so, we first need an
estimate of the forward price and discount rate.

1.2.5 Estimating forward and discount factor

As an example, we fetched quotes of the SPX index and its full option chain (all available expiries
and all strikes for each expiration) on 2023/07/13. We choose SPX because it is very liquid and
there are therefore a lot of option quotes available. Moreover, the options are (like all index op-
tions) of the European type. We then proceeded by filtering out quotes that contain missing values
or don’t have any volume in either bid or ask.

The main goal of this thesis is to construct an implied volatility surface from this raw option
price data without being dependent on other data sources. The method we propose achieves this.
However, one of the main problems one encounters in practice, is that most market parameters are
not unambiguously defined (there isn’t one price, one discount factor, one forward price, etc.). In
the market we often find multiple possible values of these parameters, each of which gives slightly
different results. We will shortly explain how we unambiguously fetch the discount factor and the
forward price from the market.

Discount factor

As explained earlier, the discount factor DT is the expectation of the stochastic discount factor
1/BT under the risk-neutral measure. It encompasses the markets view of the future movement
of risk-free interest rates and is used to discount future cashflows to the present. However, it is
important to understand that the risk-free interest rate is a purely theoretical concept (it represents
the return on an investment with zero risk of default), while in practice no investment is totally
risk-free. The risk-free rate is therefore often approximated using financial instruments that have
very low levels of risk such as interbank lending rates. Since for SPX we have USD as the underlying
currency, we choose the Secured Overnight Financing Rate (SOFR) curve. For an index with EUR
as the underlying currency we would take the Euro Short-Term Rate (ESTR).
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Forwards

Earlier we defined the forward price FT as the price for which delivery of the asset at time T is fair,
given the information that is available now. This includes incoming cashflows such as dividend
payments and takes into account the time value of money using the discount factorDT , see (1.2.21).
Sometimes, forward contracts are traded directly in the market, from which an accurate forward
price can be derived. This is unfortunately often not the case, which means that an estimate of the
forward price needs to be made. The accuracy of this estimate is important to calculate implied
volatilities using Black’s formula (1.2.24).

The main idea to estimate forward prices is that they can be inferred from European option
prices using put-call parity (1.2.19). However, for a chosen expiration T , the implied forward price
will typically be (slightly) different for each strike K:

FT,K :=
CK − PK

DT
+K. (1.2.25)

This can be seen in Figure 1.1a. There are now multiple ways to derive a single forward price
estimate F̂T given all implied forward prices {FT,K}K∈K.

The simplest and most straightforward method is to use the forward estimate corresponding to
the strike which is closest to ATM (the ATM strike KATM ). We then have:

F̂T,K =
CKATM

− PKATM

DT
+KATM . (1.2.26)

This is shown in Figure 1.1a. The main idea is that options that are ATM are usually the most
liquid, which means that their prices should be quite accurate and therefore the implied forward
at that strike should be accurate as well. This method is very simple, but uses only information
at one strike, while ignoring information available from the other strikes.

An arguably better method that includes more strikes is to fit a linear regression to the put-call
parity equation:

CKi − PKi︸ ︷︷ ︸
:=Y i

= DTFT −DT Ki︸︷︷︸
:=Xi

. (1.2.27)

In other words, we fit a linear regression Y i = a+ bXi through the points (Xi, Y i) := (Ki, CKi −
PKi) and derive {

D̂T = −b,

F̂T = −a/b.
(1.2.28)

An example of this regression is shown in Figure 1.1b. In practice, we can opt to only use points
with strikes that are relatively close to the money, since they are the most liquid and therefore
the most accurate. Compared to the ATM forward, this forward should be more accurate, since
it includes information from multiple strikes. Another big advantage is that it also immediately
provides an estimate of the discount factor D̂T . This value can be used when there is no market
price available, or to assess the accuracy of the regression by comparing D̂T to the price in the
market.

Comparison

We can now compare the different forward and discount factor calculation methods. When plotting
the obtained forward as a function of time to expiration, we see on Figure 1.2a that both methods
produce very similar results. From Figure 1.2b we notice that the discount factor using regression
is typically also close to the one observed in the market. From these results one could argue to
either use the ATM forward and the discount factor from the market (least amount of calculations)
or using the forward and discount factor obtained from the linear regression (less market input
needed). However all methods will generate very similar results, so we argue that the exact choice
isn’t too important.
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(a) The ATM forward
(b) Calculating forward and discount factor us-
ing linear regression

(a) Forward as function of expiration (b) Discount factor as function of expiration

1.3 American option pricing

American options are options that can be exercised at any time before expiration. This simple
feature makes them considerably more complicated to price or hedge, since one must take into
account all different possible exercise policies [10]. Again, we will consider the pricing of American
options in the Black-Scholes setting: the underlying stock price process (St)t≥0 is defined on a
probability space (Ω,F ,P), on which (Wt)t≥0 is a standard Wiener process. The stock price is
hereby modelled as a geometric Brownian motion as in (1.2.1), but to price options, we use the
unique pricing measure Q under which the discounted stock price process (DtSt)t≥0 is a martingale
[39].

It is easy to show that for a non-dividend paying stock and with positive interest rates, it is
never optimal to exercise an American call option before its expiration date.

Theorem 1.3.1. With positive interest rates, and with an underlying that doesn’t pay it is never
optimal to exercise an American call option before expiration.

Proof. This can be observed from the following inequality:

CAM ≥ CEU

≥ DT (F −K)

= S0 −DTK

> S0 −K.

We used the fact that American options are worth more than European ones due to optionality
(see Section 3.1), put-call parity for European options (and non-negativity of puts), the fact that
the stock doesn’t pay dividends so S0 = DF and DT < 1 since interest rates are positive. This
inequality shows that the value of an American call is always greater than its intrinsic value (the
amount of money one gets when exercising now).
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This is intuitive in the context of opportunity cost : when you hold an American call, you have the
right to buy the underlying stock at the strike price at any time until expiration. By early exercis-
ing the option, you are essentially giving up the remaining time value. This time value represents
the potential profit that could be earned by holding the option and waiting for a favorable price
movement in the underlying stock. By exercising early, you forfeit this opportunity to capture
potential future gains. Additionally, you have the possibility to invest the cash you would use to
buy the stock if you exercised early. By waiting until expiration to exercise, you can earn interest
on this cash, which can contribute to your overall returns.

However, the same doesn’t apply for American puts: since a put can never be worth more than its
strike price K, it might make sense to exercise when the stock price is low. For this reason we will
now focus on the American put pricing problem, but the techniques shown extend to any convex
payoff structure that is equipped with an early exercise feature [17].

1.3.1 Optimal stopping problem

A first way to characterize the American put pricing problem is as an optimal stopping problem in
terms of the time at which it is exercised (called the exercise time). The exercise time τ should be
a stopping time with respect to (Ft), that is a random time such that the event {τ < t} belongs to
Ft for any t ≤ T . Using optimal stopping theory, it can then be shown that the no-arbitrage price
of an American put is obtained by maximizing, over all stopping times, the expected value of the
discounted payoff under the risk-neutral measure [17]:

P (t, s) = sup
t≤τ≤T

EQ[e−r(τ−t)(K − Sτ )
+ | Ft], St = s (1.3.1)

where P (t, s) is the price of the put at time t and current stock price s. Another way to state this
is that the value of an American option can be represented by the Snell envelope, see [4]. When
comparing this to the formula for European options (1.2.11), we see that for American options the
supremum is taken over all possible exercising strategies, while for European options the option is
always exercised at maturity.

The optimal stopping time τ∗(t) is now defined as the stopping time where the supremum is
reached:

τ∗(t) = inf{t ≤ u ≤ T, P (u, Su) = h(Su)}, (1.3.2)

or in other words the first time when the price is equal to its payoff. To determine τ∗(t) directly,
one needs to obtain the price process (St) first. This is obviously much harder to solve because of
the uncertainty of the stock price process.

1.3.2 PDI formulation

Similar to the way that European derivatives must satisfy the Black-Scholes partial differential
equation (1.2.10), one can construct a system of partial differential inequalities that the pricing
function of American derivatives need to satisfy. In [17] it is shown that the price of an American
put P (t, s) is the solution of the system:

∂P

∂t
+

1

2
σ2s2

∂2P

∂s2
+ rs

∂P

∂s
− rP ≤ 0,

P ≥ (K − s)+,(
∂P

∂t
+

1

2
σ2s2

∂2P

∂s2
+ rs

∂P

∂s
− rP

)(
(K − s)+ − P

)
= 0, (1.3.3)

to be solved in {(t, s) : 0 ≤ t ≤ T, s > 0} with the final condition P (t, s) = (K − s)+.

The main difference with European options is that there is no analytical solution for the equations
(1.3.3). There are however multiple approximate numerical methods to price American options
such as tree pricing [13], finite difference methods [40], least-squares Monte Carlo [28], and analyti-
cal approximations [3], [5]. We will go deeper into the tree pricing method, as it’s the main method
we will later use. This is because the method is quite intuitive and can handle early exercise and
discrete dividend payments.
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1.3.3 Tree pricing

The main idea of tree pricing methods is to evaluate the expectation in (1.3.1) by approximating
the continuous process (1.2.12) as a discrete one [26] [32]. In order to do so, we fix an integer
N ≥ 1 and let (ξn)

N
n=1 be a sequence of i.i.d. random variables on (Ω,F ,Q). The discrete stock

price process (Sn)
N
n=1 is then defined by:

Sn = Sn−1ξn ⇐⇒ Sn = S0

n∏
k=1

ξk, n = 1, . . . , N. (1.3.4)

Furthermore, we let Fn = σ(S0, S1, . . . , Sn), which means that Fn contains all information up until
time n.

The simplest example is a recombining binomial tree, where each ξi is a binary random variable:

ξk :=

{
u, with probability q

d, with probability 1-q

This way, at each fixed time step n, the random variable Sn takes value on the set {S0u
n, S0u

n−1d, . . . , S0d
n}.

If we define snk := S0u
n−kdk, then:

Q(Sn = snk ) =

(
n

k

)
qn−k(1− q)k, (1.3.5)

since each ξk is a Bernoulli random variable, and the sum of Bernoulli random variables is a bino-
mial random variable.

In practice, we set δt := T/N , so that the binomial tree covers the lifetime of the option. From
(1.2.12) if follows that:

St+∆t

St
∼ log-normal

(
(r − σ2

2
)∆t, σ2∆t

)
. (1.3.6)

This implies that the first two moments of the stochastic return are:

EQ
[St+∆t

St

]
= er∆t, (1.3.7)

EQ
[(St+∆t

St

)2 ]
= e(2r+σ2)∆t. (1.3.8)

If we force the discrete process (Sn)
N
n=1 to match the risk-neutral dynamics in (1.2.12), we obtain:{

qu+ (1− q)d = er∆t,

qu2 + (1− q)d2 = e(2r+σ2)∆t.

Since there are 2 equations for the 3 parameters (q, u, d), there are infinitely many parameter choices
possible. One of the most popular ones is the Cox-Ross-Rubinstein (CRR) [13] specification in
which we add the extra constraint ud = 1. This system of equations has solutions:

q =
er∆t − d

u− d
, d =

1

u
, u =

e−r∆t

2

(
1 + ν2 +

√
(1 + ν2)2 − 4e2r∆t

)
,

where ν2 := e(2r+σ2)∆t. However, when we perform a Taylor expansion of u in terms of
√
∆t, we

notice that it agrees with the Taylor expansion of eσ
√
∆t up to the ∆t term. That’s why in practice

in the CRR model one takes:

q =
er∆t − d

u− d
, d = e−σ

√
∆t, u = eσ

√
∆t.

The reason for this approximation is that this way the magnitude of the log return is constant in
each step, namely σ

√
∆t. Now fix T > 0 and define ∆t := T

N . It can then be proven that in the
limit SN converges in distribution to a log-normal random variable:

SN
dist.−−−→ S0 exp

(
(r − σ2

2
)T + σWT

)
, as N ↑ ∞, (1.3.9)
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where W = (Wt)t≥0 is a standard Wiener process. This means that when we take enough steps
N , the discrete process (Sn)

N
n=1 is a good approximation of the continuous time, risk-neutral drift

process described in (1.2.12). The idea is that for each end-node, the corresponding option price
can be easily computed since it is equal to the payoff. By backward induction and taking the
risk-neutral probability measure into account, a fair value for European option can be deduced. If
we define V n := e−r(N−n)∆tEQ[g(SN ) | Fn] as the time-n fair value of the European option with
payoff g(·), the following recursive relationship follows from the Tower property:

Vn :=

{
g(Sn), n = N ;

e−r∆tEQ[Vn+1 | Fn], n = 0, 1, . . . , N − 1.
(1.3.10)

This method of tree pricing is not particularly interesting when used on vanilla European options,
since in that case it will just be an approximation of the analytic value obtained with the Black-
Scholes formula (1.2.16). However, since the method describes the evolution of the underlying
during its life instead of only at maturity, it is very useful when dealing with options that contain
discrete dividends payments and early exercising features. Similar to (1.3.10), one can derive that
the time-n fair value Vn of an American option satisfies:

Vn :=

{
g(Sn), n = N ;

max{g(Sn), e
−r∆tEQ[Vn+1 | Fn]}, n = 0, 1, . . . , N − 1.

(1.3.11)

We see here clearly the benefits of the tree pricing method: in each node one can determine whether
early exercising is optimal or not, and take that into account in the fair valuation of the American
option using backwards induction.

1.3.4 Estimating forward

Estimating the forward from American option quotes alone is not recommended, since put-call
parity doesn’t hold: because of the early exercising feature we can’t hedge a call (put) by selling
a put (call) and selling (buying) a forward. However, using the tree pricing methods, an implied
volatility estimate σ̂ can still be made: it corresponds to the value of σ, such that the tree price

with u = eσ
√
∆t matches the one found in the market. We can therefore argue that having an ac-

curate forward estimate isn’t that important as in the case of European options, where we needed
it to calculate the implied volatility from Black’s formula (1.2.24).

It is still interesting to visualize a forward estimate as function of time, since it gives us insight
in the rational behaviour of an American option holder. Just as we used SPX data for European
options, we fetched data of AAPL (on 2023/08/24) and C (on 2023/08/03) as the example for
American options. We have chosen C on purpose because of its complexity: it has an ex-dividend
date 2023/08/04, meaning that the next morning a (significant) dividend will be paid out to hold-
ers of the stock. On the other hand, AAPL represents a simpler case: its dividend payments are
way smaller and the next dividend is only due in a few months.

Using estimates of upcoming dividend payments combined with the discount rate, we can em-
ploy (1.2.21) to provide a forward estimate. This leads to Figure 1.3, where we plotted the forward
price Ft as a function of time t and denote the spot price S0 with a horizontal dotted line. We
clearly see that after each dividend payment, the forward drops by the (discounted) estimated
dividend amount. From Figure 1.3b we notice that the forward price can become smaller than
spot for short expirations. This ultimately results in a significant early exercise premium for calls,
as we will see in Figure 3.1c.

1.4 No arbitrage conditions

We can summarize an arbitrage strategy (Definition 1.2.3) as a costless trading strategy that has
a positive probability of earning risk-free profit [12]. In financial markets one usually assumes that
there is no arbitrage, since whenever arbitrage arises it is quickly capitalized upon by specialized
market participants after which the arbitrage disappears.
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(a) (b)

Figure 1.3: Forward prices of AAPL (left) and C (right).

The fact that arbitrage isn’t possible, puts constraints on the prices of options on the same un-
derlying. Moving forward, we consider portfolio’s of call options, but similar relationships can
be constructed for puts. Additionally, we assume products have one price (ignoring the bid-ask
spread), no transaction costs are included and we can lend/borrow money at the same rate r.
Finally, we only consider static arbitrage: an arbitrage exploitable by fixed positions in options
and the underlying stock at initial time, while the position of underlying stock can be modified
at at only a finite number of trading times in the future. Any other arbitrage is called dynamic
arbitrage. The static arbitrage constraints can be viewed as the prerequisites that the price data
must satisfy at time zero for admitting a dynamically arbitrage-free model [12].

Consider a filtered probability space (Ω,F , {Ft}t≥0,P) that carries an adapted price process
{(St,Ct)}t≥0, where Ct gives the price of the N considered call options at time t, and we ob-
serve C0. As a consequence of the First Fundamental Theorem of Asset Pricing, one arrives to
[12]:

Theorem 1.4.1. There is no static arbitrage if ∃Q ∼ P such that:

C0(T,K) = DT EQ[CT (T,K)], (1.4.1)

where Ct(T,K) is the call price at time t, T is the expiration, and DT is the discount factor.

In practice, we can summarize this as the simple idea that portfolios with guaranteed non-
negative payout must have a non-negative price. Practically, this results in 4 main types of no-
arbitrage constraints. Denote with CT

K the call option with strike K and expiration T :

1. Call prices are non-negative:
CT

K ≥ 0

2. Absence of vertical spread arbitrage:

K2 −K1 ≥ CT
K1

− CT
K2

≥ 0, where K1 < K2

3. Absence of butterfly arbitrage:

CT
K1

− CT
K2

K2 −K1
+

−CT
K2

+ CT
K3

K3 −K2
≥ 0, where K1 < K2 < K3

4. Absence of calendar spread arbitrage:

CT2

K − CT1

K ≥ 0, where T1 < T2

Intuitively, the first three constraints imply that call portfolios with guaranteed non-negative future
payout must have a positive price. The last constraint states that call options with longer time
to expiration must cost more. In all cases, if this was not the case one could buy the underpriced
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asset, sell the overpriced one and hedge accordingly, this way achieving a costless trading strategy
with a positive probability of earning a risk-free profit (i.e. an arbitrage strategy). We can combine
these two ideas to define two additional types of no-arbitrage constraints, this time combining calls
with both different expiries and strikes:

5. Absence of calendar vertical spread arbitrage:

CT1

K1
− CT2

K2
≥ 0, where K1 < K2, T1 > T2

6. Absence of calendar butterfly arbitrage:

CT1

K1
− CT2

K2

K2 −K1
+

−CT2

K2
+ CT3

K3

K3 −K2
≥ 0, where K1 < K2 < K3, T1 > T2, T3 < T2

In [12] it is proven that when a set of call prices {CT
K}K∈K,T∈T satisfies these constraints, there

is no static arbitrage. Furthermore, directions to express these constraints as a matrix inequality
Ac ≥ b are given and a Python implementation is included [11]. This will prove to be very useful
to check whether a vector of call prices c is arbitrage-free.

1.5 Implied volatility surface

The implied volatility of an option is the value of volatility that needs to be plugged in into an option
pricing model to obtain the market price. In the case of European options, it is the value of σ that
lets the Black-Scholes model price (1.2.16) match the market price of the option. For American
options, it is the value of σ that lets the American option pricer (e.g. a binomial tree) match
the market price. This idea allows to normalize options with different characteristics (different
underlying, strike, maturity, etc.) and corresponds roughly to the markets expectation of realized
volatility in the future (in practice implied volatility is usually higher than realized volatility, this
is called the volatility risk premium [2]).

1.5.1 Shape of implied volatility surface

In the Black-Scholes model, there is one value of σ which represents the volatility of the stock, as
in (1.2.12). However, when looking at the implied volatility of observed market prices, this is typ-
ically not the case: volatility changes both as a function of expiration T and strike K. First of all,

Figure 1.4: Implied volatility surface of SPX, generated using L1BA-PC (see Section 2.3)

we need to consider the concept of a fair price, the theoretical value that a rational investor would
assign to the asset based on its fundamental characteristics, future cash flows, and other relevant
factors. Most financial models assume an asset to have a single price, while usually two prices (i.e.
bid price and ask price) can be observed for an asset. Methods to convert this information into an
estimate of the fair price include the mid-price, the quantity-weighted price, the last traded price
or the micro-prices of Stoikov [37]. In our framework (and in [12]) we choose the mid price as the
fair price estimate because of the limited order book data available and the fact that more accurate
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price models are mostly useful in high frequency trading, which we don’t cover here. However,
other estimates could be considered and might be an interesting direction for future research.

When looking at the implied volatility of an equity option as a function of strike (for a con-
stant expiration), we typically observe a volatility smile or volatility smirk. This is a phenomenon
where options with strikes far from the money have significantly higher implied volatility than
ATM options. There are multiple ways to explain why this phenomenon arises, which all boil
down to the same idea:

• Demand side: Market participants that are net long want to protect again strong downside
moves, and therefore buy relatively more OTM puts. Similarly, market participants that are
net short want to protect against upside moves and therefore buy more OTM calls. Because
of the greater demand, these options are priced relatively more expensive (in terms of implied
volatility).

• Supply side: The implied volatility is a parameter that is part of the Black-Scholes model,
which implicitly assumes that stock price change continuously and are log-normally dis-
tributed. However, in practice stock prices experience jumps. This results in OTM options
paying out more often than would be expected in a log-normal model and sellers of these
OTM options ask a premium to protect again these jumps. It turns out that an implied
volatility smile results in a distribution that corresponds better to the heavy-tailed, asym-
metric distribution of real returns.

The plot of σ(T,K) as a function of expiration T and strike K is called the implied volatility
surface.

1.5.2 Arbitrage in the implied volatility surface

In practice the implied volatility surface derived directly from the (market) mid prices is rarely
arbitrage-free. In [21] a few reasons are given:

• While ideally the implied volatility would be derived from the fair price of an option, in
practice we only have bid and ask prices. The fair price is therefore typically approximated
by the average of the bid and ask (the mid price), which causes inaccuracies when the bid-
ask spread is large. Moreover, research shows that the fair price doesn’t always need to lie
between bid and ask quotes: in [38] it is reported that around 4 % of option trades in a
sample of CBOE options occur outside the last quoted spread.

• To understand the relationship between an option price V and its implied volatility σ, we can
look at vega ν := ∂V

∂σ . By taking the derivative of the Black-Scholes formula, one observes
that vega is large for ATM options but small for (deep) OTM and ITM options. The intuitive
explanation is that that there is not much uncertainty left whether these deep OTM or ITM
options will expiration OTM or ITM, which means that a change in implied volatility doesn’t
influence their price a lot. However, since ν ≈ ∆V

∆σ , this means that for low vega options a

small error in option price will result in a large error in implied volatility (∆σ ≈ ∆V
ν ).

• Unlike the idealized Black-Scholes markets, in actual markets the prices of options, under-
lying securities and interest rates can not move in infinitely small price increments, but are
restricted by tick sizes. This introduces a measurement error, since the true price is not
constrained to move in discrete steps.

However, the implied volatility surface is heavily relied upon by several market participants [22]:

• Traders use the volatility surface to trade volatility directly (i.e. express an opinion about
future volatility).

• Traders use the volatility surface to price European options for strikes and expiries that are
not quoted in a market (i.e. OTC trading).

• Traders price and hedge exotic options by using the implied volatilities observed on vanilla
options. More realistic and advanced pricing models than Black-Scholes are calibrated against
the observed implied volatility surface.

21



• From the implied volatility surface traders derive important signals such as market sentiment
and available liquidity. Furthermore, the risk-neutral density q(ST ) (density of the stock price
at expiration under the risk-neutral drift (1.2.12)) can be derived:

q(ST = s) = DT
∂2C

∂K2
(K = s, T ),

where DT is the discount factor and C(K,T ) is the call price derived from the implied
volatility surface.

• Risk managers run stress scenarios on the implied volatility surface to assess the risk exposure
of their options positions. The implied volatility surface can help assess tail risks — the
potential for extreme market moves.

Since the implied volatility surface is so important in a trading operation, it is therefore essential
to remove the arbitrage from the surface. Intuitively it doesn’t make sense to use a model that
contains arbitrage, since it is economically meaningless to have a model that has the potential to
make risk-free profits. In practice, the presence of arbitrage leads to poor or even failed model
calibration as well as incorrect estimations of the risk-neutral density. For example, the calibration
of the local volatility model of [15] and [14] will fail since negative local volatilities or negative
transition probabilities appear. This obstructs the convergence of the finite difference schemes
solving the underlying generalized Black-Scholes PDE (1.2.10) [16].

1.5.3 Repairing the implied volatility surface

As mentioned earlier, the two most common methods to obtain an arbitrage-free volatility surface
are smoothing (continuous interpolation of option quotes using some parametrization) and filtering
(removal of low-quality data). In [12] they propose a different method: instead of smoothing, which
changes nearly all data, or filtering, which loses information, they propose to repair data. In this
approach the changes to the implied volatility surface are the minimal changes that are necessary to
make the surface arbitrage-free. They achieve this by constructing a linear optimization problem,
with an l1 cost function and with constraints the no-arbitrage constraints Ac ≥ b, explained in
Section 1.4. There are a few advantages of this approach:

• By using an l1-norm cost function, a more sparse solution is obtained, which means that
most prices are unchanged.

• Liquidity considerations such as the bid-ask spread can easily be taken into account by
changing the optimization function (adding them as soft constraints).

• The resulting volatility surface is intuitive, in the sense that it can be interpreted as the best
approximation of the raw volatility surface.

• The method is quite fast, which makes it well-suited to online computations.

• Because the method doesn’t rely on a parametrization, it doesn’t have any problems with
more exotic shapes of implied volatility surface (e.g. before earnings announcements, the
implied volatility slices of some short-dated options will resemble a W-shape).

• When used as a pre-processing step before option price calibration, the calibration is more
robust in the sense that there is less variation in the obtained parameters, see Section 4.1.

• It can be used as a post-processing step of prices predicted by deep learning algorithms (which
have recently gained substantial popularity [31]) that themselves don’t rule out arbitrage.

• The solution of the method detects whether executable arbitrages exist, see Section 4.2.

We will examine this method more deeply in Section 2.2.

The main focus of this dissertation is to test the approach in [12] and extend it to be used in
a wider range of strikes, include American options and add handling of discrete dividends.
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Chapter 2

Repairing the volatility surface of
European options

In this chapter we describe a method to obtain arbitrage-free implied volatility data points from
a set of European option prices quoted in the market. First, we give an introduction to the
data we use and how to get market parameters in practice. Next, we shortly summarize linear
programming. After this, we explain in detail the methodology that is currently used to repair
implied volatility surfaces of European options [12], namely L1BA. Finally, in Section 2.3 we extend
this methodology by adding put prices, which better capture the markets assessment of fair implied
volatility for low strikes. We compare both methods to real market data and observe a significantly
better fit for low strikes.

2.1 Linear programming

A linear program (LP) is an optimization problem in which both the objective function and the
(equality and inequality) constraints are linear. It can generally be expressed in canonical form as:

min
x

cTx

s.t. Ax ≥ b (2.1.1)

Note that the feasible region is a convex polytope, an intersection of finitely many half spaces. The
goal of linear programming is to find the point in this region for which the affine objective function
is minimized. Since a linear program can be seen as the simplest form of a convex optimization
problem, every local minimum must be a global minimum. Moreover, when the feasible region is
bounded and non-empty, a solution must exist and can be found on its boundary.

Linear programs appear in a wide variety of fields such as engineering, economics, transportation
and manufacturing. Because of their ubiquity in applied mathematics and their relative simplicity,
they have been studied extensively and many efficient algorithms have been devised to solve large
linear programs. The simplest (and perhaps best known) algorithm is the simplex method, which
solves linear programming problems by iteratively moving from one feasible solution to another in
the direction of improving the objective function, after which it finally converges. A more modern
approach are interior-point methods, which move through the interior of the feasible region, rather
than through the boundary like the simplex method. They rely on a barrier function that penal-
izes violations of the constraints, allowing efficient convergence to the optimal solution. Without
going further into the details of these methods, it is sufficient here to understand that describing
optimization problems as linear programs is attractive because large-scale linear programs can
be solved quickly and efficiently with modern algorithms and (under reasonable assumptions) are
guaranteed to converge.
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2.2 The L1BA method

As discussed earlier in Section 1.5, removing arbitrage from the implied volatility surface is abso-
lutely necessary. Here, we introduced the most common approaches namely arbitrage-free smooth-
ing and filtering. The problem with the former method is that nearly all data is changed, while
the latter removes data (and therefore information). In [12] they propose to formulate the data
repair as a linear program, where the constrains are the no-arbitrage relations and the objective
function minimizes price changes (where perturbations outside the bid-ask spread are punished
more harshly). They show that this method - which they call L1BA - is fast in real world large-
scale problems (due to the LP formulation) and that the perturbations are sparse, in the sense
that most data is unchanged.

As discussed in Section 1.4, the no-arbitrage relations can be written as a system of linear in-
equalities in the form Ac ≥ b. If we then define ϵ to be the vector of perturbations that we add
to the call prices c in the hope of making them arbitrage-free, the most general description of an
optimization problem that removes arbitrage is:

min
ϵ

f(ϵ)

s.t. Aϵ ≥ b−Ac (2.2.1)

where the objective function f measures how much the perturbation vector ϵ deviates from the
zero vector.

2.2.1 The L1 method

A very important question is now how to construct an optimization function f which satisfies our
goal of adjusting just a few prices (i.e. keeping the perturbation sparse). Obvious candidates are:

• The L0-norm: f(ϵ) =
∑N

j=1 11{ϵj=0}

• The L1-norm: f(ϵ) =
∑N

j=1 |ϵj |

• The L2-norm: f(ϵ) =
√∑N

j=1 ϵ
2
j

In [12] they argue (using extensive referenced literature) to use the L1-norm. This is because
even though the L0-norm captures the concept of sparsity best, it leads to a non-convex opti-
mization problem which is NP-hard to solve. While the L2-norm has been used extensively in
data-smoothing problems, the authors choose not to use this here since it usually leads to small
perturbations for all prices, while in our application a sparse solution where most prices are un-
perturbed is preferred. They finally note that the L1-norm is more robust to outliers, since the
L2-norm squares outliers resulting in a larger contribution to the objective function.

When we define ϵ+j := max(ϵj , 0), ϵ
−
j := −min(ϵj , 0), θ := [ϵ+ ϵ−]T and B = [−A A], the re-

pair problem with L1-norm minimization can be written as the following LP:

min
θ

1T θ

s.t. Bθ ≤ Ac− b

θ ≥ 0 (2.2.2)

After finding the optimal solution θ∗, the optimal perturbation vector is recovered as ϵ∗ = ϵ+∗ −
ϵ−∗. We (and [12]) call this method the ’L1 method’.

2.2.2 The L1BA method

When solving the LP (2.2.2), no consideration of bid-ask prices is taken. Its input consists of
the calls’ normalized mid prices, which are perturbed by the solution ϵ∗ to produce arbitrage-free
mid prices. In practice, however, we observe a bid-ask spread: the bid price is the highest price
someone is willing to pay, while the ask price is the lowest price at which someone is willing to sell.
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When we look at a snapshot of the order book of SPX, the bid price is always strictly smaller than
the ask price, because if it is not, the buyer and seller are matched, the transaction goes through,
and the order is removed from the order book. This difference is called the bid-ask spread and
provides important information we want to include in the model. To be more specific, we want as
many of the perturbed prices to be in the original bid-ask bounds as possible. This means that a
price with wider spreads should be given more freedom to be perturbed.

Instead of adding the bid-ask constraints in the repair problem (hard constraints), the authors
choose to allow perturbations outside of the bid-ask bounds, but to dis-encourage them by adding
a penalty in the objective function (soft constraints). The main reason is that there might not exist
a solution where all perturbations are inside the bid-ask bounds, and we want our optimization
problem to be feasible in all cases.

An objective function of the form f(ϵ) =
∑N

j=1 fj(ϵj) is chosen, where fj has a non-negative image
and fj(x) should be interpreted as the cost of perturbing the j-th option price by an amount x.
Note that the L1-norm objective stated as the LP (2.2.2) corresponds to fj(x) = |x|. This function
will now be slightly modified to include the bid and ask prices. In [12], they define δaj ,δj > 0 as
the normalised ask-fair and fair-bid spreads respectively, with the idea that the fair price estimate
doesn’t necessarily need to be the mid price. However, since we always use the mid price as the
fair price, we will just write δj to mean the normalized ask-mid spread (same as mid-bid spread
by definition). They argue that for the objective function to make sense, fj(x) should have the
following properties for all j:

1. fj(0) = infx fj(x) = 0. The minimum is attained when there is no perturbation, which is
costless to the objective;

2. fj(x) is monotonically increasing (decreasing) for x > 0 (x < 0);

3. fj(−δj) = fj(δj) = δ0 where δ0 ≥ 0 is a constant. The cost of perturbing a price to its bid
or ask price is the same for all options;

4. dfj(x)/d|x| = 1 for x ∈ (−∞,−δj) ∪ (δj ,+∞). The marginal cost for perturbing a price out
of the bid-ask price bounds is the same for all options.

They therefore propose the following objective function that is very similar to the L1-norm LP
(2.2.2), satisfies all properties and allows to express the repair problem as a LP:

fj(x) = max
(δ0
δj
|x|, |x| − δj + δ0

)
, (2.2.3)

where δ0 ≤ min(δj) such that the marginal cost of perturbing a price within the bid-ask price
band (i.e. δ0/δj) is always smaller than the marginal cost of perturbing mid prices outside the
bid-ask price bounds. This means that a solution with a lot of perturbations inside the bid-ask
spread is preferred to a solution with fewer perturbations, but with perturbation(s) outside the
bid-ask spread. This will be important when we detect arbitraged in Section 4.2. The authors of
[12] simply take δ0 := min(δj), and we will use the same value as well moving forward. The L1BA

Figure 2.1: Comparison of the penalty function in L1 and the penalty function in L1BA, [12].
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method therefore corresponds to the optimization problem:

min
ϵ

f(ϵ) =

N∑
j=1

max
(δ0
δj
|ϵj |, |ϵj | − δj + δ0

)
︸ ︷︷ ︸

=fj(ϵj)

s.t. Aϵ ≥ b−Ac (2.2.4)

The repair problem is rewritten into an LP using introducing auxiliary variables t := [t1, . . . , tN ]T :

min
t,ϵ

N∑
j=1

tj

s.t. − ϵj − δj + δ0 ≤ tj , ϵj − δj + δ0 ≤ tj

− δ0
δj
ϵj ≤ tj ,

δ0
δj
ϵj ≤ tj ,

−Aϵ ≤ −b+Ac (2.2.5)

where the benefit of expressing fj(x) as a maximum (instead of as a piecewise function) becomes
clear.

We now investigate the L1BA method to SPX options data, fetched on 13 July 2023. From Figure
2.2a we see that initially quite a lot of arbitrages are detected. This is because of the inaccuracy
of the mid prices of calls with low strikes. These arbitrages are typically not executable, since we
cannot buy and sell at these mid prices but need to pay half of the (large) bid-ask spread as well.
In Figure 2.2b, we plot the optimal perturbation from L1BA to the option prices (expiring in 5
months). We see that perturbations within the bid-ask spread are preferred, resulting in larger
perturbations for low strikes. Even though perturbations outside this spread are penalized, it is
apparently necessary to put some quotes outside the spread in order to be arbitrage-free.

2.3 The L1BA-PC method

2.3.1 Problems with the L1BA method

As demonstrated in [12], the L1BA method constructed by Cohen et. al. works well in some
limited examples, but in our experience has some problems when applied to the large-scale dataset
one encounters in practice. In their paper they usually repair only a small part of a volatility
slice, e.g. only the strikes ±20% around the ATM value. However, we want to leverage our large
dataset which contains price information on a way wider range of strikes (e.g. ±80% around the
ATM value) so we can repair the implied volatility at these strikes as well, without resorting to
extrapolation methods.

The main problem in doing so is that deep ITM options are not often traded, as can be seen
on Figure 2.3a-2.3b. This is a consequence of the fact that OTM options are attractive to investors
for hedging purposes, since they protect for downside portfolio risk. However, deep ITM options
have a delta near one and therefore behave very similar to the underlying itself. Since one also
foregoes the dividend payments when holding the option instead of the underlying, these deep ITM
options are not particularly attractive to investors. In our order book data, we see that this mani-
fests itself in low volume, wide spreads and therefore relatively inaccurate mid prices. Using these
illiquid (and therefore inaccurate) prices to infer an implied volatility surface will typically not be
meaningful. In the case of the L1BA method (where only call price data is used) this problem
is apparent for low strikes, since these are the ITM calls. However, when looking at Figure 2.3,
we observe that put options are liquid for these low strikes (since these are the OTM puts). It
is for this reason that it is common practice to use call options to calculate implied volatility for
strikes above ATM, while using put options to calculate implied volatility for strikes below ATM.
The main question is now how exactly the put price data can be included in our optimization
framework in a manner that is useful and produces a volatility slice that makes sense. Ideally, we
would like to not impose arbitrary constraints (e.g. use only puts for strikes below ATM), but use
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(a) Initial arbitrages detected in the SPX options data

(b) The L1BA method applied to SPX data

Figure 2.2: Results of the L1BA method

(a) Bid-ask spread for SPX options in the order
book

(b) Average volume for SPX options in the order
book

Figure 2.3: Liquidity characteristics for SPX options

both price quotes and let the algorithm automatically weigh both quotes based on its liquidity (i.e.
its bid-ask spread).

We will propose a new method, called L1BA-PC, which extends the L1BA method by adding
the put option data to the repair problem. We will show that this allows us to obtain arbitrage-
free implied volatility estimates that are close to the implied volatility slice that is provided to us
by an undisclosed external datasource.

27



2.3.2 A naive approach

A first approach would be to construct the equivalent no-arbitrage constraints for puts and write
it as a system of linear inequalities using a matrix Ā and vector b̄, where the (normalized) put
prices p := [p1, . . . , pN ]T are arbitrage free if Āp ≥ b̄. We can then plug in the puts’ normalized
mid-ask δ′j to get an optimization problem that is equivalent to (2.2.4) but with puts instead of
calls. We write this as:

min
ϵ′

f(ϵ′) =

N∑
j=1

max
(δ0
δ′j
|ϵ′j |, |ϵ′j | − δ′j + δ0

)
︸ ︷︷ ︸

=fj(ϵ′j)

s.t. Āϵ′ ≥ b̄− Āp (2.3.1)

Solving (2.2.4) and (2.3.1) then leads to optimal call prices c∗ and optimal put prices p∗. However,
there are a few problems with this approach, mainly because the optimization problems are solved
independently from each other:

• For a fixed maturity T and for each strike K, c∗ and p∗ imply a forward price from put-call
parity (1.2.19). However, note that the optimal call prices are found independently from the
optimal put prices. This means that in general the implied forward price for time T is not
constant as a function of K, similar to Figure 1.1a. This is a violation of the no-arbitrage
condition: we could buy the lowest priced (pseudo-)forward and sell the highest priced one,
to generate an immediate profit while the payoff of the portfolio is always zero. Another way
to state this, is that the no-arbitrage conditions outlined in Section 1.4 are sufficient when
only considering calls. When we add puts to the mix, we need to add the constraint that
put-call parity holds with an implied forward is constant for each maturity.

• For a fixed maturity T and for each strike K, the optimal prices c∗ and p∗ correspond to
implied volatilities σ∗

c and σ∗
p . These are not necessarily equal to each other, and some

(arbitrary) weighting scheme must be devised to obtain one implied volatility σ∗ that will be
considered the implied volatility in the volatility slice at time T

• The construction of Ā and b̄ is not trivial and requires extra memory space (relevant since
A can consist of a million rows and a few thousand columns).

2.3.3 A better approach: L1BA-PC

The second approach - the one we will use in our L1BA-PC method - is to convert put prices to
’synthetic call’ prices using put call parity:

c′ = p+ 1N − k, (2.3.2)

where N is the number of quotes, k := K/F, c′ and p are the normalized prices for a (synthetic)
call and put with strike K and expiration T , and F is the forward at time T .

This results in the following optimization problem:

min
ϵ,ϵ′

f(ϵ, ϵ′) =

N∑
j=1

fj(ϵj) +

N∑
j=1

f ′
j(ϵ

′
j)

s.t. Aϵ ≥ b−Ac

Aϵ′ ≥ b−Ac′

c+ ϵ = c′ + ϵ′ (2.3.3)

where f ′
j is defined as in (2.2.3), but with the mid-ask spread δ′j of the synthetic calls instead of

δj , and ϵ′j is the applied perturbation the the j-th synthetic call price c′j . Note that from (2.3.2)
it follows that the mid-ask spread of the synthetic calls δ′j is the same as that of the puts. We see
immediately that we don’t need to construct nor save matrices representing the put no-arbitrage
constraints, since we only use call prices in our program. Furthermore, the last constraint implies
that the result will have a constant implied forward for each volatility slice, so that the forward
arbitrage is removed as well.
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Theorem 2.3.1. The constraint c+ ϵ = c′ + ϵ′ corresponds to the put-call parity constraint.

Proof. Define c∗ := c + ϵ∗ and c′∗ := c′ + ϵ′∗ , where (ϵ∗, ϵ
′
∗) is the solution of the optimization

problem (2.3.3). Substituting c′∗ into the put-call parity equation (2.3.2), we get the corresponding
optimal put prices p∗ = c′∗ − 1N +k. However, due to the last constraint in (2.3.3), we must have
c∗ = c′∗ for the solution to be feasible. This leads to:

c∗ − p∗ = 1N − k,

meaning that this constraint implies put-call parity for the solution of the optimization problem.

Finally, since after the optimization both the original calls and the synthetic calls will have
the same value, there is no ambiguity over which implied volatility to use to construct the implied
volatility surface.

After more inspection, we observe that it makes no sense to optimize both the original call prices
as the synthetic call prices, as in the end they will have the same price due to the last constraint.
We can reduce the dimension of the optimization problem (2.3.3) by substituting ϵ̂ = ∆c+ϵ, where
∆c := c− ĉ. This leads to:

min
ϵ

g(ϵ) =

N∑
j=1

fj(ϵj) + f̂j(∆cj + ϵj)︸ ︷︷ ︸
:=gj(ϵj)

s.t. Aϵ ≥ b−Ac (2.3.4)

This is the optimization problem we will solve in our L1BA-PC method. When comparing this
to (2.2.4), we see that L1BA-PC is very similar to L1BA, but with the important difference that
the cost of the j-th perturbation is gj(ϵj) instead of fj(ϵj). The difference between the two is that

gj adds information about the put prices through f̂j . Just as (2.2.4) was converted to the linear
program (2.2.5), we will convert (2.3.4) to a linear program using the same technique.

2.3.4 Understanding L1BA-PC

We will now further investigate the L1BA-PC method, to better understand how it works. The
main idea of this method is to convert put prices to synthetic call price using put-call parity (2.3.2).
This way we obtain two option prices for each strike: the original one and the synthetic one. On
Figure ?? we illustrate both prices and their corresponding spread from the perspective of the
original calls cj . The green line corresponds to the (normalized) mid price of the original calls (cj),
and the green covered area to the corresponding spread (±δj). The red line illustrates the mid
price of the synthetic calls (∆cj := c′j − cj) and the covered area its spread (∆cj ± δ′j). We see that
typically one of these prices will have a significantly smaller spread than the other one. Intuitively,
the price with a smaller spread is the more accurate one, as a result of the higher liquidity. We
therefore want our algorithm to take both prices into account, but to give a higher weighting to the
more accurate one. This is what L1BA-PC achieves. To understand this, we need to investigate
the optimization function gj . First start with approximating fj(ϵj) as

δ0
δj
|ϵj |. This is the case for

|ϵj | < δj , i.e. perturbations inside the bid-ask spread, as is typical for most. We write:

gj(ϵj) ≈
δ0
δj
|ϵj |+

δ0
δ′j
|∆cj + ϵj | (2.3.5)

If the spread on the original price is much lower than the one on the synthetic price, the first term
dominates gj . On the other hand, when this spread is much higher, the second term dominates.
We can write:

gj(ϵj) ≈
δ0
δj
|ϵj |, δj ≪ δ′j

gj(ϵj) ≈
δ0
δ′j
|∆cj + ϵj |, δj ≫ δ′j .
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Figure 2.4: Analysis of the original and synthetic call prices and their spreads

In the first case (typically the case for strikes higher than ATM), ϵj will be close to zero, and the
corresponding perturbed call price cj + ϵ∗j will be close to the original call price cj . In the second
case (strikes lower than ATM), ∆cj + ϵ∗j will be close to zero, which means that cj + ϵ∗j ≈ c′j , or
that the perturbed call price will be close to the synthetic one. In a third case (typically around
ATM) the spread for both call prices is similar, resulting in a perturbed price that will be close to
the weighted average of two input prices. The method developed here clearly includes both call
and put price information, and will automatically prefer put prices for low strikes and call prices
for high strikes when constructing the volatility surface.

This is clearly illustrated in Figure 2.5, which plots the solution of the L1BA and L1BA-PC
algorithm. Remember that this solution is the optimal perturbation ϵ∗j from the original call prices
cj . We clearly see that in the case of L1BA-PC the put price information is preferred for low
strikes. The synthetic spread δ′j is way smaller and therefore ϵ∗j ≈ ∆cj . For high strikes, the origi-
nal spread is smaller resulting in ϵ∗j ≈ 0. This is in contrast with the L1BA algorithm of [12], that
doesn’t take into account the information of the synthetic prices and therefore prefers a solution
which has less deviations from the original call prices’ point of view.

2.4 Comparison

It is now time to compare the different implied volatility slices that result from each of the meth-
ods. The data used here is again the option prices fetched on 2023/07/13 with underlying SPX
and expiration 2023/12/15. We can compare the obtained implied volatility slices with an external
benchmark (of which we are not allow to disclose the source). Raw implied volatilities are calcu-
lated by solving for the parameter σ in Black’s formula (1.2.24).

First of all, we look at the implied volatilities of the raw option mid prices. One of the first
things we notice is that for low strikes the implied volatility of raw call prices is zero. To explain
this, notice that from a hedging argument if follows that an ask option price should always be
higher than its intrinsic value D(F −K): if the ask price would be lower than D(F −K), we could
buy the call and hedge by selling a forward and putting DK in a bank account, thereby locking
in a risk-free profit. However, for low strikes, the bid-ask spread of call options is quite large (see
Figure 2.3b) and the mid price might therefore be lower than intrinsic value. In that case, no value
of implied volatility σ will return this mid price, resulting in a default implied volatility of zero as
output. Similarly, for high strikes the raw puts have implied volatility of zero as well (again because
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Figure 2.5: The solution of L1BA and L1BA-PC in the context of the call prices and their spreads.

inaccurate mid prices are smaller than intrinsic value). Because L1BA (the method developed in
[12]) only uses call prices information, we clearly see that for low strikes L1BA deviates far from
the benchmark’s implied volatility slice. This is in contrast with L1BA-PC, which automatically
uses put implied volatilities for low strikes and call implied volatilities for high strikes. We see that
this results in an implied volatility slice that is much closer to the benchmark. However, also note
that the benchmark isn’t perfect either: it uses certain extrapolation methods on the wings. This
explains the divergence of our method from the benchmark for low strikes.

Figure 2.6: Implied volatility slice comparison
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Chapter 3

Repairing the volatility surface of
American options

The methods we covered previously, are based on European options, which can only be exercised
at expiration. The options on index ETF’s (e.g. SPX, QQQ, ...) are usually European. However,
most options on single name stocks (e.g. AMZN, AAPL, LVMH,...) are American (even though
the underlying isn’t necessarily listed in America). The fact that American stocks are considerably
more complicated means that we need a different framework to repair the volatility surface of
American options. On top of that, we have to take into account the dividend payments that these
stocks usually pay, which has an impact on their price and therefore on the forward and implied
volatility as well.

First, we take a look at the difference in price between American and European options, defined
as the early exercise premium. After this, we develop multiple methods to repair the volatility
surface using American calls and puts. Finally, we compare the different methods to the implied
volatility of an external data source.

3.1 The early exercise premium

The difference between an American option and the corresponding European option (i.e. an option
on the same underlying, with the same expiration date and same strike) is that American options
give the holder the right to exercise at any time, while European options only allow to do so at
maturity. Since American options give holders the same rights as European options do, plus some
extra ones, it intuitively makes sense that American options should always be worth as least as
much as their European counterparts:

CAM ≥ CEU , PAM ≥ PEU . (3.1.1)

The difference between the American option price and their European counterpart is called the
exercise premium α:

αC := CAM − CEU ≥ 0, αP := PAM − PEU ≥ 0 (3.1.2)

This early exercise premium (EEP) can be explained in multiple ways:

• With American options we get extra optionality and optionality always has a non-negative
price. The idea is that if a contract pays the holder money in the case that a certain event
- with positive probability - happens, then this contract should be more expensive than an
identical one which doesn’t contain this. If this was not the case, one could buy the former,
sell the latter, thereby locking in a profit when the event with positive probability happens
while being hedged in all other cases.

• Another way to state this is that when comparing (1.2.11) and (1.3.1), we observe that the
American option value is the risk-neutral expectation of the discounted intrinsic value using
the optimal exercise policy, while for European options this expectation is only for a specific
exercise policy (i.e. the one where you exercise at expiration) which is not necessarily the
optimal one.
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• In [10], an interpretation of the early exercise premium is that ”It corresponds to the compen-
sation that the option holder would require in the stopping region in order to postpone exercise
until the maturity date”. The main idea is that for each t, an optimal stopping boundary
Bt can be derived. For an American put, if St < Bt it is optimal to early exercise, while for
St ≥ Bt one should hold on. Following this argument, an American put can be converted
into a European put by holding one American put when the stock price is above the exercise
boundary, and duplicating the put’s exercise value below the boundary (by selling short the
stock and keeping K dollars in a bank account). Note that to keep a level position in the
bank account, the interest on the K dollars must be siphoned off. At expiration, this strategy
clearly matches the payoff of a European put, (K −ST )

+, meaning that the present value of
this strategy must be the European put price. This eventually implies that the early exercise
premium can be interpreted as the present value of the interest earned when the stock price
is below the boundary.

Using the fact that we can derive an arbitrage-free volatility surface using European options, an
intuitive approach to obtain the same for American options would be to convert the American
option quotes to corresponding European ones, after which the original L1BA-PC method can be
used. Another way to state this is that we want to estimate the early exercise premium, to subtract
it from the American option quotes.

3.1.1 EEP estimation

There are multiple approaches to the estimation of the early exercise premium. In the end, this
boils down to the problem of pricing American options, for which (as mentioned in Section 1.3) one
typically uses either tree pricing methods [13], finite difference methods [40], least-squares Monte
Carlo [28], or analytical approximations [3], [5]. Once the pricing model is calibrated against the
American options observed in the market, we can obtain an EEP estimate by plugging in the
calibrated parameters in the corresponding model for European options and subtracting it from
the Americans. This is one of the most common approaches in the financial industry and often
called de-Americanization [9].

In our , we opted for a binomial tree pricer, but other pricing methods are possible. As we

saw in Section 1.3, once the parameter u is defined (e.g. u = eσ
√
∆t as in the CRR model), the

American option price is unambiguously defined. Since this parameter is a function of the implied
volatility σ, we can state that there is a one-to-one correspondence between the implied volatility
used and the American option price in the model. Now for each option quote, we find the σ which
corresponds to the market price:

Find σ∗ such that TreePricerAM (σ∗) = CAM .

This problem corresponds to finding the root of g(σ) := TreePricerAM (σ)−CAM . Since American
options prices are always larger than European ones, we know that the implied volatility σAM of
the American option price interpreted as a European price must be an upper bound. We can then
find the root with the bisection algorithm, starting with the interval [0, σAM ].

Once σ∗ is found, we can immediately derive the corresponding European model price from the
tree, or plug in this σ∗ into Black’s formula (1.2.24) directly. Either way, as N approaches infinity
both lead to the same price, as postulated in (1.3.9). Subtracting the European price from the
American one, we get an estimate of the EEP.

One of the factors that significantly complicates matters is the payment of dividends to hold-
ers of the stock. When a company issues a (cash) dividend, the stock price of that company is
expected to drop by the dividend amount on the date the dividend is paid out (the ex-dividend
date). The reason for this is simple: if this were not the case, a simple arbitrage would be possible
where one buys the stock right before the ex-dividend date and sells it right after, thereby pock-
eting a risk-free profit (i.e. the dividend payment).

There are multiple ways to tackle this problem, and even 50 years after the publication of the
Black-Scholes model, there is apparently no consensus on the appropriate generalization to the
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case of underlyings with cash dividends [25]. We opt here for the so-called escrowed dividend
model, presented in [18]. The concept is rather straightforward: since dividends represent a risk-
free element within the dynamics of stock prices, they can be subtracted from the stock price
process, after which the usual Black-Scholes arguments can be applied. The resulting process
(called the capital process) Ct is modelled as a geometric Brownian motion. This leads to:

dCt = rCtdt+ σCtdWt, Ct := St −
∑

t<ti<T

Itie
−r(ti−t), ST = CT , (3.1.3)

where Iti is the dividend payment paid out at time ti. The payout of a call option is then (CT−K)+

and for European options the Black-Scholes formula can be applied to the process Ct with spot
price C0 := S0 −

∑
0<ti<T Itie

−r(ti−t). Similarly for American options and using the tree-pricing

method, we start from C0 := S0 −
∑

0<ti<T Itie
−r(ti−t) and discretize the continuous process as

described in Section 1.3.

3.1.2 EEP estimation in practice

Before we look at an EEP estimation in practice, we prove a useful property of the early exercise
premium: it is monotonic as a function of strike.

Theorem 3.1.1. Assuming positive interest rates, the early exercise premium for American calls
is decreasing as a function of strike:

αC(K1) ≥ αC(K2), K1 < K2.

The early exercise premium for American puts is increasing as a function of strike:

αP (K1) ≤ αP (K2), K1 < K2.

Proof. We prove this for the case of puts, since the argument for calls is very similar. Consider
the portfolio:

V0 = PAM
0,K2

− PEU
0,K2

− (PAM
0,K1

− PEU
0,K1

), K1 < K2,

where the subscript t,K denotes the price of the corresponding put at time t with strike K, and
all puts have the same expiration. Until the start time t = 0 and expiration, either one of the
following two happens:

1. The counterparty to which we sold short the American put with strike K1 doesn’t exercise
their option early. In this case, we don’t exercise the American put with strike K2 early
either, in which case the value of the American puts are equal to those of the European puts.
In this case, the portfolio value at time T is clearly equal to zero:

VT = 0.

2. The counterparty exercises the American put option with strike K1 early. This means that
we are forced to buy the underlying for a price of K1. However, in this case we will exercise
the American put that we are long at (with strike K2) immediately. This means that we can
sell the underlying for K2, and we pocket a profit of K2 −K1. At expiration, the portfolio
value is:

VT = (K2 −K1)e
r(T−t∗)︸ ︷︷ ︸

≥K2−K1

− (PEU
T,K2

− PEU
T,K1

)︸ ︷︷ ︸
≤K2−K1

≥ 0

Note that our exercising policy is not necessarily optimal, but even with this suboptimal strategy it
follows from the definition of an arbitrage strategy 1.2.3 that in a no-arbitrage world the portfolio
at time 0 must have a positive price. This implies that αP (K2) ≥ αP (K1).

To better understand the behaviour of these premiums, we plot the (normalized) early exercise
premium estimates of AAPL and C in Figure 3.3. We notice a couple of interesting things.

First of all, in Figure 3.1b we observe the expected pattern: it is not optimal to exercise an
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American call early if there is no nearby dividend payment, whereas for (deep) ITM American
puts early exercise is attractive, resulting in a significant early exercise premium. Moreover, for
very short times to maturity as in 3.1a, the early exercise premiums for both puts and calls is close
to zero (notice the scale). This is because we are already that close to expiration that there is not
much added value in the optionality to exercise early. We also notice that these EEP estimates
are quite noisy: they are neither monotonic nor exactly equal to zero.

In the case of an upcoming dividend payment the picture changes dramatically. On Figure 3.1c we
plot the early exercise premium estimate for C, one day to expiration but with a dividend payment
in the meantime. As explained in Section 1.3.4 this dividend payment leads to a drop in the share
price next morning, its size in expectation equal to the dividend amount. Intuitively, it is therefore
logical to the holder of an American call to exercise early, before the dividend payment leads to a
decline in the stock price. On the other hand, it is clearly not optimal for American put holders
to exercise before this drop. This is evident in the EEP estimates: the call options generally have
a significant EEP, while the put options do not. In Figure 3.1d we see that the upcoming dividend
payment influences option prices with longer times to maturity as well, but to a lesser extent.
There is still a significant EEP for deep ITM calls, which is otherwise not the case (as in Figure
3.1b).

(a) EEP estimate of AAPL, 1 day to expiration
(b) EEP estimate of AAPL, 6 months to expi-
ration

(c) EEP estimate of C, 1 day to expiration (d) EEP estimate of C, 6 months to expiration

Figure 3.1: Early exercise premium estimates in various cases

3.2 Repair methods

As explained in Section 2.3, the main idea of L1BA-PC is to convert put prices to (synthetic) call
prices using put-call parity. This is fine when using European options (as is the case for index
options), but unfortunately for American options (all single-name options) put-call parity doesn’t
hold anymore. This means that we can’t easily convert put prices observed in the market to call
prices anymore. Moreover, the no-arbitrage conditions Ac ≥ b derived in Section 1.4 are valid for
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European option prices and not necessarily for American ones.

The main insight of our proposed method(s), is that once a value for the early exercise premium
is fixed, American put prices can be converted to European put prices, after which they can be
converted to (synthetic) European call prices. Hereafter, we solve the same linear optimization
problem as in 2.3 to obtain a repaired arbitrage-free volatility surface.

Figure 3.2: General schematic of our repair methods for American options

3.2.1 The L1BAA-PC method

The first method to construct the arbitrage-free implied volatility surface for American options is
straightforward but rather naive. We simply use the early exercise estimate and subtract it from
the American options to get (pseudo-)European options. These quotes are then passed directly to
the L1BA-PC method described in Section 2.3.

As always, we start by normalizing the quotes and early exercise premium estimates by dividing
by the discounted forward price. Writing C for normalized American calls and P for normalized
American puts, we obtain normalized European calls c and puts p by subtracting the estimated
(normalized) early exercise premium:

c = C− α̂C ,

p = P− α̂P .

Note that for simplicity we assume that the early exercise premium is the same for the bid and
ask price. We then convert the puts to synthetic calls using put call parity:

c′ = p+ 1− K

F
.

Finally, we define ∆c := c− c′ and plug this in the L1BA-PC method, described in (2.3.4)

This method is relatively problematic, since it heavily depends on the early exercise premium
estimates. These are typically quite noisy, as can be seen in Figure 3.3. Moreover, the implied
forward (1.2.25) is not constant as a function of strike. In other words: put-call parity doesn’t hold
for its solution. Similar to how we handled this in the case of L1BA, we will solve this by adding
the put-call parity constraint in the optimization problem.

3.2.2 The L1BAA-OPT method

The strategy we came up with to handle the noisy early exercise premiums is to include them as
free variables in the optimization problem. This way we can easily force their monotonicity by
adding it as a constraint. However, since the value of this early exercise premium isn’t totally
unknown (we have some estimate α̂), we add a penalty in the optimization function that punishes
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large deviations from this estimate. Now, for simplicity, we construct an optimization problem
using call prices only.

min
ϵ,α

f(ϵ,α) =

N∑
j=1

fj(ϵj) + λ1

N∑
k=1

|αk − α̂k|
δ0
δak

s.t. A(ϵ−α) ≥ b−AC

αk ≥ αk+1, k = 1, ..., N, except when k and k + 1 don’t correspond to same expiration.

First of all, we add a penalty term which punishes deviations from the EEP estimates. This term
is scaled by a factor δ0/δk, because (for a default value of λ1 = 1) it makes this term roughly equal
in scale to the corresponding term in the first sum (since fj(x) ≈ δ0

δaj
|x|, see (2.2.3)). This also puts

a greater confidence in estimates for which the bid-ask spread is small, similar to the what is done
in the design of fj .

Moreover, the no-arbitrage constraint Ac ≥ b for European options can now be written as
A(C−α) ≥ b. Adding the EEP α as a variable in the optimization problem allows us to use this
matrix inequality, which only holds for European options, in the context of American options.

Finally, as proved in Section 3.1.2, for each expiration, α should be decreasing as a function
of strike. Again, because we add the EEP as free variables in the optimization method, we can
enforce this by adding it as a constraint. However, since α contains EEP’s for all expirations,
we need to be careful and remove the constraints that would imply that the last estimate for an
expiration must be greater than the first one for the next expiration.

One of the downsides of this method is that the resulting European call prices (C − α + ϵ),
and therefore also the repaired volatility surface, are dependent on the choice of an extra regular-
ization parameter λ1. However, we observe in practice that a value of λ1 = 1 gives good result,
since the scaling δ0/δ

a
k makes the term |αk − α̂k| δ0δak roughly of the same size as fk(ϵk). We can also

interpret this as an advantage, since a larger value of λ1 forces the early exercises premiums to be
closer to the estimates, thereby giving us a way to tune the optimal solution.

3.2.3 The L1BAA-OPT-PC method

It is now time to add the put option quotes to the framework, like we have done in Section 2.3 to
improve the L1BA method to the L1BA-PC method. As explained there, this allows for a much
better fit for lower strikes, since calls for these strikes are very illiquid and the implied volatili-
ties derived from the mid prices therefore inaccurate. This results in the following optimization
problem:

min
ϵ,ϵ′,α,β

f(ϵ,α) =

N∑
j=1

(
fj(ϵj) + f ′

j(ϵ
′
j)
)
+ λ1

N∑
k=1

|αk − α̂k|
δ0
δak

+ λ2

N∑
l=1

|βl − β̂l|
δ0
δ′al

s.t. A(ϵ−α) ≥ b−AC,

A(ϵ′ − β) ≥ b−AP− 1N + k

αk ≥ αk+1, k = 1, ..., N, except when k and k + 1 don’t correspond to same expiration.

βk ≤ βk+1, k = 1, ..., N, except when k and k + 1 don’t correspond to same expiration.

C−α+ ϵ = P− β + ϵ′ + 1N − k

First of all, we have two extra penalty terms instead of one: deviations from the EEP estimates are
punished, in proportion with the inverse of the bid-ask spread of the corresponding option. Using
default values of 1 for both λ1 and λ2, this means that all three terms should be roughly equal in
terms of their size.

The first constraint is exactly the same constraint as the one in LIBAA-OPT: it ensures that
the (pseudo-)European calls C − α are arbitrage-free. Similarly, the constraint for the the syn-
thetic (pseudo-) European calls C′ −α′ would be A(C′ −α′ + ϵ′) ≥ b. However, to decrease the
number of free variables, we apply put-call parity to these synthetic (pseudo-) European calls so
we can use our (pseudo-) European puts P− β directly:

C′ −α′ = P− β + 1N − k. (3.2.1)
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Doing this results in the second constraint.

The third and fourth constraint are a consequence of Theorem 3.1.1, enforcing the call EEP’s
to be decreasing and the put EEP’s to be increasing.

The last constraint we need to enforce is that put-call parity needs to hold between the opti-
mal (pseudo-) European calls and the optimal synthetic (pseudo-) European calls: C − α + ϵ =
C′−α′+ϵ′. Again, we plug in the put-call parity (3.2.1), to limit the amount of variables, resulting
in the last constraint. This is exactly the same as the last constraint in L1BA-PC (2.3.3). The dif-
ference however, is that for L1BA-PC we further reduced the dimension by substituting ϵ′, thereby
removing that constraint. We won’t do this here, mainly to keep the optimization problem clear
and tractable. However, note that an equality constraint of the form x = y can always be con-
verted into two inequality constrains x ≤ y and x ≥ y, meaning that this still corresponds to an LP.

Again, we have a similar disadvantage as previously mentioned: the solution is dependent on
the choice of λ1 and λ2. However, due to the appropriate scaling it seems that both values taken
to be one, gives good results in practice. As an illustration, in Figure 3.3 we investigate the output
after optimization of the early exercise premiums for the AAPL and C options data. We clearly
see that the obtained early exercise premiums are close to the estimates, while the monotonicity
constraints result in monotonely decreasing and increasing call and put premiums respectively.
Note however that this doesn’t necessarily mean that these are the early exercise premiums. One
could even argue that the early exercise premium doesn’t even exist, since there is usually not a
liquid market for both European and American options. We can view these obtained risk premiums
as values that are convenient in the solution of the optimization problem and lead to acceptable
implied volatility surfaces.

(a) EEP output of AAPL after optimization, 1
day to expiration

(b) EEP output of AAPL after optimization, 6
months to expiration

(c) EEP output of C after optimization, 1 day
to expiration

(d) EEP output of C after optimization, 6
months to expiration

Figure 3.3: Early exercise premium output in various cases
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3.3 Comparison

In Figure 3.4, we compare these three methods in the four cases. We notice that our most so-
phisticated method, i.e. L1BAA-OPT-PC generally results in an implied volatility slice that is
close to the one provided by the benchmark. Especially in Figure 3.4c, the situation is relatively
complex because there is only one day to expiration with a dividend payment inbetween. We also
note that in the case of only one day to expiration, vega is very low (as is always the case close
to expiration) over the whole range of strikes, meaning that a seemingly large deviation in implied
volatility still correspond to a very similar option price. Taking this into account, we conclude that
the L1BAA-OPT-PC generally provides a good fit.

Additionally, we see that the L1BAA-PC method works well for close expirations, but fails to
work well for further expirations. The explanation for this is that early exercise premiums are
larger the longer to maturity, meaning that it becomes more important to have accurate values for
the early exercise premiums. Even though the estimates are clearly noisy in Figure 3.1a and 3.1c,
it doesn’t matter that much since the premium is generally small and doesn’t impact the solution
that much.

Unsurprisingly, L1BAA-OPT doesn’t work that well, especially for low strikes. This is essen-
tially the same idea as to why L1BA doesn’t work that well in Figure 2.6, namely that the calls
for these strikes are illiquid, resulting in inaccurate mid prices and therefore inaccurate implied
volatilities. This is not surprising, since the L1BAA-OPT method was developed as a theoretic in-
termediate step to better understand the L1BAA-OPT-PC method, rather than as a valid method
on its own.

From the raw implied volatilities of calls and puts, we see that the mid prices for calls are in-
accurate for low strikes, while those for puts are inaccurate for high strikes. Sometimes the mid
prices are even smaller than intrinsic value, resulting in a default implied volatility of zero. The
L1BAA-OPT-PC methods applies exactly the same principle as L1BA-PC: it prefers put’s implied
volatility for low strikes and call’s implied volatility for high strikes.
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(a) Implied volatility slice of AAPL, 1 day
to expiration

(b) Implied volatility slice of AAPL, 6
months to expiration

(c) Implied volatility slice of C, 1 day to
expiration

(d) Implied volatility slice of C, 6 months
to expiration

Figure 3.4: Implied volatility slices in various cases
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Chapter 4

Applications

In this chapter, we will shortly go over the applications of the repair methods we discussed. First
we show that pre-processing options data to make it arbitrage free results in more robust model
calibration. Thereafter, we investigate how the repair method can be used to detect executable
arbitrage. The applications we discuss are similar to the ones mentioned in [12], but we extend
their analysis by adding the L1BA-PC method (which takes puts into account as well) or pointing
out some important details.

4.1 Robust model calibration

In [12] it is shown how removing arbitrage from option price data results in a more robust model
calibration. Their methodology is the following:

1. Start with arbitrage-free call price data c ∈ RN .

2. In each iteration m ∈ [1, . . . ,M ], generate a noise vector ξ(m) which contains i.i.d. noise

ξ
(m)
j ∼ N (0, σξ). For a proportion 1− γ, replace ξ

(m)
j with 0 (so that a proportion γ of call

prices will contain noise). Define the noise price c̃(m) ∈ RN by:

c̃
(m)
j = cje

ξ
(m)
j , ∀1 ≤ j ≤ N (4.1.1)

3. For each m, repair the noise contaminated prices c̃(m) by using a repair method (such as
L1BA), resulting in ĉ(m) := c̃(m) + ϵ(m).

4. Calibrate an option pricing model to c̃(m) and ĉ(m) separately, resulting in calibration
parameters Θ̃(m) and Θ̂(m). To be more specific, we define the calibration objective as
G(Θ; c) =

∑N
j=1(c

Θ
j − cj)

2/δj , where cΘj is the model price, cj the market price and δj the
bid-ask spread. We therefore have:

Θ̃(m) = argminΘG(Θ; c̃(m)), Θ̂
(m)

= argminΘG(Θ; ĉ(m))

We can then compare the variation in the arbitrage-contaminated parameters Θ̃(m) with the varia-

tion observed in the arbitrage-free parameters Θ̂
(m)

. As expected, [12] reports that for the Heston
model, the variation in the parameters is significantly smaller for arbitrage-free data. They con-
clude that pre-processing option price data by removing arbitrage will result in more robust model
calibration.

A difference in our approach is that instead of creating arbitrage-free call prices c synthetically,
we start from the SPX market data introduced in Section 1.2.5 and make it arbitrage-free using
the L1 method (see Section 2.2.1). Moreover, to test the effectiveness of the L1BA-PC method,
we want to include the put prices as well. We convert the raw put data to synthetic call data
using put-call parity. We then apply the L1 method to obtain arbitrage-free synthetic call data,
after which we apply noise following (4.1.1). The optimal perturbation ϵ corresponding L1BA-PC
is then obtained by applying L1BA-PC to the noise-contaminated call and noise-contaminated
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synthetic call data.

We now try to replicate the results in [12] and compare it with our own method L1BA-PC. Instead
of calibrating the Heston model, we choose to calibrate the Merton jump-diffusion model, because
of its faster calibration properties. This model extends the Black-Scholes model by allowing for
occasional price jumps in the underlying. In this model the underlying asset follows a stochastic
process that is a combination of geometric Brownian motion and a jump process:

St = µt+ σWt +

Nt∑
i=1

Yi, (4.1.2)

where Nt ∼ Poisson(λ) representing the number of jumps of St up to time t and Yi ∼ N (µJ , σ
2
J) is

the size of each jump. The strength of the model lies in the fact that it accounts for the possibility
of extreme market events that cannot be explained by continuous diffusion alone. Similar to other
more advanced option pricing models (Heston, Variance-Gamma,...) it is able to capture some of
the volatility smile observed in the markets. This model consists of 4 parameters: the diffusion
coefficient σ, the jump activity λ, the jump mean µJ and the jump standard deviation σJ There-
fore, we can write: Θ := (σ, λ, µJ , σJ).

The result of our calibration procedure is shown as a normalized histogram in Figure 4.1. First of
all, we come the same conclusion as in [12]: removing arbitrage from the call price data results in
significantly less variation in the obtained model parameters. Moreover, the sample distribution is
clearly more centered around the parameter values of the original prices c, indicated with a verti-
cal dotted line. This suggest that using repair methods to remove arbitrage from option quotes is
strongly recommended before applying pricing models;

From Figure 4.1, we can also observe that including put price data and using L1BA-PC instead
of L1BA results in even less variation and improved calibration robustness. This is not surprising,
since the put prices add extra information, especially relevant at low strikes where the call price
information is inaccurate. Next to improving the repaired implied volatility surface (as outlined
in Section 2.4), this shows the usefulness of the L1BA-PC method.

4.2 Detecting arbitrage

Another useful property of the repair methods is that it can be employed to detect executable
arbitrages. An executable arbitrage is one of the arbitrage strategies outlined in Section 1.4 (e.g.
vertical spread, butterfly, calendar spread,...), but where we take into account that in practice we
need to sell at bid and buy at ask. Note that if we simply check Ac ≥ b, the arbitrage violations
(as shown in Figure 2.2a) are arbitrages that are not necessarily executable, since it assumes that
we can buy/sell options at the mid price. However, the arbitrages detected using the repair method
are executable. The argument for this, outlined in [12], is the following.

4.2.1 Executable arbitrage opportunities

Define ϵ as the optimal perturbation after applying the L1BA method, the bid-ask spread as
Ej := [cj − δj , cj + δj ] and N ϵ,δ as the number of effectively perturbed prices, i.e. the number of
perturbations resulting in prices outside of the bid-ask spread:

N ϵ,δ :=

N∑
j=1

1{|ϵj |>δj}. (4.2.1)

In [12] the following Theorem is stated.

Theorem 4.2.1. The presence of effective perturbations (i.e. N ϵ,δ > 0) indicates that there exist
executable arbitrages.

In other words: N ϵ,δ > 0 is a sufficient condition to guarantee the existence of executable
arbitrage. However, we note that this is only the case if the following critical assumption holds.
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Figure 4.1: Calibration procedure for M = 500, σξ = 0.05, γ = 0.8

Assumption 4.2.2. The repair method L1BA will always prefer a solution with all options inside
the bid-ask spread over a solution with at least one option outside the bid-ask spread.

In practice this doesn’t always hold, as we will show. More specifically, the value of δ0 needs to
be chosen infinitesimally small to ensure this property. In defense of [12], they later mention that
Theorem 4.2.1 holds for ”sufficiently small values of δ0”, which is correct. The problem is that the
value of δ0 that they propose doesn’t always guarantee Assumption 4.2.2.

To prove Theorem 4.2.1, they give the following argument [12]. First of all, note that N ϵ,δ > 0
means that for any perturbation ĉ := c+ ϵ:

if ∀i ∈ [1,M ],

N∑
j=1

aij ĉj ≥ bi, then ∃j ∈ [1, N ] s.t. ĉj /∈ Ej . (4.2.2)

In other words, the fact that for the optimal perturbations at least one of the quotes is outside the
bid-ask spread (N ϵ,δ > 0), must mean that in order for any perturbed quotes ĉ to be arbitrage-free,
at least one of its prices must be outside of the bid-ask spread as well. If this were not the case,
the perturbation ϵ corresponding to ĉ would have been preferred by L1BA (see Assumption 4.2.2)
resulting in N ϵ,δ = 0, thereby reaching a contradiction. The contra-positive statement of (4.2.2)
is:

if ∀j ∈ [1, N ], ĉj ∈ Ej , then ∃i∗ ∈ [1,M ] s.t.

N∑
j=1

ai∗j ĉj < bi∗ . (4.2.3)
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This statement expresses that if N ϵ,δ > 0, but for some perturbation ĉ all quotes are inside the
bid-ask spread, then the perturbation ĉ cannot be arbitrage-free. Again, this is because if it were
not the case, the perturbation ϵ corresponding to ĉ would have been preferred by L1BA (see the
assumption) resulting in N ϵ,δ = 0, thereby reaching a contradiction.

The main insight from (4.2.3) is now that in the case of N ϵ,δ > 0, even if we push all quotes
cj to either its bid cj − δj or its ask cj + δj , there must still be arbitrage in that perturbed price
data. Therefore, it holds that:

N∑
j=1

ai∗j
[
(cj + δj)1ai∗j≥0

+ (cj − δj)1ai∗j<0

]
< bi∗ . (4.2.4)

This represents an executable arbitrage: we can go long the left-hand side (option positions where
we buy at ask and sell at bid) and short the right hand side. This is a portfolio that makes
immediate positive profit, while having only non-negative future payoffs. This means that as a
byproduct of repairing the volatility surface, we can immediately see whether there is executable
arbitrage present as well.

4.2.2 Arbitrage opportunities in practice

However, note again that Assumption 4.2.2 is essential in the argument. In practice, the choice of
the parameter δ0 is crucial. From the definition of the cost function fj (see (2.2.3)) we see that
this parameter punishes the perturbations outside of the bid-ask spread: the smaller we choose δ0,
the harder that perturbations outside of the bid-ask spread are penalized.

In [12] they opt for:

δ
(h)
0 :=

1

N
∧ min

j=1,··· ,N
δj . (4.2.5)

This ensures that for each fj , the marginal cost inside the bid-ask spread (δ0/δj) is smaller than
outside (1), and [12] considers this sufficient for the Assumption 4.2.2 to hold. However, we will

show that this isn’t always true. In some edge cases, δ
(h)
0 will result in a solution which has

perturbations outside of the bid-ask spread, while an arbitrage-free solution with all perturbations
inside the bid-ask spread exists. This is clearly a contradiction of Assumption 4.2.2. We propose
the following value of δ0, which is considerably smaller:

δ
(l)
0 :=

(
min

j=1,··· ,N
δj

)
/N (4.2.6)

This value of δ0 gives better guarantees that a the L1BA method will prefer a solution with all
perturbations inside the bid-ask spread. However, this value doesn’t guarantee that Assumption
4.2.2 holds either. Only if we take δ0 infinitesimally small, we are theoretically guaranteed for this
Assumption to hold. However, this is obviously not feasible in practice, because we are limited
by the finite-precision floating point arithmetic of our computer. Also note that we can’t take δ0
to be equal to zero, because in that case the L1BA optimization problem (2.2.4) becomes infeasible.

The only way that we can know for sure that there exists a perturbation within bid-ask that
is arbitrage-free, is by adding it as a hard constraint instead of a soft constraint. In the develop-
ment of L1BA (see Section 2.2) it was argued that solutions outside of the bid-ask spread should be
possible, because otherwise the optimization problem might be infeasible. The bid-ask spread was
added as a soft constraint: perturbations outside of it were allowed, but were punished marginally
harder than inside the bid-ask spread. However, we can also choose to only allow solutions inside
the bid-ask spread δ (hard constraint). The extension of L1 with the hard constraint is as follows:

min
ϵ

N∑
j=1

|ϵj |

s.t. A(c+ ϵ) ≥ b

− δ ≤ ϵ ≤ δ (4.2.7)
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This might make the problem infeasible: in some cases it is impossible to repair the call options
without putting some quotes outside the bid-ask spread. If this is the case, it means that all
perturbations within bid-ask must contain arbitrage. Therefore, executable arbitrages must exist
(since in such a strategy we sell at bid and buy at ask, making the resulting perturbation within
bid-ask). Also note that in the limit (δ0 infinitesimally small), L1BA (2.2.4) and 4.2.7 are equiva-
lent, because perturbations outside bid-ask are made infinitely expensive.

We now use SPX options data gathered between 2023/06/16 and 2023/07/13 to check whether
executable arbitrage is detected accurately. Each hour during market open, a snapshot is made
and the following procedure is executed:

• We repair the option quotes using L1BA with parameter δ
(h)
0

• We repair the option quotes using L1BA with parameter δ
(l)
0

• We solve the optimization problem 4.2.7, thereby checking whether an arbitrage-free solution
within bid-ask exists (resulting in an executable arbitrage opportunity)

The result is shown in Figure 4.2. For each method, we show when the method flags an executable

arbitrage opportunity (i.e. N ϵ,δ > 0). We clearly observe here that L1BA using δ
(1)
0 often flags

executable arbitrage when it doesn’t exist (i.e. a false positive). As discussed, this is because
for high values of δ0, Assumption 4.2.2 doesn’t necessarily hold, meaning that L1BA doesn’t
necessarily always choose a solution inside the bid-ask spread, even though there might be such a
solution. Because of this, the statement ’N ϵ,δ > 0’ doesn’t always imply the existence of executable
arbitrage. In the second plot, we see that decreasing δ0 results in less false positives. However,
in one case it still resulted in a solution outside the bid-ask spread, while a solution inside exists.
In order to overcome this, δ0 should be chosen even smaller. In Figure 4.3 we show an example

Figure 4.2: Effect of δ0 on the capability of detecting executable arbitrage

of an edge case in which L1BA with insufficiently small δ0 results in a violation of Assumption
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4.2.2: a solution outside the bid-ask spread is preferred (black dotted line), while a solution inside

the bid-ask spread exists. In this case, using the δ
(h)
0 results in a flagging of executable arbitrage,

while this is not true. However, we see that by decreasing δ0, a solution inside the bid-ask spread
is found, thereby preventing the false positive signal. We also observe that by taking δ0 to be small
enough, L1BA is basically equivalent to the hard-constrained problem (4.2.7), which corresponds
to the fact that both are the same for infinitesimally small δ0. We conclude that the L1BA method

Figure 4.3: Example in which a parameter value of δ0 that is too large results in a (false positive)
detection of executable arbitrage

can therefore be used as a reliable indicator to check whether executable arbitrage exists. However,
in order to do so, δ0 needs to be chosen small enough to prevent false positives.
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