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Abstract

Previous studies have shown that static risk constraints based on prevalent risk measures, such
as Value at Risk and Expected Shortfall, are ineffective to curb the maximal expected utility of
a tail-risk-secking trader with an S-shaped utility function under portfolio optimisation problems
while imposing constraints throughout the whole trading period can reduce the achieved utility
effectively. This paper shows that the maximal expected utility can be bounded to an acceptable
level when a finite mumber of checking times are imposed. We do so by extending the original
Least-Square Monte Carlo method to endogenous states and transforming the utility to reduce the
simulation bias. The simulation study results of different economy models and utility functions
conclude our findings, and the extended method can be applied to general utility optimisation
problems with S-shaped utility if a differentiable and invertible transformation function exists.
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Introduction

Portfolio optimisation has generally been expressed as the problem of maximising expected utility
function under the expected utility hypothesis. This hypothesis states that the expected value of
the utility function will be the most representative of the utility at any given point in time in the
face of uncertainty. The main issue with this optimisation problem is that a uniquely correct way
of quantifying utility may not exist. A general way is to assume that the individual is risk-averse,
which implies that the utility function should be concave and diminishing marginal wealth utility.
However, the concave assumption may not be adequate to model the behaviour of an agent’s
preferences in a real trading environment. Kahneman & Twversky (2013) state that individuals
may be risk-seeking over positive loss while keeps the risk-averse behaviour over positive payoff.
Follow with Armstrong et al. (2020), this paper also considers the traders with 'tail-risk-seeking’
behaviour who are less concerned with extremal losses and hence their utility function is assumed
to be S-shaped.

Armstrong & Brigo (20194) show a surprising result that the Value at Risk (VaR) and Expected
Shortfall (ES) is completely ineffective to limit the risk-seeking behaviour of the tail-risk-seeking
trader. They proved this result through a portfolio optimisation problem with S-shaped utility
under static risk constraints. It turned out that neither VaR nor ES can change the maximum
expected utility achieved by a trader who is seeking tail risk, compared to the case without any
risk constraint. An earlier version of this conclusion is driven by Armstrong & DBrigo (2018),
which only considers the Black-Scholes market. Armstrong & Brigo (2019a) show that the positive
homogeneity of the risk measure is the main reason that causes this problem. They introduce a
kind of portfolio that is with non-positive price and non-positive risk but with positive probability
to being strictly positive measured by a coherent risk measure p and call this as p-arbitrage and call
the risk measure as ineffective if a static risk constraint from this risk measure cannot reduce the
expected utility of a trader with limited liability. The ineffectiveness of a static risk constraint is
proved to be equivalent to the existence of the corresponding p-arbitrage under the given coherent
risk measure p. Armstrong et al. (2020) show that if the risk constraint is instead dynamic, that
is, the risk constraint is imposed throughout the entire trading horizon, the maximal expected
utility achieved can be reduced. They estimate the portfolio risk at each evaluation time by
introducing an evaluation window under the assumption that the assets holding is unchanged.
The emphasis for us, is that though the dynamic risk constraint can bound the maximal expected
utility effectively if the constraint is imposed through the whole trading horizon, the efficiency of
a single risk constraint during the horizon remains unknown. Furthermore, whether the dynamic
risk constraint can still reduce the maximal expected utility if the constraint is imposed only in
some of the evaluation time but not the whole trading period is also unknown.

We thus explore a simple modification to the stochastic optimisation problem introduced by
Armstrong et al. (2020). The risk measure is still imposed dynamically but only on a finite number
of checking points throughont the trading horizon. It turns out that the modified optimisation
problem can be re-written as a stochastic control problem with an endogenous state and a dy-
namic risk constraint that differs through the trading period. Analytical solutions are limited to
this type of control problem with few stochastic factors and limitations on the dynamics. Simula-
tion approach, therefore, has become a field of active research activity due to its dexibility over the
number of variables and stochastic factors. One of the simulation methods that has been devel-
oped extensively recently is the Least-Squares Monte Carlo (LSMC) method due to its flexibility
in the dynamics of underlying processes and restrictions on constraints. This algorithm generally
contains a forward simulation process, and a backward optimisation process where regression is
performed to approximate the value function. When applying the method to endogenous state
variables, the simulation becomes complicated as the future state will be affected by current con-




trol. Another problem is that the basis function for regression in the backward optimisation is
difficult to find when the objective function is based on utility functions. Non-appropriate basis
functions will rapidly amplify the error of the regression and blow up the solution. Andreasson &
Shevchenko (2019) provides a possible approach to the standard discrete dynamic programming
problem with concave utility function. We extend this method to the S-shaped utility optimisation
problem we face. Following Andreasson & Shevchenko (2019), we propose to transform the utility
function to improve the fit, then try to avoid the re-transform bias caused by the non-linearity of
the transformation function. In order to improve the exploration of the state space, instead of sim-
ulating continuous process path, we conduct a re-sampling on the state variable when performing
the forward simulation process.

Our main contribution is to show that the maximal expected utility is indeed decreasing as the
number of checking points increases with the VaR or ES constraint, in the sense that although the
efficiency of the risk constraint is highly depend on the shape of the utility function, adding enough
checking points can still bound the maximal expected utility to an acceptable level. Besides, the
extended LSMC algorithm we introduce can deal with general portfolio optimisation problems with
flexible risk constraints although the computational amount is large.

We conclude the introduction by the organisation of this paper. A glossary is given after this
introdunction to better explain the symbols we use in the paper. Chapter 1 gives the two economy
cases we consider. Chapter 2 introduces the extended LSMC method for our stochastic control
problem. The detailed discussion with simulated results of the two economy cases is in Chapter
3. Then, a conclusion is given as an end of this paper. Supporting materials are deferred to the
appendix.




Glossary

T @ a positive number that represents the current checking time.
Oz : {rnec(0,T):i=1,...,2,Z ¢ Z}, the set of checking times.
p : a function that obeys the definition of risk.

E € {J, B}, the superscript means that - is under the corresponding economy case, .J rep-
resents the case with jump process and B represents the one with a geometric Brownian
Motion.

Il : an admissible process that represents a portfolio strategy.
X : astochastic process that represents the value of a portlolio.
A asmall positive number that represents an evaluation window by the portfolio manager.

L : a stochastic process that represents the estimated loss of a portfolio given the evaluation
window A.

X(II) : the symbol (II) states that the portfolio is affected by the control II. This symbol is
dropped after section 2.1 for symbol simplification.

A- ¢ the change of movement of - in a small time scale.
K : aset of portfolio strategies under a given constraint.
A(K) : a set of admissible portfolio strategies with a given dynamic risk constraint.

®(-) : a real-value function that represents the approximated conditional expectation of the value
function from a stochastic control problem.

T'(-) : an invertible real-value function that represents the transformation we apply to the utility.

Te(---) : areal-value function that represents the evolution of a portfolio from time ¢ to the time

t+ A,




Chapter 1

Model setup

For simplicity of exposition, we consider two economy cases, each of which is with one risk-free
bond and one risky asset. The risk-free rate is assumed to be r. Let (0, F {Fi} ciep . ) be a
filtered probability space with a fixed terminal horizon T" > 0 that supports a one-dimensional
Brownian Motion W = (W),~,. The two risky assets are defined to be a jump process of "discrete’
geometric Brownian Motion type and a standard geometric Brownian Motion, respectively. A
dynamic risk constraint is imposed such that p(L,) < R with confidence level o for some checking
times 7 € {n, € (0,T):¢=1,....Z, Z € Z} = Oz, where L, is the loss at time 7, p(-) denotes
some risk measure and R is an exogenous limit of risk.

1.1 The economy with a jump process

The price process 7 = [S”Tt}t}[} of the risky asset, in this case, is defined to follow a 'discrete’

geometric Brownian Motion in the form of
S'I[} = .?'I[}.
o\ T
log S"TTF,-Q = log ST, + (Iu.J — T) 7t o T/2eq,
e T
log §7p = logS'FTf,-Q + (Iu."T - %) 5t o \/T/2¢s,

with initial price s”p, drift 7 and volatility 7 > 0, where 1 and =2 are two independent variables
following the standard Normal distribution.

A trader is assumed to invest in the risky and risk-free assets dynamically with an amount of
17, into the risky one at time . The portfolio strategy 117 = (1["1:}!}0 is set to be admissible, i.e.

it's adapted and f[}T ll'Igrh‘ < 0o almost surely. The set of admissible portfolio strategies is then
denoted as A”y. The value of the portfolio X7, at time # can then be expressed as

1’
dx’, = Q—J‘AS"I +r(X7 -1’ dt, X'o =2y, (1.1.1)
fo Ry
where x7y is an exogenously initial capital from the trader and AS7, is defined as

AST =87, 57,
= exp(log S7) - exp(logS'I!— )
= exp(log §7,)[L — exp(—Alog S7,)],
where Alog §7¢ =log§7; —log §7,~. Then by the [t&’s integral of jump process, we have
X'IH_A = e'AX('_}! — A, + 11, exp(Alog ST

for any t and A > 0, where X7, is defined by dX/, = r (X/, - l[”Tg} dt. Then the difference
between X7, A and e X7,

XTiia—e™X7 = —AIY, + 11 exp(Alog §74) (1.1.2)




can be interpreted as the portfolio loss in the time horizon [f, + Al.

At each time ¢, the portfolio manager assesses the risk which given from equation (1.1.2).
Suggested by Yiu (2004), we suppose that under normal circumstances, the manager only has the
information of the investor's strategy II7 up to current time £, and he assumes II7 to be fixed
during the evaluation window [t,t + A]. Then the loss of the portfolio over [t,f + A] estimated at
time #, denoted as L;, is given by

L7, = ™11, — 117 exp(Alog §7,).

Notice that the price of the risky asset §7; at time ¢ only changes in time horizons [% -
and [T — 4,7] for any small § € R*, in other time it’s simply e™*117,. In [T — 6, L +
[T — 5,7, we have

72

Alog§7, = (p.-’ . UT) g—a-?\/rﬁf, (1.1.3)

where = ~ N(0,1). Hence, the estimated loss in these two horizons follow

1 o\ T
log(——— ey _ [, 02 )2
og| TR ) (u 7 )3

1
al /T /2

Remark 1.1.1. There are different ways to estimate the loss of the portfolio. We can alternatively
assume that the proportion of the amount invested in the risky asset, 1[';1,-“){';{_. to be fixed,
recommended by Cuoco et al. (2008). In this approach, the distribution of L”; also depends on
the current value X,, which causes a more complicated and computational heavy problem. Thus
we only focus on the approach by Yiu (2004).

~ N(0,1).

From equation (1.1.3), AlogS”, is normally distributed, leading to a shifted log-normal distri-
bution of the loss L7; for time £ in [§ — 6, % + &] and [T — 6,7 and hence the evaluating point
t that is neighbour to time 7°/2 and T if the evaluation window contains the time T°/2 and 7.
Though shifted log-normal distribution is not as convenient a property as normal distribution, we
can still solve for the quantile with desired confidence levels nmumerically, and hence the correspond-
ing Value-at Risk (VaR) which is defined as VaR,, (L;) :=sup{x € R: P(L; > x) > a}. In other
time horizon, VaR, (L"T,-(fr)) is simply equal to the loss, since L'+ (7) is constant ab given time
Tg [% — 4, % + 8 U [T — 6, T] with > 0, and the maximal value that is not greater than L7 ()
is the loss itself. We then define the constraint set

Kyp = {m € R: VaR, (L7 (7)) < R.7 € Oz}

such that the constraint deduced from VaR at time 7 is equivalent to 117, € K . Expected
Shortfall (ES) is defined to be ES. (L) := E[L: | Li = VaRa (L;)] which can only be numerically
evaluated with loss L7;. Due to the huge computational amount when performing the algorithm
in Chapter 2, we do not take it into consideration in this economy case.

1.2 The economy with a geometric Brownian Motion

We now consider the price process §% = (SB‘):}U of the risky asset to have a geometric Brownian
Motion
ds®, = ,u.SB!dr +08B,dB,

with initial value ¥y = 0, drift ¥ and volatility ¢° > 0. The portfolio strategy 1% = [llBg)!}U
is still assumed to be admissible, and fix at every evaluation window [t,# + A]. Then the set of
admissible portfolio strategies in this case is denoted as AP,. Hence the portfolio value process
XE = (XBg)!.)[} is evolved as

, i .
dX5B, = qB:dSB! +r (X8, —115,) dt
= [r X5, + 18, (u" — )] dt + 117,05 aW, (1.2.1)

10




with exogenous initial capital XB, =B

deduce

o, which is an Ornstein—Uhlenbeck process. Hence we can

A A
XB:+A o erAXB! — (,U.B o T‘] [ er{!-{-A—le[BSdlq L O_Bf er{!-{-A—le[BSdLVS
t t

for any + and A > 0. Based on Yiu (2004), the loss LZ; of the portfolio is of the form

t+a +A
LBg (r— H-B)] er{!+A—sJ ”.Bsd.? _ UB] er{!+A—sJuBSdH_:S
t t
=t 1)

t+ A
e — o2k f g A=s gy,
r t

which follows a normal normal distribution with the mean and the variance

(Iu.B —r) (E'A — 1)

. 2
{ [eer _ 1) O’B 1[}35

7B
E[L] = o

1%, Var(L%) =

By the similar approach as in section 1.1, we can define the constraint set for I1¥ by setting the
risk measure to be VaR and ES, denoted K&, and K&,

B _ rA ey
KB = {fr P i Gilintenk) B aﬁvu@-lm)w < R} (1.2.2)
: T 2r
(1.2.3)
B _ rA M ores 4 —1¢.
KB = {‘J‘( ER: _W”_"BV < o Lo ((Dﬂ_ m))|ﬂ| < R}, (1.2.4)

where ®(-) is the cumulative distribution function of the standard normal distribution, and ¢(.) is
the corresponding probability density function. The risk constraints deduced from VaR and ES at
time 7 are again equivalent to 115, € K& and 115, € K[ respectively. We now state the lemma
from Armstrong et al. (2020), which shows that in this economy case, the efficiency of these two
constraints are related to the proportion of (uf —r) over o, and the value of the confidence level
o and time step A.

Lemma 1.2.1. (Armstrong et al. (2020), Lemma 1) Define the constants

. _ fetrAa—1 r 1 . o ferAa—_1 g (@ Ha))
Myar = —\| =5 — a2 ') > 0. Mps = \|—F——z———

= (.

Then for i € {VaR, ES}, the sets KP defined in (1.2.4) have the following properties,

. if “j—;’ > M;, then there exists —oo < ki < 0 such that KB € [k}, o),

ut=ri

0 . . oo .
o if |Fop| < M;, then there exists —oo < k} < 0 < ky < 0o such that KE = _k;,kg],

o if “:—;’ < M;, then there exists 0 < ki < oo such that KF = (—oo_.}.:é].

1.3 S-shaped utility function and optimisation problem

We assume that the trader is of "tail-risk-seeking’ type who is not sensitive to extremal losses with
S-shaped utility function U{-). The trader is supposed to maximise his expected utility of the
terminal portfolio value. We also adopt the assnmption given by Armstrong et al. (2020),

Assumption 1.3.1. (Armstrong et al. (2020), Assumption 1 ) The utility function U is continuous,

increasing and concave (resp. convex) onx > 0 (resp. = < 0) with U(0) = 0 and lim, , % =0.

11




Note that the utility function U/(-) can be non-differentiable. Under the assumption, the trader
is risk averse in the domain of positive profit and risk seeking over the domain of loss. Moreover,
the "tail-risk-seeking’ behaviour of the trader can be shown from the sub-linear growth of the utility
function during extremal losses.

The underlying optimisation problem can then be expressed as

Vit,z) = HSEPKJEHJJ [U (Xp(11))] (1.3.1)
€A(

where X7(1I) is of the dynamic given by (1.1.1) or (1.2.1), and A(K) is defined to be the corre-
sponding admissible set of portfolio strategies with a given dynamic risk constraint,

AR) ={llc Ayt w)e K LaP— ae (tw)}

where K is some given set and £ is the Lebesgue measure. If the risk constraint is absent, then we
set K = Ky := R, and if the dynamic risk constraint is in place, we set K € {K¢, 5, K& 5, K5}

Let Vi (t,) be the value function of problem (1.3.1) where K € {Ky, Ki\g, Kt g, K5} reflects
the dynamic risk constraint and the economic model to be taken. The proposition from Armstrong
et al. (2020), shown as proposition 1.3.2, indicates that by replicating a set of digital options with
a large probability to gain and a small probability to have extremal losses, the tail-risk-seeking
trader can achieve arbitrarily high utility if there is no constraint on the strategy.

Proposition 1.3.2. (Armstrong et al. (2020), proposition 1) The value function of the uncon-
strained portfolio optimisation problem is Vi (f,x) = sup, U(s).

If a static constraint is taken to the terminal portlolio value,Armstrong & Brigo (2019b) proved
that the trader can still attain an extremely high utility by manipulate the digital structure.
Armstrong et al. (2020) show that if a dynamic constraint is adopted through the whole trading
process, i.e. applying the constraint to the strategy II, at all time ¢ € [0, T), the maximal expected
utility can be constrained.

We are interested in investigating whether the maximum expected utility would still be bounded
if the risk constraint were applied only at some discrete checking time 7 € @5 throughout the
trading process.

Note that the portfolio optimisation problem of the form (1.3.1) with U(-) being S-shaped and
constraints for all time ¢ € [0,7) is studied by Armstrong et al. (2020) through analysing the
performance of the corresponding HJB equations. Their results are not applicable to our settings
as our constraint is not applied throngh the whole trading process. Basak & Shapiro (2001) studied
the dynamic portfolio management problem based on the VaR constraint but the risk constraint
imposed is static, which is not suitable for our model. Dong & Zheng (2019) also consider the
problem with S-shaped utility, and with the strategy set K being a convex cone which is not the
case in our model suggested by 1.2.1. Another problem is that due to the discrete behaviour of
our checking process, the value function is analytically unsolvable in most of the cases due to the
complexity of the dynamics of the risky asset, and hence the portfolio value under the effect of the
risk constraint. Thus we seek to solve the corresponding optimisation problem numerically.
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Chapter 2

Least-Squares Monte Carlo
method with transformed utility

Notice that based on our setting in Chapter 1, the portfolio optimisation problem (1.3.1) is a mmlti-
period stochastic control problem with state process X (1) and control I1. Due to the discrete type
of the constraint in time, we turn to the Least-Squares Monte Carlo (LSMC) method as it imposes
fewer restrictions on the constraint and underlying process. Since the original LSMC method,
developed by Longstaff & Schwartz (2001), only provides simulation to exogenous states which
differs from our model, we consider a more general case containing both exogenous and endogenous
states, and perform a transform to the utility function, then try to avoid the re-transform bias.

2.1 Problem definition

With the fixed time horizon T, we divide the interval [0, T] into n equal sub-intervals with grid
points 0 =ty < t, < ... <t, = T satisfying t; =iA,1 =0,...n and A is the evaluation window of
the portfolio manager. Let (Q, F. {F:} ;<. F) be, as in Chapter 1, the filtered probability space
where J; contains the necessary information up to time . We only consider the processed which are
well-defined and adapted to {Ft by, <. The portfolio strategy I1 = (Il¢,), ;_ , can be regarded
as the control which takes value in the admissible set A(K). We also let Z = (Z; ), .., €2
be the perturbation term with realisation z;. Then X(1I) = (Xe(l))y, s, n EX I8 the controlled
state variable with evolution function

Koo (1) = T, (Xe, (1), 1Ly, 22, )

i+1 (
interpreting that the state in the next period depends on the current state, the current control and
the realisation of the perturbation term.
The multi-period dynamic optimisation problem (1.3.1) can be re-formulated as
Vo (Xo)= sup E[U (Xp(1D)) | Xo,11].
Me A{K)
In general, optimizing with respect to all controls II € A(K) at one run is difficult. A possible
solution to simplify the calculation is through backward recursion by Bellman dynamiec program-
ming principle Bellman (1966) which transforms a multi-period optimisation problem into several
single-period problems. If the value {7 (X'p(1I)) is known at time T, then the optimal control IT}, o
at time step T — A can be generated by

I} A = arg SUPpL,_ A ca(k)E (U (X7(Il)) | X7-a,11al,
leading to the value function at time T — A,
Vi—alz) =E[U(Xp(ID) | Xp_a(ll) == 115 _A].

The multi-period stochastic control problem can then be solved with backward recursion, and the
alue functions at sequential time steps read

Vi(x)= sup E[Vi, (X,
MMeAK)

Vi, (r) = Ulx).

(1)) | X, (1) = 2210, ] yi=n—1,...,0

i+1 1+1
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This simplified problem is again normally not solvable analytically and still requires numerical
methods. As the complexity of the underlying stochastic process increases, the computation
amount of the numerical solution blows up rapidly. In the most straightforward cases, the state
variable is not affected by the control, that is X;(II) = X;, the LSMC method is then to approxi-
mate the conditional expectation @, (X, ) with the form

P, (X)) =E :‘*’1'.4,1 (X:.H) | X:.]

by some basis function with independent variable X,, and response variable V;,,, (X,,,,), denoted
(Iﬂ)t. (X:,). If the state is affected by the control, by Kharroubi et al. (2014), the conditional
expectation

®,, (X;,(I0),1L,) = E [Vi,,, (Xo,, (ID) | X, (11,11, ]

i+1 i+1
could be estimated with regression over Xy, (I1) and randomised 11;,. For simplification, the symbol

(II) will be dropped from notations of the kind X (IT) in the rest of the paper unless specified.
2.2 Basis functions and transformed utility
Besides ordinary polynomials, which is the simplest basis function, we also state several com-

mouly used orthogonal basis in table 2.1, including Chebyshev, Laguerre, Legendre and Hermite
polynomials.

Polynomial  fo(z) fi(z) fulz)
Chebyshev 1 x 2 fu—1(x) — frn—2(x)
Laguerre 1 1—2 (2(?1—1)+l—J-‘)fn—11(-1‘)—(?’1—1”“—2(1‘)
Legendre 1 T %d'x“ (#2—1)n
Hermite 1 T (—l)”e_I2 dfi:l (e_”z)

Table 2.1: Basis functions that are commonly used in research.

Note that all these basis functions can only work globally ouly when the approximated function
is strictly convex or concave. When the value function is based on some non-linear utility function,
it is thus difficult to fit with linear regression because of the extremal curvation in the utility
function, unless constrained locally. Due to the S-shape behaviour of the utility from assumption
1.3.1, these basis functions might produce inaccurate results. Besides, payoff and utility that are
highly non-linear, abruptly changing or non-continnous can be harder for the LSMC algorithm to
handle, by Zhang et al. (2019). Increase the complexity of the basis function might be helpful to
improve the accuracy, but it also requires an increase of the sample paths with a large computational
cost.

Andreasson & Shevchenko (2019) gives a possible solution to a similar problem with increasing,
monotonic and concave utility function by transforming the utility and try to avoid the re-transform
bias. We try to extend this method to the S-shaped utility.

The idea of the transformation is to reduce the non-linearity of the utility function, and the het-
eroskedastic, that is having different variances, of the fitted residuals. The least-squares regression
will then be performed to the transformed value function.

Let the invertible transformation 77 : B — R and the inverse 77! : B — R, such that
T7YT(x)) = #. Then the state variable under the transformation still depends on the control. We
define L (X;,1I;) be a basis vector function and A; is the corresponding coefficients vector. Then
as described, the value function with transformed utility is approximated as
(X

i+l it1

E[T (V, ) | XL, | = A} L(X,, 10L,) .

By the ordinary linear regression, with M independent paths of the state process and the
corresponding realised control variables, we assume that

P (Vs (X01.)) = AL O L) +

m iid m

whereﬁtlwf‘}‘(-], E:ﬁ;ﬂzﬁ, mr:ﬁtl]:r}fl, m=1,....M
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for some distribution Fy, (&,) of €,. The best linear unbiased estimator of A, is then given as

M
- 2
Ay = arg min Z [f (l"z,+1 (‘X:':E_H)) — AL (x;:‘,u;’j)] .

T m=1
Note that K;‘ is consistent and asymptotically normally distributed, and it will be the maxinmum
likelihood estimator if the distribution £, (e, ) is normal.

After the transformation and the approximation, we then try to re-transform the estimated
function into the original scale, that is having @, (X3, (1I),1L;) as the form

Or, (X, (1), 11) := T (AL L (X, I12,))

= fr‘l (AL L (X, ML) +€2,) dFy, (er,) (2.2.1)

A simple idea is to let 7% = 77!, However, even the true A is given, by the Jansen's inequality,
we will still have E[U(-)] < U(E[:]) in the concave part of the utility function and E[U(-)] = U(E[-])
in the convex part, since in this process we estimate the state variable first then perform the utility
which should be done in reverse direction by equation (1.3.1). Hence letting 75 = T~ will result
in neither unbiased nor consistent results. Another issue is that unless the distribution of €, is
known, equation (2.2.1) is both analytically and numerically unsolvable. Thus we have to estimate
the distribution of the residuals as well as reduce the bias the re-transformation might causes.

2.3 Smearing estimate with heteroskedasticity

Duan (1983) produced a non-parametric method, the smearing estimate, to deal with the re-
transformation problem as described in section 2.2. It's an effective consistent estimate of the
expected response on the original scale after a linear regression on a transformed scale. Duan
(1983) described it as a type of low-preminm insurance against departures from the assnmptions
of the parameter distribution.

For symbol simplification, in this section, we denote the original observations of the value
function at given time ¢ as Y™, m = 1,..., M and the corresponding transformed value as ™, m =
1,...,M such that 3™ = T(Y"™), Y™ = TE(p™), ie. TF = T-'. Assume that both T and
T8 are monotonic and continuously differentiable. Then the linear regression performed on the
transformed observations can be denoted as

nru — AL+ M, em i-i'_\-.ll F(), E [Em] =0, var [Em] _ O’Q,

where A is the coefficient vector , L™ is the vector of chosen basis based on the observed value
and €™ is the corresponding independent and identically distributed residuals that follows some
distribution F'(-) with zero mean and finite variance. Note that F(-) can be unknown as long as it
has zero mean and constant variance.

By Jensen's inequality, if we perform the re-transformation 7! to the prediction of the trans-
formed value, i.e. letting 7% = 71, the result would be inaceurate since E[Y] < 771 (E[A'L + ¢])
if 77! is concave and E[Y] = T (E [A'L +¢]) if 7! is convex.

Duan (1983) suggest that instead, we can have the approximation in the form of

E[Y]=E[T " (AL +¢)]
= jr-l (A'L +¢) dF ()

after the estimation of the coefficient A by using the empirical distribution function (edf) of e
where the edf is of the form

M
e 1 “mn
Furle) = ¥ E 1{e" < e}

m=1

with the indicator function 1 that equals 1 if € < e and 0 otherwise. Then the estimated
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expectation of V' is given by

Bly] = fr—l (A’L—s)dﬁu(s)
M Z‘r ( ,,)

m=1

where
em n J'I m

Notice that in Duan (1983} the variance of the residual is assumed to be constant, but in our
model, as the state variable is affected by the control variable, heteroskedasticity is present in the
regression. Hence we need to adjust the estimated residual.

Since the variance is not constant, we assume that var[e™] = ¢?C(L™) for some new basis
function C'(L™). We adopt the method from Harvey (1976) to estimate function C'(L™) that
causes the heteroskedasticity. To avoid negative value, we let C'(L™) = exp(L'L™), where £ =
Lo. Ly .., . Lk is another regression coeflicient vector, Then the residual is of the form

2 = g2C(L"M Y = 2L T2, Elv] =0,E :iJQ] =1.

Hence

In (ﬁ’“g) =a+ L LV + .+ LLP +Iny?

with @ = In (02) + L. Then at given time #, the conditional variance €™ can be estimated as

var[¢" | X, 10] = [H (32 P (E’L))]Q

with some positive function H(-). Then by Zhou et al. (2008), we can extend the smearing estimate
to the heteroskedasticity cases and estimate the re-transform function at time t as

~1n
€

y B(K; (X,.11,) ) Zr- A'L(X,.11,)+ H (‘&2exp (E’L(xt.u!)))

= H (o2exp (ZLOX 1))

Remark 2.3.1. If the state is not heteroskedasticity, then we can simplily the estimation of the
re-transform function as

TB(K;L(X;.H; ) =+ Zr (AL (X IL) + & )

m=1

Note that we don’t require the utility function to be differentiable or continuous as long as the
transformation function can reduce the non-linearity or heteroskedasticity can be found. One can
use generalized linear model (GLM) without the transformation to perform the estimation to the
value function, which can also deal with the heteroskedasticity by a link function. However, by
Baser (2007), the result from GLM might be imprecise if the distribution F(-) is mis-specified. For
the flexibility of the algorithm, we prefer the smearing estimate and adjust the re-transformation
function from heteroskedasticity.

2.4 The basic LSMC method with exogenous state

In this section, we provide a briel introduction to the basic Least-Squares Monte Carlo method
with exogenous states as shown in Algorithm 1. In the basic algorithm, the state is not affected by
the control, but we assume that the utility function hence the value function, the transformation
and re-transformation function does.

A general LSMC method contains two parts, one forward simulation process and one backward
optimisation process. If the state X, is exogenous, then M random paths can be generated as

;TJ-H - ( .+1)~ m=1,..., M
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for time ¢;, 1 = 0,...,n. Then the problem is solved by a backward recursion starting from time
t, = T. From time t; = T — A, we find the optimal control for each t; by performing the regression
of the value function at time ;{1 over the state variable at time #;. Once the optimal control is
found, we update the value function with the optimised control then repeat the process till time
ty = 0.

Algorithm 1: The basic LSMC method with exgenous state

Data: Looping period N, number of sample paths M, initial capital z;, and other value
of variables to determine the behaviour of the state and the constraint
Result: Output estimated maximised untility at time t, = 0 as V}

[forward simulation|
1 for i =0to n do

2 for m =0 to M do
3 if i =0 then

4 | let X;" be xo
5 else

6 | let X7 be T;
T end

8
9

i-1 (‘X!.—JFZ!.}

end

end

[backward simulation|

10 for i = n to 0 do

11 if i = n then

12 | let Vi, (X;,) be U(X,,)
13 else

14 estimate R! as

arg minAa, Z:\::l [T (Viu+1 (’\!!T-H -'“‘1|+1 )) - A;. L (kgl}] 2;
15 find the re-transform function TB(A;IL(X!I));

16 let '&"!‘ (X, . IL,) be TB(A;IL(X!I ). 11, );

17 form=1to M do

18 find the optimal control LI (X[} as

AL SUPY, ¢ 4 (1) {&’! (X;{‘,l[tl]};
19 let V;, (X7 I1,,) be @, (X", 11 )

20 end

21 end

22 end

23 store value Vi,

One typical usage of the basic LSMC method is to estimate the price of the American option.
These options can be exercised at any time before and at maturity, which is more difficult to
price than European options as one has to determine the exercise time of the option. Since utility
functions are not used for the pricing problem, transformation of the value function is not required
it we perform the LSMC method. To illustrate, let’s consider the American put option with two
underlings with payoff (K — Si(7) — Sg('.r])+ where K is the strike price, and Sy, S; are two
corresponding stocks. This kind of option is called the American spread put option. We assume
that the two stocks satisfy

d.S]_(f) = ]"S]_(ﬂdf =+ (.T]_S]_U)d”r]_(f].
ng(f) = rSg(f)df =+ G'Q.Sg[r)d”rg(f].
AW, (£)dWy(t) = pdt,
where Wi and We are two standard Brownian motions with correlation p under risk neutral

probability @. By Hu (2013), the basis function is taken as L(S5;,S:) = (1,81,85:,5%,83),
and the continuation value is approximated as Vo = L (s1,s2) A;n fori = 0.1, .,n — 1 with
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Ay, = (N, A2, -+ - L AdJ) where J = 5. By simple algebra, we can estimate A;, as ;\(- = XELXLV
with

)\L — \1 Zm ]_ gm ( ) gm ( [L S‘m ) .Sé” (fi))]Tg

Ay = hva Z“  L(ST(8:) 837 (1) Vi, (ST (Bia) . 837 (Fig1))

where M denoted the number of sample path and V;, is the payoff at time ¢;. Then by the LSMC
method, we can simulate the price of the American put option with two assets with Algorithm 2.

Algorithm 2: The LSMC mehtod for American put option with two underlyings

Data: Initial stock prices Sp, strike price K, interest rate r, correlation p, volatilises
o, time periods N, maturity T, sample size M, payoff at maturity
h=(hi.ho, - ha)

Result: Output estimated payoff at time ¢, = 0 as Vj,

[

Generate M different paths of the underlying process:
{87 (1), 87 (f2) -+ 87 (fa)} and {S5" (f1). 85" (f2) -+, 85" (£,)} for
m=12--M;
at maturity, set 1;'“ =h:
while time period is less than n, let i =n—1,---,2,1 do

(%]

compute [\g, = XEL;\JLV‘;

compute &, = L]\;‘ for all paths;
compute V;, for all paths as

if hy, > ¢, then

| let V}, be hy,

10 else

11 | let i:g be V
12 end

e -1 @ o b L

i+1

13 end

14 set L!“"] = he,, where t; = min{t; € {t1, - ,tn} : e, = &} for all paths;

.\.{m

15 store estimated option price h“ =3 Zm 10

For empirical exercise, we let the initial stock price Sy = (100,100), strike price K = 200,
interest rate r = 006, correlation of the two Brownian Motion p = 0.5, volatilities o = (0.4,0.2)
with maturity 77 = 1. Table 2.2 shows the result with time periods n € {100, 1000, 10000} and
M = 1000 paths and figure 2.1 shows the simulated option value with respect to strike price
K € [150,200] without changing other parameters. Noticing that all the payoffs are around 4.5,
though the comparison with the exact value from the PDE solution is not included, it's reasonable
to expect the value at time ¢ = () to be around this value.

Time steps N =100 N =1000 N = 10000
LSMC Simulation 4.4754 4.5586 4.4215

Table 2.2:  Put prices at time t = 0 from the LSMC simulation method under 1000 paths with
different time steps n for the American put option with two underlying assets (So = (100, 100), K =
200, = (0.4,0.2),7 = 0.06,p = 0.5 and T = 1).

2.5 The LSMC method with endogenous state

Now we extend the basic LSMC algorithm presented in Section 2.4 to endogenous cases. We adopt
the method from Kharroubi et al. (2014) with the control randomisation technique. The algorithm
is also based on a forward simulation and a backward optimisation, where the state variable is
affected by both the random control and the perturbation term in the forward simulation. The
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Two Asset American Put Value Vs Strike Price

Option value at ime zero

100 110 120 130 140 150
Stnike price K

Figure 2.1: Option value at time £ = () with respect to strike price K = 200.

basis function of the regression to the conditional expectation is then based on the state and the
control variables.

2.5.1 Forward simulation

The forward simulation with endogenous states is more delicate than with the exogenous states.
The main goal of the forward simulation is to generate large enough data and hence enough
information to estimate the conditional expectation of the state and the control.

If we perform the forward simulation process that present in Algorithm 1, then random control
ﬁ;i‘ is required on each simulated path Xj",t = 0,...,n. However, it will cause a problem if
the value of the optimal control 1I; takes a value that close to the lower or upper bound in the
admissible set A(K). If the random control is assumed to follow a uniform distribution, then the
simulated state process might lay in a sub-domain that differs from the one the optimal control is
used. On the other hand, if the range of the optimal control is known, then a more appropriate
distribution that lives in the same range can be applied to improve the simulation of the random
control as more samples would lay in the same sub-domain as the optimal control applied. Note
that both of the two issues make it more difficult to perform the regression as the number of state
sample paths in the first issue and the control process in the second issue might not be large enough
in the full expected domain.

Hence, we try to figure out a more appropriate approach to simulate the control and the
state process in the full domain to have a better regression result. We achieve this by simulating
random states X, that is independent of the controls and states over time f; q,...,f; where
)Eg‘ =T, (Xt,_,, I, . 2,) with X;, being an independent random sample from the full state
domain. Note that if X, can be simulated by the function 7(-) for all i = 1,...,n, then so is X!‘.
Since each X;, is independent of the previous state, it can spread over the full domain at each time
period, allowing the algorithm to explore the space better.

Algorithm 3 shows the updated forward simulation of the LSMC method.

Note that for independently sampling X;, . II;, and zjr,, in Algorithm 3, distribution for zy,,,
should be model specified while the other two can be flexible as long as they are appropriate to
the specific problem.

2.5.2 Backward simulation

Kharroubi et al. (2014) suggest two different control randomisation algorithm to estimate the
conditional expectation. One is a policy function iteration that uses the realised value to update
the value function with

Vi, (X0) = Vi, (Xe (111))
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Algorithm 3: The updated forward simulation

Data: Looping period N, number of sample paths M, initial capital xy, and other
value of variables to determine the behaviour of the state and the constraint
Result: Output simulated state process X, X and the control process L1

[forward simulation]
1 fori=0ton—1do

2 for m =1 to M do

3 let X{"" be independent random sample from A’

4 let w[”‘ be independent random sample from A(K );
5 let 'r”‘ , be independent random sample from Z:

6 let )‘t'fl] be T, ()1 BiFS v;“_H)

7 end

s end

9 store vector X X and II

and the other one is a value function iteration which uses the regression result with
Vi (Xa,) = ‘I’:, (X:, ‘1[;, (X:,)) s

The first iteration method requires re-calculating the sample path from time #;;; to time t, at
every time ¢; once the optimal value is calculated as the optimal control will affect the future state.
However, this effect is estimated in the value function iteration with 6g, (X, 1L;,). Denault et al.
(2017) proved that there is no difference between the two iteration methods with exogenous states.
Though the policy function iteration is more computational complex, it is more accurate with fewer
regression errors over time and more suitable for problems that tend to produce regression error
as the number of time periods increases.

We provide the algorithms with these two iteration methods separately. In both algorithms, the
estimate of the conditional expectation &’!‘ (<) at time ¢; ;4 is performed with a regression function,
then the optimal control is found by maximising the approximated value function.

As shown in Algorithm 4, in the policy function iteration, the sample state process from time
ti+1 to time ¢, is updated once the optimal control at time #; is solved, then the corresponding value
function for the realised process is stored for the next iteration. Note that at terminal time f,,, no
decision is taken and X;, = X;,. The loop from line 13 onwards updates the forward simmlation
at each backward step with optimal control, which is crucial to multi-period stochastic control
problems with utility functions, unless the basis function holds true over the whole period. It also
implies that the algorithm uses the realised value function but not the regression result to update
the value function. As the time horizon increases, this loop significantly mmproves the accuracy
of the approximation and reduces the risk of solution blow-up by restricting the accumulation of
regression errors. Note that in the loop of line 13, the optimal control II} has to be resolved at
each time period, making the algorithm computationally more costly. Thus we choose to store the
optimal control from each state sample and use it for every corresponding evaluation time f, which
faster the algorithm significantly but also brings some acceptable simulation error.

Algorithm 5 updates the value function with regression results but not realised value, and it also
does not update the forward simulation at each looping period. This algorithm is computationally
simpler and hence faster but might stack regression errors in the value function.

Note that since the initial value at time t; = 0 of X, is given, )i”* is of the same value for
allm =1,.... M, hence at the last loop for i = 0, we can replace hnc 9 in algorithm 4 and 9 in

algorithm 5 w1th )L”‘ ‘= Tg.

It’s worth mentioning that this extension is computational heavy due to the regression and
optimisation during each loop. Since we will at least have M * n optimisations and n regressions
at one go and for stable purpose, from our experience, normally we require to set M = 5000 and
n = 20 for time horizon T = 1 as minimum sample size to have an acceptable result which leads to
100, 000 optimisations when performing the algorithm. Even we parallel the computation, it takes
hours to get the result with 200, 000 optimisations on a normal family laptop with 6 cores by R.
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Algorithm 4: Backward solution with policy function iteration

Data: Looping period N, number of sample paths M, simulated X, X and IT
from forward simulation
Result: Output estimated maximised untility at time #o = 0 as V4,

1 for i =n to (0 do

2 if i = n then

s ‘ let V. (xg) be U(X:)

4 else

estimate A; as
_ _ 2
arg ming, Z;ﬁ:’:l [T (Vt.ﬂ ( !’:’_H]) — A;IL (X;:*.H;'f)] :

6 find the re-transform function TB(A;IL(X!‘,ﬁ!I 1);
7 let &, (X!,.ﬁ!,) be T (AL L(X,, . T1,,)):

8 for m =1 to M do

9 let X" be X" ;

10 find the optimal control 113, ()?;f‘) as

arg supr, ¢ A(K) {&’1 ()?;f‘,l[:,)};

1 let V. (5{;{*) be U (}{’;f (11;});

12 let X%, be T, ()'{";j*.u;l (){’;j*) .z;’jﬂ);

13 for j=i+1ton—1 do

14 ‘ let X", be T, (x;;*_.u;} (x;;*] .z{j‘ﬂ);

15 end

16 let V. (X;fj be V. (X!’ff(l[;“]):

17 end

18 end
19 end

20 store value Vi,

2.6 Accuracy of solution

In this section, we examine the impacts of the smearing estimate on the accuracy of the LSMC
simulation. Though the analytical solution to our model defined as equation (1.3.1) does not exist
at the moment, which makes it hard to examine the exact accuracy, we can still speculate on the
accuracy of our approach by the solution of another similar problem.

For simplification, we consider the model from Denault et al. (2017) which is based on the
Constant Relative Risk Aversion (CRRA) utility with optimal consumption and risky allocation.
The value of the model parameter is the same as the one that causing the problem in Denault
et al. (2017). The basis functions are ordinary polynomials up to 4-th order in state and control
with mixed terms. The CRRA utility is defined as U(x) = =7 /+, and the transformation function
is defined as

T(x)=In [(“,-‘1.‘)“"] .

We consider a simple model that the trader consumes a proportion of wealth e, , and chooses
to allocate a proportion &, € [0,1] of remaining into the risky asset with return Z;, and invest the
rest into the risk-free bond with constant rate r. Let Z [ollows a normal distribution with mean p
and variance o7, then the transition function is approximately

- - ; — v Ge;Ze (16, )r

Nivor = Too (Moo, Ziy) = KXo, (10— g ) ™ (=)
when the return is small. By Andreasson & Shevchenko (2019), the smearing estimation method
with heteroskedasticity considers the effect of the perturbation term when performing the re-
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Algorithm 5: Backward solution with value function iteration

from forward simulation
Result: Output estimated maximised untility at time fo = 0 as V4,

1 for i =n to (0 do

15 store value Vi,

2 if i = n then
s ‘ let V. (Xg) be U(X,)
4 else
estimate A, as
_ _ 2
argming, Zﬂ:;l [T (Vt.ﬂ ( !’:’H)) — A;IL(X!”".HQ’I’)] :
6 find the re-transform function TB(A;IL(X!‘,ﬁ!I )):
7 let By, (X!,.ﬁ!,) be TR (A} L(X,,.T1,,)):
8 for m =1 to M do
9 let X" be X" ;
10 find the optimal control 11}, )z;f“) as
argsup, e 4 (k) {&’! (E;j’,l[g,)};
11 let V;, (X;j*) be @, ('){";j*_.u; (A!)]
12 end
13 end
14 end

Data: Looping period N, number of sample paths M, simulated X, X and IT

transformation and leads to an unbiased solution if the value function is of the form

n—1
Vol(e) = supE | "Ry, (Xp, (1) + 3 B Ry, (Xe, (1), 11y, ) | X, (11) = 311
I

i=0

leading to the optimisation problem

Vi, (r) = sup ’{R-t. (z,I; )+ E -ﬁlf’gm (X!.H (l[)} | Xy (1) = a.‘;l[tl] } d=n—1,...,0
0, :

Vi (z) = Ry, (x),

(2.6.1)

where R, and R;, are some reward functions and 3 is the time discount factor over a time step.

The optimal consumption can then be solved as

1, ifi=n
—1
g, = - 252 2 g _ e . ﬁ .
(1 " ({J.ﬁ;lu+. ﬁ.,lrr f24+(1=8, ) "(‘t!"_'_}) _ otherwise
with optimal risky allocation
. r—p
= 5
~a
and the value function is R
r oty (X)) 5
1":,()1:,]: - (o)

Figure 2.2 shows the simulation result of the problem with and without re-transformation by the
LSMC method. The terminal time T is set to be 9 with n = 9 with the mean of the perturbation
term g = 0.1 and variance o = (.2. By letting v = —10 and the risk-free rate be r = 0.03,
with M = 10000 paths simulated, figure 2.2 shows that the optimal risky allocation blows up
when performing the LSMC method without considering the heteroskedasticity while the one with

transformation results in an acceptable simulation.
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Figure 2.2: The simulated risky allocation by the LSMC method with and without transform and
the exact numerical result.

Although equation (2.6.1) stands for a standard discrete dynamic programming problem, which
slightly differs from problem (1.3.1), and the result from Andreasson & Shevchenko (2019) can only
account for concave utility cases, we can still expect our algorithm to have a similar accuracy since
an S-shaped function only contains a convex part with positive loss and concave part with positive
gain. Moreover, problem (1.3.1) considers only the final gain at time ¢,, without other gains during
the process at time ;¢ = 1,...,n — 1, which intuitively will reduce the regression error as the
summation term that might accumulate the error is missing.
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Chapter 3

Numerical results

This chapter uses the extended LSMC method with endogenous states to solve the portfolio opti-
misation problem presented as equation (1.3.1) with the two economic cases we consider in Chapter
1. The two utility functions that are taken is the same as in Armstrong et al. (2020), that is, the
Kahneman & Tversky (2013) piecewise power function in the form of

™, x>0
Ulr) = t - 3.0.1
(z) —kz|?, <0 ( )

M
—

as shown in figure 3.1 with 0 < 31, 2
the form

and k > 0, and the piecewise exponential function with

f:"(l‘): ‘F‘Jl(l_ﬁ_ﬁ“)~ -1720 (309)
‘ bo (e —1), x<0 e

as shown in figure 3.2 with ¢y, ¢, 71,72 > 0.

The piecewise power function The piecewise exponential function
]
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Figure 3.1: Piecewise power utility Figure 3.2: Piecewise exponential utility

Notice that we require the transformation funetion and the re-transformation function to be
differentiable, but we do not require the utility function to be as well. Both the piecewise power
utility and the piecewise exponential utility function are differentiable in /{0}. Since the trans-
formation is taken to reduce the non-linearity or the heteroskedasticity of the value function, to
reduce the non-linearity, we take the transformation function to be the inverse of the utility func-
tion U (-)~! in domain /(0 — 8,0+ §) for a small enough & that less than 0.01, and be a polynomial
P(-) up to order 2 in domain (0 — 4,0 + J). The coefficient of the polynomial can be solved by
equating both the value and the first-order differentiation of function U(:)™! and P(-) at point
0— & and 0+ 4. As such, the transformation function then follows the differentiable restriction,
and the inverse can be solved numerically. The heteroskedasticity issue can be solved by letting
the basis function in the regression be based on both the state and the control variable.
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3.1 Simulation design

We assess the results of both economic cases described in Chapter 1 with basis functions as ordinary
polynomials up to order 4 in both transformed state and control variables, inclunding mixing terms.
We found that using any polynomials with an order higher than 5 will cause over-fitting in both
economic cases. We will analyse the performance of the LSMC output over a range of checking
periods and time maturities. Additionally, we will apply the two utility functions as equations
(3.0.1) and (3.3.1) to investigate the model properties in both economy cases.

In this study, we take the evaluation window A to be (.05 and compare the numerical solution
of the value function at time t; = 0 under up to 10 equally spaced checking periods with terminal
horizon T = 1,2, 3. Further more, the models we explore are set with initial capital zy = 1, initial
stock value sy = 1 and risk-free rate r = 0.05. The perturbation term is normal distribution with
mean g’/ = pB = 1 and standard deviation o7/ = o8 = 0.25. We will take the confidence level
a € {0.05,0.01} with the exogenous limit of risk £ = 3. Limited by the computational amount,
the generated sample size M is set to be 10, 000.

Given that the utility function is taken as hunction U(-) with the transformation hinction
T(-) and the re-transformation function T5(-), the simulation for a single terminal horizon, single
confidence level and single economy case is designed as follows

1. Simulate M = 10,000 samples of the state process X, X and the control process II from
algorithm 3

2. perform both backward solution algorithms 4 and 5 to get the result V]’ and V¥
3. take the mean of the two values VP and Vi to be the final result Vi ;.

(U

We repeat this process K = 20 times with different seeds to obtain a Monte Carlo estimate

In summary, a single extended LSMC experiment simulates multiple models for each 7', R,
o, and for every model simulating solutions of the problem (1.3.1) using two different backward
simulation schemes, which undoubtedly has a very long rum-time. Hence, this is the reason why
we chose to run an experiment with 20 models simulating 10,000 points. This has enabled us to
explore and compare all the combinations of different 7', R and o and analyse the behaviour of
both economy cases. Note that numerie integration also carries some errors that must be taken into
account when analysing the performance of the models. Of course, increasing simulated samples
and the size of the experiment would potentially reduce the Monte Carlo error.

The code for this simulation exercise can be found at Github.

3.2 Simulation results and discussions

In this section, we present the simulation results with some detailed discussions. A conclusion of
the discussion will be provided in section 3.4. For a more visual presentation, most of the results
will be presented by figures in this section and with tables if necessary. All the exact numerical
results can be found in the tables attached in Appendix B.

3.2.1 The result with a jump process

As described in section 1.1, we do not take the Expected Shortfall into consideration in this economy
cases due to the heavy computational amount. For both confidence level o = 0.05 and e = 0.01,
we take coeflicients of the piecewise power [function and the piecewise exponential function as
P =2 = 0.5, k=29 =~ =055 and #, =1, fl = 2 respectively. Figure 3.3 shows the
result with piecewise power utility with 0.05 confidence level, and figure 3.4 shows the result with
piecewise exponential utility.

Notice that all the results are decreasing in trend as the checking period increase. It is also
no surprise to see that for a fixed checking period, the optimal value is positively related to the
terminal horizon T
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Figure 3.3: The simulated optimal result from 0.05 confidence level of the economy with jump
process and piecewise power utility. The coefficient on the utility function is #; = g, = 0.5 and
k=2
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Figure 3.4: The simulated optimal result from 0.05 confidence level of the economy with jump
process and piecewise exponential utility. The coefficient on the utility function is 4 = ~» = 0.55
and ), =1, 6, = 2.

One might be surprised that due to the result from Armstrong et al. (2020), the portfolio
optimisation problem (1.3.1) will goes to infinity when there is no risk constraint applied, but it
seetns that even taking only one checking point at time 7 = 7/2, the result is bounded efliciently.
This is because in this economy case, the stock price only changes at time ¢t = T/2 and t = T
Notice that £ = T'/2 is also the checking point for the portfolio manager, which will band the trader
from investing infinitely many amounts into the stock to get an infinite payoff as his investment
amount is limited. Though there is no constraint imposed in other evaluation time, the stock value
also does not change, which keeps the trader from investing in the stock, preventing him from
putting an extremely large amounts into the portfolio as only a limited payoff can be obtained
from the risk-free asset. This can be supported by the simulation result of a single risk-free asset
with a single checking point imposed at time 7°/2, resulting in optimised value Vj; = 0.6195 under
the piecewise power utility, and Vi = 0.8578 under the piecewise exponential utility. When we
change this only checking point to any time not at 7°/2, the optimised solution goes to an incredibly
large value. Furthermore, we would expect that the risk constraint is more effective to a stock
larger total variation during the evaluation window if the variance of the stock is greater than
zero, as the constraint we imposed for time not at 7°/2 can be regarded as a constraint over the
combination of a risk-free bond and a special stock with fixed price.

In multi-checking-point cases, though for checking time r € {2,4,6, 8, 10}, there is no constraint
imposed at the time when the stock prices change, the two checking points that applied just before
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and after time 17/2 still bound the investment amount to a finite value since the losses at these
two checking points is still non-constant and follows a shifted log-normal distribution.

Table 3.1 shows the simulated result under confidence level 0.01 without changing other param-
eters using piecewise power utility function, which still has a decreasing trend with the increased
checking point amount. Notice that the outcomes are significantly larger than those from the 0.05
confidence level. This is probably because the piecewise power utility function is unbounded on the
extremal losses and gains, which results in large expected utility when the constraint is imposed
on a more extreme loss.

Time Horizon Tr=1 T=2 T=3

1 checking point 7.9723 x 107 1.6829 x 10'*  3.5817 x 10*®
2 checking points  4.9276 x 109  2.8615 x 101" 9.0724 x 10
3 checking points  5.1721 x 10%  1.7918 x 107  8.2459 x 10'"
4 checking points  7.6527 x 107 3.1457 = 10®  2.0380 x 10"
5 checking points ~ 2.8970 x 107 1.5445 x 10*  8.0277 x 10%
6 checking points  5.7796 x 10%  1.7270 x 107 1.7368 x 10"
7 checking points  2.2745 x 108  4.8567 = 10%  3.6777 x 109
8§ checking points  1.4715 x 10°  2.7427 x 10°  2.7886 x 10"
9 checking points  1.5282 x 102 6.1647 x 10*  1.2227 x 10°
10 checking points ~ 8.5393 x 10 1.2140 x 10*  1.7256 x 10*

Table 3.1:  Simulated result under confidence level (.01 using piecewise power utility function in
the economy case with jump process.

Figure 3.5 shows the simulated result under confidence level (.01 without changing other pa-
rameters using piecewise exponential utility function. Notice that the results under 0.01 confidence
level are still higher than those under 0.05 level, which is becaunse with 0.01 level, we only con-
straint on more extremal losses than the 0.05 one, resulting in a restricted maximum investment
amount 117, = —7.122131 in time horizon [L — &, L + 8| U [T — 5,7 for any § > 0 which is higher
than —11.54472 from the 0.05 level. Notice that with 10 checking points, the optimal solution
for terminal horizon T' = 2 and T = 3 is less than that from 7" = 1, which might be due to the
numerical error as we tried with other seeds this situation did not appear again. With a large
terminal horizon, we would expect larger errors in the numeric approximation of the true value as
the munber of simulated paths might not be large enough.

Optimal value at t=0 with exponential utility
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Figure 3.5: The simulated optimal result from 0.01 confidence level of the economy with jump
process and piecewise exponential utility. The coefficient on the utility function is v = 4 = 0.55
and #; =1, 6, = 2.

Notice that in the e« = 0.01 confidence level, the results differ obviously between the piecewise
power utility and the piecewise exponential utility, this might be due to the different bounds of
the two functions as when x — oo, the piecewise power utility tends to infinity while the piecewise
exponential utility tends to a finite value. We include a further examination of this phenomenon
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in section 3.3.

3.2.2 The result with a geometric Brownian Motion

We now turn to the economy cases with geometric Brownian Motion. We first consider the risk
constraint produced by Value at Risk and would expect the outcome from the Expected shortfall
to be of a similar pattern, as the Expected Shortfall can be regarded as the conditional average of
VaR.

From section 3.2.1, the risk constraint might be more efficient to the portfolio with a stock
of higher total variation in the evaluation window, thus the simulation result of the expected
maximal utility under this economy case is expected to be bounded more effectively with the same
parameter.

For both confidence levels (.05 and 0.01, we keep the coefficients of the piecewise power function
and the piecewise exponential function as the same as those in the economy case with jump process,
that is, we still let 51 = J2 = 0.5, k =2, 11 = 92 = 0.55 and #; = 1, 0 = 2 respectively.

Figure 3.6 shows the simmlated result with the 0.05 confidence level and the piecewise power
utility. Asexpected, the risk constraint is significantly more efficient in this economy case compared
to the one with the jump process as it bounds the expected utility to a level that is much lower
than what is shown in figure 3.4.

Optimal value at t=0 with power utility
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Figure 3.6: The simulated optimal result from 0.05 confidence level of the economy with geomet-
ric Brownian motion and piecewise power utility under the constraint deduced from VaR. The
coefficient on the utility function is 41 = 2 = 0.55 and #, = 1, s = 2.

Notice that we only show the result with 2 to 10 checking points in figure 3.6. This is due to an
incredibly large number produced from trading horizon T = 3 when we had only one checking point.
The result with one checking point is shown in table 3.2. The issue that cansing this phenomenon
is that the power utility function is unbounded with large profit and loss, and a larger trading
horizon with a fixed munber of checking points is more likely to have larger volatility.

Time Horizon T'=1 T=2 T=3
1 checking point  9.0955 x 103  3.0517 1.2144 x 107

Table 3.2: Simulated result under confidence level 0.05 using the piecewise power utility in the
economy case with geometric Brownian Motion under 0.05 confidence level under the constraint
deduced from VaR.

Figure 3.7 shows the result with 0.05 confidence level under piecewise exponential utility. Sim-
ilar with section 3.2.1, the result from the piecewise exponential utility function is lower than the
one from the piecewise power utility, which supports the discussion that the optimised expected
utility is highly correlated to the shape of the utility function.

Figure 3.8 and 3.9 are results from the two utilities under o = 0.01 confidence level without
changing other parameters respectively. The decreasing trend in the increasing checking points
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Figure 3.7: The simulated optimal result from 0.05 confidence level of the economy with geometric
Brownian motion and piecewise exponential utility under the constraint deduced from VaR. The
coefficient on the utility function is v =40 = 0.55 and #; = 1, 6, = 2.

still can be seen obviously. The result from the piecewise power utility is actually lower than
those from « = 0.05 confidence level with a fixed number of checking points, which is because the
admissible set for IT1¥ is smaller than the one from the o = 0.05 confidence level. Notice the result
for terminal time T" = 3 is less than that for time 7" = 2 from the piecewise power utility with more
than 7 checking points, which might be due to the computational error from R as the resulting
maximal value is rather small.
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Figure 3.8: The simulated optimal result from 0.01 confidence level of the economy with geomet-
ric Brownian motion and piecewise power utility under the constraint deduced from VaR. The
coefficient on the utility function is 4, = 7, = 0.55 and #;, = 1, 6, = 2.

We now consider performing the risk constraint produced by Expected Shortfall. Without
changing any parameters, we would expect that the results will have a similar pattern as those
from the Value at Risk measure.

Though the result from the piecewise power utility under confidence level a = (.05, shown
as figure 3.10, has a larger value with 2 to 6 checking points compared with the one under the
constraint deduced from VaR, the maximal expected value decreases faster to a similar level.

One interesting result is produced under the constraint by Expected Shortfall at e« = 0.05
confidence level. The maximal expected utility is the same as we have from the constraint by VaR
at the current order of magnitude. Though expand the order will show the difference, we cannot
tell if it is caused by different risk measures or just mumerical error by this data set.

Figure 3.12 and figure 3.13 are results from o = 0.01 confidence level of the piecewise power
utility and piecewise exponential utility without changing other parameters respectively. Notice
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Figure 3.9: The simulated optimal result from .01 confidence level of the economy with geometric
Brownian motion and plecewise exponential utility under the constraint deduced from VaR. The
coefficient on the utility function is v =40 = 0.55 and #; = 1, 6, = 2.
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Figure 3.10: The simulated optimal result from 0.05 confidence level of the economy with geometric
Brownian motion and piecewise power utility under the constraint deduced from ES. The coeflicient
on the utility function is 4 = 4, = 0.55 and #; = 1, #, = 2.
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Figure 3.11: The simulated optimal result from 0.05 confidence level of the economy with geometric
Brownian motion and piecewise exponential utility under the constraint deduced from ES. The
coefficient on the utility function is v, = 7, = 0.55 and #; = 1, 8, = 2.




that compared with figure 3.8, the result shown in figure 3.12 deduced under the piecewise power
utility is still larger than that from the Vale at Risk constraint with fewer checking points but with
a faster rate of descent. There is still no difference between the two figures shown as 3.9 and 3.13
with the current order of magnitude.
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Figure 3.12: The simulated optimal result from 0.01 confidence level of the economy with geometric
Brownian motion and piecewise power utility under the constraint deduced from ES. The coeflicient
on the utility function is 4 = v, = 0.55 and ¢, = 1, #, = 2.
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Figure 3.13: The simulated optimal result from 0.01 confidence level of the economy with geometric
Brownian motion and piecewise exponential utility under the constraint deduced from ES. The
coefficient on the utility function is v = 2 = 0.55 and #; = 1, 62 = 2.

3.3 Impact of utility functions

To further examine the impact of the shape of the utility function, we consider another S-shaped
utility given as
7 [y, =10

Ulr) = ,
(z) —lz|"/y, =<0

(3.3.1)
which just extends the CRRA utility to the negative profit domain shown in figure 3.14.
We would expect that the result will decrease as the value of v increases with the coefficient
ralue shown in figure 3.14 but without changing other parameters of the two economy cases.
Table 3.3 shows the result with confidence level oo = 0.01 under the economy cases with the
jump process with terminal horizon T = 1, which, as we expect, the outcome shrinks with the
decreasing ~.




The extended CRRA utility

Figure 3.14: The extended CRRA utility.

Coefficient value v =0.7 +=0.5 v =10.3

1 checking point 6.9458 x 101 1.2029 = 101 6.7771 x 10°
2 checking points  2.0827 x 1019 2.9271 x 10® 5.7672 x 10°
3 checking points  5.5463 x 10*Y  3.9431 x 10°  5.4314 x 10°
4 checking points 8.0515 % 10%  1.6293 x 10°  3.9563 % 10
5 checking points 3.1379 x 10¥  7.1926 x 10*  3.9001 x 10
6 checking points 79062 x 107 2.4520 x 10*  2.4560 % 10
7 checking points 54318 x 107 3.3672 x 10*  2.3225 x 10
8 checking points 22243 x 10* 9.1391 x 10 1.9891 x 10
9 checking points 8.0124 x 102 8.7934 x 10 1.2665 % 10
10 checking points  7.1770 x 102 6.9029 x 10 1.70160

Table 3.3: Simulated result under confidence level 0.01 using the extended CRRA utility in the
economy case with jump process with trading horizen 7" = 1.

To further analyse the impact of the shape of the utility under the positive-loss domain, we
manipulate the extended CRRA model slightly into

z/m. x>0
Ur) =/ 0=
—|zl3/y2. <0
with fixed 41 = 0.5 and ~2 € {0.3,0.7,0.9} which is shown as figure 3.15. Table B.14 shows

The manipulated extended CRRA utility
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Figure 3.15: The manipulated extended CRRA utility.




the result from conscience level e« = (.05 under the economy cases with the geometric Brownian
Motion and risk constraint produced by ValR without changing other model parameters. Notice
that besides the decreasing trend of the maximal expected utility over the number of checking
points, the resulting value is also positively related to ~3, which controls the slope of the utility

function in the positive loss domain.

Coefficient value 2 = 0.9 2 = 0.7 v = 0.3
1 checking point 2.9687 x 1077 1.5861 x 107* 1.9384 x 10~
2 checking points 27794 x 1072 1.2791 x 107%  1.8805 x 107
3 checking points  2.6465 x 1072 1.1026 x 10™%  1.8805 x 10~
4 checking points ~ 2.4292 x 1072 1.1026 x 107  1.6590 x 10~*
5 checking points  2.4292 x 1072 1.0104 x 10~%  1.6590 x 10~*

6 checking points
T checking points
8 checking points
9 checking points
10 checking points

2.1584 x 1072
21583 x 1072
2.1583 x 1072
1.8035 x 1072
1.8035 x 102

1.0103 x 103
1.0103 x 107
5.0570 x 10~*
5.0569 x 1074
3.6351 x 10~*

1.6590 % 104
1.4214 x 1074
1.4214 % 1074
1.1644 x 1074
5.6780 x 105

Table 3.4:

Simulated result under confidence level 0.05 using the extended CRRA utility in the

economy case with geometric Brownian Motion with trading horizon T = 1.

A similar result is produced if we instead fix v, to be 0.5 and let v, € {0.3,0.7,0.9}, which
indicates that the resulting optimised expected utility certainly heavily depends not only on the
portfolio price but also on the shape of the utility function.

If an ES constraint is imposed instead, the resulting pattern is similar to what we have from
the VaR constraint, thus we do not include the numerical result in this section.

From the results in this subsection and in the previous two sections, we can conclude that the
efficiency of the risk constraint heavily depends on the shape of the utility function. Suppose the
range of the utility is bounded. In that case, the maximal expected utility is of cause not possible
to tend to infinity, while with a utility function that is unlimited, the result will be then highly
related to the slope of the function at extremal value with a fixed number of checking points, which
is not out of surprise as with a utility that grows slowly to infinity the outcome with extremal losses
and gains should not be greater than the one of the same range but with rapid growth.

3.4 Summary of discussions

Asshown in section 3.2, the maximal expected utility decreases in trend with the increasing number
of checking points in the sense that the resulting value is heavily related to the shape and range of
the corresponding utility function. If the utility function U(x) is unbounded and goes to infinity
with # — oo, the resulting V4 is more likely to tend to a large value with a small number of
checking points. Overall adding enough checking points can limit the optimised expected utility
to an acceptable value.

Each checking point imposed on the trading process has its efficiency in the sense that it seems
to be more effective to stock with higher total variation in the corresponding evaluation window if
the variance of the stock is greater than zero.

As the terminal horizon T increases, the resulting maximal utility under given constraints with
fixed checking points is expected to increase as well.

Due to the different projecting distributions in the two economy cases, increasing the confidence
level o will result in a larger admissible set for the economy with jump process but a smaller one
with geometric Brownian Motion, which leads to different trends of the maximal expected utility
over the confidence level.

Using a dynamic risk constraint deduced from Expected Shortfall will generally result in a
higher maximal expected utility than from Value at Risk with a small number of checking points,
except for having only one checking time with the piecewise power utility. This exceptional might
be due to the unbounded range of the piecewise power utility function, which also leads to the
ineflectiveness when imposing a dynamic risk constraint with a = 0.01 confidence level.
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Conclusion

Value at Risk and Expected Shortfall are widely used in the industry while the impact of imposing
them as trading risk constraints has not been studied extensively. Armstrong & Brigo (20194)
show that when using a static risk constraint deduced from these two risk measures, the maximal
expected utility of a tail-risk-seeking trader will be unlimited. Results from Armstrong et al. (2020)
indicate that if the risk constraint is dynamic instead, meaning that one imposes the constraint
through the whole trading process, the maximal expected utility of the trader can be bounded
effectively. This paper fills the gap between these two findings. We proved that if the dynamic risk
constraint is imposed only in a finite number of checking times, the resulting maximal expected
utility can still be bounded in the sense that the resulting value is decreasing when the number of
checking points increases. Though the resulting value is highly related to the range and shape of
the corresponding utility function, adding enough checking points can bound the maximal expected
utility to an acceptable level.

We achieve this by extending the original LSMC method to endogenous heteroskedastic states
with S-shaped utility and applying a transformation to the coneave utility to reduce the simulation
bias caused by the non-linearity of the utility function. This extended method can be applied to
general optimisation problems with S-shaped utility if a differentiable and invertible transformation
function exits.

However, the analysis in this paper does not include the assumption that traders have access
to derivative markets, which might still make the dynamic risk constraint inefficient if only a
finite number of checking points are imposed. Another possible research direction is that the
extended LSMC algorithm we introduced is indeed computationally heavy, and there might exist
some techniques to simplify the method and improve the speed.




Appendix A

Technical Proofs

A.1 Proof sketch of proposition 1.3.2

We provide the sketch of proof for proposition 1.3.2 from Armstrong et al. (2020) as follows.
Without losing of generality, we only need to consider time t = 0. By Karatzas et al. (1987),
the optimisation problem (1.3.1) with K = Kj is equivalent to the problem of the form

V(0,20) = supy,cr, E[U (X7)]
E[¢rXr] < x0,

&r = exp {(_ﬂ-; f“) W — (r—é (,u-;r)2) I_]

is the pricing kernel of the economy with geometric Brownian Motion, the one with the jump
process needs to be re-calculated. Now we consider a digital option with a payoff

where

, b
X1 = —mlmvh + e, <)

with b > 0 and & > 0. The constraint on the budget is then

b

—mﬂi [&rl(g, > )] + BE [E7l(g, <i)] < o,

which leads to )‘
Pi&r = k) r
—b < ————"= |79 — bE &7, <)
E _ET]lify-)kJ] L 54 HET ]]

Since & is bounded from above, we have

lim P(&r > k)

_—— =
k—oc E [E%—u (&r = !’L)]

For any lixed b > 0, we can find a large enough £ to satisfy the budget constraint.
Hence, the value function should not be less than the expected utility as

b

—m> P(ér > k) + UB)P(Er < k).

Vo (0,z0) = U (

By assumption 1.3.1, lim, , .. ”i‘J = 0. Thus, by letting k — cow, we have V,, (0, xy) = U(b).

Since b is taken arbitrarily, the result then follows.

A.2 Solution of equation (2.6.2)

We provide the solution to the numerical example in section 2.6.
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We first consider a simplified optimisation problem without the allocation é;, since we are
considering the general problem in the form of equation (2.6.1), the optimisation problem can be
re-written as

n—1 (e, Xi. )
v, At .

Volx) =supE — | X, = 2 11| .
i) HP ; 5 | X

Let the stochastic component in the transition function be &, then we can follow the process
by Samuelson (1975) to solve the problem.

At the terminal time £, = T', the value function is of the form
(ﬂ'z..Xz,.)"

¥

Vi, (X, ) =
Notice that since no utility will be gained from the saving account, the optimal decision is to
consume all the money, leading to a; = 1.

At time t = t,,— 1, the value function can then be written as

[ﬂ'!u—l X!u-1 ) I

Vies (X2, ,) = +E[V;, (X4, )]

r
B [E.‘tg“_] X, )‘I [(1 - n'!u—l) X, )‘I E {‘ftﬂ"—l]
g g '

o find the optimal «, _,, we differentiate the value function with respect to a; and equating

the differentiation to zero, hence we have
Vi
r')cq

n—1

» ! = X!..—] (ﬂt,.—l){!"—l)‘l_l - X!,.—] ((1 - a’t“—l)Xi,.—l)‘I_l E |:‘E!‘I,._|] = 0:

n—1

thus we have

which can be re-written as

1y 1
-~ 1—
O, = (1 +E [“c’tlu—l] ) '

Now, if the price of the portfolio depends on the risk allocation variable d;, for our model that

is, &,y = Bn 1 Zeat (1780070 then we can follow the similar step as above to find the
optimal risky asset allocation. Since we assume Z; "~ N (i, 0?), we then have

vy, o
_7“_=1E[Z —7) ({1 -« X gy ]
.. (Ze, =) (T —ae, ) X)) &L
equating it to zero, we then have
5 Tl
tn—1 — ‘r(}g .

Hence the maximal value of the function Vi, | is

(('T!n—] ‘X!u—])-I ((1 - n.t"—l) X!"—l )‘I E |:"c’f-lu—1]

Vi (X1,0) =

= G oy (1)) 2]

We then use this value into the next iteration. By repeating this process until £ = 0, we finally
have
1, ifi=n

0, = R AT
(1—(1|£ _f:',]ﬁ:',H) ) ,  otherwise.
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and hence

(1,
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Appendix B

Results of the simulation

B.1 Results of the economy with jump process

Time Horizon T'=1 T=2 T'=3
1 checking point BA6TT = 1071 1.6718 2.3754
2 checking points  8.2686 x 107? 1.4392 1.7922
3 checking points  7.5629 x 107! 1.2928 1.4972
4 checking points  5.0886 x 107! 1.1367 1.3155
5 checking points ~ 4.6979 x 107! 7.0387 x 10! 1.2941

6 checking points ~ 3.7223 x 10! 55411 x 1071 7.5022 x 10!
7 checking points  3.1376 x 107! 5.0002 x 107!  6.2967 x 107!
8 checking points  2.3499 x 10~!  3.6227 x 107! 4.0677 x 107!
9 checking points  1.8301 x 1071 2.3405 x 107! 3.2409 x 107!
10 checking points  3.0079 x 1072  7.5631 x 1072  3.1946 x 107!

Table B.1: Simulated result under confidence level (.05 using piecewise power utility function in
the economy case with jump process. The coefficient on the utility function is 8 = g, = 0.5 and
k=2

Time Horizon =1 T=2 T=3
1 checking point 1.1839 1.5264 3.2686
2 checking points ~ 9.9229 x 107! 1.4390 24767
3 checking points  7.2219 x 10~? 1.3499 2.0094
4 checking points  6.1169 x 107! 1.2273 1.9403
5 checking points  5.5286 x 1071 8.5368 x 107! 1.8352
6 checking points  5.2642 x 10! 7.3117 x 10! 1.0845
7 checking points  5.2170 x 1071 6.5741 x 107! 1.0540
8 checking points  4.9382 x 1071 55188 x 107! 1.0249

9 checking points  3.5524 x 107! 5.4326 x 107! 6.6103 x 10~
10 checking points  5.8072 x 1072 0.8917 x 1072  5.6126 x 1072

Table B.2:  Simulated result under confidence level (.05 using piecewise exponential utility function
in the economy case with jump process. The coeflicient on the utility function is v = 49 = 0.55
and #; = 1, 6, = 2.
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Time Horizon

T'=1

T=2

T=3

1 checking point

2 checking points
3 checking points
4 checking points
5 checking points
6 checking points
T checking points
8 checking points
9 checking points
10 checking points

7.9723 % 107
4.9276 % 109
5.1721 % 10%
7.6527 % 107
2.8970 x 107
5.7796 x 109
2.2745 x 109
1.4715 % 10°
1.5282 x 102
8.5393 % 10

1.6829 x 103
2.8615 = 1010
1.7918 x 10"
3.1457 = 10%
1.5445 x 108
1.7270 x 107
4.8567 x 108
2.7427 x 10°
6.1647 x 10*
1.2140 x 102

3.5817 % 10'®
9.0724 x 100
8.2459 x 10
2.0380 % 107
8.0277 x 108
1.7368 x 10%
3.677T x 10°
2.7886 % 10%
1.2227 x 10°
1.7256 x 10*

Table B.3: Simulated result under confidence level (.01 using piecewise power utility function in
the economy case with jump process. The coefficient on the utility function is @ = gy = 0.5 and

k=2

Time Horizon =1 T=2 T=3
1 checking point 1.2223 2.1420 2.4421
2 checking points 1.1077 1.4475 2.1849
3 checking points 1.0264 1.2733 2.0837
4 checking points ~ 9.1929 x 107! 1.0732 2.0281
5 checking points  8.1960 x 1071 9.0591 x 10! 1.8128
6 checking points  7.1809 x 10~!  8.9837 x 10! 1.4069
7 checking points ~ 4.7712 x 107! 6.1916 x 10! 1.3425
8 checking points  2.7159 x 107! 4.4000 x 10! 1.2460
9 checking points  1.9095 x 10! 1.8961 x 10! 1.1449

10 checking points

1.2182 x 1072

1.7062 x 1072

6.5387 x 1072

Table B.4: Simulated result under confidence level .01 using piecewise exponential utility function
in the economy case with jump process. The coefficient on the utility function is 4 = 49 = 0.55

and #; =1, 6, = 2.

B.2 Results of the economy with geometric Brownian Mo-

tion

Time Horizon T=1 T=2 T=3
1 checking point 9.0955 x 1079 3.0517 12144 x 108
2 checking points  8.4569 x 1072 9.9776 % 1079  1.0665 x 1072
3 checking points  6.5627 x 1077 9.6674 x 10°%  1.0365 x 102
4 checking points  6.5627 x 1079 9.5442 x 107%  9.9776 x 1073
5 checking points  6.5627 x 107%  9.0980 x 107%  9.8326 x 107

6 checking points
T checking points
8 checking points
9 checking points
10 checking points

5.6450 x 1073
5.6450 x 1073
5.6450 % 1079
5.6450 x 1073
5.6450 % 1079

8.4569 x 1073
6.5627 x 1073
6.5627 % 1079
6.5627 x 1042
6.5627 % 1079

9.6674 x 103
9.6674 x 107°
9.5804 % 1079
9.1003 x 102
8.4570 % 1079

Table B.5:

Simulated optimal result from 0.05 confidence level of the economy with geomet-

ric Brownian motion and piecewise power utility under the constraint deduced from VaR. The
coefficient on the utility function is 4 = 75 = (.55 and #; = 1, #, = 2.
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Time Horizon

=1

T=2

T=3

1 checking point

2 checking points
3 checking points
4 checking points
5 checking points
6 checking points
T checking points
8 checking points
9 checking points
10 checking points

1.0981 x 10°°
4.6315 x 1079
4.3559 x 107Y
4.3559 % 107°
3.1352 % 107
3.1352 % 1079
3.1352 x 107°
2.1055 % 107
1.1795 x 1079
1.1795 % 107¢

2.0042 x 10°°
1.0081 x 1053
7.9597 % 1079
4.6955 x 1079
x 1079

43559 x 107°
4.3559 x 1074

3.0821 x 10°°
3.0729 x 1075
2.0042 x 107°
1.0981 x 107°
7.9597 x 1076
7.9507 % 1079
4.6315 x 1076
4.6315 x 1079
4.6315 x 1076
4.3559 % 1079

Table B.6:

Simulated optimal result from 0.05 confidence level of the economy with geometric
Brownian motion and piecewise exponential utility under the constraint deduced from VaR. The

coefficient on the utility function is 4 = ~p = 0.55 and #; = 1, #, = 2.

Time Horizon T=1 T=2 T=3
1 checking point 9.0890 x 107%  9.9776 x 107*  1.2746 x 102
2 checking points ~ 8.4569 x 1073 9.6674 x 1079 1.1927 x 1072

3 checking points
4 checking points
5 checking points
6 checking points
T checking points
8 checking points
9 checking points
10 checking points

6.5627 % 107?
6.5627 x 1073
6.5627 x 107*
5.6450 x 1079
5.6450 x 1073
5.4444 % 1079
4.5414 x 1073
4.5414 x 1073

9.4093 % 109
9.0788 % 1073
8.4569 x 1077
8.3802 % 1079
54444 x 103
5.4444 % 1079
4.5414 x 1073
4.5414 x 1079

1.0295 x 102
9.9776 % 1073
9.8326 % 1077
9.7803 x 1079
9.6675 x 1079
9.6675 x 1079
9.0845 x 1073
8.4569 x 1079

Table B.7:

Simulated optimal result from 0.01 confidence level of the economy with geomet-
ric Brownian motion and piecewise power utility under the constraint deduced from VaR. The

coefficient on the utility function is 4 = 75 = 0.55 and #; = 1, 8, = 2.

Time Horizon

=1

T=2

T=3

1 checking point

2 checking points
3 checking points
4 checking points
5 checking points
6 checking points
T checking points
8 checking points
9 checking points
10 checking points

1.0981 x 10°°
4.6315 x 1079
4.3559 x 10°Y
4.3559 % 1079
3.1352 x 107
3.1352 % 1079
3.1352 x 107°
2.1055 % 1079
1.1795 x 1079
1.1795 % 107¢

2.0042 x 1075
1.0081 x 1053
7.9597 % 1079
4.6955 x 1076
4.6315 x 107
»x 1079
39 x 1079
% 107"
3.6513 x 1078
2.1055 % 1079

3.0821 x 1075
3.0729 x 1075
2.0042 x 10°°
1.0981 x 1075
7.9597 x 1079
7.9597 % 1078
3.6513 x 107
3.6513 x 1079
2.5675 x 107
2.1055 % 1079

Table B.8:  Simulated optimal result from 0.01 confidence level of the economy with geometric
Brownian motion and piecewise exponential utility under the constraint deduced from VaR. The
coefficient on the utility function is 4 = 75 = 0.55 and #; = 1, 8, = 2.
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Time Horizon

=1

T=2

T=3

1 checking point

2 checking points
3 checking points
4 checking points
5 checking points
6 checking points
T checking points
8 checking points
9 checking points
10 checking points

1.1270 x 10°*
8.4569 x 103
6.5627 % 107?
6.5627 x 1079
6.5627 x 103
5.6450 x 1079
5.6450 x 1073
5.6450 % 1079
5.6450 x 103
5.6450 % 1079

1.3196 x 102
1.1275 % 102
1.0955 x 102
9.9786 x 1079
9.6674 x 103
8.4570 x 1079
6.5627 x 1042
6.5627 x 1079
6.5627 x 103
5.4444 % 1079

14113 x 1072
1.3885 x 102
1.2693 x 102
1.2122 x 1072
1.1274 x 102
9.9786 x 1079
9.7847 x 1079
9.6674 x 1079
9.6674 x 103
8.4570 % 1079

Table B.9:

on the utility function is 4 =4, = 0.55 and #; = 1, #, = 2.

Simulated optimal result from 0.05 confidence level of the economy with geometric
Brownian motion and piecewise power utility under the constraint deduced from ES. The coeflicient

Time Horizon

=1

T=2

T=3

1 checking point

2 checking points
3 checking points
4 checking points
5 checking points
6 checking points
T checking points
8 checking points
9 checking points
10 checking points

1.0981 x 10°°
4.6315 x 1079
4.3559 x 10°Y
4.3559 % 1079
3.1352 x 107
3.1352 % 1079
3.1352 x 107°
2.1055 % 1079
1.1795 x 1079
1.1795 % 107¢

2.0042 x 10°°
1.0081 x 1053
7.9597 % 1079
55 % 1076

3.0821 x 10°°
3.0729 x 1075
2.0042 x 10°°
1.0981 x 1075
7.9597 x 1079
7.9597 % 1079
4.6315 x 1076
4.6315 x 1079
4.6315 x 1076
4.3559 % 1079

Table B.10:

Simulated optimal result from 0.05 confidence level of the economy with geometric
Brownian motion and piecewise exponential utility under the constraint deduced from ES. The

coefficient on the utility function is 4 = 75 = 0.55 and #; = 1, 8, = 2.

Time Horizon

=1

T=2

T=3

1 checking point

2 checking points
3 checking points
4 checking points
5 checking points
6 checking points
T checking points
8 checking points
9 checking points
10 checking points

1.1275 x 1072
84570 x 1073
6.5627 % 107?
6.5627 x 1073
6.5627 x 107*
5.6450 x 1073
5.6450 x 1073
5.6450 % 1079
5.6450 x 1073
5.6450 % 1079

1.3205 x 102
1.1275 % 102
1.0839 x 102
9.9786 x 103
9.6674 x 1077
84570 x 1073
6.5628 x 1079
6.5628 x 1079
6.5628 x 107
5.4444 % 1079

1.4932 x 102
1.3243 x 102
1.2698 x 10°*
1.2122 x 102
1.1274 x 1072
9.9786 x 103
0.7847 x 107%
9.6675 x 1079
9.6675 x 1079
8.4569 x 1079

Table B.11:  Simulated optimal result from 0.01 confidence level of the economy with geometric
Brownian motion and piecewise power utility under the constraint deduced from ES. The coeflicient
on the utility function is v = 4, = 0.55 and #; = 1, #, = 2.
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Table B.12:

Time Horizon =1 T=2 T=3
1 checking point 1.0981 x 107%  2.0042 x 107"  3.0821 x 10°°
2 checking points ~ 4.6315 x 107 1.0981 x 10  3.0729 x 1075
3 checking points ~ 4.3559 x 107%  7.9597 x 1079  2.0042 x 10~°
4 checking points 43559 x 107°  4.6955 x 1079 1.0981 x 107°
5 checking points  3.1352 x 10°°  4.6315 x 1079  7.9597 x 10~
6 checking points  3.1352 x 107%  4.6315 x 1079  7.9597 x 1079
7 checking points  3.1352 x 107%  4.3559 x 107% 3.6513 x 107
8 checking points  2.1055 x 107 4.3559 x 1079  3.6513 x 107"
9 checking points  1.1795 x 107°  3.6513 x 107%  2.5675H x 107
10 checking points  1.1795 x 107%  2.1055 x 107%  2.1055 x 107°

Simulated optimal result from 0.01 confidence level of the economy with geometric
Brownian motion and piecewise exponential utility under the constraint deduced from ES. The

coefficient on the utility function is 4 = ~p = 0.55 and #; = 1, #, = 2.

B.3 Results from the extended CRRA utility

Table B.13: Simulated result under confidence level 0.05 using the extended CRRA utility in the

Coefficient value e = 0.9 o = 0.7 v = 0.3
1 checking point 2.9687 x 1072 1.5861 x 107*  1.9384 x 1074
2 checking points 27794 x 1072 1.2791 % 1079 1.8805 x 10~*
3 checking points  2.6465 x 1072 1.1026 x 10~%  1.8805 x 10~*
4 checking points ~ 2.4292 x 1072  1.1026 x 1079  1.6590 x 10~*
5 checking points  2.4292 x 1072 1.0104 x 107%  1.6590 x 10~*
6 checking points ~ 2.1584 x 1072 1.0103 x 107%  1.6590 x 10~*
7 checking points 21583 x 1072 1.0103 x 1079  1.4214 x 10~*
8 checking points ~ 2.1583 x 1072 5.0570 x 10°* 14214 x 10~*
9 checking points  1.8035 x 1072 5.0569 x 10~* 1.1644 x 10~*
10 checking points  1.8035 x 1072 3.6351 x 10~ 5.6780 x 107°

economy case with geometric Brownian Motion with trading horizon T = 1.

Table B.14: Simulated result under confidence level 0.05 using the extended CRRA utility in the

Coefficient value e = 0.9 o = 0.7 vy = 0.3
1 checking point 2.9687 x 1072 1.5861 x 107 1.9384 x 1074
2 checking points 27794 x 1072 1.2791 x 1073  1.8805 x 10~
3 checking points  2.6465 x 1072 1.1026 x 107%  1.8805 x 10~*
4 checking points ~ 2.4292 % 10-?  1.1026 x 10~%  1.6590 x 10+
5 checking points  2.4292 x 1072  1.0104 x 1079  1.6590 x 10~*
6 checking points ~ 2.1584 x 1072 1.0103 x 10~%  1.6590 x 10~*
7 checking points 21583 x 1072 10103 x 1079 1.4214 x 10~*
& checking points  2.1583 x 1072 5.0570 x 10~ 14214 x 10~*
9 checking points  1.8035 x 1072 5.0569 x 10~%  1.1644 x 10~
10 checking points  1.8035 x 1072  3.6351 x 10~*  5.6780 x 107°

economy case with geometric Brownian Motion with trading horizon T = 1.
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