Programme Specification (Master’s Level)

Postgraduate Certificate / MSc in Genes, Drugs and Stem Cells – Novel Therapies

This document provides a definitive record of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities provided. This programme specification is primarily intended as a reference point for academic and support staff involved in delivering the programme and enabling student development and achievement, for its assessment by internal and external examiners, and in subsequent monitoring and review.

<table>
<thead>
<tr>
<th>Awarding Institution</th>
<th>Imperial College London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Institution</td>
<td>Imperial College London</td>
</tr>
<tr>
<td>Department</td>
<td>National Heart and Lung Institute</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty of Medicine</td>
</tr>
<tr>
<td>External Accreditation by</td>
<td>N/A</td>
</tr>
<tr>
<td>Professional/Statutory Body (if applicable)</td>
<td></td>
</tr>
<tr>
<td>Award Title (MSc, MRes, etc.)</td>
<td>MSc</td>
</tr>
<tr>
<td>FHEQ Level</td>
<td>Level 7 - Master’s</td>
</tr>
<tr>
<td>EHEA Level</td>
<td>2nd cycle</td>
</tr>
</tbody>
</table>
| **Mode and Period of Study** | MSc: Full-time over 1 calendar year (12 months)
PG Cert: full-time over ~ 4 months (Oct – Jan)
NB PG Cert is designed part-time for HESA purposes
Direct Entry MSc (PG Cert is a condition of entry): full-time over ~ 9 months (Jan – Sept) |
| **Total Credits** | MSc: ECTS: 90
PG Cert: ECTS: 30
MSc: CATS: 180
PG Cert: CATS: 60 |
| Programme code | TBC |
| Date of introduction of programme | MSc and PG Cert: October 2015
Direct Entry MSc: January 2017 |
| Student cohorts covered by programme specification (i.e. students who started in) | 2015-16 |
| Responsible Officer | Professor Uta Griesenbach |
| Date of programme specification/revision | October 27 2014 |
Relevant QAA Subject Benchmarking Group(s) and/or other external/internal reference points

There is no Master’s level subject benchmark statement for the specialties encompassed by this programme.

The programme is consistent with the overarching qualifications of the European Higher Education Framework and the QAA quality code:

Entry requirements

Normally an upper second class (2.1.) honours degree in a relevant biological subject from a UK university or equivalent.

A candidate with a degree below the entry requirement, but who has at least three years relevant work experience after graduation and has two supportive references on file may be considered under the College’s special circumstances policy:

http://www3.imperial.ac.uk/registry/proceduresandregulations/qualityassurance/specialcases/masterslevelprogrammes

The programme will not be suitable for entrants without degree level knowledge of a relevant biological subject so no SQE will be offered.

The College standard Master’s entry requirement for English language (IELTS 6.5, minimum 6.0 in each element or equivalent) will be required for entry into the programme.

The Postgraduate Certificate in Advanced Therapeutic Strategies is a condition of entry for the direct entry MSc. Students must be able to complete the MSc within 5 years of registering for the PG Cert.

The programme’s competency standards documents can be found at: [Appendix 12](#)

The College’s entry requirements for postgraduate programmes can be found at:

http://www3.imperial.ac.uk/entryrequirements/graduate

As the PG Certificate is considered a part-time programme for HESA purposes, non-EEA students who require a visa should apply for admission to the MSc, rather than the PG Cert.

Educational aims/objectives of the programme

This programme is intended to educate graduates who:

- Will have the knowledge and skills in advanced therapeutic strategies to pursue successful careers in the pharmaceutical industry or the healthcare sector.
- Will be able to pursue graduate level careers in fields such as the financial sector which may not require their specialists knowledge, but do need high level literacy and numeracy, good analytical skills, the capacity to deal with complex data and to take decisions based on incomplete information.
- Will be well equipped to study for a PhD in research on stem cell, genetic or...
pharmacological therapies

- Who could provide well educated postgraduates for work or further study within National Heart and Lung Institute or one of its associated centres (see http://www1.imperial.ac.uk/nhli/)
- Who will enhance the reputation of the Institute as an outstanding centre for postgraduate education in cutting edge cardiorespiratory science

Content/Topics Covered

The programme will consist of three streams (also see schematic diagram below)

1. Gene and Nucleic Acid Based Therapies
2. Regenerative Medicine
3. New Horizons in Pharmacology

All students (PG Cert and MSc) will participate in 4 compulsory modules (a general core module and three stream specific core modules (one for each stream).

MSc students will then specialise into one of the three streams and participate in a further stream specific module and conduct a stream-specific 6 months research projects.

State-of-the art topics in all 3 areas of research related to the development of future therapeutics will be covered including:

- Gene therapy vectors and target diseases
- Novel technologies such as genome editing and commonly used techniques
- Human genetics, genotype/phenotype correlations and gene regulation
- Developmental and Stem cell Biology
- Design and critical appraisal of clinical trials.
- Regenerative pharmacology
- Development of novel therapeutic agents and assessment of their safety.
- Identification of new endogenous pathways (eg cytokines) that can be targeted to develop new drugs.
- Nanoparticles and Nanomedicine
- Personalised medicines
- Relevant animal models, good clinical practise and GMP-production for clinical trials)
- Design and development of biomaterials for a number of different applications,
- Ethics related to working with animals and human tissue
- Commercialisation strategies (including interaction with Industry, intellectual property)

Learning Outcomes

The programme will consist of three streams (also see schematic diagram below)

1. Gene and Nucleic Acid Based Therapies
2. Regenerative Medicine
3. New Horizons in Pharmacology

All students (PG Cert and MSc) will participate in 4 compulsory modules.

MSc students will specialise into one of the three streams and participate in a further stream specific module and conduct a stream-specific 6 months research project, which include preparation of a report (see schematic below for further information about module contents).

The training provided in personal and professional skills is similar for all three streams and a
combined list of taught skills is provided for the three streams. On graduation, all students will demonstrate:

- Synoptic knowledge and deep understanding of one of the specialist areas above and a knowledge and understanding of key concepts in all three areas
- The capacity for independent learning
- The ability to work effectively in groups of varying sizes as team leader and member
- The ability to retrieve, appraise and assimilate information
- Understanding and application of core health and safety requirements
- Understanding of success, failure and the uncertainty inherent in research
- Communication of scientific information in both written and oral forms
- Communication with both scientifically-literate and lay audiences
- The ability to work effectively in groups of varying sizes as team leader and member
- The ability to retrieve, appraise and assimilate information
- Understanding and application of core health and safety requirements
- Understanding of success, failure and the uncertainty inherent in research
- Communication of scientific information in both written and oral forms
- Communication with both scientifically-literate and lay audiences
- The ability to work effectively in groups of varying sizes as team leader and member
- The ability to retrieve, appraise and assimilate information
- Understanding and application of core health and safety requirements
- Understanding of success, failure and the uncertainty inherent in research
- Communication of scientific information in both written and oral forms
- Communication with both scientifically-literate and lay audiences
- The ability to manage time efficiently
- Project management skills in the context of the six-month research project
- Problem-solving strategies in experimental and translational design
- Awareness of the wider societal, ethical and commercial context which drives the fields, including the construction of business models for therapeutic strategies
- The ability to use a number of resources to research
- The ability to self-critique by reflecting on coursework evaluation, project reports, critical reviews of scientific papers and to impartially review peers work.
- Effective information management skills by compiling results into a presentable and simple format, compiling reviews and discussion essays.
- Autonomy by acting as an independent self-critical learner with minimum guidance for module tasks
- Effective communications skills that have been developed through group tasks, written and oral presentation

Learning and Teaching Strategy

A variety of learning and teaching methods will be employed throughout the course. Lectures will be used to assist students in acquiring the depth and complexity of knowledge required to complete the programme successfully. Tutorials and problem solving workshops will integrate knowledge and develop creative thinking. Journal clubs and discussion will allow students to delve into controversies in the field and to apply and integrate knowledge to current research problems. Practical sessions will permit the development of core scientific skills required in the relevant speciality. The use of journal clubs and critical reviews will develop skills in evaluating complex and sometimes contradictory data whilst a variety of oral and written presentation opportunities will provide students with the chance to communicate their knowledge to specialist and non-specialist audiences. Ethical debates will provide mature reflection in difficult areas and will encourage students to think beyond the confines of the classroom and locate their studies in a social context.

The range of learning and teaching methods has been selected to ensure that students develop a wide range of specific and transferable skills. Self-directed learning is an important component throughout the course and will equip students with skills required to ensure life-long learning. The knowledge and skills acquired during the first part of the course will be consolidated and fully integrated during the research project.

This complex mix of learning opportunities will combine the in-depth coverage of the specialty with the breadth of applications required to make to this a level 7 programme.

e-learning methods are not currently a major component of the course but will be further developed
where they would enhance and support acquisition of the core learning outcomes.

Assessment Strategy

A range of formative and summative assessment methods will be used to assess effective learning of both the specific and transferable skills-related components of the course and will be aligned to the major learning objectives.

Formative MCQ and Pop quiz tests will probe students’ level of understanding in a real-time manner and will allow them to judge their own performance. Use of student response technology such as mentimeter, will permit students to see their performance in relation to their peers and will allow staff to establish if there are points of difficulty which need reinforcement. Data analysis and Journal clubs will ensure that practical analysis skills are developed on actual data in the field.

Practical write ups will give the opportunity to analyse data, develop arguments and provide synoptic overviews of a large and complex area. Poster and oral presentations will test a number of key learning outcomes including: capacity to evaluate and present experimental data, narrative skills and science communication, and will prepare students for careers involving communication of complex ideas to both specialist and non-specialist audiences. Unusually, the ability to communicate science to a non-specialist audience is summatively assessed.

In addition to a wide range of in programme assessments, closed booked examinations will be used to test depth of comprehension, the capacity to integrate and apply information and as opportunities for students to demonstrate their synoptic skills.

Finally, for MSc students, the write up of the original research project will act as the major test of students’ synoptic skills and will demonstrate the extent of their higher level achievements.

Timing of Assessments:

All summative examinations will be delivered in alignment with the Faculty of Medicine harmonised timetable.

The four compulsory modules will be individually assessed through ICA, whilst the selected specialist module will be assessed by a piece of coursework and one 3 hr examination.

All Students

Science and Research Skill module:

- Writing task (formative)
- Journal Club – October (summative)
- Writing Task – October (summative)

Key concepts in Gene and Nucleic Acid Based Therapies:

- Data analysis (formative)
- Data analysis – mid November (summative)
- Presentation+Debates – mid November (summative)

Key concepts in Regenerative Medicine:

- Timed assay (formative)
- Development and delivery of an outreach activity- late November (summative)
Key concepts in New Horizons in Pharmacology:
Writing task (formative)
Drug commercialisation strategy - mid December (summative)

MSc Students only:
After their January examinations, MSc students will embark on an advanced module selected from one specialist stream. The advanced modules will be assessed by one piece of coursework and one 3h synoptic examination per module.

Stream-specific assessments

Advanced Studies in Gene and Nucleic Acid Based Therapies (Stream Specific)
Laboratory practical write-up – January (formative)
Poster presentation – February (summative)
Exam – late February (summative)

Advanced Studies in Regenerative Medicine (Stream Specific)
Laboratory practical write-up – January (formative)
Poster presentation – February (summative)
Exam – late February (summative)

Advanced Studies in New Horizons in Pharmacology (Stream Specific)
Laboratory practical write-up – January (formative)
Poster presentation – February (summative)
Exam – late February (summative)

Project
Project presentation (oral) – September
Project report (written) - September

The written component of the project will be submitted during the first week in September. Students will then give an oral presentation on their work during the second week of September.
Programme Structure

Schematic presentation of the programme structure:
The programme consists of three streams. Students will attend a general and stream specific core modules (attended by all students) as well as stream-specific modules (only attended by students in the specific stream).

<table>
<thead>
<tr>
<th>MSc</th>
<th>Autumn Term</th>
<th>Spring Term</th>
<th>Summer Term</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Science and Research Skills Module 2.5 weeks</td>
<td>Examination of core modules</td>
<td>Project</td>
<td>Project</td>
</tr>
<tr>
<td></td>
<td>3 stream-specific Key Concept Modules (3x2.5 weeks)</td>
<td>Stream specific advanced study module (5 weeks)</td>
<td></td>
<td>Formative project presentation week commencing Sept 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revision and assessment weeks</td>
<td></td>
<td>Project report submission Sept 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project start March 2016</td>
<td></td>
<td>Revision and assessments</td>
</tr>
</tbody>
</table>

Postgraduate Certificate

<table>
<thead>
<tr>
<th></th>
<th>Autumn Term</th>
<th>Spring Term</th>
<th>Summer Term</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science and Research Skills Module 2.5 weeks</td>
<td>Examination of core modules – first week of January</td>
<td>N/a</td>
<td>N/a</td>
<td></td>
</tr>
<tr>
<td>3 stream-specific Key</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept Modules (3x2.5 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
List of Modules for MSc programme

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Core/Elective</th>
<th>Year</th>
<th>L&T</th>
<th>Ind. Study</th>
<th>Placement</th>
<th>Total</th>
<th>Description</th>
<th>Assessment Methods (assessment weighting %)</th>
<th>FHEQ Level</th>
<th>CATS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Science and Research Skills</td>
<td>Core*</td>
<td>1</td>
<td>56.5</td>
<td>131.5</td>
<td></td>
<td>188</td>
<td>Journal Club including Oral Presentation (75%) Writing task (25%)</td>
<td></td>
<td>6</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>2</td>
<td>Key concepts in Gene and Nucleic Acid Based Therapies</td>
<td>Core*</td>
<td>1</td>
<td>53</td>
<td>135</td>
<td></td>
<td>188</td>
<td>Data analysis practical Data analysis practical (40%) ICA-presentation+debates (60%)</td>
<td></td>
<td>7</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>Advanced Studies in Gene and Nucleic Acid Based Therapies</td>
<td>Elective</td>
<td>1</td>
<td>91</td>
<td>273</td>
<td>12</td>
<td>376</td>
<td>ICA – poster presentation (content+visual (20%), presentation (10%), discussion (10%)) Exam 3 hrs (2x45min essay +data analysis) (60%)</td>
<td>ICA-Outreach activity (100%) (planning (40%), delivery/presentation (40%), questions (20%))</td>
<td>7</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Key concepts in Regenerative Medicine</td>
<td>Core*</td>
<td>1</td>
<td>48</td>
<td>140</td>
<td></td>
<td>188</td>
<td>ICA – poster presentation (content+visual (20%), presentation (10%), discussion (10%)) Exam 3 hrs (2x45min essay +data analysis) (60%)</td>
<td></td>
<td>7</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>5</td>
<td>Advanced Studies in Regenerative Medicine</td>
<td>Elective</td>
<td>1</td>
<td>93</td>
<td>283</td>
<td></td>
<td>376</td>
<td>ICA-Designing a drug for commercialisation (100%) (design/presentation (1500), summary for lay (500 word written) and summary for specialised audience (500 word written)</td>
<td></td>
<td>7</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>6</td>
<td>Key concepts in New Horizons in Pharmacology</td>
<td>Core*</td>
<td>1</td>
<td>51</td>
<td>137</td>
<td></td>
<td>188</td>
<td>ICA – poster presentation (content+visual (20%), presentation (10%), discussion (10%)) Exam 3 hrs (2x45min essay +data analysis) (60%)</td>
<td></td>
<td>7</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>7</td>
<td>Advanced Studies in New Horizons in Pharmacology</td>
<td>Elective</td>
<td>1</td>
<td>97</td>
<td>265</td>
<td>14</td>
<td>376</td>
<td>ICA – poster presentation (content+visual (20%), presentation (10%), discussion (10%)) Exam 3 hrs (2x45min essay +data analysis)</td>
<td></td>
<td>7</td>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>
Appendix 10 – Programme specifications (MSc)

<table>
<thead>
<tr>
<th>Module</th>
<th>Details/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Cert students</td>
<td></td>
</tr>
</tbody>
</table>

Module Details/Handbook

<table>
<thead>
<tr>
<th>Projects</th>
<th>Core</th>
<th>Credit</th>
<th>Module Details/Handbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>1005</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(60%)

- Project presentation: 25%
- Project report: 65%
- Lab performance: 10%

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>90</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

The module descriptions can be found in **Appendices 5.1-5.8**
Overall Assessment Structure – MSc programme

<table>
<thead>
<tr>
<th>Description and Weighting (%) per assessment method</th>
<th>Weighting</th>
<th>ECTS</th>
<th>CATS</th>
<th>Total hours per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core taught modules: All students take 4 core taught modules. The Core Science and Research Skills module is assessed by 2 pieces of coursework. The remaining three Introductory modules are assessed by 1 h of written exam time plus one piece of assessed coursework which contributes 30 - 40% of the module mark. Each module is allocated 7.5 ECTS and each module counts as 7.5% of the final award. Students may be permitted one borderline module fail (45%-49%), but must pass all other three core modules to pass the taught component regardless of the aggregate mark. The pass mark for each module is 50%. No assessment less than 40% will be considered as a condoned pass regardless of the aggregate mark for the module. No aggregate module mark of less than 45% will be considered as a condoned pass for the component. Module selection will be approved by the Programme Director and is confirmed on the basis of satisfactory progress in the related core module.</td>
<td>30%</td>
<td>30</td>
<td>60</td>
<td>752 h</td>
</tr>
<tr>
<td>Specialist taught modules: Each student selects an advanced specialist taught modules in their chosen specialist stream. This module is assessed by a 3 h written exam (60% of module mark) plus two pieces of assessed coursework which contribute 25% and 15%, respectively to the module mark. The module is allocated 15 ECTS and counts as 25% of the final award. Students must pass the module to pass the taught component. The pass mark is 50%. No assessment less than 40% will be considered as a condoned pass regardless of the aggregate mark for the module. No aggregate module mark of less than 45% will be considered as a condoned pass for the component. Module selection is approved by the Programme Director and is confirmed on the basis of satisfactory progress in the related core module.</td>
<td>25%</td>
<td>15</td>
<td>30</td>
<td>376 h</td>
</tr>
</tbody>
</table>
Research project: consisting of an original piece of research which is assessed by a 10,000 word dissertation (70%) and oral presentation (30%). The passmark is 50%. No component of this assessment less than 40% will be considered as a condoned pass regardless of the aggregate mark for the assessment as a whole.

<table>
<thead>
<tr>
<th></th>
<th>Weighting</th>
<th>ECTS</th>
<th>CATS</th>
<th>Total hours per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research project</td>
<td>45%</td>
<td>45</td>
<td>90</td>
<td>1125 h</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>90</td>
<td>180</td>
<td>2253</td>
</tr>
</tbody>
</table>

Overall Assessment Structure – PG Cert programme

<table>
<thead>
<tr>
<th>Description and Weighting (%) per assessment method</th>
<th>Weighting</th>
<th>ECTS</th>
<th>CATS</th>
<th>Total hours per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core taught modules: All students take 4 core taught modules. The Core Science and Research Skills module is assessed by 2 pieces of coursework. The remaining three Introductory modules are assessed by 1 h of written exam time plus one piece of assessed coursework which contributes 30 - 40% of the module mark. Each module is allocated 7.5 ECTS and each module counts as 25% of the final award. Students may be permitted one borderline module fail (45%-49%), but must pass all other three core modules to pass the taught component regardless of the aggregate mark. The pass mark for each module is 50%. No assessment less than 40% will be considered as a condoned pass regardless of the aggregate mark for the module. No aggregate module mark of less than 45% will be considered as a condoned pass for Postgraduate Certificate</td>
<td>100%</td>
<td>30</td>
<td>60</td>
<td>752 h</td>
</tr>
</tbody>
</table>
Progression Rules:

In the first instance, students register for the qualification they wish to exit with, either the PGCert or the MSc programme. For students who wish to progress within the same academic year, transfer from the PGCert to the MSc will be permitted after 11 weeks of the start of the programme, provided they have demonstrated satisfactory academic progress to that point. Any student who fails a piece of coursework will be permitted to repeat it on one occasion in year. Candidates who fail an examination will be permitted to resit it on one occasion in the next examination cycle in the following academic year. There will be no in year resits for examinations. The pass mark for each module is 50%. Students may be permitted one module fail (45%-49%), but must pass the other three core modules in order to pass the Postgraduate Certificate. Module selection is approved by the Programme Director and is confirmed on the basis of satisfactory progress in the related core module. Within a module, no assessment less than 40% will be considered as a condoned pass regardless of the aggregate mark for the module. Students who do not meet this requirement, but who wish to transfer to the MSc programme will be allowed to continue their studies, but will be required to repeat the failed examination in the next academic cycle.

Students who registered for and successfully completed the Postgraduate Certificate may use the credit gained towards the MSc provided that the MSc is completed within 5 years of initial registration for the Postgraduate Certificate. These students may be asked to surrender the associated Postgraduate Certificate on registration for the higher award.

Students who register for the MSc in the first instance will have a “virtual” Postgraduate Certificate confirmed if the requirements for the Postgraduate Certificate have been met. The pass mark for the Postgraduate Certificate will be carried forward and the credits will accumulate towards the next level. Should these students subsequently fail to achieve the requirements for the MSc they will be awarded the Postgraduate Certificate.

Marking Scheme

The MSc assessments are grouped into three components as shown in the overall table of assessments above. Students must pass all three components to graduate. One agreed mark will be returned for each component. Provided a candidate has achieved at least 50% in each element, they will be awarded a result of pass. An aggregate mark of 50% or above will be awarded a pass. An aggregate mark of 60% or above will be awarded a merit and of 70% or above, a distinction.

For the MSc, where a candidate has achieved an aggregate mark of 60 per cent or greater across the programme as a whole AND has obtained a mark of 60 per cent or greater in each element with the exception of one element AND has obtained a mark of 50 per cent or greater in this latter element, they will be awarded a result of merit. where a candidate has achieved an aggregate mark of 70 per cent or greater across the programme as a whole AND has obtained a mark of 70 per cent or greater in each element with the exception of one element AND has obtained a mark of 60 per cent or greater in this latter element they will be awarded a result of distinction.

The Postgraduate Certificate is not classified. Candidates will only be considered for promotion to pass, (or for merit or distinction for MSc awards) if their aggregate mark is within 2.5 per cent of the relevant borderline.
Candidates with mitigating circumstances will be dealt with according to the relevant College policy
https://workspace.imperial.ac.uk/registry/Public/Exams/MitigatingCircumstancesPolicyProcedures-Feb%202014.pdf

Candidates whom the Board deems to have exceptional circumstances may be considered for promotion even if their aggregate mark is more than 2.5 per cent from the borderline. In such cases the necessary extra marks will be credited to bring the candidate’s aggregate mark into the higher range.

Re-Sit Policy

Students will be permitted to re-enter a failed examination or resubmit a piece of failed coursework on a single occasion. In year resits will not be offered since we consider that the programme of study is too intense to accommodate these and also, in year resits are not offered by other postgraduate taught programmes in the Faculty of Medicine.

Programme handbook

A programme handbook is not yet available. The handbook will be generated in early 2015 after approval of the programme by MQC and Senate

Programme indicators for quality and standards

Imperial’s quality and enhancement framework can be viewed at: http://www3.imperial.ac.uk/registry/proceduresandregulations/qualityassurance

The programme will be compliant with Imperial College’s quality and enhancement framework.

Welfare and Support

The Imperial College London statement on pastoral care and welfare support can be found at http://www3.imperial.ac.uk/collegestrategy/education/thestudentexperience

Further information on the department specific arrangements and facilitates can be found at: See Masters Application form for details (specifically question 58)

Additional Notes