Reference Guide # Agilent Technologies Electronic Calibration Modules RF Two-Port 85091C 85092C 85093C 85096C 85098C 85099C > RF Four-Port N4431B Microwave Two-Port N4690B N4691B N4692A N4693A N4694A N4696B Microwave Four-Port N4432A N4433A Agilent Part Number: N4693-90001 Printed in USA Print Date: December 2006 Supersedes: February 2006 © Copyright Agilent Technologies, Inc. 2000-2006 ### WARRANTY STATEMENT THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, AGILENT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. AGILENT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD AGILENT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL. # **DFARS/Restricted Rights Notice** If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data. # Certification Agilent Technologies, Inc. certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies, Inc. further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members. ### **Assistance** Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies, Inc. products. For information about these agreements and for other assistance, contact Agilent. Refer to "Contacting Agilent" on page 1-15. # **Safety and Regulatory Information** conditions are fully understood and met. The safety and regulatory information pertaining to this product is located in the section "Safety and Regulatory Information" on page 1-18. # **Safety Notes** The following safety notes are used in this manual. Familiarize yourself with each of the notes and its meaning before operating this instrument. All pertinent safety notes for using this product are located in "Safety and Regulatory Information" on page 1-18 | WARNING | Warning denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met. | | | | |---------|--|--|--|--| | CAUTION | Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a caution sign until the indicated | | | | # **Technology Licenses** The hardware and / or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license. # **Printing Copies of Documentation from the Web** To print copies of documentation from the Web, download the PDF file from the Agilent web site: - Go to www.agilent.com. - Enter the product model number in the search function. - Click on the **Manuals** hyperlink. | 1 | General Information | | |---|--|-------| | | Manual Overview | 1-2 | | | Prerequisite Knowledge | 1-2 | | | Clarifying the Terminology of a Connector Interface | 1-2 | | | Accuracy of Electronic Calibration versus Mechanical Calibration | 1-2 | | | Models and Options | | | | 8509x Modules (RF Two-Port) | | | | N4431B Modules (RF Four-Port) | | | | N469xA/B Modules (Microwave Two-Port) | | | | 8506x Modules. | | | | N4432A and N4433A Modules (Microwave Four-Port) | | | | Compatible Network Analyzers. | | | | Service and Recertification | | | | | | | | Contacting Agilent | | | | Returning Devices to Agilent | | | | Recertification of ECal Modules | | | | Safety and Regulatory Information | | | | Safety Notices | | | | Installation Notices | | | | Instrument Markings | | | | Compliance Notices | .1-20 | | | | | | 2 | Preparing to Use the ECal Module | | | | Inspecting ECal Module Kit | | | | Inspect the Kit Contents | 2-2 | | | Record the Serial Number | | | | Verify Electrical Performance | 2-2 | | | Equipment Required but Not Supplied | 2-2 | | | 8509x Series Kit Contents | 2-8 | | | 8509x Options | 2-3 | | | N4431B Series Kit Contents | | | | N4431B Options | 2-4 | | | N469xA/B Series Kit Contents | | | | N469xA/B Options | | | | N4432A and N4433A Series Kit Contents | | | | N4432A Options | | | | N4433A Options | | | | Operating and Safety Precautions | | | | ESD Damage | | | | Connector Care | | | | Input Power Level. | | | | Operating Temperature | | | | | | | | Connecting and Disconnecting ECal Module | | | | $oldsymbol{v}$ | | | | Connect ECal Module to VNA Analyzer | .2-12 | | | | | | 3 | Operating the ECal Module | _ | | | Setting Up a Calibration | 3-2 | Table of Contents Contents-v | | Required Procedure for All Calibrations | 3-2 | |---|--|------| | | Calibration Types Available | 3-8 | | | When to Correct for Isolation | 3-8 | | | Calibration Methods for Non-Insertable Devices | 3-4 | | | Finding More Information on Performing a Calibration | 3-6 | | | Validating a Calibration | | | | Why Validate a Calibration | | | | Measure Known Standards | | | | Perform ECal Confidence Check | | | 4 | Use, Maintenance, and Care of the Devices | | | | Electrostatic Discharge | 4-2 | | | Visual Inspection | | | | Look for Obvious Defects and Damage First | | | | Inspect the Mating Plane Surfaces | | | | Inspect Female Connectors | | | | Cleaning Connectors | | | | Cleaning Coax Connectors | | | | Cleaning Precision 7 mm Connectors | | | | Gaging Connectors. | | | | Connector Gage Accuracy | | | | When to Gage Connectors | | | | Recognizing Gage Types. | | | | Reading the Connector Gage | | | | Gaging Procedures | | | | Making Connections | | | | 3.5 mm, 2.92 mm, 2.4 mm, 1.85 mm, Type-N, 7-16, and Type-F Devices | | | | 7 mm Devices | | | | Final Connection Using a Torque Wrench | | | | Separating Connections | | | | Handling and Storage | | | 5 | Specifications and Characteristics | | | | Specifications: Terminology and Definitions | 5-2 | | | Environmental Specifications | | | | Operating Temperature and Accuracy Enhancement | | | | Barometric Pressure and Relative Humidity | | | | Characteristic Performance | | | | 8509x Series | | | | N4431B (3.5 mm) | 5-7 | | | N4431B (Type-N 50Ω). | | | | N4432A (Type-N 50 Ω) | | | | N4433A (3.5 mm) | | | | N469xA/B Series. | | | | Mechanical Characteristics | | | | Pin Depth | 5-12 | | | Type-N Characteristics | 5-13 | | | Typical Pin Denth Values | 5-15 | Contents-vi Table of Contents | Supplemental Mechanical Characteristics | 5-18 | |---|---| | Mechanical Dimensions of the Modules | 5-20 | | | | | • | | | Replaceable Parts | | | Description of This Chapter. | 6-2 | | · · | ; | Description of This Chapter. 7 mm Modules and Accessories Type-N (50 ohm) Modules and Accessories 3.5 mm Modules and Accessories 7-16 Modules and Accessories 2.92 mm Modules and Accessories 2.4 mm Modules and Accessories 1.85 mm Modules and Accessories Type-N (75 ohm) Modules and Accessories Type-F Modules and Accessories | Table of Contents Contents-vii Contents-viii Table of Contents 1 General Information ### **Manual Overview** The purpose of this manual is to help you use your Electronic Calibration (ECal) module confidently and effectively. ECal is a precision, single-connection calibration technique which uses fully traceable and verifiable electronic standards. Each module has unique S-parameter data that is stored in the module's memory. During calibration, ECal transfers this data to the network analyzer to calculate the error terms for your network analyzer. This manual provides instructions for operating and maintaining your ECal module. Also included are calibration procedures (for supported analyzers), mechanical specifications, and replaceable parts available for each model. #### **RF Modules** The 8509x and
N4431B series provide two-port and four-port calibration solutions with operating frequencies starting at 300 kHz and ending as high as 13.5 GHz. #### **Microwave Modules** The N469xA and N469xB series (which replace the 8506x series) and the N4432A and N4433A series provide two-port and four-port calibration solutions with operating frequencies starting as low as 300 kHz and ending as high as 67 GHz. ### Prerequisite Knowledge This manual assumes you are trained in proper connector care. Because an accurate calibration depends on the integrity and cleanliness of the connector interface, a damaged connector will invalidate the calibration achieved with that module. Refer to the "Principles of Microwave Connector Care Quick Reference Card" located at the back of this manual. # Clarifying the Terminology of a Connector Interface In this manual, adapters, ECal modules, and gage masters are referred to by way of their interface connector. For example: - A female adapter has a female interface. - A male adapter has a male interface. A connector gage is referred to by way of the connector it measures. For example: - A male connector gage has a female interface so it can measure male devices. - A female connector gage has a male interface so it can measure female devices. # Accuracy of Electronic Calibration versus Mechanical Calibration As the number of DUT test ports increases, the required number of calibration measurements also increases. This boosts the probability of bad connections and bad calibrations when mechanical calibration standards are used rather than ECal. Also, test port cable repeatability and stability errors are amplified by the increased number of 1-2 Chapter 1 connections and disconnections. To perform an SOLT 4-port calibration, a minimum of twelve 1-port standards and three 2-port (thru) standards are measured, requiring a total of eighteen connections. The same calibration using a 4-port ECal module (N4431B, N4432A and N4433A) requires only four connections. Ignoring connection related errors, the following table compares the accuracy of ECal versus mechanical calibration in various calibration options. **Table 1-1 Accuracy of ECal versus Mechanical Calibration** | Mechanical Calibration Type | ECal Thru
Type | Measurement | ECal | Mechanical
Calibration | |--|-----------------------------|----------------------------|---------|---------------------------| | 1-Port; calibration constant (not data-based) SOL | NA | Reflection | ++ | | | 1-Port; short, open, sliding load | NA | Reflection | + | | | 1-Port; data-based, expanded | NA | Reflection | | + | | 2-Port TRL | All types | Reflection
Transmission | | ++ | | | characterized | Reflection
Transmission | ++ | ++ | | ≥ 2-Port; calibration constant
SOL; flush Thru ^a | internal
unknown | Reflection
Transmission | ++ | | | , | external flush ^a | Reflection
Transmission | ++
+ | | | ≥ 2-Port; calibration constant
SOL; unknown Thru | characterized | Reflection
Transmission | ++ | ++ | | | internal
unknown | Reflection
Transmission | ++ | = | | ≥ 2-Port; data-based, expanded, | characterized | Reflection
Transmission | | +++ | | flush Thru ^a | internal
unknown | Reflection
Transmission | | + + | | | external flush ^a | Reflection
Transmission | | + + | | ≥ 2-Port; data-based, expanded, unknown Thru | characterized | Reflection
Transmission | | +++ | | | internal
unknown | Reflection
Transmission | | + + | | ++ better; + slightly better; = sam | e | | | | a. Flush thru should NOT be used when the test port connectors are not the same type as the calibration standards. SMA and $3.5~\mathrm{mm}$ connectors are mateable but are NOT the same type. # **Models and Options** This section provides the model number, operating characteristics and connector options available with Agilent RF and microwave ECal modules. You can order ECal modules by selecting the model number followed by the desired options. #### 8509x Modules (RF Two-Port) ECal modules from this series are available with the connector types and frequency ranges shown in Table 1-2 on page 1-5. Mixed connector options allow you to configure the module with a different connector type at each port (as shown in Figure 1-2). Figure 1-1 Model 85092C Option M0F Figure 1-2 Model 85092C Option 104, 201 1-4 Chapter 1 Table 1-2 8509x Modules | Model
Number | Connector Operating Type Frequency | | Port A and B Option | | | | |-----------------|---|--------------------|---------------------|------------------------------|--------------------|--| | Number | Туре | rrequency | -m- and -f- | -m- and -m- | -f- and -f- | | | 85091C | 7 mm | 300 kHz to 9 GHz | No | Connector Opt
85091-60004 | ion | | | 85092C | Type-N 50 ohm | 300 kHz to 9 GHz | M0F
85092-60008 | 00M
85092-60009 | 00F
85092-60010 | | | | Mixed
connector types
– see Table 1-3 | 300 kHz to 9 GHz | | See Table 1-3
85092-60004 | | | | 85093C | 3.5 mm | 300 kHz to 9 GHz | M0F
85093-60008 | 00M
85093-60009 | 00F
85093-60010 | | | | Mixed
connector types
– see Table 1-3 | 300 kHz to 9 GHz | | See Table 1-3
85092-60004 | | | | 85096C | Type-N 75 ohm | 300 kHz to 3 GHz | M0F
85096-60007 | 00M
85096-60008 | 00F
85096-60009 | | | 85098C | 7-16 | 300 kHz to 7.5 GHz | M0F
85098-60007 | 00M
85098-60008 | 00F
85098-60009 | | | | Mixed
connector types
– see Table 1-3 | 300 kHz to 7.5 GHz | | See Table 1-3
85092-60004 | | | | 85099C | Type-F | 300 kHz to 3 GHz | M0F
85099-60009 | 00M
85099-60010 | 00F
85099-60011 | | **Table 1-3 8509x Mixed Connector Options** | Model
Number | Port A (| Option | | Port B Option | | | | | | |-----------------|-------------------|--------|-----|---------------|-----|-----|-------------------|-----|-----| | Number | Type | -f- | -m- | Туре | -f- | -m- | Туре | -f- | -m- | | 85092C | Type-N 50Ω | 103 | 104 | 3.5 mm | 201 | 202 | 7-16 ^a | 205 | 206 | | 85093C | 3.5 mm | 101 | 102 | Type-N 50Ω | 203 | 204 | 7-16 ^a | 205 | 206 | | 85098C | 7-16 ^a | 105 | 106 | 3.5 mm | 201 | 202 | Type-N 50Ω | 203 | 204 | a. Limits ECal module high frequency to 7.5 GHz. | Other Options | Description | |---------------|---| | 00A | Adds one -m- to -m- and one -f- to -f- adapter. | | UK6 | Adds commercial calibration certificate with measured data. | # N4431B Modules (RF Four-Port) NOTE The N4431A is no longer available for purchase, but may be returned to Agilent for service and recertification. ECal modules from this series are available with the connector types and frequency ranges shown in Table 1-4. Mixed connector options (shown in Table 1-5) allow you to configure the module with a different connector type at each port. Figure 1-3 Model N4431B Option 010 Table 1-4 N4431B Modules | Model
Number | Module
Number | Connector Type Port
A,B,C,D | Operating
Frequency | Option | |-----------------|------------------|--|------------------------|------------------------------| | | N4431-60006 | 3.5 mm -f- | 300 kHz to
13.5 GHz | 010 | | N4431B | N4431-60007 | Type-N 50Ω -f- | 300 kHz to
13.5 GHz | 020 | | | N4431-60008 | Mixed connector types – see
Table 1-5 on page 1-7 | 300 kHz to
13.5 GHz | See Table 1-5
on page 1-7 | 1-6 Chapter 1 **Table 1-5 N4431B Mixed Connector Options** | Connector Type | Port A Option | Port B Option | Port C Option | Port D Option | |-----------------------|---------------|---------------|---------------|---------------| | 3.5 mm -f- | 101 | 201 | 301 | 401 | | 3.5 mm -m- | 102 | 202 | 302 | 402 | | Type-N 50Ω -f- | 103 | 203 | 303 | 403 | | Type-N 50Ω -m- | 104 | 204 | 304 | 404 | | 7-16 -f- ^a | 105 | 205 | 305 | 405 | | 7-16 -m- ^a | 106 | 206 | 306 | 406 | a. Limits ECal module high frequency to 7.5 GHz. | Other Options | Description | |---------------|---| | UK6 | Adds commercial calibration certificate with measured data. | ### N469xA/B Modules (Microwave Two-Port) NOTE The N4690/1/6A are no longer available for purchase, but may be returned to Agilent for service and recertification. ECal modules from this series are available with the connector types and frequency ranges shown in Table 1-6. Mixed connector options are not available with this series. Figure 1-4 Model N4693A Option M0F 1-8 Chapter 1 Table 1-6 N469xA/B Modules | Model
Number | Connector | Operating | Port A and B Option | | | | |-----------------|-------------------|---------------------|---------------------|-----------------|-------------|--| | Number | Туре | Frequency | -m- and -f- | -m- and -m- | -f- and -f- | | | N4690B | Type-N 50Ω | 300 kHz to 18 GHz | M0F | 00M | 00F | | | | | | Me | odule Part Numl | oer | | | | | | N4690-60004 | N4690-60005 | N4690-60006 | | | N4691B | 3.5 mm | 300 kHz to 26.5 GHz | M0F | 00M | 00F | | | | | | Mo | odule Part Numl | oer | | | | | | N4691-60004 | N4691-60005 | N4691-60006 | | | N4692A | 2.92 mm | 10 MHz to 40 GHz | M0F | 00M | 00F | | | | | | Mo | odule Part Numl | oer | | | | | | N4692-60001 | N4692-60002 | N4692-60003 | | | N4693A | 2.4 mm | 10 MHz to 50 GHz | M0F | 00M | 00F | | | | | | Mo | odule Part Numl | oer | | | | | | N4693-60001 | N4693-60002 | N4693-60003 | | | N4694A | 1.85 mm | 10 MHz to 67 GHz | M0F | 00M | 00F | | | | | | Module Part Number | | | | | | | | N4694-60001 | N4694-60002 | N4694-60003 | | | N4696B | 7 mm | 300 kHz to 18 GHz | No Connector Option | | | | | | | | Module Part Number | | | | | | | | N4696-60004 | | | | | Other Options | Description | |---------------|---| | 00A | Adds one -m- to -m- and one -f- to -f- adapter (not available with
N4696B). | | UK6 | Adds commercial calibration certificate with measured data. | #### 8506x Modules ECal modules in this series are no longer available for purchase, but may be returned to Agilent for service and recertification. The 8506x series has been replaced by the N469xA/B series. See "N469xA/B Modules (Microwave Two-Port)" on page 1-8. Figure 1-5 Model 85062B Table 1-7 8506x Modules | Model
Number | Connector
Type | Operating
Frequency | |-----------------|-------------------|------------------------| | 85060B | 7 mm | 1 to 18 GHz | | 85062B | 3.5 mm | 1 to 26.5 GHz | | 85064B | Type-N 50Ω | 1 to 18 GHz | 8506xA series modules with serial numbers below 800 need to be retrofitted for operation with the 85097B VNA interface kit. The retrofitting must be done by a qualified Agilent Technologies service office. See "Contacting Agilent" on page 1-15. 1-10 Chapter 1 # N4432A and N4433A Modules (Microwave Four-Port) ECal modules from this series are available with the connector types and frequency ranges shown in Table 1-8. Mixed connector options (shown in Table 1-9) allow you to configure the module with a different connector type at each port. Figure 1-6 Model N4433A Option 010 Table 1-8 N4432A and N4433A Modules | Model
Number | Module
Number | Connector Type Port
A,B,C,D | Operating
Frequency | Option | |-----------------|------------------|--|------------------------|--------------------------------| | N4432A | N4432-60003 | Type-N 50Ω -f- | 300 kHz to 18 GHz | 020 | | | N4432-60005 | Mixed connector types – see
Table 1-9 on page 1-12 | 300 kHz to 18 GHz | See Table 1-9
on page 1-12 | | N4433A | N4433-60003 | 3.5 mm -f- | 300 kHz to 20 GHz | 010 | | | N4433-60004 | Mixed connector types – see
Table 1-10 on page 1-12 | 300 kHz to 20 GHz | See Table 1-10
on page 1-12 | **Table 1-9 N4432A Mixed Connector Options** | Connector Type | Port A Option | Port B Option | Port C Option | Port D Option | |-------------------------|---------------|---------------|---------------|---------------| | 3.5 mm -f- ^a | 101 | 201 | 301 | 401 | | 3.5 mm -m- ^a | 102 | 202 | 302 | 402 | | Type-N 50Ω -f- | 103 | 203 | 303 | 403 | | Type-N 50Ω -m- | 104 | 204 | 304 | 404 | a. Frequency range of ECal module limited by other connectors. | Other Options | Description | |---------------|---| | UK6 | Adds commercial calibration certificate with measured data. | | 1A7 | Adds ISO 17025 compliant calibration. | | A6J | Adds ANSI Z540 compliant calibration. | ## Table 1-10 N4433A Mixed Connector Options | Connector Type | Port A Option | Port B Option | Port C Option | Port D Option | |----------------|---------------|---------------|---------------|---------------| | 3.5 mm -f- | 101 | 201 | 301 | 401 | | 3.5 mm -m- | 102 | 202 | 302 | 402 | | Other Options | Description | |---------------|---| | UK6 | Adds commercial calibration certificate with measured data. | | 1A7 | Adds ISO 17025 compliant calibration. | | A6J | Adds ANSI Z540 compliant calibration. | 1-12 Chapter 1 # **Compatible Network Analyzers** ECal modules operate with the following network analyzer models, as shown in Table 1-11. Not all ECal module and network analyzer combinations have the same features or capabilities. See your network analyzer user guide or online Help. **Table 1-11 Compatible Network Analyzers** | Network
Analyzers | ECal Module Series | | | | Interface | | |----------------------|--------------------|---------------------|----------|------------------|--------------------|----------| | | 8509xC | N4431B ^a | N4432/3A | N469xA/B | 8506x ^b | Required | | 8753/8720-Se | eries Netw | ork Analyz | zers | | | | | 8719ES/ET | Yes ^c | Yes ^c | No | Yes ^d | Yes | 85097B | | 8720ES/ET | Yes ^c | Yes ^c | No | Yes ^d | Yes | 85097B | | 8722ES/ET | Yes ^c | Yes ^c | No | Yes ^d | Yes | 85097B | | 8753ES/ET | Yes^c | Yes ^c | No | Yes ^d | Yes | 85097B | | PNA Netwo | rk Analyz | ers | | | | | | E8356/7/8A | Yes | Yes | Yes | Yes ^e | No | USB | | E8801/2/3A | Yes | Yes | Yes | Yes ^e | No | USB | | N3381/2/3A | Yes | Yes | Yes | Yes ^e | No | USB | | E8362/3/4A | Yes | Yes | Yes | Yes ^e | No | USB | | E8362/3/4B | Yes | Yes | Yes | Yes ^e | No | USB | | E8361A | Yes | Yes | Yes | Yes ^e | No | USB | | N5230A | Yes | Yes | Yes | Yes ^e | No | USB | | N5242A | Yes | Yes | Yes | Yes ^e | No | USB | | ENA Netwo | rk Analyz | ers | | • | | | | E5070/1A/B | Yes | Yes | Yes | Yes | No | USB | | E5061/2A | Yes | Yes | Yes | Yes | No | USB | - a. Only ports A and B available when operated with 8753/8720-series analyzers. - b. 8506x modules are no longer available for purchase. - c. 8753/8720-series firmware revision 7.68 or higher required. - d. 8753/8720-series firmware revision 7.74 or higher and adapter cable (part no. 8121-1047) required. - e. PNA firmware revision 3.0 or higher required with N4692/3A, and N4694A. **NOTE** For 8753 network analyzers, RF ECal modules (8509x) may be used below 300 kHz. However, calibration accuracy is *not* specified. The display trace connecting the two points on either side of the 300 kHz boundary may misrepresent actual performance. # **Service and Recertification** If your ECal module requires service or recertification, contact the Agilent office nearest you for information about where to send it. The performance of your ECal module can only be verified by specially manufactured equipment and calibration standards from Agilent. 1-14 Chapter 1 # **Contacting Agilent** Assistance with test and measurements needs and information on finding a local Agilent office are available on the Web at: www.agilent.com/find/assist If you do not have access to the Internet, please contact your Agilent field engineer. #### **NOTE** In any correspondence or telephone conversation, refer to the Agilent product by its model number and full serial number. With this information, the Agilent representative can determine whether your product is still within its warranty period. ### **Returning Devices to Agilent** If you are returning the product to Agilent, please include a service tag (located near the end of this manual) on which you provide the following information: - your company name and address - a technical contact person within your company, and the person's complete telephone number including country code and area code - the model number and serial number of the ECal module - type of service required - a detailed description of the problem and how the device was being used when the problem occurred (such as calibration or measurement) **NOTE** When transporting the module, use original or comparable packaging. 1-16 Chapter 1 #### **Recertification of ECal Modules** The suggested interval for recertification is 12 months. After reviewing the results of the initial recertification, you may establish a shorter interval that reflects greater use and wear of the module. #### Where to Send a Module for Recertification Contact Agilent for information on where to send your kit for recertification. See "Contacting Agilent" on page 1-15. Refer to "Returning Devices to Agilent" on page 1-16 for instructions on the preparation of returning the device. #### **How Agilent Verifies Your ECal Module** Agilent verifies the specifications of these devices as follows: - 1. The residual microwave error terms of the test system are verified with precision airlines and shorts or low frequency resistance that are directly traced to the National Institute of Standards and Technology (NIST). The airline and short characteristics are developed from mechanical measurements. The mechanical measurements and material properties are carefully modeled to give very accurate electrical representation. The mechanical measurements are then traced to NIST through various plug and ring gages and other mechanical measurements. - 2. Each module is electrically tested on this system to the specification listed in Chapter 5, "Specifications and Characteristics." These two steps establish a traceable link to NIST for Agilent to the extent allowed by the institute's calibration facility. The specifications data provided for the module are traceable to NIST through Agilent Technologies. #### What Is Provided with a Recertification - a new calibration sticker affixed to the module - a certificate of calibration - a list of United States National Institute of Standards and Technology (NIST) traceable numbers - a calibration report for each traceable module listing measured values, specifications, and uncertainties - a new set of S-parameter data (embedded in module memory) if the old set of S-parameters data no longer allows for a calibration that meets all performance specifications Agilent Technologies offers different types of calibration for the recertification of the module. For more information, contact Agilent. See "Contacting Agilent" on page 1-15. # **Safety and Regulatory Information** Review this section to familiarize yourself with safety markings and instructions before you operate the ECal module. This product has been designed and tested in accordance with international standards. #### **WARNING** The WARNING notice denotes a hazard. It calls attention to a procedure, practice, or the like, that, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met. #### **CAUTION** The CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like, that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met. ### **Safety Notices** #### **WARNING** To prevent
electrical shock, disconnect from instrument before cleaning. Use a dry cloth or one slightly dampened with water to clean the external case parts. Do not attempt to clean internally. #### **WARNING** If this product is not used as specified, the protection provided by the equipment could be impaired. This product must be used in a normal condition (in which all means for protection are intact) only. #### **Installation Notices** #### CAUTION This product is designed for use in INSTALLATION CATEGORY II and POLLUTION DEGREE 2, per IEC 61010-1:2001 and 664 respectively. #### **CAUTION** **Ventilation Requirements:** When installing the product in a cabinet, the convection in and out of the product must not be restricted. The ambient temperature (outside the cabinet) must be less than the maximum operating temperature of the system by 4 °C for every 100 watts dissipated in the cabinet. If the total power dissipated in the cabinet is greater than 800 watts, then forced convection must be used. 1-18 Chapter 1 # **Instrument Markings** | <u></u> | When you see this symbol on your instrument, you should refer to the instrument's instruction manual for important information. | |-----------------|--| | 7 | This symbol indicates hazardous voltages. | | | The laser radiation symbol is marked on products that have a laser output. | | ~ | This symbol indicates that the instrument requires alternating current (ac) input. | | C€ | The CE mark is a registered trademark of the European Community. If it is accompanied by a year, it indicates the year the design was proven. | | (1) | The CSA mark is a registered trademark of the Canadian Standards Association. | | 1SM1-A | This text indicates that the instrument is an Industrial Scientific and Medical Group 1 Class A product (CISPER 11, Clause 4). | | | This symbol indicates that the power line switch is ON. | | Ф | This symbol indicates that the power line switch is OFF or in STANDBY position. | | C N10149 | The C-Tick mark is a registered trademark of the Australian Spectrum Management Agency. | | | This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste. | | A | Product Category: With reference to the equipment types in
the WEEE Directive Annex I, this product is classed as a
"Monitoring and Control instrumentation" product. | | ∕ ⊢ � | Do not dispose in domestic household waste. | | | To return unwanted products, contact your local Agilent office, or see http://www.agilent.com/environment/product/for more information. | # **Compliance Notices** This product has been designated and tested in accordance with the standards in the Declaration of Conformity (see below), and has been supplied in a safe condition. The documentation contains information and warnings that must be followed by the user to ensure safe operation and to maintain the product in a safe conditions. # Compliance IEC 61000-4-4: 1995 (electrical transients) and IEC 61000-4-2: 1995 (electrostatic discharge): Passes using Criterion C. Calibration cycle may be interrupted by power line transients applied to external power supply or by electrostatic discharge applied to module. Normal function is restored by power-cycling the module. #### **Compliance with Canadian EMC Requirements** This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme a la norme NMB du Canada. #### **Declaration of Conformity** A declaration of conformity is on file for the PNA models, and a copy is available upon request. 1-20 Chapter 1 2 Preparing to Use the ECal Module # **Inspecting ECal Module Kit** #### **Inspect the Kit Contents** Verify the case and its contents are not damaged and that all parts are included (see items listed in Table 2-2, Table 2-3, and Table 2-4). If the case or any device appears damaged, or if the shipment is incomplete, contact Agilent. Agilent will arrange for repair or replacement of incomplete or damaged shipments without waiting for settlement from the transportation company. See "Contacting Agilent" on page 1-15. #### **Record the Serial Number** ECal modules are individually serialized. Record the serial number and the date of initial use as a reminder for annual recertification. See "Recertification of ECal Modules" on page 1-17. Table 2-1 Table for Tracking ECal Module Serial Numbers | Module Number | Serial Number | Date | |---------------|---------------|------| | | | | | | | | | | | | | | | | ### Verify Electrical Performance To verify electrical performance of the module, see "Validating a Calibration" on page 3-7. # **Equipment Required but Not Supplied** #### VNA Interface Kit (85097B) The VNA Interface Kit allows you to connect an ECal module to supported vector network analyzers. Microwave ECal modules (N469xA/B series) require an adapter cable (part no. 8121-1047) to operate with the 85097B. The adapter cable is included as an option with the interface kit or can be ordered separately. Refer to Chapter 6 , "Replaceable Parts" #### Pin Depth Gages Gages for measuring recession or protrusion are not provided in the kit. See Chapter 6, "Replaceable Parts" or contact Agilent to order gages and other test accessories. 2-2 Chapter 2 # 8509x Series Kit Contents The following table lists the items in each 8509x kit. The ECal module listed in the table with each kit describes a unit having a male and female connector (Option M0F). See Table 1-2 on page 1-5 for the part number of other configurations. Table 2-2 8509x Kit Contents | Qty | Description | Part No. | Qty | Description | Part No. | |-----|------------------------------|-------------|-----|--------------------------------|-------------| | | 85091C | | | 85096C | | | 1 | RF Module, 7 mm | 85091-60004 | 1 | RF Module, Type-N 75 ohms | 85096-60007 | | 1 | Torque Wrench 3/4", 1.3 N-m | 8710-1766 | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | 1 | Reference Guide | N4693-90001 | | 1 | Extractor, 7 mm Collet | 5060-0370 | | 85098C | | | 1 | Reference Guide | N4693-90001 | 1 | RF Module, 7-16 | 85098-60007 | | | 85092C | | | Torque Wrench 1 1/16", 2.2 N-m | 8710-2175 | | 1 | RF Module, Type-N 50 ohms | 85092-60008 | 1 | Open-end Wrench 15/16" | 8710-2174 | | 1 | Torque Wrench 3/4", 1.3 N-m | 8710-1766 | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | 1 | Reference Guide | N4693-90001 | | 1 | Reference Guide | N4693-90001 | | 85099C | | | | 85093C | • | 1 | RF Module, Type-F | 85099-60009 | | 1 | RF Module, 3.5 mm | 85093-60008 | 1 | Type F Wrench | 8710-1841 | | 1 | Torque Wrench 20 mm, 0.9 N-m | 8710-1764 | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | 1 | Torque Wrench 5/16", 0.9 N-m | 8710-1765 | 1 | Reference Guide | N4693-90001 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | | | 1 | Reference Guide | N4693-90001 | | | | ### 8509x Options - Option 00M configures the module with two male connectors. - Option 00F configures the module with two female connectors. - Option M0F configures the module with one male connector and one female connector. - Option 00A adds one -m- to -m- and one -f- to -f adapter (not available with 85091C). - Option UK6 adds a commercial calibration certificate with measured data. - Option 150 adds a storage box for the ECal module and accessories. Chapter 2 2-3 #### N4431B Series Kit Contents #### NOTE The N4431A is no longer available for purchase, but may be returned to Agilent for service and recertification. The following table lists the items in each N4431B kit. Option 010 is configured with 3.5 mm -f- connectors on all ports and Option 020 is configured with type-N -f- connectors on all ports. See Table 1-5 on page 1-7 for other configurations available. Table 2-3 N4431B Kit Contents | Qty | Description | Part No. | Qty | Description | Part No. | |-----|------------------------------|---|-----|-----------------------------|---| | | N4431B Option 010 | | | N4431B Option 020 | | | 1 | RF Module, 3.5 mm | N4431-60003
or
N4431-60006 ^a | 1 | RF Module, Type-N 50 ohms | N4431-60004
or
N4431-60007 ^a | | 1 | Torque Wrench 20 mm, 0.9 N-m | 8710-1764 | 1 | Torque Wrench 3/4", 1.3 N-m | 8710-1766 | | 1 | Torque Wrench 5/16", 0.9 N-m | 8710-1765 | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | 1 | Reference Guide | N4693-90001 | | 1 | Reference Guide | N4693-90001 | - | N/A | - | a. Shipped only with N4431B. ### N4431B Options - Option 010 configures the module with 3.5 mm -f- connectors on all ports. - Option 020 configures the module with Type-N 50 ohm -f- connectors on all ports. - Option UK6 adds a commercial calibration certificate with measured data. - Option 150 adds a storage box for the ECal module and accessories. #### N469xA/B Series Kit Contents #### NOTE The N4690/1/6A are no longer available for purchase, but may be returned to Agilent for service and recertification. The following table lists the items in each N469xA/B kit. The ECal module listed in the table with each kit describes a unit having a male and female connector (Option M0F). See Chapter 6, "Replaceable Parts," for the part number of other configurations. 2-4 Chapter 2 Table 2-4 N469xA/B Kit Contents | Qty | Description | Part No. | Qty | Description | Part No. | |--------|---------------------------------|--|----------------------|---------------------------------|--| | N4690B | | | N4693A | | | | 1 | Microwave Module, Type-N | N4690-60001 ^a
or
N4690-60004 ^b
| 1 | Microwave Module, 2.4 mm | N4693-60001 | | 1 | Torque Wrench 3/4", 1.3 N-m | 8710-1766 | 1 | Torque Wrench 20 mm, 0.9
N-m | 8710-1764 | | 1 | Open-End Wrench, 1/2 to 9/16" | 8710-1770 | 1 | Torque Wrench 5/16", 0.9 N-m | 8710-1765 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | 1 | Open-End Wrench, 1/2 to 9/16" | 8710-1770 | | 1 | Reference Guide | N4693-90001 | 1 | Spanner Wrench | 08513-20014 | | N4691B | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | 1 | Microwave Module, 3.5 mm | N4691-60001 ^a
or
N4691-60004 ^b | 1 | Reference Guide | N4693-90001 | | 1 | Torque Wrench 20 mm, 0.9
N-m | 8710-1764 | N4694A | | | | 1 | Torque wrench 5/16", 0.9 N-m | 8710-1765 | 1 | Microwave Module, 1.85 mm | N4694-60001 | | 1 | Open-End Wrench, 1/2 to 9/16" | 8710-1770 | 1 | Torque Wrench 20 mm, 0.9
N-m | 8710-1764 | | 1 | Spanner Wrench | 08513-20014 | 1 | Torque Wrench 5/16", 0.9 N-m | 8710-1765 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | 1 | Open-End Wrench, 1/2 to 9/16" | 8710-1770 | | 1 | Reference Guide | N4693-90001 | 1 | Spanner Wrench | 08513-20014 | | N4692A | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | 1 | Microwave Module, 2.92 mm | N4692-60001 | 1 | Reference Guide | N4693-90001 | | 1 | Torque Wrench 20 mm, 0.9
N-m | 8710-1764 | | N4696B | | | 1 | Torque Wrench 5/16", 0.9 N-m | 8710-1765 | 1 | Microwave Module, 7 mm | N4696-60001 ^a
or
N4696-60004 ^b | | 1 | Open-End Wrench, 1/2 to 9/16" | 8710-1770 | 1 | Torque Wrench 3/4", 1.3 N-m | 8710-1766 | | 1 | Spanner Wrench | 08513-20014 | 1 | Open-End Wrench, 1/2 to 9/16" | 8710-1770 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | 1 | Reference Guide | N4693-90001 | 1 | Reference Guide | N4693-90001 | | | | | | | | Chapter 2 2-5 a. Shipped only with the "A" model.b. Shipped only with the "B" model. ### N469xA/B Options - Option 00M configures the microwave module with two male connectors. - Option 00F configures the microwave module with two female connectors. - Option M0F configures the module with one male connector and one female connector. - Option 00A adds one -m- to -m- and one -f- to -f- adapter (not supplied with N4696B). - Option UK6 adds a commercial calibration certificate with measured data. - Option 150 adds a storage box for the ECal module and accessories. #### N4432A and N4433A Series Kit Contents The following tables list the items in each N4432A and N4433A kit. For the N4432A kit, Option 020 is configured with type-N 50 Ohm -f- connectors on all ports. For the N4433A kit, Option 010 is configured with 3.5 mm -f- connectors on all ports. See Table 1-9 on page 1-12 and Table 1-10 on page 1-12 for other configurations available. Table 2-5 N4432A Kit Contents | Qty | Description | Part No. | | | | | |-------------------|--|-------------|--|--|--|--| | N4432A Option 020 | | | | | | | | 1 | Microwave Module, Type-N
50 Ohm -f- | N4432-60003 | | | | | | 1 | Torque Wrench 3/4", 1.3 N-m | 8710-1766 | | | | | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | | | | 1 | Reference Guide | N4693-90001 | | | | | Table 2-6 N4433A Kit Contents | Qty | Description | Part No. | | | | | |-------------------|------------------------------|-------------|--|--|--|--| | N4433A Option 010 | | | | | | | | 1 | Microwave Module, 3.5 mm -f- | N4433-60003 | | | | | | 1 | Torque Wrench 20 mm, 0.9 N-m | 8710-1764 | | | | | | 1 | Torque Wrench 5/16", 0.9 N-m | 8710-1765 | | | | | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | | | | 1 | Reference Guide | N4693-90001 | | | | | 2-6 Chapter 2 # N4432A Options - Option 020 configures the module with Type-N 50 ohm -f- connectors on all ports. - Option UK6 adds a commercial calibration certificate with measured data. - Option 1A7 adds ISO 17025 compliant calibration. - Option A6J adds ANSI Z540 compliant calibration. - Option 150 adds a storage box for the ECal module and accessories. ### N4433A Options - Option 010 configures the module with 3.5 mm -f- connectors on all ports. - Option UK6 adds a commercial calibration certificate with measured data. - Option 1A7 adds ISO 17025 compliant calibration. - Option A6J adds ANSI Z540 compliant calibration. - Option 150 adds a storage box for the ECal module and accessories. Chapter 2 2-7 # **Operating and Safety Precautions** Observe the following guidelines before connecting or operating your ECal module. ### **ESD Damage** Protection against electrostatic discharge (ESD) is important while handling and operating your ECal module. Static electricity can build up on your body and can easily damage sensitive components when discharged. Static discharges too small to be felt can cause permanent damage to the unit. To prevent damage from ESD: - **Use** a grounded antistatic mat in front of your test equipment and wear a grounded wrist strap attached to it when handling or operating the ECal module. - **Wear** a heel strap when working in an area with a conductive floor. - **Ground** yourself before you clean, inspect, or make a connection to an ECal module. You can, for example, grasp the grounded outer shell of the analyzer test port or cable connector briefly. - **Avoid** touching the center conductor of the test ports. For more information about preventing ESD, see "Electrostatic Discharge" on page 4-2. #### **Connector Care** Because connectors can become defective due to wear during normal use, all connectors should be inspected and maintained to maximize their service life. - **Inspect** the mating surface each time a connection is made. Metal particles from connector threads often find their way onto the mating surface when a connection is made or disconnected. - **Clean** dirt and contamination from the connector mating surface and threads. This simple step can extend the service life of the connector and improve the quality of your calibration and measurements. - **Gage** connectors periodically. This not only provides assurance of proper mechanical tolerances, and thus connector performance, but can also indicate situations where the potential for damage to another connector may exist. You should apply connector care to all devices used in the measurement setup. For more detailed information, see "Visual Inspection" on page 4-3. **CAUTION** ECal modules can be damaged if you apply excessive torque to the connectors. See Table 4-1 on page 4-18 for required torque settings. 2-8 Chapter 2 ## **Input Power Level** Before performing a calibration, make sure the input power and DC levels do not exceed the values indicated in Table 2-7. **Table 2-7 Input Power Limits** | Parameter | ECal Module Series | | | |--|--------------------|-----------|------------| | rarameter | 8509x | N443xA/B | N469xA/B | | Maximum Input Power | +20.0 dBm | +20.0 dBm | +10.0 dBm | | Maximum DC Level
Applied to Test Port | ± 20 Volts | ± 3 Volts | ± 10 Volts | # **Operating Temperature** The temperature of the ECal module must be within the following temperature range to meet the operating specifications. • 8509x Series: +20 °C to +30 °C • N443xA/B Series: +20 °C to +30 °C • N469xA/B Series: +20 °C to +26 °C For more details, see "Environmental Specifications" on page 5-3. Chapter 2 2-9 # **Connecting and Disconnecting ECal Module** ECal modules connect to PNA or ENA network analyzers with the USB cable (supplied with the kit). VNA analyzers require the 85097B VNA Interface Kit. You can connect (or disconnect) ECal modules when the analyzer is on or off, but should avoid doing so while data transfer is in progress. TIP Modules that have completed a calibration may remain connected to the analyzer (with the USB cable or 85097B Interface Kit). ## Connect ECal Module to PNA or ENA Analyzer ECal modules are controlled and powered by the analyzer through a USB cable. When you connect the module to the analyzer, the analyzer automatically recognizes the type of module, frequency range, and connector type. **CAUTION** Exercise the necessary ESD precautions before connecting the ECal module to the analyzer. See "Electrostatic Discharge" on page 4-2. ## To connect ECal module to the PNA or ENA network analyzer: - 1. Connect one end of the USB cable to the ECal module as shown in Figure 2-1 on page 2-11. - 2. Connect the other end of the cable to the USB port on the front or rear panel of the analyzer (as shown in Figure 2-2 on page 2-11). Depending on available USB ports, two or more ECal modules may be connected to the analyzer. - 3. The red LED (on the module) indicates WAIT until the ECal module reaches operating temperature. - 4. When the green LED turns on, the Ecal module is ready for use. 2-10 Chapter 2 Figure 2-1 USB Connection to Module Figure 2-2 USB Connection to PNA or ENA Analyzer Chapter 2 2-11 ## Connect ECal Module to VNA Analyzer VNA network analyzers require the 85097B Interface Kit, which supplies power and allows data transfer between the analyzer and the ECal module. The interface kit contains an interface unit, power supply, and cables to connect the interface unit to the analyzer and the ECal module. An adapter cable, supplied with Option 100, is required to connect microwave ECal modules (N469xA/B series) to the interface unit. This cable may also be ordered separately. For more information about the 85097B, refer to "Other ECal Accessories" on page 6-11. #### **CAUTION** Exercise the necessary ESD precautions before connecting the ECal module to the analyzer. See "Electrostatic Discharge" on page 4-2. #### To connect ECal module to the VNA network analyzer: - 1. Connect interface unit to VNA: - a. Connect one end of the DB25 to DB25 cable to the connector on the interface unit labeled "DB25 Interface to Parallel Interface on Network Analyzer." - b. Connect the other end of the cable to the connector labeled "PARALLEL PORT" on the rear panel of the VNA. ## **CAUTION** Connecting the DB25 cable to any *other* connector on the analyzer **WILL** cause damage. - 2.
Connect an RF Module: - a. Connect one end of the DB25 to DB25 cable to the parallel port connector on the ECal module. See Figure 2-3 on page 2-13. - b. Connect the other end of the cable to the connector on the interface unit labeled "DB25 Interface to ECal Module A" or "DB25 Interface to ECal Module B." See Figure 2-4 on page 2-13. Two ECal modules may be connected at the same time. - 3. Connect a Microwave Module (requires adapter cable, part no. 8121-1047): - a. Connect the miniature (36-pin) connector on the adapter cable to the parallel port connector on the ECal module. See Figure 2-3 on page 2-13. - b. Connect the DB25 connector on the adapter cable to the connector on the interface unit labeled "DB25 Interface to ECal Module A" or "DB25 Interface to ECal Module B." See Figure 2-4 on page 2-13. - 4. Connect the interface power supply to the interface unit and then connect to AC power. | N | n | т | | |----|---|---|---| | 11 | v | | _ | The LED on the ECal module indicates WAIT until the unit reaches operating temperature. 2-12 Chapter 2 Figure 2-3 Parallel Port Connection to Module Figure 2-4 Interface Connections to VNA Analyzer Chapter 2 2-13 ## Preparing to Use the ECal Module **Connecting and Disconnecting ECal Module** 2-14 Chapter 2 3 Operating the ECal Module # **Setting Up a Calibration** Use the following procedure as a starting point for calibrating the network analyzer with an ECal module. For more detailed information about adjusting the settings of your analyzer, refer to the appropriate user guide or online Help. ## **Required Procedure for All Calibrations** For all calibration types, complete the following steps: - 1. Connect an ECal module to the analyzer having the appropriate frequency range and connector type. See "Connecting and Disconnecting ECal Module" on page 2-10. - 2. Allow the module to warm up for 15 minutes (20 minutes for a four-port module) or until the module indicates READY. - 3. Set up the analyzer and the device under test (DUT) in the measurement configuration. Select the frequency, power, sweep and other stimulus settings. - 4. View the response (uncorrected) and optimize the analyzer settings as needed. - 5. Remove the DUT from the measurement ports and connect the ECal module. - 6. Select the desired calibration type and perform the calibration. - 7. Remove the ECal module and re-connect the DUT. **CAUTION** Excessive torque can damage ECal module connectors. See Table 4-1 on page 4-18 for the required torque setting for each connector type. 3-2 Chapter 3 ## **Calibration Types Available** The following table contains the calibration types and advanced settings available for all compatible network analyzers: Table 3-1 Calibration Types and Advanced Settings Available | | Network Analyzer Series | | | |---|-------------------------|------------------|------------------| | Calibration Types | PNA | ENA | 8753/8720 Series | | 1-Port Reflection | Yes | Yes | Yes | | Full 2-Port | Yes | Yes | Yes | | Full 2-Port (with isolation) ^a | Yes | Yes | Yes | | Full 3-Port | Yes | Yes | _ | | Full 4-Port | Yes | Yes | _ | | Advanced Settings | | | | | Adapter Removal | Yes | No | No | | Flush (zero length) THRU | Yes | No ^b | Yes | | Unknown THRU | Yes ^c | No | No | | User-Characterization | Yes | Yes ^d | No | - a. 8509xC only. - b. Available in mid-2006. - c. Unknown THRU setting is not available with E8801/2/3A analyzers. - d. User-Characterization available with firmware revision A.03.50 (February 2003). #### When to Correct for Isolation Correction for isolation is a consideration when measuring high-loss devices such as saw filters or diplexers. When maximum dynamic range is required, correction for isolation can remove the errors due to crosstalk (between test ports) for transmission measurements. When you include isolation with a two, three, or four-port calibration, the analyzer automatically applies averaging to reduce noise in the measurement. Without averaging, you will have noise in the measurement of the crosstalk, and could raise the noise floor when the analyzer uses this in its error correction. The analyzer system isolation is normally sufficient for most measurements, and correction for it is usually unnecessary. As long as crosstalk is below the noise floor, it is best NOT to correct for isolation using ECal. As of PNA firmware release 4.26, measuring isolation as part of the ECal process is no longer supported. Chapter 3 3-3 #### Calibration Methods for Non-Insertable Devices A "non-insertable" device means that the measurement ports cannot be connected together to establish a THRU connection during calibration for transmission. Because the module typically forms the THRU path, you can use one of the following methods to perform a calibration for non-insertable devices: ## Configure ECal Module the Same as Device The simplest way to calibrate for non-insertable devices is to configure an ECal module with the same connector types as the DUT. RF ECal modules can be configured with mixed connectors to match the connector types on the DUT. Refer to "Models and Options" on page 1-4. You can also configure the module with different connector types by performing a User-Characterization (see below). #### **Use Adapter Removal Calibration** Adapter removal provides an accurate way to calibrate for non-insertable devices, but requires extra calibration steps to characterize the adapter. The adapter type used for this calibration must be -m- to -m- or -f- to -f- and have the same connector type as the module. In addition, the module must have a male connector on one test port and a female connector on the other test port (of the same connector type). #### **Use Unknown Thru Calibration** Unknown Thru calibration is currently available with all PNA network analyzers except the E8801/2/3A. It is easy to perform and can be used on any two ports when using a multiport PNA. It causes minimal cable movement if the Thru standard has the same footprint as the DUT. In fact, the DUT can often be the Thru standard. A 1-Port calibration is performed on the both ports. The unknown Thru is connected between the two ports and measured. Next, the user must confirm the Estimated Delay. This requires knowing the phase response to within 1/4 wavelength. If the phase response is unknown, the Delay value can be measured independently and entered in the dialog box. #### Perform a User-Characterization Normally, when you perform a calibration with an ECal module, the error terms for a calibration are computed using the factory characterization (data) stored in the module. User-Characterization allows you change the characterization of the module in two ways: - Change the connector configuration: allows you to add an adapter or fixture to the test port of the module and embed the effects into the characterization of the module. The result of the new characterization extends the reference plane from one or more of the module's test ports to those on the adapter (or fixture). - *Modify the state settings*: allows you to specify the number of data points (1601 max.) or other stimulus settings the module uses to perform a calibration. When you perform a User-Characterization, the factory characterization data remains stored in the module's memory. At calibration, you can select the factory characterization or any of the user-defined characterizations stored in the module. The module can store up to five user-defined characterizations (in addition to the factory characterization data). User-Characterization is currently available with PNA and ENA network analyzers. 3-4 Chapter 3 To perform a User-Characterization, a calibration kit (having the same connector type as the new reference plane) is required. For detailed information on calibration methods using a VNA, ENA or PNA series network analyzer, refer to the appropriate user guide or online Help. To use the Internet to view the ENA or PNA online Help or an online VNA user guide, use the steps listed in "Finding More Information on Performing a Calibration" on page 3-6. Chapter 3 3-5 # Finding More Information on Performing a Calibration For detailed information on performing a calibration using a VNA, ENA or PNA series network analyzer, refer to the appropriate user guide or online Help. - To view the ENA or PNA online Help, press the Help key on the front panel of the network analyzer. - To view an online VNA user guide, use the following steps: - 1. Go to http://www.agilent.com. - 2. Enter your VNA model number (Ex: 8753ES) in the Search box and click Search. - 3. Look in the left column for the heading **Refine by Type of Content**, and click on Manuals & Guides. - 4. In the left column, click on **User Guide**. - 5. In the right column, click on the title/hyperlink for the User Guide PDF you want to view. If the User Guide you want to view isn't listed on the Web page that is seen initially, click on the **More** hyperlink (if displayed). **CAUTION** Do not perform a calibration procedure unless you have cleaned and visually inspected all connectors and have taken the necessary ESD precautions. 3-6 Chapter 3 # Validating a Calibration Once a calibration has been performed, its performance should be checked before making device measurements. ## Why Validate a Calibration There are several sources of error that can invalidate a calibration: - bad cables - dirty or worn connectors - operator error - measurement uncertainties from interpolation #### **Measure Known Standards** Measuring known devices, other than calibration standards, is a way of verifying that the network analyzer system is operating properly. Verification kits use accurately known standards with well-defined magnitude and phase response. These kits include precision airlines, mismatch airlines, and precision fixed attenuators. Traceable measurement data is shipped with each kit on disk and verification kits may be re-certified
by Agilent. For information about ordering verification kits, see "Contacting Agilent" on page 1-15. #### **Perform ECal Confidence Check** ECal Confidence Check is a simple way to check the accuracy of a calibration (performed with mechanical standards or an ECal module). The confidence check allows you to measure an impedance state in the ECal module, called the confidence state, and compare it with factory measured data (of the same confidence state). ECal Confidence Check overlays the two traces so that the differences between the stored state and the measured state can be easily viewed. Before performing a confidence check, the analyzer must be calibrated and the calibration type should be appropriate for the parameter being checked. For example, you cannot measure the confidence state with S22 if an S11 1-port calibration is active. **NOTE** ECal Confidence Check is not available with ENA-L series network analyzers. For detailed information on performing an ECal Confidence Check using a VNA, ENA or PNA series network analyzer, refer to the appropriate user guide or online Help. To use the Internet to view the ENA or PNA online Help or an online VNA user guide, use the steps listed in "Finding More Information on Performing a Calibration" on page 3-6. Chapter 3 3-7 Operating the ECal Module **Validating a Calibration** 3-8 Chapter 3 4 Use, Maintenance, and Care of the Devices # **Electrostatic Discharge** Protection against electrostatic discharge (ESD) is essential while connecting, inspecting, or cleaning devices attached to static-sensitive circuits (such as those found in network analyzers and ECal modules). Static electricity can build up on your body and can easily damage sensitive internal circuit elements when discharged. Static discharges too small to be felt can cause permanent damage. Devices such as calibration components and devices under test (DUTs), can also carry an electrostatic charge. To prevent damage to network analyzer components and devices: - always wear a grounded wrist strap having a 1 M Ω resistor in series with it when handling components and devices or when making connections to the test set. - *always* use a grounded, conductive table mat while making connections. - *always* wear a heel strap when working in an area with a conductive floor. If you are uncertain about the conductivity of your floor, wear a heel strap. - always ground yourself before you clean, inspect, or make a connection to a static-sensitive device or test port. You can, for example, grasp the grounded outer shell of the test port or cable connector briefly. - *always* ground the center conductor of a test cable before making a connection to the analyzer test port or other static-sensitive device. This can be done as follows: - 1. Connect a short (from your calibration kit) to one end of the cable to short the center conductor to the outer conductor. - 2. While wearing a grounded wrist strap, grasp the outer shell of the cable connector. - 3. Connect the other end of the cable to the test port. - 4. Remove the short from the cable. For parts numbers for ESD protection supplies, refer to "Other ECal Accessories" on page 6-11. Figure 4-1 ESD Protection Using Mat, Wrist Strap, and Grounded Power Cord esu_setup 4-2 Chapter 4 # Visual Inspection Visual inspection and, if necessary, cleaning should be done every time a connection is made. Metal particles from the connector threads may fall into the connector when it is disconnected. #### **CAUTION** Devices with damaged connectors should immediately be discarded or clearly marked and set aside for repair. A damaged device will in turn damage any good connector to which it is attached. Try to determine the cause of the damage before connecting a new, undamaged connector in the same configuration. In some cases, magnification is necessary to see damage on a connector. Not all defects that are visible only under magnification will affect the electrical performance of the connector. Use the following guidelines when evaluating the integrity of a connector. ## **Look for Obvious Defects and Damage First** Examine the connectors first for obvious defects and damage: badly worn plating on the connector interface, deformed threads, or bent, broken, or misaligned center conductors. #### What Causes Connector Wear? Connector wear is caused by connecting and disconnecting the devices. The more use the device gets, the faster it wears and degrades. The wear is greatly accelerated when connectors are not kept clean, or are not properly connected. This is especially true with electrically characterized devices such as ECal modules. ECal modules should have a long life if their use is on the order of a few times per week. The test port connectors on the network analyzer may have many connections each day, and are therefore more subject to wear. It is recommended that an adapter be used as a test port saver to minimize the wear on the connectors. Replace devices with worn connectors. # **Inspect the Mating Plane Surfaces** Uniform contact between the connectors at all points on their mating plane surfaces is required for a good connection. See Figure 4-2 for an example of locations of mating plane surfaces. Look especially for deep scratches or dents, and for dirt and metal particles on the connector mating plane surfaces. Also look for signs of damage due to excessive or uneven wear or misalignment. Figure 4-2 Type-N Connector Pin Depth and Mating Surfaces Light burnishing of the mating plane surfaces is normal, and is evident as light scratches or shallow circular marks distributed more or less uniformly over the mating plane surface. Other small defects and cosmetic imperfections are also normal. None of these affect electrical or mechanical performance. If a connector shows deep scratches or dents, particles clinging to the mating plane surfaces, or uneven wear, clean and inspect it again. # **Inspect Female Connectors** When using slotless connectors like the 3.5 mm or type-N 50 Ω female connectors, pay special attention to the contact fingers on the female center conductor. These can be bent or broken, and damage to them is not always easy to see. A connector with damaged contact fingers will not make good electrical contact and must be repaired or replaced. NOTE Due to the tighter mechanical specifications of precision devices, inspection is particularly important when you are mating nonprecision to precision devices. 4-4 Chapter 4 # **Cleaning Connectors** Clean connector interfaces prolong connector life and produce more accurate and repeatable measurements. | NOTE | The following cleaning procedure can be used for most coaxial connectors. For | |------|---| | | 7 mm connectors, refer to "Cleaning Precision 7 mm Connectors" on page 4-7. | WARNING Always use protective eyewear when using compressed air or nitrogen. ## **Cleaning Coax Connectors** #### 1. Use compressed Air or Nitrogen Use compressed air (or nitrogen) to loosen particles on the connector mating plane surfaces. You can use any source of clean, dry, low-pressure compressed air or nitrogen that has an effective oil-vapor filter and liquid condensation trap placed just before the outlet hose. Ground the hose nozzle to prevent electrostatic discharge, and set the air pressure to less than 414 kPa (60 psi) to control the velocity of the air stream. High-velocity streams of compressed air can cause electrostatic effects when directed into a connector. These electrostatic effects can damage the device. For additional information refer to "Electrostatic Discharge" on page 4-2 earlier in this chapter. #### **WARNING** Keep isopropyl alcohol away from heat, sparks, and flame. Store in a tightly closed container. Isopropyl alcohol is extremely flammable. In case of fire, use alcohol foam, dry chemical, or carbon dioxide; water may be ineffective. Use isopropyl alcohol with adequate ventilation and avoid contact with eyes, skin, and clothing. It causes skin irritation, may cause eye damage, and is harmful if swallowed or inhaled. It may be harmful if absorbed through the skin. Wash thoroughly after handling. In case of spill, soak up with sand or earth. Flush spill area with water. Dispose of isopropyl alcohol in accordance with all applicable federal, state, and local environmental regulation. #### 2. Clean the Connector Threads #### **CAUTION** Use **ONLY** isopropyl alcohol to clean connector surfaces. Any other solvent may damage the insulators, support beads, and seals in the connector. Never immerse the connector in solvents of any kind. The solvent can become trapped within the assembly and cause SWR, phase, and insertion loss problems. Moisten (don't soak) a lint-free swab or cleaning cloth with isopropyl alcohol to remove any dirt or stubborn contaminants that cannot be removed with compressed air or nitrogen. Refer to "Other ECal Accessories" on page 6-11 for cleaning swabs and other connector cleaning supplies. - a. Apply a small amount of isopropyl alcohol to a lint-free swab. - b. Clean the connector threads. - c. Let the alcohol evaporate, then blow the threads dry with a gentle stream of clean, low-pressure compressed air or nitrogen. Always completely dry a connector before you reassemble or use it. #### 3. Clean the Mating Plane Surfaces - a. Apply a small amount of isopropyl alcohol to a new lint-free cleaning cloth or swab. - b. Clean the center and outer conductor mating plane surfaces. Refer to Figure 4-2 on page 4-4. When cleaning a female connector; use short strokes to avoid snagging the swab on the center conductor contact fingers. - c. Let the alcohol evaporate, then blow the mating plane surface dry with a gentle stream of clean, low-pressure compressed air or nitrogen. Always completely dry a connector before you reassemble or use it. #### 4. Inspect Each Connector Inspect the connector to make sure
that no particles or residue are present. 4-6 Chapter 4 ## **Cleaning Precision 7 mm Connectors** You do not have to remove the center conductor collet to clean a precision 7 mm connector. #### With the Center Collet in Place - 1. Dispense a small amount of isopropyl alcohol on the lint free cloth. - 2. Retract the connector sleeve threads to expose the connector interface. - 3. Gently press the contact end of the connector into the moistened cloth and rotate the connector. The cloth scrubs away dirt and contaminants on the connector interface without damaging it. - 4. Blow the connector dry with a gentle stream of compressed air or nitrogen. **NOTE** When not in use, keep the cloth in a plastic bag or box so that it does not collect dust or dirt. For Fixed Connectors (attached to a device that cannot be freely moved) - 1. Fold a lint-free cleaning cloth several times. - 2. Moisten the cloth with isopropyl alcohol. - 3. Press the moistened cloth against the connector interface and rotate the cloth to clean the connector. - 4. Blow the connector dry with a gentle stream of compressed air or nitrogen. #### **Cleaning a Removed Center Collet** Any time you remove the center conductor collet, clean and inspect the interior surfaces as described in "Cleaning Connectors" on page 4-5. # **Gaging Connectors** The gages available from Agilent Technologies are intended for preventive maintenance and troubleshooting purposes only. They are effective in detecting excessive center conductor protrusion or recession, and conductor damage on DUTs, test accessories, and ECal module test ports. Do not use the gages for precise pin depth measurements. ## **Connector Gage Accuracy** The connector gages are only capable of performing coarse measurements. They do not provide the degree of accuracy necessary to precisely measure the pin depth. This is partially due to the repeatability uncertainties that are associated with pin-depth measurements. With proper technique, the gages are useful in detecting gross pin depth errors on device connectors. To achieve maximum accuracy, random errors must be reduced by taking the average of at least three measurements having different gage orientations on the connector. Even the resultant average can be in error by ± 0.0003 inch (± 0.0075 mm) or more due to systematic (biasing) errors usually resulting from worn gages and gage masters. The information in "Typical Pin Depth Values" on page 5-15 assumes new gages and gage masters. Therefore, these systematic errors were not included in the uncertainty analysis. As the gages endure more use, the systematic errors can become more significant in the accuracy of the measurement. The measurement uncertainties are primarily a function of the assembly materials and design, and the unique interaction each device type has with the gage. Therefore, these uncertainties can vary among the different devices. The observed pin depth limits add in these uncertainties to the typical factory pin depth values to provide practical limits that can be referenced when using the gages. When measuring pin depth, the measured value (resultant average of three or more measurements) contains measurement uncertainty and is not necessarily the true value. Always compare the measured value with the *observed* pin depth limits (which account for measurement uncertainties) in "Typical Pin Depth Values" on page 5-15 to evaluate the condition of device connectors. 4-8 Chapter 4 ## When to Gage Connectors Gage a connector at the following times: - Prior to using an ECal module for the first time: record the pin depth measurement so that it can be compared with future readings. This serves as a good troubleshooting tool when you suspect damage may have occurred to the device. - If either visual inspection or electrical performance suggests that the connector interface may be out of typical range (due to wear or damage, for example). - If a module is used by someone else, or on another system or piece of equipment. - Initially after every 100 connections, and after that as often as experience suggests. #### NOTE When using the 7 mm module, you must remove the 7 mm collet before gaging the pin depth of the connectors. Use the collet extraction tool provided in your 7 mm module to remove the collet. ## **Recognizing Gage Types** A gage is referred to by the sex of the connector it measures. For example, a male gage measures male connectors and therefore has a corresponding female connector. - See Figure 4-3 on page 4-10 for an illustration of a typical gage for 3.5 mm, 2.92mm, 2.4 mm, and 1.85 mm connectors. - See Figure 4-4 on page 4-11 for an illustration of a typical gage for type-N connectors. - See Figure 4-5 on page 4-12 for an illustration of a typical gage for 7 mm connectors. #### NOTE A 3.5 mm gage set can measure 3.5 mm and 2.92 mm connectors. A 2.4 mm gage set can measure 2.4 mm and 1.85 mm connectors. # **Reading the Connector Gage** The gage dial is divided up into increments of 0.0001 inch (0.0025 mm) and major divisions of 0.001 inch (0.0025 mm). For type-N gages, see Figure 4-4 on page 4-11. For each revolution of the large dial, the smaller dial indicates a change of 0.01 inch (0.025 mm). Use the small dial as the indicator of multiples of 0.01 inch (0.0025 mm). In most connector measuring applications, this value will be zero. When making a measurement, the gage dial indicator will travel in one of two directions. If the center conductor is recessed from the zero reference plane, the indicator will move counterclockwise to determine the amount of recession, which is read as a negative value. If center conductor protrudes, the indicator will move clockwise to measure the amount of protrusion, which is read as a positive value. Refer to "Typical Pin Depth Values" on page 5-15 for definitions of protrusion and recession. Figure 4-3 Typical Gage: 3.5 mm, 2.92 mm, 2.4 mm and 1.85 mm Connectors 3_5mm 4-10 Chapter 4 Figure 4-4 Typical Gage: Type-N Connectors ku311b Figure 4-5 Typical Gage: 7 mm Connectors ku312b 4-12 Chapter 4 ## **Gaging Procedures** #### **Zeroing Connector Gages** For type-N gages, the paired gage master is labeled with an offset value to compensate for its inaccuracy with its gage. This label appears on the bottom of all type-N gage masters that have been paired with gages. When setting a type-N gage with its master, always set the gage to the master offset value shown on the label, not to the zero, unless that is the offset value indicated. The design of the gages used to measure 3.5 mm, 2.92 mm, 2.4 mm, 1.85 and 7 mm connectors are different than the type-N gage design. The primary difference is that the type-N gages require an offset to compensate for inaccuracies in the gage masters. - 1. Select the proper gage for your connector. Always use gages that are intended for pin depth measurements. Refer to Chapter 6, "Replaceable Parts," Locate the gage model number listed with the associated connector type. - 2. Inspect and clean the gage, gage master, and device to be gaged. Refer to "Visual Inspection" on page 4-3 and "Cleaning Connectors" on page 4-5. ## **CAUTION** Before continuing, make sure you are familiar with the proper connection and torque techniques for your connector type. Refer to "Making Connections" on page 4-15. - 3. While holding the gage by the barrel, attach the gage to the gage master. Connect the gage master finger tight. Do not overtighten. - 4. Use the torque wrench recommended for use with your connector type to tighten the connecting nut to the gage master. Refer to Table 4-1 on page 4-18. - 5. Type-N: Loosen the dial lock screw on the gage and rotate the gage dial so that the pointer corresponds to the correction value noted on the gage master. Do not adjust the gage dial to zero, unless the correction value on the gage master is zero. - 3.5mm, 2.4 mm, and 7 mm: The gage pointer should line up exactly with the zero mark on the gage. If not, adjust the zero set knob or rotate the gage dial until the gage pointer lines up exactly with zero. - 6. Tighten the dial lock screw and remove the gage master. - 7. Attach and torque the gage master once again to verify that the setting is repeatable. Remove the gage master. ## **Gaging Technique** ## **CAUTION** Remove the collet when gaging 7 mm connectors. - 1. Connect and torque the device being measured to the gage. - 2. Gently tap the barrel of the gage with your finger to settle the gage reading. - 3. Type-N and 7mm: Read the gage indicator dial. If the needle has moved clockwise, the center conductor is *protruding* by an amount indicated by the black numbers. If the needle has moved counterclockwise, the center conductor is *recessed* by an amount indicated by the red numbers. - 3.5 mm and 2.4 mm: Read the gage indicator dial. Read only the black \pm signs; not the red \pm signs. - 4. For maximum accuracy, measure the connector a minimum of three times and take an average of the readings. After each measurement, rotate the gage a quarter-turn to reduce measurement variations that result from the gage or the connector face not being exactly perpendicular to the center axis. - 5. Compare the average reading with the observed pin depth limits in the tables located in "Typical Pin Depth Values" on page 5-15 for each type of connector. 4-14 Chapter 4 # **Making Connections** Good connections are essential for accurate calibrations and measurements and require a skilled operator. *The most common cause of measurement error is poor connections.* ## 3.5 mm, 2.92 mm, 2.4 mm, 1.85 mm, Type-N, 7-16, and Type-F Devices - 1. Handle the devices at a static-safe work station, only. See "Electrostatic Discharge" on page 4-2. - 2. Carefully align the connectors. The male connector center pin must slip concentrically into the contact finger of the female connector. # **CAUTION** Do not turn the device body. Only turn the connector nut. Damage to the center conductor can occur if
the device body is twisted. - 3. Push the connectors straight together and tighten the connector nut finger tight. Do not twist or screw the connector together. As the center conductors mate, there is usually a slight resistance - 4. The preliminary connection is tight enough when the mating plane surfaces make uniform, light contact. Do not overtighten this connection. - A connection in which the outer conductors make gentle contact at all points on both mating surfaces is sufficient. Very light finger pressure is enough to accomplish this. - 5. Make sure the connectors are properly supported. Relieve any side pressure on the connection from long or heavy devices or cables. - 6. Torque the connection according to the procedures described in "Final Connection Using a Torque Wrench" on page 4-16. #### 7 mm Devices - 1. Fully extend the connector sleeve on one of the connectors. Spin its knurled connector nut to make sure the threads are fully extended. Fully retract the sleeve on the other connector. The extended sleeve creates a cylinder into which the other connector fits. - If one of the connectors is fixed (such as on a test port), fully extend that connector sleeve and fully retract the sleeve on the moveable connector. - 2. Carefully align the connectors. As you make the actual connection, be sure the connectors align perfectly. - 3. Push the connectors straight together. Do not twist or screw the connectors together. - 4. Engage the connector nut (of the connector with the retracted sleeve) over the threads of the other connector (the connector with the extended sleeve). Turn only the connector nut. Let the connector nut pull the two connectors straight together. - 5. Do not overtighten this connection. A connection in which the outer conductors make gentle contact at all points on both mating surfaces is sufficient. Very light finger pressure is enough to accomplish this. - 6. Make sure the connectors are properly supported. Relieve any side pressure on the connection from long or heavy devices or cables. - 7. Torque the connection according to the procedures described in the following section. ## **Final Connection Using a Torque Wrench** Using a torque wrench guarantees the connection is not too tight, preventing possible connector damage. It also guarantees that all connections are equally tight. Use the recommended torque wrench to make a final connection. Table 4-1 on page 4-18 provides information on the torque wrench recommended for use with each connector type. - 1. Turn the connector nut. This may be possible to do by hand if one of the connectors is fixed (as on a test port). However, it is recommended that you use an open-end wrench to keep the body of the device from turning. - 2. Position both wrenches within 90 degrees of each other before applying force. Wrenches opposing each other (greater than 90 degrees apart) will cause a lifting action that can misalign and stress the connections of the device involved. This is especially true when several devices are connected together. Refer to Figure 4-6. Figure 4-6 Wrench Positions w j 56 f 4-16 Chapter 4 3. Hold the torque wrench lightly, at the end of the handle only (beyond the groove). See Figure 4-7. Figure 4-7 Using the Torque Wrench - 4. Carefully align the connectors. As you make the actual connection, be sure the connectors align perfectly. - 5. Push the connectors straight together. Do not twist or screw the connectors together. Engage the connector nut over the threads of the other connector. Turn only the connector nut. Let the connector nut pull the two connectors straight together. - Do not over tighten this connection. A connection in which the outer conductors make gentle contact at all points on both mating surfaces is sufficient. Very light finger pressure is enough to accomplish this. - 6. Make sure the connectors are properly supported. Relieve any side pressure on the connection from long or heavy devices or cables. - 7. Apply force downward to the wrench handle. This applies torque to the connection through the wrench. Do not hold the wrench so tightly that you push the handle straight down along its length rather than pivoting it, otherwise you apply an unknown amount of torque. #### **CAUTION** You don't have to fully break the handle of the torque wrench to reach the specified torque; doing so can cause the handle to kick back and loosen the connection. Any give at all in the handle is sufficient torque. 8. Tighten the connection just to the torque wrench break point. The wrench handle gives way at its internal pivot point. Do not tighten the connection further. See Figure 4-7. Table 4-1 ECal Module Torque Wrench Information | Connector Type | Torque Wrench
Part Number | Wrench
Opening | Torque Setting | Torque Tolerance ^a | |--|------------------------------|-------------------|---------------------|-------------------------------| | 3.5 mm, 2.92 mm,
2.4 mm, 1.85 mm
(test port) | 8710-1764 | 20 mm | 90 N-cm (8 in-lb) | ±9 N-cm (±0.8 in-lb) | | 3.5 mm, 2.92 mm,
2.4 mm, 1.85 mm
(adapters) | 8710-1765 | 5/16 in | 90 N-cm (8 in-lb) | ±9 N-cm (±0.8 in-lb) | | Type-N 50, 75 Ω | 8710-1766 | 3/4 in | 135 N-cm (12 in-lb) | ±13.5 N-cm (±1.2 in-lb) | | 7 mm | 8710-1766 | 3/4 in | 135 N-cm (12 in-lb) | ±13.5 N-cm (±1.2 in-lb) | | 7-16 | 8710-2174 | 1 1/16 in | 226 N-cm (20 in-lb) | ±22.6 N-cm (±2 in-lb) | a. Many older Agilent calibration module manuals list different torque tolerances for the various torque wrenches. The correct torque tolerance for Agilent torque wrenches is $\pm 10\%$ of the torque setting as listed in this table. ## **Separating Connections** To avoid lateral (bending) force on the connector mating plane surfaces, always support the devices and connections. # **CAUTION** Do *not* turn the device body. Only turn the connector nut. Damage to the center conductor can occur if the device body is twisted. - 1. Use an open-end wrench or spanner wrench to prevent the device body from turning. - 2. Use another open-end wrench to loosen the connector nut. - 3. Complete the separation by hand, turning only the connector nut. - 4. Pull the connectors straight apart without twisting, rocking, or bending. 4-18 Chapter 4 # **Handling and Storage** - Use the plastic end caps on connectors when not in use. - Never store modules and adapters loose in a box, in a desk, or in a bench drawer. This is the most common cause of connector damage during storage. Agilent recommends that you purchase the optional ECal Storage Box (not included with an ECal kit). This is a container for securing your ECal module and accessories, such as a USB cable, wrenches, and adaptors. For ordering information, see "Other ECal Accessories" on page 6-11. - Keep connectors clean. - Do not touch mating plane surfaces. Natural skin oils and microscopic particles of dirt are easily transferred to a connector interface and are very difficult to remove. - Do not set connectors contact-end down on a hard surface. The plating and the mating plane surfaces can be damaged if the interface comes in contact with any hard surface. Use, Maintenance, and Care of the Devices **Handling and Storage** 4-20 Chapter 4 **5** Specifications and Characteristics # **Specifications: Terminology and Definitions** The following terms and definitions apply to Agilent's 8509x, N4431B, and N469xA/B series of ECal modules. The definitions are specific to these modules and are not necessarily valid definitions for other Agilent Technologies products. Table 5-1 Specifications and Characteristics Terminology | Terms | Definitions | |--------------------------------------|--| | Operating Temperature Range | The temperature range over which the ECal modules maintain conformance to their specifications. | | Error-Corrected Temperature
Range | The allowable network analyzer ambient temperature drift during measurement calibration and during measurements when network analyzer correction is turned on. It is also the range over which the network analyzer maintains its specified performance while correction is turned on. If this temperature range is exceeded, the error-corrected performance of the network analyzer is degraded. | | Measurement Calibration | This calibration determines the corrections necessary for accuracy-enhanced (correction on) measurements. | | Connector Pin Depth Values | Pin depth is a relative measurement value between the center conductor and outer conductor mating surfaces. All references to pin depth in this manual treat positive (+) values as protrusions of the center conductor, and negative (-) values as recessions of the center conductor. See "Typical Pin Depth Values" on page 5-15. | | Electrical Specifications | Warranted performance. Specifications include guard bands to account for the expected statistical distribution, measurement uncertainties, and changes in performance due to environmental conditions. Included with Option UK6. | | Characteristic Performance | A performance parameter that the product is expected to meet before it leaves the factory, but is not verified in the field and is not covered by the product warranty. A characteristic includes the same guard bands as a specification. | | Typical Corrected Performance | Expected performance of an average unit which does not include guard bands. It is not covered by the product warranty. | 5-2 Chapter 5 ## **Environmental Specifications** #### **NOTE** Samples of this product have been type-tested in accordance with the Agilent Environmental
Test Manual and verified to be robust against the environmental stresses of storage, transportation and end-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power-line conditions. Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3. **Table 5-2 Environmental Specifications for all ECal Modules** | Specifications | Limits | |---|---| | Temperature Operating (8509xC series) Operating (N443xA/B series) Operating (N469xA/B series) Storage Error-corrected range | +20 °C to +30 °C
+20 °C to +30 °C
+20 °C to +26 °C
+20 °C to +26 °C
-40 °C to +70 °C
\pm 1 °C of measurement calibration temperature | | Altitude
Operation ^a
Storage | < 4,500 meters (15,000 feet)
< 4,500 meters (15,000 feet) | | Relative Humidity | Type tested, 0% to 95% at 40 °C, non-condensing | | EMI Conducted Immunity Radiated Immunity Radiated Emissions | IEC 61000-4-6
IEC 61000-4-3
CISPR11 | a. The 85097B VNA interface unit is not warranted for use above 3,000 meters (10,000 feet). ### **Operating Temperature and Accuracy Enhancement** Because the dimensions of critical components may vary over temperature, certain electrical characteristics may change as well. Thus, the operating temperature is a critical factor in its performance, and must be stable before use. In addition, excessive air flow can prevent the ECal module from warming up properly. Measurement calibration, performance verification, and actual device measurements must be made within ±1 °C of the error-corrected operating temperature range specification of the network analyzer. If the ambient operating temperature drift of the network analyzer exceeds the allowable error-corrected temperature range, a new measurement calibration must be performed to ensure optimum accuracy. | NOTE | Avoid prolonged handling of the module, | |------|---| | | | connectors, and cables. Your fingers are a heat source that can increase the temperature of these devices. # **Barometric Pressure and Relative Humidity** Barometric pressure and relative humidity also affect module performance. The dielectric constant of the air between the inner and outer conductors of the module changes as the air pressure and humidity change. 5-4 Chapter 5 ### **Characteristic Performance** Characteristic performance for RF and microwave ECal modules are provided in the following tables, which describe non-warranted performance that most units exhibit. #### 8509x Series #### Characteristic Performance for 85091C (7 mm) | Parameter | Frequency Range | | | | | | | | |-----------------------------|------------------|------------|------------|------------|--|--|--|--| | | 300 kHz to 1 GHz | 1 to 3 GHz | 3 to 6 GHz | 6 to 9 GHz | | | | | | Directivity (dB) | 52.0 | 56.0 | 55.0 | 45.0 | | | | | | Source Match (dB) | 45.0 | 44.0 | 41.0 | 34.0 | | | | | | Reflection Tracking (±dB) | 0.04 | 0.04 | 0.07 | 0.1 | | | | | | Transmission Tracking (±dB) | 0.06 | 0.06 | 0.13 | 0.23 | | | | | | Load Match (dB) | 47.0 | 47.0 | 46.0 | 39.0 | | | | | #### Characteristic Performance for 85092C (Type-N 50Ω) | Parameter | | Frequenc | cy Range | | |-----------------------------|------------------|------------|------------|------------| | | 300 kHz to 1 GHz | 1 to 3 GHz | 3 to 6 GHz | 6 to 9 GHz | | Directivity (dB) | 52.0 | 54.0 | 52.0 | 47.0 | | Source Match (dB) | 45.0 | 44.0 | 41.0 | 36.0 | | Reflection Tracking (±dB) | 0.04 | 0.04 | 0.06 | 0.07 | | Transmission Tracking (±dB) | 0.04 | 0.04 | 0.07 | 0.14 | | Load Match (dB) | 47.0 | 47.0 | 44.0 | 39.0 | #### Characteristic Performance for 85093C (3.5 mm) | Parameter | Frequency Range | | | | | | | | |-----------------------------|------------------|------------|------------|------------|--|--|--|--| | | 300 kHz to 1 GHz | 1 to 3 GHz | 3 to 6 GHz | 6 to 9 GHz | | | | | | Directivity (dB) | 52.0 | 52.0 | 50.5 | 47.0 | | | | | | Source Match (dB) | 44.0 | 44.0 | 39.0 | 34.0 | | | | | | Reflection Tracking (±dB) | 0.03 | 0.03 | 0.05 | 0.07 | | | | | | Transmission Tracking (±dB) | 0.04 | 0.05 | 0.07 | 0.12 | | | | | | Load Match (dB) | 47.0 | 47.0 | 44.0 | 40.0 | | | | | ### Characteristic Performance for 85096C (Type-N 75 Ω) | Parameter | | Frequency Range | | |-----------------------------|--------------------|--------------------|--------------| | | 300 kHz to 300 MHz | 300 MHz to 1.3 GHz | 1.3 to 3 GHz | | Directivity (dB) | 50.0 | 48.0 | 43.0 | | Source Match (dB) | 48.0 | 45.0 | 38.0 | | Reflection Tracking (±dB) | 0.03 | 0.06 | 0.1 | | Transmission Tracking (±dB) | 0.08 | 0.09 | 0.16 | | Load Match (dB) | 43.0 | 41.0 | 39.0 | ### Characteristic Performance for 85098C (7-16) | Parameter | | Frequenc | cy Range | | |-----------------------------|------------------|------------|------------|--------------| | | 300 kHz to 1 GHz | 1 to 3 GHz | 3 to 6 GHz | 6 to 7.5 GHz | | Directivity (dB) | 47.0 | 50.0 | 46.0 | 45.0 | | Source Match (dB) | 43.0 | 43.0 | 38.0 | 37.0 | | Reflection Tracking (±dB) | 0.03 | 0.03 | 0.05 | 0.06 | | Transmission Tracking (±dB) | 0.05 | 0.06 | 0.08 | 0.10 | | Load Match (dB) | 42.0 | 43.0 | 41.0 | 38.0 | ### Characteristic Performance^a for 85099C (Type-F) | Parameter | | Frequency Range | | | | | | | |-----------------------------|--------------------|--------------------|--------------|--|--|--|--|--| | | 300 kHz to 300 MHz | 300 MHz to 1.3 GHz | 1.3 to 3 GHz | | | | | | | Directivity (dB) | 50.0 | 48.0 | 43.0 | | | | | | | Source Match (dB) | 48.0 | 45.0 | 38.0 | | | | | | | Reflection Tracking (±dB) | 0.03 | 0.07 | 0.15 | | | | | | | Transmission Tracking (±dB) | 0.08 | 0.10 | 0.17 | | | | | | | Load Match (dB) | 43.0 | 41.0 | 39.0 | | | | | | a. When mated with male connectors with a 0.77 mm (.030 in) to 0.86 (0.34) pin diameter 5-6 Chapter 5 #### N4431B (3.5 mm) The characteristic performance in the following table applies to N4431B Option 010 (3.5 mm female connectors on all ports). The data describes performance when measuring "thru path" A-B, C-D, A-D and B-C. #### Characteristic Performance for N4431B Option 010 | Parameter | Frequency Range | | | | | | | |-----------------------------|---------------------|---------------|---------------|---------------|---------------|------------------|--| | | 300 kHz
to 1 GHz | 1 to
3 GHz | 3 to
6 GHz | 6 to
8 GHz | 8 to
9 GHz | 9 to
13.5 GHz | | | Directivity (dB) | 57 | 55 | 52 | 50 | 47 | 40 | | | Source Match (dB) | 50 | 47 | 45 | 44 | 43 | 32 | | | Reflection Tracking (±dB) | 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.1 | | | Transmission Tracking (±dB) | 0.06 | 0.09 | 0.12 | 0.14 | 0.2 | 0.33 | | | Load Match (dB) | 47 | 46 | 45 | 44 | 42 | 28 | | The characteristic performance in the following table applies to N4431B Option 010 (3.5 mm female connectors on all ports). The data describes performance when measuring "thru path" A-C and B-D. #### Characteristic Performance for N4431B Option 010 | Parameter | Frequency Range | | | | | | | |-----------------------------|---------------------|---------------|---------------|---------------|---------------|------------------|--| | | 300 kHz
to 1 GHz | 1 to
3 GHz | 3 to
6 GHz | 6 to
8 GHz | 8 to
9 GHz | 9 to
13.5 GHz | | | Directivity (dB) | 57 | 55 | 52 | 50 | 47 | 40 | | | Source Match (dB) | 50 | 47 | 45 | 44 | 43 | 32 | | | Reflection Tracking (±dB) | 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.1 | | | Transmission Tracking (±dB) | 0.06 | 0.08 | 0.1 | 0.12 | 0.14 | 0.3 | | | Load Match (dB) | 47 | 46 | 45 | 45 | 43 | 29 | | ### N4431B (Type-N 50 Ω) The characteristic performance in the following table applies to N4431B Option 020 (type-N female connectors on all ports). The data describes performance when measuring "thru path" A-B, C-D, A-D and B-C. #### Characteristic Performance for N4431B Option 020 | Parameter | Frequency Range | | | | | | |-----------------------------|---------------------|---------------|---------------|---------------|---------------|------------------| | | 300 kHz
to 1 GHz | 1 to
3 GHz | 3 to
6 GHz | 6 to
8 GHz | 8 to
9 GHz | 9 to
13.5 GHz | | Directivity (dB) | 55 | 52 | 47 | 44 | 42 | 40 | | Source Match (dB) | 47 | 43 | 42 | 40 | 39 | 31 | | Reflection Tracking (±dB) | 0.03 | 0.04 | 0.04 | 0.05 | 0.06 | 0.11 | | Transmission Tracking (±dB) | 0.07 | 0.1 | 0.14 | 0.2 | 0.22 | 0.35 | | Load Match (dB) | 47 | 45 | 40 | 38 | 35 | 26 | The characteristic performance in the following table applies to N4431B Option 020 (type-N female connectors on all ports). The data describes performance when measuring "thru path" A-C and B-D. #### Characteristic Performance for N4431B Option 020 | Parameter | Frequency Range | | | | | | |-----------------------------|---------------------|---------------|---------------|---------------|---------------|------------------| | | 300 kHz
to 1 GHz | 1 to
3 GHz | 3 to
6 GHz | 6 to
8 GHz | 8 to
9 GHz | 9 to
13.5 GHz | | Directivity (dB) | 55 | 52 | 47 | 44 | 42 | 40 | | Source Match (dB) | 47 | 43 | 42 | 40 | 39 | 31 | | Reflection Tracking (±dB) | 0.03 | 0.04 | 0.04 | 0.05 | 0.06 | 0.11 | | Transmission Tracking (±dB) | 0.07 | 0.09 | 0.13 | 0.15 | 0.16 | 0.32 | | Load Match (dB) | 47 | 45 | 40 | 38 | 36 | 28 | 5-8 Chapter 5 ### N4432A (Type-N 50 Ω) The characteristic performance in the following table applies to N4432A Option 020 (type-N female connectors on all ports). #### Characteristic Performance for N4432A Option 020 | Parameter | Frequency Range | | | | | | | |--|-------------------------|-----------------------|------------------|---------------------
----------------------|--|--| | | 300 kHz
to
10 MHz | 10 MHz
to
5 GHz | 5
to
9 GHz | 9
to
13.5 GHz | 13.5
to
18 GHz | | | | Directivity (dB) | 45 | 52 | 47 | 41 | 42 | | | | Source Match (dB) | 35 | 41 | 37 | 34 | 34 | | | | Reflection Tracking (±dB) | 0.1 | 0.06 | 0.1 | 0.15 | 0.14 | | | | Transmission Tracking (±dB) ^a | 0.082 | 0.046 | 0.062 | 0.089 | 0.084 | | | | Load Match (dB) ^a | 39 | 45 | 40 | 36 | 37 | | | a. Values based on using the PNA Network Analyzer N5230A Option 240 or 245. #### N4433A (3.5 mm) The characteristic performance in the following table applies to N4433A Option 010 (3.5 mm female connectors on all ports). #### Characteristic Performance for N4433A Option 010 | Parameter | Frequency Range | | | | | | | |--|-------------------------|-----------------------|------------------|---------------------|----------------------|--|--| | | 300 kHz
to
10 MHz | 10 MHz
to
5 GHz | 5
to
9 GHz | 9
to
13.5 GHz | 13.5
to
20 GHz | | | | Directivity (dB) | 45 | 52 | 47 | 45 | 45 | | | | Source Match (dB) | 36 | 42 | 39 | 37 | 31 | | | | Reflection Tracking (±dB) | 0.1 | 0.06 | 0.09 | 0.10 | 0.18 | | | | Transmission Tracking (±dB) ^a | 0.078 | 0.045 | 0.057 | 0.069 | 0.160 | | | | Load Match (dB) ^a | 39 | 45 | 41 | 39 | 35 | | | a. Values based on using the PNA Network Analyzer N5230A Option 240 or 245. ### N469xA/B Series ### Characteristic Performance for N4690B (Type-N 50 Ω) | Parameter | Frequency Range | | | | | | |------------------------------|-------------------------|------------------|---------------------|----------------|-----------------|--| | | 300 kHz
to 10
MHz | 10 to
500 MHz | 500 MHz
to 2 GHz | 2 to
10 GHz | 10 to
18 GHz | | | Directivity (dB) | 40 | 45 | 48 | 46 | 42 | | | Source Match (dB) | 35 | 40 | 43 | 40 | 35 | | | Reflection Tracking (±dB) | 0.07 | 0.05 | 0.03 | 0.03 | 0.05 | | | Transmission Tracking (±dB) | 0.12 | 0.08 | 0.07 | 0.07 | 0.12 | | | Load Match w/ ECal Thru (dB) | 29 | 35 | 42 | 41 | 38 | | #### Characteristic Performance for N4691B (3.5 mm) | Parameter | Frequency Range | | | | | | | |------------------------------|-------------------------|---------------------|---------------------|----------------|-----------------|-------------------|--| | | 300 kHz
to 10
MHz | 10 to
500
MHz | 500 MHz
to 2 GHz | 2 to
10 GHz | 10 to
20 GHz | 20 to
26.5 GHz | | | Directivity (dB) | 41 | 46 | 56 | 54 | 48 | 44 | | | Source Match (dB) | 36 | 41 | 47 | 45 | 44 | 40 | | | Reflection Tracking (±dB) | 0.06 | 0.05 | 0.02 | 0.03 | 0.04 | 0.05 | | | Transmission Tracking (±dB) | 0.11 | 0.07 | 0.05 | 0.07 | 0.1 | 0.12 | | | Load Match w/ ECal Thru (dB) | 31 | 37 | 45 | 49 | 45 | 40 | | #### Characteristic Performance for N4692A (2.92 mm) | Parameter | Frequency Range | | | | | | | |-----------------------------|------------------|---------------------|----------------|-----------------|-----------------|--|--| | | 10 to
200 MHz | 200 MHz
to 2 GHz | 2 to
20 GHz | 20 to
30 GHz | 30 to
40 GHz | | | | Directivity (dB) | 35 | 45 | 43 | 39 | 38 | | | | Source Match (dB) | 30 | 36 | 35 | 30 | 29 | | | | Reflection Tracking (±dB) | 0.1 | 0.08 | 0.08 | 0.1 | 0.1 | | | | Transmission Tracking (±dB) | 0.1 | 0.14 | 0.14 | 0.2 | 0.25 | | | | Load Match (dB) | 27 | 36 | 37 | 33 | 33 | | | 5-10 Chapter 5 #### Characteristic Performance for N4693A (2.4 mm) | Parameter | Frequency Range | | | | | | | |-----------------------------|------------------|---------------------|----------------|-----------------|-----------------|-----------------|--| | | 10 to
200 MHz | 200 MHz
to 2 GHz | 2 to
10 GHz | 10 to
20 GHz | 20 to
40 GHz | 40 to
50 GHz | | | Directivity (dB) | 32 | 55 | 49 | 45 | 43 | 41 | | | Source Match (dB) | 25 | 46 | 42 | 37 | 35 | 30 | | | Reflection Tracking (±dB) | 0.05 | 0.03 | 0.04 | 0.05 | 0.06 | 0.08 | | | Transmission Tracking (±dB) | 0.10 | 0.06 | 0.08 | 0.11 | 0.13 | 0.17 | | | Load Match (dB) | 24 | 45 | 42 | 40 | 38 | 36 | | #### Characteristic Performance for N4694A (1.85 mm) | Parameter | Frequency Range | | | | | | | | |-----------------------------|------------------|---------------------|------|-----------------|-----------------|-----------------|-----------------|-----------------| | | 10 to
200 MHz | 200 MHz
to 2 GHz | | 20 to
30 GHz | 30 to
40 GHz | 40 to
50 GHz | 50 to
60 GHz | 60 to
67 GHz | | Directivity (dB) | 33 | 50 | 50 | 46 | 44 | 42 | 41 | 38 | | Source Match (dB) | 25 | 38 | 39 | 35 | 34 | 33 | 30 | 27 | | Reflection Tracking (±dB) | 0.05 | 0.04 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | | Transmission Tracking (±dB) | 0.15 | 0.07 | 0.1 | 0.11 | 0.13 | 0.15 | 0.19 | 0.25 | | Load Match (dB) | 25 | 41 | 44 | 42 | 40 | 38 | 36 | 32 | #### Characteristic Performance for N4696B (7 mm) | Parameter | | Frequency Range | | | | | |------------------------------|----------------------|------------------|---------------------|----------------|-----------------|--| | | 300 kHz to
10 MHz | 10 to
500 MHz | 500 MHz
to 2 GHz | 2 to
10 GHz | 10 to
18 GHz | | | Directivity (dB) | 40 | 46 | 45 | 50 | 42 | | | Source Match (dB) | 35 | 40 | 40 | 42 | 36 | | | Reflection Tracking (±dB) | 0.07 | 0.05 | 0.03 | 0.03 | 0.05 | | | Transmission Tracking (±dB) | 0.11 | 0.07 | 0.04 | 0.07 | 0.1 | | | Load Match w/ ECal Thru (dB) | 30 | 36 | 40 | 45 | 39 | | #### **Mechanical Characteristics** Mechanical characteristics, such as center conductor protrusion and pin depth, are *not* warranted performance specifications. They are, however, important supplemental characteristics related to the electrical performance of devices. Agilent Technologies verifies the mechanical characteristics of the devices with special gaging processes and electrical testing. These processes ensure that the device connectors do not exhibit any excess center conductor protrusion or improper pin depth when the module leaves the factory. "Gaging Connectors" on page 4-8 explains how to use pin-depth gages. Refer to "Typical Pin Depth Values" on page 5-15 for typical and observed pin depth limits. #### Pin Depth Pin depth is the distance the center conductor mating plane differs from being flush with the outer connector mating plane. The pin depth of a connector can be in one of two states: protrusion or recession. The pin depth for a 3.5 mm connector is shown in Figure 5-1, although the description also applies to 2.92 mm, 2.4 mm, or 1.85 mm connectors. Typical pin depths for ECal connectors are listed in "Typical Pin Depth Values" on page 5-15. **Protrusion** occurs when the center conductor extends beyond the outer conductor mating plane. It reads as a positive value on the connector gage. **Recession** occurs when the center conductor is set back from the outer conductor mating plane. It reads as a negative value on the gage. Figure 5-1 Pin Depth for a 3.5 mm Connectors Male 5-12 Chapter 5 #### **Type-N Characteristics** With type-N and 7-16 connectors, the shoulder position of the male contact pin (not the position of the tip) defines the position of the center conductor. The male contact pin slides into the female contact fingers; the inside surfaces of the tip of the female contact fingers on the sides of the male contact pin provide electrical contact. Type-N connectors differ from most connector types in that the outer conductor mating plane is offset from the mating plane of the center conductor (see Figure 5-2). The outer conductor in the male connector extends in front of the shoulder of the male contact pin. When you make a connection, this outer conductor fits into a recess in the female outer conductor behind the plane defined by the tip of the female contact fingers. Figure 5-2 Pin Depth for Type-N Connectors #### **Critical Type-N Mechanical Characteristics** #### **CAUTION** Never use a type-N connector if the possibility of interference between the shoulder of the male contact pin and the tip of the female contact fingers exists. Irreparable damage will occur if a male 50 Ω type-N connector is mated to a female 75 Ω type-N connector. If you use both 75 Ω and 50 Ω type-N connectors, mark the 75 Ω connectors so that they are never accidentally mated with 50 Ω connectors. The diameter of the center conductor, male contact pin, and female contact hole are smaller on 75 Ω connectors. - *Minimum protrusion* of the female center conductor in front of the outer conductor mating plane is 5.182 mm or 0.204 inches. - *Maximum protrusion* of the female center conductor in front of the outer conductor mating plane is 5.258 mm or 0.207 inches. - *Minimum recession* of the shoulder of the male contact pin behind the outer conductor mating plane is 5.258 mm or 0.207 inches. # Specifications and Characteristics Mechanical Characteristics • *Maximum recession* of the shoulder of the male contact pin behind the outer conductor mating plane is 5.334 mm or 0.210 inches. In the Agilent precision specification for type-N connectors, the minimum allowable recession for the male contact pin shoulder is 0.001 inches less than in the MIL-C-39012, Class II specification. Agilent Technologies type-N pin depth gages set "zero" on the gage to be equal to a nominal 5.258 mm (0.207 inches) offset. As type-N connectors wear, the protrusion of the female contact-fingers generally increases. This is due to the wear of the outer conductor mating plane inside the female connector. It is necessary to check this periodically as it decreases the total center conductor contact separation. 5-14 Chapter 5 # **Typical Pin Depth Values** The pin depth value of each device is not specified, but is an important mechanical parameter. The electrical performance of the device depends, to some extent, on its pin depth. The electrical specifications for each module takes into account the
effect of pin depth on the device's performance. The following tables list the typical pin depths and measurement uncertainties, and provides observed pin depth limits for the devices. If the pin depth of a device does not measure within the observed pin depth limits, it may be an indication that the device fails to meet electrical specification. Refer to Figure 5-1 and Figure 5-2 for a visual representation of proper pin depth (slightly recessed). **NOTE** Agilent Technologies does not supply pin depth gages for 7-16 connectors. The 7-16 module adapter pin depth is set at 0 to -38.1 micrometers recessed from the nominal 1.77 mm offset between inner conductor and outer conductor mating planes. Table 5-3 Type-N 50 Ω Connector Pin Depth Characteristics | Device | Typical Pin Depth ^a in Micrometers (10 ⁻⁴ inches) | Measurement Uncertainty ^b in Micrometers (10 ⁻⁴ inches) | Observed Pin Depth
Limits
in Micrometers
(10 ⁻⁴ inches) | |---|---|---|---| | Type-N 50 Ω ECal Module (85092C, N4432A, N4431B Opt. 020) | -25.4 to -50.8 | +3.8 to -3.8 | -21.6 to -54.6 | | | (-10.0 to -20.0) | (+1.5 to -1.5) | (-8.5 to -21.5) | | Type-N 50 Ω ECal Module (N4690B) | -5.1 to -15.2 | +3.8 to -3.8 | -1.3 to -19.0 | | | (-2.0 to -6.0) | (+1.5 to -1.5) | (-0.5 to -7.5) | | Type-N 50 Ω Adapter | 0 to -12.7 | +3.8 to -3.8 | +3.8 to -16.5 | | | (0 to -5.0) | (+1.5 to -1.5) | (+1.5 to -6.5) | a. Measured from a 5.258 mm (0.207 inches) nominal offset. b. Approximately +2 sigma to -2 sigma of total measurement uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. Table 5-4 3.5 mm Connector Pin Depth Characteristics | Device | Typical Pin Depth
in Micrometers
(10 ⁻⁴ inches) | Measurement Uncertainty ^a in Micrometers (10 ⁻⁴ inches) | Observed Pin Depth Limits in Micrometers (10 ⁻⁴ inches) | |--|--|---|--| | 3.5 mm ECal Module
(85093C, N4433A, N4431B
Opt. 010) | -25.4 to -50.8
(-10.0 to -20.0) | 4.1
(1.6) | -29.5 to -54.9
(-8.4 to -21.6) | | 3.5 mm ECal Module | -2.5 to -15.2 | 4.1 | 1.6 to -19.3 | | (N4691B) | (-1.0 to -6.0) | (1.6) | (0.6 to -7.6) | | 3.5 mm Adapter | 0 to 25.4 | 4.1 | 4.1 to -29.5 | | | (0 to 10) | (1.6) | (1.6 to -11.6) | a. Approximately +2 sigma to -2 sigma of total measurement uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. Table 5-5 7 mm Connector Pin Depth Characteristics | Device | Typical Pin Depth
in Micrometers
(10 ⁻⁴ inches) | Measurement Uncertainty ^a in Micrometers (10 ⁻⁴ inches) | Observed Pin Depth Limits in Micrometers (10 ⁻⁴ inches) | |------------------|--|---|--| | 7 mm ECal Module | -25.4 to -50.8 | 3.8 | -21.6 to -54.6 | | (85091C, N4432A) | (-10.0 to -20.0) | (1.5) | (-8.5 to -21.5) | | 7 mm ECal Module | -2.5 to -15.2 | 3.8 | 1.3 to -19.0 | | (N4696B) | (-1.0 to -6.0) | (1.5) | (0.5 to -7.5) | a. Approximately +2 sigma to -2 sigma of total measurement uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. Table 5-6 2.92 mm Connector Pin Depth Characteristics | Device | Typical Pin Depth
in Micrometers
(10 ⁻⁴ inches) | Measurement Uncertainty ^a in Micrometers (10 ⁻⁴ inches) | Observed Pin Depth Limits in Micrometers (10 ⁻⁴ inches) | |---------------------|--|---|--| | 2.92 mm ECal Module | -2.5 to -15.2 | 3.0 | 0.5 to -18.2 | | | (-1.0 to -6.0) | (1.2) | (0.2 to -7.2) | | 2.92 mm Adapter | 0 to 38.1 | 3.0 | 3.0 to -41.1 | | | (0 to 15.0) | (1.2) | (1.2 to -16.2) | a. Approximately +2 sigma to -2 sigma of total measurement uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. 5-16 Chapter 5 Table 5-7 2.4 mm Connector Pin Depth Characteristics | Device | Typical Pin Depth
in Micrometers
(10 ⁻⁴ inches) | Measurement Uncertainty ^a in Micrometers (10 ⁻⁴ inches) | Observed Pin Depth
Limits
in Micrometers
(10 ⁻⁴ inches) | |--------------------|--|---|---| | 2.4 mm ECal Module | -2.5 to -15.2 | 3.0 | 0.5 to -18.2 | | | (-1.0 to -6.0) | (1.2) | (0.2 to -7.2) | | 2.4 mm Adapter | 0 to 38.1 | 3.0 | 3.0 to -41.1 | | | (0 to 15.0) | (1.2) | (1.2 to -16.2) | a. Approximately +2 sigma to -2 sigma of total measurement uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. Table 5-8 1.85 mm Connector Pin Depth Characteristics | Device | Typical Pin Depth
in Micrometers
(10 ⁻⁴ inches) | Measurement Uncertainty ^a in Micrometers (10 ⁻⁴ inches) | Observed Pin Depth Limits in Micrometers (10 ⁻⁴ inches) | |---------------------|--|---|--| | 1.85 mm ECal Module | -2.5 to -15.2 | 3.0 | 0.5 to -18.2 | | | (-1.0 to -6.0) | (1.2) | (0.2 to -7.2) | | 1.85 mm Adapter | 0 to 38.1 | 3.0 | 3.0 to -41.1 | | | (0 to 15.0) | (1.2) | (1.2 to -16.2) | a. Approximately +2 sigma to -2 sigma of total measurement uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. # **Supplemental Mechanical Characteristics** Table 5-9 8509x Series Mechanical Characteristics | Characteristic | Limits | |---|---| | Net weight with case
Standard | 2.7 kilograms (5.9 lbs) | | Shipping weight
Standard | 4.3 kilograms (9.5 lbs) | | Shipping container dimensions Length Width Height | 45.7 cm (17.82 inches)
26.2 cm (10.22 inches)
13.3 cm (5.19 inches) | Table 5-10 N4431B Series Mechanical Characteristics | Characteristic | Limits | |---|---| | Net weight with case
Standard | 2.9 kilograms (6.3 lbs) | | Shipping weight Standard | 4.5 kilograms (9.9 lbs) | | Shipping container dimensions Length Width Height | 45.7 cm (17.82 inches)
26.2 cm (10.22 inches)
13.3 cm (5.19 inches) | Table 5-11 N469xA/B Series and N443xA Series Mechanical Characteristics | Characteristic | Limits | |---|---| | Net weight with case
Standard | 2.7 kilograms (5.9 lbs) | | Shipping weight
Standard | 4.3 kilograms (9.5 lbs) | | Shipping container dimensions Length Width Height | 45.7 cm (17.82 inches)
26.2 cm (10.22 inches)
13.3 cm (5.19 inches) | 5-18 Chapter 5 Table 5-12 N443xA Series Mechanical Characteristics | Characteristic | Limits | |---|---| | Net weight with case
Standard | 2.8 kilograms (6.2 lbs) | | Shipping weight
Standard | 4.4 kilograms (9.7 lbs) | | Shipping container dimensions Length Width Height | 45.7 cm (17.82 inches)
26.2 cm (10.22 inches)
13.3 cm (5.19 inches) | ## **Mechanical Dimensions of the Modules** Figure 5-3. 8509x Modules (RF Two-Port) 5-20 Chapter 5 Figure 5-4. N4431B Module (RF Four-Port) Figure 5-5. N469xA/B Modules (Microwave Two-Port) 5-22 Chapter 5 Figure 5-6. N4432A and N4433A Modules (Microwave Four-Port) # **Measurement Uncertainty Calculator** This section provides information about determining the uncertainty of the measurements on your network analyzer. #### Download the Vector Network Analyzer Uncertainty Calculator You can download a program from Agilent that provides the measurement uncertainty associated with your vector network analyzer measurement and ECal module. Go to www.agilent.com/find/na_calculator and follow the instructions on the Web site to download the program. The program uses your Agilent network analyzer model number, your ECal module model number, and electrical limits to calculate specific uncertainty charts for your network analyzer. The program is Microsoft® Windows® based and uses a Microsoft Excel spreadsheet to calculate, graph, and display uncertainty curves. 5-24 Chapter 5 ^{1.} Microsoft® is a U.S. registered trademark of Microsoft Corporation. ^{2.} Windows® is a U.S. registered trademark of Microsoft Corporation. 6 Replaceable Parts # **Description of This Chapter** The following tables contain the replaceable part numbers for ECal options and accessories. Refer to "Inspecting ECal Module Kit" on page 2-2 for the contents of each kit. To order a part, note the description, Agilent part number, and the quantity desired. Telephone or send your order to Agilent Technologies. See
"Contacting Agilent" on page 1-15. # 7 mm Modules and Accessories | Description ^a | Qty | Part Number | |---|---|---| | Wrenches | | | | 3/4 in, 135 N-cm (12 in-lb) torque wrench (supplied with 7 mm kits) | 1 | 8710-1766 | | 1/2 in to 9/16 in open-ended wrench (supplied with N4696B) | 1 | 8710-1770 | | Protective End Caps | | | | DB25 multi-pin connector cap 7 mm connector cap 36-pin connector cap, ESD protected | as required
as required
as required | 1252-4690
1401-0249
N4693-40002 | | Gages and Accessories | | | | 7 mm pin depth gage and master | 1 | 85050-80012 | | Other | | | | 7 mm collet extractor tool (supplied with 7 mm kits) Replacement 7 mm collet Electronic calibration module reference manual ^b USB cable, 1.8 meter Adapter cable, DB25 to AMP Champ (36-pin) | 1
1
1
1 | 5060-0370
85050-20001
N4693-90001
8121-0506
8121-1047 | | Storage box for the ECal module and accessories | 1 | N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1-2. 6-2 Chapter 6 b. See "Printing Copies of On-Line Documentation" on page iv. # Type-N (50 ohm) Modules and Accessories | Description ^a | Qty | Part Number | |--|--|--| | Adapters (added with Option 00A) | 1 | | | Type-N (50 Ω) female to female adapter Type-N (50 Ω) male to male adapter | 1
1 | 85054-60037
85054-60038 | | Wrenches | | | | 3/4 in, 135 N-cm (12 in-lb) torque wrench (supplied with type-N kits) | 1 | 8710-1766 | | 1/2 in to 9/16 in open-ended wrench (supplied with N4690B) | 1 | 8710-1770 | | Protective End Caps | | | | DB-25 multi-pin connector cap Type-N female connector cap Type-N male connector cap 36-pin connector cap, ESD protected | as required
as required
as required
as required | 1401-0225 | | Gages and Accessories | | | | Type-N pin depth gages (male & female gages & masters) Type-N slotless contact repair kit Type-N slotless contacts (pkg. of 10) Type-N slotless contact (1 only) | 1
1
1
1 | 85054-60049
85054-60056
85054-60057
85054-60058 | | Other | | | | Electronic calibration module reference manual ^b Connector care quick reference card (part of reference manual) | 1
1 | N4693-90001
08510-90360 | | USB cable A to B 1.8 meter Adapter cable, DB25 to AMP Champ (36-pin) Storage box for the ECal module and accessories | 1
1
1 | 8121-0506
8121-1047
N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1-2. Chapter 6 6-3 b. See "Printing Copies of On-Line Documentation" on page iv. # 3.5 mm Modules and Accessories | Description ^a | Qty | Part Number | |---|-------------------------|----------------------------| | Adapters (added with Option 00A) | | | | 3.5 mm female to female adapter
3.5 mm male to male adapter | 1
1 | 85052-60012
85052-60014 | | Wrenches | | | | 20 mm, 90 N-cm (8 in-lb) torque wrench (supplied with all 3.5 | 1 | 8710-1764 | | mm kits)
 5/16 in, 90 N-cm (8 in-lb) torque wrench (supplied with N4691B,
 N4431B, 85093C kits) | 1 | 8710-1765 | | Spanner wrench (supplied with N4691B) | 1 | 08513-20014 | | 1/2 in to 9/16 in open-ended wrench (supplied with N4691B) | 1 | 8710-1770 | | Protective End Caps | | | | DB-25 multi-pin connector cap | as required | 1252-4690 | | 3.5 mm connector cap (for module) 3.5 mm female connector cap (for adapter) | as required as required | $1401-0214 \\ 1401-0202$ | | 3.5 mm male connector cap (for adapter) | as required as required | | | 36-pin connector cap, ESD protected | as required | N4693-40002 | | Gages and Accessories | | | |---|-----------------------|---| | 3.5 mm female pin-depth gage ^b 3.5 mm male pin-depth gage ^b 3.5 mm repair kit with 10 contacts 3.5 mm slotless contacts (pkg. of 10) 3.5 mm slotless contact (1 only) | 1
1
1
1
1 | 11752-60105
11752-60106
85052-60049
85052-60050
85052-60051 | | Other | | | | Electronic calibration module reference guide ^c
Connector care quick reference card (part of reference manual) | 1
1 | N4693-90001
08510-90360 | | USB cable, 1.8 meter
Adapter cable, DB25 to AMP Champ (36-pin)
Storage box for the ECal module and accessories | 1
1
1 | 8121-0506
8121-1047
N4693-60042 | - a. See "Clarifying the Terminology of a Connector Interface" on page 1-2. - b. A 3.5 mm gage is capable of measuring 3.5 mm and 2.92 mm connectors. - c. See "Printing Copies of On-Line Documentation" on page iv. 6-4 Chapter 6 # 7-16 Modules and Accessories | Description ^a | Qty | Part Number | |---|---|--| | Adapters (added with Option 00A) | | • | | 7-16 female to female adapter 7-16 male to male adapter | 1
1 | 11906-80016
11906-80015 | | Wrenches | | | | 1-1/16 in, 226 N-cm (20 in-lb) torque wrench (supplied with kit) 15/16 in open-ended wrench (supplied with kit) | 1
1 | 8710-2175
8710-2174 | | Protective End Caps | | | | DB-25 multi-pin connector cap 7-16 male connector cap 7-16 female connector cap | as required
as required
as required | 1252-4690
1401-0417
1401-0418 | | Other | | | | Electronic calibration module reference manual ^b Connector care quick reference card (part of reference manual) USB Cable, 1.8 meter Storage box for the ECal module and accessories | 1
1
1
1 | N4693-90001
08510-90360
8121-0506
N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1-2.b. See "Printing Copies of On-Line Documentation" on page iv. **Chapter 6** 6-5 # 2.92 mm Modules and Accessories | Description ^a | Qty | Part Number | |--|-------------|-------------| | Adapters (added with Option 00A) | | | | 2.92 mm female to female adapter | 1 | N4692-60022 | | 2.92 mm male to male adapter | 1 | N4692-60021 | | Wrenches | | | | 20 mm, 90 N-cm (8 in-lb) torque wrench (supplied with kit) | 1 | 8710-1764 | | 5/16 in, 90 N-cm (8 in-lb) torque wrench (supplied with kit) | 1 | 8710-1765 | | Spanner wrench (supplied with kit) | 1 | 08513-20014 | | 1/2 in to 9/16 in open-ended wrench (supplied with kit) | 1 | 8710-1770 | | Protective End Caps | | | | 2.92 mm connector cap (for module) | as required | 1401-0214 | | 2.92 mm female connector cap (for adapter) | as required | 1401-0202 | | | as required | 1401-0208 | | 36-pin connector cap, ESD protected | as required | N4693-40002 | | Gages | | | | 3.5 mm female pin-depth gage ^b | 1 | 11752-60105 | | 3.5 mm male pin-depth gage ^b | 1 | 11752-60106 | | Other | | | | Electronic calibration module reference manual ^c | 1 | N4693-90001 | | Connector care quick reference card (part of reference manual) | 1 | 08510-90360 | | USB cable, 1.8 meters | 1 | 8121-0506 | | Adapter cable, DB25 to AMP Champ (36-pin) | 1 | 8121-1047 | | Storage box for the ECal module and accessories | 1 | N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1-2. 6-6 Chapter 6 b. A 3.5 mm gage is capable of measuring 3.5 mm and 2.92 mm connectors. c. See "Printing Copies of On-Line Documentation" on page iv. # 2.4 mm Modules and Accessories | Description ^a | Qty | Part Number | |--|--|---| | Adapters (added with Option 00A) | | | | 2.4 mm female to female adapter
2.4 mm male to male adapter | 1 1 | 85056-60006
85056-60005 | | Wrenches | | | | 20 mm, 90 N-cm (8 in-lb) torque wrench (supplied with kit) 5/16 in, 90 N-cm (8 in-lb) torque wrench (supplied with kit) 1/2 in to 9/16 in open-ended wrench (supplied with kit) Spanner wrench (supplied with kit) | 1
1
1
1 | 8710-1764
8710-1765
8710-1770
08513-20014 | | Protective End Caps | | • | | 2.4 mm connector cap (for module) 2.4 mm female connector cap (for adapter) 2.4 mm male connector cap (for adapter) 36-pin connector cap, ESD protected | as required
as required
as required
as required | 1401-0214
1401-0095
1401-0208
N4693-40002 | | Gages | | | | 2.4 mm female pin-depth gage ^b 2.4 mm male pin-depth gage ^b | 1
1 | 11752-60107
11752-60108 | | Other | <u> </u> | T | | Electronic calibration module reference manual ^c Connector care quick reference card (part of reference manual) USB cable, 1.8 meters Adapter cable, DB25 to AMP Champ (36-pin) Storage box for the ECal module and accessories | 1
1
1
1 | N4693-90001
08510-90360
8121-0506
8121-1047
N4693-60042 | a. See "Clarifying the Terminology of a Connector
Interface" on page 1-2. Chapter 6 6-7 b. A 2.4 mm gage is capable of measuring 2.4 mm and 1.85 mm connectors. c. See "Printing Copies of On-Line Documentation" on page iv. # 1.85 mm Modules and Accessories | Description ^a | Qty | Part Number | |--|--|---| | Adapters (added with Option 00A) | I | | | 1.85 mm female to female adapter
1.85 mm male to male adapter | 1 1 | 85058-60114
85058-60113 | | Wrenches | | | | 20 mm, 90 N-cm (8 in-lb) torque wrench (supplied with kit) 5/16 in, 90 N-cm (8 in-lb) torque wrench (supplied with kit) Spanner wrench (supplied with kit) 1/2 in to 9/16 in open-ended wrench (supplied with kit) | 1
1
1
1 | 8710-1764
8710-1765
08513-20014
8710-1770 | | Protective End Caps | I | | | 1.85 mm connector cap (for module) 1.85 mm female connector cap (for adapter) 1.85 mm male connector cap (for adapter) 36-pin connector cap, ESD protected | as required
as required
as required
as required | 1401-0214
1401-0202
1401-0208
N4693-40002 | | Gages | | · | | 2.4 mm female pin-depth gage ^b 2.4 mm male pin-depth gage ^b | 1
1 | 11752-60107
11752-60108 | | Other | | | | Electronic calibration module reference manual ^c Connector care quick reference card (part of reference manual) USB cable, 1.8 meters Adapter cable, DB25 to AMP Champ (36-pin) Storage box for the ECal module and accessories | 1
1
1
1
1 | N4693-90001
08510-90360
8121-0506
8121-1047
N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1-2. 6-8 Chapter 6 b. A 2.4 mm gage is capable of measuring 2.4 mm and 1.85 mm connectors. c. See "Printing Copies of On-Line Documentation" on page iv. # Type-N (75 ohm) Modules and Accessories | Description ^a | Qty | Part Number | |--|---|--| | Adapters (added with Option 00A) | | | | Type-N (75 Ω) female to female adapter Type-N (75 Ω) male to male adapter | 1
1 | 85036-60014
85036-60013 | | Wrenches | | | | 3/4 in, 135 N-cm (12 in-lb) torque wrench 1/2 in to 9/16 in open-ended wrench | 1
1 | 8710-1766
8710-1770 | | Protective End Caps | | | | DB-25 multi-pin connector cap
Type-N male connector cap
Type-N female connector cap | as required
as required
as required | 1252-4690
1401-0248
1401-0247 | | Gages | | | | Type-N (75 ohm) mm pin depth gages (male and female gages and masters) | 1 | 85036B
Option K01 | | Other | | | | Electronic calibration module reference manual ^b Connector care quick reference card (part of reference manual) USB cable, 1.8 meters Storage box for the ECal module and accessories | 1
1
1
1 | N4693-90001
08510-90360
8121-0506
N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1-2. Chapter 6 6-9 b. See "Printing Copies of On-Line Documentation" on page iv. # **Type-F Modules and Accessories** | Description ^a | Qty | Part Number | |--|---|--| | Adapters (added with Option 00A) | | | | Type-F female to female adapter Type-F male to male adapter | 1
1 | 85039-60002
85039-60006 | | Wrenches | | | | Type-F wrench (supplied with kit) | 1 | 8710-1841 | | Protective End Caps | | | | DB-25 multi-pin connector cap Type-F male connector cap Type-F female connector cap | as required
as required
as required | 1252-4690
1401-0297
1401-0296 | | Other | | | | Electronic calibration module reference manual ^b Connector care quick reference card (part of reference manual) USB cable, 1.8 meters Storage box for the ECal module and accessories | 1
1
1
1 | N4693-90001
08510-90360
8121-0506
N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1-2. 6-10 Chapter 6 b. See "Printing Copies of On-Line Documentation" on page iv. # **Other ECal Accessories** | Description | Qty | Part Number | |---|-----|--------------------------| | 85097B ECal VNA Interface Kit | l | • | | Interface Unit Shielded DB25 to DB25 Cables | 1 3 | 85097-60002
8120-8710 | | Adapter cable, DB25 to AMP Champ (36-pin) Option 100 Power Supply | 1 1 | 8121-1047
0950-3331 | | Reference Guide ^a | 1 | 85091-90010 | | Quick Reference Card | 1 | 85091-90011 | | Adapter Cable (connects N469xA/B series modules to 85097B | 3) | · | | DB25 to AMP Champ (36-pin) | 1 | 8121-1047 | | Cleaning Supplies | | · | | Compressed air (235 ml) | 1 | 8500-6659 | | 99.5% isopropyl alcohol (8 oz) | 1 | 8500-0559 | | 99.5% isopropyl alcohol ^b | | | | Cleaning swabs | 100 | 9301-1243 | | Lint-free cleaning cloth | 150 | 9310-4242 | | ESD Supplies | | | | Grounding wrist strap | 1 | 9300-1367 | | 5 ft Wrist-strap to table-mat grounding cord | 1 | 9300-0980 | | 2 x 4 ft conductive table mat with 15 ft ground wire | 1 | 9300-0797 | | USB Accessories | | | | USB 4-port hub | 1 | N4689A | | Module Accessories | | • | | Rubber foot | 1 | 85060-40001 | | Storage box for the ECal module and accessories | 1 | N4693-60042 | a. See "Printing Copies of On-Line Documentation" on page iv. Chapter 6 6-11 b. Agilent can no longer safely ship isopropyl alcohol, so customers should purchase it locally. #### Replaceable Parts **Other ECal Accessories** 6-12 Chapter 6 | Numerics | В | 2.4 mm, 4-15 | |---------------------------------|--|------------------------------------| | 85060B (discontinued) | barometric pressure, 5-4 | 2.92 mm, 4-15 | | connector type, 1-10 | barometric pressure, o r | 3.5 mm, 4-15 | | frequency range, 1-10 | | 7 mm, 4-15 | | 85062B (discontinued) | ${f C}$ | type-F, 4-15 | | connector type, 1-10 | • | type-N, 4-15 | | frequency range, 1-10 | calibration | connector | | 85064B (discontinued) | adapter removal, 3-4 | cleaning, 4-5 | | connector type, 1-10 | adjustments, 3-2 | fixed connectors, 4-7 | | frequency range, 1-10 | advanced settings, 3-3 | precision 7 mm, 4-7 | | 85091C | isolation, 3-3 | gaging, 4-8, 4-9, 4-14 | | characteristic performance, 5-5 | non-insertable device, 3-4 | pin depth
1.85 mm, 5-17 | | connector type, 1-4 | perform a calibration, 3-6 | 2.4 mm, 5-17 | | frequency range, 1-4 | setting up, 3-2 | 2.92 mm, 5-16 | | replaceable parts, 6-2 | types available, 3-3 | 3.5 mm, 5-16 | | 85092C | unknown thru, 3-4 | 7 mm, 5-15, 5-16 | | characteristic performance, 5-5 | user-characterization, 3-4 | slotted, 4-4 | | connector type, 1-4 | why validate accuracy, 3-7 | visual inspection, 4-3 | | frequency range, 1-4 | center conductor | wear, 4-3 | | replaceable parts, 6-3 | pin depth, 5-12 | connector gage | | 85093C | characteristic performance | accuracy, 4-8 | | characteristic performance, 5-5 | 85091C, 5-5 | handling, 4-14 | | connector type, 1-4 | 85092C, 5-5 | master, 4-14 | | frequency range, 1-4 | 85093C, 5-5 | zeroing, 4-13 | | replaceable parts, 6-4 | 85096C, 5-5 | connector wear | | 85096C | 85098C, 5-6 | causes, 4-3 | | characteristic performance, 5-5 | 85099C, 5-6
N4431B, 5-7, 5-8 | contacting Agilent, 1-15 | | connector type, 1-4 | N4431B, 5-7, 5-8
N4432A, 5-9 | container for storage, 4-19 | | frequency range, 1-4 | N4433A, 5-9 | 3 / | | replaceable parts, 6-9 | N4690B, 5-10 | _ | | 85098C | N4691B, 5-10 | D | | characteristic performance, 5-6 | N4692A, 5-10 | domogod compostore 4.2 | | connector type, 1-4 | N4693A, 5-11 | damaged connectors, 4-3 | | frequency range, 1-4 | N4694A, 5-11 | declaration of conformity,
1-20 | | replaceable parts, 6-5 | N4696B, 5-11 | defective connectors, 4-3 | | 85099C | characteristics | definitions | | characteristic performance, 5-6 | connector, type-N, 5-13 | specifications, 5-2 | | connector type, 1-4 | mechanical, 5-12 | depth gage | | frequency range, 1-4 | cleaning | 7mm part number, 6-2 | | replaceable parts, 6-10 | connectors, 4-5 | Type-N part number, 6-3 | | | cleaning supplies, 6-11 | device | | Α | collet, 4-7 | connecting, 4-15 | | 21 | compatible network | disconnecting, 4-18 | | accuracy of ECal vs. | analyzers, 1-13 | gaging, 4-14 | | mechanical cal, 1-2 | compressed air or nitrogen, | handling and storage, 4-19 | | adapter cable | 4-5 | specifications | | connection to module, 2-12 | confidence check, 3-7 | traceability, 1-17 | | part number, 6-11 | how to perform, 3-7 | visual inspection, 4-3 | | adapter removal calibration, | connecting ECal module, 2-10 | dimensions, modules, 5-20 | | 3-4 | connection | | | Agilent Technologies | ENA analyzer, 2-10 | 151 | | contacting, 1-15 | to interface, 2-12 | ${f E}$ | | returning an ECal, 1-16 | to USB port, 2-10 | ECal | | alcohol, cleaning connectors, | VNA analyzer, 2-12 | adapter removal, 3-4 | | 1. 0 | connections , 4-15, 4-16, 4-18
1.85 mm, 4-15 | confidence check, 3-7 | | - | | | |---------------------------------|--|---| | connecting and disconnecting, | inspection | type-N, critical, 5-13 | | 2-10 | - | | | | damage, 4-3 | mechanical dimensions | | ENA compatibility, 1-13 | defects, 4-3
 8509x modules, 5-20 | | ENA connections, 2-10 | female connectors, 4-4 | N4431B module, 5-21 | | factory characterization, 3-4 | mating plane, 4-3 | N4432A & N4433A modules, | | inspecting kit, 2-2 | visual, 4-3 | 5-23 | | network analyzer compatibility, | instrument markings, 1-19 | N469xA/B modules, 5-22 | | 1-13 | interface kit, 6-11 | module | | network analyzer connections, | isopropyl alcohol, cleaning, | mechanical dimensions, 5-20 | | 2-10 | 4-5 | modules | | perform a calibration, 3-6 | | microwave (discontinued), 1-10 | | PNA compatibility, 1-13 | T 7 | microwave 2-port, 1-8 | | PNA connections, 2-10 | \mathbf{K} | microwave 4-port, 1-11 | | setting up, 2-10 | kit contents | performance | | storage box, 4-19 | 85091C, 2-3 | verification, 1-14 | | unknown thru, 3-4 | | RF 2-port, 1-4 | | user-characterization, 3-4 | 85092C, 2-3 | RF 4-port, 1-6 | | VNA compatibility, 1-13 | 85093C, 2-3 | | | VNA connections, 2-10 | 85096C, 2-3 | | | ECal module | 85098C, 2-3 | N | | overview, 1-2 | 85099C, 2-3 | N.4404D | | ECal vs. mechanical cal, 1-2 | microwave four-port, 2-6 | N4431B | | electrostatic discharge (ESD), | microwave two-port, 2-4 | characteristic performance, 5-7, | | 4-2 | N4431B Opt. 010, 2-4 | 5-8 | | ENA analyzer | N4431B Opt. 020, 2-4 | connector type, 1-6 | | connection to module, 2-10 | N4432A Opt. 020, 2-6 | frequency range, 1-6 | | environmental specifications, | N4432A Opt. 030, 2-6 | mixed connector options, 1-6 | | 5-3 | N4433A Opt. 010, 2-6 | replaceable parts, 6-3, 6-4 | | ESD protection, 4-2 | N4690B, 2-4 | N4432A/3A | | ESD supplies, 6-11 | N4691B, 2-4 | characteristic performance, 5-9 | | ESD supplies, 0-11 | N4692A, 2-4 | connector type, 1-11 | | | N4693A, 2-4 | frequency range, 1-11 | | ${f F}$ | N4694A, 2-4 | mixed connector options, 1-11 | | T. | N4696B, 2-4 | N4690B | | female connectors | RF four-port, 2-4 | characteristic performance, 5-10 | | inspection of, 4-4 | RF two-port, 2-3 | connector type, 1-8 | | • | • , | frequency range, 1-8 | | | | replaceable parts, 6-3 | | ${f G}$ | ${f L}$ | N4691B | | C. | _ | characteristic performance, 5-10 | | gage | line drawings of modules, 5-20 | connector type, 1-8 | | handling, 4-14 | | frequency range, 1-8 | | zeroing, 4-13 | TA //F | replaceable parts, 6-4 | | gage master, using, 4-8 | ${f M}$ | N4692A | | gaging | maintenance, 4-2 | characteristic performance, 5-10 | | connectors, 4-8, 4-9 | making connections, 4-15 | connector type, 1-8 | | procedure, 4-13 | | | | | manual overview, 1-2
markings, instrument, 1-19 | frequency range, 1-8 replaceable parts, 6-6 | | | | N4693A | | \mathbf{H} | mating plane surfaces | | | handling | inspection, 4-3 | characteristic performance, 5-11 | | handling | measurements, modules, 5-20 | connector type, 1-8 | | of devices, 4-19 | mechanical cal vs. ECal, 1-2 | frequency range, 1-8 | | humidity, 5-4 | mechanical characteristics, | replaceable parts, 6-7 | | | 5-12, 5-18 | N4694A | | т | center conductor protrusion, | characteristic performance, 5-11 | | I | 5-12 | connector type, 1-8 | | inspecting ECal on arrival, 2-2 | microwave, 5-18 | frequency range, 1-8 | | • 5 | RF, 5-18 | replaceable parts, 6-8 | | | | | | N4696A/B | recording serial numbers, 2-2 | operating temperature range, | |--|---|---| | frequency range, 1-8 | relative humidity, 5-4 | 5-2 | | N4696B, 5-10 | replaceable parts | standards | | characteristic performance, 5-11 | 1.85 mm, 6-8 | National Institute of Standards | | connector type, 1-8 | 2.4 mm, 6-7 | and Technology (NIST), | | replaceable parts, 6-2 | 2.92 mm, 6-6 | 1-17 | | National Institute of | 3.5 mm, 6-4 | static discharge, 4-2 | | Standards and Technology | 7 mm, 6-2 | storage | | (NIST), 1-17 | 7 mm depth gage, 6-2 | of devices, 4-19 | | nitrogen, cleaning | 7-16, 6-5 | storage box, 4-19 | | connectors, 4-5 | 85091C, 6-2 | supplemental characteristics | | non-insertable calibration, 3-4 | 85092C, 6-3 | mechanical, 5-18 | | , | 85093C, 6-4 | , | | | 85096C, 6-9 | _ | | O | 85097B, 6-11 | ${f T}$ | | an amirral | 85098C, 6-5 | tomponatura | | on arrival | 85099C, 6-10 | temperature | | inspecting, 2-2 | N4431B, 6-3, 6-4 | operating, 5-3 terminology | | recording serial numbers, 2-2 operating | N4690B, 6-3 | specifications, 5-2 | | connector care, 2-8 | N4691B, 6-4 | torque wrench | | ESD precautions, 2-8 | N4692A, 6-6 | connector types, 4-18 | | handling, 2-9 | N4693A, 6-7 | part numbers, 4-18 | | input level, 2-9 | N4694A, 6-8 | selection, 4-18 | | operating temperature, 2-9 | N4696B, 6-2 | settings, 4-18 | | precautions, 2-8 | Type-F, 6-10 | torque wrench connections | | temperature, 5-3 | Type-N 50 ohm, 6-3 | microwave, 4-16 | | overview | Type-N 75 ohm, 6-9 | RF, 4-16 | | ECal module, 1-2 | Type-N depth gage, 6-3 | traceability | | | | | | | returning an ECal to Agilent, | of device specifications, 1-17 | | | 1-16 | of device specifications, 1-17 type-N depth gage | | P | | of device specifications, 1-17 type-N depth gage part number, 6-3 | | P | 1-16
rubber foot, 6-11 | type-N depth gage | | P physical dimensions of | 1-16
rubber foot, 6-11 | type-N depth gage part number, 6-3 | | P physical dimensions of modules, 5-20 | 1-16 rubber foot, 6-11 S | type-N depth gage | | P physical dimensions of modules, 5-20 pin depth characteristics | 1-16 rubber foot, 6-11 S safety and regulatory | type-N depth gage part number, 6-3 U | | P physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 | 1-16 rubber foot, 6-11 S safety and regulatory information, 1-18 | type-N depth gage part number, 6-3 U uncertainty calculator | | P physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 | 1-16 rubber foot, 6-11 S safety and regulatory information, 1-18 separating connections, 4-18 | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 | | P physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 | 1-16 rubber foot, 6-11 S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 | type-N depth gage part number, 6-3 U uncertainty calculator | | P physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 | 1-16 rubber foot, 6-11 S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 | | P physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 | 1-16 rubber foot, 6-11 S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 | | P physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 | 1-16 rubber foot, 6-11 S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer | 1-16 rubber foot, 6-11 S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 | 1-16 rubber foot, 6-11 S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 | 1-16 rubber foot, 6-11 S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up
calibration, 3-2 7 mm depth gage part number, 6-2 specifications | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 procedure, gaging, 4-13 | 1-16 rubber foot, 6-11 S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 specifications download descriptions, 5-24 | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification confidence check, 3-7 | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 | 1-16 rubber foot, 6-11 S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 specifications download descriptions, 5-24 environmental, 5-3 | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification confidence check, 3-7 measure known standards, 3-7 | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 procedure, gaging, 4-13 | S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 specifications download descriptions, 5-24 environmental, 5-3 terminology and definitions, 5-2 | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification confidence check, 3-7 measure known standards, 3-7 visual inspection, 4-3 | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 procedure, gaging, 4-13 protrusion definition, 5-12 | S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 specifications download descriptions, 5-24 environmental, 5-3 terminology and definitions, 5-2 torque wrench, 4-16 | U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification confidence check, 3-7 measure known standards, 3-7 visual inspection, 4-3 VNA analyzer | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 procedure, gaging, 4-13 | S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 specifications download descriptions, 5-24 environmental, 5-3 terminology and definitions, 5-2 torque wrench, 4-16 traceability, 1-17 | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification confidence check, 3-7 measure known standards, 3-7 visual inspection, 4-3 | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 procedure, gaging, 4-13 protrusion definition, 5-12 | S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 specifications download descriptions, 5-24 environmental, 5-3 terminology and definitions, 5-2 torque wrench, 4-16 | U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification confidence check, 3-7 measure known standards, 3-7 visual inspection, 4-3 VNA analyzer connection to module, 2-12 | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 procedure, gaging, 4-13 protrusion definition, 5-12 | S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 specifications download descriptions, 5-24 environmental, 5-3 terminology and definitions, 5-2 torque wrench, 4-16 traceability, 1-17 specifications and | U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification confidence check, 3-7 measure known standards, 3-7 visual inspection, 4-3 VNA analyzer | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 procedure, gaging, 4-13 protrusion definition, 5-12 R reading connector gage, 4-9 | S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 specifications download descriptions, 5-24 environmental, 5-3 terminology and definitions, 5-2 torque wrench, 4-16 traceability, 1-17 specifications and characteristics | type-N depth gage part number, 6-3 U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification confidence check, 3-7 measure known standards, 3-7 visual inspection, 4-3 VNA analyzer connection to module, 2-12 W | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 procedure, gaging, 4-13 protrusion definition, 5-12 R reading connector gage, 4-9 recertification | S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 specifications download descriptions, 5-24 environmental, 5-3 terminology and definitions, 5-2 torque wrench, 4-16 traceability, 1-17 specifications and characteristics accuracy-enhanced temperature range, 5-3 connector pin depth values, 5-2 | U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification confidence check, 3-7 measure known standards, 3-7 visual inspection, 4-3 VNA analyzer connection to module, 2-12 W web address | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 procedure, gaging, 4-13 protrusion definition, 5-12 R reading connector gage, 4-9 recertification how often, 1-17 how to order, 1-17 verification, 1-14 | S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 specifications download descriptions, 5-24 environmental, 5-3 terminology and definitions, 5-2 torque wrench, 4-16 traceability, 1-17 specifications and characteristics accuracy-enhanced temperature range, 5-3 | U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification confidence check, 3-7 measure known standards, 3-7 visual inspection, 4-3 VNA analyzer connection to module, 2-12 W web address download uncertainty | | physical dimensions of modules, 5-20 pin depth characteristics 1.85 mm, 5-17 2.4 mm, 5-17 2.92 mm, 5-16 3.5 mm, 5-16 7 mm, 5-16 type-N, 5-15 pin depth information, 5-12 PNA analyzer connection to module, 2-10 prerequisite knowledge, 2-8 procedure, gaging, 4-13 protrusion definition, 5-12 R reading connector gage, 4-9 recertification how often, 1-17 how to order, 1-17 | S safety and regulatory information, 1-18 separating connections, 4-18 serial numbers, 2-2 service recertification, 1-14 setting up calibration, 3-2 7 mm depth gage part number, 6-2 specifications download descriptions, 5-24 environmental, 5-3 terminology and definitions, 5-2 torque wrench, 4-16 traceability, 1-17 specifications and characteristics accuracy-enhanced temperature range, 5-3 connector pin depth values, 5-2 | U uncertainty calculator web address to download, 5-24 USB Hub, 6-11 user-characterization, 3-4 V validate accuracy, 3-7 verification confidence check, 3-7 measure known standards, 3-7 visual inspection, 4-3 VNA analyzer connection to module, 2-12 W web address | \mathbf{Z} zeroing, connector gage, 4-13