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Elements of price formation

The mechanism of price formation stems from the complicated interplay between
incoming orders (and cancellations) and price change due to these orders

Market reaction to trades, termed market impact, describes how much price change
immediately and in the near future in response to order ! mechanical vs induced
response

The order flow is composed by market orders, limit orders and cancellations and
depends on the state of the book as well on the past price history
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What is market impact?

Market impact refers to the ”correlation” between an incoming order (to buy or to
sell) and the subsequent price change.

Market impact induces extra costs. Indeed, large volumes must typically be
fragmented and executed incrementally. The total cost of this large trade is quickly
dominated, as sizes become large, by the average price impact

Monitoring and controlling impact has therefore become one of the most active
domains of research in quantitative finance since the mid-nineties.

Volume dependence of impact (By how much do larger trades impact prices more
than smaller trades?), and temporal behavior of impact (is the impact of a trade
immediate and permanent, or does the impact decay after one stops trading?).

Impact is a dynamical quantity since it depends on the available liquidity, but also
on the recent history of my trades.
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Why is there market impact?

Agents successfully forecast short term price movements and trade accordingly.

This does result in measurable correlation between trades and price changes, even if
the trades by themselves have absolutely no e↵ect on prices at all. If an agent
correctly forecasts price movements and if the price is about to rise, the agent is
likely to buy in anticipation of it.‘Noise induced’ trades, with no information
content, have no price impact.

The impact of trades reveals some private information. The arrival of new
private information causes trades, which cause other agents to update their
valuations, leading to a price change. But if trades are anonymous and there is no
easy way to distinguish informed traders from non informed traders, then all trades
must impact the price since other agents believe that at least of fraction of these
trades contains some private information, but cannot decide which ones.

Impact is a purely statistical e↵ect. Imagine for example a completely random
order flow process, that leads to a certain order book dynamics (see, e.g.
“zero-intelligence” models). Conditional to an extra buy order, the price will on
average move up if everything else is kept constant. Fluctuations in supply and
demand may be completely random, unrelated to information, but a well defined
notion of price impact still emerges. In this case impact is a completely mechanical
– or better, statistical – phenomenon.
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Information and market impact: the Kyle (1985) model

Strategic asymmetric information model.

Three agents: One market maker (MM), One informed trader, Many noise traders

The terminal (liquidation) value v of an asset is normally distributed with mean p0
and variance ⌃0.

The informed trader knows v and enters a demand x (volume).

Noise traders submit a net order flow u, which is Gaussian distributed with mean
zero and variance �2

u

The MM observes the total demand y = x + u and then sets a price p. All the
trades are cleared at p, any imbalance is exchanged by the MM.
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Kyle model: one period (continued)

The informed trader wants to trade as much as possible to exploit her informational
advantage

However the MM knows that there is an informed trader and if the total demand is
large (in absolute value) she is likely to incur in a loss. Thus the MM protects
herself by setting a price that is increasing in the net order flow.

The solution to the model is an expression of this trade-o↵
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Informed trader

The informed trader conjectures that the MM uses a linear price adjustment rule
p = �y + µ, where � is inversely related to liquidity.

The informed trader’s profit is

⇡ = (v � p)x = x [v � �(u + x)� µ] (1)

and the expected profit is
E [⇡] = x(v � �x � µ) (2)

The informed traders maximizes the expected profit, i.e.

x =
v � µ
2�

(3)

In Kyle’s model the informed trader can loose money, but on average she makes a
profit
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Market maker

The MM conjectures that the informed trader’s demand is linear in v , i.e.
x = ↵+ �v

Knowing the optimization process of the informed trader, the MM solves

v � µ
2�

= ↵+ �v (4)

which gives

↵ = � µ
2�

� =
1
2�

(5)

As liquidity drops the informed agent trades less

The MM observes y and sets
p = E [v |y ] (6)

Use conditional expectation for normal variables to find

E [v |y ] = E [v |u + ↵+ �v ] (7)
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Equilibrium solution

The impact is linear and the liquidity increases with the amount of noise traders

p = p0 +
1
2

r
⌃0

�2
u
y (8)

The informed agent trades more when she can hide her demand in the noise traders
demand

x = (v � p0)

s
�2
u

⌃0
(9)

The expected profit of the informed agent depends on the amount of noise traders

E [⇡] =
(v � p0)

2

2

s
�2
u

⌃0
(10)

The noise traders loose money and the MM breaks even (on average)
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Kyle model in multiple periods in a nutshell

There are N auctions, each taking place at times 0 = t0 < t1 < ... < tN = 1

The liquidation value of the asset is v , normally distributed with mean p0 and
variance ⌃0

The quantity traded by noise traders in auction n is �un = un � un�1, where un is a
Brownian motion with zero mean and instantaneous variance �2

u

xn is the aggregate position of the informed after after the nth auction and
�xn = xn � xn�1 is the quantity traded in this auction
Each auction is divided in two steps:

1 The informed and the noise traders place the aggregate demand �xn +�un
2 The market maker sets the liquidation price pn
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Kyle model in multiple periods in a nutshell

The informed trader’s trading strategy is a vector of functions X =< X1, ...XN >,
where xn = Xn(p1, ..., pn�1, v)

The market maker pricing rule is a vector of function P =< P1, ...,PN >, where
pn = Pn(x1 + u1, ..., xn + u + n)

The profit of the informed on position acquired at auctions n, ...,N is
⇡n =

PN
k=n(v � pk)xk

A sequential auction equilibrium is a pair X ,P such that
Profit maximization. 8n = 1, ..,N and 8X 0 s.t. X 0

1 = X1, ...X 0
n�1 = Xn�1 it is

E [⇡n(X ,P)|p1, ..., pn�1, v ] � E [⇡n(X
0,P)|p1, ..., pn�1, v ] (11)

Market e�ciency. 8n = 1, ..,N it is

pn = E [v |x1 + u1, ..., xn + un] (12)

A linear equilibrium is a sequential auction equilibrium in which the functions X and
P are linear

A recursive linear equilibrium is a linear equilibrium s.t. 9�1, ...�N s.t. 8n = 1, ..,N

pn = pn�1 + �n(�xn +�un) (13)
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Kyle model in multiple periods in a nutshell

Theorem

There exists a unique linear equilibrium and this equilibrium is a recursive linear
equilibrium. In this equilibrium there are constants �n,�n,↵n, �n,⌃n such that

�xn = �n(v � pn�1)�tn (14)

�pn = �n(�xn +�un) (15)

⌃n ⌘ var [v |�x1 +�u1, ...�xn +�un] = (1� �n�n�tn)⌃n�1 (16)

E [⇡n|p1, ..., pn�1, v ] = ↵n�1(v � pn�1)
2 + �n�1 (17)

Predictions:

The informed agent “slices and dices” (splits) her order flow in order to hide in the
noise trader order flow

Linear price impact

Uncorrelated total order flow

Permanent and fixed impact

Variance of fundamental value v declines (but does not go to zero unless N ! 1)
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Market impact as a statistical e↵ect: the zero intelligence model

Many financial markets work through a continuous double auction mechanism

No designated market makers, everyone can provide or take liquidity

Identity of traders is not visible

Sometimes multiple order books competing for liquidity (market fragmentation)

Variety of rules (fees, tick size, transparency, latency, etc), but a common set of
order types.
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Dynamics of Limit Order Book
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Dynamics of Limit Order Book
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Dynamics of Limit Order Book

new
limit order

Pn+ An+Bn+

vn+
B vn+

A

sell limit orders price

vo
lu
m
e

buy limit orders

15 / 177



Dynamics of Limit Order Book
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Dynamics of the Limit Order Book

From Ponzi et al. 2009
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Zero intelligence model

Daniels et al. (2003), Smith et al. (2003), Cont and De Larrard (2013)

Order book is modeled as a discrete price grid of constant minimum price increment
w (the tick size).

Limit order placement follows a Poisson process of rate � per unit price and unit
event time.

Market orders arrive at a rate µ per unit event time.

Each existing limit order has the same probability ⌫ per unit event time to be
cancelled.

Donier et al. (2015) add a term of random reassessment of limit orders (see next
lecture)
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Impact trajectory of a VWAP execution in a zero intelligence model

Under some assumptions (vanishingly small cancellation rate and small participation rate
of the VWAP execution) the price dynamics is

p(t) = K

Z t

0

1p
4D(t � s)

ds (18)

(Donier et al 2015)
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Which market impact?

There are di↵erent types of price impact (often confused even in the specialized
literature)

Impact of an individual market order of size v (or more generally of a limit order or
even of a cancellation)

The correlation of the average price change in a given time interval T with the total
market order imbalance in the same interval (i.e. the sum of the signed volume ±v
of all individual trades.)

Cross impact, i.e. how do trades on asset A impact the price of asset B.

The impact of a given order of size Q, executed with many trades in a given
direction, originating from the same agent.
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Terminology

Large orders executed incrementally have di↵erent names in the literature

Large trades

Large orders

Hidden orders

Packages

Algorithmic executions

Metaorders (Bouchaud et al.)

......
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A benchmark model: linear and permanent impact (Kyle)

The average price variation due to a signed volume ✏v is given by:

�p = �✏v , (19)

where � is the inverse of liquidity and ✏ is +1 (�1) for buyer (seller) initiated trade.
It is direct to show that

The impact of individual trades is linear in volume and permanent i.e.

Rso(T ) = E [(pT � p0) · ✏0] = �E [v ], (20)

The impact of aggregated order flow is linear in the volume imbalance

pT = p0 + �
N�1X

n=0

✏nvn +
N�1X

n=0

⌘n, (21)

The price impact of a metaorder of total volume Q is linear

Rmo(T |Q) = E [(pT � p0) · ✏mo |
X

n2mo

vn = Q] = �Q, (22)

The time correlation properties of returns are “inherited” by those of order flow !
market e�ciency
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Empirical facts: individual impact

Empirical data consistently shows a sublinear (concave) volume dependence of impact of
individual orders

E [�p|v ] ⌘ Rso(T = 1|v) / v ;  2 [0.1, 0.3], (23)

or even a logarithmic dependence Rso(T = 1|v) / ln v .

Figure: Impact of individual market orders for London Stock Exchange (left, from Lillo and
Farmer 2004) and Paris Bourse (right, from Bouchaud and Potters 2002)
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Empirical facts: individual impact (II)

By considering stocks with di↵erent market capitalization C on the immediate impact,
one can show that impact of individual transactions can be approximately rescaled

Rso(T = 1|v) ⇡ C�0.3F
⇣
C 0.3 v

v

⌘
, (24)

where v is the average volume per trade for a given stock, and F (u) a master function
that behaves as a u for small arguments.

Figure: Impact of individual transactions of groups of stocks with di↵erent capitalization (left)
and the same curves after rescaling (right) (Lillo et al. 2003).
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Empirical facts: individual impact (III)

Di↵erent colors are di↵erent years (Lillo et al. 2003).

Kyle lambda (illiquidity) scales as � ⇠ C�0.4 (note that the dependence of the average
volume on market cap has been already considered).

24 / 177



Price impact of single trades from order book shape?

Let V (r) =
R r
0
u(x)dx indicate the cumulative number of shares (depth) up to price

return r .

A market order of size v will produce a return

r = V�1(v) (25)

For example if V (r) / r⌘, it is r / v 1/⌘

A linear order book, u(x) = kx would lead to a square root impact, r /
p
v

We will see that this explanation does not work for individual trades.

It has been suggested as a mechanism for explaining the impact of metaorder
executions (Bouchaud et al, see last lecture), but the book is the latent one rather
than the real one.
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The average shape of the limit order book

From Bouchaud et al 2002. Note that this is the sample average shape of the order book
which might be di↵erent from the typical shape.
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Real and virtual impact

Is this explanation in terms of the relation between price impact and the limit order
book shape correct ?

The basic assumptions are:

The traders placing market orders trade their desired volume irrespectively from what
is present on the limit order book

The limit order book is filled in a continuous way, i.e. all the price levels are filled with
limit orders

We test the first assumption by measuring the virtual price impact, i.e. the price
shift that would have been observed in a given instant of time if a market order of
size q arrived in the market

We test the second assumption by considering the fluctuations of market impact
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Real and virtual impact for individual trades
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Fluctuations of impact of individual trades

Let us decompose the conditional probability of a return r conditioned to an order of
volume q as

p(r |v) = (1� g(v))�(r) + g(v)f (r |v) (26)

Compute the cumulative probability of a price return r conditioned to the volume q
and to the fact that price moves

F (r > X |v) =
Z 1

X

f (r |v)dr (27)

Following analysis mostly on small tick stocks (e.g. AAPL)
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The orders are sorted by size into five groups with roughly the same number of orders in
each group. Ranging from small orders to large orders, the curves are black, red, green,
blue, and magenta (from Farmer et al 2004)

The role of the transaction volume is negligible conditional to the fact that the price
moves.

The volume is important in determining whether the price moves or not.

The fluctuations in market impact are important.
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The role of liquidity fluctuations

31 / 177



Gaps in the order book and return distribution

From Farmer et al 2004. Red circles for low liquidity stocks, blue squares for medium
liquidity stocks, and green triangles for high liquidity stocks. Empty symbols refer to sell
market orders and filled symbols to buy market orders.

Liquidity fluctuations are key determinants of fat tails of return distribution
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Persistence of illiquidity (gaps)

From Lillo and Farmer 2005. Autocorrelation function of the first gap size for bids and
o↵ers of AstraZeneca in a log-log plot.

Size of gaps, measuring illiquidity, are very autocorrelated, consistent with long
memory processes.

Similar result for spread.

The state of the order book is extremely persistent
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Fat tails: volume or liquidity fluctuations?

From Gillemot et al 2006. (a) real time (15min). (b) transaction time (24 transactions ⇠ 15

min) (c) shu✏ed real time (fluctuating number of trades but randomized liquidity fluctuations).

Returns in di↵erent time clocks: transaction, volume (Clark, Ane and Geman)
In recent years liquidity fluctuations are more important than number of trades (or
volume) in determining price fluctuations.
E↵ect much stronger for small tick size assets.
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A shu✏ing experiment on a longer time scale

From Gillemot et al 2006. Cumulative distribution of absolute logreturns for Procter &
Gamble stock under di↵erent time clocks. The circles refer to 15-minute returns, the
squares refer to returns aggregated with a fixed number of transactions, and the triangles
show the cumulative distribution obtained by randomly shu✏ing individual transaction
returns and then aggregating them in a way that matches the number of transactions in
each real-time interval. The dashed line corresponds to a normal distribution.
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Aggregated market impact
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Aggregated market impact

Impact over a time interval, e.g. 5 min or 100 trades.
In transaction time we consider R(Q,N) = E [pt+n � pt |QN = Q] where
QN =

PN�1
n=0 ✏nvn ⌘

PN�1
n=0 wn.

Assuming an uncorrelated order flow and a single trade impact function
r = f (w) + ⌘, we have

R(Q,N) =

Z
dw1 . . . dwNp(w1) . . . p(wN)

NX

i=1

f (wi )�(Q �
NX

i=1

wi )

=
N
2⇡

1
PN(Q)

Z
d�e(N�1)h(�)g(�)e�i�Q

where h(�) is the logarithm of the Fourier transform of the volume distribution and
g(�) is the Fourier transform of the product of the volume distribution and the
impact function.
Moreover PN(Q) is the probability density that the total signed volume in the N
trades is Q.
Example: f (w) / sign(w)|w |� and p(w) ⇠ w�↵�1, then for large N the aggregate
impact behaves for small Q as

R(Q,N) ⇠ Q
N

(28)
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Aggregated market impact

Value of the exponent  as a function of the impact exponent � and of the tail exponent
of the volume distribution ↵
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Aggregated market impact
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Aggregated market impact

For a realistic range of values, the model predicts that around Q = 0 the aggregate
impact is linear.

The linearity region increases with the aggregation scale N (length of the interval)

The slope decreases with N

This behavior is reproduced also by a model with correlated order flow and transient
impact (TIM model, see below)

The linear relation between order imbalance and returns at an aggregated level is
often interpreted as a manifestation of the permanent component of the impact. In
this context is a purely mechanical/statistical e↵ect.
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Order flow
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Order flow

We focus here on orders that trigger transactions, i.e. market orders

A buy market order moves the price up and a sell market order moves the price
down (on average)

The flow of market orders reflects the supply and demand of shares

A market order is characterized by a volume v and a sign ✏ = +1 for buy orders and
✏ = �1 for sell orders.

We consider the time series in market order time, i.e. time advances of one unit
when a new market order arrives.

The unconditional sample autocorrelation function of signs is

C(⌧) =
1
N

X

t

✏t✏t+⌧ �
 

1
N

X

t

✏t

!2

,

where N is the length of the time series.
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Autocorrelation of market order flow

From Lillo and Farmer (2004)
Similar plots observed in many di↵erent markets, di↵erent periods, di↵erent asset classes.
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Market order flow is very persistent in time

It has been shown (Bouchaud et al., 2004, Lillo and Farmer, 2004) that the time series of
market order signs is a long memory process.
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C(⌧) of market order signs ✏ (left) and signed volumes ✏v (right).
The autocorrelation function decays asymptotically as

C(⌧) ⇠ ⌧�� = ⌧ 2H�2

where H is the Hurst exponent. For the investigated stocks H ' 0.75 (i.e. � ' 0.5).
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Long memory processes

Let �(k) be the autocovariance function of a time series Xt . A process is long
memory if in the limit k ! 1 it is

�(k) ⇠ k��L(k) � 2 (0, 1) (29)

where L(k) is a slowly varying function.

The Hurst exponent is H = 1� �/2

Equivalently the spectral density diverges for low frequencies ! ! 0 as

g(!) ' !1�2HL(!) (30)

The integrated process is superdi↵usive Var(
Pt

s=0 Xs) ⇠ t2H

Examples: fractional ARIMA (fARIMA)

(1� L)dXt = ✏t d = H � 1/2 (31)

fractional Brownian motion (in continuous time)

Frequently observed in finance: volatility, volume, spread,....
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What is the origin of long-memory in order flow?

Two explanations have been proposed

Herding among market participants (LeBaron and Yamamoto 2007). Agents herd
either because they follow the same signal(s) or because they copy each other
trading strategies. Direct vs indirect interaction

Order splitting (Lillo, Mike, and Farmer 2005). To avoid revealing true intentions,
large investors break their trades up into small pieces and trade incrementally (Kyle,
1985). Convert heavy tail of large orders volume distributions in correlated order
flow.

Is it possible to quantify empirically the contribution of herding and order splitting to the
autocorrelation of order flow?
Note that this is part of the question on the origin of diagonal e↵ect raised in Biais,
Hillion and Spatt (1995).
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Decomposing the autocorrelation function

Assume we know the identity of the investor placing any market order.

For each investor i we define a time series of market order signs ✏it which is equal to
zero if the market order at time t was not placed by investor i and equal to the
market order sign otherwise

The autocorrelation function can be rewritten as

C(⌧) =
1
N

X

t

X

i,j

✏it✏
j
t+⌧ �

 
1
N

X

t

X

i

✏it

!2
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Decomposing the autocorrelation function

We rewrite the acf as C(⌧) = Csplit(⌧) + Cherd(⌧) where

Csplit(⌧) =
X

i

0

@Pii (⌧)

"
1

Nii (⌧)

X

t

✏it✏
i
t+⌧

#
�
"
Pi 1

Ni

X

t

✏it

#21

A

Cherd (⌧) =
X

i 6=j

 
Pij (⌧)

"
1

Nij (⌧)

X

t

✏it✏
j
t+⌧

#
� PiPj

"
1

Ni

X

t

✏it

#"
1

Nj

X

t

✏jt

#!

N i is the number of market orders placed by agent i , P i = N i/N, N ij(⌧) is the number
of times that an order from investor i at time t is followed by an order from investor j at
time t + ⌧ , and P ij(⌧) = N ij(⌧)/N
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Market member (brokerage) data
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Market members’ persistence in activity

The activity of market members (independently from their trading direction) is
characterized by the persistence

P̃ ii (⌧) = P ii (⌧)� (P i )2
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Figure: The diagonal terms of persistence in activity, i.e., Pii (⌧) � [Pi ]2 of MO placement for the
15 most active participant codes, the first half of 2009 for AZN.

Market member activity is highly clustered in (transaction) time. I.e. there is some
degree of predictability that a member active now will be active in the near future.
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Herding or splitting?
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MO signs (defined as the ratio of the splitting term in the correlations and the entire correlation)
for the first half year of 2009 for AZN.

From Toth et al. 2015.
Splitting dominates herding at the broker level (especially for large lags)
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Antiherding

Cherd(⌧) < 0 is statistically significant when 10 . ⌧ . 80. Why?
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Figure: Splitting and herding component of the MO sign acf conditional to the event at time t, a
market order that does not changes the price (left panel) and a market order that does change
the price (right panel).

The antiherding phenomenon is due to investors refraining from placing market orders in
the same direction of a recent market order of another investor that changed the price.
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Brokers vs agents: two stylized models

Herding and the splitting behavior should be observed at the investor level not at
broker level, but our data do not allow to do this

The relation between investors and brokers is in general complex and not fully
explored empirically.
In Toth et al (2015) we develop two stylized agent based models that take into
account possible variations of the broker-investor relation and of the mechanism
responsible for the long memory.

Long memory is generated exogenously by an autocorrelated signal and brokers have a
di↵erent probability of trading following the signal
Long memory is generated endogenously and the apparent splitting at the broker level
comes both from the heterogeneity of brokers activity and from the correlated choice
of brokers by agents which are close in the network of influence.

No splitting in both models

Main conclusion: Agent based models of the broker-investor relation are able to

reproduce the splitting herding decomposition only at a cost of having an

unrealistic level of heterogeneity of activity among brokers
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A preliminary investigation of real agents

Figure: Splitting and herding component for brokers (top) and agents/accounts (bottom) of a
European stock.
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Direct evidence for order splitting

We have seen that correlated order flow is mostly due to order splitting.

We want to find direct evidence of splitting, characterize the large trades and the
splitting characteristics, and to measure the market impact of these large orders.

The di�culty is, of course, data.

Some studies use proprietary data of a large financial institution

We follow a di↵erent approach: statistical identification of large trades from

market member data.
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An example: inventory time series

Credit Agricole trading Santander

Clear trends are visible

The identification of large trades (metaorders) must be statistical: a typical regime
switching problem
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Segmentation algorithms

Credit Agricole trading Santander

Di↵erent algorithms:

Modified t-test (G. Vaglica, F. Lillo, E. Moro, and R. N. Mantegna, Physical Review E 77,
036110 (2008).)

Hidden Markov Model (G. Vaglica, F. Lillo, and R. N. Mantegna, New Journal of Physics,
12 075031 (2010)).
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Scaling of metaorder size

Metaorder size is asymptotically power law distributed

Di↵erent ”size” measures (number of trades, time, total volume) roughly agree on
the tail exponent.

Which model can generate this power law distribution?
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The Lillo-Mike-Farmer (2005) order flow model

M funds that want to trade one metaorder each of a size Li (i = 1, ..,M) taken from
a distribution pL, (L 2 N+).

The sign of the each metaorder is taken randomly and at each time step one fund is
picked randomly with uniform probability.

The selected fund initiates a trade of the sign of its metaorder, and the size of the
metaorder is reduced by one unit.

When the metaorder is completely traded, a new one is drawn from pL and assigned
a random sign.

The distribution pL of metaorder size with the autocorrelation function of trade
signs. In particular if the distribution is Pareto

pL =
1

⇣(↵)
1

L1+↵

where ⇣(↵) is the Riemann zeta function, then the autocorrelation function of trade
signs decays asymptotically as

⇢s(`) = E [✏n✏n+`] ⇠
M↵�2

`↵�1
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The Lillo-Mike-Farmer (2005) order flow model (II)

The model connects the exponent of the autocorrelation function of order signs with
the tail exponent of metaorder distribution, since � = 1� ↵.

There is a growing empirical evidence that the distribution of metaorder size is
asymptotically Pareto distributed with a tail exponent close to ↵ = 1.5 (Lillo et al.
2005, Gabaix et al. 2006, Vaglica et al. 2008, Bershova et al. 2013).

Hence the model predicts that � = ↵� 1, i.e. � ' 0.5, as observed empirically.

Numerical simulations
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Indirect validation of the splitting model

In many markets there are two alternative methods of trading

The on-book (or downstairs) market is public and execution is completely
automated (Limit Order Book)

The o↵-book (or upstairs) market is based on personal bilateral exchange of
information and trading.

We assume that revealed orders are placed in the on-book market, whereas o↵-book
orders are proxies of metaorders
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Indirect validation of the splitting model

Figure: From Lillo et al 2005. Left. Volume distributions of o↵-book trades (circles), on-book
trades (diamonds), and the aggregate of both (squares). The dashed black lines have the slope
found by the Hill estimator and are shown for the largest one percent of the data. Right. Hill
estimator of the tail exponent.

The fitted exponent ↵ ' 1.5 for the metaorder size and the market order sign
autocorrelation exponent � are consistent with the order splitting model (� = ↵� 1).
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Direct validation of the splitting model
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Metaorder size is asymptotically power law distributed (left from Vaglica et al 2008)

The tail exponent is consistent with the splitting model

Recently Bershova and Rakhlin (2013) found a tail exponent of 1.56 by investigating
metaorders of clients of AllianceBernstein (right)
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Heterogeneity of time scales of agents in financial markets

There is a growing evidence of a power law tailed distribution of time scales of agents

Distribution of duration of metaorders has a tail exponent of ⇠ 1.5 (Vaglica et al
2008, Bershova and Rakhlin 2013)

A multiscale GARCH introduced by Borland and Bouchaud (2005) where agents use
stop loss on a given time horizon is consistent with data if the distribution of time
scale is power law with tail exponent ⇠ 1.2

A simple optimization argument for limit order execution shows that fat tail in limit
order prices is consistent with a power law tailed time horizon distribution with
exponent ⇠ 1.5 (Lillo 2007)

A censored data analysis of the time to fill of limit orders can be used to obtain the
distribution of intended lifetime of limit orders. Empirical data are consistent with a
power law distribution with tail exponent ⇠ 1.6 (Eisler et al 2009).
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Building a predictor: The DAR(p) model

DAR(p) model: a generalization of autoregressive models for discrete valued variates

Xn = VnXn�An + (1� Vn)Zn,

Zn ⇠ ⌅, Vn ⇠ B(1,�), P(An = i) = �i ,
pX

i=1

�i = 1

Autocorrelation function ⇢k = Corr(Xn,Xn+k) satisfies:

⇢k = �
pX

i=1

�i⇢k�i , k > 1

Model predictor conditional on ⌦n�1 = {Xn�1, . . . ,Xn�p}:

X̂n+s ⌘ E[Xn+s |⌦n�1] = �
pX

i=1

�iYn+s�i + E[Z ](1� �), Yn+s�i =

⇢
X̂n+s�i for i 6 s
Xn+s�i for i > s
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Predictability of order flow has significantly increased from 2004 to 2009
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Figure: From Taranto et al. 2014. Distributions of the sign predictor for the stocks AAPL,
MSFT, AZN, VOD and s = 0, 3, 10 with a DAR(p) model with p = 500.
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Predictability of order flow and metaorder execution

The exact predictor discriminates orders due to the active metaorder to those due to
the noisy background.
If n trades of the current metaorder has been already traded, the probability that the
metaorder continues is (Farmer et al. 2013)

Pn =

P1
i=n+1 piP1
i=n pi

For example, if the metaorder size distribution is Pareto

Pn =
⇣(1 + ↵, 1 + n)
⇣(1 + ↵, n)

'
✓

n
n + 1

◆↵
⇠ 1� ↵

n

Let us suppose that the active metaorder is a buy and the participation rate is ⇡.
The probability that the next order is a buy is

p+
n =

1� ⇡
2

+ ⇡

✓
Pn +

1� Pn

2

◆
=

1 + ⇡Pn

2

If sn indicates the sign of the active metaorder at time n

p+
n =

1 + sn⇡Pn

2

Since ✏̂n = 2p+
n � 1, it is

✏̂n = sn⇡Pn ⇠ sn⇡(1� n�1)
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