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Market impact models
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A fixed permanent impact model

rn is the midquote price change between just before the nth trade and just before
the n + 1th trade.

Immediate impact, E [rn|✏nvn], is non zero and can be written as E [r |✏v ] = ✏f (v),
where f is a function that grows with v

Impact of a transaction is permanent, like in usual random walks, and the equation
for the midquote price mn at time n is

rn = mn+1 �mn = ✏nf (vn;⌦n) + ⌘n, (32)

where ⌘n is an additional random term describing price changes not directly
attributed to trading itself (e.g. news). We assume that ⌘n is independent on the
order flow and we set E [⌘] = 0 and E [⌘2] = ⌃2.

We have included a possible dependence of the impact on the instantaneous state
⌦n of the order book. We expect such a dependence on general grounds: a market
order of volume vn, hitting a large queue of limit orders, will in general impact the
price very little. On the other hand, one expects a very strong correlation between
the state of the book ⌦n and the size of the incoming market order: large limit order
volumes attract larger market orders.

70 / 179



A fixed permanent impact model

The above equation can be written as:

mn =
X

k<n

✏k f (vk ;⌦k) +
X

k<n

⌘k , (33)

which makes explicit the non-decaying nature of the impact in this model:
✏k@mn/@vk (for k < n) does not decay as n � k grows.

The lagged impact function R(`) and the lagged return variance V(`) is

R(`) ⌘ E [✏n ·(mn+`�mn)] = E [f ]; V(`) ⌘ E [(mn+`�mn)
2] =

⇣
E [f 2] + ⌃2

⌘
`, (34)

i.e. constant price impact and pure price di↵usion, close to what is indeed observed
empirically on small tick, liquid contracts.

However if we consider the autocovariance of price returns we find that

E [rnrn+⌧ ] / E [✏n✏n+⌧ ] ⇠ ⌧�� (35)

which means that price returns are strongly autocorrelated in time. This fact would
violate market e�ciency because price returns would be easily predictable even with
linear methods.

We therefore come to the conclusion that the empirically observed long memory of
order flow is incompatible with the random walk model above if prices are e�cient .
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Visualizing the paradox
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A Gerig. A theory for market impact: How order flow a↵ects stock price. PhD thesis, University of Illinois, Urbana, Illinois, 2007.

How can the market be statistically e�cient (i.e. unpredictable) in the presence of an
autocorrelated order flow?
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Madhavan, Richardson and Roomans (MRR) model (1997)

Assumptions: (i) all trades have the same volume vn = v and (ii) the ✏n’s are
generated by a Markov process with correlation ⇢, thus E [✏n|✏n�1] = ⇢✏n�1

In this model, correlations decay exponentially fast, i.e. C(`) = E [✏i✏i+`] = ⇢` which
does not conform to reality.

The mrr model postulates that the mid-point mn evolves only because of
unpredictable external shocks (or news) and because of the surprise component in
the order flow. This postulate of course automatically removes any predictability in
the price returns and ensures e�ciency.

mn+1 �mn = ✓[✏n � ⇢✏n�1] + ⌘n, (36)

where ⌘ is the shock component, and the constant ✓ measures the size of trade
impact.
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Madhavan, Richardson and Roomans (MRR) model (1997)

One may write:

mn+` �mn =
n+`�1X

j=n

⌘j + ✓
n+`�1X

j=n

[✏j � ⇢✏j�1], (37)

The full impact function is found to be constant, equal to:

R(`) = ✓(1� ⇢2), 8` (38)

We can also define the ‘bare’ impact of a single trade G(`), which measures the influence
of a single trade at time n � ` on the the mid-point at time n. In terms of G(`), the
mid-point is therefore written as:

mn =
n�1X

j=�1

⌘j +
n�1X

j=�1

G(n � j � 1) ✏j , (39)

is here found to given by G(` = 0) = ✓ and G(` � 1) = ✓(1� ⇢): a part ✓⇢ of the impact
instantaneously decays to zero after the first trade, whereas the rest of the impact is
permanent.
Finally, the volatility, within this simplified version of the mrr model, reads:

V(`) = ✓2(1� ⇢2)`. (40)

74 / 179



A transient impact model

The long term memory of trades is a priori paradoxical and hints towards a non
trivial property of financial markets, which can be called long-term resilience.

Take again Eq. (39) with the assumption that single trade impact is lag
independent: G(`) = G and that volume fluctuations can still be neglected. The
mid-price variance is easily computed to be:

V(`) ⌘ h(mn+` �mn)
2i = [⌃2 + G 2]` + 2G

X̀

j=1

(` � j)C(j). (41)

When � < 1, the second term of the rhs can be approximated, when ` � 1, by
2c0G`2��/(1� �)(2� �), which grows faster than the first term. In other words,
the price would super-di↵use, or trend, at long times, with a volatility diverging with
the lag `. This of course does not occur: The market reacts to trade correlations so
as to prevent the occurrence of such trends.
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The MRR model with a bid-ask spread

The original mrr model assumes that it is the ‘true’ fundamental price pn, rather
than the midpoint mn, which is impacted by the surprise in order flow, and hence

pn+1 � pn = ⌘n + ✓[✏n � ⇢✏n�1]. (42)

Market makers cannot guess the surprise of the next trade, and post a bid price bn
and an ask price an given by:

an = pn + ✓[1� ⇢✏n�1] + �; bn = pn + ✓[�1� ⇢✏n�1]� �, (43)

where � is the extra compensation claimed the market maker, covering processing
costs and the shock component risk.

The midpoint m ⌘ (a+ b)/2 immediately before the nth trade is:

mn = pn � ✓⇢✏n�1, (44)

whereas the spread is given by S = a� b = 2(✓ + �)
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The MRR model with a bid-ask spread

Neglecting � for arbitrary correlations between signs:

mn+` �mn =
n+`�1X

j=n

⌘n + ✓
n+`�1X

j=n

{✏j � Ej [✏j+1]} , (45)

The impact function, in the general case, reads

R(`) = ✓ [1� C(`)] . (46)

The long term profit of market makers is zero, because R(1) = ✓ = S/2. Spread
and impact are two sides of the same coin.

However the long time impact is enhanced compared to the short term impact by a
factor

� ⌘ R(1)
R(1)

=
1

1� C(1)
> 1. (47)
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The MRR model with a bid-ask spread

When � 6= 0
S = 2(✓ + �) = 2(R(1) + �) = 2�R(1) + 2� (48)

where � = (1� ⇢)�1.

The mid-point volatility on scale `

�2
` =

1
`
h(m`+i �mi )

2i. (49)

is the sum of a trade induced volatility ✓2(1� ⇢)2 and a ‘news’ induced volatility ⌃2:

�2
1 = h(mn+1 �mn)

2i = ⌃2 + ✓2(1� ⇢)2 (50)

and
�2
1 = ⌃2 + ✓2(1� ⇢)2(1 + 2

⇢
1� ⇢

) = ⌃2 + ✓2(1� ⇢2) � �2
1 . (51)

The mrr model leads to two simple relations between spread, impact and volatility
per trade

S = 2�R(1) + 2�; �2
1 = R(1)2 + ⌃2. (52)
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Figure: From Wyarth et al 2008. Plot of �2
1 vs. R2

1, showing that the linear relation holds quite
precisely with ⌃2 = 0 and a ⇡ 10.9. (The intercept of the best a�ne regression is even found to
be slightly negative). Data here corresponds to the 68 stocks of the pse in 2002. The correlation
is very high: R2 = 0.96.
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Figure: From Wyarth et al 2008. Relation between spread and volatility per trade for 68 stocks
from the Paris Stock Exchange in 2002, averaged over the entire year. The value of the linear
regression slope is c ⇡ 1.58, with R2 = 0.96
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Comments

The linear relation between spread and volatility per trade is not expected to hold
for the volatility per unit time �, since it involves an extra stock-dependent and
time-dependent quantity, namely the the trading frequency f , through:

� = �1

p
f . (53)

Note that there are two complementary economic interpretations of the relation
�1 ⇠ S in small tick markets:

(i) Since the typical available liquidity in the order book is quite small, market orders
tend to grab a significant fraction of the volume at the best price; furthermore, the
size of the ‘gap’ above the ask or below the bid is observed to be on the same order of
magnitude as the bid-ask spread itself which therefore sets a natural scale for price
variations. Hence both the impact and the volatility per trade are expected to be of
the order of S , as observed.
(ii) The relation can also be read backward as S ⇠ �1: when the volatility per trade is
large, the risk of placing limit orders is large and therefore the spread widens until limit
orders become favorable.
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A transient impact model (TIM)

We go back now to the model without spread and consider the consequences of the long
memory of order flow.

The Transient Impact Model (or propagator model)

mt =
X

t0<t

⇥
G(t � t0)✏t0 + ⌘t0

⇤
+m�1 (54)

or in di↵erential form, setting rt = mt+1 �mt :

rt = G(1)✏t +
X

t0<t

G(t � t0)✏t0 + ⌘t , G(`) ⌘ G(` + 1)� G(`), (55)

where G(`  0) ⌘ 0

Hence past order flow a↵ects future returns.

Note that e�ciency (i.e. martingale assumption) is not required.
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A transient impact model (TIM)

For an arbitrary function G(`), the lagged price variance can be computed explicitly and
reads:

V(`) =
X

0j<`

G 2(` � j) +
X

j>0

[G(` + j)� G(j)]2 + 2�(`) + ⌃2`, (56)

where �(`) is the correlation induced contribution:

�(`) =
X

0j<k<`

G(` � j)G(` � k)C(k � j)

+
X

0<j<k

[G(` + j)� G(j)] [G(` + k)� G(k)]C(k � j)

+
X

0j<`

X

k>0

G(` � j) [G(` + k)� G(k)]C(k + j). (57)

Assume that G(`) itself decays at large ` as a power-law, �0`�� . When �, � < 1, the
asymptotic analysis of �(`) yields:

�(`) ⇡ �20c0I (�, �)`2�2��� , (58)

where I > 0 is a certain numerical integral.
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A transient impact model (TIM)

If the single trade impact does not decay (� = 0), we recover the above
superdi↵usive result.

But as the impact decays faster, superdi↵usion is reduced.

At the critical value � = �c = (1� �)/2, �(`) grows exactly linearly with ` and
contributes to the long term value of the volatility.

However, as soon as � exceeds �c , �(`) grows sublinearly with `, and impact only
enhances the high frequency value of the volatility compared to its long term value
⌃2, dominated by ‘news’.

The long range correlation in order flow does not induce long term correlations nor
anticorrelations in the price returns if and only if the impact of single trades is
transient (� > 0) but itself non-summable (� < 1).
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Calibration of TIM

The average impact function R(`) of the model is

R(`) = G(`) +
X

0<j<`

G(` � j)C(j) +
X

j>0

[G(` + j)� G(j)]C(j). (59)

This equation can be used to extract the impact of single trades G from directly
measurable quantities, such as R(`) and C(n).

An alternative method of estimation, which is less sensitive to boundary e↵ects, uses the
return process of Eq. 55, such that the associated response function S(`) = E[rt+` · ✏t ]
and C(`) are related through:

S(`) =
X

n�0

G(n)C(n � `),

whose solution represents the values of the kernel G(`). The relation between R(`) and
S(`) is:

R(`) =
X

0i<`

S(i) (60)

allowing to recover the response function from its di↵erential form.
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Empirical propagator

Figure: Comparison between the empirically determined G(`), extracted from R and C using
Eq.(59), and the power-law fit Gf (`) = �0/(`20 + `2)�/2, for a selection of four stocks: ACA, CA,
EX, FP.
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Response function of TIM

The asymptotic analysis can again be done when G(`) decays as �0`�� . When
� + � < 1, one finds:

R(`) ⇡`�1 �0c0
�(1� �)

�(�)�(2� � � �)


⇡

sin⇡�
� ⇡

sin⇡(1� � � �)

�
`1���� , (61)

Note that numerical prefactor exactly vanishes when � = �c .

When � < �c , one finds that R(`) diverges to +1 for large `, whereas for � > �c ,
R(`) diverges to �1, which means that when the decay of single trade impact is
too fast, the accumulation of mean reverting e↵ects leads to a negative long term
average impact .

When � is precisely equal to �c , R(`) tends to a finite positive value R(1): the
decay of single trade impact precisely o↵sets the positive correlation of the trades.
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Figure: Theoretical impact function R(`), from Eq. (59), and for values of � close to �c . When
� = �c , R(`) tends to a constant value as ` becomes large. When � < �c (slow decay of G),
R(` ! 1) diverges to +1, whereas for � > �c , R(` ! 1) diverges to �1.
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Empirical response function
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Figure: Average empirical response function R(`) for FT, during three di↵erent periods (first and
second semester of 2001 and 2002). We have given error bars for the 2002 data. For the 2001
data, the y�axis has been rescaled such that R(1) coincides with the 2002 result. R(`) is seen
to increase by a factor ⇠ 2 between ` = 1 and ` = 100.
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Decoupling the contribution of di↵erent traders to response function

We use brokerage data from LSE. MO=market order not changing the price MO’=
market orders changing the price
The average behavior of the price ` time steps after an event of a particular type ⇡1 is

R⇡1(`) =
h(mn+` �mn)I (⇡n = ⇡1)✏ni

P(⇡1)
. (62)

We decompose the total impact of a given type of order book event into a contribution
from the same trader and a contribution from all other trader.

Rsame
⇡1

(`) =

DPn+`�1
n0=n (pn0+1 � pn0)I (bn0 = bn)I (⇡n = ⇡1)✏n

E

P(⇡1)
. (63)

Rdi↵
⇡1

(`) =

DPn+`�1
n0=n (pn0+1 � pn0)I (bn0 6= bn)I (⇡n = ⇡1)✏t

E

P(⇡1)
. (64)
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Impact (or response) is the result of a delicate balance
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From Toth et al 2012. The two contributions very nearly o↵set each other, leading to a
total impact that is nearly constant in time and much smaller than both these
contributions.
Dynamical liquidity picture: the highly persistent sign of market orders must be

bu↵ered by a fine-tuned counteracting limit order flow in order to maintain

statistical e�ciency (i.e. that the price changes are close to unpredictable, in spite

of the long-ranged correlation of the order flow)
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Spread decay
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From Ponzi et al. 2009.
The quantity

G(⌧ |�) = E(s(t + ⌧)|s(t)� s(t � 1) = �)� E(s(t))
measures the average spread dynamics s(t + ⌧) conditional to a shock �s = � at
time t.
Empirical data are consistent with G(⌧ |�) ⇠ ⌧�0.37 when � > 1, not too di↵erent
from the propagator exponent.
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Transient impact model: summary

TIM assumes that price mn at transaction time n is

mn = m�1 +
1X

k=1

✏n�k f (vn�k)G(k) +
X

k

⌘k (65)

or equivalently

mn+1 �mn = G(1)✏nf (vn) +
1X

k=1

[G(k + 1)� G(k)]✏n�k f (vn�k) + ⌘n (66)

Thus past trades a↵ect future returns.

If C(j) = E [✏k+j✏k ] ' j�� with 0 < � < 1, long term di↵usivity of prices is recovered only
if G(`) ⇠ `�� .

Notice that Eq. 66 suggests to regress price returns on contemporaneous and past order
flow to estimate the (increments of the) propagator G(k)
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History dependent impact model (HDIM)

An alternative interpretation of the above formalism is to assume that price impact is
permanent, but history dependent as to ensure statistical e�ciency of prices

Let us consider a generalized MRR model:

rn = mn+1 �mn = ⌘n + ✓(✏n � ✏̂n), ✏̂n = En[✏n+1|I ] (67)

where I is the information set available at time n.

This model implies that En�1[rn|I ] = 0.

Within the above simplified model, in which we have neglected volume fluctuations,
there are only two possible outcomes. Either the sign of the nth transaction matches
the sign of the predictor En[✏n+1|I ], or they are opposite. Let us call r+n and r�n the
expected ex-post absolute value of the return of the nth transaction given that ✏n
either matches or does not match the predictor. If we indicate with '+

n and ('�
n )

the ex ante probability that the sign of the n-th transaction matches (or disagrees)
with the predictor ✏n,
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History dependent, permanent impact

We can rewrite En�1[rn|I ] = 0 as:

'+
n r

+
n � '�

n r
�
n = 0. (68)

i.e.

r+n = ✓(1� ✏̂n) (69)

r�n = ✓(1 + ✏̂n). (70)

This result shows that the most likely outcome has the smallest impact. We call this
mechanism asymmetric liquidity: each transaction has a permanent impact, but the
impact depends on the past order flow and on its predictability.

The price dynamics and the impact of orders therefore depend on (i) the order flow
process (ii) the information set I available to the liquidity provider, and (iii) the
predictor used by the liquidity provider to forecast the order flow.
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Equivalence between the two models

Consider the case where the information set available to liquidity providers is
restricted to the past order flow. We call this information set anonymous because
liquidity providers do not know the identity of the liquidity takers and are unable to
establish whether or not two di↵erent orders come from the same trader.

We assume also that the predictor used by liquidity takers to forecast future order
flow comes from a linear model, namely a K th order autoregressive AR model

✏̂n =
KX

i=1

ai✏n�i , (71)

where ai are real numbers that can be estimated on historical data using standard
methods. The MRR model corresponds to an AR(1) order flow, with a1 = ⇢ and
ak = 0 for k > 1, with an exponential decay of the correlation.
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Equivalence between the two models

The resulting impact model, Eq. (67) with a general linear forecast of the order flow
is in fact equivalent, when K ! 1, to the temporary impact model of the previous
section. It is easy to show that one can rewrite the generalized MRR model in terms
of a propagator as

mn = mn�1 + ✓✏n +
1X

i=1

[G(i + 1)� G(i)]✏n�i + ⌘n, ✓ = G(1). (72)

The equivalence is obtained with the relation:

✓ai = G(i + 1)� G(i) or G(i) = ✓[1�
i�1X

j=1

aj ]. (73)
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Building a predictor: The DAR(p) model

DAR(p) model: a generalization of autoregressive models for discrete valued variates

Xn = VnXn�An + (1� Vn)Zn,

Zn ⇠ ⌅, Vn ⇠ B(1, �), P(An = i) = �i ,
pX

i=1

�i = 1

Autocorrelation function ⇢k = Corr(Xn,Xn+k) satisfies:

⇢k = �
pX

i=1

�i⇢k�i , k > 1

Model predictor conditional on ⌦n�1 = {Xn�1, . . . ,Xn�p}:

X̂n+s ⌘ E[Xn+s |⌦n�1] = �
pX

i=1

�iYn+s�i + E[Z ](1� �), Yn+s�i =

⇢
X̂n+s�i for i 6 s
Xn+s�i for i > s
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Asymmetric liquidity (Lillo and Farmer 2004)

When it is very likely that the next order is a buy, if a buy occurs the impact is small,
while if it is a sell the impact is large.
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Figure: Expected return behavior as a function of an autoregressive sign predictor
✏̂n ⌘ E[✏n|✏n�1, ✏n�2, ...] for Astrazeneca (from Taranto et al. JSTAT 2014).
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Direct tests of the model

Negative lag response function

R(�`) = �
X

0<i`

S(�i) = �E[(mt �mt�`) · ✏t ]. (74)

which for the TIM is

RTIM1(�`) = �
X

0<i`

X

n�0

G(n)C(n + i) < 0. (75)

Signature plot

D(`) =
1
`
E[(mt+` �mt)

2].

DTIM1(`) =
1
`

X

0n<`

G 2(` � n) +
1
`

X

n>0

[G(` + n)� G(n)]2 + 2 (`) +
DHF

`
+ DLF,

where  (`) is the correlation-induced contribution to the price di↵usion and we have
added a high frequency (HF, e.g. microstructure noise) and low frequency (LF, e.g.
news) component to the noise.
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Fitted propagators
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Negative lag response function
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Signature plot
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Small tick (AAPL): ‘trend-like” behaviour for ` � 3 and high frequency activity with
the spread leading to a minimum in D(`).

Large tick (MSFT) “mean-reverting” behaviour, with a steadily decreasing signature
plot.
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Generalized linear impact models
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Generalized linear impact models

The linear impact model has several limitations

All market orders have the same impact, since G only depends on t � t0 and not on
t and t0 separately, which is certainly very crude. For example, some market orders
are large enough to induce an immediate price change, and are expected to impact
the price more than smaller market orders. One furthermore expects that depending
on the specific instant of time and the previous history, the impact of market orders
is di↵erent.

Limit orders and cancellations should also impact prices, but their e↵ect is only
taken into account through the time evolution of G(`) itself that phenomenologically
describes how the flow of limit orders opposes that of market orders and reverts the
impact of past trades.

The model assumes a linear addition of the impact of past trades and neglect any
non-linear e↵ects which are known to exist. For example, the total impact of a
metaorder of size Q is now well known to grow as ⇠

p
Q, a surprising e↵ect that

can be traced to non-linearities induced by the deformation of the underlying supply
and demand curve.
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Two propagator models

Idea: di↵erent types of event can have di↵erent impact on price (see Eisler et al
2012).

We limit here to two types of events ⇡t defined as:

⇡t =

⇢
NC if rt = mt+1 �mt = 0
C if rt = mt+1 �mt 6= 0.

Note: we consider only trades (di↵erently from Eisler et al 2012), hence our returns
include the reaction to the trade.

Taranto et al 2016a and 2016b
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Two propagator transient impact model (TIM2)

The model is

rt =
X

⇡

G⇡(1)I (⇡t = ⇡)✏t +
X

t0<t

X

⇡0

G⇡0(t � t0)I (⇡t0 = ⇡0)✏t0 + ⌘t ,

where ⇡ = {NC, C} and G⇡0(`) ⌘ G⇡0(` + 1)� G⇡0(`).

It can be calibrated from

S⇡1(`) =
X

⇡2

P(⇡2)
X

n�0

G⇡2(n)C⇡1,⇡2(` � n). (76)

where

S⇡(`) = E[rt+` · ✏t |⇡t = ⇡] =
E[rt+` · ✏t I (⇡t = ⇡)]

P(⇡) ,

and

C⇡1,⇡2(`) =
E[✏t I (⇡t = ⇡1) · ✏t+`I (⇡t+` = ⇡2)]

P(⇡1)P(⇡2)
(77)
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Two propagator history dependent impact model (HDIM2)

The model is

rt =
X

⇡

G⇡(1)I (⇡t = ⇡)✏t +
X

t0<t

X

⇡0,⇡

⇡0,⇡(t � t0)I (⇡t = ⇡)I (⇡t0 = ⇡0)✏t0 + ⌘t ,

i.e. the expected sign for an event of type ⇡ is a linear regression of past signed
events, with an “influence kernel”  that depends on both the past event type ⇡0

and the current event ⇡.

The TIM2 is a special case of HDIM2 when

⇡0,⇡(`) = G⇡0(`), 8⇡, (78)

i.e. only the type of the past event ⇡0 matters.

Calibration is more subtle and requires the approximation of three-point and
four-point correlations in terms of two-point correlations
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Conditional correlations
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Note that the first subscript corresponds to the event that happened first chronologically
Small tick (AAPL): C and NC events are not radically di↵erent and correlations are
all similar.
Large tick (MSFT): CC ,C and CC ,NC both start negative, i.e. after a price changing
event, it is highly likely that the subsequent order flow (either C or NC) will be in
the other direction (Note however that P(⇡ = C) = 0.08). 109 / 179



Fitted propagators
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In the case of large tick stocks the empirical curves are perfectly reproduced,
whereas for small tick stocks some little deviation still persists.
HDIM2 performs slightly better than TIM2 in capturing the excess anti-correlation
measured from the small tick data between past returns and future order signs (not
shown).
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Negative lag response function
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GC is equal to the spread, whereas GNC is equal to zero.

The dynamics of the price is completely determined by the sequence of random
variables {(✏t , ⇡t)}t2N, and the temporal structure of their correlations.
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Signature plot of TIM2 (and HDIM2)
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Clear improvement with respect to TIM1
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Recap

We cannot model the order flow dynamics as exogenous (as in the TIM model).

A two propagator model is able to reproduce satisfactorily well the negative lag
response function and the signature plot.

Propagators are constant, hence the sequence of random variables {(✏t , ⇡t)}t2N
reproduces the price dynamics.

We need a stochastic model describing the joint dynamics of order flow and prices.
One possibility VAR (Hasbrouck 1991). However

VAR is not suited for discrete variables
Linear relation between the variables, vs linear relation between past variables and
future probabilities.
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Linear models

m state Markov chain Xt ; Q is the m ⇥m time-invariant transition matrix, and let
�t = (xt(1), ..., xt(m)) be a row vector such that xt(i) = 1 if Xt = i and zero
otherwise.

The probability vector �̂t = (P(Xt = 1), ...,P(Xt = m)) is determined by the linear
system of equations

�̂t = �t�1Q .

Idea: Markov process with m = 4 states,
(✏t , ⇡t) 2 {(�1, C), (�1, NC), (+1, NC), (+1, C)}, corresponding to buys (✏t = +1)
and sells (✏t = �1) and price changing (⇡t = C) and not changing (⇡t = NC)
trades.

Problem: the long memory of correlations requires a large number of parameters
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(Generalized) Mixture Transition Distribution Model (MTDg)

MTDg(p) model: Raftery 1985, Berchtold 1995 {Xt}t2N be a sequence of random
variables taking values in the finite set X = {1, . . . ,m}
8t > p and 8(i , i1, . . . , ip) 2 X p+1,

P(Xt = i |Xt�1 = i1, . . . ,Xt�p = ip) =
pX

g=1

�gq
g
ig ,i

, (79)

where the vector � = (�1, . . . , �p) is subject to the constraints:

�g � 0, 8g 2 {1, . . . , p} , (80)
pX

g=1

�g = 1 . (81)

The matrices
�
Q

g =
⇥
qg
i,j

⇤
; i , j 2 X ; 1  g  p

 
are positive m ⇥m stochastic

matrices, i.e. they satisfy

qg
i,j � 0 and

mX

j=1

qg
i,j = 1 8g 2 {1, . . . , p}, 8i , j 2 X . (82)
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(Generalized) Mixture Transition Distribution Model (MTDg)

The number of parameters is O(m2p) rather than O(mp) as in a Markov chain of
order p.

This model can be interpreted as a probabilistic mixture of Markov processes.

However the model has still a probabilistic interpretation when (�g )g=1,...,p is not
probability vector and Q

g are not stochastic matrices, provided that

0 
pX

g=1

�gq
g
ig ,i

 1, 8(i , i1, . . . ip) 2 X p+1 , (83)

We shall assume the matrices Qg share the same stationary state, i.e. the same left
eigenvector ⌘̂ corresponding to the eigenvalue 1
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Theorem

Suppose that a sequence of random variables {Xt}t2N taking values in the finite set
X = {1, . . . ,m} is defined by

P(Xt = i |Xt�1 = i1, . . . ,Xt�p = ip) =
pX

g=1

�gq
g
ig ,i

,

where Q

g =
⇥
qg
i,j

⇤
i,j2X

are matrices with normalized rows,
P

j q
g
i,j = 1,

Pp
g=1 �g = 1, and

assume that ⌘̂Qg = ⌘̂, 8g . If the vector ⌘̂ is such that ⌘̂i > 0, i 2 X and
P

i ⌘̂i = 1, and

0 <
pX

g=1

�gq
g
ig ,i

< 1, 8(i , i1, . . . , ip) 2 X p+1 , (84)

then

lim
`!1

P(Xt+` = i |Xt�1 = i1, . . . ,Xt�p = ip) = ⌘̂i .
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Estimation: MLE

Maximum Likelihood.

⇣
�̂g , Q̂

g
⌘

1gp
= argmax

(�g ,Qg )1gp

nX

t=p+1

log

(
pX

g=1

�gq
g
xt�g ,xt

)
,

s.t
pX

g=1

�g = 1 ,

�g � 0, 8g 2 {1, . . . , p}

qg
i,j � 0 and

mX

j=1

qg
i,j = 1 8g 2 {1, . . . , p}, 8i , j 2 X . (85)

Large number of constraints, hard to solve unless suitably (and strongly) parametrized.
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Estimation: MLE

We choose a 11 parameter model

Impose buy-sell symmetry

�g = N�g
�� , where N�1

� =
Pp

i=1 g
��

Writing Q

g = Q+ Q̃

g
, we make the following strongly parametrized ansatz:

Q =

0

B@

B1 A1 A1 B1
B2 A2 A2 B2
B2 A2 A2 B2
B1 A1 A1 B1

1

CA , Q̃
g
=

0

BB@

�µ1e�↵11g �⌫1e�↵12g ⌫1e�↵12g µ1e�↵11g

µ2e�↵21g ⌫2e�↵22g �⌫2e�↵22g �µ2e�↵21g

�µ2e�↵21g �⌫2e�↵22g ⌫2e�↵22g µ2e�↵21g

µ1e�↵11g ⌫1e�↵12g �⌫1e�↵12g �µ1e�↵11g

1

CCA ,

(86)

where ↵ij � 0.

✓ = {�,Bi , µi , ⌫i , ↵ij}
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Estimation: MLE
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Estimation: GMM

Generalized Method of Moments.

Proposition.

Suppose that a sequence of random variables {Xt}t2N taking values in the finite set
X = {1, . . . ,m} is defined by Eq. 79 and is stationary. Let B(k) be a m ⇥m matrix with
elements

bk
i,j = P(Xt = i ,Xt+k = j), i , j 2 X ; k 2 Z

and B(0) = diag(⌘̂1, . . . , ⌘̂m). Then

B(k) =
pX

g=1

�gB(k � g)Qg . (87)

m2p di↵erent equations, which can be reduced to p(m2 � 2m + 1)
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Estimation: GMM

We introduce MTD(p) models where

Q

g = 1T ⌘̂ + Q̃

g
(88)

and ⌘̂Q̃
g
= 0. Similar to DAR(p) model.

The GMM equations become

B(k)� ⌘̂T ⌘̂ =
pX

g=1

B(k � g)Ag . (89)

where A

g ⌘ �g Q̃
g
.

The knowledge of Ag gives not uniquely �g and Q̃

g
. The generating model is

uniquely determined.
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Estimation: GMM

We solve the optimization problem

q̂ = argmin
q2Rp(m2�2m+1)

kd�K · qk2

s.t. ⌘̂i +
pX

g=1

max
ig

⇣
agig ,i

⌘
< 1, 8i 2 X

⌘̂i +
pX

g=1

min
ig

⇣
agig ,i

⌘
> 0, 8i 2 X (90)

where d and K depend on B(k) and ⌘̂ and q depend on A

g .

The inequalities guarantee the uniqueness of the stationary solution

Proposition

If K is not singular, the optimization program of Eq. (90) is strictly convex in

Rp(m2�2m+1).
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Estimation: GMM
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Out of sample analysis

Model A Model B Model C

MSFT
EPE 1.928 1.199 1.181
SE 0.003 0.004 0.004

BAC
EPE 1.744 0.799 0.785
SE 0.003 0.004 0.004

GE
EPE 1.922 1.169 1.153
SE 0.004 0.005 0.005

CSCO
EPE 1.919 1.112 1.098
SE 0.004 0.005 0.005

AAPL
EPE 2.643 2.211 2.192
SE 0.001 0.002 0.002

AMZN
EPE 2.579 2.196 2.183
SE 0.002 0.004 0.004

EPE values
EPE(✓) = E[L(Xt , X̂

✓
t )] ,

and standard errors (SE) for MSFT, BAC, GE, CSCO, AAPL and AMZN data. Model A:
Unconditional probabilities as predictor. Model B: Strongly constrained MTDg(100)
estimated via MLE. Total number of parameters: 11. Model C : Weakly constrained
MTDg(100) model estimated via GMM with matrices. Total number of parameters: 500.
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Market impact of metaorders under TIM-HDIM models
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Market impact laws

Kyle’s original model (1985) predicts that price impact should be a linear function of
the metaorder size

Empirical studies have consistently shown that the price impact of a metaorder is a
non-linear concave function of its size.

Market impact I, i.e. the expected average price change between the beginning and
the end of a metaorder of size Q is empirically fit by

� ln p ⌘ I(Q) = ±Y�D

✓
Q
VD

◆�

(91)

where �D is the daily volatility of the asset, VD is the daily traded volume, and the
sign of the metaorder is positive (negative) for buy (sell) trades. The numerical
constant Y is of order unity and the exponent � is in the range 0.4 to 0.7, but
typically very close to 1/2, i.e. to a square root.

This is the square-root impact law (Barra 1997, Almgren et al 2005, Moro et al
2009, Toth et al 2011, Bershova et al 2013)
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Impact of metaorders from proprietary data

Figure: From Toth et al. 2011. The impact of metaorders for Capital Fund Management
proprietary trades on futures markets, Impact is measured here as the average execution shortfall
of a metaorder of size Q. The data base contains nearly 500, 000 trades. We show I(Q)/�D vs
Q/VD on a log-log scale, where � and V are the daily volatility and daily volume measured the
day the metaorder is executed. 128 / 179



Temporary and permanent impact

By using brokerage data of LSE and BME, we reconstruct statistically the metaorders
and we measure the dynamics of price during the their execution, by rescaling the time in
[0, 1].
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Figure: Market impact versus time. The symbols are the average value of the market impact of
the metaorder as a function of the normalized time to completion t/T . The rescaled time
t/T = 0 corresponds to the starting point of the metaorder, while t/T = 1 corresponds to the
end of the metaorder.

We find approximately the square root law

E [r |N] = A✏sN� � ' 1/2 (92)

and a decay at approximately 2/3 of the peak impact. 129 / 179



Temporary and permanent impact
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From Zarinelli et al 2015. Decay of temporary market impact after the execution of a metaorder.

Within each panel the solid lines correspond to the average market impact trajectory for

metaorders with di↵erent durations D; the four panels correspond to di↵erent participation rates

⇡. The black line corresponds to the prediction of the transient impact model with � = 0.5.
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Impact under propagator/asymmetric liquidity model

Only one metaorder order active at a given time, made of N trades (constant
volume), and executed with a flow of uncorrelated orders with a constant
participation rate ⇡

The total time needed to execute the hidden order is then T = N/⇡.

If m0 the price at the beginning of the metaorder, the total impact is

E [mN ]�m0 = ✏✓
NX

i=1

0

@1�
i/⇡X

k=1

ak

1

A . (93)

131 / 179



Impact under propagator/asymmetric liquidity model

We assume that the participants observing public information model the time series
with a FARIMA process. For large k the best linear predictor coe�cients of a
FARIMA process satisfy ak ⇡ k���1 where � = (1� �)/2. For large k we can pass
into the continuum limit and from Eq. 93 the impact is

E [mN ]�m0 = ✏✓

"
1 +

N�1X

i=1

⇣
1�

⇣
1� (n/⇡)��

⌘⌘#
. (94)

Converting the sum to an integral gives

E [mN ]�m0 ⇡ ✏✓

✓
1 +

2��1⇡�

1� �
[(2N � 1)1�� � 1]

◆
⇠ ⇡�N1�� . (95)

For a fixed participation rate, the market impact asymptotically increases with the
length of the hidden order as N1�� ⇠ N0.75.

The size of the impact varies as ⇡� . This means that the slower an order is
executed, the less impact it has, and in the limit as the order is executed infinitely
slowly the impact goes to zero.

Note however that if the execution time T = N/⇡ is fixed, the impact become linear
with N but decays as T��
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Impact decay under propagator/asymmetric liquidity model

No noise traders (⇡ = 1), FARIMA model on the past K trades

✏̂n =
KX

i=1

a(K)
i ✏n�i (96)

where

a(K)
i = �

 
K
i

!
�(i � H + 1/2)�(K � H � i + 3/2)

�(1/2� H)�(K � H + 3/2)
(97)

and H = 1/2� � is the Hurst exponent of the FARIMA process.

Permanent impact is

E [m1]�m0 = ✏✓N(1�
KX

j=1

a(K)
j ) = (98)

✏✓N
4H�1p⇡�[H] sec[(K � H)⇡]
�(3/2 + K � H]�[2H � 1� K ]

which can be approximated as

E [m1]�m0 ⇠ ✏✓
N
K�

. (99)
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Impact decay under propagator/asymmetric liquidity model

If K is infinite, then E [m1]�m0 = 0, i.e. the impact is completely temporary (as in
a pure propagator model).

For a FARIMA forecast model with finite K (or equivalently if the sign
autocorrelation function decays fast beyond time scale K), the permanent impact is
non zero and is linear in N. Even if for large K the permanent impact is small, the
convergence to zero with the memory K is very slow.

Immediately after the end of the metaorder the initial drop for t ⌧ N is in fact very
sharp for � < 1: mN+t �mN / �t1�� , such that the slope of the decay is infinite
when t ! 0 (in the continuous limit)
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Which microstructural mechanisms are responsible for
asymmetric liquidity?
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Data

Two datasets

LSE dataset includes Astrazeneca (AZN) and Vodafone (VOD) stocks in 2004 (254
trading days)

NASDAQ dataset includes Apple (AAPL) and Microsoft (MSFT) in July-August
2009 (42 trading days)

Symbol
Number of Average Average Average

trades intertrade time stock price tick size-price ratio

AAPL 857925 1.1 s 157.17 USD 0.6 bp

MSFT 575040 1.7 s 23.74 USD 4.2 bp

AZN 405481 23.1 s 24.38 GBP 4.1 bp

VOD 411736 22.9 s 1.34 GBP 18.7 bp

Table: The average stock price is expressed in U.S. Dollars for AAPL and MFST, whereas it is
expressed in Great Britain Pounds for AZN and VOD. The average intertrade time and tick
size-price ratio are given in seconds and in basis points, respectively.
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Volume at best quotes
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If a buy is more likely,
there is more volume at
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best ask

Opposite to
asymmetric liquidity

When predictability is
very high, volume at
the opposite side
increases slightly
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Depth: Sparsity of of the book
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the book is full on both
sides.
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Best opposite volume and market order volume
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In agreement with
asymmetric liquidity
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Penetration probability

�0.6 �0.4 �0.2 0.0 0.2 0.4 0.6 0.8
�n · �̂n

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

pr
ob

ab
ili

ty

P
�
vn � vOB

n |�n · �̂n

�

E[f |�n · �̂n]

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

fr
ac

ti
on

VOD

Conditional penetration
probabilities of the
market orders and
conditional average
ratio between market
order volumes and best
opposite volumes.

The most likely market
order has a smallest
probability of
penetrating the best
and moving the price

In agreement with
asymmetric liquidity

140 / 179



Mechanical and total impact
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Small quote revision for
very likely events
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