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Abstract 
 

 

Mathematical models are widely used in the field of structural dynamics. They are often 

found at the design stage of a mechanical product, when the effect of physical 

modifications on the total dynamic response of the structure needs to be understood 

before the real fabrication is carried out. In recent years they are also used in real-time 

machine diagnosis and prognosis applications, in which fast and precise decision-

making requires highly accurate and efficient structural mathematical models. The 

problem we are facing now is: as the structure becomes more complicated, consisting 

more segments and joints, the accuracy and efficiency of the corresponding 

mathematical model deteriorates fast due to the difficulties in joint modelling and the 

nonlinearities existing in those joints. The purpose of this thesis is to develop and 

demonstrate a generalised approach for constructing a mathematical model that is 

capable of predicting accurately and efficiently dynamic responses of a complex 

structural assembly, in which nonlinearity at the joint must be counted.  

This work takes a ‘bottom-up’ approach. It is reckoned that an accurate assembly model 

is only achievable and meaningful when all the constituent component models are 

constructed correctly. Hence, the first part of the thesis investigates linear structural 

component modelling methods and issues in mechanical joint modelling. The second 

part of the thesis looks into general nonlinear structural dynamic analysis. Both time-

domain and frequency-domain methods are examined. In particular, the frequency-

domain Harmonic Balance Method (HBM) is reviewed in detail and proven via 

simulations of a 1-DOF strongly nonlinear system that it can solve steady-state solutions 

accurately and much more efficiently than the more common time-domain methods. For 

a structural assembly model of moderate complexity and significant nonlinearity, HBM 

alone is not enough to provide efficient calculation due to the size of the problem. A 

new method, based on HBM and the concept of Frequency Response Function (FRF) 

coupling is explored. It takes advantage of the fact that nonlinearity is a localised 

property in most practical structural assembly. A test rig is designed and constructed to 

verify the above modelling approach. The rig consists of key flexible structural 

components that can be found in normal rotating machines. One of the bearing supports 

is specially-designed to exhibit adjustable nonlinear stiffness. Results from amplitude-

controlled dynamic tests match the simulation very closely, which proves that the HBM 

together with the FRF coupling concept is a very promising approach to tackle problems 

of large scale structures with localised nonlinearity. The success is also attributed to the 

great attention to the component and joint models. 
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Nomenclature 
 
In the general context 

m, c, k : SDOF mass, damping and stiffness, respectively 

M, C, D, K : MDOF system matrices of mass, viscous damping, structural 

damping and stiffness, respectively 

, ,u u uɺ ɺɺ : displacement, velocity and acceleration at one DOF 

, ,u u uɺ ɺɺ : displacement, velocity and acceleration of a MDOF system in vector 

form 

U : amplitude of the displacement vector 

U : amplitude of the displacement vector in complex form 

n
U : amplitude of the n

th
 harmonic component of the displacement vectors in 

complex form 

U
n

S : amplitude of the n
th

 sine harmonic term of the displacement 

U
n

C : amplitude of the n
th

 cosine harmonic term of the displacement 

, , ,i Ii Di Sif f f f : external excitation force, inertia force, damping force and elastic 

force respectively at i
th 

 DOF 

, , ,f f f fI D S : external excitation force, inertia force, damping force and elastic 

force respectively in a vector form for a MDOF system 

F : external excitation force amplitude in complex form 

gk : nonlinear internal force at kth  DOF 

kjp : nonlinear internal reaction force between DOF k and DOF j 

kjP : amplitude of kjg in complex form 

g : nonlinear internal reaction force vector 

G
n

S : amplitude of the n
th

 sine harmonic term of the nonlinear interaction force 

vector 

G
n

C : amplitude of the n
th

 cosine harmonic term of the nonlinear interaction 

force vector 

T: excitation period 

ω : excitation frequency 

rω : r
th

 natural frequency 

Ω : eigenvalue matrix 
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ψ r : r
th

 eigenvector 

,ψ ψX A : eigenvectors derived from experimental and analytical models 

respectively 

Ψ : eigenvector matrix 

( )H ω : Frequency Response Function matrix 

( )Z ω : dynamic stiffness matrix 

N:  total number of harmonic terms included in the Fourier series expansion 

kjv : describing function that links DOF k and DOF j 

[ ]∆ : generalised quasi-linear matrix comprising describing functions 

[ ] [ ],
A B

: corresponding matrices or vectors related to component A and B, 

respectively 

[ ] [ ],
i c

: corresponding matrices or vectors related to internal and connecting  

DOFs, respectively 

{ }n
: n

th
 harmonic component  

[ ]
nln

: parameters related to nonlinear DOFs 

[ ]
nln_r

: parameters related to retained linear DOFs 

[ ]
nln_d

:parameters related to discarded linear DOFs 

R1, R2, R3, R4: 4th order Runge-Kutta parameters 

 

In the joint description 

F : external force 

N: normal clamping force at the frictional interface 

µ : dynamic friction coefficient 

1 2 3, ,k k k : first, second and third order stiffness factors 

 

In the experiment 

v : voltage input to the shaker’s coil 

nV : amplitude of the n
th

 harmonic component of the voltage in complex form 

{ }( )n
: number of iterations 
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Abbreviations 

AMB:  Active Magnetic Bearing 

CAD:  Computer Aided Design 

CMS:  Component Mode Synthesis 

CPU:  Central Processing Unit 

DOF:  Degree of Freedom 

FE:  Finite Element 

FEM:   Finite Element Method 

FFT:  Fast Fourier Transform 

FRF:   Frequency Response Function 

HBM:  Harmonic Balance Method 

LDV:  Laser Doppler Vibrometer 
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Chapter 1 
 
 

Introduction 
 
 
 
1.1 Introduction to the Problem 

Structural models are used in the field of engineering to study and predict the 

behaviour of real structures. Our ancestors have already known how to use 

physical, scaled-down models to assure themselves of the structural soundness 

before they started to construct those magnificent buildings that still stand firmly 

today. ‘Model’ is a very general term. It is referred to as a physical or an abstract 

representation of another object that is difficult to be directly applied analysis on; 

as an alternative, a model which bears the resemblance to the object in one or a 

few aspects is created to undertake those analyses. In the field of engineering, we 

have long passed the time when physical models were the only choice to assess 

the behaviour of an object. Of course, physical models are still very useful tools 

in engineering for their directness and visual impact. In this thesis, the name 

‘model’ refers to the abstract type, unless it is stated otherwise. The abstract 

model is normally presented in the form of a set of variables and a set of logical 

and quantitative relationships between those variables. It is usually written in 

mathematical forms, so it is also known as the mathematical model.  

Mathematical models are widely used in structural dynamic modelling. They are 

often used at the design stage of a product, during which frequent modifications 
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take place to optimise its performance. For a long time, physical modifications 

on the products were the only choice, and these are made mainly based on 

experience, if not via a pure trial-and-error approach. Before the final product 

can be rolled out of the factory floor, many physical alternations to the product 

and qualification tests have to be done. From the economic point of view, cutting 

down the time and resources spent on hardware modifications and tests can 

largely improve the productivity, which is in fact the driving force behind the 

development of structural modelling techniques in the aerospace and automobile 

industries.  

Structural models also find their potential usage in real-time applications. It is 

envisaged that in future, machines for example aero-engines, will have more 

mechatronic systems incorporated. They are implemented to improve 

monitoring, diagnosis, prognosis and correction capabilities to make machines 

more reliable and durable. The emphasis on the structural models in these 

applications is different from those used in the product design. The structural 

models used in real-time applications need to be, and should remain to be, able 

to represent the structure accurately throughout its life span. Real-time 

applications require model processing to be conducted extremely fast. Any 

response change observed from the measurement at the running condition might 

be an indication of malfunction. The cause is identified and located from the 

model processing, and the outcome is quickly used in decision making as what 

action to be taken. A few European Union funded projects have been carried out 

to push for more development in this field. 

The demand for high-quality structural models and the accompanying processing 

techniques is growing fast. As a summary, the reasons for such a demand are: 

firstly, the product development cycle is getting shorter and shorter because of 

the growing competitiveness in industry, which leads to the need to cut down the 

time on testing and simulation. Secondly, as products get more complex and 

delicate, those physical tests, from which useful information is drawn, can be too 

expensive, so to use more of the analytical model is a cheaper alternative. 

Thirdly, the fast development in computing technology fuels the idea that 

experiments and tests might one day be totally replaced by analytical simulation 

as long as we keep on pushing the boundary and make full use of the computing 
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power we can get. Last but not least, analytical models are increasingly used in 

real-time and more critical applications, in which both accuracy and efficiency 

of the model need to be at the highest standard. 

The demand is clearly there, so is the challenge: how to construct high-quality 

structural models that can be efficiently processed to deliver accurate predictions 

of the dynamic behaviour of complex systems? The following few sections will 

provide some background information and difficulties that need to be overcome. 

1.1.1 Structural Models: Component versus Assembly 

The difference between a component and an assembly is the complexity in their 

constitution. Components tend to have uniformly distributed material properties 

and simple geometries. An assembly is the combination of at least two 

component. The modelling and dynamic response prediction techniques for 

individual structural components have been well developed. Using Finite 

Element (FE) models and various model validation techniques, we can get very 

good component models that produce accurate predictions. However, when a 

similar procedure is extended to a structural assembly, the prediction quality 

deteriorates quickly, especially so when the number of components in the 

assembly increases. 

There are two possibilities for such deterioration. Firstly, the component models 

are not accurate enough; certain properties that do not affect the component 

model hence have not been validated may affect the assembly model. Secondly, 

which is a more likely situation, the connection mechanism between components 

has not been represented sufficiently. It is not fair to claim that mechanical joints 

have all along been neglected in structural modelling. They have indeed been 

studied quite extensively. The majority of studies treat the joints as isolated 

entities. Very detailed joint models are constructed trying to explain complex 

phenomenon at the connecting interface. These models try to provide physical 

insight, but they are too large to be incorporated into the assembly model for 

efficient calculations. Those extensive studies indicate that most of the 

mechanical joints’ behaviour is nonlinear, which complicates the whole situation 

further. 
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1.1.2 Structural Models: Linear versus Nonlinear 

In structural dynamics, most of the models are developed and applied with the 

assumption of linearity. Strictly speaking this is not true for real practical 

structures. Lightly or severely, a system displays nonlinearity in one way or 

another. A proper linearisation process can solve most problems with 

satisfactory accuracy; however, when the extent of the nonlinearity exceeds the 

capacity of a linear description, nonlinear techniques must be used. The problem 

can be solved analytically, which means solving the non-linear differential 

equations that govern the phenomena to get a closed-form solution. It can also be 

solved approximately to yield a result that is much more accurate than the case 

of direct linearisation. The former approach is only applicable when there are 

few variables, or when the problem can be simplified to be describable with a 

few variables. The approximate approach is more efficient, because it can work 

on larger systems and make good use of computing power. 

With the approximation approach, the system differential equations are 

discretised and then processed either in the time domain or the frequency 

domain. Time-domain methods are more demanding for computational power, 

but they can provide solutions for any types of response and tend to be more 

accurate. In contrast, frequency-domain methods can substantially cut down 

computational cost, but are limited for steady-state solutions only. However, 

they might serve our purpose just as well. In both product development and 

many real-time application cases, what matters most is the machine’s 

performance at its normal working condition, i.e. often the steady-state 

condition. It is also desirable to predict the responses at overload or other 

extreme conditions, at which the machine still operates continuously. The 

prediction can be approached with both methods. There are a few frequency-

domain based methods available in the literature, which have shown their 

efficiency with reasonable accuracy on small models, but the application on 

large models that represent more realistic structures is still not available.  

Even though nonlinearity in a structure is an unavoidable fact of life, we should 

still be able to find ways to work around it. Linearisation is one approach. 

Another one, which needs yet more exploration, is to make full use of the fact 

that in most complex structural assemblies, there are only a few noticeably 
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nonlinear elements, or in other words, the nonlinearity is a localised property in 

many practical structural assemblies. Normal nonlinear methods treat the whole 

structure as nonlinear, even if there is only one nonlinear Degree-of-Freedom 

(DOF) out of thousands of linear ones. Hence, it is valuable to look into the 

development of better nonlinear dynamic analysis algorithms, which shall fully 

take the advantage of ‘localised’ nonlinearity, so as to make the calculation more 

efficient. 

1.1.3 Concluding Remarks on the Problem 

Based on the above background information, here is what this thesis wants to 

achieve: 

“To develop and demonstrate a structural modelling strategy that can accurately 

predict the steady-state dynamic behaviour of a complex and realistic machinery 

structural assembly.” 

Realistic machines have the following complexities: flexible components, 

multiple connecting interfaces and local nonlinearities. All these need to be 

addressed in order to achieve the target. 

1.2 Solution Strategy 

A bottom-up process is adopted here as a general approach. It is analogous to a 

product assembly line: small parts are specified in great detail and made to 

agreed standards before being checked individually to make sure of the quality. 

These parts are then joined together to form small sub-assemblies. Each of these 

sub-assemblies is also checked to make sure that the joining mechanism 

functions properly.  Those small sub-assemblies are in turn linked to each other 

until the final complex assembly is formed, which, because of the careful and 

stringent preparation at the fundamental unit level, is expected to be of good 

quality.  

A structural assembly model is made of a collection of component models which 

are connected to each other via various joint mechanisms. Without accurate 

component models, it is not possible to have any meaningful prediction results 

from the final assembly model. So, the first step is to create component models 

with good accuracy. Finite Element Method (FEM) is most often used to 
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construct structural component models. Improved computing power means that 

great detail now can be included in the FE model. The FE model can only be 

considered accurate and useful after it is validated. Model validation is the 

process of demonstrating or attaining the condition that the coefficients in a 

model are sufficiently accurate to enable that model to provide an acceptably 

correct description of the subject structure’s dynamic behaviour [1]. Model 

validation is achieved via model updating, which is the process of correcting the 

numerical values of individual parameters in the mathematical model using 

experimental data. This is a well studied subject, and this thesis will focus more 

on the application side of it.  

The next step focuses on mechanical joint modelling, and how it is best 

represented in the assembly model. Mechanical joints come with many different 

forms of configuration and a detailed study of each can be a daunting task. It is 

also well known that some of the most common types of joint, for example 

friction joints, are notoriously complicated, and even the exact physics of them is 

yet to be understood fully. From the whole assembly point of view, a simplified 

representation is the only feasible way to incorporate joints into an assembly 

model. Simplification does not necessarily lead to erroneous prediction results; 

rather, the predicted results for the whole assembly may be of acceptable quality 

at certain specific operating conditions with limited range of frequency. 

Many joint connections can be considered as linear at normal working conditions. 

Some researchers have shown that joints can actually be modelled in the same 

way as other structural components, in the form of spring-damper or spring-

mass-damper matrices. Direct construction of such matrices for a real assembly 

can be tedious; it is, from the application point of view, much more convenient 

and possibly more accurate to model the joints using FEM. Of course, the 

properties of the joint elements must be validated, preferably against test data. It 

is a more tricky business when a linear description is not enough to describe the 

joint behaviour, e.g. the behaviour at more extreme working conditions. 

Formulae are available for most types of joints, but generalisation is difficult, 

and each case has to be treated individually. Measurements on the joint itself 

must be carried out to derive a specific nonlinear model for the joint. 
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The third step, with individual component and joint models ready, is to construct 

the assembly model. If the joint is considered to be linear and represented with a 

validated FE model, this task can be easily accomplished in any FE software 

package by simply joining all the individual models together. If the joint is 

nonlinear, the calculation will be more complicated and time-consuming. This 

project will focus on nonlinear analysis in the frequency domain, i.e. focusing on 

steady-state solutions. The Harmonic Balance Method has shown its potential in 

dealing with large nonlinear systems. It will be further developed, combining 

with the fact that nonlinearity is a localised property in most practical structures, 

to locate the steady-state solutions more efficiently.  

The final step is to design a rig and conduct tests on it to validate the whole 

modelling process. Theories and methods can be useless if they can not be 

validated against tests, no matter how beautifully they are presented; hence the 

test rig design is considered as important as the theory development. Bearing in 

mind that the modelling strategy is meant for complex practical structures, the 

test rig must contain some key features: complex configuration, close to practical 

structures, prominent and measurable nonlinearity.  In real machines, 

nonlinearity normally occurs at extreme operation or malfunction conditions. 

This is quite difficult to achieve safely in a laboratory environment, so a purpose 

built-in nonlinearity is required. As a result, a simplified aero engine model was 

developed, which consists of the key structural components of a real engine: 

casing, rotor, shaft and bearing supports. In addition, a significant nonlinearity is 

embedded in one of its bearing supports. 

1.3 Summary of the Thesis 

The thesis is arranged in the same way as how this complex problem is tackled. 

Figure 1 - 1 presents a flowchart showing the interrelations between different 

chapters. The arrows indicate how the information flows.  

Chapter 1 presents the problem of structural dynamic modelling of complex 

structures with nonlinearity. Background information is introduced to show the 

importance of tackling such problems. The solution strategy is laid out as a 

guideline for the whole thesis work. 
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Chapter 2 talks about linear structural component and assembly modelling 

techniques. It is very important to get the component model right before we take 

on a more complex assembly model. Different types of model representations, 

model updating methods and structural coupling methods are reviewed.  

Chapter 3 is dedicated to mechanical joints. As the integral parts of the structural 

assembly, mechanical joints are often not represented sufficiently, even though 

they are the prime sources of uncertainties. Different types of mechanical joints 

are reviewed, showing the richness of the nonlinear behaviour that very often we 

do not include in linear structural modelling. 

Chapter 4 shows how steady-state solutions are achieved by both time-domain 

methods and frequency-domain methods for a nonlinear system. One nonlinear 

model is used for demonstration. The special nonlinearity resembles the stiffness 

pattern of a buckled beam. Frequency-domain methods, in particular the 

Harmonic Balance Method, are elaborated in detail. Multiple steady-state 

solutions at one frequency point are observed. The Harmonic Balance Method is 

verified by the time-domain simulation of the same system. 
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Chapter 5 takes in the knowledge from the previous three chapters, and 

introduces an efficient calculation algorithm that makes use of the Frequency 

Response Function (FRF) models of the linear components and the Harmonic 

Balance Method to predict the steady-state response of a complex structure with 

localised nonlinearity. The efficiency of such an algorithm is demonstrated by 

the comparison with a time-domain calculation carried out on the same assembly 

model. 

Chapter 6 is devoted to experiment-related topics. Experiments serve two 

purposes here.  Firstly, they are required to ensure the quality of component 

models and joint models, and this is done through the model validation process. 

Secondly, they are required to verify that the calculation algorithm introduced in 

Chapter 5 produces good prediction results. Different types of dynamic test and 

setup are discussed, emphasising two issues: good experimental practice and 

choosing the right setup according to the specific purpose. In order to 

dynamically measure the nonlinear effects accurately, a LabVIEW-based code 

has been developed to control force input to the structure and to calculate the 

required FRFs under specified input conditions. 

Chapter 7 shows the construction of the test rig that is designed to demonstrate 

and evaluate the proper routines for achieving a good assembly model. 

Individual components are validated and linear joint parameters are identified. 

Both cases show the improvement in the prediction of the dynamic behaviour. 

Finally, a series of nonlinear dynamic tests are carried out on the whole test rig. 

A very close match between the prediction and experiment is reported. 

Chapter 8 draws conclusions from the whole work and indicates the further 

development required. 
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2.1 Introduction 

Most of the structural dynamic analyses are carried out with the assumption of 

linearity in structure’s behaviour, even though nonlinearity is the underlying 

actuality. Such an assumption can be justified on the ground that it produces 

acceptably accurate solutions and at the same time simplifies the model 

processing. Creating good and reliable linear structural models is not a trivial 

task, and this chapter is dedicated to this task with a good look at what has been 

done in the past. 

In this chapter, fundamental structural modelling techniques are discussed, trying 

to lay the foundation for the following more advanced analysis that relates to 

nonlinear structures. The concept of Finite Element Method (FEM), model 

validation and structural coupling are touched upon.  

2.2 Linear Structural Component Modelling 

Analytical modelling of a complex structure is a bottom-up process, in the same 

way as the counterpart physical model being constructed. Individual components 

are first specified with suitable representation and with enough accuracy. They 

are then linked to form the final assembly. It is important to make sure that the 
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analytical models at the component level are correct before trying to model the 

whole assembly. 

In this section, different types of mathematical representation of a structural 

model are presented. Each type has its pros and cons and the choice is pretty 

much depended on the application.  

2.2.1 Spatial Model 

The first option of a structural model is derived from the structure’s most 

tangible physical properties: its mass, elasticity and energy dissipation 

mechanisms. Although the resultant description of the model is somewhat 

abstract, in the form of matrices, it is closely linked to the geometric information 

of the structure. This is where the name Spatial Model originates. In the 

following a few paragraphs, we will show how the system matrices are derived, 

which, though very basic in concept, is the foundation of structural modelling.  

The simplest Spatial Model consists of a single mass, spring and damper that 

form a so-called Single Degree of Freedom (SDOF) model. This model is 

usually inadequate in describing engineering structure with flexibilities. Both 

rigid body motion and deformation of the structure itself are important for a 

better understanding of the performance of the structure under dynamic loading. 

The deformation shape as well as its amplitude can only be described with more 

than one displacement coordinate, which is in the form of a set of discrete points 

along the structure. In principle, these points may be located anywhere, but in 

practice, they should be associated with specific features of the physical 

properties which may be significant and should be distributed accordingly so as 

to provide a good definition of the deflected shape [2]. This results in a Multi-

Degree of Freedom (MDOF) model. 

The MDOF structural model is derived from the equation of motion, which is 

formulated by expressing the equilibrium of the effective forces associated with 

each of its degree of freedom. In linear structural dynamics, four types of force 

are active at any DOF i: externally applied load if , inertial force Iif , damping 

force Dif  and elastic force Sif . The dynamic equilibrium may be expressed as: 

 ( )Ii Di Si if f f f t+ + =  (2.1) 
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When all the DOFs are counted at the same time, forces are represented in vector 

form for the MDOF system as: 

 { } { } { } ( ){ }f f f fI D S t+ + =  (2.2) 

Each of the resistance forces is expressed most conveniently by means of an 

appropriate set of influence coefficients. As shown in equation (2.3), the elastic 

force at DOF i, Sif , is a linear combination of the deformation at all the DOFs 

weighted by the corresponding coefficient ijk , which is called stiffness influence 

coefficient. 
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 (2.3) 

More concisely, the above equation can be expressed in matrix form: 

 { } [ ]{ }f K uS =  (2.4) 

in which [K] is the N N× stiffness matrix, and { }u  is the displacement vector 

representing the deformation shape of the structure. 

Physically, the stiffness coefficients represent the forces developed in the 

structure when a unit displacement corresponding to one DOF is introduced and 

no other nodal displacements are permitted. The system stiffness matrix can be 

derived using this definition. However in practice the Finite Element (FE) 

concept, which will be discussed in more detail in a later section, provides the 

most convenient means for this task. In FEM, the structure is divided into a set 

of discrete elements, which are interconnected at nodal points. The stiffness 

coefficients of a typical element are calculated and the stiffness matrix of the 

whole system can be obtained by adding the element stiffness coefficients with 

consideration of the connectivity at those nodal points. 

Damping is a trickier system property to model, because the physics of it is still 

not fully understood. Normally it is assumed that only viscous-type damping 
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exists in the concerned structure. In the same way as for the elastic forces, the 

damping force at a certain DOF is the linear combination of damping effects at 

all the DOFs, and this is expressed in equation (2.5). 
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 (2.5) 

In a more concise form: 

 { } [ ]{ }f C uD = ɺ  (2.6) 

in which [C] is the N N×  viscous damping matrix. 

The mass matrix is defined in the similar way as shown in equation (2.7) and 

(2.8). 
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 (2.7) 

 { } [ ]{ }f M uI = ɺɺ  (2.8) 

All the off-diagonal items in the above mass matrix are zero if they are derived 

with the assumption that the element mass is concentrated at those nodal points 

and only translational degrees of freedom are used to describe the motion. The 

distribution of the element masses to those nodal points is determined by statics 

principles. The total mass concentrated at any node is the sum of the contribution 

from all the elements attached to the nodal point. The mass matrix created in this 

way is called Lumped Mass Matrix. The diagonal form of the mass matrix  

largely reduces the computation cost, as demonstrated in classical Modal 

Analysis [1]. For a refined and more realistic description of the mass distribution, 

the FE concept can also be applied to the derivation of the mass matrix, in the 
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same way as the stiffness matrix, in which appropriate shape functions are put 

into use.  

Substituting equations (2.4), (2.6) and (2.8) into (2.2), we have the fundamental 

system equation that governs the dynamic behaviour of the modelled structure.  

 [ ]{ } [ ]{ } [ ]{ } { }M u + C u + K u = fɺɺ ɺ  (2.9) 

Mathematically, equation (2.9) represents a coupled system of linear second 

order ordinary differential equations. The matrices [M], [C] and [K] represent 

the Spatial model of the structure. 

2.2.2 Modal Model 

Without any external excitation each structure’s dynamic behaviour is unique 

and can be described by a set of natural frequencies and the corresponding 

vibration mode shapes. Both sets of values can be derived from the calculation 

of the steady-state solution of equation (2.9) when { } { }f 0= . For demonstration 

purposes, the damping matrix [ ]C  is set at [ ]0 . 

It can be assumed that { } { }u U
i te ω= when the structure is vibrating naturally, in 

which{ }U is the 1N × vector of time-independent amplitudes of the response. 

Rearranging equation (2.9): 

 { }2K M U 0i te ωω − =   (2.10) 

The only non-trivial solutions are those which satisfy: 

 2det 0K Mω− =  (2.11) 

The solution of this equation is N values of 2ω , the undamped system’s natural 

frequencies. Substituting each of the natural frequencies back into equation (2.10) 

yields a corresponding set of relative values of response amplitudes { }ψr , the 

so-called mode shape corresponding to that natural frequency [1]. In 

mathematical expression, these two sets of values are represented in matrix form 

as:  
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They are called eigenvalues and eigenvectors respectively, and form the Modal 

model of a structure. 

2.2.3 Response Model 

As the name itself indicates, this type of model describes how a structure 

responds under a given excitation. On the surface, the response depends not only 

on the structure’s inherent properties but also on the amplitude of the imposed 

excitation. However, it is found that for linear structures specifically, the ratio 

between the response and excitation is unique to the structure under study. It can 

also be derived analytically from the system equation (2.9) by substituting 

{ } { }u U
i te ω=  and { } { }f F

i te ω=  into it. Setting [ ] [ ]=C 0  and rearranging the 

equation into: 

 { } { } ( ) { }
1

2U K M F H Fω ω
−

   = − =     (2.13) 

in which ( )H ω    is the so-called Receptance matrix of the system with the size 

of N N× and is a representation of the Response model. Each entry of the 

Receptance matrix is defined as: 

 ( ) j

jk

k

U
H

F
ω

 
=  
 

 (2.14) 

The response jU  is a displacement; it can also be in the form of velocity or 

acceleration. The ratio between the response and the external excitation is known 

as the Frequency Response Function (FRF). In this thesis, ( )H ω    will be 

referred to as the FRF matrix. 

2.2.4 Finite Element Method 

The Finite Element Method (FEM) is a modelling and numerical analysis 

technique for obtaining approximate solutions to a wide variety of engineering 

problems. In the field of structural dynamics, it involves creating a mathematical 
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model of a material or design that is stressed and analysed to assess its dynamic 

properties. It is a well-developed method and is widely used in industry in the 

process of new product design, refinement of existing products, etc. FEM is 

being discussed here because it provides a vigorous mathematical foundation, as 

well as a physical interpretation of the application of the Spatial model. In 

addition, the dynamic analysis of complex structures nowadays relies on the 

FEM to generate the Spatial model for further processing. 

The label Finite Element Method first appeared in a paper on plane elasticity 

problems by Clough [3] in 1960, but the ideas of finite element analysis date 

back much further into 1940s, and were developed independently across 

different scientific communities with different purposes and prospects. In the 

engineering community, this method was originated from physical intuition that 

a continuum structure could be analogised with a truss problem by dividing the 

structure into elements or structural sections interconnected at only a finite 

number of node points [4]. More developments followed, which concentrated on 

finding improved ways to discretise the structure to yield better results [5]. This 

method only took off seriously in the late 1950s when automatic digital 

computation emerged and opened the way to the numerical solution of complex 

problems, which had previously been hindered by the amount of numerical 

calculations involved. Engineers began to recognise the efficacy of the Finite 

Element Method, and it has been receiving widespread acceptance ever since. 

This was further fuelled by the advancement in Personal Computer and the 

introduction of many commercial software packages that are developed based on 

the concept of FEM, notably a few big names: ABAQUS


, MSC/NASTRAN


 

and ANSYS


, which is used in the modelling work in this thesis. 

Regardless of which software package being used, the solution of a continuum 

problem by the Finite Element Method always follows an orderly step-by-step 

process as described in [5]: 

1. Discretise the continuum  

2. Select interpolation equation  

3. Define element properties 

4. Assemble element properties to obtain the system equations 
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5. Impose the boundary conditions 

6. Solve the system equations 

7. Make additional computation if required 

The modern FEM software packages make Finite Element Analysis a relatively 

easy task compared with twenty years ago; however, by no means does this 

imply that the requirement for the user to understand FEM is of any less 

importance. Computer Aided Design (CAD) is now integrated in the FEM 

software package, which allows the analysis of structures with complex 

geometries. The discretisation is accomplished by defining a mesh density or 

mesh size along a line, surface or solid, and the software will automatically fill 

the continuum with elements. The user is responsible for choosing the most 

suitable element type, which governs the interpolation equations to be applied by 

the software, as well as the final system assembly equation that represents the 

structural model. Material properties, boundary and loading conditions, 

numerical algorithms and results presentation format need to be defined before 

engaging the software into computation.  

FEM is today still the dominant method for obtaining approximate solutions of 

many engineering problems, and its development is still a hot topic in both 

research and industry fields. Efforts made in improving iterative solvers and 

error indicators, implementing special-purpose elements and applying meshless 

formations can be found in many commercial software packages [5].  

2.2.5 Remarks on Different Types of Linear Structural Models 

Spatial, Modal and Response models of the same structural component are 

interrelated. It is possible to progress from the Spatial model through to a 

Response model with the application of FEM and solving the constitutional 

equations either in the frequency domain or in the time domain. It is also 

possible to carry out an analysis in the reverse direction – to derive Modal and 

Spatial models from the Response properties, which are normally obtained from 

vibration tests. The interdependence of these three representations of a structural 

component forms the linkage between test and simulation. 

The Modal model is the most concise one among the three in terms of the 

amount of information it carries. It contains only the key information of a 
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structure’s dynamic properties as far as the steady-state solution is concerned. 

Because of this, Modal properties are most often used to compare the likeness of 

the analytical model and experimental model of the same structure. This topic 

will be further explored in the next section.  

2.3 Model Validation 

The purpose of creating analytical models is economically driven. It is meant to 

reduce the design cycle time, and cut down the capital spending on fabrication 

and testing of prototypes. However, if the analytical model has not been 

validated, there will be no assurance to confirm that it can reliably represent the 

real structure and be used in further design stages. From the structural dynamics 

point of view, the validated analytical model should be able to predict the 

dynamic behaviour of the structure at the experiment condition. It should also be 

able to predict, with certain accuracy, the dynamic properties of the structure in 

situations different to those in which the experiment was undertaken [6]. To 

achieve this, the first step is to make a direct and objective comparison of 

specific dynamic properties, measured versus predicted. This is followed by 

making adjustments or modifications to one set of results, normally the predicted 

one, to bring them closer to each other. When this is achieved, the analytical 

model can be said to have been validated an is fit to be used for further analysis 

[7].  

Up to this point, we can define model validation as a process of determining and 

attaining the ‘correct’ parameters of an analytical model so that it can provide an 

acceptably correct description of the real structure’s dynamic behaviour. It is a 

process that should be performed at every stage of the modelling of a complex 

structure. It should start from the component level, and this is the reason for it 

being discussed here. 

2.3.1 Model Correlation 

The simulation results from the analytical model need to be compared with 

experimental data of the same structure to assess its suitability for further 

process. The discrepancies between these two sets of data may be quantified and 

used as a reference to modify the analytical model. The whole business about 
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assessing the likeness between the analytical and experimental models of the 

same structure is referred to as model correlation.  

As far as the dynamic properties are concerned, natural frequencies, mode 

shapes and response properties are used for comparison. 

2.3.1.1 Comparison of natural frequencies 

The most obvious comparison to make is the measured versus the predicted 

natural frequencies. It is not a process as straightforward as it seems, because in 

many cases it is not correct to compare directly the modes that are identified in 

experiment and prediction in the same sequential order. The reasons are: firstly, 

there are modes that are only registered in either experiment or prediction; 

secondly, there are modes which have very close natural frequencies though they 

have totally different vibration patterns. Therefore, it is essential to identify 

associated mode pairs before comparing the corresponding natural frequencies. 

The association between experimental and predicted modes is based on the 

degree of similarity of the vibration patterns of the compared mode pairs.  

The result of the comparison is represented in the form of Natural Frequency 

Difference (NFD), which is normally taken percentage-wise and used as a 

reference for model updating. 

2.3.1.2 Comparison of mode shapes 

It is stated in the previous section that comparing the natural frequencies alone is 

not enough, unless of course the structure is very simple and all the modes are 

well separated. Otherwise we need to perform a comparison of the mode shapes 

that are derived from experiment and prediction. Mode shapes describe the 

relative position of selected points on a structure for a given vibration mode. 

Each vibration mode has its unique mode shape, and if the structure is linear the 

mass normalised mode shapes are supposed to be orthogonal to each other. This 

leads to the concept of Modal Assurance Criterion (MAC), which quantifies the 

likeness of a pair of mode shapes. It is defined as: 
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in which { }ψ X and { }ψ A  are the mode shapes derived from the experiment and 

analytical models, respectively. The same equation can be expressed more 

concisely in the vector operation form: 
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It is found that in general a value of MAC in excess of 0.9 should be attained for 

well-correlated modes while a value of less than 0.1 indicates uncorrelated 

modes.  

2.3.1.3 Comparison of responses 

Ideally, comparing the time histories of the response makes the most sense, 

because the raw data from an experiment is presented in time domain, and 

fundamentally the analytical model is meant to predict the response at any point 

of time under any sort of excitation. However, it is actually a very difficult task 

to accomplish, mainly because calculation in time domain is very time 

consuming, even for a moderate size structural model. 

The Frequency Response Function (FRF), normally the amplitude of it at every 

frequency point, is another form of response data that can be used for 

comparison. Calculation of FRFs is not a problem for analytical models of a 

linear structure, because the symmetric property of the system matrices heavily 

cuts down the calculation time. On the experimental side, time-domain data can 

be converted into the frequency domain and form the corresponding FRFs, but 

depending on the types of experiment conducted, FRFs may not be of perfect 

quality over the entire frequency range. For example, in the popular impact test, 

signal-to-noise ratios tend to be poor, and this will affect more on the FRFs at 

non-resonant frequencies. FRF comparisons in those regions showing big 

difference will not necessarily be an indication of a poor match between 
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analytical and experiment models. Signal-to-noise ratios can be improved if 

other types of experiment are carried out, e.g. sine sweep test etc. Another 

difficulty in FRF comparison is that FRFs are very sensitive to geometric 

information, more specifically, to the exact location of excitation and response. 

It is found that two FRFs relating to two response points that are very close to 

each other on the same structure can be very different [7].  

In nonlinear structural modelling, FRFs can be the only feasible choice for 

comparison to assess the dynamic properties. As we shall see in future chapters 

that even for a weak nonlinearity, the FRFs are distorted considerably, while in 

the time domain, the distortion may be hard to notice or in any way deemed to be 

meaningful.  

2.3.2 Model Updating 

After the model correlation, if the discrepancies are small and within the error 

margin due to the limitations in the construction of analytical model and 

experiments conducted on the physical structure, the analytical model can be 

passed as suitable for further processing, e.g. joining to other analytical models 

to form an assembly. Otherwise, some adjustment has to be made in order to 

bring the analytical model closer to the experimental one. This process is called 

model updating. This subject has become a very extensive one, with already one 

textbook [8] and several hundred papers devoted to its details [9]. Some of the 

concepts and methods have been well developed and applied successfully in 

many cases. This section is more meant to show the importance of model 

updating, and how it is employed in the process of achieving good assembly 

model in the end. 

Broadly speaking, there are two types of model updating methods. The first one 

is called the Direct Matrix Method, in which the individual elements of the 

system matrices M, C and K are adjusted directly according to the comparison 

between the test data and analytical model prediction. This type of method has 

the advantage of being computationally straightforward and can be very efficient 

in matching closely the dynamic properties. However, physical interpretations 

can hardly be drawn from the direct matrices adjustment. The other type of 

method, generally called Indirect Method, is where the physical properties of the 
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model are adjusted instead. The physical properties can be material-related, e.g. 

density and Young’s modulus, or geometry-related. Change of these properties 

will indirectly change the system matrices, so is the prediction result. This type 

of method gives more physical sense to the analytical models that need to be 

updated.  

Throughout these years there are many algorithms proposed to implement the 

concept of model updating. Very detailed surveys can be found in the following 

references [6, 10, 11]. One of the most popular methods is summarised here, 

which is also applied in this thesis for updating component models. 

2.3.2.1 Inverse eigensensitivity method 

This method is one type of the Indirect Method approach. Its calculation is based 

on the initial dynamic properties of the model and the first order sensitivity 

function of those properties. The fully-fledged mathematical derivation is very 

lengthy. A simplified version, which is sufficient for updating simple component 

models, is presented here.  

This method attempts to minimise the discrepancy between corresponding pairs 

of natural frequencies, also known as eigenvalues, from the experiment and 

analytical model prediction. The following penalty function is normally used, 

assuming only one parameter p is updated: 

 ( ) ( )( )
2

1

( )
m

A Xi i
i

J p ω ω
=

= −∑  (2.17) 

where ( )A i
ω  and ( )X i

ω  are the i
th

 corresponding analytical and experimental 

eigenvalues, while ( )J p  is a function of updating parameter p. Using Taylor 

series to expand the above equation and truncate those items of second order and 

above, we will have: 
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where, p0 is the initial value of the updating parameter, and δp is the increment 

of the updating parameter, which will be decided during the updating process. A 
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minimum value of J can be achieved if we partial-differentiate the above 

equation with respect to δp and set the new equation equal to 0: 
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Further simplifying the above equation, we will have: 
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Considering all the mode pairs we can write the above equation in matrix form: 

 [ ]{ } { }S p Rω ωδ =  (2.21) 

In which [ ]Sω  is called the sensitivity matrix of the eigenvalues with respect to 

the updating parameter. { } { } { }R Ω ΩX Aω = −  is the residual vector between the 

experiment eigenvalues and the predicted ones. To derive the unknown { }pδ , 

the sensitivity matrix needs to be inverted. This is where the name for this kind 

of methods is derived. Eigenvalues are usually non-linear functions with respect 

to almost all kinds of updating parameter [6]; hence equation (2.21) can only be 

solved iteratively.  

2.3.3 Remarks on Model Validation 

Model validation is an extensive topic and still in the course of development. 

This section presents the philosophical background of this topic and is meant to 

raise the awareness that model validation is an essential part of structural 

dynamic modelling, even though it may seem tedious and in certain cases rather 

additional to an already adequate model. As the Finite Element Method, 

computing power and operator’s modelling skills get improved continuously, we 

can now sometimes make an analytical model that matches the experiment close 

enough to achieve the required accuracy in prediction without any adjustment, 

but at what kind of confidence level can we safely take in an analytical model 

without any experimental validation? There have not been any rules that can 

reliably answer this question. Model validation is still the safest and yet 

necessary step in every stage of structural dynamic modelling. 
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Model validation must start at the component level. The argument is always the 

same: without accurate component models, we will not feel confident in the final 

assembly model. A case study of component model validation will be shown in 

Chapter Seven, in which a cylindrical casing model has been improved by 

applying Inverse Eigensesitivity method upon the experimental result.  

Last but not least, a meaningful and successful model validation relies on good 

experiment practice. This topic will be touched upon in Chapter Six. 

2.4 Linear Structural Coupling Techniques 

After the component models have been properly validated, the next step is to 

join them together to form an assembly, and this falls into another large topic in 

structural dynamics: structural coupling. It is also sometimes known as 

substructure analysis. This branch of structural dynamic analysis originated 

during the time when computing power was still limited and the demand for 

modelling of more complex structure was growing. It was known that for an N 

degree-of-freedom system, the CPU effort for an eigensolution is approximately 

proportional to N
3
. Therefore if the system is subdivided into two equal 

subsystems the solution time may be expected to be reduced by a factor of 4 [12]. 

Therefore, lots of effort was devoted to developing new techniques to take 

advantage of such properties to improve the computation efficiency. 

Besides time saving, there are other advantages that attributes to the fast 

development in this field. Firstly, the problem of modelling a complex structure 

can be greatly simplified by dividing the structure into substructures where each 

substructure can be better represented by a smaller, more accurate and refined 

mathematical model [13]. Secondly, with proper coupling techniques, it is 

possible to couple models from different sources, for example to couple an 

analytical model with experiment model. In today’s product development field, 

complex machines are finely dissected into small segments and each are studied 

in detail. Modifications tend to be at the very local level. With suitable coupling 

techniques, the integration between different parts can be operated more 

smoothly and economically. 

Structural coupling is also closely linked to model reduction, a topic in structural 

dynamics that concentrates on reducing the complexity of the problem definition 
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while preserving the essential dynamic behaviour. It may be seen as part of the 

structural coupling process, because in some of the coupling techniques, the size 

of the substructure is first reduced before they are joined to form the final 

assembly. How to reduce the size, how to keep the fidelity etc. are the questions 

to answer in the area of model reduction. 

2.4.1 Spatial Coupling 

This method is mainly used in theoretical analysis, in which physical spatially-

distributed properties of the components are required as the inputs. FE software 

packages are best for this task. A simple demonstration of this method is shown 

in the following, as we are trying to get the system matrix of an assembled 

structure with components A and B. The corresponding mass and stiffness 

matrices are of the order NA and NB respectively, and each is partitioned 

according to the selected interior and connection DOFs, which are described 

with the subscription i and c respectively. The equilibrium equation for 

component A and B, with damping matrices omitted for clarity, are expressed as: 
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The compatibility and equilibrium equations at the interface of A and B are : 

 { } { } { } { } { } { }   and   f f f u u 0A c B c c A c B c= − = − =  (2.24) 

The overall system equation can then be derived directly with the total number 

of DOF being C A B cN N N n= + − , where cn  is the connecting DOFs. 
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2.4.2 FRF Coupling 

There are different formulations for the FRF Coupling method. The basic one 

makes use of the component models derived directly from FRF data. 
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With the application of the same boundary conditions as in equation (2.24), the 

whole system FRF matrix is represented as: 
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in which ( ) ( )
1

Z Hω ω
−

   =    . 

The main advantage of FRF Coupling method is that it can use the component 

Response models derived from experiments directly. Within the frequency range 

of interest, the input and output relations are truly represented by the FRF 

matrices. However, as shown in equation (2.29), three matrix inverses are 

required before the derivation of the system FRF matrix, which, on one hand, 

requires excessive computation time, and on the other hand, matrices are easily 

ill-conditioned at the region of natural frequencies, which results in errors after 

inversion. This problem is more serious for lightly-damped structures. An 

alternative FRF Coupling method introduced by Jetmundsen et. al. [14] reduces 

the number of matrix inversions at each frequency point from three to one. In 

addition, the size of the matrices to be inversed is restricted to the connecting 

DOFs. The resultant system FRF matrix is expressed as the following: 
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2.4.3 Modal Coupling 

Modal coupling methods are also called Component Mode Synthesis (CMS). 

The first CMS method was proposed by Hurty [15]. Depending on the boundary 

conditions applied to the substructure interfaces, the CMS methods can be 

classified into four groups: fixed interface methods; free interface methods; 

hybrid interface methods and loaded interface methods. Reviews of these 

methods can be found in [16] and [17]. The formulation of fixed interface 

method is summarised here. The dynamic equation at the component level is: 
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It is assumed that the connecting interface is fixed and there is no force applied 

to all the internal DOFs, i.e. { } { }u 0c = and { } { }f 0i = . The corresponding 

equation of motion becomes: 

 [ ]{ } [ ]{ } { }M u K u 0ii i ii i+ =ɺɺ  (2.32) 

This can be solved to deduce eigenvalues [ ]iΩ  and eigenvectors [ ]iΨ of this 

fixed interface structure. The internal DOFs can be represented by the linear 

combination of the known fixed interface modes as: 

 { } [ ]{ }i i i=u Ψ p  (2.33) 

The displacement of internal DOFs also has the contribution from the connection 

DOFs, boundary modes or restrained modes as they are normally called. In this 

case, the relationship is described by Guyan reduction [18]. Hence, a 

transformation matrix can now be constructed, which is commonly known as 

Craig-Bampton method: 
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where ic

∗  Ψ  is the Guyan transformation matrix and it is defined as: 

 [ ] [ ]1

ic ii ic

−∗  = − Ψ K K  (2.35) 
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It is common, especially for experimentally derived models where there are only 

k number of modes available, that the above equation still can be used to count 

for all the physical DOFs: 
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Substitute equation (2.36) into (2.31) and pre-multiply [ ] 1
Tk

−
, with some tedious 

but straightforward mathematical transformation, we can finally get the 

combined system equation as the following: 
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The above method can further be improved by including other types of modes, 

e.g. attachment modes, rigid body modes [19] and improved boundary modes 

[20] etc. to improve the accuracy. 

2.4.4 Practical Consideration in Applications 

The two prime considerations that drive the development of structural coupling 

techniques are computational efficiency and prediction accuracy. It is always a 

trade-off situation between these two objectives. In order to increase 

computational speed, the complexity of the problem must be reduced, which 

means some ‘non-important’ information, for example some DOFs and/or 

vibration data at high frequencies which are not relevant, must be sacrificed in 

order to reduce the amount of information that needs to be processed. The 

consequence is a reduced quality of the prediction results: less information and 

less accuracy. As far as the outcome is concerned, if there is enough 

computational power, full size modelling is always preferred. 

The abovementioned structural coupling techniques do not necessarily require 

the component size to be reduced before they are joined. It is acceptable to keep 

the component model intact and to use the same interface constraints and 

equations for the coupling. This, however, still will not guarantee a good quality 

assembly model, because a key part is not represented sufficiently here: the joint. 
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It has generally been considered as rigid in those formulations. There are 

attempts being made to consider joints as elastic media [21], and in fact it is 

treated in the same way as the other structural components, being modelled as an 

individual entity. 

The Finite Element Method is by far the most common way to construct an 

analytical structural model, so it is natural to use it to construct the joint model 

also. Actually in a rather isolated way FEM has already been used in studying 

the behaviour of various types of joints: bolted, welded, bonded etc. [22, 23], 

though all the studies concentrated on their static behaviour only. A joint is  

quite a complicated mechanism as will be shown in the next chapter. Thousands 

of DOFs may be need to model a single joint in order to acquire its nonlinear 

micro and macro stick-slip behaviour, for example. It is of course too much of a 

burden to try to incorporate this kind of massive joint model into the assembly 

model in studying the dynamic behaviour. 

If, however, the joint can be assumed to be linear, it can be modelled as a simple 

layer of finite elements between the connected components. The element 

material properties can be adjusted to reflect the joint’s correct flexibility and 

this can be achieved by carrying out a model updating exercise on the joint FE 

model only. In Chapter Seven, a linear structural coupling example is presented 

with experimental validation. The bolted joints are represented by a layer of FE 

elements. Their properties are updated via experiment.  

The FE joint model is limited to linear case if the eigensolution or steady-state 

response is of the interest, because any nonlinearity in the FE definition has to be 

discarded in order to take the advantage of symmetric property in the system 

matrices when calculating the eigensolutions. If the nonlinearity cannot be 

neglected, some special algorithms must be used to derive the steady state 

solution in order to avoid the time-consuming time-domain calculation. 

2.5 Concluding Remarks 

This chapter is effectively an overview of a field that has already been well 

developed. It might seem to be basic, but it is crucial to get the fundamentals 

right before we embark on more complicated problems. The linear assumption is 

still largely used and actually it is acceptable in most applications. Methods and 
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techniques to perfect linear component models are crucial in achieving good 

final assembly model. Mechanical joints, even though their behaviour is better 

described as nonlinear, can often still be considered as linear at normal operation 

conditions, and linear coupling methods can be used efficiently to produce 

acceptable results. 

Even though the theories have been well laid out, the actual application can be 

tricky and depends a lot on the thorough understanding of the subject.  
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3.1 Introduction 

The modern mechanical system design theory [24] states that an assembly 

represents an idea or concept greater than the sum of the individual parts. This 

indicates the direction for modern machinery development: innovative 

combinations of ever more number of specialised individual parts. To achieve so, 

various types of connection mechanisms are needed to properly link the 

individual parts into a functional assembly. From the structural modelling point 

of view, these jointed connections can be in different physical forms so long as 

the kinetic and kinematic constrains are considered properly, which is of course 

the difficult part of joint modelling.  

Joints are normally treated separately from the remaining structural components. 

One of the reasons is that it is impossible to have a generalised joint model. This 

is in contrast to the structural components that can all be modelled by defining 

the mass, stiffness and damping matrices from the design data with FEM, or 

frequency response data from experiment. This has been well developed, and can 

be applied to all kinds of components, regardless of size and geometric 

complexity. In order to be incorporated into a whole assembly mathematical 

model, the joints need to be described with the same type of kinetic constraints 
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as those in the FE description of the structural component models. The physics 

of such constraints is rather different, and in some cases it is difficult to come up 

with a mathematical description without significant simplification. One typical 

example is a friction joint, the model of which is still more or less derived 

approximately from the experiment. 

Joints are major sources of nonlinearity in an assembly. This is also part of the 

reason why joints should be treated separately from other components. The 

natural way of tackling this problem is to work from linear to non-linear in joint 

description. If linear joint models and normal structural coupling techniques can 

solve the problem within the required accuracy, there is no need to go for 

nonlinear methods. It is, however, necessary to deploy nonlinear models and 

calculation methods when the experimental results show discrepancies with 

simulations which can not be improved by merely enhancing the linear models 

and methods. 

The concept of nonlinearity will be explored in detail in the next chapter. Briefly 

speaking, the fundamental difference between a linear system and a nonlinear 

one is that the latter’s behaviour is not simply the sum of its parts or their 

multiples, as it is in a linear system. In mathematical terms, the rules of 

superposition and proportionality are true to linear systems but not to nonlinear 

ones. This difference is at the root of all the difficulties involved in nonlinear 

problems. 

In the realm of nonlinear joint modelling, two issues are of particular concern. 

Firstly, extra care should be taken when a joint must be considered to be 

nonlinear. This is, of course, not to undermine the importance of linear joint 

modelling. The fact is that nonlinear models need more parameters to describe 

the behaviour sufficiently. In a linear system, less joint parameters are required 

and they can be easily adjusted based on the discrepancies between the 

experiment and simulation data. The same is difficult to do in a nonlinear system 

because of the large number of unknown parameters. Secondly, a nonlinear joint 

model must be presented in a form that is ready to be integrated with the 

remaining structural component models. This normally means a simplification of 

the joint model, even though in order to capture all the nonlinear phenomenon, 
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more parameters and conditions should be included in the description. To 

summarise, nonlinear joint models should be representative and concise.  

There are two ways to obtain a nonlinear joint model. One is from the study of 

the fundamental physics of the joint, and the other is from expriment. The latter 

is known in the engineering world as ‘parameter identification’, which focuses 

on the reconstruction of the unknown governing equations of the joint. Both 

approaches have been carried out rather independently by physicists and 

engineers. It is nowadays believed that hybrid techniques that utilise both 

analytical and experimental data produce more reliable and accurate joint models 

[13]. 

This chapter focuses on a few representative nonlinear joint models which are 

commonly encountered in mechanical engineering, ranging from friction-

induced nonlinearity to geometric nonlinearity. The main purpose is to raise 

awareness of the importance of joint modelling, and the complicated nature of it. 

Before embarking on the various detailed models, a list of different joint types is 

presented. 

3.1.1 Joint Types 

According to Maloney et al. [25], from the joint’s effect on structural response 

point of view, joints can be broadly categorized into non-separable and separable 

joints. The former tends to be stronger, stiffer, more consistent and more 

predictable. Examples include welded joints [26, 27] and soldered joints [28]. 

This type of joint is mostly modelled with Finite Elements, and the concerns in 

research are more on their long-term reliability than on simulation of normal 

working conditions. Separable joints are often more difficult to predict and 

sensitive to many parameters that cannot readily be specified or controlled. 

There is a long list of separable joints that are presented in different physical 

forms: bolted joints, rivets, pin joints, thread connections, expansion joints, etc. 

[29-31]. 

The difficulties in modelling these separable joints are mainly caused by the 

existence of friction between the two joining parts. Friction provides resistance 

force against the relative movement and in fact this is how the joints bind the 

whole assembly together. Friction phenomena have been studied for centuries, 
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and the primary cause is yet to be fully understood by physicists.  Mechanical 

engineers are keen on developing representative models from experiments, 

which should be accurate enough to represent the joint in its specific operating 

conditions. The friction joints will be discussed in detail in the following section.  

It is also common to define some secondary components of an assembly, like 

angles, plates, gussets, gaskets and bearings as joints. They can indeed be 

modelled together with the other components, but depending on the computation 

capacity available and accuracy requirement for the whole assembly, these 

secondary components can be represented by joint models. A ball bearing in 

rotating machinery, for instance, connecting the rotor and stator, can be 

modelled as an individual structural component, containing details of sub-

assemblies like balls, inner race, outer race etc. However, it can also be modelled 

as a simple mass-spring model connecting the rotor and stator, provided this 

simplification does not deteriorate the simulation quality. 

3.2 Nonlinear Joint Models 

3.2.1 Friction Models 

Friction provides resistance to relative motion between two contacting bodies. 

This phenomenon is easy to perceive but difficult to model, and it is indeed not 

yet completely understood of its fundamental causes even today. Many types of 

joint can be stripped down to frictional elements. Some notable examples are 

bolted joints, fasteners, friction dampers and bearings etc. Friction has been 

studied extensively in classical mechanics, and at various times, numerous 

friction models, both phenomenological and empirical, have been proposed to 

provide predictive capabilities. One of the aims is to simplify the description of 

friction, with as few parameters as possible, in order to incorporate it easily with 

the rest of the structure in modelling the whole system; while at the same time 

the friction model itself is sufficient to replicate what is observed from 

experiment, even if it may lack physical insight in some cases. 

In this section, the fundamentals about friction are first reviewed, which are 

followed by a few representative friction models most often seen in literature. 

Some of the main literature reviews on this subject can be referred to papers [32-

34]. 
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3.2.1.1 Friction Phenomenon 

Experience with friction is as old as human history, but it was not until the 

Renaissance period when Leonardo Da Vinci first conducted controlled 

experiment to observe and quantify friction, that the phenomenon started 

attracting attentions of generations of scientists and engineers till today. In his 

famous static friction experiment with a block on horizontal and inclined planes, 

Da Vinci concluded that the force needed to start one object sliding over another 

is proportional to the force that presses the two objects together, but independent 

of the area of contact. This was later found out to be a not-so-accurate 

description, because the friction force does depend on the area of contact from 

the microscopic point of view. Nevertheless this is the first time the friction 

phenomenon was characterised.  

From a structural dynamics point of view, we are more interested in the effect of 

friction on the whole assembly dynamic behaviour and therefore, the observable 

friction phenomenon, or macroscopic friction, are of concern and need to be 

quantified. From Da Vinci, macroscopic friction laws have since been enriched 

by Amontons, Euler, Coulomb and in more recent times notably by  Bowden and 

Tabor [35]. Some of the typical frictional phenomena are summarised below: 

� Static friction and break-away force. Static friction is the friction when 

sticking. The friction force opposes the direction of motion when the sliding 

velocity is zero, and it is equal to the externally applied tangential force until 

a maximum is reached.  The break-away force is the tangential force required 

to initiate relative motion of two contacting bodies. It was found that the 

break-away force depends not only on the relative displacement between two 

contact surfaces, but also on the increment rate of the external force. 

� Coulomb friction.  For most engineering materials, the friction force 

between the two sliding surfaces is constant as long as relative motion 

continues. The force level only depends on the materials of the two bodies 

and the pressing force. This phenomenon was first documented by Amontons 

(1699) and Coulomb (1785). 

� Viscous friction. This is the friction phenomenon observed when lubricant is 

used between two contacting surfaces. It was conclude by Reynolds (1866) 
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that the friction force caused by the viscosity of lubricants is proportional to 

the relative velocity of the two sliding surfaces. 

� Micro-slip and Macro-slip. When two surfaces in contact slide against each 

other, localised deformation and slippage occurs before observable slide 

takes place. The stage when there is no relative motion between the two 

contacting surfaces is called micro-slip, and is widely observed in friction 

damping problems. Once the external force parallel to the interface surface 

exceeds the breakaway force level, relative motion will occur. This is called 

macro-slip. In some engineering applications, e.g. loose bolt joints under 

cyclic excitation, micro-slip and macro-slip happen repeatedly. This is 

known as stick-slip cycle. It is a major nonlinear source in assembly 

structures with bolted joints.  

3.2.1.2 Friction Mechanisms 

We are more interested here in the manifestation of friction, and a mathematical 

representation of it; nevertheless, it is also interesting and useful to know the 

underlying physical properties. As we know friction is the tangential reaction 

force between two surfaces in contact. Physically, these reaction forces are the 

result of many different mechanisms which depend on contact geometry and 

topology, properties of the bulk and surface materials of the bodies, 

displacement and relative velocity of the bodies and the presence of lubrication 

[36]. Some of the mechanisms are [36, 37]: 

� In dry sliding contacts between flat surfaces, the elastic and plastic 

deformation of microscopic asperities in contact causes the resistance force, 

i.e. the friction force. It is accepted as a general rule that for each asperity 

contact, the tangential deformation is elastic until the applied shear pressure 

exceeds the shear strength of the surface material, when it becomes plastic. 

The break-away of the asperities finally leads to slip when the externally 

applied tangential force is large enough. 

� In dry rolling contact, the frictional force is the result of a non-symmetric 

pressure distribution in the contact, and this uneven distribution is caused by 

elastic hysteresis in either of the contact bodies. 
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� When lubricants are added to the contact, the friction force is affected by the 

viscous property of the lubricant, the relative velocity of contacting surfaces, 

pressure and thickness of lubricant film, etc. Depending on the different 

combinations of the above physical properties, different mechanisms 

dominate in the inception of friction force. For example, at high velocity and 

low pressure, the friction is determined by the shear force built up in the fluid 

layer due to the hydrodynamic effects. 

� Contamination also needs to be considered sometimes. The presence of small 

particles between the contact surfaces give rise to additional forces that 

strongly depend on the size and material properties of the contaminations. 

There are many more different mechanisms, in addition to the above, cause 

friction. To construct a general friction model from physical principles is simply 

not possible [36]. Approximate models exist for certain configurations. These 

models were constructed based on the observations of friction phenomena. 

3.2.1.3 Some Representative Friction Models 

Though surface mechanics is useful knowledge, in the context of structural 

mechanics, however, such a detailed knowledge of surface mechanics is not 

always necessary. All we are looking for are the equivalent spring and damping 

forces displayed by a friction joint. Some of the mostly referred models in the 

literature are presented below. 

Coulomb Friction Model  

This is by far the most common model used to describe dry contact friction. It is 

widely used because of its simplicity and good approximation from the 

macroscopic point of view. The mathematical expression between the friction 

force f  and relative velocity v can be written as: 

 

           0

              0

         0

N v

f F v

N v

µ

µ

>


= =
− <

 (3.1) 

in which:  

F  is the external force; 

µ  is the dynamic friction coefficient; 
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N  is the normal clamping force; 

Graphically, it is represented in Figure 3 - 1. 

 

Figure 3 - 1 The Coulomb friction model 

The above classical friction models can not capture the behaviour when there is 

relative velocity between the contacting surfaces. What is more, it neglects the 

small displacements that occur at the contacting interface during stiction. 

Therefore, as far as structural dynamics is concerned, a friction model involving 

dynamics is necessary for accurate description of the friction phenomena [38]. 

The following few models take care of the dynamic properties of the frictional 

joints. 

1-D Jenkins Model 

It is found from experiment that when the friction joint is under dynamic 

excitation, the joint response is similar to the elasto-plastic response of metals 

[34]. One of the simplest models to describe such a material property is the 

Jenkins spring slider element, which has also been successfully implemented in 

friction joint modelling. 

Each Jenkins model consists of a spring and a Coulomb slider element, which 

has two possible arrangements, in series or in parallel as shown in Figure 3 - 2(a) 

and (b), respectively. In the case of Figure 3 - 2(a), the Coulomb element is 

connected in series with the spring element. Under a cyclic external excitation, 

the Coulomb element is firstly in its sticking state at the beginning of each cycle, 

which provides a resistive force equal and opposite to the input force to the 

µN 

-µN 
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element, while the spring element provides the displacement representing micro-

slip. When the friction capacity of the Coulomb element is passed, the sliding 

state starts. Once in the sliding state the Coulomb element provides constant 

resistance of magnitude equal to the coefficient of friction multiplied by the 

normal force. The typical force-displacement representation of this type of 

Jenkins model is shown in Figure 3 - 3. In the case of parallel connection of 

Coulomb element and spring element, as shown in Figure 3 - 2(b), the 

corresponding characteristic curve is shown in Figure 3 - 4.  

 

(a) In series     (b) In parallel 

Figure 3 - 2 Symbolic representation of Jenkins model 

 
Figure 3 - 3 Characteristic curve of a Jenkins model with elements in series 

 
Figure 3 - 4 Characteristic curve of a Jenkins model with elements in parallel 

F 

u 

F 

u 
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The characteristic curve form a hysteresis loop which exhibits the energy 

dissipation property of a friction joint, a phenomenon observed from experiment 

and practical applications [39]. However, when only one Jenkins element is used 

to model the joint, the friction model displays bi-linear properties, indicating 

abrupt transition from stick to slip, which is not exactly the same as what is 

observed in reality, in which the transition is smooth. One way to solve this 

problem is to model the friction joint using a collection of Jenkins models. One 

of the most prominent developments along this line is Iwan’s model [40, 41]. 

Iwan’s model consists of several Jenkins elements connected in parallel. Each 

Jenkins element has the same stiffness, k , while the breaking away force of each 

Coulomb element is different, the arrangement of which is governed by a certain 

probabilistic distribution function ( )fρ , depending on the specific case under 

study. By carefully choosing k  and ( )fρ , the resultant Iwan’s model can 

match an actual measurement very well. 

Valanis Model 

 This model was first proposed by Gaul and Lenz [42], who likened the force-

displacement characteristics of a dynamically excited lap-joint to Valanis model 

of plasticity. The Valanis model in materials engineering shows the energy 

dissipation during the loading-unloading cycle, and the isotropic hardening 

effect, which is manifested as the proportionality between the increment in stress 

and the increment of strain after certain critical load point is passed. This is 

comparable to the transition between micro-slip and macro-slip observed in 

frictional joints. The governing equation is expressed in first order differential 

equation: 
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 (3.2) 

The stiffness modulus of the stick condition is denoted by 0E  while the tangent 

modulus tE  describes the slope of slip motion. The parameter κ  controls the 

influence of micro-slip. A re-plot from Gaul’s paper [42] is show in Figure 3 - 5. 
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Figure 3 - 5 Characteristic curve of a typical Valanis model 

The advantage of such a model is that the parameters needed to define the joint 

are far fewer than Iwan’s model, and once all of them are derived from joint 

identification, the model can be readily integrated with FE models of the main 

bodies. However, the Vanalis model offers little physical interpretation of the 

friction phenomenon.  

The LuGre Friction Model 

This is a model with more physical insight. It was first proposed by Canudas De 

Wit et al. [38] to include the friction phenomenon in a control system. It is 

reckoned that the two contacting surfaces are very irregular at the microscopic 

level and the actual contacts are at a number of asperities, which are in the form 

of elastic bristles. As the external force increases, the elastic bristles deflect, and 

have similar effect as deformed springs. A schematic representation of such an 

interpretation is shown in Figure 3 - 6. For simplicity, the bristles on the low part 

are shown as rigid. 

 

Figure 3 - 6 LuGre model - friction interface represented as bristle contacts 

Once the deflection limits are reached, the bristles will restore to their normal 

unstressed state immediately, which is manifested as slip. Due to the highly 



Chapter 3          Nonlinear Joint Modelling 

 56 

irregular distribution of the bristles, it is more economical to describe their 

behaviour in an average sense. The resultant governing equation is: 

 ( ) ( ) ( ) ( )
2

sgn sgns

u
v

C S CF u F u F F e u uσ
 − 
 = + − +
ɺ

ɺ ɺ ɺ ɺ  (3.3) 

In which, CF  and SF  are the Coulomb friction level and Stiction force, 

respectively; sv  is the Stribeck velocity
1
 and σ  counts for the viscous effect. 

3.2.1.4 Concluding Remarks on Friction Joint Models 

This is not a complete review of friction joint models; rather, it is meant to show 

that friction is a very complicated physical issue, and that there is no single 

representative and conclusive enough model available. The choice of the best 

model to be used in any given case depends on many factors like operating 

conditions, accuracy requirement, calculation algorithm restrictions etc.  

The Finite Element Method can be used to model linear joints. This method is 

straightforward and indeed preferred because the model is ready to be integrated 

with the remaining of the finite element structural component models. It is 

possible to extend this method into the nonlinear realm by meshing the joint 

regions finely enough to capture any relevant micromechanics. However, it 

proves to be impractical for large-scale structural systems because of the 

prohibitively small time steps required in calculation [39]. 

3.2.2 Geometric Nonlinear Models 

This type of nonlinearity arises from the joints’ geometric configurations. In 

some cases, joints are not much different from other structural components, other 

than the fact that the joints are located at critical areas, at which good flexibility 

and strength are needed. While still within the material elastic zone, the 

deformation of the joint material is so large that the assumption of linear stress-

strain relationship is not valid any more. Geometric discontinuity is another 

source of nonlinearity. The load path across the joint is not smooth because of 

gap or material discontinuity. These two are discussed below.  

 

                                                 
1
 The friction phenomenon that arises from the use of fluid lubrication and gives rise to 

decreasing friction with increasing velocity at low velocity. 
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3.2.2.1 Cubic Stiffness 

This is probably the most documented nonlinearity in structural dynamics. As 

the demand for faster, lighter and more efficient machine increases, some parts 

of such a structural assembly may undergo deformation so large that the 

relationship between force and displacement is no long a constant. It is possible 

that this type of nonlinearity is due to plastic deformation of the base material, 

but it is more common in practice that the base material is flexible and designed 

to work in its elastic region, and the only nonlinear source is the assumption of 

the infinite small deformation is no long valid in constructing the stress-strain 

relationship. 

The stiffness nonlinearity can be analytically formulated and numerically 

simulated using FEM. The resultant equation to describe the relation between the 

force and the displacement can be written as: 

 3

1 3F k u k u= +  (3.4) 

This characteristic is known as the cubic stiffening effect, and is best 

demonstrated with Figure 3 - 7. As the load F  is increased steadily, the 

deflection increment gets less and less. If we take equivalent stiffness at every 

point along the curve, it is easy to see that the equivalent stiffness gets larger as 

the deflection increases. 

F F F F 

u 

 

Figure 3 - 7 Characteristic plot of a typical cubic stiffness 
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3.2.2.2 Polynomial Stiffness 

For a real structure experiencing large deflection, the stiffness function may 

include not only a cubic term but also higher-order terms in which the cubic term 

may dominate. There also exists in engineering application a cubic nonlinear 

stiffness with a negative first order term [43, 44], as 1 0k <  in equation (3.4). 

Graphically the characteristic curve for this case is as shown in Figure 3 - 8:  

A B O 

F 

u 

 

Figure 3 - 8 Characteristic curve of cubic stiffness with negative linear term 

This is an interesting nonlinear case. Globally, it represents the case of stiffening 

spring. Locally, it has negative linear stiffness at its global centre O, and a 

weakening stiffness at its two static equilibrium points, A and B. The weakening 

effect can be visualised from the above plot. As the displacement leaves the 

equilibrium point and approaches the global centre, there is more and more 

deflection for a steadily increased load, until arriving at the point where the 

deflection is extreme for a very small increase in load. This local nonlinear 

stiffness can be fitted with a second order polynomial curve. In later chapters, it 

will be shown with an example that a slightly buckled beam possesses this type 

of nonlinearity. 

3.2.2.3 Piecewise Linear Stiffness 

This type of nonlinearity is caused by geometric discontinuity between two 

connecting components. It has a practical interest in many mechanical systems, 

such as the stiffness in the clutch of automobile power transmission system, 

backlash in the gear system, etc. A universal piecewise linear stiffness model is 
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shown in Figure 3 - 9(a) with different linear stiffness values at different 

displacement stages. There are two special cases worth mentioning here. 
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(a)    (b)    (c) 

Figure 3 - 9 Piecewise linear stiffness models 

Figure 3 - 9(b) shows a bi-linear stiffness case. One practical example is the 

bolted flange connection [45], in which the dominant stress-strain direction is 

along the bolt centre line. The stiffness 1k  in the compression regime is 

relatively higher because the compression load is shared by both the bolt stud 

and the flange; while the stiffness 2k  in the tension regime is smaller because the 

tensile load is only borne up by the bolt stud. Other bi-linear joint examples can 

be found in loosely joint structures [46].  

Figure 3 - 9(c) shows a clearance type of nonlinearity. In some mechanical 

assemblies, a clearance is inevitable at the joint. Small suitable clearance is 

necessary to move a mechanism smoothly. In addition, through wear-and-tear, a 

small gap may be built up, e.g. the rattling problem in a gear system. Another 

example can be found in the application of Active Magnetic Bearing (AMB) 

systems in rotating machinery, in which an emergency ‘catcher’ bearing is used 

to support the rotor when the AMB is not functioning. It is a complicated 

problem involving impact mechanisms and rubbing etc., but it can be simplified 

and represented by a clearance type of joint as shown above. Here 2 0k =  

reflects the non-contact status. 

3.3 Concluding Remarks 

A few representative joint models have been presented in this chapter. The aim 

is to provide manageable joint models to the whole assembly model. It should be 
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noted that a joint is often extremely difficulty to model using a purely analytical 

approach. It always relies on experimental data to validate and correct the 

mathematical models. This is a research subject in its own right, known as joint 

identification. A large number of techniques have been proposed, notably 

collected in annual IMAC
1
 and biennial ISMA

2
 conferences. 

 

                                                 
1  International Modal Analysis Conference 
2 International Conference on Noise & Vibration Engineering 
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4.1 Introduction 

Some forms of nonlinearity have been presented in the previous chapter when 

different structural joint models are described. From those various graphs that 

depict the relation between two parameters, e.g. displacement and restoring force, 

it is found that the relationship is not linearly proportional, as otherwise would 

be described by a straight line. This is the manifestation of nonlinearity that we 

most appreciate. The definition of nonlinearity can be expressed with a more 

stringent mathematical sense: the fundamental rule that judges whether a system 

is linear or nonlinear, is the conformance of the following two principles [47]: 

• The principle of superposition; 

• The principle of proportionality. 

Violating either one means the existence of nonlinearity. This is because in a 

linear condition, the system is described by linear differential equations, which 

are the summation of dependent variables and their derivatives. Doubling the 

external excitation leads to doubling the responses, and the individual response 
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to each excitation components can simply be summed up to get the total 

response. In nonlinear situation, this is not true. 

The existence of nonlinearity in a structure can be due to many different 

mechanisms, some of which have been covered in the previous chapter, but there 

is a long list to follow, and most of them are case-based. It is rather difficult to 

neatly categorise different types of nonlinearity based on its physical properties. 

It is, however, possible to classify the nonlinearity based on its extent: global 

nonlinearity and localised nonlinearity [13]. The former is found in problems 

related to nonlinear material properties; and the latter, which is to be focused on 

in this thesis, exists at the connection between two adjoining components, 

usually known as a joint. The large part of the remaining structure is effectively 

linear. This inspired the introduction of methods that take advantage of the 

localised properties of the nonlinearities to speed up the calculation for such type 

of structure on which nonlinearity only exists at a small number of DOFs. In this 

chapter we shall first examine a few methods that solve general nonlinear 

problems, which do not differentiate these two types of nonlinear problems in 

structural dynamics. 

The principles of superposition and proportionality are the cornerstones of linear 

theory. Various analytical methods have been developed to make full use of 

these principles to simplify the process of solving problems of a linear system. 

The analytical solutions are described in algebraic form without the inclusion of 

numerical values for parameters. Once the solutions are obtained, any desired 

numerical values can be inserted and the entire possible range of solutions can be 

explored, which is certainly a time-saving practice, in addition to its exactness. 

Nonlinear structural dynamic problems are usually described by nonlinear 

differential equations, which can be notoriously difficult to solve in an analytical 

closed form. The existence and co-existence of many interesting nonlinear 

phenomena, e.g. bifurcation, sub-harmonic and super-harmonic motion, limited 

cycle and chaos, means that a direct analytical solution is indeed not possible. 

Therefore, indirect or approximation procedures must be applied. 

There are two major branches in the modern developments of nonlinear analysis: 

the analytical methods of successive approximations and the topological 

methods of graphical integration [48]. The latter one originated from the 
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graphical representation of the solution of dynamic equilibrium equations in the 

phase plane. Phase planes are useful for visualising the behaviour of a physical 

system. Stability and unique vibration patterns can be assessed through the study 

of the integral curves in the phase planes. However, these methods are only 

applicable to lower order systems and are mostly used in the more 

mathematically inclined approaches. The concept of phase plane will be 

demonstrated in a later section. The main purpose of this thesis is to develop 

accurate and efficient structural modelling practices for large-scale structure 

assemblies; hence, only the first type of these methods is going to be 

investigated in more detail. Some of the important methods to find approximate 

analytical solutions are (i) the perturbation method, (ii) the iteration method, (iii) 

the averaging method, (iv) the harmonic balance method [48] and the step-by-

step direct numerical integration of the differential equation in the time-domain 

method [13]. These can be grouped into two categories, time-domain methods 

and frequency-domain methods.  

This thesis focuses on finding steady-state solutions of a nonlinear structure 

subjected to periodic excitation. It is understood from linear structural dynamic 

analysis that the dynamic properties of a linear system can be characterised by a 

set of frequency response functions, which relate the amplitude and phase of the 

response to harmonic excitation. This concept can be extended to nonlinear 

structural dynamic analysis to study how a nonlinear structure responds to 

harmonic excitation. It is noted that cyclic external excitation is very often 

experienced by engineering structures, e.g. vibration caused by unbalanced 

rotating machinery, so to analyse the steady-state solution of a structure 

subjected to periodic excitation has clear physical significance. In addition, from 

the model validation point of view, if the steady-state response calculation can 

be correlated with experiment, it will prove that the nonlinear structure is 

correctly modelled.  

In the following sections, time-domain methods and frequency-domain methods 

are discussed. The focus is on the Runge-Kutta Method and Harmonic Balance 

Method respectively, which are used in the subsequent case study. This case 

study is an interesting one DOF nonlinear problem with a ‘strange’ nonlinear 

stiffness. A large collection of steady-state solutions have been found. 
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4.2 Time-Domain Analysis 

‘Time-domain’ is a term used to describe the analysis of mathematical functions 

or physical signals, with respect to time. In this thesis, we refer this type of 

analysis as those numerical methods for solving ordinary differential equations 

with time as the independent variable. The signal or the state of a system is 

calculated step-by-step throughout the time history at discrete points.  

In the case of using Spatial model to represent the structure, a set of differential 

equations are applied to describe the dynamic equilibrium at each DOF. For a 

linear system, the exact steady-state solution of this set of equations can be 

solved by an analytical method with respect to time. They can also be solved 

numerically to get approximate solutions at discrete time points. With carefully-

selected time step size and a numerical calculation scheme, the result will be 

very close to the exact analytical solution. In linear case, numerical schemes are 

not preferred because it is far more expensive to run them.  

For studying the dynamic response of a nonlinear structure, the analytical 

solution is extremely difficult to get. Time-domain numerical schemes are 

among the many procedures used to find the corresponding approximate 

solutions. They are renowned for being potentially accurate, even though a low 

computational efficiency is still unavoidable. In this thesis, we focus on 

examining efficient approximate methods to describe a nonlinear system under 

periodical external excitation. Time-domain calculation results will be used as 

the ‘exact’ solution, to be compared with those from other approximate methods.  

4.2.1 Runge-Kutta Method 

The fourth-order Runge-Kutta method is one of the standard algorithm to solve 

differential equations. No knowledge is required about the nonlinear system and 

it virtually always succeeds with reasonable accuracy [13]. This method is 

designed to imitate the Taylor series method without requiring analytic 

differentiation of the original differential equations [49]. The dynamic system 

can be described with the following second order differential equations: 

 [ ]{ } [ ]{ } [ ]{ } [ ]{ } { } { }M u C u D u K u g fi+ + + + =ɺɺ ɺ  (4.1) 
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in which, { }g is the nonlinear internal force vector. In order to accommodate the 

application of the numerical method, this second-order equation needs to be re-

written into first order form: 

 
{ } { }
[ ]{ } [ ]{ } [ ]{ } [ ]{ } { } { }
u v

M v C v D u K u g fi

=

+ + + + =

ɺ

ɺ
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The above equation can be arranged in a single matrix form as: 
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This is most commonly written in the state-space equation format as: 
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in which: 
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and  
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When the initial conditions { }0( )z t is known, equation (4.4) is ready to be solved 

by the Runge-Kutta formulations: 
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and h is the time step size defined by the user. The derivation of the above 

formulation can be found in standard textbooks [50].  

The Runge-Kutta Method has been well developed theoretically and proven to 

be accurate and efficient. It is a standard component in various mathematical 

software packages, and many variations exist to cater for users’ different 

priorities and some uncommon problems. In this thesis, MATLAB


 is adopted 

as the platform to carry out time domain analysis. ode45 is the key command 

used, which implements the above-presented 4
th

 order Runge-Kutta method. In 

general, this command is the first function to try for most problems [51]. One 

point needs to be noted: MATLAB


 uses variable step size for the calculation. 

This is achieved by estimating the error at every calculation step, comparing the 

error with the pre-defined tolerance and altering the step size accordingly. It is of 

course possible to fix the step size h by the user even though it is not advisable. 

The danger with applying fixed time step size is that if the oscillation period of 

the input signal is smaller than the time step, crucial dynamic information would 

totally be missed in the results. In addition, solving with fixed step size tends to 

be slower comparing to those with variable step size, because if the input signal 

changes gently, the step size can be relatively coarse without sacrificing the 

accuracy.  

4.2.2 Other Time-domain Methods 

The Runge-Kutta Method is one type of the so-called ‘Explicit’ numerical 

methods. The name comes from the fact that the current state of a system is 

calculated using the information from the state of the system at the previous time 

step. Other methods in the same category are: Forward Euler Method, Central 

Difference Methods, Taylor Series Schemes, Predictor-Corrector method, [52, 

53] etc. These methods are suitable for small scale problems in terms of the 

order of the system equation, and problems concerning medium to high 

frequency range of a structure, like those shockwaves response simulation in 

impact tests. The stability of these type of methods is the main concern. The time 

step size needs to be inversely proportional to the highest vibration frequency 

inherent to the structure, which, if not totally impractical, is extremely small for 
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a finely meshed FE model. Nevertheless, this type of method is a faster choice, if 

the model is relatively small. 

Contrary to the Explicit Method, the so-called Implicit Method finds the solution 

of the current state of a system by solving an equation involving both current and 

previous states of the system. A few notable methods in this category are: 

Newmark [54], Wilson-θ [55] and Houbolt methods [53, 56, 57]. These methods 

are more suitable for large scale problems and most effective when the 

concerned vibration of the structure is characterised by a relatively small number 

of low frequency modes [56]. Transient Analysis in many commercial FE 

packages uses this type of method, for both linear and nonlinear problems. The 

application of these methods becomes much simpler with those user-friendly FE 

software packages, in which the user is guided through choices of parameters 

that are relevant to particular types of problem. Of course, the user must 

understand the fundamentals in the first place. 

4.3 Frequency-Domain Analysis 

‘Frequency-domain’ is a term used to describe the analysis of mathematical 

functions or signals with respect to frequency. A time-domain analysis shows 

how a signal changes over time, whereas a frequency-domain analysis shows 

how much of the signal lies within each given frequency band over a range of 

frequencies. If the described signal is periodic, the frequency-domain 

representation is much more concise, because it needs only a few values to 

quantify the signal. 

A major shortcoming of the time-domain methods is that they are very time-

consuming. The computing time required depends on the scale of the structure 

and accuracy requirement. A small time step is needed if explicit methods are 

used, as it is inversely proportional to the highest frequency of the structural 

model. In addition, if the main concern is to obtain the steady-state solution, the 

calculation must be carried on until any transient effect has died away. In the 

case of lightly damped structure, this means consuming a significant computing 

resource on something which is not intrinsically useful. So alternatively, 

frequency-domain approximation methods for determining the steady-state 
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response of structures, particularly to periodic external excitation, should be used, 

in which there is no need to analyse transient motion [13].  

The limitation of the frequency-domain methods is what time-domain analysis is 

strong at: versatility. Some of the most important frequency-domain methods are 

presented here, all of which assume steady-state periodic response to periodic 

external excitation. 

4.3.1 Perturbation Method 

This method can actually be applied in both time domain and frequency domain. 

It is included here because it can be used to derive steady-state periodic solutions. 

Perturbation theory is a century-old, and indeed one of the oldest methods used 

to find approximate solution to a nonlinear problem that cannot be solved 

exactly. It starts with the assumption that the nonlinear term adds a slight 

deviation from the solution of the underlying linear problem, which can be 

solved exactly with an analytical method. One of the techniques is to express the 

desired solution in terms of a power series of a small perturbation parameter that 

quantifies the deviation from the exact solution [58], as shown in the following 

equation: 

 

2

0 1 2

2 2 2

1 2

( ) ( ) ( ) ( )

n

u t u t u t u tε ε

ω ω εω ε ω

= + + +

= + + +

⋯

⋯
 (4.9) 

in which, ε  is the perturbation parameter; 0 ( )u t and nω would be the known 

solution to the underlying solvable linear problem; 1 2( ), ( ),u t u t ⋯ and 

1 2, ,ω ω … are higher order solutions representing small deviations due to the 

nonlinearity; and they can be found iteratively. The closeness to the exact 

solution depends on the number of higher order terms included in the calculation. 

This method is only valid when the real solution is close to that of the underlying 

linearised problem, which implies that this method is mainly for systems with 

weak nonlinearity. 

4.3.2 Describing Functions 

The describing function method was first developed to solve nonlinear problems 

in control systems [59]. The similarity of the mathematical expressions of a 
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control system and a structural dynamic system inspired the application of this 

method in the modelling of a nonlinear structure. This method linearises the 

nonlinearity by defining a transfer function that relates the fundamental 

harmonic components of the input and the output to the nonlinearity [13]. The 

mathematical derivation is briefly shown below, following the approaches of 

Tanrikulu et al. [60] and Ferreira [13]. The standard Spatial model is used, with a 

term representing nonlinear interaction force included: 

 [ ]{ } [ ]{ } [ ]{ } ( ){ } ( ){ }( ) ( ) ( ) ( ), ( )t t t t t t+ + + =M u C u K u g u u fɺɺ ɺ ɺ  (4.10) 

in which, ( ){ }( ), ( )t tg u uɺ  is the nonlinear interaction force; and ( ){ }tf  is the 

external periodic excitation. The k
th

 element of the nonlinear interaction force is 

a combination of the interaction forces between DOF k and all other DOFs. This 

can be expressed in summation form: 

 
1

N

k kj

j

g p
=

=∑  (4.11) 

in which kjp is a function of the inter-coordinate displacement, kjy , and its time 

derivatives, and is expressed as: 

 ( ),kj kj kj kjp p y y= ɺ  (4.12) 

in which: 

 kj k jy u u= −  (4.13) 

The external harmonic force with an angular velocity ω  can be written as: 

 ( ){ } { }i tt e ω=f F  (4.14) 

It is assumed that the response to the harmonic excitation is also periodic, and 

can be expanded in the form of Fourier series:  

 { } { }
1

( ) n in t

n

t e ω
∞

=

=∑u U  (4.15) 

It should be noticed that both F and n
U are complex vectors with the size of the 

total number of DOFs.  
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If the nonlinearity is weak, the fundamental component in the Fourier expansion 

of the response is a good assumption of the exact solution:  

 { } { }1( )u U i tt e ω≈  (4.16) 

Convert both (4.12) and (4.13) from the time domain to the frequency domain as: 

 ( )1 1i t i t

kj k jY e U U eω ω= −  (4.17) 

and 

 ( )
2

0

1 i t

kj kjP p e d t

π
ω ω

π
−= ∫  (4.18) 

The ratio between kjP  and kjY is defined as a describing function: 

 kj
kj

kj

P
v

Y
=  (4.19) 

and the complex amplitude of the nonlinear force vector is represented in the 

form of the describing function: 

 
1

N

k kj kj

j

G v Y
=

=∑  (4.20) 

Substitute (4.14), (4.16), (4.20) and (4.17) into (4.10), we will have, after 

cancelling the term i te ω− : 

 [ ] [ ] [ ] [ ]( ){ } { }2 iω ω− + + + =M C K ∆ U F  (4.21) 

in which [ ]∆  is defined as the generalised quasilinear matrix [60], and its 

elements are obtained using the following equations: 

 

( )
1

   

N

kk kj

j

kj kj

v

v k j

=

∆ =

∆ = − ≠

∑
 (4.22) 

The superscript 1 for the displacement vector{ }U , indicating the fundamental 

harmonic is dropped, for clarity. Equation (4.21) can be solved iteratively. When 

better accuracy is needed, higher order terms in the Fourier expansion can be 

retained, it will however complicate the computation.  
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4.3.3 Harmonic Balance Method 

The Harmonic Balance Method (HBM) is a well-known tool for studying 

nonlinear dynamic problems in the frequency domain. It can be applied to the 

analysis of strongly nonlinear systems, such as the rotor-stator contact problem 

[61], and structures with friction contact interfaces [62-64]. The working 

principle of this method is that the frequency components of the internal 

interaction force must equate to those presented in the response. A set of 

balanced equations are therefore derived, one for each frequency component, 

which can be solved to get the amplitude and phase of each frequency 

component. The implementation is summarised below. 

It is first assumed that the steady-state solution is periodic, and can therefore be 

expanded into a Fourier series. The assumed solution is then inserted into the 

original system dynamic equation. The sine and cosine coefficients of the same 

harmonic order are set to zero separately. A set of new equations containing all 

the unknown coefficients are subsequently solved. The assumed solution is 

finalised in the form of a Fourier series with all the harmonic coefficients 

determined. The length of the solution series is determined by the user, and in 

general, if more terms of the Fourier series are taken into account, the closer the 

approximated solution will be to the exact one. Of course, it requires more 

computational effort. The mathematical derivation starts from expressing the 

system equation as below, which is the same as equation (4.10): 

 [ ]{ } [ ]{ } [ ]{ } ( ){ } ( ){ }( ) ( ) ( ) ( ), ( )M u C u K u g u u ft t t t t t+ + + =ɺɺ ɺ ɺ  (4.23) 

in which, ( ){ }( ), ( )g u ut tɺ  is the nonlinear internal reaction force; and ( ){ }f t  is 

the external periodic excitation. For clarity purpose, the brackets that represent 

matrix and vector are omitted in the following mathematical derivations. 

Based on the assumption that the response is also periodic, which can be 

decomposed with Fourier series as: 

 0

1

( ) cos sinu U U U
N

n n

m m m C m S

n

n n
t t t

m m
ω ω

=

    = + +    
    

∑  (4.24) 

In which, ω  is the frequency of the external harmonic forcing; and m is an 

integer corresponding to the ratio of the period of the external forcing to the 
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period of the response. It is used to count for sub-harmonic responses. m=1 

when the dominant harmonic in the response is the same as that of the excitation. 

U
n

m C  is the amplitude of the n
th

 cosine harmonic term, U
n

m S  is the amplitude of 

the n
th

 sine harmonic term. N is the total number of harmonic terms included in 

the Fourier series expansion. 

The derivatives of the above equation are: 
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2 2

1
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        
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∑
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ɺ

ɺɺ

 (4.25) 

The nonlinear reaction force is also expressed in a Fourier series: 

 ( ) 0

1

( ), ( ) cos( ) sin( )g u u G G G
N

n n

m m m C m S

n

n n
t t t t

m m
ω ω

=

 = + +  
∑ɺ  (4.26) 

in which 0 , ,G G G
n n

m m C m S  are the respective harmonic terms. 

Substitute equation (4.24), (4.25) and (4.26) into (4.23), with a pure sine external 

excitation: 

 

2 2

1

1

0

cos sin

sin cos

cos sin

M U U

C U U

K U U U

N
n n

m C m S

n

N
n n

m C m S

n

n n

m m C m S

n n n n
t t

m m m m

n n n n
t t

m m m m

n n
t t

m m

ω ω ω ω

ω ω ω ω

ω ω

=

=

          − − +         
           

         − + +         
         

    + +    
    

∑

∑

1

0

1

cos( ) sin( ) sin( )G G G F

N

n

N
n n

m m C m S

n

n n
t t t

m m
ω ω ω

=

=

 
+ 

 

 + + =  

∑

∑

 (4.27) 

Balance the harmonic terms on both sides of the equation: 
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(4.28) 
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It is noticed from equation (4.26) that G
n

m C  and G
n

m S  are directly linked with the 

response Um ; hence they can be expressed as: 
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m S m S m m C m S m C m S

=

=
 (4.29) 

Combine equation (4.28) and (4.29) to get 2N  algebraic equations with 

2N unknown Fourier coefficients of the response. 
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(4.30) 

From (4.23) to (4.30), a nonlinear differential equation has been transformed into 

a set of nonlinear algebraic equations. With a proper iteration algorithm chosen, 

these equations are ready to be solved. The purpose is to find 2N unknowns, 

1 1, ,..., ,U U U U
N N

m C m S m C m S , with the 2N equations at every frequency point ω . 

Equation (4.30) is re-written in matrix form by combining all the harmonic terms: 

 ( ) ( ) ( )- - 0R =Z U F G Uω ω =  (4.31) 

Where { }0 1 1, , , , ,U= U U U U U
T

N N

m m C m S m C m S⋯ is a vector of harmonic coefficients 

of the response at all system DOFs; ( ) { }0 1 1, , , , ,G U G G G G G
T

N N

m m C m S m C m C= …  

is a vector of harmonic coefficients for all the nonlinear internal forces. ( )Z ω is 

similar to the dynamic stiffness matrix of the linear part of the system with 

higher harmonic terms included. It is represented as: 
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(4.32) 

Equation (4.31) represents a nonlinear set of equations with respect to U, and the 

purpose is to find U at every desirable frequency. If the nonlinear structure under 

study has a DOF of sN , the whole set of equations will have ( )2 1sN N× +  

unknowns to be decided. One of the most efficient methods for the solution of a 

set of nonlinear equations is the Newton-Raphson method which possesses 

quadratic convergence when an approximation is close enough to the solution. 

The iteration is conducted with the following formula at every frequency point 

of interest: 

 ( )
1

( )
( 1) ( ) ( )R

U U R U
U

k
k k k

−

+  ∂
= −  ∂ 

 (4.33) 

The superscript (k) indicates the number of the current iteration. Performing 

differentiation of equation (4.33) with respect to U, the recurrence formula can 

be rewritten in the form: 
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( 1) ( ) ( )
G U

U U Z R U
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−

+
 ∂
 = − +
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 (4.34) 

The derivatives 
( )( )

G U

U

k∂
∂  are calculated using finite-difference formulae.  

One further point needs to be mentioned here is that ( )G U cannot be explicitly 

expressed. It needs be calculated every time a new U is derived, with Fourier 

coefficient calculation: 
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in which T is the external excitation period. 

4.4 Case Study 

The procedure of using the Harmonic Balance Method to derive steady-state 

periodic response of a nonlinear system is applicable to a system of any number 

of DOFs. However, for demonstration purposes, only a 1-DOF nonlinear system 

is presented in this case study, which is meant to show a special type of 

nonlinearity and the fact that HBM can cope with it well. 

4.4.1 Problem Definition 

We study the nonlinear equation of a 1-DOF oscillator: 

 ( ) ( ) ( ) ( ) ( )3

1 3 sinmu t cu t k u t k u t F tω+ + + =ɺɺ ɺ  (4.36) 

in which some physical values are assigned for the numerical studies: 

 m = 1kg; c  = 1Ns/m; 1k = -1000N/m; 3k  = 10000N/m
3
; F = 2000N. 

The nonlinearity only exists in the restoring spring force, which, with the 

assigned physical values, can be visualised with the graph below. It resembles a 

slightly buckled beam undergoing forced lateral vibration, as shown in Chapter 

Three. This is actually a Duffing’s equation with a negative linear stiffness. A 

similar system was first systematically studied by Holmes [65], in response to 

the demand from the study of population dynamics and Earth’s magnetic field 

model. It has since become an interesting subject for mathematicians.  

When the static force 0F = , there are three static equilibrium points, indicated 

as O, A and B at 0u =  and 0.3162u = ±  respectively as shown in Figure 4 - 1. 

The non-zero equilibrium points A and B are dynamically stable, while point O 

is not, because of the existence of negative stiffness around this global centre.  
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Figure 4 - 1 Force-displacement curve of the nonlinear spring 

One of the main purposes of this study is to find as many as possible steady-state 

periodic solutions for the nonlinear dynamic equation (4.36), and to show that 

Harmonic Balance Method is a very efficient alternative to the usual time-

domain methods. 

4.4.2 Time-Domain Calculation 

The time integration starts from some initial conditions in terms of displacement 

u  and velocity uɺ . The differential equations are then integrated over a time 

interval which is long enough to allow transient effect to disappear and steady-

state vibrations to settle down. A fourth-order Runge-Kutta method with variable 

step scheme is used. Various initial conditions are examined in order to find 

different steady-state solutions for the same magnitude and frequency of 

excitation force. The excitation frequency ranges from 1Hz to 80Hz in a step of 

0.1Hz. At each frequency point, 200 runs with randomly selected initial 

conditions are conducted. 

The result of this exhaustive study is shown in Figure 4 - 2. The maximum 

displacement amplitudes over a vibration period of the steady-state response are 

shown as functions of the excitation frequency. Each ‘branch’ corresponds to 

one type of steady-state periodic response of the system, which is characterised 

by the dominant harmonic components in the response. Some branches have 

been marked to indicate the dominant harmonics.  For example, the branch 

marked with ‘1/3, 3/3, …’ contains all the 1/3 sub-harmonic responses. In the 
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frequency range between 18Hz to 32Hz, a cluster of  sub-harmonic solutions are 

found below the branch of main harmonic response. They will be shown with 

more details in next section. 

 
Figure 4 - 2 Steady-state solutions from time-domain integration 

4.4.3 Frequency-Domain Calculation 

The search for the sub-, super- and major periodic solutions in the frequency 

domain was performed for different initial approximations of the periodic 

solutions and for different harmonic numbers kept in the multi-harmonic 

expansion of the solution. For each calculation, the execution of the algorithm 

started with a guess for the harmonic coefficients of the forced response. The 

HBM algorithm with a continuation scheme [66] was used, which ensured that 

the periodic solutions of the same type were efficiently calculated and traced 

along the whole frequency range of interest. Both stable and unstable solutions 

can be determined as a result of these calculations. Owing to these features, the 

frequency-domain solution process requires only one point close to the trajectory 

of solutions in order to calculate the whole trajectory. Hence, the number of the 

frequency-domain calculations is smaller by several orders of magnitude than 

the number of runs carried out for the time-domain analysis. As a result, the 

expense required for frequency-domain calculation is a very small fraction of the 
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time-domain computation expense. The initial approximations for the forced 

response spectrum were deduced from some steady-state solutions found in the 

time-domain integration. 

The results of all these calculations are plotted in Figure 4 - 3, together with the 

time-domain calculation results for comparison. The time-domain calculation is 

represented with blue dots, and the frequency domain calculation with solid 

black lines. The clustered region is enlarged in Figure 4 - 4 so as to reveal a rich 

collection of steady-state solutions brought in by the nonlinear stiffness. Each 

branch has been marked by numbers indicating the dominant harmonics in the 

response corresponding to the excitation frequency. 

The time-domain and frequency-domain results match very closely from the 

frequency domain comparison. This is further demonstrated by comparing the 

displacement variations in time domain and the integration curves in phase plane 

from both calculations. An example is shown in Figure 4 - 5, in which the 1/5 

sub-harmonic response at 24.6Hz is examined. In Figure 4 - 5(a), the blue dash 

line is the force trajectory, for reference purpose. The black solid line is the 

response trajectory derived from the time integration calculation, which is 

considered an exact solution to the nonlinear equation. It is easily seen that it is a 

1/5 order sub-harmonic response by simply counting the oscillation peaks of the 

force within one cycle of the response. The dotted line with circles is the 

response trajectory calculated with HBM when only one harmonic is assumed 

for the solution. The general trend of the response is followed, but small details 

are not matching, which is more obvious in the phase plane (Figure 4 - 5(b)). 

When two more harmonics, 3/5  and  5/5, are added in the  HBM calculation, the 

response, represented by a dotted line with triangles matches the exact solution 

so well that it is hard to differentiate the two from the graph without the help of 

the triangles. 
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Figure 4 - 3 Results comparison between HBM and time-domain integration 

 

 

Figure 4 - 4 Results comparison between HBM and time-domain integration – 

enlarged view 
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(a) 

 
(b) 

Figure 4 - 5 (a) displacement variation in time and (b) phase space trajectory of 

solution corresponding to Point F (1/5 sub-harmonic response) in Figure 4 - 4(b) 

(‘-·-·-·-’ external excitation, ‘-‘ time integration, ‘··○··○··○·· ‘ one harmonic term 

(1/5) included, ‘-∆--∆--∆--‘ three harmonic terms (1/5, 3/5, 5/5) included.) 

However, it is in some cases the two results do not match very closely as shown 

in Figure 4 - 3. The failure is mostly due to three causes: (i) the random nature of 

the search for solutions in the time domain which, in contrast to the frequency-

domain solution, does not guarantee determination of all possible solutions for 

the branch considered and (ii) close to the region where chaotic vibration 

dominates, not enough integration time is given for the system to settle down 
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and (iii) the time-domain solution approach allows us to find only stable steady-

state solutions and misses unstable ones. 

There are several more interesting discoveries from this exercise, which is 

somewhat off the main thread of this thesis. More details are shown in Appendix 

B. 

4.5 Concluding Remarks 

This chapter focuses on the dynamic analysis of nonlinear structures, and in 

particular on the periodic response due to external periodic excitation. Nonlinear 

differential equations that describe the dynamic system can rarely be solved 

analytically, as concluded by many mathematicians. The approximation methods 

are good alternatives. Some of them have been presented in this chapter. It is 

demonstrated in the Case Study that the Harmonic Balance Method is accurate 

and efficient in solving a problem with strong nonlinearity. A large number of 

steady-state solutions co-exist at the same excitation frequency and the 

Harmonic Balance Method is capable of finding them. 
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Nonlinear Structural Coupling  

 

 

 

 
5.1 Introduction 

Structural coupling methods originated from the demand for efficient analysis of 

complex structures during a time when high performance computers were still 

rare. The problem of modelling a complicated structure could be greatly 

simplified by first dividing the structure into components, each of which could 

be represented by a smaller, more accurate and refined mathematical model; and 

then applying some coupling schemes to analyse the dynamic response of the 

whole assembly from the dynamic properties of individual components [13]. In 

addition to the savings made in computation time, the concept of structural 

coupling allows component models to be generated from different sources. It is 

common in practice that certain component models are better derived from 

experiment, and the others from direct FE construction. The accuracy and 

completeness of the assembly model, as well as the dynamic responses obtained, 

will benefit from optimal component model description. 

The linear structural coupling methods are well developed, as discussed in 

Chapter Two. From an engineering viewpoint [12], there is a need to extend 

linear coupling methods to nonlinear systems because some engineering 
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structures are formed by largely linear components with a small number of 

localised nonlinearities. Thus, a few nonlinear elements cause the whole 

structural assembly to behave nonlinearly. For example, in a turbine engine, the 

linear turbine blades are prevented from reaching excessive vibration levels by 

using the so-called “friction dampers” at the roots connecting to the rotor. The 

existence of friction dampers makes the linear calculation invalid. Another 

example can be found in the dynamics of a rotor supported on nonlinear bearings, 

e.g. squeeze-film bearings or active magnetic bearings. The vibration 

phenomena of the rotor in this case cannot be described accurately with linear 

models. In the above two examples, although the overall nonlinear behaviour is 

significant, the actual number of nonlinear elements is very small. For such cases, 

there is a need to develop analysis procedures whereby the linear and nonlinear 

parts can be analysed separately, and combined together with some nonlinear 

coupling procedures, thus avoiding a nonlinear analysis for the whole structure 

[12]. It is expected that computation time will be largely reduced by such an 

approach. 

In the literature, the researches carried out to study the dynamic properties of 

nonlinear structures mostly focused on simple or simplified structures and did 

not differentiate the extent of nonlinearity in the structure, be it local or global. 

For time domain analysis, the combination of nonlinearity and large model size 

causes numerical integration to be impractical, except perhaps for short time 

transient response calculation. For frequency-domain analysis, even though it is 

much more efficient than time-domain analysis in finding steady-state solutions, 

once the model size gets large the iterations can get slower and numerically more 

unstable. If we can combine frequency-domain methods together with the 

concept of structural coupling, it is possible to analyse large size structures with 

localised nonlinearities effectively. 

In this chapter, nonlinear structural coupling methods are reviewed and the focus 

is on frequency domain methods with the FRF coupling approach. Vibration 

caused by periodic excitation is of major concern in many practical cases; hence 

a test rig model under periodic external excitation is used to assess the nonlinear 

coupling method. Different nonlinearities are assigned to the model in order to 

show the versatility and efficiency of the method. 
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5.2 Nonlinear Structural Coupling Approaches 

There is not much literature available on this topic, even though it is apparently a 

subject worth more attention. The fundamental idea is to separate the linear and 

nonlinear part of the assembly. The first stage is the sub-structuring of the 

original nonlinear system into subsystems, or components, that can be modelled 

separately: This step achieves two objectives [67]:  

• it results in the division of a larger system into smaller subsystems which may 

be easier to model or to identify from experimental data, and 

• it enables the segregation of linear and nonlinear components which will 

eventually result in an economical analysis procedure. 

One of the earliest attempts was made by Dowell [68], who used the Component 

Mode Synthesis method with Lagrange multiplier to analyse a simply supported 

beam attached to a nonlinear spring-mass system. Nataraj et al. [67] also used 

Component Mode Synthesis method and, together with trigonometric collocation 

method, to calculate periodic solutions of a rotor system with nonlinear support. 

Watanabe and Sato [69] proposed the so-called Nonlinear Building Block 

approach to evaluate frequency response characteristics of a structural system 

with nonlinear springs linking linear components. They used the spatial coupling 

method and represented the join nonlinearity with its describing function. The 

use of Guyan reduction [18] on the linear components before applying nonlinear 

algorithms to calculate the response of the whole assembly has also been tried 

[70]. The Frequency Response Function (FRF) coupling method has also been 

explored to obtain steady state periodic response of structural assemblies with 

localised nonlinearity. This approach is, however, not widely seen in the 

literature. To the author’s knowledge only Petrov [64] and Ferreira [13] have 

touched on this topic. Ferreira’s approach is a direct extension of the linear FRF 

coupling method, with an additional nonlinear joint matrix added to the 

assembly FRF matrix. This additional joint matrix is derived using the 

describing function method. Petrov’s approach uses the Harmonic Balance 

Method and takes the advantage of the fact that omitting internal linear DOFs 

will not affect the accuracy and completeness of the calculated response if the 

component models are represented with FRF matrices, and the resultant 
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assembly model is also in the form of FRF matrix. Iteration is required in both 

approaches and the Newton-Raphson method is preferred. 

5.2.1 Nonlinear FRF Coupling With Describing Function Method 

This method was first suggested by Ferreira et. al [13, 71]. It combines the well-

developed linear FRF method with linearised description of the nonlinear joints 

using describing function method. There are different forms of FRF coupling 

formations, the most basic one has been briefly presented in Chapter Two. A 

slightly more detailed version is presented below. Two components A and B are 

modelled and represented with their respective FRF matrices: 

 
{ } ( ) { }
{ } ( ) { }

U H F

U H F

A A A

B B B

ω

ω

 =  

 =  
 (5.1) 

Each matrix is arranged according to the locations of the DOFs: 

 

U H H F

U H H F

U H H F

U H H F

A i A ii A ic A i

A c A ci A cc A c

B i B ii B ic B i

B c B ci B cc B c

     
=    

     

     
=    

     

 (5.2) 

The subscripts i and c represent the internal and connecting DOFs, respectively. 

It is assumed that components A and B are connected rigidly at the interface. By 

applying the equilibrium and compatibility equations at the interface: 

 
{ } { } { }
{ } { } { }

F F F

U U U

A c B c c

A c B c c

= − =

= =
 (5.3) 

the combined system FRF matrix can be derived and represented as: 

 

( ) ( ) ( )
1

1 1

1

C A A

A ii A ic

A ci A cc B cc B ci

B ic B ii

ω ω ω
−− −

−

      = ⊕       

 
 = + 
  

H H H

Z Z 0

               Z Z Z Z

0 Z Z

 (5.4) 

In which [ ]Z is the dynamic stiffness matrix, and derived from the inversion of 

the FRF matrix as: 



Chapter 5                   Nonlinear Structural Coupling 

 86 

 ( ) ( )
1

Z Hω ω
−

   =     (5.5) 

The system equation is therefore expressed as: 

 

1

A i A ii A ic C i

c A ci A cc B cc B ci c

B i B ic B ii C i

−
     
    = +    
         

U Z Z 0 F

U Z Z Z Z F

U 0 Z Z F

 (5.6) 

and in a compact form: 

 { } ( ) { }U H FC C Cω =    (5.7) 

The main advantage of the FRF coupling method is that FRFs measured from 

experiments can be used directly, which means within the frequency range of 

interest there is no approximation made throughout the derivation of the system 

FRF matrix. In addition, the assembly model size can be reduced without 

sacrificing accuracy by including only the connecting DOFs and internal DOFs 

of interest in the component matrices. The reason is that FRFs derived at any 

DOF record the dynamic information of the whole structure. Hence, even with 

the physical DOFs omitted from the FRF matrix, the resultant FRF matrix still 

truly represents the component. This can significantly reduce the size of the 

problem since the connecting DOFs normally form only a small portion of the 

whole structure.  

As shown in equation (5.4), three matrix inversions are required to derive the 

system FRF matrix. This hinders a wider application of this method because of 

excessive computing time needed and possible ill-conditioned matrices near 

resonance causing erroneous results [16]. An alternative FRF coupling method 

introduced by Jetmundsen et al. [14] reduces the number of matrix inversions at 

each frequency point from three to one. In addition, the size of the matrix to be 

inverted is restricted to the connecting DOFs only. This further reduces the 

calculation requirement. The resultant assembly RFR matrix is expressed as: 

 ( ) [ ] 1

H H 0 H H

H H H 0 H H H H

0 0 H H H

T

A ii A ic A ic A ci

C A ci A cc A cc A cc B cc A cc

B ii B ic B ci

ω
−

     
       = − +       
     − −     

(5.8) 
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Using the same structural coupling concept as described above, Ferreira [13] 

considered the flexibilities between the connecting DOFs and modelled them 

with an additional matrix,  which, in the presence of nonlinearity, is deduced 

with describing function method. The derivation starts from defining separately 

the pre- and post- coupling matrices as: 

 

U H H H F

U H H H F

U H H H F

i ii ip iq i

p pi pp pq p

q qi qp qq q

     
     

=    
         

 (5.9) 

And 

 

U H H H F

U H H H F

U H H H F

I II IP IQ I

P PI PP PQ P

Q QI QP QQ Q

     
     

=    
         

 (5.10) 

Here the lower-case subscripts represent the matrices obtained in the pre-

coupling condition, and the upper-case subscripts the post-coupling condition, 

which are to be determined from some mathematical manipulations. All the 

internal DOFs are grouped together as Ui  and U I , and the connecting DOFs 

from the two joining components are expressed as U p , UP  and Uq , UQ . The 

existence of the flexible joint poses different boundary compatibility and 

equilibrium conditions, and the joint is expressed as: 

 [ ]
F U U

F U U

p pp pq p p

q qp qq q q

       
− = =      
       

G G
G

G G
 (5.11) 

Each entry of the matrix [ ]G  is a main-harmonic describing function for the 

joint impedance of a connecting pair. The describing function is a quasi-linear 

representation for a nonlinear element subjected to sinusoidal excitation. The 

resultant system equation, including the effect of nonlinear joint, is expressed as: 

 [ ] 1

U H H H H H H H F

U H H H H H B H H F

U H H H H H H H F

T

I ii ip iq ip iq ip iq I

P pi pp pq pp pq pp pq P

Q qi qp qq qp qq qp qq Q

−

          − −
          

= − − −         
         − −           

(5.12) 

in which 
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-1

B H H H Hpp qq pq qp= + − − +G  (5.13) 

Each describing function is a function of relative displacements between the 

connection coordinates; therefore equation (5.12) is a system of nonlinear 

algebraic equations to be solved iteratively at each frequency point of interest. 

The above derivation shows how two component models can be ‘joined’ 

mathematically. The same concept can be extended to ‘join’ more than two 

component models at one time. This can be achieved by re-arranging the FRF 

matrix. Additionally, multi-harmonic terms can be included in the describing 

functions [13, 72]. They will nevertheless multiply the order of the problem, and 

make this method non-economical. 

5.2.3 Nonlinear FRF Coupling with Harmonic Balance Method 

For a structural assembly with the equation of motion: 

 [ ]{ } [ ]{ } [ ]{ } ( ){ } { }( ) ( ) ( ) ( ), ( )M u C u K u + g u u ft t t t t+ + =ɺɺ ɺ ɺ  (5.14) 

the response, excitation and nonlinear internal force are expressed in complex 

multi-harmonic terms: 
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=
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=

=
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= +

 =  
 

 = −  
 

= +

= +

∑

∑

∑

∑

∑

ɺ

ɺɺ

ɺ

 (5.15) 

in which ω  is the frequency of the external harmonic forcing, and m is an 

integer corresponding to the ratio of the period of the external forcing to the 

period of the response. It is used to count for sub-harmonic responses; m=1 

when the dominant harmonic in the response is the same as that of the excitation; 

U
n

m  is the amplitude of the n
th

 complex harmonic term; N is the total number of 

harmonic terms included in the Fourier series expansions.  
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Substitute (5.15) into (5.14) and balance each harmonic term. The subscript m is 

dropped for clarity. 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0 0 0

0

1 1 1 1 1 11 1
2

2

2

KU G U Z U G U F

K M+ C U G U Z U G U F

K M+ C U G U Z U G U F

K M+ C U G U Z U G U F

n n n n n n

N N N N N N

i
m m

n n
i

m m

N N
i

m m

ω

ω ω ω

ω ω ω

ω ω ω

+ = + =

    − + = + =    
     

    − + = + =    
     

    − + = + =    
     

⋮

⋮

(5.16) 

Combine all these equations into a compact equation: 

 ( ) ( ) ( )- 0R U Z U F+G Uω= =  (5.17) 

Where { }0 1, , , , ,
T

n NU= U U U U⋯ ⋯ is a vector of harmonic coefficients of the 

response at all system DOFs; { }0 1, , , , ,F F F F F
T

n N= ⋯ ⋯ is a vector of harmonic 

coefficients of the external excitation force; ( ) { }0 1, , , , ,G U G G G G
T

n N= ⋯ ⋯  is 

a vector of harmonic coefficients for all the nonlinear internal forces; ( )Z ω  is 

the dynamic stiffness matrix of the linear part of the system, composed of all 

harmonic components as: 

( )

2

2

2

1 1

K 0 0 0 0

0 K M+ C 0 0 0

0 0 0 0

Z
K M+ C

0 0 0 0

0 0 0 0 K M+ C

i
m m

n n
i

m m

N N
i

m m

ω ω

ω
ω ω

ω ω

 
 

    −        
 
 
 =     −        
 
 
     −         

⋯

⋯

⋱ ⋯

⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋱

⋯

  (5.18) 

This is very similar to equation (4.32), only that this time the entries are in 

complex form and the size of the matrix is half the original. Multiply (5.17) with 
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the FRF matrix of the uncoupled assembly, including all the harmonic terms of 

interest, and we will have: 

 ( ) ( ) ( )- ] 0R U U H [F G Uω= − =  (5.19) 

in which:  
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1
2

1
2
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0 0 0 0
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ω ω

ω ω
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−

−
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 
 
      −    

      
 
 
 =      −           
 
 
     −     

       

⋯

⋯

⋱ ⋯

⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋱

⋯

  (5.20) 

This equation can be solved with the Newton-Raphson iteration method, which 

has quadratic convergence when an initial approximation is close enough to the 

exact solution. The attractive bit of this equation is that the FRF matrix, ( )H ω , 

can be readily formed either from direct experimental measurement or from FE 

modal calculations of the linear combination of the whole assembly. For the n
th 

harmonic term in the FRF matrix: 

 ( )
( )

2
1 21

ψ ψ
H

mN
n r r

r

r r

n
i

m

ω

η ω ω

∗

=

=
 − − 
 

∑  (5.21) 

In which, Nm is the number of modes that are used in the modal expansion; 

rω and ψ r  are the corresponding r
th

 natural frequency and mode shape. In many 

cases, a small number of modes kept in the modal expansion will provide 

sufficient accuracy in the formation of the FRF matrix.  

The use of the FRF matrix to describe the assembly system allows all DOFs 

where only linear internal interaction forces are applied to be excluded without 

any loss of accuracy and completeness of the model [64]. The resultant equation 

only includes DOFs where nonlinear internal interaction forces and external 

excitation forces are applied, and where the responses are of concern. This will 
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considerably reduce the size of the equations and the computational cost 

accordingly. 

In order to exclude those linear DOFs, equation (5.19) can be re-written in a 

form in which the displacement vector of a particular harmonic term U
n is 

partitioned into a vector consisting discarded linear DOFs lin_dU
n , retained linear 

DOFs lin_rU
n and nonlinear DOFs nlnU

n . 

 ( ) ( )
lin_d lin_d lin_d

lin_r lin_r lin_r

nln nln nln

-

U F G

R U U H F G

U F G

n n n

n n n n n

n n n

ω

      
       = −       

      
      

 (5.22) 

With the fact that lin_dF
n =0 and lin_dG

n =0, this equation is reduced to: 

 ( ) ( )lin_r lin_r lin_r

red red

nln nln nln

-
U F G

R U H
U F G

n n n

n n

n n n
ω

      
 = −       

       
 (5.23) 

or, in a more compact form: 

 ( ) ( )red red red red red-R U U H F Gn n n n nω  = −   (5.24) 

and with all the harmonics included, equation (5.19) is reduced to: 

 ( ) ( ) ( )red red red red red red- 0R U U H F G Uω  = − =   (5.25) 

Equation (5.25) can be solved numerically with the Newton-Raphson method 

detailed in section 4.3.3. 

5.3 Case Studies 

In this section, a representative aero-engine test rig model is studied. This single-

rotor test rig has one of its two bearing supports specially designed to exhibit 

considerable nonlinearity, and this results in the whole assembly being studied 

with nonlinear approaches. The linear parts of the test rig are all flexible; hence 

adequately detailed FE models are needed to capture even localised flexibilities. 

This nevertheless leads to large order system equations to be solved.  

In the field of structural dynamics involving rotating components, mostly 

encountered in the literature are those analyses based on simplified models, 



Chapter 5                   Nonlinear Structural Coupling 

 92 

which are of course useful in exemplifying the unique properties that only 

rotating equipments possess. In those analyses, the foundation or casing is 

generally, or sometimes conveniently, considered rigid, which is not true in 

practical structures. Large steam turbines, for instance, have foundations which 

become relatively flexible for the heavy rotors and aircraft engines tend to have 

very flexible casings [73]. With the development of FE software packages, 

analyses on models with fairly detailed geometric complexity and with the 

flexibility of both stator and rotor included is possible [73] even though it is only 

for linear systems. 

When nonlinearity is involved, for example, with a system of linear stator and 

rotor connected with nonlinear bearings, the analysis normally begins with a 

‘heavy’ simplification of the linear components, in order to efficiently carry out 

the investigation of the nonlinear phenomenon [74]. A step further in this 

approach is to perform linear model reduction on the component models first 

before applying time-domain [75], or frequency-domain calculations. 

The first two case studies in this section show the application of the nonlinear 

FRF coupling with Harmonic Balance Method. The purpose is to show the 

flexibility and efficiency of this approach in dealing with a complicated 

nonlinear system. The third case is an impact simulation of the same nonlinear 

system using a time marching method. Even though good results were obtained, 

the time spent on the calculation was simply massive. 

5.3.1 Description of Test Rig Model 

The representative aero-engine test rig has been modelled in SolidWorks, as 

shown in Figure 5 - 1. It consists of a flexible rotor-shaft assembly, which is 

supported on two bearing supports. One of these is specially designed so that it is 

flexible in the horizontal direction and rigid in the vertical direction. The design 

details of the bearing will be discussed in Chapter 7. The rotor-shaft assembly is 

enclosed in a flexible casing, which is set to be semi-transparent in the figure for 

clarity. The casing is bolted to a steel bar which has one of its end fixed to 

ground so that the whole assembly mimics an engine hung under a wing. The 

model is constructed with as much geometric complexity as possible so as to 
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represent a real structure more accurately. The exact dimensions of each 

component can be found in Appendix A. 

 

Figure 5 - 1 A schematic view of the test rig in Solidworks 

The 3-D solid model of the test rig was exported to ANSYS, and the resultant 

FE model is shown in Figure 5 - 2, in which (b) is a cross-sectional view. 

Besides the two vertical strips attached to the front bearing block, which are 

displayed in purple, the bulk structure is formed with element Solid45
1
. The two 

vertical strips are formed with Shell63
2
. There are a total of 24065 elements and 

46055 nodes, which comprise 138165 DOFs when the full system equation is 

formed. This is of course not comparable to the scale of industrial engine models; 

nevertheless, such a size of FE model has not been seen applied with various 

nonlinear methodologies in literature. 

     

(a)       (b) 

Figure 5 - 2 FE model of the test rig 

                                                 
1 Solid45 is a 3-D structural solid element in ANSYS. This element is defined by eight nodes 
having three translational degrees of freedom at each node. 
2 Shell63 is a 3-D structural Elastic Shell element in ANSYS. This element is defined by 4 nodes 
having three translational and three rotational degrees of freedom at each node. 
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It is assumed that individual components have been validated against real 

structures via modal testing and analysis. This is extremely important because 

the components are integral parts of the whole assembly, and mistakes or 

inaccuracies made at the component level will guarantee a faulty assembly 

model. Periodic external excitation will be applied to the whole structure and the 

steady-state response is calculated at any DOF of interest. 

5.3.2 Calculation Procedure 

 

Figure 5 - 3 Separate the test rig for implementing nonlinear coupling method 

The test rig is divided into three parts, (i) shaft-rotor assembly, (ii) stator 

(including bearing supports and all the other structural parts) and (iii) joint, as 

shown in Figure 5 - 3. The shaft-rotor and stator are joined together by spring 

elements klx, kly, knx and kny. The former two link the shaft to the rear bearing 

support, while the latter two connect the shaft to the front bearing support. It is 

assumed that klx=kly=kny=∞, which means rigid connections between the shaft 

and bearing support. knx represents a flexible connection, which is due to the two 

vertical stripes that are flexible in the horizontal direction. This horizontal 

stiffness can be adjusted by changing the length of the strips. 

The calculation steps are: 

Step 1: Perform modal calculations on both rotor-shaft assembly and stator using 

FE software to extract modal models of both. The mode shapes are mass 

normalised.  

Step 2: Define DOFs and the number of harmonics to be included in the 

Harmonic Balance Method calculation. All the interface DOFs, excitation DOFs 

and DOFs where responses are of interest are included. FRFs at those selected 

DOFs are calculated using the modal data collected in step 1. 

kly 

klx 

knx 

kny 
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Step 3: Define joint parameters. This also includes providing information of 

DOF pairs where the connection is made. Both damping and stiffness are used to 

quantify the joint properties. 

Step 4: Apply Harmonic Balance Method with FRF coupling. An internally 

developed code FORSE [66] is used. 

5.3.3 Results 

When the two vertical strips are slightly compressed, buckling occurs. The 

stiffness knx displays properties as plotted in Figure 5 - 4, which is from a real 

experiment measurement. O is the global centre, which is an unstable 

equilibrium point. A and B are two stable local equilibrium points.  

-4 -3 -2 -1 0 1 2 3 4
-60

-40

-20

0

20

40

60

mm

N

A B O 

 

Figure 5 - 4 Force and displacement relation of the stiffness knx 

5.3.3.1 Case one – joint with weakening stiffness property 

Small periodic excitation force is used in this case. The excitation and response 

nodes and directions are shown in Figure 5 - 3. It is expected that the DOFs 

connected with spring knx vibrate locally around either point A or B along the 

stiffness property line as shown in Figure 5 - 4. This is indeed a case of 

weakening stiffness. The resultant Frequency Response Function plot is shown 

in Figure 5 - 5. Four calculation runs were carried out, using different excitation 

force levels as marked in the drawing. The mode at 27Hz is prominently affected 

by the joint nonlinearity. The FRF curves bend towards lower frequency as the 

excitation force increases. This manifests a weakening stiffness. Figure 5 - 6 

shows a closer look of the FRF curves nearby 27Hz. The mode at 75Hz is not 

affected by the nonlinearity. It is observed in the FE simulation that this is the 
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second bending mode of the whole test rig in the horizontal direction, which is 

not influenced by the nonlinear stiffness we have set. 
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Figure 5 - 5 Frequency response function curves based on Harmonic Balance 

Method calculation for a system with joint of weakening stiffness property 
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Figure 5 - 6 A close look of the frequency response function curves nearby 27.5Hz 

5.3.3.2 Case two – joint with polynomial stiffness property 

Large periodic excitation force is used in this case. The excitation and response 

nodes and directions are shown in Figure 5 - 3. It is expected that the DOFs 

connected with spring knx vibrate globally around point O along the stiffness 

property line in Figure 5 - 4. 



Chapter 5                   Nonlinear Structural Coupling 

 97 

20 30 40 50 60 70 80
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

Frequency(Hz)

R
e
s
p
o
n
s
e
 A
m
p
lit
u
d
e
/F
o
rc
e
 (
m
/N
)

20N 

50N 

100N 

 

Figure 5 - 7 Frequency response function curves based on Harmonic Balance 

Method Calculation for system with joint of polynomial stiffness property 

Figure 5 - 7 shows the results of three runs of calculation at different force levels, 

as marked. It is difficult to verify such a result with other types of simulation. It 

is however evident to see from the graph the characteristic of hardening stiffness 

effect. The FRF curves at each mode bend towards higher frequency as the 

excitation force increases. Globally speaking, knx  is a hardening stiffness. 

5.3.3.3 Case Three – Impact Simulation 

Each run in the previous two cases took 2-5 minutes of computing time on a 

normal PC with Pentium4 processor, depending on the frequency span and the 

number of harmonics to be included in the harmonic balance calculation. It is 

very difficult, if not totally impossible, to simulate a nonlinear system of 138165 

number of DOFs to get the steady state periodic solution. To demonstrate the 

efficiency of the Harmonic Balance Method, a time marching calculation of the 

same system has been carried out. An impact was applied at the excitation point 

and the time signature was read at the response point shown in Figure 5 - 3.  

Figure 5 - 8 shows the time marching calculation result of the test rig 

experiencing an impact. This is indeed a transient analysis, carried out in 

ANSYS. A Total of 245 time steps with variable sizes were used in the 

calculation, amounting to 1.9 seconds of real time. 72 minutes of CPU time was 

consumed. It is imaginable that much more CPU time is required if the steady 

state solution is of concern; and if the results over the whole spectrum are 

needed, it may possibly take a few weeks. Considering this is a fairly simple rig 
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model comparing to the industrial ones, it apparently shows the advantage of the 

Harmonic Balance Method in cutting down the calculation time for such a 

nonlinear system. 
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Figure 5 - 8 Time marching calculation result 

This impact simulation result has actually been compared with an impact test 

[76]. It showed good agreement as demonstrated in the following plot, in which 

the red line is the experimental measurement data.  

 

Figure 5 - 9 Time marching calculation result comparison 

 

-0.5 0 0.5 1 1.5 2 
-15 

-10 

-5 

0 

5 

10 

15 

20 

25 

30 

Time (Sec) 

A
c
c
e
le
ra
ti
o
n
 (
m
/s

2
) 

  



Chapter 5                   Nonlinear Structural Coupling 

 99 

5.4 Concluding Remarks 

Examples in the above case study shows how efficient the FRF coupling with 

Harmonic Balance Method is in dealing with a large scale structural assembly 

with localised nonlinearity. It takes no more than a few minutes to find steady 

state solutions across the spectrum. If a conventional time domain method is 

used, it will take hours of CPU time just to calculate a transient response for 

such a system. 

There are other nonlinear structural coupling methods available and were 

discussed in this chapter. In general, they are using linear coupling methods to 

firstly reduce the size of the problem and then apply different nonlinear methods 

on the reduced model. The accuracy of the response calculation for the assembly 

depends on how well the linear model is reduced, which normally has some 

approximation implied in the process. FRF coupling method, on the other hand, 

is an exact method, which is of course preferred if it can be integrated with 

certain nonlinear methods. 
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6.1 Introduction 

Structural dynamic testing is a very broad topic. Depending on its purpose, there 

are two types of dynamic test we normally encounter. The first type involves the 

test structure being subjected to a real or simulated environment in which it 

operates. By doing so, we can assess the test structure’s dynamic behaviour 

under working conditions. This type of test is also called an operational test, 

which is especially widely used when a product is at its final design stages. 

Information, such as how or whether it will survive extreme working conditions, 

or whether its performance satisfies the design criterion, is collected. This type 

of test normally only requires the measurement of the response level to 

understand the behaviour of the test structure. The second type of dynamic test is 

meant to establish more detailed knowledge of the structure by linking the 

excitation and response. By doing so, it is possible to build a mathematical 

model to represent the structure. The same type of mathematic model can also be 

derived from theoretical analysis, mainly with the help of Finite Element based 

software. Hence, we can link design with test, aiming to update and validate the 

FE models, and to make design modifications more predictable. This type of test 
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is widely known as Modal Testing, in which measuring the Frequency Response 

Functions and extracting the modal properties are the main objectives. This 

chapter focuses on modal testing and its extension into nonlinear territory, in 

which the relation between the response and excitation are still sought after. 

With the advancement of computing technology and the Finite Element methods, 

it is suggested that tests can be substituted with simulations of computer-

generated mathematical models. It is never unreasonable to imagine so, but at 

the moment dynamic testing is not replaceable, simply because: 

• Some important physical parameters still cannot be modelled correctly due to 

our limited understanding, e.g. friction, which sometimes has a big influence 

on the dynamic behaviour of the whole structure; 

• Even if it is possible to model the structure correctly, variability between 

products of the same design will induce different dynamic behaviour; 

• Not all working conditions can be simulated. Either it is too complicated to 

describe or simply not economical to be put into calculation;  

• Human error during the modelling stage are difficult to discover; 

• Last but not least, in the process of developing and validating new simulation 

algorithms, comparison with test results of a physical item is essential. 

Being able to understand the necessity of a dynamic test helps to appreciate the 

importance of good test practice. A physical test is just like a mathematical 

modelling and simulation job. It involves a chain of operations, mistakes at any 

one of which will cause errors in the results. This is particularly dangerous 

because people tend to have more confidence in the test results than in computer 

simulated ones and trust more what they can observe physically. Therefore, a 

deep understanding of the test itself is very important: from test setup to data 

processing, from test structure preparation to catering for physical limitations of 

test system. 

In this chapter, the basic measurement chain in Modal Testing is introduced first, 

and is followed by detailed descriptions of test equipment used in those tests 

involved in this thesis work. FRF measurement techniques are presented 

afterwards. They are grouped according to different types of excitation signals 

used, with the understanding that FRF derivation varies depending on the signal 
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form. The advantages and disadvantages of each type of signal are also discussed. 

This leads to the discussion of FRF measurement on nonlinear structures. 

Special treatment is required to identify nonlinearity in a structure, or to validate 

predictions from nonlinear calculation algorithms. The amplitude of either 

excitation or response must be controlled. An algorithm is presented 

mathematically on how it is done. This algorithm has been implemented in a 

LabVIEW-based code.  

It should be noted that dynamic testing can be a topic of a whole book [77, 78]. 

It is not the author’s intention to display here every bit of it, rather, only those 

relevant to this thesis work are touched upon. 

6.2 Basic Measurement Chain 

We expect to obtain the dynamic properties of a structure, in terms of natural 

frequencies, damping ratios and mode shapes, by conducting dynamic tests. 

Those properties can be deduced from the Frequency Response Function, which 

is obtained by taking the ratio between the response and excitation in the 

frequency domain; hence it is natural to design an experiment that enables both 

excitation and response to be measured simultaneously.  

 

Figure 6 - 10 Schematic representation of basic measurement chain for modal testing 

Figure 6 - 10 shows a typical experimental setup used for FRF measurement. 

There are many variations in terms of the exact hardware used and the way data 

processed. Nevertheless, all the setups consist the following major items [1]: 

• Excitation system: Signal Generator, Power Amplifier, Shaker, Impact 

Hammer, etc; 

• Sensing system: Transducers, Conditioning Amplifier, etc; 
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• Analysing System: FFT Analyser, etc. 

The various tests conducted within this thesis used the above basic measurement 

chain. The excitation to the test structure is provided by the shaker, which 

generates a motion following the pattern of the electric current signal it receives 

from the power amplifier. The excitation signal originates from the signal 

generator, which is capable of creating a variety of different signals to match the 

requirements of the structure under test, but it is usually sinusoidal. When an 

Impact Hammer is used as the excitation device, Signal Generator and Power 

Amplifier will not be used. The sensing system converts mechanical signals, e.g. 

force and acceleration, into electronic signals, which are easier to handle. After 

both excitation and response signals are collected and fed into the analyzer, in 

the form of time-domain analogue signals, the analyser converts them into 

frequency domain, and computes the Frequency Response Function hereafter.  

It is a common practice nowadays that the signal generator and the analyser are 

combined into a single unit, which not only makes the test setup more compact, 

but also improves the controllability of the test itself. Controlled-level dynamic 

testing, which will be discussed in detail in later sections, is made possible by 

linking the output from the analyser to the creation of excitation signal from the 

signal generator; and this is easily accomplished in a single controller unit. 

The test structure is also an integral part of the experimental setup. It influences 

the selection of hardware and excitation type to be used in order to maximise the 

data quality in a most economical way. The treatment of the test structure can 

affect the test results prominently. Topics that concern, for example, boundary 

conditions and optimised location of transducers, are themselves worth in-depth 

research effort. 

6.3 Excitation and Measurement System 

This section focuses on individual hardware used in various modal tests 

conducted within the scope of this thesis. Sound knowledge of the hardware’s 

functionalities is the first step towards achieving reliable test results.  
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6.3.1 Excitation 

The purpose of having an excitation source is to inject kinetic energy into the 

test structure, and by observing the behaviour of the structure, we can quantify 

its inherited dynamic properties. Many different types of excitation schemes are 

employed in vibration testing. Some examples are [77]: a sudden release of a 

static load; an impact force; mechanical exciter based on either direct-drive or 

rotating unbalance; electrohydraulic exciter and the most popular one: 

electromagnetic exciter, commonly known as a shaker. This section elaborates 

on the two excitation methods used in this thesis’ experimental work. One is 

with the application of an impact hammer, and one with a shaker. 

Vibration tests with the application of an impact hammer have some advantages 

that allow it to be used widely in structural dynamic testing. Firstly, the test 

setup is simple. The equipment consists of no more than a hammer with a set of 

different tips, which allow the excitation frequency range to be varied for 

different test structures. Secondly, hammer test is the fastest method when a 

preliminary result is needed. Thirdly, it is a much more economical tool 

comparing to shakers. Nevertheless, the impact hammer has shortcomings that 

make the use of the other types of exciter is a must in some cases. Firstly, it is an 

open-loop test. The applied force level is not controlled. This limits its 

application to linear test only. Secondly, the frequency range that the test 

structure can be excited is limited and restricted to the type of impact header 

used. It may possibly happen that some important vibration modes cannot be 

captured. Thirdly, though the test setup is simple, the requirement for the 

operator is actually quite high. He/she has to select the right types of impact tip, 

apply the right window functions to the signals, and be consistent in the way the 

impact is applied: the point of hitting should be precise, and the impact direction 

should be normal to the surface.  

The electromagnetic shaker is perhaps the most common type of exciter. The 

supplied input signal is converted to an alternative magnetic field in which is 

placed a coil which is attached to the drive part of the device, and to the structure. 

Some of its advantages are: the frequency and amplitude of excitation can be 

controlled independently, giving more operational flexibility; a large frequency 

range can be applied, and the variety of excitation pattern is virtually limitless, 
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which solely depends on the capability of the signal generator; by linking the 

analyser and the signal generator, it is possible to implement a control system to 

conduct nonlinear test. 

The choice of the exciter to be used depends on many factors, e.g., purpose of 

the test, time constraint, accuracy requirement, and physical constraint of the test 

structure. In this thesis, impact test is conducted for identifying the dynamic 

properties of linear structures with simple geometry. The shaker is used in the 

test to identify the nonlinearity, as well as validate the assembly algorithm. That 

will be presented in Chapter 7. 

6.3.2 Sensing 

It is shown from the basic measurement chain that both excitation and response 

of the structure need to be captured and quantified properly in order to construct 

the Frequency Response Functions to extract the dynamic properties. The 

mechanical response of a structure may be defined in terms of displacement, 

velocity or acceleration. Any one of these parameters can be used to derive the 

fundamental response function. The most commonly used response transducer is 

the piezoelectric accelerometer, and indeed the most common force transducer 

used is also piezo-material based.  

Inside these piezoelectric transducers, piezoelectric materials, such as quartz or 

man-made ceramics are stressed in a controlled fashion by the input force or 

acceleration. This stress “squeezes” a quantity of electrical charge from the 

piezoelectric material in direct proportion to the input stress, creating analogue 

electrical output signal. Because of the high stiffness of those piezoelectric 

materials, the piezoelectric transducers have very high resonant frequencies, 

which enable them work very well across a large frequency range. 

The electric charge released by the piezoelectric element is measured in the unit 

of picocoulomb. It is necessary to utilise amplifiers to couple information, 

contained within the tiny amount of electric charge, to the physical parameters 

without dissipating it or otherwise changing it. The output from the amplifier is a 

voltage signal, which is proportional to the electric charge, and in turn 

proportional to either force or acceleration being measured. Bruel&Kjaer Type 

2626 Condition Amplifiers were used for this purpose.  
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Before doing any test, the transducers must be calibrated. The use of the 

manufacturers’ quoted transducer sensitivities may not be accurate enough 

because they can change with time and environment conditions. Both force and 

motion transducers must be calibrated individually if they are to be used in a 

controlled-level nonlinear test. When only linear test is involved, the calibration 

can be conducted in pair, because the ratio of motion to force, not the individual 

values of each parameter is used to form the Frequency Response Function. 

Figure 6 - 11 shows the calibration setup for a Brüel&Kjaer Type 4393 

Piezoelectric Accelerometer. A PCB portable handshaker (Model 394C06) 

delivers a calibrating vibration signal at 159.2Hz with 1g RMS acceleration 

output. The electric charge is amplified by the conditioning amplifier and 

converted into a voltage signal, which is readable on the oscilloscope. The 

sensitivity of the accelerometer is calculated by comparing the amplitude from 

the readout of the oscilloscope and the calibrating signal. The resultant 

sensitivity is 3.26pC/g. 

Figure 6 - 11 Calibration for the accelerometer 

Figure 6 - 12 shows the calibration setup for a Brüel&Kjaer Type 8200 

Piezoelectric force transducer. It is a reverse process to the normal modal testing. 

With the calibrated accelerometer and a solid mass of known weight, the 

resultant frequency response function is a straight line according to the following 

equation. 

 ( ) 1u
A

f m
ω = =

ɺɺ
 (6.1) 

The shaker generates a pure tone excitation at 159.2Hz. By reading out the 

acceleration and force signal in terms of voltage from the oscilloscope, and using 
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the above equation, the sensitivity of the force transducer can be calculated, 

which is 3.96pC/N.  

Figure 6 - 12 Calibration for the force transducer 

6.3.3 Data Acquisition and Processing 

The excitation and response signals from the transducers need to be acquired and 

processed in order to extract useful information to represent the tested structure. 

A fairly complicated device for such a purpose is called analyser. The most 

common type is based on Fast Fourier Transform (FFT) algorithm. It converts 

analogue time domain signal into digital frequency domain information that can 

be processed to produce FRFs. It is known as Spectrum Analyser or FFT 

Analyser. It is best for linear dynamic test, and an example of it is the PULSE™ 

system from Brüel & Kjaer.  

Besides the stand-alone type of analysers like PULSE™, an analyser that 

consists of a data acquisition card and a PC based software code is also often 

seen. This is mainly due to the increasing PC computing power that allows the 

digital signal processing using software to be comparable to a hard-wired 

analyser in terms of speed and accuracy. This type of analyser also gives the user 

more control over the data.  

Data acquisition and processing is a mature topic and the analysers have been 

developed for a few decades; however, it is still far from being automatic when 

operating them. Appropriate parameters need to be set for the analyser before 

starting a test. Problems, such as aliasing and leakage, must be avoided. 

Thorough discussions can be found in references [1, 16, 79]. 

Conditioning 

Amplifiers 

 

Oscilloscope 

 

Accelerometer 
Calibration 

Weight 

 

Force 

Transducer 

 

Shaker 



Chapter 6      Structural Dynamic Testing and FRF Measurement Techniques 

 108 

6.4 FRF Measurement Techniques 

The Frequency Response Function (FRF) is derived by converting time-domain 

data from measurement into frequency-domain and taking the ratio of response 

to excitation. Though similar hardwares are used, different calculation schemes 

are employed to obtain FRFs, depending on the type of excitation signal used. 

Different types of signal needs different treatment when frequency domain 

information is extracted. The selection of excitation type governs the type of 

transducers, digital signal processing procedures, i.e. the different FRF 

measurement techniques. In this section, the categorisation is based on the 

excitation signals used and we aim to choose the most suitable one according to 

the applicability and other practical considerations. 

6.4.1 Sine Excitation 

Sine excitation test is one of the most common methods to obtain FRFs. The 

commanding signal supplied to the exciter is a sinusoid with a fixed amplitude 

and frequency. A prime advantage of using sine excitation is the large signal-to-

noise ratio for all the force and response measurements. This is a consequence of 

the single excitation frequency for each measurement – there are no other 

significant sources of excitation to contaminate the results [16]. Equally 

important for this type of excitation is that the input force level to or response 

level from the test structure can be accurately controlled by adjusting the 

excitation signal strength at any frequency point of interest. This is crucial in the 

successful evaluation of nonlinear structure due to the fact that the FRF curve in 

the resonance region is distorted at a constant force level, and the resonance 

frequency is shifted at different response levels.  

The FRF is formed over the frequency range of interest. Therefore, the sine 

excitation needs to be carried out at frequency points within the range. There are 

two ways to do so. The excitation signal can be stepped from one discrete value 

to another in such a way [1] as to provide the necessary density of points on the 

frequency response plot. Alternatively, the excitation signal can be in the form of 

a continuous sinusoid, the frequency of which is varied slowly but continuously 

through the range of interest. The former method tends to be slower, but it 

allows more control over the signal’s behaviour, which is crucial in nonlinear 



Chapter 6      Structural Dynamic Testing and FRF Measurement Techniques 

 109 

test. The latter is much faster, but it requires extra care on the sweep rate, a 

wrong setting of which will introduce errors in the derived FRFs. Only step-sine 

excitation is used in this research. 

One paramount drawback of this type of excitation is the time required to obtain 

an FRF is much more than other excitation methods, provided the other methods 

are applicable to the same task. In sine excitation, at each frequency step, 

adequate time must be allowed for the transients to die away before the force and 

acceleration signals are sampled and processed. Depending on the test algorithm, 

the delay can be in the form of time or number of vibration cycles or linked with 

some delay-time estimation algorithm [80]. It is a trade-off sometimes when 

selecting an excitation method, as which one is more important, accuracy or 

efficiency. If the purpose is to validate a simulation algorithm, a more rigorous 

and precise test scheme should be adopted. 

6.4.2 Random Excitation 

A random excitation signal is defined by a time history of random values at any 

given instant. It cannot be expressed by a simple mathematical equation, like the 

other types of excitation signals do, and it must be modelled probabilistically. It 

is widely used in linear dynamic test because it is a fast approach to obtain 

accurate estimation of a structure’s response over a broad range of frequencies. 

A noticeable significance of the random signal is that it is a reasonable 

approximation to the type of excitation found in many typical installations in real 

life [16]. Random excitation is applied by an electromagnetic shaker driven with 

a signal from a random signal generator. The versatileness of the signal 

generator allows different definitions of probability distribution of the excitation 

to suit different purposes.  

The application of random excitation in dynamic testing involves a great 

understanding of signal processing in order to avoid errors that are not so easily 

spotted. Some of the concerns are:  

• a window function must be applied to the collected time-domain force and 

response data before the FFT is performed, because periodicity is a 

prerequisite of valid performance of converting time domain data to 

frequency domain; 
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• measurement duration and sample rate need to be well selected to avoid or 

minimise the leakage effect. 

6.4.3 Impact Excitation 

Impact excitation, also known as transient excitation is a very popular and 

convenient excitation technique to produce FRFs. In normal practice, this type of 

excitation is applied by an impact hammer, which includes a load cell, or force 

transducer, that detects the impact force applied to the test structure. The FRF 

measurement starts from sampling the time history of force and response signals, 

which are then converted into frequency domain by applying Fourier analysis. 

The force signal, a very short sharp excitation pulse in the time domain, has a 

flat spectrum over a wide frequency range. Because of this unique property, it is 

possible to excite all the vibration modes at one go. This makes impact 

excitation method very attractive when time is the main concern. 

The resultant response signal contains all the activated resonance frequency 

components. Due to the existence of damping, the response signal will decay as 

the kinetic energy dissipates. The decay rate depends on the extent of damping in 

the test structure. It should be ensured that an exponential window is applied if 

the sampling period cannot cover the whole decay span. This is to avoid the 

leakage problem. The FRF is hence obtained by dividing the spectrum of the 

response by the spectrum of the excitation. 

Unfortunately, impact excitation can rarely be used for nonlinear structural 

dynamic test. It is because, firstly, the duration and force level the impact 

executes is of no consistency. This makes it difficult to apply control on them. 

Secondly, the force applied is very localised. The kinetic energy at the nonlinear 

region can be too small to trigger any nonlinear behaviour. 

6.4.4 Considerations of Measuring FRF Properties of Nonlinear Structures  

For a linear structure, the measured FRFs are unique and independent of 

excitation strength, so all the above-mentioned excitation types can be used, and 

the choice depends only on the time, physical constraints and accuracy 

requirements. In the case of identifying or modelling a structure with nonlinear 

elements, it is widely accepted that one of the best ways is to exercise a degree 

of amplitude control on the vibration levels during measurement [1]. For doing 
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so, the stepped sine excitation is preferred because of its controllability, 

precision and good signal-to-noise ratio with which the structure can be excited 

[81].  

Common stepped sine based FRF measurements require the attachment of an 

electro-dynamic shaker to the structure under test. The excitation mechanism  

unavoidably interferes with the test structure [82], and due to the mismatch of 

impedance between the shaker and test structure, the excitation force is not 

necessarily proportional to the input excitation signal strength. A phenomenon 

called ‘force drop-out’ is observed at the resonances. A simulation is shown in 

Figure 6 - 13 with parameters of a typical electromagnetic shaker taken from 

[83]. The simulation is conducted at a constant voltage input to the shaker. The 

red line represents the force experienced by the structure. It drops significantly 

as the excitation frequency approaches resonance at 100rad/sec. And it bounces 

back as the excitation moves away from the resonance. The response level, 

represented in green line, is also not proportional to the input signal across the 

frequency range. Despite these, the FRF of a linear structure still can be 

accurately derived as shown with the blue line. In the nonlinear dynamic test, the 

variation of the force or response signal must be controlled. 

 

Figure 6 - 13 Observation of ‘force drop-out’ phenomenon 

Another problem with the electromagnetic shaker is that when the vibration 

amplitude is large, even at the same frequency, the input voltage is not 
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proportional to the force level applied to the structure. This is because of the 

inherent nonlinearity of the magnetic field that generates the vibration. This 

nonlinearity must be coped as well. 

6.5 Amplitude Controlled Nonlinear Dynamic Testing Code 

Most structural nonlinearities are amplitude-dependent [1], so if the response is 

kept at a constant level across the whole frequency range, the behaviour of the 

structure would exhibit the characteristics of a linear system; hence, to keep the 

response level constant is essential when linearization analysis of a nonlinear 

structure is required. 

Another motivation to have a controllable test is that the theoretical analysis of a 

nonlinear structure often involves the assumption of a constant amplitude 

periodic external excitation. In order to validate the theoretical model, as well as 

the analysis, the test is best conducted as close to the theoretical calculation as 

possible. Keeping the excitation amplitude constant in the experiment is a way to 

compare with the calculation. 

The control is achieved by adjusting the strength of the input signal to the shaker 

according to the force or response levels measured. This problem can be 

classified as an inverse problem [84]. The exact relation between the excitation 

input signal and excitation force or response varies, depending on the shaker 

used and the structure tested. It is apparent from the discussion in the previous 

section that there is no simple mathematical expression linking the input signal 

strength to the force or response; hence iteration schemes are the best choice, 

because they depend less on the test setup, and still can produce good results. 

An amplitude-controlled nonlinear dynamic testing code has been developed, 

based on the stepped sine excitation scheme, with the addition of a feedback 

loop to control either the force or response at each excitation frequency.  

6.5.1 Control Algorithm 

The controlled parameter is either excitation force or response, which is in the 

form of acceleration, velocity or displacement, depending on the transducer used. 

It is governed by the voltage input to the shaker’s coil v  and the excitation 

frequency ω , provided no change for all other parameters in the measurement. 
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From the mathematical point of view, force and response can be controlled in a 

similar fashion, so only the force control algorithm is presented here. 

The desired force measured by the transducer, f, can be expressed in terms of ν 

and ω  described by an unknown function G: 

 ( , )f v ω= G  (6.2) 

f and v  can be expressed in Fourier Series: 
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In which nF  and nV  are the coefficients of the n
th

 harmonic terms after the force 

and voltage signals are decomposed. Both nF  and nV  are complex terms. If a 

number, m, of harmonics is considered, the force and voltage can be represented 

by vectors of harmonic coefficients as: 
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Equation (6.2) cannot be solved analytically because of the unknown nature of 

the function G; however, it can be solved iteratively by converting to the 

following equation: 

 ( , )Gf v ω′=  (6.6) 

In which G′ is a transfer function linking two vectors. This equation can be 

further expressed as: 

 ( , ) ( , ) 0N Gv f vω ω′= − =  (6.7) 

Equation (6.7) is solved with Newton-Raphson method, which is chosen because 

of its efficiency in convergence and ease of implementation. In practice, f  is 

predetermined as the desired excitation force amplitude, and the purpose of the 
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iteration is to find the right value of v  to satisfy equation (6.7). At a particular 

excitation frequency, the resultant v after n iterations is: 

 ( 1) ( ) ( ) 1 ( )[ ( )] ( )N Nn n n nv v v v+ −′= −  (6.8) 

in which ( )( )N nv′  is the Jacobian matrix, which is defined as: 

 

1 1

1

( )

1

( )

N N

N

N N

m

n

m m

m

V V

v

V V

 ∂ ∂
 ∂ ∂ 

′ =  
 ∂ ∂ 
 ∂ ∂ 

⋯

⋮ ⋱ ⋮

⋯

 (6.9) 

Here, all the partial derivatives are evaluated at ( )nv , namely, 
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It should be noticed that the Jacobian matrix here is non-singular so that its 

inverse exists. 

The function N is not known analytically, so its partial derivative can only be 

approximated with a finite difference approach: 
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in which jH  is a small deviation from jV , and h  is a column vector of length m, 

with the thj  element as jH  and all the other elements zero. 

Though mathematically a sound approach, experimentally it is difficult to get the 

Jacobian matrix with equation (6.11) due to the following reasons: 

• In order to get a very close approximation of the partial derivatives, the step 

jH  should be as small as possible; however, in experimental conditions, a 

small change in jV  may not induce a noticeable change in N, because of 

unavoidable measurement limitations. In a worse case, the finite difference 

approach with very small step size may give totally erroneous approximation 

of the Jacobian matrix; 
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• The unknown nature of the function N makes it difficult to define the best 

step size jH ; 

• 2m number of measurements are required at every frequency point in order to 

determine the full Jacobian matrix. This is not practical if the number of 

harmonics to be controlled is large. 

In order to increase the speed of the control algorithm, mainly, to avoid the 

direct calculation of partial derivatives, the Secant method [49] is used, which is 

expressed as: 
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With the approximated Jacobian Matrix ( )( )N nv′  calculated, the voltage input to 

the shaker ( 1)nv +  is updated; so is the driving force to the nonlinear system. 

As a starting point, and without losing the essence of Newton-Raphson based 

algorithm described above, a main-harmonic amplitude controlled nonlinear 

dynamic testing code has been developed in LabView. Figure 6 - 14 displays a 

flowchart that the code is based on. 

 

Figure 6 - 14 Schematic representation of nonlinear force control algorithm 
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The user defines the following parameters beforehand: 0ω - starting excitation 

frequency; ω∆ - frequency step; 0

1V - starting voltage of the driving signal; RF - 

desired driving force; ε - error ratio. The nonlinear system in the above figure 

physically includes the shaker, power amplifier, transducers and the testing 

structure. Once the cyclic driving signal is released from the signal generator, the 

force and response signals are recorded after a delay to allow settling, and both 

signals go through an FFT or other Fourier decomposition to get the main 

harmonic components. In this force-controlled case, the amplitude of the force 

signal is compared with the desired force level. If the resultant error is within 

tolerance, the FRF point is calculated and plotted. The driving signal will go to 

the next excitation frequency.  

If the error ratio limit is exceeded, the iteration process starts. The Secant 

method requires inputs from the last two iterations, so for the first loop, a 

proportional interpretation is used to derive the new driving signal amplitude. 

The reason behind this is that normally the structure is tested starting from a 

frequency away from any resonances, and at that frequency point, the nonlinear 

structure displays properties close to linear ones; so the driving signal 

corresponds with the force in a fairly linear fashion, and a proportional 

interpretation is suitable. The signal generator is updated with a new amplitude 

at the same frequency. The resultant force is compared with the desired value 

again to decide whether a further iteration loop is needed or the FRF point 

should be calculated. In the case that another iteration is needed, the Secant 

method interpretation is used. The above described process is repeated until all 

the FRF points within the frequency range have been obtained.  

Besides the control algorithm, there are other points to be taken care of, which 

are difficult to present in the above flow chart.  

• The strength of the driving signal must be capped in order not to damage the 

whole system accidentally; 

• There are possibilities that the Newton-Raphson method fails to locate the 

root, which is mathematically proven; hence, there must be a cap on the 

number of loops the program is allowed to run at each frequency point; 
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• The delay time should be set according to the properties of the tested structure. 

For flexible and lightly damped structures, the delay time must be set long 

enough to avoid any transient effect being counted; 

• The transition from one frequency point to another, and from one amplitude 

to another must be smooth. This is due to the fact that at around the resonance, 

there are possibly more than one stable vibration states. If the transition is 

abrupt, one steady state may not be captured completely in the frequency 

range before the vibration jumps to another steady state. This will cause 

incompletion in the FRF. 

6.5.2 LabView Program for the Nonlinear Testing Code 

 

Figure 6 - 15 Control panel of the nonlinear testing code in LabView 

The above control algorithm was implemented in LabView, a software 

development environment based on graphical programming from National 

Instrument. Figure 6 - 15 shows the design control panel, on which the user can 

adjust parameters to suit test requirement. One Hewlett Packard 33120A 

Waveform Generator was used to generate driving signals and one National 
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Instrument NI4472 Dynamic Signal Acquisition Card was used to acquire force 

and response signals.  

6.5.3 Further Improvement 

Though the nonlinear testing code has been successfully implemented and 

showed its reliability and accuracy in various applications, improvement is still 

required. The main points are listed below: 

• Instead of only the main-harmonic component being monitored and 

controlled, super-harmonic and sub-harmonic components should also be 

included in the code. The mathematical foundation has been laid down in 

section 6.5.1; 

• Newton-Raphson iteration can sometime fail to converge if the starting point 

of the iteration is not well placed. Additional algorithm should be included in 

the code so as to avoid this from happening; 

• Structural dynamic testing, especially when nonlinearity is of concern, 

requires a very good understanding of the theory and the test specimen itself 

in order to achieve an efficient and error-free test. This requires the expertise 

of a specialist. However, things can be made easier if the code can be made 

smarter, e.g. the delay time can be automatically adjusted based on the 

vibration data acquired. 

6.6 Concluding Remarks 

The basic knowledge involved in structural dynamic testing is examined in the 

first half of this chapter. The fundamental message addressed is that it is 

important and necessary to conduct dynamic tests, and to do so correctly. The 

accuracy and correctness of the experiment measurements are dictated by the 

capabilities of the transducers, data processing equipment and experimental 

setup. Almost all methods for applying the structural excitation will have some 

unwanted modification effects on the structure, as well, almost all the response 

measurement transducers and support fixtures will have an unwanted influence 

on the structure. Furthermore, many of the potential problems with dynamic tests 

only become apparent during the actual tests. We should be aware of these 

problems and strive to select methods to minimise these effects. In many 
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respects the practice of vibration testing is more of an art than a science. There is 

no single right way to perform a vibration test, as described by Maia etc. [16]. 

An amplitude controlled nonlinear dynamic testing code is introduced in the 

second half. It is a natural extension to a linear one. Though relative simple in 

concept, the implementation of the algorithm is rather troublesome. Some 

achievements have been made, in terms of improving the reliability and safety 

measures, reducing the test time and most importantly, fulfilling its purpose. 

Nonetheless, more effort should be poured into this field, to develop it up to a 

level of competency comparable to what linear dynamic test enjoys now. 
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7.1 Introduction 

The theoretical background behind the construction of analytical models of a 

complex structure with a localised nonlinearity has been laid out in previous 

chapters. It has been shown step-by-step how this is achieved through perfecting 

component models, incorporating joint models and applying a frequency-domain 

based nonlinear calculation algorithm. It is now time to demonstrate that all this 

theoretical build-up and numerical prediction is valid when compared against 

experiments. Physical experiments and tests have always played a vital role in 

the field of science and engineering, even after numerical simulations have been 

greatly improved with the introduction of computers, to ensure that all the 

relevant physical effects are included. The purpose is simple: we need to assure 

ourselves that new approaches and algorithms can actually reflect physical 

nature correctly by directly assessing the physical parameters. 

The first part of this chapter describes the construction of the test rig, with 

emphasis on the design of the nonlinear element and rotor-to-stator joint 

arrangement. There have been some references to this test rig in previous 

chapters. This section will provide a full picture. It is followed by modal testing 

of a component and a linear assembly, which illustrates how experiments help to 
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improve the analytical models. Last but not least, amplitude controlled stepped-

sine sweep tests are presented to accurately measure the non-linearity, the results 

of which are compared with numerical simulations. 

It is worth mentioning here that constructing a test rig and conducting 

experiments is not an easy and straightforward business. It might only be worth a 

few pages of presentation in this thesis, but the time and effort involved is well 

over its fair share.  

7.2 Description of the Test Rig 

Some considerations for the test rig at the design stage are: 

• The test rig should have a reasonably complex nature in terms of geometry, 

material properties, flexibility and functionality. It is aimed to be 

representative of a real world structure. This is to differentiate from many 

purpose-built and academic test rigs commonly seen in lab environments. 

• The test rig should have a prominent and clearly-defined nonlinear element. 

All the other nonlinear sources shall be minimised. 

• The nonlinearity shall be adjustable. In the real world, nonlinearity can 

change throughout the structure’s lifespan due to wear and tear, change of 

operation conditions etc. The analytical models should be able to cope with 

that and it is very appealing to have it in the test rig. 

 

Figure 7 - 1 Overall test rig setup 
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Figure 7 - 1 shows the computer model and up-and-running test rig as 

manufactured. The whole rig resembles an aircraft engine that is hung beneath 

the wing. It neglected all the fine and intricate details that a normal aircraft 

engine has, but it does consist of key structural components that matter for 

understanding whole-machine dynamics: flexible support, flexible casing, 

flexible shaft, rotor and bearing supports. The detailed dimensions and material 

properties of most of the components can be found in Appendix A. The 

construction of the nonlinear element, as well as the joint between rotor and 

stator will be described in more detail in the following two sections. 

7.2.1 Construction of the Nonlinear Bearing Support 

The purpose of this whole design exercise is to introduce a nonlinear element 

into an otherwise linear test rig. Some of the considerations for this nonlinear 

element are: firstly, the nonlinearity shall be adjustable; secondly, the nonlinear 

element shall be capable of displaying not only weak but also strong nonlinearity; 

and thirdly, the construction of it should be easily and economically repeated. 

The front bearing support of the test rig is chosen to be the nonlinear element, 

which also takes into consideration that in rotating machinery bearings are one 

of the most common sources of nonlinearity. Details of the Nonlinear Bearing 

Support (NBS) are shown in Figure 7 - 2.  

         

Figure 7 - 2 Schematic models of the nonlinear bearing support 

The Nonlinear Bearing Support (NBS) itself is a rather complicated assembly 

consisting of various joints in the form of bolts and adhesive. Joints are always 

trouble-makers in structural behaviour modelling and prediction and it is 
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preferable to reduce the number of joints in the test rig to minimise calculation 

complexity; nevertheless, they are unavoidable in most practical cases. It is 

assumed, and later on shown in the experimental results, that the effect of local 

joints in the NBS on the whole assembly can be neglected. 

The whole NBS is first manufactured in pieces as shown in Figure 7 - 3(a). The 

two 0.5mm spring-steel plates, running parallel (shown vertically in Figure 7 - 

3(b)) are then glued to the two fixing blocks as well as the bearing block using 

Araldite2011, a multi-purpose epoxy which bonds Ferrous metal and 

Aluminium excellently. The bearing block is located at the exact mid-span of the 

spring-steel plates. Some 5mm-thick steel plates are used to sandwich the spring-

steel plates to prevent them peeling off. Drilled holes are threaded though the 

fixing plates and into the fixing blocks as well as the bearing block, to give the 

spring-steel plates a final security. This part of the NBS is then fastened to the 

outer rim, with which, a completed NBS is constructed. The final assembly is 

shown in Figure 7 - 3(c). At a later stage, a bearing will be fitted into the bearing 

block. 

When not stressed, the combination of the spring-steel plates and the bearing 

block acts as an asymmetric joint to the rotor supported, with different linear 

stiffness in the vertical and horizontal directions: stiffer in the ‘vertical’ and 

softer in the ‘horizontal’ direction. Cubic stiffness nonlinearity will be present in 

the horizontal direction when the displacement is large. The spring-steel plates 

can be bent slightly by reducing the distance between the two fixing ends. This is 

achieved by inserting shim plates between the rim and the fixing blocks. A shim 

plate is basically a thin piece of stainless steel that is normally used to fill small 

gaps or spaces between objects. In this application, it is used to accurately reduce 

the distance between the two fixing blocks. As a result of this arrangement, the 

bearing support displays a stiffness pattern governed by the buckling effect of 

the spring-steel plates. 

The beauty of this assembly, despite the complexity caused by the connections, 

is the ease of changing the configuration to display different dynamic properties. 

For example, the spring-steel plates can easily be replaced with other types of 

plates to produce different patterns of stiffness distribution. Furthermore, the 
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extent of the nonlinearity can be controlled by the thickness of shim plates 

inserted. 

 

Figure 7 - 3 Step-by-step assembly of the nonlinear bearing support 

7.2.2 Property of the Nonlinear Bearing Support 

The properties of the nonlinear bearing support were measured by conducting a 

static test, in which the displacement and applied force of the bearing block in 

the horizontal direction were measured.   

It is understood that a negative relationship between the applied force and 

displacement, as illustrated in Figure 7 - 5, would occur when measuring a 

buckled beam. In order to obtain a full characteristic curve, compression forces 

were applied at both sides of the bearing block. Each force was measured 

independently with a Flexiforce® sensor, which is an ultra-thin and flexible 

printed circuit. The resistance of this printed circuit is inversely proportional to 
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the normal force applied. The difference between the two forces applied at both 

sides of the bearing block is the static force experienced by the nonlinear bearing 

block at the centre. 

When shim plates are not used, the stiffness measured is of typical 3
rd

 order 

nonlinearity that is encountered when material deformation is large and exceeds 

the linear assumption of stress and strain relationship. Figure 7 - 4 shows the 

measurement result, in which the y-axis is the force and the x-axis is the 

displacement. The red circles are the measurement points, and the blue line is the 

best fitting curve. The best fitting curve can be expressed with a 3rd order 

polynomial equation 3

1 3nF k x k x= + , in which 4

1 2.544 10 N/mk = ×  and 

9 3

3 2.574 10 N/mk = × .  

 

Figure 7 - 4 Nonlinear characteristic of the nonlinear bearing support without 

shim plate 

When shim plates of combined thickness of 0.4mm were used, the spring steel 

plates were in a buckled state. The measurement results are shown in Figure 7 - 

5, The best fitting curve can be mathematically expressed as: 3

1 3nF k x k x= + . The 

stiffness parameters 4

1 1.265 10 N/mk = − ×  and 9 3

3 1.381 10 N/mk = ×  were 

obtained by minimising the discrepancy between measured and approximated 

values. Point A is the global geometric centre and in this case is an unstable 

equilibrium point; B and C are two stable equilibrium points. 
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Figure 7 - 5 Nonlinear characteristic of the nonlinear bearing support with 0.4mm 

shim plates 

7.2.3 Construction of the Rotor-Stator Connections 

The design of the connection between the rotor and the stator is not insignificant 

and warrants a special mention here. As the primary purpose of this test rig is to 

demonstrate the analytical modelling capability for a complicated structure with 

localised nonlinearity, it is useful to have a single and prominent nonlinearity 

and to minimise any ‘side’ effects that will complicate the calculation as well as 

the demonstration. In rotating equipment, the joints between the rotor and stator 

are often the sources of nonlinearity and uncertainty. This is mainly due to the 

fact that tight tolerance is difficult to achieve. In normal operation the clearance 

between the rotor and stator does not cause any problems. However, when 

performing vibration tests, even a very small amount of clearance can cause 

rattling and distort the results [61]. One place of major concern is the connection 

between the shaft and bearing.  

A collet and its associated two-piece adaptor shown in Figure 7 - 6 is used to 

secure the shaft to the bearing. The collet is normally found in a machine tool’s 

rotating spindle as part of a holding device. It has a gentle tapered outer surface 

and a uniform inner surface which forms a collar around the object to be held. 

As the two-piece adaptor is tightened, a strong clamping force is exerted onto the 

object that prevents any gap and sliding movement. Because tightening and 

securing the collet onto shaft is a gentle and uniform process, it gives good 
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control in positioning the shaft right at the bearing geometric centre and 

perfectly perpendicular to each other. 

 

Figure 7 - 6 Bearing-shaft adaptor and collet fixture 

7.3 Experimental Studies 

This test rig provides the foundation for various types of dynamic test that aim to 

demonstrate good modelling practice for complex structures. It started from 

component level rising to the complete assembly. 

7.3.1 Modal Testing of Components 

 

Figure 7 - 7 Modal testing setup for the casing 
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All the major components of the test rig: casing, rotor, shaft and bearing supports, 

have been modal tested and validated. This is a very necessary step to achieve a 

accurate assembly model in the end. Only the modal test on the casing is 

presented here, while the technique, equipment, data acquisition and processing 

routine are the same across all the tests. 

Figure 7 - 7 shows the setup for impact tests on the casing. The dimensional and 

material properties of the casing can be found in Appendix A. The casing is 

suspended at the end of a bungee cord, which adds minimum rigidity to the 

casing. It is reasonable to assume that the casing is supported at free-free 

boundary condition. The PCB ICP® Impulse Force Test Hammer 086C02 is 

used to provide the impulse excitation, which consists of a nearly constant force 

over a broad frequency range and is capable of exciting all resonances in that 

range. The size of the hammer, hardness of the tip and velocity at impact 

determine the amplitude and frequency content of the force impulse. It is from 

the preliminary FE calculation and good understanding of the experiment itself 

that the best combination is chosen. The accelerometer used is PCB ICP® 

Accelerometer 352C67. Both force and acceleration signals are fed through 

battery-powered PCB ICP® sensor signal conditioners, which amplify the 

signals to be readable by the analyser. The PULSE™ system from Brüel & Kjær 

is used for data acquisition and processing. The system consists of a piece of 

front-end data acquisition system with anti-aliasing filters, which conditions and 

digitises the transducer signals, and a computer with PULSE operation software 

that allows real time acquisition, recording and processing of data. Different 

types of analysers are available. For the impact tests, the FFT analyser is used. 

Calibration of the transducers followed the similar procedures as in Section 6.3.2. 

The modal testing process starts by specifying measurement points on the 

structure. The number and location of those points chosen affects the resolution 

of mode shape comparison later on, which is a key factor to determine whether 

an FE model is valid. In this experiment, 81 grid points on the outer surface of 

the casing are selected, the location of which is measured and a 3D frame model 

is constructed using ICATS [85], as shown in Figure 7 - 8. ICATS is a Modal 

Analysis software package developed in Imperial College London. It extracts 
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modal properties from experimental data and carries out comparison with FE 

simulation results.  

 

Figure 7 - 8 Finite Element and experimental models of the casing 

Only excitations and responses in the radial direction are assessed at each of 

those grid points. The accelerometer is attached to each grid point in sequence, 

while the impact hammer excites the freely over-hung casing at a predefined grid 

point. It is essential to keep each impact the same as the previous one [1], in 

terms of impacting position and orientation relative to the surface. Double hitting 

should be strictly avoided in order not to deteriorate the signal quality. The 

experiment phase is considered complete when all the excitation and response 

data of each pair of measurement points have been collected. 

Table 7 - 1 records the measured natural frequencies and the corresponding 

analytical ones from the FE analysis. Modal Assurance Criteria (MAC) and 

Natural Frequency Difference (NFD) of each pair of modes are also listed.  The 

numbering of the modes set is according to the analytical calculation results. 

There are a few missing modes in the experiment. This is mainly contributed by 

the small number of divisions along the circumferential direction; nevertheless, 

the high MAC values of the existing mode pairs are a good indication of a 

reliable analytical model.  

A visual comparison is shown in Figure 7 - 9, in which boxes in red represent 

highly correlated mode pairs. It can be concluded from here that the analytical 

casing model represents the physical casing model well within 1600Hz, even 

though the experimental modal analysis did not identify all modes and the modes 

do not match perfectly. 
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Table 7 - 1 Correlation between the experimental and the analytical data 

Mode 

No. 

Experimental 

Frequency (Hz) 

Analytical 

Frequency (Hz) 

Modal Assurance  

Criteria (%) 

Natural Frequency 

Difference (%) 

1 275 276.34 95.9 0.4 

2 279 276.34 97.3 1.0 

3 303 312.88 93.8 3.0 

4 311 312.88 95.5 0.3 

5 782 792.52 93.9 1.3 

6 -- 792.52 -- -- 

7 823 846.28 90.2 2.8 

8 -- 846.28  -- 

9 1500 1550.3 91.6 3.3 

10 -- 1550.3 -- -- 

11 1515 1558.4 88.5 2.8 

12 -- 1558.4 -- -- 

13 1547 1612.6 92.7 4.2 

14 -- 1612.6 -- -- 

 

Figure 7 - 9 MAC Correlation between the test and simulation  

The casing is modelled as a perfectly axisymmetric structure. Its dynamic 

properties is characterised by the phenomenon of ‘double’ modes: two modes 

with identical natural frequencies and mode shapes which differ only in the 
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angular orientation of the nodal lines [1, 86]. The first two pairs of double modes 

are also observed in the experiment, but with splits in their natural frequencies: 

an indication of the distinctiveness of each mode even though the mode shapes 

are ‘almost’ identical. Physically, this is partly caused by the mass of the 

accelerometer, which destroyed the axisymmetry of the structure, even though 

only very slightly. Manufacturing deviations such as variable wall thickness can 

also split real modes. 

From a model validation point of view, what matters most is that an analytical 

model is able to describe the corresponding physical model with sufficient 

accuracy, so that the user can have the confidence to employ the analytical 

model in similar applications without referring back to the physical test for 

further validation. This is one of the most strongly advocated advantages of 

computerisation in structural dynamic modelling that has been progressed over 

the past few decades. Confidence is a subjective thing. Rigorous scientific 

research and the resultant improved methods and procedures help to boost it to a 

certain degree. However, full confidence still very much depends on intuitive 

understanding of the application and more importantly, experience. To what 

extent the analytical model is judged to be accurate and useful is still a subject 

worth further exploration. 

Throughout the model validation process, there are restrictions and uncertainties 

that prevent a perfect match between the dynamic data obtained from analytical 

simulations and experiments on physical models. Test setup and instrument 

limitations, human errors, uncertainty of environmental conditions and 

unavoidable simplification of analytical models all contribute to the discrepancy. 

Manufacturing errors will also contribute and the list can be further extended. 

These effects can be minimised, even though not totally eliminated, if time and 

cost constraints for such an exercise are not an issue. 

The split of double modes due to the added accelerometer can be minimised if 

the response measurement is of a non-contacting type. One such measurement 

technique is the Laser Doppler Vibrometer (LDV), which is now gaining 

popularity in the aerospace industry [87]. It is an optical velocity-measuring 

device based on the measurement of the Doppler shift in the frequency of laser 

light scattered by a moving object [88]. Another group of non-contact response 
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measurement devices are based on principles in electric circuits, e.g. change of 

inductance, eddy current and capacity etc. due to the change of the gap between 

the sensor and the object [89]. The unfavourable side of the LDV is the cost of 

dedicated equipment required is still very high; as well the measurement can 

only be made in the line of sight. The latter methods require the transducer to be 

fixed to a frame, which may be moving, hence the transducer measures the 

relative displacement, whereas an accelerometer measures the absolute 

acceleration. In addition, the test preparation is much more time-consuming and 

the operation environment requirement is much more stringent comparing to the 

tests using traditional piezoelectric-based accelerometers. From the analytical 

model side, the model can be made as complicated as possible to include all 

expected test parameters, e.g. considering additional mass and stiffness due to 

the accelerometer and more realistic boundary conditions. 

The analytical model can be further improved by applying model updating 

methods. The Inverse Eigensensitivity method described in Chapter Two was 

employed here. Either eigenvectors or eigenvalues can be used; the former tends 

to be more complicated and used more often in updating local parameters. For a 

geometrically simple component with homogenous material properties like the 

casing, global parameters, e.g. physical size, material density and Young’s 

Modulus, are more often of updating value. Another consideration is which one 

of the two, eigenvalue or eigenvector, is more likely affected by experimental 

inaccuracy. There is no point to update parameters to a certain level of accuracy 

while the reference parameter, eigenvalue or eigenvector in this case, cannot be 

measured with a higher accuracy. The derivation of eigenvectors, or mode shape 

information, from experiments could suffer imperfection due to slight inaccuracy 

in marking grid points on the casing surface and non-perfect hammer impact on 

a curved surface. On the other hand, eigenvalues, or natural frequencies, could 

usually be measured more accurately; hence they were chosen as the reference 

parameter. 

The natural frequencies after five iterations, with the Young’s modulus as the 

updating parameter, is shown in Table 7 - 2. The iteration aimed to minimise the 

average Natural Frequency Difference (NFD) . It is reduced from 2.24% to 

1.31%. 
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Table 7 - 2 Model updating result 

Iteration number Exp. 

Mode No. 

Initial 

value 1 2 3 4 5 

Measured 

value  

1 276.34 273.42 271.46 269.49 268.49 268.99 275 

2 276.34 273.42 271.46 269.49 268.49 268.99 279 

3 312.88 309.58 307.36 305.13 304 304.56 303 

4 312.88 309.58 307.36 305.13 304 304.56 311 

5 792.52 784.16 778.54 772.88 770.03 771.45 780 

6 846.28 837.35 831.35 825.3 822.26 823.79 823 

7 1550.3 1533.9 1522.9 1511.9 1506.3 1509.1 1500 

8 1558.4 1541.9 1530.9 1519.8 1514.2 1517 1515 

9 1612.6 1595.6 1584.2 1572.7 1566.9 1569.8 1547 

Ave.NFD 

(%) 

2.24 1.63 1.42 1.33 1.32 1.31  

From the above exercise, following the modal validation and updating procedure, 

we come to the conclusion that the updated analytical model can be further used 

in the subsequent assembly model, within the frequency range of interest. All the 

other major components also need to be tested and the analytical models have 

been updated in a similar manner. 

7.3.2 Modal Testing of Linear Assembly  

Bolted joints are used in the test rig to link the components. It is assumed that a 

bolted joint displays linear properties if it is a tight fit and the external excitation 

is moderate so that there is no relative movement between two connecting 

surfaces. In this situation, the easiest and most effective way to include the effect 

of a joint is to model it as a layer of linear elements between the two connecting 

components in FE analysis. This layer of element shall be able to imitate the 

stress-strain relationship of the frictional interface between the two components, 

which execute similar effect on the assembly as the friction force.  

Figure 7 - 10 shows an example of a linear assembly: the assembly of the casing 

and the linear bearing support. These two components are fixed to each other 

with five evenly spaced bolt joints, which are represented in the FE model by a 

layer of isotropic elements. It is assumed that there is no slippage at the joints 
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and the force applied does not exceed the material’s limit so that the linear 

constitutive equations for these elements still hold. Fundamentally, the joints are 

treated in the same manner as other structural components, with the only 

difference being that the thin layer element’s material properties need to be 

identified via experiment, the value is initially set to be the same as the 

components’. 

 

Figure 7 - 10 Finite Element and experimental models of a linear assembly 

The experimental setup and analysis procedure are the same as the ones 

employed for the component tests in the previous section. 118 grid points are 

chosen as the measurement points as shown in Figure 7 - 10. The test results and 

comparison are presented in Table 7 - 3.  In each case the experimental modal 

analysis has only located one of the pairs of symmetrical modes.  

Table 7 - 3 Correlation between the experimental and the initial analytical data 

Mode 

No. 

Experimental 

Frequency (Hz) 

Analytical 

Frequency (Hz) 

Modal Assurance 

Criteria (%) 

Natural Frequency 

Difference (%) 

1 287.7 301.3 95.1 4.73 

2  -- 301.3  -- --  

3 798.2 838.4 89.9 5.04 

4  -- 838,4  --  -- 

5 1259.5 1360.6 93.7 8.03 

6  -- 1360.6  -- --  

7  -- 1646.1 --   -- 

8 1515.6 1646.1 87.5 8.61 

   

Thin Layer 

FE Model Exp. Model 
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The Young’s modulus E of the thin-layer elements is adjusted to minimise the 

average Natural Frequency Difference It is found that at E = 15x10
9
Pa, the 

average reaches the minimum. The results are shown in Table 7 - 4. 

Table 7 - 4 Correlation between the experimental and the updated analytical data 

Mode 

No. 

Experimental 

Frequency (Hz) 

 Analytical 

Frequency (Hz) 

Modal Assurance 

Criteria (%) 

Natural Frequency 

Difference (%) 

1 287.7 294.57 94.1 2.39 

2 -- 294.57 -- -- 

3 798.2 810.77 92.8 1.57 

4 -- 810.77  -- 

5 1259.5 1280.67 93.7 1.68 

6 -- 1280.67 -- -- 

7 -- 1610.10 -- -- 

8 1515.6 1610.10 89.5 6.24 

By comparing Table 7 - 3 and Table 7 - 4, it can be seen that the correlation 

between experimental and predicted data by the new FE model was improved: 

the average Natural Frequency Difference is about 3%, although the value for 

the last mode is greater than 6%. The MAC values were improved slightly as 

well. The relatively poor agreement for the highest mode, compared with the 

good agreement for casing alone, suggests that the joint is more complex than a 

single isotropic element description.  

7.3.3 Nonlinear Dynamic Tests 

The overall test setup for the rig is shown in Figure 7 - 11. The shaker provides a 

controlled excitation force to the structure which is measured by a B&K 8200 

force transducer. The response is measured at the nonlinear bearing block using 

a B&K 4393 accelerometer which is attached to the structure via a stud-type 

fixing.  

It is understood from the theoretical studies that nonlinear structures display a 

unique frequency response property when excitation amplitude is kept constant 

at any frequency. This property can be used as a guideline to verify whether an 

analytical model represents its real counterpart accurately or not. The force-

control algorithm introduced in Chapter Six is applied here. It ensures that a  
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Figure 7 - 11 Overall setup of the test rig and the measurement system 

constant excitation force is applied to the structure at every excitation frequency 

point. The waveform is generated via the HP 33120A function generator which 

has the capability of changing the clock rate of the output signal without 

discontinuity. This property is essential because if there is a burst between 

waveforms when the frequency progresses, a long settling time is required for 
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the structure to achieve the steady-state condition. In addition, the nonlinear 

structure is characterised by the possible existence of unstable steady-state 

responses, which cuases a jump in the stable response amplitude at around the 

resonance. This will make the control of the excitation force level difficult and 

reduce the chance of discovering all possible steady-state solutions. A National 

Instrument NI4472 Dynamic Signal Acquisition Card is used to acquire force 

and response signals, which are then processed in a LabView based program for 

displaying and storage. A schematic block diagram of the whole test setup is 

shown in Figure 7 - 12, in which the casing is omitted to show the internal 

components. 

 

Figure 7 - 12 Block diagram of the nonlinear test rig set up 

In the following two sections, two nonlinear cases are studied and put into tests. 

Test results are compared with simulations that apply the Multi-Harmonic 

Balance Method to FRF models of linear components. 

7.3.3.1 Case study one: third-order nonlinearity 

When there are no shim plates inserted between the bearing block and the rim, 

the measured joint stiffness in the horizontal direction is described by a third 

order polynomial as shown in Figure 7 - 4. Four runs of stepped-sine sweep tests 

are carried out with controlled force amplitude set at 0.1N, 2N, 3N and 4N 
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respectively. The results are presented in Figure 7 - 13. The sweeps started from 

5Hz to 80Hz with step size of 0.2Hz. In each run, four modes are clearly 

identified within the test frequency range. The influence of the nonlinearity is 

manifested in the slightly distorted FRF curves at mode 2 and 3. The peaks bend 

over to the higher frequency side as the excitation force level increases, an 

indication of hardening stiffness as expected. Mode 1 and 4 do not seem to be 

affected by the joint nonlinearity.  

 

Figure 7 - 13 Measured FRFs for the 3
rd

 order nonlinearity case 

Modal analysis carried out on the FE model of the test rig with equivalent linear 

stiffness at the Nonlinear Bearing Support reveals why mode 1 and 4 are not 

affected by the nonlinearity. Figure 7 - 14 shows the mode shapes of the four 

modes. In each plot, the black wireframe model is the rig at rest condition and 

the blue wireframe model is the maximum deformation at the corresponding 

natural frequency. The scale of the deformations has been adjusted for clearer 

presentation.  

Modes 1 and 4 are the first and second horizontal bending modes of the whole 

rig. The relative movement of the nonlinear bearing support is minimum and 

negligible. Mode 2 is the first bending mode of the spring steel plates supporting 

the bearing block, at which the nonlinear effect should be most prominent. Mode 

3 is the swaying mode of the test rig and it includes deformation of the spring 



Chapter 7          Experimental Case Studies 

 139 

steel plates supporting the bearing block, suggesting that the nonlinearity will 

also affect this mode.  

 

(a)      (b) 

 

(c)      (d) 

Figure 7 - 14 First four modes of the linearised FE model of the test rig 

Finer sweep tests were carried out to identify clearly the shift of the resonant 

frequency of mode 2. Figure 7 - 15 shows the results of four sweeps with 

different excitation forces. The solid lines are derived from the simulation using 

the Multi-Harmonic Balance Method for comparison. The simulation results 

agree with the test very well. 

7.3.3.2 Case study two: second-order nonlinearity 

After 0.4mm shim plates have been inserted between the bearing block and the 

rim of the nonlinear bearing support, the bearing block rests at one of its two off-

centre stable points, B or C as indicated in Figure 7 - 5. When the excitation is 

Mode 1 Mode 2 

Mode 3 Mode 4 
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small, the vibration of the bearing block is restricted to the local proximity of the 

stable point. Around the stable point, for example point B along the stiffness 

characteristic curve, the stiffness has a 2
nd

 order nonlinearity. This property is 

evident from the plot below, in which a 2
nd

 order polynomial curve in red-dot fits 

well to the measured characteristic curve in blue line around the stable point B; 

hence it would be expected that a weakened stiffness characteristics would be 

shown in the FRF curves.  

 

Figure 7 - 15 Comparison of FRFs for the 3
rd

 order nonlinearity case 

 
Figure 7 - 16 Indication of the 2

nd
 order nonlinearity 
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Four runs of stepped-sine sweep tests have been carried out with controlled force 

amplitude at 0.1N, 2N, 3N and 4N, as indicated in Figure 7 - 17. The sweeps 

started from 5Hz to 80Hz with step size set at 0.2Hz. In each run, four modes 

were clearly identified within the frequency range. The influence of the 

nonlinearity is evident in the distorted FRF curves at modes 2 and 3. The peaks 

bend over to the lower frequency side as the excitation force level increases, an 

indication of weakening stiffness as expected. Mode 1 and 4 are the first and 

second bending modes of the test rig, as shown in Figure 7 - 14, which are not 

affected by the nonlinearity. 

 

Figure 7 - 17 Measured FRFs for the 2
nd

 order nonlinearity case 

Finer sweep tests were carried out between 21Hz and 29Hz with a step size of 

0.02Hz. Figure 7 - 18 shows the test results of three sweeps with different 

excitation forces. The excitation frequencies progressed from 21Hz to 29Hz. The 

solid lines are derived from the simulation with the Multi-Harmonic Balance 

Method. The solid lines cover steady-state solutions regardless whether the 

solution is stable or not. It is not possible to observe the unstable solution in tests 

unless special conditions are applied. One method was reported in a paper by 

Stanbridge et. al. [62], in which an additional mass must be added to the system. 

Also, the design of the force control algorithm was not as straightforward as the 

method used in this test. Without using the special treatment, the response 
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amplitude will jump at a frequency at which the steady-state solution becomes 

unstable. In the stepped-sine sweep test with 4.0N constant excitation force, the 

response amplitude jumped at 25.7Hz. The response amplitude jump is also 

observed in Figure 7 - 19, in which the stepped-sine sweeps start from 29Hz, i.e. 

sweep down in frequency. 

 

Figure 7 - 18 Comparison of FRFs for the 2
nd

 order nonlinearity case – sweep up 

 

Figure 7 - 19 Comparison of FRFs for the 3
rd

 order nonlinearity case - sweep down 
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The combination of Figure 7 - 18 and Figure 7 - 19, i.e. the sweep-up and sweep-

down tests provides a full picture of steady-state response of such a nonlinear 

system in a practical situation. 

7.3.3.3 Discussion of the nonlinear tests  

The original idea behind the design of the Nonlinear Bearing Support was that it 

could display an adjustable nonlinearity and could be excited over its full 

operation range. A strong nonlinearity was achieved by compressing the steel 

strips into a slight buckled state, at which there existed non-stable negative 

stiffness. Analytically the steady-state solution of a system with such 

nonlinearity can be worked out using the Multi-Harmonic Balance Method, as 

demonstrated in Chapter Five; however as experienced by the author the steady-

state response of such a system was difficult to achieve in experiment. The 

reasons, concluded after several failed attempts, are: firstly, large excitation 

force and shaker stroke are necessary in order to move the nonlinear bearing 

support over its full operation range. This requires either a large shaker or an 

additional control algorithm to compensate the force-displacement distortion 

inherited in the shaker due to the requirement for large stroke. This is especially 

true near the resonance frequencies. Secondly, there are multiple steady-state 

solutions at frequencies near the resonance. Initial conditions decide which 

steady-state solution the system will end up after the transient response decays 

away. The ‘transient’ stage in this case refers to the stage when the response tries 

to settle down on one steady-state solution while moving continuously from one 

steady-state solution to another. This transient response, or rather the 

‘undetermined’ stage of the response requires much longer and basically 

unpredictable time to settle down, if ever it does. The requirement for the control 

algorithm to cope with such a property is very high. 

In the two experimental case studies, the control algorithm showed stable 

operation and fast convergence when only the main harmonic component in the 

excitation was controlled. It would be ideal and also technically possible to 

control and keep the higher harmonics at zero; nevertheless the iteration and 

calculation would slow down the measurement, and as observed during the 

experiment, the higher harmonic components contributed only a few percent of 
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the total amplitude of the vibration at resonance. Therefore, it is reasonable to 

keep only the main harmonic terms in the experiment. 

The damping of the nonlinear bearing support has not been mentioned in this 

thesis, for the purpose of simplifying the whole problem and focusing only on 

the nonlinearity in the stiffness. However, it does affect the prediction of the 

steady-state solutions. In this thesis work, a structural damping ratio of 0.05 was 

assigned to the joint, and indeed the prediction matches very nicely with the 

experiment result. 

7.4 Concluding Remarks 

The main theme of this thesis is about complex structural assembly modelling. It 

is not only about choosing the best available practices in mathematical modelling 

but also about carrying out systematic experiments to verify the analytical 

models. A fairly complicated test rig was designed and manufactured for such a 

purpose. It consists of key elements typical to complex structural assemblies: 

flexible components, semi-rigid connections and nonlinear elements. Dynamic 

tests were carried out on components, linear assemblies and nonlinear assemblies 

to measure steady-state responses which had good agreement with analytical 

analysis results. 
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8.1 Conclusion of the Research Work 

The problem studied in this research originated from real life applications: we 

need a comprehensive methodology to model accurately and efficiently the 

dynamics of a complex structural assembly, such as a rotating machine, and the 

predictions from the assembly should be validated against experiments whenever 

possible. A bottom-up process was used in this thesis. It is similar to a product 

assembly line. It starts from small parts that have been manufactured to agreed 

standards. With properly-designed connection mechanisms, it eventually grows 

in complexity and completeness. The key for a high-quality final product relies 

on the high quality components and integration scheme. Similarly, in the 

structural modelling process, we need to take good care of components, linear 

joints, nonlinear joints and coupling algorithms in order to get a satisfactory final 

assembly model. 

Each of the above topics can be studied relatively separately, and to a depth 

beyond the reach of a single thesis work. Rather, this thesis takes a step back and 

looks into how each can be best combined to serve the overall purpose of 

producing a ‘reliable’ model. 
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It is believed that in practical situations, ‘real’ loadings are not really known, 

material characteristics cannot be exactly predicted, and knowledge of how a 

structure actually works is imprecise because of the complexity; hence analytical 

models carrying uncertainty information are best for predicting and explaining 

the structural behaviour. Uncertainty definitely exists, but the boundary between 

certainty and uncertainty is not fixed. New techniques, methods and procedures 

can help to improve our grasp of the definite truth and push the boundary further 

into previously uncertain territory. It is the author’s firm belief that we need to 

concentrate on perfecting our understanding of the definite world before resort to 

those uncertainty theories. 

8.1.1 Conclusion on the Modelling of Linear Structures 

Theories and methods behind linear structural modelling have already been well 

developed. It might seem to be quite basic nowadays, but it is crucial to get the 

fundamentals right before we embark on more complicated problems.  

The Finite Element Method has been the dominant method to construct the 

fundamental Spatial model, from which the Modal model and Response model 

can be derived analytically if the structure can be considered to be linear. Theses 

three types of model representations are the key in structural dynamics analysis, 

because they are interrelated and can be derived from experiments on real 

structures. This provides the basis for validating the analytical model.  

Model validation is a necessary step towards achieving an accurate component 

model. It is a way to minimise the uncertainty at the component level. The 

casing example discussed in Section 7.3.1 showed that the original value of one 

of the material properties, Young’s Modulus, was not very accurate, possibly 

due to the uncertainty of the exact alloy used or processing at the manufacturing 

stage. This value was improved by carrying out a model updating process, after 

which the dynamic properties from both prediction and test were brought closer 

to each other. No perfect match was achieved though; this was attributed to the 

test method used, possible dimension variability in the thickness etc. 

8.1.2 Conclusion on Joint Representations 

Mechanical joints have all along been a difficult subject to study because of the 

large amount of variety and the complex physics they involve. If all the fine 
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details of a joint are included in the model, the resultant assembly model will be 

very large and efficient analysis of it will be a problem. Therefore some 

simplifications must be carried out. The aim is to provide manageable but 

realistic joint models to the whole assembly model at minimum cost.  

Linearisation is the first type of simplification. Mechanical joints, even though 

their behaviour are better described as nonlinear, can sometimes still be 

considered as linear at normal operation conditions. They can be represented in 

the same way as other linear structural components, in the form of symmetric 

system matrices. The direct construction of such matrices can be tedious; hence 

using an FE model to model a joint is a convenient alternative. The advantage of 

the FE joint model is that it can be readily integrated with the remaining 

structural FE models. An example has been shown in Section 7.3.2 with such 

application. After parameter updating at the joint only, the linear structural 

assembly model displays dynamic properties that are comparable to the test. 

When a nonlinearity must be included in the joint, some physical measurement 

has to be carried out. It should be noted that a joint is often extremely difficult to  

model accurately using a purely analytical method. It always relies on 

experimental data to verify and correct the mathematical models, normally in the 

form of constitutive equations, either by static loading or dynamic loading 

methods. The joint property of the nonlinear bearing support was obtained by 

conducting a static test as shown in Section 7.2.1. 

8.1.3 Conclusion on the Modelling of Nonlinear Structures 

Calculation efficiency is one of the areas that was assessed in this thesis. It is 

still a very challenging issue when studying the dynamics of nonlinear structures. 

Nonlinear differential equations that describe the dynamic system are difficult to 

solve analytically, as concluded by many mathematicians. Approximation 

methods are often good alternatives. 

Depending on the domain in which the approximation method is conceptualised, 

nonlinear structural dynamic behaviour can be calculated in the time domain 

and/or the frequency domain. Most nonlinear problems are tackled in time 

domain, because it is straightforward and the results are directly comparable to 

experimental observation. However, time-domain analyses in the literature 
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mostly involve problems with only one or a few DOFs. They are used more for 

gaining insight into the physics of a nonlinear system, rather than for prediction 

purposes. If, however, slightly larger scale systems need to be dealt with, time 

domain analysis requires extremely large computation resource. It is without 

doubt that if all the parameters are set correctly, the time-domain calculations 

provide very accurate solution, but it is definitely not a choice if the prediction 

results need to be rapidly generated, e.g. if the prediction is used for condition 

monitoring purposes or for design optimisation procedures where a series of 

iterative stages are required to improve the initial design. 

Frequency-domain methods are another choice, but they are limited to predicting 

steady-state response. If the transient response is of concern, this type of method 

cannot be used. Both transient response and steady-state response are important 

to the understanding of the structure’s dynamic behaviour and either or both of 

them could be used to assess whether the analytical model is constructed 

correctly by comparing the simulation with experimental data. In addition, as  

was stated before,  steady-state responses are most common for practical 

structures or machinery in steady operating conditions, so frequency-domain 

methods were chosen to study the nonlinear structural dynamics. 

The Harmonic Balance Method is proven to be an efficient and accurate 

frequency-domain method. It can handle problems with very strong nonlinearity 

as shown in Section 4.4. A case study of a one DOF system with the 

combination of cubic and negative linear stiffness illustrated that a large number 

of steady-state solutions co-exist at the same excitation frequency at certain 

frequency range. This is in contrast to a linear system in which only one solution 

exists at each frequency. The calculation results from the Harmonic Balance 

Method agree very well with time-domain calculation results, and Harmonic 

Balance Method consumes much less computational power. 

8.1.4 Conclusion on the Modelling of Complex Structures with Localised 

Nonlinearity 

The difficulties relating to modelling a complex structure are mainly due to the 

existence of nonlinearities. There are two types of nonlinearity distributions in 

structures, global distribution, e.g. in the case of large displacement, and local 
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distribution, e.g. in the case of nonlinear joint. It is worth to be mentioned again 

here that nonlinearity is the underlying truth in describing the dynamic behaviour 

of engineering structures even though linearisation works very well in many 

cases. 

The most common formation of a complex structure in reality is the combination 

of many linear components with linear or nonlinear joints, i.e. a largely linear 

structure with localised nonlinearity. Accurate and efficient modelling 

techniques for the complex structure are much dependent on the effective use of 

the dynamic information embedded in the linear part of the structural assembly.  

The Frequency Response Function (FRF) coupling method is an accurate and 

efficient method in linear structural dynamics. The reduction of the problem size 

comes from the omission of DOFs that are of no interest while retaining the 

exact dynamic information in the remaining DOFs in the form of Frequency 

Response Functions. Combining the FRF coupling concept and the Harmonic 

Balance Method produced satisfactory prediction results for a complex structural 

assembly with localised nonlinearity, not only efficiently, as shown in Section 

5.3.3, but also accurately, as shown in Section 7.3.3. The case study shows that it 

took no more than a few minutes of CPU time of a typical PC to find steady-

state solutions across a large frequency range. If a conventional time domain 

method is used however, it would take hours of CPU time just to calculate a few 

seconds of response for the same system. 

It was concluded after the whole exercise that FRF coupling together with 

Harmonic Balance Method is a very efficient and accurate way to model 

complex structures with localised nonlinearity, provided we have good 

component models and joint models and are interested in steady-state response 

conditions. 

8.1.5 Conclusion on Experimental Verification of the Modelling Process 

The main theme of this thesis is about complex structural assembly modelling. It 

is not only about choosing the best available practices in mathematical modelling 

but also about carrying out systematic experiments to verify the analytical 

models. A fairly complicated test rig was designed and manufactured for such a 
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purpose. It consists of key elements typical to complex structural assemblies: 

flexible components, semi-rigid connections and nonlinear elements.  

In many respects the practice of vibration testing is a mixture of art and science. 

It requires experience, deep understanding of the subject and latest measurement 

technology available. There are too many variables in a test and there is no 

single right way to perform a vibration test. 

The accuracy of the experimental measurements is dictated by the capabilities of 

the transducers, data processing equipment, test structure preparation and human 

involvement. Almost all methods for applying the structural excitation will have 

some unwanted modification effects on the structure, as well almost all the 

response measurement transducers and support fixtures will have an unwanted 

influence on the structure too. Many of the potential problems with dynamic 

tests only become apparent during the actual tests. We should be aware of these 

problems and strive to select appropriate methods to minimise these effects. On 

the other hand, we should accept the limitations caused by other more 

uncontrollable factors, e.g. time and cost limitation. Instead of pursuing the best 

test practices, we may have to settle on the best available practices.  

To accomplish the verification of the nonlinear calculation algorithm, an 

amplitude- controlled nonlinear dynamic testing code was introduced. It was to 

some degree, the application of the Harmonic Balance Method in test. Though 

relatively simple in concept, the implementation of the algorithm was rather 

troublesome. Some achievements have been made, in terms of improving the 

reliability, safety measures and reducing the test time.  

8.2 Contributions 

A summary of major contributions of this research work is reported below: 

• The single most important contribution of this thesis work to the field of 

structural dynamics is that for the first time the issue of both accuracy and 

efficiency regarding the dynamic modelling of complex structural assembly 

is addressed, examined in detail and more importantly, verified successfully 

against a series of experiments conducted on a relatively complicated 

structural assembly. FRF coupling combined with the Harmonic Balance 
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Method is demonstrated to be capable of accurately predicting the steady-

state response of nonlinear structural assembly in a very timely fashion; 

• The Harmonic Balance Method has been applied successfully on a 1-DOF 

nonlinear system in finding a large number of steady-state solutions: major-, 

sub- and super- harmonic responses upon the same external excitation. It not 

only shows the effectiveness of frequency-domain method comparing to 

time-domain method, but also shows the effect of nonlinearity on the 

structural’s dynamic behaviour; 

• A test rig was designed and manufactured. It has a prominent and adjustable 

nonlinear element built in, as well as the key structural elements that can be 

found in typical rotating equipment, which make it a very versatile test 

specimen that can be used beyond this project; 

• A robust amplitude-controlled nonlinear dynamic testing code was 

developed, which has been successfully tested out. 

8.3 Future Work 

Here is a list of topics that author finds interesting and would like to suggest 

pursuing further: 

• One of the characteristics of analytical steady-state response of nonlinear 

structure is the possible existence of non-stable solutions. Harmonic Balance 

Method can not produce results that differentiate these two types of solution, 

without referring to classical time-domain methods. It will be very useful to 

further develop the frequency-domain methods that can efficiently 

differentiate these two; 

• Nonlinearity identification is another area to be explored with the application 

of the calculation algorithm for complex structural assembly. It is not an easy 

task because being an inverse problem, there are much more unknown 

variables than the known ones. However this can be potentially very valuable, 

especially in damage detection, because damage is often the source of 

nonlinearities and can alter the steady-state dynamic properties during 

normal operation, which could be picked up as an indication of its existence; 
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• The amplitude-controlled nonlinear dynamic testing code should be further 

developed. It should include more harmonics in its control loop so that it is 

possible to handle more severe nonlinear cases. 

8.4 Papers and Reports Related to the Thesis Work 

Some publications attributed to this thesis work are listed below. 

8.4.1 Conference Publications 

2. S. Huang, D. A. Robb, D. J. Ewins and E. Petrov, “Dynamic Modelling and 

Testing of a Representative Aeroengine Test Rig with Adjustable Nonlinear 

Bearing Supports”, presented at ISMA2006 International Conference on Noise 

and Vibration Engineering, Leuven, Belgium, 2006. 

1. S. Huang, E. Petrov, and D. J. Ewins, "Comprehensive Analysis of Periodic 

Regimes of Forced Vibration for Structures with Nonlinear Snap-Through 

Springs," presented at 6th International Conference on Modern Practice in Stress 

and Vibration Analysis, Bath, UK, 2006. 

8.4.2 Reports 

Europe Union Project – GROWTH – MagFly (GRD1-2001-40191) 

6. S. Huang and D. A. Robb, “Structural Damage Sensitivity Investigation with 

the Application of Modal Data”. 

5. S. Huang and D. A. Robb, “Integrated Dynamic Model of Complete System”. 

4. S. Huang and D. A. Robb, “Development of validated component modelling 

techniques for casing, bearing supports and rotor to provide representative 

characteristics”. 

3. W. Liu, S. Huang, and D. A. Robb, “Sensor Placement Optimisation for 

Damage Detection”. 

2. S. Huang, W. Liu and D. A. Robb, “Development of Reliable Model 

Reduction Techniques for the Whole System”. 

1. S. Huang, and D. A. Robb, ”Alternative Design of Load-Sharing Bearings”. 
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A.2 Linear Bearing Support 
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A.3 Nonlinear Bearing Support – Rim 
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A.4 Nonlinear Bearing Support – Assembly 
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A.5 Shaft Lock 
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A.6 Rotor 
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A.7 Structural Bar and Miscellaneous Components 
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Simulation of a 1-DOF Nonlinear 

Oscillator 

 

 
B.1 Comparison of results from time integration and HBM 

calculation 

The Nonlinear Bearing Support of the test rig was designed in such a way that it 

displays in the horizontal direction a stiffness pattern that is the combination of a 

negative linear stiffness and a third-order polynomial stiffness. The resultant 

system governing equation is: 

 ( ) ( ) ( ) ( ) ( )3

1 3 sinmu t cu t k u t k u t F tω+ + + =ɺɺ ɺ  (B.1) 

in which 1 0k <  and 3 0k > . 

Such equation also appears in population dynamics and Earth’s magnetic field 

model. It was first systematically reported by Holmes [65] in 1979, and has since 

become an interesting subject, mainly for mathematicians to understand the 

intricate behaviours of such a nonlinear system.  It is understood that multiple 

steady-state solutions exist in a nonlinear system when it is under periodic 

excitation. It will be very interesting to see how such kind of nonlinear responses 

can be captured by frequency-domain calculations. It has been proven from this 

exercise that HBM can locate steady-state solutions much faster than time-

domain method. 

The following parameters are chosen for numerical studies: F =2000N; m =1kg; 

c =1Ns/m; 1k =-1000N/m 3k =10000 N/m
3
. One of the main purposes of this 
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study is to find as many as possible steady-state periodic solutions at any given 

excitation frequency. Time-domain calculation based on Runge-Kutta method 

was conducted at 24.6Hz. 200 different initial conditions, in terms of velocity 

and displacement, were applied. Different types of steady-state solutions were 

observed, manifested in the form of major- and sub- harmonic responses. HBM 

was applied to the same system at the same excitation frequency. The 

comparison of some of the steady-state responses are presented in Figure B - 1 to 

Figure B - 6. The first plot shows the time domain variation of the response and 

excitation, from which it is possible to judge what is the dominant harmonic 

term in the response. The second plot is the so-called ‘phase diagram’ in which a 

trajectory of motion is plotted over period of the response. The velocity and 

displacement are the two coordinates.  
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(a)       (b) 

Figure B - 1 (a)Time domain variation of displacement and excitation and (b) phase space 

trajectory of solution of the major harmonic response with zero constant component in 

(‘-·-·-·-’ external excitation, ‘___‘ time integration, ‘··○··○··○·· ‘ one harmonic term (1) included, 

‘-∆--∆--∆--‘ two harmonic (1, 3) terms included.) 
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(a)       (b) 

Figure B - 2 (a) Time domain variation of displacement and excitation and (b) phase space 

trajectory of solution of the major harmonic response with a constant component 

(‘-·-·-·-’ external excitation, ‘___‘ time integration, ‘··○··○··○·· ‘ one harmonic (1) term included, 

‘-∆--∆--∆--‘ three harmonic (0, 1, 2) terms included.) 
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(a)       (b) 

Figure B - 3 (a) Time domain variation of displacement and excitation and (b) phase space 

trajectory of solution of 1/2 sub-harmonic response 

(‘-·-·-·-’ external excitation, ‘___‘ time integration, ‘··○··○··○·· ‘ two harmonic terms (0, 1/2) 

included, ‘-∆--∆--∆--‘ four harmonic (0, 1/2, 2/2, 3/2) terms included.) 
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Figure B - 4 (a) Time domain variation of displacement and excitation and (b) phase space 

trajectory of 1/3 sub-harmonic response 

(‘-·-·-·-’ external excitation, ‘___‘ time integration, ‘··○··○··○·· ‘ one harmonic term (1/3) 

included, ‘-∆--∆--∆--‘ two  harmonic terms (1/3, 3/3)  included.) 
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Figure B - 5 (a) Time domain variation of displacement and excitation and (b) phase space 

trajectory of 1/4 sub-harmonic response 

(‘-·-·-·-’ external excitation, ‘___‘ time integration, ‘··○··○··○·· ‘ two harmonic terms (0, ¼) 

included, ‘-∆--∆--∆--‘ five harmonic terms (0, ¼, 2/4, ¾, 4/4) included.) 
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Figure B - 6 (a) Time domain variation of displacement and excitation and (b) phase space 

trajectory of 1/5 sub-harmonic response 

(‘-·-·-·-’ external excitation, ‘___‘ time integration, ‘··○··○··○·· ‘ one harmonic term (1/5) 

included, ‘-∆--∆--∆--‘ three harmonic terms (1/5, 3/5, 5/5) included.) 

It is show from the above plots that the HBM calculation results are very close to 

the time-domain calculation results. In addition, HBM calculation is much more 

efficient, and more thorough in finding solutions that belong to the same 

harmonic regime. This is evident in Figure 4 - 3 and Figure 4 - 4 in Chapter 4. 

B.2 Stability Check  

The HBM calculation discovers a large group of steady-state solutions when the 

system is under fixed-amplitude periodic excitation, but it could not provide 

information whether the solutions are stable or not, i.e. whether or not the 

solutions exist in physical world. The stability of the steady-state response of this 

nonlinear system is not the emphasis in this study; however, some interesting 

findings were recorded, one of which, the system behaviour under varying 

excitation frequency, is reported here. This study is not only important to the 

understanding of the system’s nonlinear behaviour, but also to some possible 

physical applications, e.g. the system behaviour in the run-up or run-down 

operation of the rotating machinery. 

Figure B - 7 shows a cluster of subharmonic steady-state solutions, with the y-

axis being the response amplitude. This is an extraction from Figure 4 - 4. Each 

black line represents the solution calculated by HBM over the whole frequency 

range. Blue dots are the calculation results from the Runge-Kutta method. In this 

exercise, time-domain calculation of the steady-state response first settles down 

on one of the sub-harmonic branch. The excitation frequency is gradually 
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reduced and the response is recorded. Figure B - 7 reveals that not all the HBM 

calculation results exist in the time-domain calculation. 

All the subharmonic responses evolve in the same pattern as the excitation 

frequency decreases. Take the 1/3-subharmonic response branch for instance, at 

the higher frequency side, the response is symmetric to the global centre in the 

phase plane as shown in Figure B - 8. The symmetry is broken as the excitation 

frequency decreases and reaches a point that a DC term appears in the solution. 

The amplitude starts travelling on another branch. A typical time-domain 

variation and phase trajectory is shown in Figure B - 9. Further decrease of the 

excitation frequency leads to a point where the solution loses its stability. The 

loss of stability is preceded by a short span of frequency at which the steady-

state response displays ‘period-doubling’ behaviour as shown in Figure B - 10. 

The red circles in the phase plane are called Poincaré Points. They are the record 

of the response every time the excitation is at the same phase angle. There are 

six Poincaré Points in the phase plot, which means that the response repeats 

itself after six cycles of excitation. The forced response then jumps to another 

branch after the ‘period-doubling’. This jump can lead the solution to different 

steady-state response branches and the choice of branch appears to be so 

sensitive to the frequency variation speed that it can be considered as random. 

Figure B - 11 to Figure B - 13 shows the similar evolution on the branches of 1/5 

subharmonic responses. 

 
Figure B - 7 A cluster of sub-harmonic response branches 
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(a)       (b) 

Figure B - 8 (a) Time domain variation of displacement and excitation and (b) phase space 

trajectory of point A in Figure B - 7 

 
(a)       (b) 

Figure B - 9 (a) Time domain variation of displacement and excitation and (b) phase space 

trajectory of point B in Figure B - 7 

 
(a)       (b) 

Figure B - 10 (a) Time domain variation of displacement and excitation and (b) phase space 

trajectory of point C in Figure B - 7 
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(a)       (b) 

Figure B - 11 (a) Time domain variation of displacement and excitation and (b) phase space 

trajectory of point D in Figure B - 7 

 

(a)       (b) 

Figure B - 12 (a) Time domain variation of displacement and excitation and (b) phase space 

trajectory of point E in Figure B - 7 

 

(a)       (b) 

Figure B - 13 (a) Time domain variation of displacement and excitation and (b) phase space 

trajectory of point F in Figure B - 7 
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