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ABSTRACT

Engineering structures normally exist in the form of assemblies of severa
components or substructures, and the modelling, prediction and optimisation of the
assembled structures are presently achieving far from the required accuracy and
reliability, and from that which is attained for the individual components. This is the
essential problem addressed by this research.

The difficulties in achieving the required accuracy are amost certainly due to the
variety and complexity of joint types and to the lack of an accurate estimation of the
interactions between substructures. This thesis provides two approaches for joint
parameter identification, a least-squares method based and a neural network based
one. Their mathematical backgrounds are thoroughly presented and their validity is

examined by numerical case studies.

The coupling analysis method has the equal importance to the joint parameter
identification. Two branches of coupling methods, CMS and FRF-based, are
systematically investigated. Two new methods, one in each branch, are developed to
take joint effects into account in the analysis. Numerical studies show that these
methods are accurate and efficient. The significance of moda incompleteness and
measurement noise to the coupling analysis is also estimated.

Two relevant issues in joint modelling and substructure coupling are also discussed in
this thesis. They are (i) non-linearity considerations in joint modelling and
substructure coupling and (ii) impact of rotational DOF information. The former
reviews the progress of nonlinear joint modelling as well as the analysis methods
dealing with nonlinear coupling problem, indicating that the nonlinear behaviour of
fastening joints is not significant. The latter demonstrates the importance of the
RDOF-related information in both joint modelling and FRF coupling analysis.
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NOMENCLATURE

M atrices and vectors

T mmoO 6 0
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viscous damping matrix of structure
viscous damping matrix of joint
structural damping matrix of joint
error matrix

force vector of assembled structure
receptance matrix

identity matrix

stiffness matrix of assembled structure
stiffness matrix of joint

mass matrix of assembled structure
mass matrix of joint

residual matrix

transformation matrix

joint impedance matrix

viscous damping matrix of substructure
viscous damping vector of joint
structural damping vector of joint
force vector of substructure

force vector of joint

stiffness matrix of substructure
stiffness vector of joint

mass matrix of substructure

mass vector of joint

noi se sequence, a vector

normal coordinates
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Scalars

>

o
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generalised coordinates

physical coordinates

eigen-value matrix, diagonal

mass normalised eigen-vector matrix
mass normalised eigen-vector
eigen-vector matrix

residual attachment mode matrix

Cross section area

Young’s modulus

response function of unit pulse

the simulated noise-free FRF

the simulated noise-contaminated FRF

bending section modulus

number of internal DOFs

length of a beam element

number of DOFs

number of coupling DOFs of an assembly of substructures
number of frequency points

eigen-value

proportional coefficient of damping matrix

singular value or standard deviation of added noise

percentage of noise



Symbols

A substructure A

B substructure B

C coupling coordinate of assembled structure, subscript

C coupling coordinate on substructure A of assembled structure, subscript
C coupling coordinate on substructure B of assembled structure, subscript

| internal coordinates of assembled structure, subscript

C coupling coordinate of a set of substructures, subscript

c coupling coordinate on substructure A in a set of substructures, subscript
c coupling coordinate on substructure B in a set of substructures, subscript
h subscript, high frequency range

[ internal coordinates of a set of substructures, subscript

I subscript, low frequency range

O real set

Abbreviations

CMS component mode synthesis

CMSJ CMS with joint considered and residual attachment mode compensation
DOF degree of freedom

FE finite element

FRAC frequency response assurance criteria
FRF frequency response function

GIDM general joint description method

K-J Klosterman-Jetmundsen method
LSM |east-squares method

PCA principal element analysis

RBF radial basis function

RDOF rotational degree of freedom

TDOF trangational degree of freedom
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CHAPTER 1

GENERAL INTRODUCTION

1.1. INTRODUCTION TO THE PROBLEM

Structural dynamics analysis is required more and more by industry to make
accurate predictions of the response of structures under a variety of
circumstances. With regard to increasing international competition, this
requirement is becoming urgent because successful predictions will lead to
more elegant and efficient designs, more durable and comfortable products as

well asto lower energy consumption related to dynamics.

The modelling and dynamic response prediction techniques for individual
structural components have been well developed and a number of sophisticated
and powerful software packages are in practical use. However, most
engineering structures exist in the form of assemblies of several components or
substructures, and the modelling, response prediction and optimisation of the

assembled structures' dynamics are presently far from attaining the required
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accuracy and reliability, and from that which is obtained for the individual

components. Thisisthe essential problem addressed in thisthesis.

The difficulties encountered in achieving the required accuracy of dynamic
response predictions are aimost certainly due to the variety and complexity of
joint types and behaviour as well as to the lack of an accurate description of the
interactions between substructures. However, general methods which are able to
model various types of joints have not been reported and the prediction methods
for substructure coupling with joints included have not been systematically
developed. Fundamental research on these two aspects is urgently demanded
and further progress on developing powerful applicable software is needed by
industry. It is intended that new methods are developed whereby we can not
only understand the characteristics of the joints and the mechanisms of
coupling, but also learn to utilise the dynamic properties of joints in coupling

analysis so as to modify and to optimise the dynamic response of our structures.

1.2. BRIEF REVIEW OF STATE-OF-THE-ART

Engineering structures are often fabricated from components by using a variety
of connections, such as bolted, riveted, welded and bonded joints etc. In the past
three decades, the importance of joint modelling or descriptions of joint
dynamic properties has become more and more significant. Modelling methods
which have been reported are basically classified into two categories: linear
joint models and nonlinear joint models. The linear joint models are mostly
used in modelling tightly fastened joints in engineering structures and are the
main concern of this thesis. The nonlinear joint models normally exhibit

friction-related non-linearities.

Experimental investigations on adhesive bonded joints were carried out in 1972
by Thornley and Lees [ThLe72]. Static and dynamic experiments showed the
stiffness and damping properties of the joints by measuring loads as well as
displacements. The stiffness was found to be dependent on the type of machined

surface and the quality of surface roughness. In general, the smaller the
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roughness value of the surface the higher the stiffness. The stiffness was
basically linear and became softening after the interface pressure exceeded a
certain value. A small increase in damping was achieved when using the epoxy
resin adhesives compared with that obtained with dry friction. Normal loads
were applied without any significant dliding of the joint faces. Thornley and
Lees’ work revealed that the joint bonded by adhesives has improved stiffness

and damping characteristics.

A simple analytical joint model, comprising a spring and a parallel dashpot
connecting each co-ordinate direction of two substructures, was first proposed
by Yoshima [Yosh77] for describing welded and bolted joints. The stiffness of
the springs and damping coefficients of the dampers used in the model were the
equivalent stiffness and damping coefficients of the joints. They were identified
iteratively by comparing the resonance frequencies and damping ratios of the
first two modes. This method was later applied to a dynamic analysis of a
vertical lathe [Yosh79]. The joint model proposed by Yoshima is simple and
reliable in his case studies, but his algorithm for the identification is not

effective.

Wang and Liou used the same model, a group of parallel stiffnesses and
dashpots, to represent bolted joints and developed a direct identification method
[WaLi90][WaLi9l]. The parameters of these connections, stiffness and
damping coefficients, were identified by employing a least-squares method with
the input of FRFs of the substructures as well as their assembly. This algorithm
IS more general and effective compared with Yoshima's [Yosh77]. Witek
applied the same model and similar algorithm to identify dynamic parameters of

vibro-isolation pads in machines [Wite97].

A more general joint model which is expressed by stiffness and damping
coefficient matrices was proposed by Wang and Sas [WaSa90]. The essential
algorithm for identifying the joint parameters is to transform the assembled
system into several single DOF systems using selected eigen-vectors. These
eigen-vectors should be sensitive to the identified parameters. It is obvious that
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this method relies on the availability and accuracy of the mode shapes of the

assembled structure. It is not very promising for practical applications,

To extract joint parameters without interference from complicated dynamic
characteristics of substructures, a method based on rigid-body dynamics and
frequency response function measurement was developed by Becker et al.
[BeWB99]. Joints are isolated by connecting rigid bodies instead of elastic
substructures. It is easy to obtain the stiffness matrix of the joint by means of
this method but the application of this technique is quite limited.

In the area of finite element model updating, joint modelling is of interest
because of the existence of unknowns in joints. Mottershead and Friswell et al
[MoFr94] used an eigen-value sensitivity analysis based method to update the
finite element models of structures which consist of adhesive, welded and
bolted joints. The updating parameters were chosen according to the
characteristics of different types of joint. For instance, in the study of two
adhesive joints between plates, stiffness parameters of the elements in the
adhesive area were selected as updating parameters. In the study of bolted joints
between two beams with welded flanges, the updating parameters were mass
and stiffness for the bolts and the offset dimensions of the beam elements in
both beam and flanges. This eigenvalue sensitivity based method was also
applied to the welded joints in a tubular H-frame [HoGu99]. It can be seen that
with this technique the updating parameters may not be unique to achieve the
same goa in the updating procedure and in most problems parametric
uncertainty exists in both the joints and the substructures simultaneously.

Similar to the work reported in [MoFr94], nodal offset dimensions were taken
as updating geometric parameters to update a structure with welded joints in
[AhMF96]. A generic element model approach, which decomposes the stiffness
matrices of an element or a group of elements into local modes and generates a
family of acceptable stiffness matrices, was applied to update the joints. The
Generic model approach was regarded as a more general method and yielded a
better result compared with the updated model using offset parameters.
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A general impedance joint model was proposed by Ren and Beards [ReBe95].
This is basically a generalised method developed from [WaLi90]. Compared
with Wang and Liou's joint model, Ren's method deals with a more general type
of joint. The impedance matrix of the joint is constructed using mass, stiffness,
viscous and/or structural damping matrices. FRFs measured from substructures
and their assembly are required for input data and a least-squares method is
employed for solving the joint parameters. The drawback of this method is that
the coefficient matrix of the linear equations about joint parameters is often ill-

conditioned and sensitive to noise in input FRFs.

A hybrid method, combining a finite element model with the modal testing
technique, was proposed by Y uan and Wu [YuWu85]. The finite element model
of an assembled structure is given with unknown joint parameters. Experimental
modal analysis provides eigenvalues and eigenvectors of the system, which are
applied to the finite element model to form such a hybrid equation of motion.
The unknowns in this equation are then calculated. A similar idea was also
reported by Park and Kim [PaKi95], who applied an optimisation method to
solve joint parameters and devising a cost function as the difference between

experimental and analytical results.

Nonlinear joint modelling has not been studied as thoroughly as that based on
linear models because of the difficulty in understanding the mechanisms and the
necessity in practical applications. A few papers published by Gaul et al on
bolted joint modelling [Gaul83][GaNW94][LeGad5] basically represent the
current situation. These papers will be introduced in Chapter 6 in detail.

Substructure coupling analysis has essentially two techniques: (i) component
modal synthesis (CMS) and (ii) the impedance coupling or frequency response
function (FRF) coupling methods. The CSM was first developed by Craig and
Bampton [CrBa68] and has been in use for over three decades with little
development was achieved so far [Crai00]. An attempt to introduce joints into
the synthesis procedure was tried by Urgueirain 1989 [Urgu89] and by Lou in
1993 [LoGh93]. Lou introduced a concept of residual attachment mode to
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compensate for the error caused by mode truncation encountered in [Urgu89]
and also devised quite a useful method.

The FRF coupling method reported by Jetmundsen et al [JeBi88] has an
inherent advantage of being able to use measured FRFs directly. There are
therefore no errors introduced by modal analysis but the noise contained in the
measured FRFs is usualy the trade-off. A development of this method made by
Ferreira [Ferr98] introduces parallel scalar nonlinear springs between the
substructures and it can be applied to relatively smple cases.

To sum up, linear joint modelling, which includes mathematical expressions for
joints (spring and dashpot, impedance matrix etc.) and algorithms for solving
the parameters in these expressions, has not been fully developed. The currently
developed methods still have flaws either in the way that the mathematical
expressions for the joints are too specific or the algorithms to solve the
parameters are not efficient and robust. On the other hand, the classical CMS
methods do not have the joints involved [CrBa68] [CrCh77] and the recent
development of CMS with joints [LoGh93] needs to be validated. The FRF
coupling methods have similar problems as CMS and lack for a genera
description for joints. Therefore, a general joint description and a robust
algorithm for joint parameter identification are needed and the coupling analysis
methods, both CM S and FRF coupling, should be devel oped systematically with
ageneral type of joint included.

1.3. PROPOSED DEVELOPMENTS

The major purpose of this research is to develop methods which enable the
construction of mathematical models of assembled structures in order to predict
the required response levels to arequired accuracy by giving the necessary input

data of damping and excitation levels.

The proposed developments of the research reported in thisthesis are
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» development of aleast-squares based method to model joints on the basis of
alinear assumption and thereby to identify the joint parameters,

» development of a neural networks based method to identify parameters of
joints, utilising parametric families of finite element models and PCA
techniques to extract feature vectors as training sets;

» development of conventional CMS and FRF coupling methods to analyse
coupled structures with joints involved and providing fundamental theories,
algorithms and examples for verification;

* understanding of the mechanics and extent of nonlinear effectsin real joints,

» clarification of the impact of rotational degrees of freedom to both joint

parameter identification and coupling analysis.

1.4. SUMMARY OF THE THESIS

Two major issues are addressed in this thesis: joint parameter identification and
substructure coupling analysis. These two parts of the work determine the basic
profile of the necessary theory for solving the problem of interest. Logicaly,
these two aspects are independent in development and application but they deal
with related problems in structural dynamics, namely, the response prediction of
coupled structures. Classifying these two parts of work mathematically, we
regard coupling analysis as a direct problem and parameter identification as an
inverse problem. This thesis presents the methodologies for both aspects
systematically by building up fundamental mathematical principles and
validating these principles by numerical simulations. Two controversia topics,
the nonlinear effects and the impact of rotational degrees of freedom (RDOF),
are separately discussed in terms of their importance to the major issues. The
new methods developed in this thesis are validated by numerical studies and it
is expected to apply them to more complicated cases and to practical structures

in industry.

In Chapter 2, a least-squares method (LSM) based procedure to identify joint
parameters using measured frequency response functions (FRFs) is presented.

This procedure deals with general linear joint models and identifies joint mass,
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stiffness and damping coefficient matrices. Since the numerical problems
existed in the fina linear equation for the solution of joint parameters, two
different algorithms are developed and the robustness is examined by numerical

Investigations.

In Chapter 3, neural networks are used to identify appropriate equivalent joint
parameters. The application of neural networks to joint parameter identification
iIs a new development to the subject. This method is proposed due to the
consideration that neural networks have a good reputation in mapping nonlinear
relationships between input and output. After a network is properly trained, it
possesses very good generality and tolerance to input noise. Two relevant
techniques used to prepare training sets for the networks, the parametric
families of finite element models and principal element analysis, are also

introduced in this chapter.

Chapter 4 addresses the classical component modal synthesis (CMS) method
with developments for adding joint between the assembled components. This
basically is a computation-based method; e.g. component modal properties are
obtained from its finite element model. An inherent problem, the out-of-range
modes residual effects on the analysis results is discussed and a residual
attachment mode method is introduced to accommodate the problem.

Chapter 5 introduces the genera joint description method (GJDM), which is
newly developed in this area and extends the conventional existing FRF
coupling analysis procedure to a more sophisticated level by including joints
between the substructures. The principle of the method, an algorithm to

implement the method and case studies to verify the method are provided.

Two relevant issues in joint modelling and substructure coupling are also
systematically discussed in this thesis. They are in Chapter 6, non-linearity
considerations in joint modelling and substructure coupling, and in Chapter 7,
the impact of rotational degrees of freedom (RDOFs) information in the
analysis. The former chapter reviews over 40 publications which represent the

progress of research on friction modelling and nonlinear properties of structural

8
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joints. The importance of nonlinear joint modelling is then discussed according
to the review and some experiences in experiment. A strategy to deal with non-
linearity in FRF coupling analysisis also discussed. The latter chapter indicates
the consequence of the absence of the RDOF-related information in both LSM
based joint parameter identification and FRF coupling analysis. The RDOF-
related FRFs play an important role in both of the applications.

Major conclusions drawn from the research are summarised in Chapter 8, the
last chapter. Detailed mathematical derivations arising from different parts of
the research are left to Appendix A through E.
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CHAPTER 2

LINEAR JOINT MODELLING —

LEAST SQUARES METHOD

2.1. INTRODUCTION AND OBJECTIVES

Joint modelling playsa critical role in practical coupled structure analysis.
Standard coupling methods are based on the assumption that substructures are
coupled with perfect jointg,e. rigid connections in spatial coordinates. This
assumption can be far from the truth in some of the real-world situations where
structures are coupled with bolts, rivets, glue or welds. On the other hand, the
study of joint modelling or joint parameter identification has been developed
independently in the areas of FE model updating and vibration control. It is
expected that the combination of standard coupling methods and joint modelling
methods will produce more practical and more accurate solutions for the

analysis of coupled structures.

10



Linear Joint Modelling — Least Squares Method Chapter 2

Studies on joint modelling have been carrying out since it was realised that the
determination of joint parameters is critical to the analysis of assembled
structures, in both static and dynamic respects. A review of the studies on linear
joint modelling has been made in the first chapter of this thesis. Of the methods
reviewed the direct method for joint parameter identification developed by
Wang and Liou [WaLi90] [WaLi91] has the advantage of being simple and free
of factitious error by using the measured FRFs. The interface displacement
vectors of the coupling substructures are related to the interface force vector by
a transfer function. It is this transfer function that describes joint properties in a
diagonal impedance matrikg. it corresponds to the point-wise connections as
shown in Fig.2.1. This joint model has two drawbacks: the specific form of
transfer function and the requirement of measurement at coupling DOFs of the
assembled structure. These two disadvantages confine the application of this

method.

Fig. 2.1 A linear joint model

The linear joint model presented by Ren [Ren92] is more general. The transfer
function which relates the interface displacement vectors of substructures to the
interface force vector is a symmetric impedance matrix. This joint impedance
matrix, Z , consists of all possible physical parameters of the joints sukh as

M, C andD. There are also more choices for the measurement DOFs i1 Ren
method. If the coupling DOFs in the assembled stru@tgenot accessible, the

FRFs measured at other DOFs can be employed instead. Apart from these two

11
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advantages, the conditions of equilibrium and compatibility are the same in both
methods. A problem of R&method is that the coefficient matrix is often
being ill-conditioned and the solutions obtained using least-squares method are

then sensitive to the noise in measured FRFs.

In this chapter, a general method for the identification of linear joint parameters
using measured FRFs is presented based on '&/and Re's methods. The
development of this general method and the improvement of its constituent

algorithms are reported.

The objectives of the work in this chapter are:

» deriving the mathematical expressions of the identification method;

» providing numerical simulations to validate the developed method;

* investigating the robustness of the method, which includes noise simulation
in FRFs and error propagation analysis in the procedure of solution;

» refining the method by suggesting a proper usage.

2.2. THEORETICAL BACKGROUND

2.2.1. Definition of Joint

A set of substructures, substructure A and B, which have not been assembled,
are shown in Fig. 2.2, where the joint is considered as a collection of the
connections between substructure A and B. The coupled system is shown in Fig.
2.3.

_ c
| [
S m f
C
substructure A substructure B joint

Fig. 2.2 Collected substructures and joint

12
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2.2.2.

To distinguish the status of expressions before and after coupling, we use lower
case letters to denote the uncoupled system and use upper case letters for the
coupled system. In the uncoupled substructures, the DOFs related with the
connections are called "coupling DOFs" and are denoted by the sulosarpl

those DOFs not related with the connections are called "internal DOFs" and are

denoted by the subscript

Fig. 2.3 The coupled system

In the coupled system, the coupling DOFs are denote@ byd the internal
DOFs are denoted by

The joint has no internal DOFs. All its DOFs are coupling DOFs connecting

substructure A and substructure B.

Conditions of Compatibility and Equilibrium
The conditions of compatibility and equilibrium must be satisfied at the

coupling coordinates in the coupled structure. Therefore, the condition of

equilibrium should be expressed as

Fo=f +f (2.1)
The force vector of the assembled structure equals the vector summation of the
force vector of substructures and joint. Partitioning these force vectors

according to substructure A (subscripts with —) and substructure B (subscripts

with ~), we have

[F

2]
ol

(2.2)

oo™

CF
T

(]

0_o
alle

The condition of compatibility is

(@)
ol

13
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c=X (2.3)

which means that at the coupling DOFs the displacement vector of the
assembled structure is equal to the displacement vector of the substructures and
the displacement vector of the joint. Similar to equation (2.2), the partitioned

form of the condition of compatibility is then
X0

=00 (2.4)
X0

2.2.3. Essential Equations

Considering the coupled system, the relationship between the displacements and
the forces is built up via the system receptance matrix:

|:|>(I|:| |:'_III HICDEFIE

%(CE: H‘Iq Hee %CD =9

For any of the substructures, the relationship between the displacements and the

forces is then:

D(CD H-Ici Hm%cm -
Also, the joint is described as:
Zx =f (2.7)

Forces and displacements of the internal coordinates keep no change before and

after coupling. Hence,

F =f (2.8)

X, =X (2.9)
Substituting equations (2.1), (2.3), (2.6) and (2.8) into (2.7), we obtain
fo=[1+2zH |*(F. -ZH F) (2.10)
Substituting equations (2.3), (2.9) and (2.10) into (2.6), leads to

DX 0 |:Hii _Hic(l +ZHcc)_lZHci Hic(I +ZH cc)_l|IF| E

'O= 2.11
%(CE g-lci _Hcc(l +ZH cc)_lZHci Hcc(I +ZHcc)_l%CD ( )

14
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2.2.4.

Comparing equation (2.11) with equation (2.5), the sub-matrices of the
receptance matrix of the coupled system can be obtained in terms of frequency
response sub-matrices of the substructures and the impedance matrix of joint as

follows:

H|| = Hii _Hic(l +ZHcc)_1ZHci
_ _ -1

HCI _Hci Hcc(l +ZHoc) ZHci (212)

Hic = Hic(I +ZHcc)_l

HCC :Hcc(l +ZHcc)_l

Substituting the third equation in (2.12) into the first one, and substituting the
fourth equation in (2.12) into the second one then rearranging the first and the
second equations, we have

HcZHy =H; -H,

(2.13)
HeZHg =H, —Hg

Also, rearranging the third and the fourth equations in (2.12), we have

HICZHcc:Hic_HIC

(2.14)
HeeZH, =H, —He

Equations (2.13) and (2.14) are the basic formulae which can be used to identify

the joint impedance matrixZ .

Discussion on the Applicability
The two formulae in equation (2.13) and the other two in (2.14) provide
alternative ways to use FRF data for the identification of joint parameters.
When FRFs at the coupling DOFs of the assembled strudtiye are difficult
to measure because of accessibility, the FRF matrjx can be measured

instead and the first formulae in (2.13) and (2.14) shall be used in the
identification. From this point of view, the first equations in (2.13) and (2.14)

are recommended rather than the second ones.

Furthermore, in order to avoid the problem of measurement accessibility, a

method which does not need FRFs related to the coupling DOFs of the coupled

15
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system at all, can be derived from the expressiorHfpr one of the frequency

response function sub-matrices of the coupled system in (2.12). Since

| +2ZH_ =2z +H ) (2.15)

(1+ZH, ) =(2*+H, )2 (2.16)
in whichZ has to be non-singular, we have

H, =H; _Hic(z_1+Hcc)_chi (2.17)

Z'=H,H,-H,)"H, -H (2.18)

ic cc
The trade-off of this method is that one more inversion is introduced, which

reduces the efficiency and accuracy of the solution and makes the method
sensitive to measurement errors and to other factors that affect the condition of

the FRF matrix.

Oncethe impedance matriZ is obtained, the physical parameters of joint can

be calculated according to the definition of impedance matrix:
Z(w) =K-awM+i(wC+D) (2.19)

whereK, M, C andD are the joint matrices of stiffness, mass, viscous damping

and structural damping coefficients.

16
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2.3. ALGORITHM FOR SOLVING JOINT PARAMETERS

The implementation of the methods for joint parameter identification mentioned
in the preceding section of theoretical background are discussed here. Two
algorithms are proposed for computation of the required paramMerK,, C

and D. First, the general version of the basic equations (2.13) and (2.14) are
derived.

2.3.1. Derivation of the Linear Equations for Joint Parameter Identification

According to equations (2.13) and (2.14), the expressions for the impedance

matrix, Z, have the generalised form of

a
H Lxn,

Z . Hy . =HL. (2.20)

nexL

For instance, if the first equation in (2.13) is employed, we have

H*=H,
H® =H, (2.21)
H°=H, -H,

One of the elements of equation (2.20) has the expression of

Ne

ZZHaZ H5 =H¢ wherek =12,...,L andl =12,...,L (2.22)
g=1 p=

kp™ pg

Rewriting equation (2.20) in the form of a standard set of linear equations as

~

Av=b (2.23)

we have the relationship among the elements of the matrices in equation (2.20)

and the matrix and vectors in (2.23) as follows

A, =HZIH! (2.24)
v, =2, (2.25)
b, =H} (2.26)

The relationships among the subscripts are:

17
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p=(k-1)L+l  q=(-2n +]j (2.27)
and the variation ranges of these subscripts are:
k=12...,L i=12,...,n, j=12,...,n, 1 =12,...,L (2.28)

These expressions, from equation (2.24) to (2.28), can be verified by examining
one of the elements in vectorof (2.23):

b= Av (2.29)
p qZqu q

Substituting equations (2.24) and (2.25) into (2.29), splitting summation

variableq to i andj and noticing that wheq varies froml to n?, i andj both

vary from1to n_, therefore,
b,=3 S (HiH%)z, (2.30)
Equation (2.30) is exactly the same as equation (2.22).

In fact, matrix A is theKronecker production of matrix H? and matrixH®,
A=H*0OH" (2.31)

and it is square if the first equation in (2.13) or the second equation in (2.14) is
imposed.

When the dynamic stiffness of the joint structure is expressed as

Z(w), ., =K-w’M+(iwC+D) (2.32)
its vector form should be
z(w)eq =k -w'm+i(wc+d)=T(w)x (2.33)

where the transformation matriX,(w) , has the form

T(@)ne =|1 —? i@l il | (2.34)

242
ngxang

and the unknown joint parameter vector is

18
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kO

_ g
Xy = O 0
¢ O

HdH

Substituting (2.33) into (2.23) leads to

A(w)T(w)x = b(w)
Let

Al@)nare = Ale) T(@)

then (2.36) becomes

A(w)x = b(w)

(2.35)

(2.36)

(2.37)

(2.38)

This is the set of simultaneous linear equations describing the unknown joint

parameters. The algorithms to solve (2.38) will be presented next.

2.3.2. Non-partitioned Algorithm

The matrixA(w) and the vectob(w) in (2.38) are generally complex as

A(w)= ReA(w)+iImA(w)
b(w) = Reb(w) +i Imb(w)

Equation (2.39) can be rearranged as follows:

A(w)x =b(w)
where
N ﬂ?eA(a))D [Reb(w)O]
Alw)= HmAa)E’ Hmbw%

If the number of frequency points involvedns, then

OReA(w,) O OReb(w,) O
DImA(w) DImb(wo a

D and b

B:&eA( B?eb(

BmA( Nt )Enfﬁxsng me( i )Enszxl

(2.39)

(2.40)

(2.41)

(2.42)

19
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Equation (2.40) also has its separated form as

Ag(@)x =Dbg(w) (2.43)
A (@)x =D, (w) (2.44)
where
CReA@) 0 EReb(wl) a
R =0 NP =TT (249
ReA@ G e BT,
and
OImA(w,) O Oimb(ew,) O
R e BELTOR e B
AA@IG e BMO@

The non-partitioning algorithm (NPA) solves equation (2.40), or its separated
form (2.43) or (2.44), for all frequency points concerned using a least squares

method (LSM) to find a real vector which minimises the euclidean length of

A(w)x -b(w).

For the convenience of description, we fiet= 2n, L*> and n=3n’ so thatA is

a matrix of mxn. Suppose thaA is a matrix of rankk, the singular value

decomposition ofA is expressed as:
A=Usv’ (2.47)

where U is an mxm matrix andV is an nxn orthogonal matrix,S is an

mxn matrix of the form

0
S= SS“ E (2.48)
00 0g

whereS,; is a diagnal matrix which h&son-zero singular values.
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Define the vectorg, as:

_ k
uTb:g:%’lE} (2.49)
0,0} m-k
and introduce the new variablg;
k
VszyzgylE} (2.50)
V.0 n-k
Now, definey, to be the unique solution of
SuY: =0, (2.51)
Then all solutions to the problem of minimisih@x —EH are of the form
X = VEVIE (2.52)
¥20
where y, isarbitrary.
Any such X givesriseto the sameresidual vector, r, satisfying
I 0
r:b—Ax:UE E (2.53)
9.0
The norm of r satisfies
Irl=[p-A%]=]g.l (259
The unique solution of minimum length is
X = VS’“E (2.55)
00O

Notice that the solution of minimum length, the set of al solutions, and the

minimum values, for the problem of minimising HKX —EH , are dl unique; they

do not depend on the particular orthogonal decomposition.

In the cases of full rank, where k = n, the unique solution issimply as
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~

%=V, (2.56)

2.3.3. Partitioned Algorithm

The partitioning algorithm (PA) partitions the equations according to two

different frequency points, w and w; . Let

Aw) | -oA@) | igA@)C
Alw =0 5 oD (2.57)
Hw) | -ofAw) | iwA@)H
i
(@)U
X:Em%and b(a)):E % (2.58)
aNE @)
E =

where @ < w, . Equation (2.38) can be partitioned into

~ ~

Alw k- Al@)m+iwA(w)c =b(w) (2.59)

;&(a)i )k - wf,&(a)j )m + ia)j;&(a)j )c = b(a)j ) (2.60)

Pre-multiplying (259) with A(w )" and pre-multiplying (2.60) with A(w, )",

we have
k-a’m+ioc=Alw) blw) (2.61)
k-w'm+iow,c= ,&(a)j )+b(a)j ) (2.62)
Let
d(w)=Alw)b(w) (263)
d((‘)i ) = '&(“)J )+b(“)i) (2.64)

and remember that the vectors d(w, ) and d(a)j ) are complex, so that we have
k - w’m =Red(w) (2.65)
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k-wm= Red(a)j) (2.66)
wce=1md(w) (2.67)
w,C = Imd(a)j) (2.68)

The joint parameter vectors are then solved from (2.65) to (2.68):

k=1 (w?Red(®w)-a?Red(w))) (2.69)
W’ - @
m=—1 _(Red(w)-Red(w))) (2.70)
W’ -
c= T imd(@) = = Imd(w,) (2.71)
w w:

I j
The kernel of the estimation is the computation of the pseudo-inverse of the
coefficient matrix, A . It is an L? x nZ complex matrix at each frequency, where

L stands for the number of measured internal DOFs gndtands for the

number of coupling DOFs.

The SVD is used in calculating the pseudo-inverse of malrixwhich is

required in the partition algorithm (PA). The SVD of matfixis

N 0 Sn><n 0
A = U 0o V.. (2.72)
(m=nmxn [,

Set the tolerance of singular value truncattoh,
tol = max(m,n) 0max(es) [& (2.73)

whereé& is the machine accuracy (floating point relative accuracy)aislthe

singular value vector. For double-precision representation of real numbers,

each real number is represented by 16 digits anlg, 2.2204 x 10™° | Let r

be the number of singular values which are larger thianthen

AL =V _StUT (2.74)

nxm nxr ~=rxr ~ rxm
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2.4. ROBUSTNESS INVESTIGATION OF THE IDENTIFICATION APPROACHES

24.1.

Thelinearjoint parameter identification method proposed in this chapter offers
two algorithms, the partitioning algorithm (PA) and the non-partitioning
algorithm (NPA). The robustness of each is to be investigated in this section via
numerical simulations and perturbation analysis. An algorithm is robust if it is
tolerant of the perturbations in the input data such as rounding errors and
measurement noise. In other words, the solution is convergent and to a feasible

answer.

Numerical Simulation 1: A Crossbeam Structure

A cross-beam structure shown in Fig. 2.4 is used as an example to illustrate the
application of the proposed method. Each substructure is discretised into 10
beam elements. To simplify the simulation, each node of the structure is

constrained such that only 2 DOFs are active: one is the translation)@#fd

the other is rotation DOFg, for substructure A o, for substructure B. In

other words, substructures A and B are both planar beams. The joint between
the substructures is modelled as a beam element as well. Two internal DOFs are
selected from substructure A and the other two from substructine B,=4.

substructure B

substructure A

Fig. 2.4 A cross-beam structure
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The identified result is represented by an element of the joint stiffness matrix,

k,; , the axial stiffness of the joint element. The exact value, pfs

ki, :El—A =3.51858x10° N/m
Both the partitioned algorithm (PA) and the non-partitioned algorithm (NPA)
are used to identify the joint parameters. The FRFs used in the identification

were generated from 1 to 2,000Hz with a frequency increment 1Hz.

The identified results from the PA method with noise-free input FRFs are
shown in Fig. 2.5. Since each solution uses two frequency data points only,

there are 1,000 solutions available between 1Hz and 2,000Hz. The condition

numbers of matrixA for each solution are also checked. These identification
solutions are accurate, which means that the partitioning algorithm works very
well in this case. How it works with noise contaminated FRFs will be shown in

numerical simulation 2.

15
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Fig. 2.5 Identified result for the joint in the cross-beam structure - PA solutions

In contrast, the non-partition algorithm (NPA) does not work well in this case.

If all 2,000 frequency data points are used in the identification, The mAtrix

thus formed in (2.42) is rank-deficient and the solution is therefore unreliable.
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Considering that the minimum number of frequency points used to form a set of
determined equations for the non-partitioning algorithm is 3, we use this
minimum number of frequency data, moving the frequencies from low to high
values, to produce 666 solutions in the range 1 — 2,000Hz. These identification
solutions are shown in Fig. 2.6. Of all the 666 solutions only the first three are

close to the design value. They a®51859x10°, 3.51855x10° and
3.51852x10° N/m. The first three corresponding matrices are of full rank

but all the rest of theA matrices are rank deficient. The first three solutions
cover the frequency range 1 — 9Hz only. Increasing the number of frequency
points included gradually in the low frequency range for each NPA solution, we

have accurate results until the frequency range covers from 1Hz up to 17Hz.

When the 18 and/or higher frequency points are taken into account, matrix

then becomes rank deficient and the results are not correct any more.

|
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Fig. 2.6 Result for the joint in the cross-beam structure - NPA solutions

This simulation reveals that the partitioning algorithm (PA) improves the
condition of the linear equations in a least-squares solution and results in
accurate and stable solutions. These solutions are independent of frequency. In
addition, the partitioning algorithm is much more efficient than the non-
partitioning algorithm because the matrix on which pseudo-inverse is applied is

much smaller than that used in non-partitioning algorithm.
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2.4.2. Numerical Simulation 2: Two Beams Coupled in Line via a Joint

This second numerical example is firstly designed to validate the proposed
method and algorithms, and it is then used for the algorithm robustness
investigation — checking how sensitive the algorithms are to data round-off and
to noise contamination. First of all, the procedure of the application of the

proposed identification approaches is demonstrated.

The structure shown in Fig. 2.7 is a free-free uniform beam. The beam is evenly
discretised into 6 elements and each node has two degrees of fregdmm,

6. The 4" element, between nodes 4 and 5, is regarded as the joint. The
segment to the left-hand side of the joint is substructure A and the part to the

right-hand side of the joint is substructure B.

1 2 3 4 5 6 7
| | | M | |
@—b X
sub-A

joint sub-B 6

Fig. 2.7 Two-beam substructures coupled via a joint

One of the joint parameters, the lateral stiffness of the joint elerkgntjs

chosen to represent the identified result. Its design value is

_12E

| 3

Ky =4.320x10° (N/m).

The y direction translations at nodes 1, 2, 6 and 7 are selected as the internal

DOFs. The matrix,&(a)l) defined in (2.31) is thed6x16 (L=n,=4). The

required data of frequency response functions are generated by mode
superposition using the eigen-solution of the substructures and the assembled
finite element model. The frequency range of the generated FRFs is 0 — 1000Hz
with an increment of 1Hz. In the simulations for this section, there is no

damping in the structure and therefore equation (2.44) is not used.
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SoLUTION 1: NPA wiTH FRF DATA FROM 0 TO 1,000 HZ

If all the FRF data in the frequency range 1 — 1000Hz are used in one
prediction, the answer is accurate. The size of matix in (2.40) is

2n, L*x3nZ =32,000x48. If equation (2.43) is used instead of (2.40), the
dimension of matrixA, is n,L*x3n? =16,000x48. The equation, either
(2.40) or (2.43), formed in this way is heavily over-determined. In other words,

there are too many (redundant) equations involved. If only the first 150

frequencies are used in the prediction, the sizeAgfis 2,400x48 and the
answer is already accurate wikh, = 4.3200x10°%. The condition number of

matrix A is 1.7342x10%and its rank is48.

However, it is not the situation that any segment of frequency data produces the

same result. For instance, the solution obtained from data in the frequency range

151 — 1,000Hz is far from accurate. The reason is that the nfatfizrmed in

this frequency range is rank-deficient.

Ten sets of different frequency range data were selected and the results obtained
using these data are shown in Table 2.1. The frequency ranges investigated are

shown in Fig. 2.8. It is seen from the table that the data in low frequency range
play a very important role. The condition numberof matrix A, decreases
with the increase of data involved in the low frequency range. The data sets
which exclude the data below 35Hz make thg matrix rank deficient. In

addition, the higher the starting frequency, the severer the deficient. The
phenomenon presented here may not be a general principle, but it at least poses

a question as to over what frequncy range the data should be used in order to

guarantee a full rank matri& , and a lower condition number?

Table 2.1
index freg. range K, K rank
1 (1,1000) 4.3200%10° 2.3633x10° 48
2 (26,1000) 4.3200x10° 9.0268x10% 48
3 (31,1000) 4.3200%x10° 9.7442 x10% 48
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4 (34,1000) 4.3200x10° 1.3243x 10" 48
5 (35,1000) 2.0423x10° 1.6415x 10" 47
6 (36,1000) 2.2511x10° 2.0135x10" 47
7 (41,1000) 2.6414x10° 3.8126 x 104 47
8 (51,1000) 5.5141x10? 7.5019x 10" 46
9 (101,1000) 4.3367 x10° 7.1626x10% 40
10 (151,1000) 2.3307 x10? 2.3975x10" 38
S
°

frequency (Hz)

Fig. 2.8 frequency ranges investigated

SOLUTION 2: NPA wWITH 3 FREQUENCIES FOR EACH SOLUTION

1000

If three frequencies are used for each solution, the matgixs square,

n,L?x3n? = 48x 48

and the set of equations is determined according to (2.43). Selecting three

adjacent frequencies each time and moving the selection from low to high

frequency, we form 333\ , matrices and obtain the same number of solutions.

The ranks of these

A, matrices and their corresponding solutionsk gfare shown in Fig. 2.9.

Itis
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rank of AR

6000

4000
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ky, (N/m)

|
|
|
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index of solution

-2000
0

Fig. 2.9 NPA with 3 frequencies for each solution

seen that the correct answers are given within the first 50 solutions. By
monitoring rank(KR) it is clear that it is the rank deficiency of matéx, that

results in the incorrect answers.

The three-frequency-points moving solution provides an indicator of selecting
an appropriate frequency range for the NPA method. Fig. 2.10 shows that data
in the frequency range covered by the first 50 solutions, 1 — 150Hz, are
applicable for NPA as has been validated in solution 1.
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Fig. 2.10 The first 50 solutions

SOLUTION 3: PA THROUGH ALL THE FREQUENCY RANGE
The direct use of partition algorithm (PA) in the frequency range of 1 —
1,000Hz, moving from low frequency to high frequency has 500 solutions. They
are shown in Fig. 2.11 with the corresponding condition numbers of matrices

~

Aw) and ,&(wj).

Matrices E\(a),) and ,&(a)j) are full-rank in the frequency range of 1 — 1,000Hz

fori=1,2,...,500 and j =1,2,...,500. The identified resulk,, shown in Fig.
2.11 is therefore much better than the result in Fig. 2.9. The first 250 solutions
are identically accurate and the errors of the identification in higher frequency

range, above 500Hz, are caused by the high condition number of the matrices

~

A(a),) and ;&(a)j) at specific narrow frequency bands.
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Fig. 2.11 A solution of PA

Compared with matriX . in solution 2, matrixA in PA has no the problem of

rank deficiency and also has a much smaller dimension:
L*xn? =16x16

Hence, the time spent in the identification using PA is much less than that using
NPA and NPA with three frequencies for each solution. The time spent on each

algorithm is listed in Table 2.2.

Table 2.2

Algorithms NPA(1,1000) NPA 3-p moving PA moving
time (sec.) 118.91 129.71 34.77

2.4.3. Improvement of the Condition of Matrix A

The case study in section 2.4.2 suggests that the high condition number of the

matrix A is the reason for the erroneous results. When the PA method was used
there, the minimum number of internal DOFs was chosen to make the problem

exactly determined. If more internal DOFs are included to form a series of over-

determined equations, the condition number of the mevmatrix might be

lower. On the other hand, the FE simulation in section 2.4.2 is free of damping.

If damping is introduced into the FRF generation, the condition numbgr of
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might be decreased as well. The accuracy of the identified results should be

improved if the condition number of the coefficient matixbecomes smaller.

THE EFFECT OF THE NUMBER OF INTERNAL DOFSs
The same structure as used in numerical simulation 2 is studied further in this
section. When one more internal DOF is added, sayy theection translations

at nodes 1, 2, 3, 6 and 7 are selected as internal DOFs, we.&dye n, =4

and dimension of matriXA become25x16 rather tharl6x16.

The identified result shown in Fig. 2.12 is substantially improved when
compared with the previous result shown in Fig. 2.11 — the largest error here is

0.04% at 910Hz which is at th& g4esonant frequency of substructure B.

Comparing the two plots of the condition number of madixn Fig. 2.11 and
2.12, we notice that the condition of matdx has been significantly improved

— the condition numbers have been decreased by 15 tbmes.

This numerical experiment shows the importance of the selection of internal
DOFs in joint parameter identification. At this stage, a couple of new questions
arise: how many internal DOFs should be used to achieve an acceptable result?
and which internal DOFs should be chosen? To answer these questions, several

further numerical experiments are carried out.
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Fig. 2.12 Result of using 5 translation internal DOFs

When 5 rotational DOFs were used at nodes 1, 2, 3, 6 and 7, the identified result

iIs as shown in Fig. 2.13. The largest error is 0.54% at 544Hz, and the

corresponding condition number is higher than that found in Fig. 2.12.
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Fig. 2.13 Result of using 5 rotation internal DOFs
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When all ten possible internal DOFs are used, the identified result is shown in

Fig. 2.14. The dimension of matrx is then100x16. This result is not as good
as the result in Fig. 2.12. The largest error in this case is 0.08% at frequency
840Hz.

It seems that there is a best or an optimal choice of the internal DOFs but it is
difficult to extrapolate. It is not exactly the case of “the more, the better”. From
the above simulations, the specific selection of 5 translation DOFs as internal

DOFs gives the best results.
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Fig. 2.14 Result of using 10 internal DOFs

THE EFFECT OF DAMPING

It is clear that introducing damping will decrease the amplitudes of the FRFs

and hence tend to reduce the condition number of mAtrisn the simulations
of the damping effect, proportional damping is introduced to both substructures

and their assembly according to the principles mentioned in Appendix C.

Let a =0 and B =4x10"° in equation (C.1). When 4 translation DOFs are

used as internal DOFs, the same condition as in section 2.4.2, solution 3, the

35



Linear Joint Modelling — Least Squares Method Chapter 2

identified result is as shown in Fig. 2.15. When 5 translation DOFs are used as

internal DOFs, the identified result is shown in Fig. 2.16.

Comparing Fig. 2.15 with Fig. 2.11 — the 4 internal DOFs case and Fig. 2.16
with Fig. 2.12 — the 5 internal DOFs case, we find that the condition numbers
decrease up td0® by introducing the damping and the identified result is

significantly improved.

1 015
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Fig. 2.15 Four translation internal DOFs with damping
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Fig. 2.16 Five translation internal DOFs with damping

2.4.4. Tests with Noise Contaminated Data and Error Analysis

In this section, simulated random noise is added to the generated FRFs to test
the robustness of the algorithms. The analysis of noise simulation is given in
Appendix D including the definition of noise levels and the theory background

of noise simulations.

Considering the structure shown in Fig. 2.7, we apply following two available

techniques to decrease the condition number of maﬁrtx(i) selecting 5

translation DOFs as the internal DOFs; (ii) adding proportional damping
(a =0,3=4%x10"°) to the data from the substructures and their assembly.

When three different levels of noise are added to all the input FRFs, the

identified results obtained using PA are shown in Fig. 2.17.
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Fig. 2.17 Results from noisy data — 5 internal DOFs
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Fig. 2.18 Results of noisy data — 10 internal DOFs
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Keeping all conditions the same as for Fig. 2.17 except for an increase in the
number of internal DOFs to 10, the identified results are shown in Fig. 2.18. It
IS seen here again that the 10 internal DOFs case yields better fesuttss

more tolerant of noise.

From a general point of view, the identified results shown in Fig. 2.17 and Fig.
2.18 are not satisfactory. The errors are analysed next using the perturbation

theory mentioned in Appendix B. The norms of the error mdirjxhe inverse

of matrix ,Z\, the residual matribR and the condition number of matri are
plotted in Fig. 2.19 to Fig. 2.22. Each matrix is shown for both 5 translation

internal DOF case and 10 internal DOF case for the purpose of comparison.
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Fig. 2.19 Norm of error matrik

The norm of error matrbE represents the level of the uncertainty of ma#rix
When 3% noise is introduced into each FRF used in the identification,

|E|| <107 for the 5 translation internal DOF case 4} <10™° for the 10

internal DOF case.
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Fig. 2.20 Norm of the pseudo-inverse of mathix

The norm of the pseudo-inverse of matfix HA*

, iIs shown in Fig. 2.20. The
values of HA+(w,)H, HA+(w]. )H HA*(wI )H and HK*(wi )H have no significant

differnce for both 5 and 10 internal DOFs cases since the noise level is low.
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Fig. 2.21 norm of the residual matrix

The norm of the residual matriR, which is defined by equation (B.2) in
Appendix B, is calculated from its definition and shown as the two lower curves
in Fig. 2.21 a) and b). The upper curves are the estimated bounds by equation
(B.3), (B.8), (B.9) and (B.10). The difference between these two figures is
obvious. The largest difference between Bienorm in Fig. 2.21 a) and the

norm in Fig. 2.21 b) is up t&0°> times. Observing the residual matrix norms
together with the identified results shown in Fig. 2.17 and Fig. 2.18, we find
that they are closely related. In Fig. 2.17 and Fig. 2.18, the unsteady solutons
start at 40th and 70th solutions for 5% noise level. The same solution indices in

Fig. 2.21 a) and b) correspond to the same residual matrix norm yRlje,
which is around10°®. When the|R| value increases with the increase of the

frequency, IargeﬂR” values which happen beyond these frequencies cause the

errornous results.

. The tendency of

In fact, for a certain noise level, tjB| value relies orﬂA+

Hf&* to vary with frequency shown in Fig. 2.20 are the same as their respective
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|IR| values. At the solutions whef&| =10°, Hf&*

=10, Therefore,H,&+

can

be used as a indicator to show which solutions are accepatable. Since

HKH = max(c, ) (2.75)
where o, (i =12,...min(mn)) is the singular value of matriA O0™,
therefore,

>

=1/min(o;) (2.76)

That is to say, the minimum singular value of matd&JO™ is a good

indicator for the possible accuracy of the solution.

Finally, the condition number of matriA is shown in Fig. 2.22. It is hard to

distinguish them from their amplitudes and they cannot be used directly to tell

how the matrixA affects the accuracy of the solution.

1 OlO

10 ¢

—— 10 internal dofs
—— 5internal dofs

condition number of A

10°

0 50 100 150 200 250 300 350 400 450 500
index of solution

Fig. 2.22 Condition number of matri

In addition, NPA provides accurate results under all listed noise levels. As it has
been mentioned in section 2.4.2, the FRF data between 1 and 34Hz play a very

important role. The 5% noise level does not affect the rank oAtmeatrix and

the condition numbex of matrix A in the 5% noise case i3.4180x108,

which is even smaller than the condition number in the noise free case,

Kk =2.3633x10° in Table 2.1.
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2.5. CRITERION OF SELECTING INTERNAL DOFS: THEOREM OF

TRANSMISSIBILITY

In principle, the selection of internal DOFs is arbitrary. The only condition
which should be borne in mind is that the number of internal DOFs should at
least be equal to the number of unknown joint parameters. However, an

improper selection of internal DOFs in some structures may yield a rank-
deficient matrix, ;&((u). This phenomenon was explained by revealing the

physical meaning behind it and this explanation is expressed tbetivem of
transmissibility and given in Appendix A. This theorem gives a criterion to

select internal DOFs.

The problem encountered in the simulation is demonstrated in a coupled

structure shown in Fig.2.23: two parallel beams coupled via two joints.

Fig.2.23 Two parallel beams coupled via joint

If each node has one degree of freedom, which is inytlirection, and nodes

1, 6, 9 and 13 are chosen to be internal DOFs, the identification procedure

yields an accurate result. However, if one of the internal DOFs, transhatain

node 6, is moved to node 3, the identified result is completely wrong for all

three algorithms.

Checking the rank of matriﬁ(a)) at each frequency in the latter case, we
notice that they are all rank-deficient. Looking into the construction of matrix
;&(a)) at each frequency, we find that the rank deficiency is caused by linearly

dependent rows in one of the frequency response function mag}dg:{w).
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and the linear dependence among the elements of maktix(w) is then

defined by d@ransmissibility function

>

— AH41((‘)) — HSl(w
T((‘))_ AH43(a)) = H (2.78)

Individual elements of matrixH . and the transmissibility functiofi(w) are

shown in Fig.2.24. It is seen that curvf(a)) is completely overlaid by curve
T,(w). That meand, (w) =T, (w) = T(w).
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Fig.2.24 Matrix ,H . andT(w) function

Since there is only one DOF at each node, substructure A is in fact equivalent to
a 7 DOF mass-spring system as shown in Fig.2.25.

Numerical experiments show that when co-ordinate numbers 4 and 5 are

“measured”, the FRFs as the elements of matkk, obtained by giving two

excitations either at any two co-ordinates of 1, 2 and 3 or at co-ordinates 6
and 7
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Fig.2.25 A 7-DOF mass-spring system

satisfy the relationship of (A.17) in Appendix A. It seems that the

transmissibility property of matrixH . is not a coincidence with the selection

of structural parameters. There should be a physical principle that reigns the

FRFs in matrix ,H, to satisfy the transmissibility function. Appendix A

presents the principle named as theorem of transmissibility and provides a
complete proof.

2.6. CONCLUSION

An identification method for general linear joint models between substructures
has been developed in this chapter. Taking FRFs from both or all substructures
and their assembly as input data, this method yields mass, stiffness as well as

damping parameters of the required joint impedance matrix.

Two algorithms are proposed to solve the group of linear equations derived for
this task: the partitioning algorithm (PA) and the non-partition algorithm
(NPA). The PA is superior to the NPA and should be applied as the first choice.
Compared with the NPA, the PA not only significantly decreases the number of
equations involved in a solution but also improves the condition of the
coefficient matrix in the linear equations. Therefore, it is an efficient and

accurate algorithm.

Numerical simulations show that a proper selection of internal degrees of
freedom and including damping in the simulated FRFs are two effective means
to improve the condition of the linear equations and they results in a convergent
and accurate solution. The theorem of transmissibility provides a guideline for

applying this identification method to some chain-like structures. As a general
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rule, the greater the number of internal DOFs used, the better the identified
result will be.

The robustness investigation of the proposed algorithms has also been carried
out. With the noise contaminated FRFs in the studied case, both algorithms can
produce an acceptable answer. However, in the second case study, the
coefficient matrix of the PA has a high condition number in some frequency
ranges, and when the input FRFs are noisy, the perturbations in the coefficient
matrix are magnified in the procedure of solution and results in an incorrect

answer.

In general, the method gives good performance in the numerical simulations and
it is promising that it works well with the experimental data if the frequency
response functions supplied are consistent and the measurement noise is

properly controlled.
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CHAPTER 3

LINEAR JOINT MODELLING —

NEURAL NETWORK METHOD

3.1. GENERAL IDEAS

The least-squares method for joint parameter identification mentioned in the
previous chapter is mathematically precise and theoretically applicable. Clearly,
this sort of conventional deductive method is physically meaningful but it has
the drawback of being inflexible and having a low tolerance to input errors
(noise contamination, non-linearity or other distortions which prevents the input
data from completely satisfying the assumptions). Therefore, great care must be
taken in using the least-squares based method to deal with practical engineering
problems of this type. The variability and complexity of real structura joints
demonds some more flexible and adaptive methods to describe and to analyse

their properties. A method using neural networks to identify the joint parameters
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Is explored in this chapter and is found to be a promising and a more advanced

method compared with the |east-squares based approaches.

Neural networks have been used in mechanical engineering problems since the

early 1990s. The main research areas of the application are control [NaPa90],

identification [MaCh93] and damage detection [WuGh92]. The numerical
simulation of identifying non-linear damping using neural networks is a good
example to demonstrate the ability of generalisation of this method [LiEw95].

The use of neural networks in finite element model updating [AtIN96] [Levios]

has also shown that a multilayer preceptron (MLP) or a radial-basis function

(RBF) network can provide a good mapping between frequency domain data

and the physical parameters of the system being studied. In fact, a well-trained

neural network has the ability to approximate any function to an arbitrary
accuracy [Lesh93]. The genera ideas and procedures of using neural networks
to identify the joint parameters are:

» obtaining the training set from FE analysis, i.e. estimating sets of possible
values of joint parameters and calculating the system’'s corresponding
frequency response using an FE package;

» constructing and training a network by feeding the network with the training
sets obtained from the FE analysis so that the network can learn from them;

» testing the network by providing a typical input to see if the output is
correct;

» feeding the network with practical/experimental data to obtain the identified

joint parameters form the network’s output.

3.2. BRIEF REVIEW OF NEURAL NETWORKS

Neural networks have been widely applied in many fields since the 1980s. The
applications are expanding because neural networks are good at solving
problems, not just in engineering, science and mathematics, but also in

medicine, business, finance and literature [HaDB96].
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A neura network can be considered as a non-linear mapping between a set of
inputs and a set of outputs, in which repeated input-output measurements are
used to develop the proper mapping. Multilayer perceptrons (MLPs) and radial-
basis function (RBF) networks are non-linear layered feed-forward networks
and are both universal approximators. The comparison of these two types of
network shows that there always exists an RBF network capable of accurately
mimicking a specified MLP, and vice versa. However, these two networks
differ from each other in several important respects [Hayk95], and provide
alternative ways to application.

3.2.1. Multi-layer Perceptrons

A multilayer perceptron (MLP) is a multilayer feed-forward network. It has an
input layer, an output layer and one or more hidden layers. The presence of the
hidden units (neurons) allows the network to represent and to compute more
complicated associations between patterns. The input signal propagates through
the network in a forward direction, on a layer-by-layer basis, from the input
layer to the output layer. The pattern of connectivity and the number of
processing units in each layer may vary with some constraints. No
communication is permitted between the processing units within a layer, but the
processing units in each layer may send their output to the processing units in

higher layers, as shownin Fig. 3.1.

input hidden layer output layer
&Y @
Py wo a e \ %5
Rx1 <R no | /s x1 S xS ne 7Z
Sx1 /@ S
1~ g —> b®

Sl Sle 32
2N /

Fig. 3.1 A multilayer perceptron

§x1

L

Associated with each connection is a numerical value which is the strength or

the weight of that connection. An element of matrix W either in the hidden
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layer or the output layer, w;, is the strength of connection between units I and

j .- The connection strengths are developed during training of the neura

network. There are several different training agorithms for feedforward
networks. All of these algorithms use the gradient of the performance function,
which is defined as the mean sum of sgquares of the network errors, to determine
how to adjust the weights to optimise performance. The gradient is determined
using a technique called back-propagation. This term refers to the manner in
which the gradient is computed for non-linear multi-layer networks [HaDB96].

At the beginning of the training process, the connection strengths can be
assigned random values. As the training set is presented during the training,
application of the ‘rule of learning’ modifies the connection strengths in an
iterative process. At the successful completion of the training, when the iterative
process has converged, the collection of connection strength captures and stores
the knowledge and the information present in the training set used in its
training. Such a trained neural network is ready to be used. When presented an
input pattern, a feed-forward network computation results in an output pattern
which is the result of the generalisation and synthesis of what it has learned and

stored in its connection strengths.

An MLP trained by the back-propagation algorithms proceeds in three steps. At
first, the units in the input layer receive their activation in the form of an input
pattern and this initiates the feedforward process. Secondly, the processing units
in the hidden layer receive outputs from the input units and perform the
following computations:

« compute their net input{®
R
ni = ZWE? p, + b (3.1)

where p, = output from units impinging on unjtand R = number of units
impinging on unif;
e compute their activation values from the net input values

al¥ =F,(n®) (3.2)
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F, isusualy asigmoid function like

al = — (3.3)
l1+e
! |
O e : *********
O :
-5 0 5
n
Fig. 3.2 A sigmoid transfer function
» compute their outputs from their activation values
S
ngz) - ngi)aigl) + bjgz) and agz) — ngz) (3_4)
=1

» the output values are sent to other processing units along the outgoing
connections.

Finally, this process continues until that the processing units in the output layer
compute their activation values. These activation values are the output of the

neural computations.

3.2.2. Radial Basis Function Networks

The architecture of a RBF network is shown in Fig. 3.3. There is one hidden
layer (radial basis layer) and one output layer (linear layer). When the input
vector, p, is presented to the network its distance to the input weight matrix,
W® | is measured and each neuron in the hidden layer will output a number
between 0 and 1 according to the proximity of the input vector to the neuron's
weight. This output, a®, is weighted then by the connections between the
hidden and output layers to yield the network output, a'®. Neurons with

weights far from the input vector will have an output close to zero. This small

output will have only a small effect on the output neurons. In contrast, neurons
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with weights close to the input vector p will output values close to one, and

will influence the final output, a® .

input radial basis layer linear layer
(N (oon N 7 A
w®
p ¢ a® a@
lldist]] NS *1 ——» W@ 5
Rx1 n® Sx1 n® S x1
S*x§ +
Sl x1 % x1
1—» b(l) 1 > b(2)

§x1

R S S x1 S
NN L

/

Fig. 3.3 RBF network structure

Radial basis functions are special types of linear models defined by the

relationship
@) @ a® 4@
& :Z\Nij a;’ +h
J:

in which

W = E(n® W = 5 p®
a;” =F(n”) and n;” = z,b;

(3.5)

(3.6)

where the argument z; is a distance measure between vectors W(J-l) and p

1
2 =5 (P-wP) Qp-w)

(3.7)

Here, Q isamatrix defining the metric, and F istheradia basisfunction. The

vectors wé” , which belong to the input space, are called input weights. For the

network to be a linear function of the free parameters, w(?

ij

hidden layers, their positions and the metric all have to be constants.

Common choicesfor F are Gaussian function of the form

the number of
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F(ny=e™ (38)

and the Cauchy function of the form

(3.9)

©c 05Fr--—-—--/----1----

O 1
-2 -0.8326 0 0.8326 2
n

Fig. 3.4 A Gaussian radial basis function

3.2.3. Comparison of MLP and RBF Networks

Multilayer perceptrons and radial-basis function networks are examples of non-
linear layered feedforward networks. However, these two networks differ from

each other in several important respects as outlined below.

* An RBF network generaly has a single hidden layer, whereas an MLP may

have one or more hidden layers.

* The computation nodes (neurons) of an MLP, located in a hidden or output
layer, share a common neuron model. On the other hand, the computation
nodes in the hidden layer of an RBF network are quite different and serve a

different purpose from those in the output layer of the network.

* The hidden layer of an RBF network is non-linear, whereas the output layer
islinear. On the other hand, the hidden and output layers of an MLP used as
a classifier are usualy all non-linear, however, when the MLP is used to
solve non-linear regression problems, a linear layer for the output is usualy

the preferred choice.
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* RBF networks differ from the perceptrons also in that they are capable of

implementing arbitrary non-linear transformations of the input space.

* RBF networks may require more neurons than standard MLPs but often
they can be designed in a fraction of the time it takes to train MLPs. They
work best when many training vectors are available.

In the cases we studied, both MLP and RBF networks are used and their

performances are compared.

3.3. DISCUSSION ON PARAMETER SELECTION

As mentioned in the first section of this chapter, the purpose of using neural
networks here is to present an experimental FRF to the trained network in order
to obtain an estimate of the physical joint parameters. The performance of a
neural network depends largely on the selection of the training set, which is

generated according to different joint parameter values.

A good training set should satisfy the following conditions:

» selected parameters should be able to represent the physical properties of the
joints. For a linear joint model, these can be stiffness of joint elements:
stretching and compressing, torsion, bending etc.;

» values of these parameters should be carefully chosen to include the real
valuesin their range, i.e. the minimum and maximum expected values of the
joint parameters need to be defined to train the network; and

» either FRF data or modal parameters which are used as input to the network

should be sensitive to changesin the joint parameters.

To identify the joint parameters of a dynamic structure it is first necessary to
obtain experimental data from the physica model. The experimental data are
usually provided in the form of FRFs and a set of modal data can be extracted
from these FRFs using modal analysis techniques. There has been a

disagreement on the issue of whether the FRF data or the modal data should be
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used to describe the dynamic properties of a system when neural networks are
employed as atool in doing FE model updating [AtIn96] [Levio8].

Frequency response function (FRF) data were used by Atala and Inman
[AtIN96] because these data are directly measured from structures, and there are
no approximations or assumptions introduced during modal analysis. In general,
however, the measured FRF data contain too many data points to use
realistically with neural networks. As the dimension of the input vector to the
neural net increases, the number of training data vectors required for adequate
network generalisation also increases, often exponentialy. The FRFs may
contain tens of thousands of data points and adequate network generalization is
clearly unlikely in these circumstances. It is necessary to reduce the number of
data points to manageable proportions. There is no clear boundary given at
which the number of data points becomes manageable. Data reduction could be
achieved by simply discarding many of the FRF data points. On the other hand,
an aternative method of data reduction is to work in the modal domain, using
modal analysis of the FRFs to derive the mode shapes and natural frequencies
of the structure [Levi98]. The number of data points is typically reduced by

several orders of magnitude by modal analysis.

In this chapter, the advantages of using FRF data as input to the network are
kept and the drawback of having too many frequency points is overcome by the
application of principal component analysis (PCA), which is briefly introduced
in section 3.5. By applying PCA, the dimension of the FRF data is decreased
considerably and neural networks trained by the sets of PCA results and target
values are not sensitive to the noise presented in the normal measured FRFs.

Numerical simulations are given in section 3.6.

3.4. GENERATION OF TRAINING SETS: A PARAMETRIC FAMILY OF FE MODELS

The generation of training sets needs a family of the FE model in question to be
analysed in order to obtain the FRF data corresponding to different values of the
joint parameters. It is obviously too costly and awkward to analyse the full finite
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element model each time when only a few joint parameters of the structure are
changed. To be more efficient in doing this task, a method based on using a
constant basis of Ritz vectors to create parametric families of reduced models
was proposed and validated by analysing the FE model of a 3-bay truss
structure [Balm95a] [Balm95b].

The governing equations of a viscously damped finite element model can be

expressed in the form

[Ms®+Cs+K]qg=bu
X =cq

(3.10)

where b and c are input and output shape matrices respectively.

The system properties are described using the DOFs, g, by mass, M, damping,
C, and stiffness, K, properties. All output, X, of the continuous structure can be

expressed as linear combination of the DOFs, q. Similarly, al inputs, u,
exciting the system, are described in the coordinate system, q, by forces which

depend linearly on u.

A training set required to train neural networks is equivalent to the solutions of
a family of models, which is defined here as a group of models of the general
form (3.9) where the matrices composing the dynamic stiffness depend on a

number of design parameters a :
Z(a,s) =s°M(a) + sC(a) + K (a) (3.11)

Materia density and modulus, beam section properties, plate thickness,
frequency dependent damping, node location etc. aretypical a parameters. It is

often desirable to use a model description in terms of other parameters S,

which depend non-linearly on the a, to describe the evolution from the initial

model as alinear combination of modification matrices AZ with coefficient 3

Z(a,8)=Z(a0, 9+ Bla)Az (s) (3.12)

with each AZ ; having constant mass, damping and stiffness properties.
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Displacement-based reduction approaches make the assumption that there exists
a reduced subspace spanned by the columns of a rectangular matrix T and
described by reduced DOFs, qj. For all effectively found states, g, of the full-
order model there exists a close approximation in the reduced subspace

described by the coordinates, q:
g=Tag (3.13)

The approximation (3.13) of the full order model DOFs, q, by a linear
combination of reduced model DOFs, q, leads to the creation of a model of

Size n rather than n. This reduction, when applied to families of models of the

form (3.11) and (3.13), leadsto

T'Z(a,s)Tqg =T bu

(3.14)
y =CTqg

For any model in a considered family, the reduced model (3.14) can give
estimates of all the solutions that can be predicted with the full order mode!.

In fact, the variations of joint parameters do not affect all the DOFs of the full

order model. A reduction matrix (Ritz vectors), T, can be obtained using

Guyan'’s static model of the form

KI0,0 O ﬁ)
0= u (3.15)
K. Ko fro.0 B
where q,, is the DOF related to the changed parameterscanid rest of the

DOFs inq. From (3.13) we can then have

I
R @1
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3.5. PRINCIPAL COMPONENT ANALYSIS TECHNIQUE

Principal Component Analysis (PCA) represents a statistical technique for
analysing the covariance structure of multivariate statistical observations. The
principal components are the most important linear features of the random
observation vector. Through PCA many variables can be represented by fewer
components, so PCA can be considered either as afeature extraction or as a data
compression technique and is indisputably very important in applications of

signal or image coding, processing, and analysis.

PCA is a dtatistical technique under the general title of factor analysis. The
purpose of PCA is to identify the dependence structure behind a multivariate
stochastic observation in order to obtain a compact description of it. When there
IS nonzero correlation between the observed variables the dimension, n, of the
data space, (i.e. the number of the observed variables) does not represent the
number of independent variables, m, which is really needed to describe the data.
We may suppose m to be the number representing the degrees of freedom of a
physical system. The stronger the correlation between the observed variables,
the smaller the number of independent variables that can adequately describe

them.

The n observed variables are thus represented as functions of m latent variables
called factors, where m<n and often m<<n. The factor variables are also
called features of the multivariate random signal, and the vector they form is a

member of the feature space.

3.5.1. Definition
Consider a random vector x ={x,,...,x,}' with mean E[x] =0 and covariance

matrix, R, = E[xx"]O00O™". The feature vector, y, is an orthogonal, linear

transformation of the data

y = WX (3.17)
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where the columns of W form an orthonormal basis of a subspace [0, namely,
WW?T =1 and O = span(W). The projection of x onto [ is the reconstruction
of x fromy as

X=W'y =WTWx (3.18)
Minimise the mean square error between the observation and the reconstruction

J =E[x -] (3.19)

to obtain the optimised W .
The procedure can be summarised as follows:

Let the eigenvalues A, A,,..., A, of R, be arranged in decreasing order, and let
the corresponding normalised eigenvectors be e;,e,,..., e, . Then the minimiser
of the mean square reconstruction error, J, under the constraint WW' =1, has
the form

W, =T[te te,]” (3.20)

where T isany square orthogonal matrix.

The minimal reconstruction error is

n

minJ = Z A (3.21)

I
i=m+1

The normal eigenvectors of R, corresponding to its largest eigenvalues, i.e., the

row of W_,, are called principal eigenvectors. The features, y,,VY,,..., ¥,

opt ?
elements of the random vector vy, are called the principal components of x.

They are statistically not correlated:
Elyy,]=e'R,e; =0 (3.22)
their variances are equal to the eigenvaluesof R, :

E[Yiz] = eiTRxei =A (3.23)
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and are arranged in order of decreasing variance

E[y;12 E[y;]2 2 E[y,] (3.24)

The first principal component, y,, is a linear combination of the observed

variables

Y, = Wy X+ F W, X = WX (3.25)

1In“*n

such that its variance

Ely?2] = wiE[xx"Iw, =w]R,w, (3.26)
is maximum under the constraint that the coefficient vector is normalised
lw,|=1. According to the Rayleigh-Ritz theorem w, = e, and the maximum

eigenvalue A, isequal to the variance of the first component.

The second principal component y, =wjx maximise the variance of y, under
the constraint |w,| =1 and w,Oe, . In general, for w =€, p>1, the variance
Is maximised under the constraint that w is orthogonal to all prior eigenvectors
€,€,,...,€, .
3.5.2. PCA and SVD

The covariance matrix R, = E[xx' ] O™ can be estimated by

Lo, oLy
R,=—) x.x, =—XX (3.27)
N & N
where X = [xl Xy oo xN]. The matrix X, can be decomposed by SVD to
X =UsV' (3.28)

where UOO™ and VOOYM are orthonormal matrices, SOO™ is a
diagonal matrix. If the matrices on the right hand side of equation (3.28) are

partitioned as
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M : 000Y O
x=[o ¢ ce]l. i 010 329)
B @ 0FzYH

where D isthe diagonal matrix of nonzero singular values
D =diag[o,,0,,---,0,] 0,>0,>--->0,>0 (3.30)

® and ¥ are the matrices of left and right singular vectors, respectively,

corresponding to the nonzero singular values, “® and "W span the orthogonal

complements of the respective subspaces spanned by @ and ¥, we have
X =®DY (3.32)

The columns (rows) of ® (¥) are called the left (right) principal vectors of X

and are pairwise orthonormal, i.e.,
O O=YY' =1 (3.32)
where | | isthe p-dimensional identity matrix. From (3.31) and (3.32), we have
XX ® = ®D? (3.33)
It impliesthat the vectors ¢, are eigenvectors of the matrix XX as
XXTo, =0%p, 1=12,-,p (3.34)

Comparing (3.34) with (3.27), we obtain the relation between eigenvalues of the

covariance matrix R, and the singular valuesin (3.30) as

A =%0.2 =12, p (3.35)

The transformation matrix is then

W._ =@’ (3.36)

3.6. CASE STUDIES ON NUMERICAL SIMULATIONS

Two numerical simulations are given in this section. The main issues addressed

in these simulations are the validity of the proposed method, the selection of
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frequency points, the determination of the network’'s parameters and the
comparison with the previously presented results in chapter 2 using the LS
approach. The identification procedure is summarised in the flow chart in Fig.
3.5.

There are two phases in the identification procedure: phase one is network
training, connected by solid arrows, and phase two is parameter identifying,

connected by hollow arrows. These two phases are implemented in sequence.

FRFs obtained from FRF obtained from
a parametric FE measurement
model ml

transfer matrix Wopl

feature vectors of feature vector of
generated FRFs measured FRF

I, training set neural
RS

target values identified
parameters

Fig. 3.5 Flowchart of the identification procedure

3.6.1. Simulation 1

In this simulation, the structure illustrated as in Fig. 3.6 is similar to the case in
Fig.2.7, two beam substructures coupled via a joint, in which the joint isaso a

beam element.

1 4 5 6 7 8 9 0 11 12 13 14 15 16 17 2

L 1 1 1 1 1 1 1 | m 1 1 1 1 1

Fig. 3.6 Two beam substructures coupled via ajoint
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It is supposed that both substructures are precisely known and the parameters of
the joint are uncertain but the knowledge about the uncertainty, i.e. the ranges of
the variations of these parameters, is available. In this case, the joint parameters

are its Young's modulu€ and its mass densitp. The uncertainty of these
two parameters is denoted by factars and S so the true values of these

parameters are expressed as
E =aE, and p = [p, (3.37)

where E, and p, are the initial guesses of the joint parameters, which are

determined according to the current knowledge to the structure. If the factor

a0[0.5 1.5] takes the values af =0.5, 0.7, 0.9, 1.1, 1.3, 1.5 in sequence and
factor B0[0.515] takes the values of3=05, 1.0, 15, there are 18

combinations of these two factors and the corresponding 18 point FRFsyat the
direction of node 12 obtained by the technique of parametric families are shown

in Fig.3.7. A fewer number of3 values are used because the change in joint

mass has a smaller effect to the structural dynamic properties compared with the

change in joint stiffness. Therefore, the accuracyBofn the identification is

not as important as that of.

With a frequency resolution of 0.5 Hz, these 18 FRFs can be put into a matrix:

H, ., In whichn is the number of frequency points,=1600, andN is the

number of FRFsSN =18. If the FRFs are evenly divided into four segments in

the frequency range and each segment is used in one identification, then we will
have n=400 and N =18 as the dimension of matriid in each frequency
segment. Fig.3.8 shows the second segment of the FRFs in frequency range 200
— 400Hz. It is seen from Fig.3.7 that the variation of FRF (resonance and anti-
resonance frequency shifts) corresponding to different joint parameters changes
from one frequency segment to another. For instance, the variation in frequency
range 200 — 400Hz is larger than that in the range of 0 — 200Hz. Therefore, it is

of interest to investigate the effect of using FRFs in different frequency ranges.
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A virtua FRF measurement, which is generated with a =0.8, £=0.7 and in
noise-free, isused as atest set and is highlighted in Fig.3.7 and 3.8.
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Fig.3.7 Generated FRFs overlaid with the measured FRF
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Fig.3.8 FRF segments used for training the network

63



Linear Joint Modelling - Neural Network Method Chapter 3

The application of the PCA technique to the matrix H ,, produces a set of
feature vectors of the FRFs, y,, i =1,2,..., N, which is also named as vectors

of principal elements. Each feature vector has only 17 elements, many fewer
than the number of frequency points in its corresponding FRF. The training set
for a neura network is therefore constructed of these feature vectors and their

corresponding target valuesof a and S.

A 2-layer perceptron was built with 10 neurons in the hidden layer and 2
neurons in the output layer. The network was trained using back-propagation
algorithm and the number of epochs was set to be 70. The trained network was
then fed with the virtual test data. Six sets of the ‘test’ data were generated with
different levels of noise. The noise levels were indexed as: level 1 = 0%, level 2
= 1%, level 3 = 5%, level 4 = 10%, level 5 = 15% and level 6 = 20%. One of the
noise-contaminated FRF is shown in Fig.3.9 and the identification errors are

shown in Fig.3.10.

200 ! !

phase (deg.)
o
[w] o

ey
(=)
o

-200 I I i I | I I i i
200 220 240 260 280 300 320 340 360 380 400
frequency (Hz)

= ' ' ' '
(=) o o] =~ [o2]
o o o o o

mability (dB)

-
s
o

N
[N
o o

-1
200 220 240 260 280 300 320 340 360 380 400
frequency (Hz)

Fig.3.9 Measured FRF is contaminated by 15% noise
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Fig.3.10 Identification errors of the MLP

An RBF network was also trained using the same sets of training data. It creates
16 neurons in its radial basis layer and reaches the convergence faster than the

MLP. The identification errors are shown in Fig.3.11.
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Fig.3.11 Identified errors of the RBF network

In general, both networks have a good tolerance to measurement noise, but the

RBF network gave a better performance. The accuracy of the identifications

65



Linear Joint Modelling - Neural Network Method Chapter 3

3.6.2.

largely depends on the precision of the results obtained from the noise-free FRF

data. The effects of using different frequency segments are also illustrated in

Fig.3.10 and 3.11. For example, in Fig.3.11, frequency segments 0 — 200Hz and

400 — 600Hz yield accurate results with noise-free FRFs and perform well even
with highly polluted FRF data. Frequency segment 600 — 800Hz gives a larger
error because of the smaller dynamic range and the largest resonance frequency

shift. As predicted, the error off is much larger than the error an. The

result should be improved if more training sets are provided.

Simulation 2
The model of structure used for the second simulation is shown in Fig.3.12. The
joint situated between the two beams is again a short beam element. In contrast
to simulation 1, the structusedynamic behaviour is not very sensitive to the
change of the joint parameters. According to (3.37), setting a seresantl 5
values as the same as in simulation 1, we obtain a set of FRFs using the
technique of parametric families and the FRFs are shown in Fig.3.13. Again,

those are point FRFs at coordinate 8+th frequency resolution 1.0Hz.

If the FRFs are evenly split into two segments in the frequency range 0 to 1500

Hz, then twoH,, matrices are formed whera=750 and N =18. The

‘measured’ FRFs were then generated with 1.0, 5 =1.2.

substructure B

substructure A v3 x

Fig.3.12 A cross-beam structure
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To simulate the measurement FRFs, different levels of noise as specified in
simulation 1 were added into the ‘synthesised’ FRF. Following the same
procedure as discussed in the first simulation, we obtained the identified errors
from the two sets of FRFs in different frequency segments. They are shown in
Fig.3.16 and 3.17.
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Fig.3.13 Generated FRFs overlaid with the measured FRF
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Fig.3.14 Frequency segment 1, measured FRF with 20 % noise
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Fig.3.16 Identification errors of the MLP
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Fig.3.17 Identification errors of the RBF network

In this simulation, a 2-layer perceptron was built with the same number of
neurons, 16, in the hidden layer as that used in the RBF network, and the MLP
network was trained 100 epochs using backpropagation algorithm. Comparing
Fig.3.16 with Fig.3.17, we can still see a better performance presented by the
RBF network.
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This simulation demonstrates that with a small sensitivity to joint parameters,
the proposed neural network method can still perform well. It is confirmed
again that this method is robust and stable even with the noisy experimental
data.

3.7. CONCLUSION

A new method of identifying joint parameters using neural networks is
developed in this chapter. The basic techniques involved are parametric families
of finite element models, principal component analysis and neural networks.
The technique of parametric families of FE models and principal component
analysis are mainly used to generate training sets for neura networks to learn.
The MLP and RBF neural networks then play arole of identifier. By feeding the
trained neural network afeature vector extracted from a measured FRF, it yields

parameters of the joint.

Creating families of FE models and PCA are implemented here because the
former is efficient in obtaining dynamic properties of the system with joint
parameter changing and the later is effective in compressing FRF data or
extracting feature vectors from the FRFs. A large amount of redundant FRF
data are excluded by applying PCA, and the training sets are then made concise
without losing the necessary information.

The advantages of the developed method are:

* much fewer measured data are required compared with the LSM-based
method presented in Chapter 2. The measurement is carried out on the
assembled structure. No measurements are needed from the substructures.
The measurement DOFs on the assembly are not necessarily to be on the
interface between the substructures. In principle, any DOF a which a
variation of joint parameters is reflected can be a measurement DOF. The
reduction of measurement points also decreases the errors caused by

inconsistency of measured FRFs and by measurement noise etc.;
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e it is not sensitive to noise on the FRF input data. In other words, the
developed method is robust. This advantage is important since measured
FRFs are more or less always contaminated by noise;

* it can be extended for use in finite element model updating. Instead of using
only the measured FRFs, this method is a type of hybrid method, using both
the analytical model as well as measured data. The concept is to find a
group of joint parameters which make the system behave with the same
dynamic characteristics as those shown in the measured FRFs. If we
consider the joint parameters as the parameters to be updated in an
assembled structure, as the uncertainty of these parameters is obvious, the
process of joint parameter identification is exactly a case of finite element
model updating. Therefore, the proposed method can be regarded as a
updating/modification method as well dealing with assembled structures.

The advantages given above suggest that it is promising to apply this method to

practical structures. The application and further investigation will be subject of

future work.
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4.1.

CHAPTER 4

VIBRATION ANALYSIS OF COUPLED

STRUCTURES - CMS METHODS

INTRODUCTION

Component mode synthesis (CMS) techniques have been developed and used
extensively in the dynamic analysis of structures for over three decades. The
original idea, proposed in [CrBa68], was to idealise a structural system as an
assembly of discrete structural components or substructures, thereby obtaining
sets of matrix equations which predict the modal properties of the assembly.
With the development of the finite element method and more and more
powerful computers, the fundamental idea was then implemented and applied in
practice. The motivation and expectations of CMS method were clearly
described by Hintz [Hint75]. These descriptions were then widely referred by

the followers.
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The successful design of structures requires analysis for dynamic displacement
and stress responses when the structure is placed in its operating environment.
A vital part of this effort is the modal analysis of structural finite element
models. In the classical approach, it is usual to determine normal modes and
auxiliary static analysis directly from the finite element model. Complete
structural systems have become very complex and major components are often
produced by different organisations. As a result, it is often difficult to assemble
an entire finite element model in a timely manner. In addition, many finite
element models may contain so many degrees of freedom that they cannot be
handled directly on the computers in use. For these reasons, it is desirable to
develop methods for analysing substructures of a finite element model. Such
analysis has come to be known @smponent Modal Synthesis (CMS) in
dynamics andSubstructure Analysis in statics. It is desirable that component
mode techniques for dynamic analysis of structures have the following

characteristics [Hint75]:

» Computational efficiency: With the advent of powerful computers, finite
element static analyses structural problem with 100,000 DOFs or more have
become almost routine. However, problems with only 50,000 DOF can still
challenge the finite element dynamic analyses of structural problems,
especially when natural frequencies and mode shapes must be computed
[FaGe92]. While it is required that the component mode representation
should contain a minimum number of independent degrees of freedom or
modes for each component.

* Interchangeability: The component mode set should be independent of the
inertial and stiffness properties of adjacent components. Such a component
mode set may be used interchangeably in different structural systems with
compatible interfaces.

* Boundary flexibility: The method should permit optional interface degrees
of freedom in a component mode set that may be used or discarded at the
stage of synthesis. Such a mode set need not be redefined for each potential

interface or potential combination of interfaces.
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» Yynthesis flexibility: A synthesis technique should not be constrained to a
particular type of component mode set. Synthesis techniques should be
amenable to accepting different types of component mode sets (i.e., fixed

interface, free interface or inertia loading, etc.)

There are several different CMS formulations and they can be grouped into
three different categories: fixed-interface, free-interface or hybrid methods. This
classification is based on whether the modes are obtained with the coupling co-

ordinates fixed, free or a combination of these two.

The principle of the CMS technique is that the substructures are projected from
the physical space onto the mode subspace spanned by a selected set of a few
lower mode shapes and other supplementary modes. As a result, the governing
equations of the structure can be reduced. Hence, modal analysis at the
substructure level is the basic computational effort in CMS methods. However,

it has not been notified that the contribution of connections between the

substructures to the modal properties of the assembly.

The objective of the study presented in this chapter is to develop such a modal
synthesis method in which the free interface substructures are not directly
coupled to each other as customarily done through their nodal interfaces.
Instead, there are particular media that connect these substructures, which are
independent of the modal analysis of the substructures. These connections are
termed joints. In principle, the behaviour of joints can be linear or non-linear.
The method presented here is for linear joints only. Its application to non-linear

joints is not included in this study since it is beyond the scope of this thesis.
Several concepts are described below before the introduction of the method.

They arenormal modes, constraint modes, rigid body modes, attachment modes

andinertia relief attachment modes.
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NORMAL MODES

Substructure normal modes are defined as the solutions of an eigen-value

problem
(k - a)fm)(pr =0 4.1)

It is assumed that the modes are normalised with respect to mass majrix,

such that

O md, =| O kd =A, = diag(a)f) (4.2)

n?

where @  is a matrix whose columns are the substructure modes. The
complete normal mode set is hereafter denoted by a subisespi® ,, and the

normal mode set which is usually truncated to a set of normal modes is denoted

by substripk as @, , for kept modes.

CONSTRAINT MODES
Let the physical coordinates, , be partitioned into a s& relative to which

constraint modes are to be defined, andVdbe the complement €. A
constraint mode is defined by statically imposing a unit displacement on one
physical coordinate in th€ set and zero displacement on the remaining
coordinates of th&€ set. Thus, the set of constraint modes is defined by the

equation

vC

k K., EDI’ 0 .0
KetH e ReH

e

whereR , is the set of “reactions” at tli@coordinates. From the top row of the

partition
= -k 7k (4.4)

The constraint mode matrix is thus

|:|— |:| W' Ve (45)
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RIGID-BODY MODES

Although rigid-body modes may be obtained in the process of solving the eigen-
problem for component normal modes, they are also a special case of constraint
modes. If a component hasrigid-body degrees of freedom, then Rrset of
coordinates may be used to restrain the component against rigid-body motion.
The rigid-body modes corresponding to tReset are obtained by altering
subscriptc to r in (4.5) and noting that there is no reaction at the statically

determinate constraint g8t that is,R,, = 0. Thus, ifV is the complement dg,

rigid-body modes are defined by

N

oo
=
mmin
=

b

r

O
0 (4.6)
U

ATTACHMENT MODES

Let the physical co-ordinates of a component be divided into threeRseas:
andV, whereR is a statically determinate constraint set which provides restraint
against rigid-body motion. An attachment mode is defined as the static
deflection of the component which results when a unit force is exerted on one
co-ordinate of theA set, while the remaining co-ordinatesArare force-free.

Then the attachment modes relative to constrairR se¢ defined by

Ijl(w kvai kvr |:l]jl‘valj |:Dvalj
%_az__k_ai : _k_az%"aa oy %aa B (4.7)
Ko Kl K, Do B Raf

The attachment modes are essentially columns of a flexibility matriXhus,

OF,.0 9,0
v o “o
B B B0

whereg,, andg,, are from the inverse of the upper-left partitiorkoin (4.7).

INERTIA RELIEF ATTACHMENT MODES

An alternative manner of defining attachment modes for a substructure with

rigid-body freedoms leads to the so-caliedrtia relief modes. Inertia relief
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modes are obtained by applying to an unrestrained substructure an equilibrated

load system,f_, which consists of the originally-specified force vectbr,
equilibrated by the rigid body d’Alembert force vectany, , where x, is the

rigid-body motion due td . Let the rigid-body modes¥, , be orthonormalised

so that
¥imy, =1, (4.9)
Then
f,=f-mx, =Pf (4.10)
where
P=1-m¥ ¥’ (4.11)

Matrix P designates thmertia-relief loading matrix and is simply an identity

matrix when there are no rigid-body modes.

The derivation of (4.10) comes from the normal equation of motion of the

substructure
¥m¥ g, +¥ k¥ q, =¥'f (4.12)

Becausekx, =0, the corresponding acceleration is obtained

%, =¥, (¥Tmw, )t (4.13)
Therefore
X, =, Wf (4.14)

Thus, the imposed forces dueuniform acceleration in the rigid-body DOFs

can be expressed as
f =m¥ ¥f (4.15)

A special flexibility matrix of the unrestrained system is defined as:

ok On-ryr &
G =] NN E(Nn (4.16)
B OrX(N-f) Ors B
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where the singular stiffness system matkx, has been constrainedraDOFs

to remove rigid-body motion and ! is its corresponding flexibility matrix.
The flexibility matrix, G, is therefore expanded with zerosr &OFs to allN
DOFs of the FE model. Hence, the singularitykaind G is the same and both

matrices are of rankN —r).

Upon applying the equilibrated forces onto the static flexibility ma@ixthe

corresponding deflection of the constraint component is

A

¥ = Gf (4.17)

e

Since it is of interest to find elastic attachment moWegsand elastic modes are

orthogonal to alt rigid-body modes, i.e.
Ym¥, =0 (4.18)

and the contribution of the constraint component ngid-body modes can be

removed from¥ by:
vy :\P—‘Prqr (419)

then the attachment modes are found by pre-multiplying equation (4.19) with
¥'m and solving for the generalised co-ordinats, of the rigid-body modes

from
YIm¥, =¥ m¥-¥'m¥.q, (4.20)
which resolves simply to
q, = (¥Tmw, ] e Tme (4.21)
Substituting equation (4.21) into equation (4.19) leads therefore to

w, =l -, (e, ) wTm)i (4.22)

w, =1 -¥, ¥ m)¥ (4.23)

which are the flexible attachment modes as a linear combination of the columns
of the constraint deflections.
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4.2,

Close inspection of equations (4.10), (4.11) and (4.17), however, reveals that

equation (4.23) is also:

‘Pa =P"W¥ (424)
¥ =P Gf, (4.25)
‘Pa =P" GPf (426)
or
¥, =G (4.27)

where G° is referred to as thdastic flexibility matrix. Therefore, in order to
gain access to the flexibility matrixG, artificial boundary conditions have

been imposed on the stiffness mathkx and these have, in effect, been

eliminated with the transformation (or projection) matifx, leading toG°.

When the force vectoff,, is expanded to a matrix and it has unit entries at the

junction DOFs and zeros elsewhere as specified in the definition of attachment

mode, ¥, defined in (4.26) is namddertia Relief Attachment Modes.

REVIEW OF THE ESSENTIAL PRINCIPLES

The general principle of a method for reducing the size of an eigen-value

problem
(—w*m+k)x =0 (4.28)

consists of building a subspade in such a way that the solution of (4.28) can

be written in the form
x=Tq (4.29)

where x is the physical coordinatesy is the substructure generalised

coordinates andl' is generally a matrix of preselected substructure modes of
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4.2.1.

the following types: rigid-body modes, normal modes of free vibration,

constraint modes, and attachment modes.

If we go back to the origin variational form of Lagrange equation from which
(4.28) is derived

) (Ekax —szmex) =0 (4.30)
2 2
we can deduce the reduced problem in the form
R S
J(Eq kq—Ea)q mq)=0 (4.31)

That is to say
(-w*m+k)q=0 (4.32)
with the reduced stiffness and mass matrices
kK=T'kT and m=T"mT (4.33)

Various substructuring methods differ from each other by the determination of
the reduction matrix,T . Three of the methods, which are based on the free-
interface concept, will be reviewed in this section and a more general
expression — a unified form of these methods — will be given. It is beneficial to
understand the connections in theory and also useful to integrate these methods

into one code for practical applications.

CMS without Residual Compensation

This is Craig-Bampton method [CrBa68]. The normal modes of each
substructure can be obtained from the solution of the following eigen-value

problem
(—*m+k)x =0 (4.34)

Defining the uncoupled system as a collection of two subsystems, A and B,
without connecting to each other, waenote the number of DOFs as

n=n,+n, and the number of modes of the uncoupled systasn
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m=m, +m,. The equation of motion of the uncoupled system in normal co-

ordinate is then

DApD o> ¢ 00 gpo o 0 0 OfOo
Oiss +§ N Eﬁ .~ g b-0 (439
BpH“ﬂ EO : Bmza EBpH EO B(I)THWHB]CHM

AXE=gXE (4.36)
we have
P
L@ : —@°| .00 =sp=0 (4.37)
HBpH‘nxl

=0 (4.38)

B0

where S, 00™"™ is a non-singular square matrix agld O™ ™" is the
remaining part ofS. This requires that the total number of modes for both

components ifh=m, +m,) be greater than the number of connection co-

ordinatesn,, m> n_. Making use of this partition we have,
Pa = —Sélsipi (4.39)

Then, the following transformation matrix can be constructed as

0,0 pe0 ES's O
5-H=B-H=5 - B (4.40)
wed bH B 1 H

it

O--0=Tq (4.41)
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To generate the matrix 00™™™, a set ofm independent vectorS, must

be obtained from matri$, while a set ofim, dependent vectorS; is retained.

Substituting (4.41) into equation (4.35) and pre-multiplyingiByyields,

mg+kq="F (4.42)
where
m=T'T (4.43)
O, ®° 0 O
)
k=T"g- -%‘ (4.44)
HO i g0’
0,0 O
_ 0 c
f=T"g - % (4.45)

according to the equilibrium condition:
Afe=—pfc=f° (4.46)

The right-hand-side of equation (4.42) vanishes, since no external forces are

acting on the coupled system. Thus, the solution of this equation gives the

(m-n,) natural frequencies»* and mode shape® for the overall system,

but referred to the co-ordinates. The mode shapes are then transformed to the

original co-ordinatesx, according to

O® : 00
o= ¢ - J0 (4.47)
HO : g®f

The common coordinates of substructure A and substructure B should be

deleted afterwards fronb .
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4.2.2. Residual Compensation — First and Second Order Approximations

The first free-free CMS formulation including residual compensation was
proposed by MacNeal in 1971 [MacN71]. It contains a first-order
approximation to the residual terms and is also called the static residual

compensation method.

The mode-shape matrix of each sub-system is partitioned according to lower
and higher modes. The lower modes include all rigid-body modes and all low-

frequency elastic modes. The higher modes are the unknown out-of-range ones,
which are generally truncated due to the need to limit the measured/analysis

frequency range.

For any of the substructures, we have

[o? —w®l 0 Op 0O GO
O : EI]] 0_0d %
o - : : 0= (4.48)
H o : -w I%} ] P H
The normal equation related to the high-order modes is then
(02 -w?)p, = @t (4.49)
In the case when
> W’ (4.50)
we have
(mﬁ - w’l )_l = (mﬁ)_l +a)2(mﬁ)_2 +a)4(mﬁ)_3 + e (4.51)

If only the first term on the right hand side of equation (4.51) is taken into

acount, we have the first order approximation of the normal coordinates
p, = () @ f (4.52)
If the first two terms are taken into acount, we then have
= ((02) " + w*(0?)?)oTt (4.53)

Substituting (4.52) and (4.53) back into the physical coordinates, we have
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X=®p, +Rf (4.54)
and
X =®,p, +Rf +W’Rf (4.55)
where
R=® (02)"®/ (4.56)
R=®, (0?)?®] (4.57)
and also
R=R"mR (4.58)

Considering the coupling coordinates only, for the first order approximation, we

have
u®=®/p, +Rf° (4.59)
and for the second order approximation
u® =, +(R° +w’R°)f° (4.60)
For the coupling analysis using thest-order approximation, the compatibility
condition (4.36) becomes
A@) AP+ R fE=,®F gp + R F (4.61)
Applying the equilibrium condition (4.46) to (4.61), we have

EAFME
Afc:(ARC'l'BRC)_l[_A(I)lc : B(I)|C]D"' [ (4.62)

HBQH

EADE

_l .

o = ((ROREJ[@f ¢ -0 (4.63)
i

Substituting (4.62) and (4.63) into (4.35), we form the coupled equation of

motion
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0 o2 00 o 0 O.0O,®° -,@f pD 00
1o Ap' %‘ | o S E %“' 0(4.64)
OsP |D 0 g0 00 s @ O | P [ ]

where
K =(,R+,R°)* (4.65)

The mode matrix from equation (4.64) can be transformed to physical space by

@5 = PQ®¢ (4.66)
where
0® ,R* 0 00
Eﬁqf AR°° 0 0 -
p=Lth™ A a (4.67)
o 0 L@ BR°°B
D 0 0 B(I)IS BRSCD
o | 0 O
0w ¢ O
K ,® K, ®
=0 ' 4.68
Q O 0 | O (4.68)
EK A(I)IC -K B(I)ICE

For the coupling analysis using thsecond-order approximation, the
compatibility condition is then

W70, +{,RE+ 07 RE)Fo=, @7 oy +(oR*+0? R)yt° (4.69)
Introducing the equilibrium equation, we have
W@ P, =o®f op, =((,R°+aR)+ & (,R*+oR"))f° (4.70)
Pre-multiplying (4.70) byK , we have
oF ¢ = (15 + K (RO +,Re) K (@ ,p, 5 ®° 4P, ) (4.71)

The matrix inverse in (4.71) can be approximated by the first two terms of its

MacLaurin series expansion as
(1, + K (,Ro+,R%) =1, —w?K(,R°+,R") (4.72)

Let
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4.3.

M =K(,R°+,R°JK (4.73)
we have
of = (K + M), @F p,—o®f o)) (4.74)
According to the condition of equilibrium, we have the expression of
A= (K+wzﬁ)(—A(I)f AP+ Df Bpl) (4.75)

Substituting equation (4.74) and (4.75) into (4.35), we have

EAD.I E EAQ E
(I +UMV)T- O* (02 + UKV)T-- 0=0,, (4.76)

s P

where
oo’ 0 O
U=rp 477
Jo e -
|:| (I)CT _ (I)CTD

v=p*" 5 (4.78)

ljl'A(I)lCT B(I)lCT E

To convert the mode shape matrix obtained from (4.76) to physical coordinates,

equations (4.66) can be used again, despite the second order approximation for

the residual termsﬂﬁ” is nomally very small relative R and its influence in

the mode shape matrix is virtually negligible.
CMS WITH JOINTS CONSIDERED METHOD (CMS]J)

The CMS methods reviewed in the last section do not include the contribution
of joints between substructures. The connections of substructures are therefore
supposed to be rigid. This assumption can be invalid in some engineering
structures where their components are connected via bolted or some other joints.
Urgueira’s method [Urgu89] takes the joint stiffness into account in the
synthesis procedure but does not consider the effect of mode truncation. The
method presented in this chapter overcomes these drawbacks by including both

joints and compensation of mode truncation. Numerical simulation given in the
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4.3.1.

next section show that it can yield very good result even only a few modes from

substructures are used.

Coupling Equations
The equations of motion of an assembled structure can be expressed as

MX(t) + Cx(t) + Kx(t) =f (t) (4.79)

The stiffness matrix of the structure can be obtained from assembling the

stiffness matrices of the substructures and the joints as
S T L -
K=Sakao +Spkp (4.80)
; Jz:l i iFj

wherek; is the stiffness matrix of theth free substructures, OO™™ | k; is
the stiffness matrix of thg-th joint in its local physical coordinates,
k, 0O, « 00" and p,00"™ are transformation assembly
matrices. The total number of DOFs of the assembled structuxe asd the
number of substructures 5. N; and N; are the numbers of DOFs of théh

free substructure and theh joint, respectively. The element of has the

value of

A if the p™ local DOFistheq" global DOF
(apq)| = P a9 (4.81)

otherwise

The matrixp; has similar composition.

Similarly, the mass, damping and applied force matrices are formed as

M = iarmiai +i[¥ijj[¥j (4.82)

C= S iTCi i t L BTCJBI' (4.83)
|=1u a Jz:l

(0= alf, 0+ 3 BT, (4.8
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In the cases when there are no rigid-body modes in the substructures, the mode
shapes for the-th substructure are generated from the following eigenvalue

equations:
(ki _/\ijmi)(pi,j =0 (J =12,.., Ni) (4.85)

The displacement of theth substructure is therefore expressed in terms of the

modal matrix as
X, =®q, (4.86)

Because there are no internal DOFs in the joints, any DOF in the structure must
belong to one and only one of the free substructures. Therefore, the

displacement of a substructure can be independently expressed in terms of its
mode shapes. The displacement vector of the whole structure is given by the

simple equation:

@, O 0 M, O

X = El 2 :2 @: Tq (4.87)
O
0o 0 D sa

where T is the transformation matrix of the structure from the physical

coordinates to the normal coordinates.

Substituting (4.87) into (4.79) and pre-multiplying bBy', we have the
governing dynamic equations for the assembled structure as

M G(t) +Cq(t) + K q(t) = (t) (4.88)
where
M =T'TMT,C =T'CT, K" =T'KT andf’(t) =T'f ()

From equation (4.80), the generalised stiffness matrixcan be calculated for

the substructures and the joints individually as
S

L
K'=YTalkeT+YTBkp,T (4.89)
=1

1=1
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4.3.2.

According to the definition of the matrices; and B;, the following
relationships are evident:

o, T =®0; g

. 4.90
BiT:(I)JBJE (4.50)

where @; is the mode shape matrix of theh substructure;®; includes
interface subvectors of the modal shapes of the free substructures which
surround thg-th joint. a; and [i*j have analogous form and functiondp and
B,, which represent the relationship between the overall generalised

coordinates and local generalised coordinates oi-thesubstructure and the
th joint. The relationship between the overall and the local physical coordinates

is represented by, andf; .

Substituting (4.90) into (4.89) leads to

S L
K=Y akial +3 BTk (4.91)
=1

1=1
where
ki =@k, ®, andk =@k @,

A similar procedure is followed to obtain the corresponding expressions for the
mass, damping and applied load. It is seen from (4.91) that the generalised
stiffness matrix of the assembled structure can be expressed as the function of
the stiffness matrices of substructures and the joints. The generalised mass and

damping matrices of the assembled structure can be obtained in the same way.

Residual Attachment Modes

The number of modes of the substructures used in (4.91) is normally limited due
to the expense in computation. To take into account the effect of the truncated

higher modes, we introduce a conceptesidual attachment modes.
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Let @, be the complete modal shape matrix of th#h substructure. This

matrix can be partitioned to
@, =|® | (4.92)

where ®| contains the retained mode shapes with lower natural frequencies

which are used to span the subspace®ficontains the truncated higher mode

shapes.

The orthogonalisation of the mode shapes with respect to the stiffness knatrix

and mass matrixn, are written as:

O'k,® =A0
L 0 (4.93)

Om® =1, g
Applying the inversion on both sides of the first equation in (4.93), we have
Ok DT = A (4.94)

Pre-multiplying by®, and post-multiplying by®' , equation (4.94) becomes

=, A% = [0 mrlé"’g)'z (0 %ﬁ,{;@:@: (o) (! ) + 0 o))

hY2
o)

(4.95)

If the higher modes are truncated, the residual flexibility matrix ofi-te

substructure will be
R, =k - (0! )] *(@!) (4.96)

Neglecting the inertia effect intruduced by the truncated mode shapes, the
compensatory displacement response of a substructure can be expressed in

terms of the residual flexibility matriR, as
Ax, =R T, (4.97)

In the case of free vibration, there are only internal forces acting at the

interfaces of the free substructure. Therefore,
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_G/0 000
f. = %ic E— %CE (4.98)

If R, is written in partitioned form corresponding to the internal and interface

DOFs, Ax; can be written as
. 000
ax, =[R Rf]%cgz RSf¢ (4.99)
i [
Theresidual attachment modes of the free substructure are then defined on the
interface boundary DOFs as

Therefore, the displacement of the substructure can be represented in terms of

the mode shape®! and the residual attachment modgsas

X, =®'q +Tf° (4.101)

wheref© is the internal force acting at the interfaces ofittresubstructure.

Equation (4.101) can be partitioned with respect to the internal and coupling
boundary DOFs:

Gp! Ty O

EE

From the second row of (4.102), the interface fdrcean be written as
= (0 )(xe - @lFa)) =kixr -k (4.103)
Substituting (4.103) back into (4.102), we have

kO ' -Tk? Tk O A, BOh O
Fig=pn Thk ki i g g (4.104)
xioo O L mx'o 00 I mxio

From equation (4.103), the total interface force vector of the substructures can

be expressed as
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&> 0 - 00OXO &* 0 - 00O
0o ke . oMel By o . oy H
=g ‘o9, 2 H=Kxe -K"q' (4.105)
.. e : |:| .. e e e : |:|
O 0
0 0 - kigK¢H B0 O - KIEHS

Using equation (4.104), the displacement vector of the collection of the

substructures can be expressed as

X0 [A BOy'O
0. 0= .0 (4.106)
HJ '%Ex 0

Compatibility conditions at the coupling points are used to eliminate the DOFs
at the interfaces. The compatibility conditions at the interfaces may be written

as
=x,f°+f=0 (4.107)

where the vectorx and f are the displacements and interface forces of the

joints which are related by the following equation
f = Kx (4.108)

Substituting equations (4.107) and (4.108) into (4.105), the interface
displacement can be rewritten in terms of the generalised coordinates:

x¢=(K+K?)'K"q' =T°q' (4.109)

Substituting equation (4.109) into (4.106), the final transformation matrof
the structure, considering the static effect of the truncated higher modes of the
substructures, is generated as follows:

B D DA+BT°D or' O

= %) | EDT E_ E"CE (4.110)

To implement this method, a linear transformation should be applied@ ,on
which is obtained from (4.110), in order to adjust its rows according to the

spatial coordinates of the assembled structure.
T=ST (4.111)

The matrix T can then be substituted into equation (4.89) as
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4.3.3.

4.4.

The local transformation matrix for ti¢h substructure and theh joint can be

written as
or' O
T = %_'CD Tj :TJ.C (4.112)
i U

where T' is the submatrix off ' in its rows, TS and T; are the submatrices of

T in its rows.

The reduced stiffness, mass and damping matrices as well as the load vector for
thei-th substructure are calculated by the following equations:

ki =T'k,T, O
m =T"mT.

A B (4.113)
¢, =T, ¢T,

fr®)=T'f® B

Similar calculations can be performed for the joints as well.

Treatment of Rigid-Body Modes

When asubstructure is unrestrained, the definition of the residual attachment
modes in equation (4.100) becomes obsolete since the stiffness matrix is

singular. Using the concept afertia relief attachment modes mentioned in

section 4.1, thelastic flexibility matrix G® can be determined as
G*=P"GP (4.114)

Since the flexibility terms have been derived under inertia loading effects
leading to the elastic flexibility matrixz ®, this flexibility matrix serves as the

inverse of the singular stiffness matrix. It should be noted @hatis still

singular.

CASE STUDIES

Two case studies are designed to validate the proposed method, CMS with joint
considered and residual attachment mode compensation. The first case is two
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4.4.1.

simple beam structures coupled via a beam joint. It shows how well the method
works with different scale substructures. The second case is a more practical
structure, in which both substructures are in free-free boundary condition and

the joints are more complicated.

Clamped-Clamped Beam

The modal properties of a clamped-clamped beam are predicted by synthesising
modal properties of a pair of shorter cantilever beams with a joint in between.
Fig. 4.1 shows six pairs of substructures. The ratio of DOF numbers included in
substructures A and B is different in each pair. When the first three modes are
considered from substructure A and substructure B in each pair, the first six
natural frequency of the assembled structure are predicted successfully for pair

one and error increases for the rest of pairs as shown in Table 4.1.

The natural frequency comparison between substructures A and B in different
pairs is given in Fig. 4.3. With the increase of the difference in scale between
substructure A and B, the difference of the first three natural frequencies
increases dramatically. In the worst case, pair 6, first three natural frequencies
can still be predicted accurately. The relative errors of the natural frequencies

against index number of the pairs are shown in Fig. 4.2.

This example demonstrates that the method of CMS with joint considered and
residual attachment mode compensation can at least predict the same number of
modes of the assembled structure as the number of modes provided from by
each substructure. It also suggests that the scale of substructures had better be

similar in order to obtain accurate results.
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.. L 7 g s v

g 2 g 2
(a) pair 1 (14:14) (b) pair 2 (12:16)

1. - b 1. oo _r

g 2 g 2
(c) pair 3 (10:18) (d) pair 4 (8:20)

1. iy 1 b

g 2 7 2
(e) pair 5 (6:22) (f) pair 6 (4:24)

Fig. 4.1 Six different pairs of substructures (The two numbers in parentheses are the

numbers of DOFs of substructure A and B, respectively)
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Table 4.1
f, f, f, f, f. fe
exact 8.9601 247001 | 48.4291 | 80.0828 | 119.7072 | 167.3766
pair 1 8.9606 247001 | 48.4709 | 80.1001 | 120.1145 | 172.6389
error (%) | 0.0056 0.0000 0.0863 0.0216 0.3402 3.1440

pair 2 8.9605 247019 | 48.4485 | 80.2146 | 120.6882 | 187.8944
error (%) | 0.0045 0.0073 0.0401 0.1646 0.8195 | 12.2585
pair 3 8.9604 247050 | 48.4361 | 80.2214 | 128.8617 | 233.3507
error (%) | 0.0033 0.0198 0.0145 0.1731 7.6476 | 39.4166
pair 4 8.9603 | 24.7052 | 48.4573 | 81.4308 | 152.9489 | 322.6363
error (%) | 0.0022 0.0206 0.0582 1.6833 | 27.7692 | 92.7606
pair 5 8.9602 | 24.7032 | 48.4530 | 87.3631 | 205.8587 | 511.4926
error (%) | 0.0011 0.0126 0.0494 9.0910 | 71.9685 | 205.5939
pair 6 8.9602 | 24.7028 | 48.6188 | 103.4081 | 330.8366 | 1048.428
error (%) | 0.0011 0.0109 0.3917 | 29.1265 | 176.3715 | 526.3888

—jae

[ pair3

600 EE?:FQ

T | pair

&
o
o

(8]
Q
o

Relative error (%)

mode number

Fig. 4.2 Relative error of the natural frequencies vs. index number of the pairs for

case study 1
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Fig. 4.3 Natural frequency comparison between substructures A and B in different

pairs for case study 1

4.4.2. GARTEUR structute

The GARTEUR structure shown in Fig. 4.4 was built by ONERA in France for

investigating modal test and analysis techniques. It consists of two main parts,
the wing and the fuselage with tail. These two main parts are connected by four
bolted joints. In this case study, the wing is taken as substructure A as shown in

Fig. 4.5 and the fuselage with tail is taken as substructure B as shown in Fig.
4.6.

Fig. 4.4 The assembly of GARTEUR structure
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;
|

Fig. 4.5 Substructure A: the wing

T

Fig. 4.6 Substructure B: the fuselage and talil

RNV

Fuselage X /\y

Fig. 4.7 Connections between substructures A and B
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The joints between these two substructures are spring elements connecting 5

DOFs between substructure A and B, three translations and two rotatiéps of

andg,. They have an identical stiffness valtie10™ N/m.

Table 4.2 shows the parameters of FE models of substructure A and B. When 6

modes from substructure A and 4 modes from substructure B are used in the

coupling analysis, the first 10 natural frequencies predicted using CMSJ are

shown in table 4.3.

Table 4.2 Basic parameters of the FE model

N—r

substructure A| substructure
number of nodes 88 48
number of elements 60 24
number of DOFs 52¢ 288
Table 4.3
mode | exact Urgeria | error (%) | CMSJ | error (%) | reduced error (%
1 6.5152 | 7.8362 | 20.2747 | 6.5205 | 0.0801 20.1946
2 16.3131 | 18.1972 | 11.5497 | 16.3251 | 0.0731 11.4766
3 37.9458 | 38.4248 | 1.2623 | 37.9758 | 0.0790 1.1833
4 39.2928 | 41.6822 | 6.0810 | 39.3204 | 0.0703 6.0107
5 39.6716 | 41.7039 | 5.1228 | 39.6979 | 0.0661 5.0567
6 524577 | 63.2477 | 20.5690 | 52.5092 | 0.0983 20.4707
7 53.6223 | 65.4051 | 21.9739 | 53.7543 | 0.2462 21.7277
8 57.2831 | 66.0479 | 15.3008 | 56.6558 | 1.0950 14.2058
9 69.8696 | 70.9170 | 1.4990 | 69.9124 | 0.0612 1.4378
10 | 70.0156 | 87.0351 | 24.3081 | 70.1765 | 0.2297 24.0784

The original method proposed by Urgeria [Urgu89] yields huge errors when

such a few number of modes are used in coupling analysis. In fact, the results of
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4.5.

that method shown here were obtained using 60 modes of substructure A and 40

modes of substructure B, 10 times more than the number of modes used by
CMSJ.

CONCLUSION

The CMS method with joints considered and residual attachment mode

compensation (CMSJ) has been presented in this chapter and the numerical

simulations show that the method works very well. The main advantages of the

method are:

Joints can be introduced in between the substructures. Since the joints are
normally the most difficult part to model, this method provides a convenient
way to modify the joints and predict the dynamic characters of the assembly
without re-analysing the substructures.

In the currently available CMS methods, the inter-substructure continuity of
the displacement and rotation fields is enforced pointwise. However,
substructures are often designed by different teams of engineers, and their
respective finite element models often require different mesh resolutions. In
this case, the finite element substructure models are typically non-
conforming. The introduction of joints also makes the connection between
such non-conforming interfaces possible.

The joints, which are excluded from the modal analysis of the individual
substructures, can be used to simulate local non-linearity such as micro-slip
in construction joints in structures. According to the principle of CMSJ
method, this simulation should be realised without many difficulties.

In general, the CMSJ method satisfies all the criteria proposed by Hintz

[Hint75] and it is worth to apply this method to large-scale structures.
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5.1

CHAPTER 5

VIBRATION ANALYSIS OF COUPLED

STRUCTURES - FRF METHODS

INTRODUCTION

If CMS is mainly based on analytical modeig. the spatial type of model,
referring to Ewins definition [Ewin84], the FRF coupling method is then
basically built on experimental models or in the other word, response models. In
fact, since all the models can be interrelated with each other [Urgu89], both
coupling methods allow the use of a combination of analytical and experimental
data. Compared with the CMS method, FRF coupling has the advantage of using
the measured FRFs directly, which implies that the errors introduced by modal
analysis, and the errors caused by high mode truncation, could be eliminated

since the effects of the higher modes are inherent in the measured data.

The widely used expression of FRF coupling [JeBi88] connects two substructures

rigidly at the coupling co-ordinates. Other coupling methods, either in the group
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of impedance coupling (spatial coupling method) or modal coupling (free
interface and fixed interface methods), follow the same compatibility condition of

displacement as well.

To refine the general coupling analysis techniques, more researches on some
specific aspects were carried out. Since the computed FRFs of the assembled
structure may be contaminated by errors, @ttal [OtLe91] proposed two data
reduction methods to enhance the measured FRFs for coupling in the spatial and
frequency domains respectively. These methods are based on singular value
decomposition and resolve the problems of the ill-conditioned matrix inversion
and the influence of noise. Two sources of error are normally encountered: (i) the
inconsistencies of measured data (noise, frequency shifts), and the inability to
measure correctly all DOFs of the connection; and (ii) ill conditioned matrix
inversion for a large numbers of DOFs. Suatez [SuMa92] introduced a force
derivative method to compensate for the effect of the truncated higher modes in
the representation of the substructures’ response. It was demonstrated that the
method is capable of providing very accurate estimates of the natural frequencies
of the combined structure as well as the associated modes of vibration and elastic

forces.

It is worth pointing out that the essential principles in those methods mentioned
above are the same as the FRF coupling method in the treatment of connections
between substructurese., they suppose the same compatibility conditions of
displacement at the interfaces of the connections. The substructures for numerical
simulation were designed to meet the conditions and, therefore, the solutions of
coupled structure analysis were satisfactory. Practically, however, the accurate
analysis of coupled structures requires not only good substructure data estimation
but also the reliable modelling of the joints, which connect the substructures. If
the rigid connection assumption cannot describe the characteristics of realistic
joints, it is clear that the FRFs obtained from the coupling analysis will certainly
differ from the experimental results of the corresponding assembled structure, no

matter how fine the algorithms are.
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5.2.

Basically, the theory of coupled structure analysis developed so far has not taken
into account of the effect of practical joints. The effect of joints should be

estimated carefully and the joint models should be established. Furthermore, the
theory of substructure coupling analysis should be developed further to include

the joint effects.

REVIEW OF THE ESSENTIAL PRINCIPLES

The currently used FRF coupling method was originally presented by Klosterman
in 1971 according to [OtLe90]. The basic idea of the method can be chased up to
1960 by Bishop and Johnson [BiJo60].

5.2.1. FRF coupling without joint

The mathematical expression of FRF coupling method is well knojieB#38]
H.O

HcchH +BHcc _1[AHci AHcc _BHci] (51)
H

in which H is the FRF matrix of the assembled structyfd,, ;H is the FRF

matrix of substructure A and B respectively. Subscriptepresents internal

DOFs andc is the coupling or interface DOFs.

If the FRF matrix of the coupled structure has the content as

|:I'-Iaa Hac Hab|:|
H = E-Ica Hcc chg (52)

@-Iba Hbc beg

then each submatrix can be expressed as
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5.2.2.

Haa:AHii_AHic[AHoc+BHoc]_lAHci
ac:A ic_AHic[AHcc+BH0c]_lAHcc

I

Hab:AHic[AHcc+BHcc]_lBHci (5 3)
Hcc:A cc_AHcc[AHcc+BHcc]_lAHcc
ch:AHcc[AHcc-'_BHcc]_lBHci
be:BHii_BHic[AHcc+BHcc _lBHci
and by symmetry,
Hca = H;c
Hba:Hlb (5.4)
Hy = sz

FRF coupling with joint
The FRF coupling method presented in (5.1) does not include joints between
substructures. A method of FRF coupling with joints was recently reported by
Ferreira [Ferr98], in which the description of substructures and their assembly are
the same as that mentioned in [Ren92]. The new development of the method in
[Ferr98], in the aspect of substructure coupling analysis, is the joint description
and synthesis with substructures. However, it can be noticed in the derivation
process of the coupling method [Ferr98], that the expressions of the forces

applied on the substructures,and -, are not unique. It seems that the solution
should be consistent only if the describing funct®nis infinite, or in the other

words, of G™ =0. Obviously, this condition conflicts with the purpose of the

coupling analysis and, therefore, there must be an error in the derivation.

In fact, the joint model expressions given by Ferreira is

Heg=0 ¢ ~SOxp (5.5)
_ -7 _
%ED TG  GOX:[O

This joint model is based on two essential assumptions (which are not clearly
mentioned in [Ferr98]): the first assumption is that the equilibrium condition and

the compatibility condition are given in the form of
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Ef 0 OFO X O

E %D andD

O\

N
0= =0 (5.6)
0 X[O

cD

and the second assumption is that the stiffness matrix of the joint has to take the

specific form of

0G -G
= 0 (5.7)
TG G

The second assumption implies that the joints between the substructures can only

be parallel scalar springs.

According to the proposed equilibrium conditions in [Ferr98], the forces applied

at the interfaces of the assembled structure have to be always zeros:

Fo=F.=f_+f

s =Fz =f.+f; =0 (5.8)

Therefore, when these basic assumptions are used in the derivations, these two

forces, F; and F;, appear in the expressions fof and f;, can have arbitrary

coefficients without affecting the values fif and f; . That is why the solutions

are not unique.

5.3. GENERAL JOINT DESCRIPTION METHOD - NEW DEVELOPMENT

5.3.1. Theory background

To correct the equilibrium condition used in [Ferr98], and to employ a general
joint description matrix, a generalised substructure coupling method using FRF

data is derived in this section.

JOINT DESCRIPTION

A joint can be analytically described as
f=2Zx (5.9

where Z is the impedance matrix of the joint. Since it is normally symmetric,
such that
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N

ol
ol

d

0\

[Z,
Z= 5.10
7. (5.10)

Z. -2 andZ, =Z.

N

o)
ol

with Z_ =Z[_

cc?

The joint has no internal degrees of freedom. All of its degrees of freedom are on
its boundaries. If the number of degrees of freedom at the boundary of

substructure A equals that of substructute B,=n;, then Z is a square

matrix. Otherwise, in more general cases\if n;, Z_ is rectangular.

cc
CONDITIONS OF COMPATIBILITY AND EQUILIBRIUM
The displacement vector of joint, satisfies the compatibility condition:
1l
X=0 O (5.11)
Xe O

The force vectorf , satisfies the equilibrium condition at the coupling interfaces:

12
% %:CD EfD (542

where F. and F; are the external forces acting on the interface DOFs, and

f=0 (5.13)
0

When there are no external forces applied on the interface DOFs, equation (5.9)
becomes

f:—éf E (5.14)
0

DESCRIPTION OF SUBSTRUCTURES

To describe each of the uncoupled substructures, we have
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%}(ig |]-lu Hié HlE D]j|%
[(Xe 0= %" He He %CD (5.15)
B(EH @-I Ci HEE HEE EH

DERIVATION OF THE RECEPTANCE MATRIX OF THE COUPLED STRUCTURE

Solving x, andx; from (5.15) and substituting them into (5.9), we have

J(Hf +H f +H )+ Z (Hf +H f +Hf.)-f=0 (5.16)

Ci'i cc'C cc'c Ci'i cc'c

(Hf +H f +H )+ Z (Hof +H f +H_f.)-F=0 (5.17)

Ci'i cc'C cc'c Ci'i cc'c

Substituting (5.12) into (5.16) and (5.17), noticing that F, , we have

J(HGF +Hf +Hf )+ Z (HoF +Hf +Hf)—F +f. =0 (5.18)

cc'C cc'c

J(HGF +H o +Hof )+ 2 (HoF + Hof +Hofe)—Fz +f. =0 (5.19)

cc'c cc'c cc'c
Rearranging these two equations with respect to the force vectors, we have

af. +af; =Fz —a;F, (5.20)

bf. +b,f, =F- —b,F, (5.21)

C

Solving equations (5.20) and (5.21), we have the force vectors for the uncoupled
system uniquely expressed in terms of the external force vectors of the coupled
system as

f. =B7Y(b, —b,a;"a,)F, +b,aF. —F.] (5.22)

f. =B7(a, —a,b;b, )F, —F, +a,b;'F,] (5.23)

where
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& =ZHg +ZHy +
Hes *ZHe
,,H,. Z,~H~.
H
H

y 4

Z

y 4

Z. H_ +Z_ H
Z.

Z

st Z H &t I
H ZEEHEi
2a2 al - b1
aibl_lbz -,

wzw|c'crcr
1

(5.24)

Substituting (5.22) and (5.23) into (5.15) and using the following compatibility

conditions:

X, =X;, Xg =X, and Xz =X;

C

(5.25)

the upper triangle part of the coupled struCtulRF matrix is obtained as

follows:

I

He=HB,a,'~HB™
H s =HBab-HB™
Hee =HBb,a-HB™
Hee =HgB" abl_l—HEEE_l

ccC

-1 n-1

g =H; +H iEE_l(b3 _bza;las)-'_ H iaé_l(a3 _albilb3)

(5.26)

Those FRFs compose the receptance matrix of the coupled structure:

0 M, He HOFD
%(cg=ﬁ4c Hee Hc"%:cg
e Bs He HeHF:H
where
H6|:H|T6
Hél_Hch
Hcc_ 26

5.3.2. Algorithm

The expressions in (5.24) can be simplified according to the fact that

(5.27)

(5.28)
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Hg =Hg =0 (5.29)
Substituting (5.29) into (5.24), we have
& =ZgHg +|
a, =ZHs
a,=Z H; +ZHj (5.30)
bl = ZEEHEE
b,=ZHs: +I
b, =Z;Hy +Z;Hg
and
E = Hgé{H cc (ZEEZ;EZEE _ZEE)H cc + (H EEZ Z; chzccH ) Z E}
_ (5.31)
B-r2l 222, -2 W+ H.2.2e 202 ) 22
E { (chzcczcc Z ’)HEE (Hcczcczcc +chzccH )+Zgﬁ} HEE (5 32)
é { E(Z Z+ Z _Zéc )H (H cczcczgc Z:CZCCH ) Zg6}+H66 |

Rewriting (5.32) in a short form and comparing the expressions in the flower

brackets, we noticed that if denote
B* =D'H (5.33)
then
B*=(D")'H, =DH (5.34)
Therefore, the FRFs of the coupled structure in (5.26) becomes

H, =H, +H.D'Hy (b ~b,aa, )+ H D" H . (a, ~a,0;'b,)
Hez=H D Hgh,a - HiED+THEE
H & = H iED+TH 66a1b1_1 -H i6D+H e

5.35
Hee =HD'Hyb,a; 539
Ho:=-HD'H
He =H =DH Céalbl_l
From (5.30), we have
b3 - b2a;la3 = Hgé{(H ZEE - Hcczch:chc Z:czcc) G HEi} (5 36)
_a:l.bl_lb3 = H;{(H ZEE - HEEZEEchch _chzcc) Héi} -
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and
cc ) cc (537)

Substitute (5.36) and (5.37) into (5.35), we have

H, =H; +HiED+Ha+HiED+THb
He = H.D'H, —Hi5D+TH66
Hes= H.D"H, -H,.D'H
Hee = H.D'H,

Hee =-H EED+HEE

CcC

H..=H,D'H,

(5.38)

where
Ha = (HE Z _Hcczcczcczéé _chzéé) - HEi
Hb = (H ZEE - Hcczcczgczcc Z:czcc) - Héi
(5.39)
H.= (H clsz T )Z:E
Hd = (H Eézéé +1 )Zgé

There is only one inverse operation for frequency response functions in equation

(5.38), which isD". This is the same as the Klosterman-Jetmundsen method (K-
J method) as shown in equation (5.3). Therefore, the computation time and the

sensitivity to noise in the FRF data are basically the same for both coupling
methods. The calculation &’ should not have a problem since mat@y. is

given analytically and its size is relatively small.

The pseudo-invers®” is calculated using singular value decomposition (SVD).

Performing an SVD on matri®, which has dimension, xn., we have

D=USV" (5.40)

If matrix D is ill conditioned or even singular, the singular value truncation
technique will be applied by setting a certain threshold vaeduend truncate the
singular values which are smaller thsoh . If the remained number of singular

values isr , then we have
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D* =V .S U" (5.41)

The dimensions o¥/, , S, andU! aren. xr, r xr andr xn_ respectively.

5.4. CASE STUDIES

Two case studies are presented in this section. The advantages of the newly-
developed generalised joint description method (GJDM) for coupling analysis are

demonstrated by these examples.

The first case is designed to show how the properties of joint parameters, mainly
stiffness and damping, affect the coupling results. The second case is more
practical - a larger finite element model is used to investigate the high-order
mode truncation effect and tolerance to noisy data. The results are compared with
those obtained from the standard K-J method.

5.4.1. Cross beam structure

DESCRIPTION OF THE STRUCTURE

substructure B

substructure A v x

Fig. 5.1 Cross beam structure

Two identical beams are placed horizontally in a right angle and are connected
vertically via another very short beam which plays the role of the joint. The lower
beam is named substructure A and the higher beam is substructure B. The length

of each of the substructures 449mm and the length of the joint i8mm. The
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cross section of the substructures is rectang@@mnmx5mm. The cross section

of the joint beam is circular with diametgr=8mm.

Each substructure is divided evenly into 10 Timoshenko beam elements. The
joint is described by a single beam element which has 6 degrees of freedom at
each end. Its mass and stiffness matrices are formed by standard finite element
method. The proportional damping is introduced to generate frequency response
functions for both substructures and the joint. The proportional viscous damping

model is
c=pk (5.42)

If the mass of the joint is neglected then the describing matrix of the joint

becomes

Z(w) =k +iwe =k(1+iwB) (5.43)

G]DM COUPLING ANALYSIS

To validate the generalised joint describing method for coupling analysis, its
theory and algorithm, the coupling analysis result is compared with the result of
the complete assembled finite element model. In this comparison, the joint
parameters prepared for coupling analysis are set to be the same as those used in
the assembled finite element model. Based on noise-free input FRFs, all the
frequency response functions of the assembled structure are predicted accurately
using GJDM. An example is given in Fig. 5.2.

One of the advantages of GJDM is that the joint parameters can be modified
independently. This advantage makes it possible that the dynamic characteristics
of a structure can be tuned to some extend by varying the joint parameters only.
In other words, the joints, which are normally the most difficult parts in finite

element modelling, can be completely separated from the substructures and
treated independently. After the joint parameters are properly adjusted, they can
be used together with frequency response functions of the individual

substructures to implement the GJDM coupling analysis. In the case shown in

Fig. 5.1, for instance, if we increase the damping of the joint by setting a larger
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B value in equation (5.42)3=1x107, the coupling result will then show the
effect of this perturbation, as shown in Fig. 5.3 in which the proportional

damping factor for the assembled structurb*40™".

mobility (dB)

—_— assembled FE
—_— GJIDM coupling

-50 ! ! .
0 500 1000 1500 2000
frequency (Hz)

Fig. 5.2 Validation of GJIDM

The flexibility of changing joint parameters cannot be so easily achieved in the
assembled finite element model. This means that GJDM coupling analysis not
only saves computation cost by breaking down a large structure into smaller
substructures, but it also solves problems which cannot be worked out efficiently

using the assembled finite element model.

mobility (dB)

E— assembled FE
—_— GJIDM coupling

0 500 1000 1500 2000
frequency (Hz)

Fig. 5.3 Coupling result of increasing the joint damping
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APPLICATION OF K-J COUPLING METHOD

If this same coupling problem is dealt with using Klostarman-Jetmunden
coupling method, the joint has to be assigned belonging to one of the
substructures. This will generally bring two problems: the first is that the
modification of joint parameters will no longer be achieved so flexibly. Any
small change of joint parameters will result in the need for a re-analysis of the
substructure to which the joint is attached. This is time-consuming if the number
of degrees of freedom of the substructure is large, or if the modification needs to
be done a number of times; the second problem is that the introduction of a joint
may cause the stiffness matrix of the joint attached substructure to be ill-
conditioning because, in general, the stiffness of the joint is much greater than the
stiffness of the substructure elements. The ill-conditioned stiffness martrix will

further cause difficulties in the eigen-solution.

In this simple case, the coupling result of K-J method is as accurate as that of
GJDM as shown in Fig. 5.2. The tolerance to noisy input data is more or less the
same as GJDM, according to the analysis in section 5.3. More detail comparisons
between these two FRF coupling methods will be given and discussed in the next
section for a more complicated case study, a plate couples with a beam.

5.4.2. Plate couples with beam

DESCRIPTION OF THE STRUCTURE

A brass plate shown in Fig. 5.4 and a brass beam shown in Fig. 5.5 are to be
coupled together using a steel bolt. The alignment of the coupled system is shown
in Fig. 5.6. The detail of the connection joint is shown in Fig. 5.7 where the size
of the steel bolt is M4. The material properties of the structure are listed in Table

5.1.
Table 5.1
material | Young’'s modulus Poisson’s ratio density
brass 1.10x10" N/ m? 0.29 8.54x10°kg/ m’
stee! 2.10x10" N /m? 0.30 7.80x10%kg/ m®
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Fig. 5.4 Brass plate, thickness 3mm

connect to plate
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Fig. 5.5 Brass beam, thickness 3mm

Fig. 5.6 The assembled structure
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plate
vz

e
NN

Fig. 5.7 Bolt connection

COUPLING ANALYSIS I: KLOSTERMAN- JETMUNDSEN METHOD

substructure B

Fig. 5.8 FE mesh for coupling analysis

Substructuredefinition

The plate is taken as substructure A and the beam together with the bolt are taken
as substructure B. The FRFs of the two substructures, A and B, are generated
from the modal analysis of their finite element models. The 4-node 20-DOF plate
elements are used to model the plate, and Timoshenko beam elements are used to
analyse the beam, substructure B. FRFs were generated using the mode

superposition method: the numbers of modes used were:300, m, =50.

Coupling result
FRFs of the coupled structure were obtained by implementing the analysis based
on the Klosterman-Jetmundsen method. Input data were the FRFs of the

substructures. The result is compared with the “exact” FRFs which were
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produced by analysing the finite element model of the whole assembled structure.

One FRF of the coupling analysis results, the point FRE, , i.e. the translation

point FRF in thez direction of node 5, which is the coupling node on the plate, is
shown in Fig. 5.9 overlaid with its corresponding “exact” FRF. It is seen that the
K-J method works well in general except the frequency shift the frequency range
of 800Hz to 1200Hz.

0 T T T

_— K-J method
—_— exact

|
N
o

T

1

-60

mobility (dB)

-80

-100 1

~120 : : :
0 500 1000 1500 2000

frequency (Hz)

Fig. 5.9 Point FRAH,,., obtained from the K-J coupling analysis

COUPLING ANALYSIS II: GENERAL JOINT DESCRIPTION METHOD

Substructuredefinition

In this analysis, the plate is still taken as substructure A but the beam is taken as
substructure B which excludes the bolted joint. FRFs of the two substructures, A

and B, are also generated from the modal analysis of their finite element models

using mode superposition method.

Joint definition

The bolt which connects plate and beam is defined as a beam element. Since the
mass of the bolt is very small compared with any of the substructures, either the
plate or the beam, only the bolt stiffness is taken into account to construct the

joint description impedance matriZ,. The compatibility of degrees of freedom
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Is considered in forming the matrix. The beam element has 6-DOFs at the

boundary connecting it to the beafn, =6) and 5-DOFs at the boundary

connecting to the plat@, =5). Therefore, the dimension of matr& is 11x11.

Coupling result

FRFs of the coupled structure were obtained by implementing the programme of
the general joint description method. Input data were the FRFs of the
substructures as well as joint description mat@x,The result is validated by the
“exact” FRFs which were produced by analysing the finite element model of the
whole assembled structure. One FRF of the coupling analysis results, the point
FRF of %, i.e. the translation DOF im direction of node 5, which is the coupling
node on the plate, is shown in Fig. 5.10 overlaid with its corresponding “exact”
FRF. It is clear in Fig. 5.10 that the coupling analysis yields a very good result.

There are no significant frequency shifts as shown in Fig. 5.9.

0 - - .

exact ]
coupling analysis
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o
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!
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o
T
!
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&
o

=100 1

-120 : ' '
0 500 1000 1500 2000
frequency (Hz)

Fig. 5.10 Point FRFH ., obtained from the GJDM coupling analysis

Substructureresidual effect
It should be pointed out that the total numbers of modes used for substructures A

and B were 320 and 186 respectively, while the coupling result shown in Fig.
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5.10 was achieved by using only the first 300 modes from substructure A and the

first 50 modes from substructure B.

To investigate the substructure residual effect, the number of modes used in
generating the FRFs is set as a variable. Table 5.2 shows the numbers of modes
of substructure A (plate) which were used in the study, together with the
corresponding highest natural frequencies. In all cases, the FRFs of substructure
B (beam) were generated using 30 modes in which the highest natural frequency
was 7049 Hz.

Table 5.2

m,=130 | m, =150 | m, =200 | m,=250 | m, =300
f. (Hz) | 12875 16545 28872 52693 95703

The coupling analysis results obtained by different numbers of high-order mode
truncations are shown in Fig. 5.11. This is the same FRF as shown in Fig. 5.10,
the point FRF at 5 According to the modal analysis of the assembled system
finite element model, there are 43 elastic modes in the frequency range of 0 to
2,000Hz, but not all of them are included in this point FRF plot. It is noticed in
Fig. 5.11 that only three modes, numbered as 23, 24 and 28, which have the
frequency values of 903.7Hz, 927.8Hz and 1112.3Hz respectively, are
significantly affected by the high-order mode truncations. The rest modes are

almost consistent with respect to different numbers of mode truncation.

It is found that mode 28 in Fig. 5.11 (at 1112.3Hz) is dominated by residuals. Its
frequency shifts to a higher value and its amplitude becomes smaller with regard

to the decrease afn,, the number of modes included for generating FRFs of
substructure A, the plate. Further calculations show tha, iis chosen such that

m, <120, this mode will disappear from this FRF plot.
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Fig. 5.11 Investigation of residual effeeh{ = 30)

It is obvious that the number of modes included in generating the FRFs for
substructure A plays a very important role in the accuracy of the coupling result.
The residual FRFs in the frequency range 0 to 2,000Hz were then generated

including the truncated modes, from mode 131 to 300, and are shown in Fig.

5.12. These FRFs are, from top to bottoRlls 5o , Hsgsg  Hegse, Hsase, »

H5259y , H 5252 H 5X5X ? H andH

5y5y 5x5y *

Comparing the amplitudes of these residual FRFs with those of the FRFs used for
coupling analysis, which are shown in Fig. 5.13, we can see that these residual
FRFs are not negligible even though the truncation frequency has already been 6

times of the highest interested frequency.
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Fig. 5.12 Residual FRFs of substructure A
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Fig. 5.13 FRFs of plate at coupling DOFs

Therefore, in principle, the GJIDM method is recommended when measured FRFs
are available because they do not have mode truncation error. For analytical
coupling analysis, the improved CMS method, CMSJ, should be the first choice.

In the cases where FRF coupling method has to be applied, a large humber of

modes need to be calculated in order to generate the substruéRires
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Toleranceto noisy data

The motivation to develop the K-J method and the GJDM is to permit direct use
of measured frequency response functions. Therefore, It is important to verify
that these methods can work properly when they are supplied with noise-
contaminated data.

If 10% random noise is added to the FRF matrices for both substructures A and
B, the coupled result obtained from GJDM previously shown in Fig. 5.10 is
shown here in Fig. 5.14.

_20 -

mobility (dB)
o A
o o
_—
R —

_80 L

-100

—_— exact
—_— 10% noise

-120 : ‘ ‘
0 500 1000 1500 2000

frequency (Hz)

Fig. 5.14 Coupling result (GJDM) when 10% noise in input FRFs

Following the same procedure, Fig. 5.15 shows the coupling result when the FRF
matrices of the substructures are contaminated by 20% noise.
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Fig. 5.15 Coupling result (GJDM) when 20% noise in input FRFs

By applying singular-value truncation to the 20% noise case in which the

threshold was set as=107°, the result is improved. To justify the quality of the
predicted FRFs which are obtained using noisy FRFs from the substructures, the
correlation (FRAC, defined in Appendix F) between the predicted FRF matrices
and the exact FRF matrix is calculated. The FRAC values shown in Fig. 5.16 are
the correlations of the upper triangle FRF matrices, in which there are 15 FRFs.
The corresponding full FRF matrix is shown in equation (5.44).

100 —

FRAC value (%)
B (2] o]
o o o

N
(=)
T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
FRF index

Fig. 5.16 FRACS:H 10% noisl, 20% nolse, 20% witkialue truncation
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5x56,

H H H H
H H H 5y56, H

H. =LH 575x H 575y H 575z H 5256, H 5256 (5-44)
H H H H
H H H H

56,50,

56, 56,

It is shown that GJDM is generally not sensitive to noise. All point FRFs, those
are number 1, 6, 10, 13 and 15, are very well predicted, even in the 20% noise
case. The results which have low FRAC values are basically those FRFs which
have low response levels. The FRAC values increase significantly when singular
value truncation is applied to the 20% noise case. They are almost the same as

10% noise case without the singular value truncation.

Comparison between K-J method and GJDM

The coupling results produced by K-J method and GJDM are compared under the

same conditions: the same numbers of modes are used to generate the FRFs of
the substructures and these FRFs are free of noise. The FRAC — correlation

between the coupling analysis results and the assembled finite element analysis

result — is calculated and displayed in Fig. 5.17.
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Fig. 5.17 FRAC of the two coupling methods: GJIM, K-J method

It is seen that the GJDM is universally superior to the K-J method in this

example.
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5.5. CONCLUSION

The development of a new FRF coupling analysis method, the generalised joint

describing method (GJDM) has been reported and it has the following advantages

compared with the conventional Klosterman-Jetmunden (K-J) method:

the joint is completely separated from the main substrutures, and joint
parameters are modified independently. The substructures do not need to be
re-analysed with respect to the variation of joint parameters;

separating the joint from the substructures will help to avoid generating an ill-
conditioned stiffness matrix and therefore to reduce the difficulties in solving
the eigen-problem of substructuresand the method is not sensible to the noise
in the input FRF data;

the number of coupling degrees of freedom in one substructure can be
different from another to accommodate the DOF non-conforming
interfaces[FaGe92];

the joint describing impedance matrix is very flexible. Its stiffness and
damping can be adjusted to fulfil the requirment of the system response. This
is not only an advantage for substructure coupling analysis but also provide a

technique for damper design in vibration control.

125



Non-linearity considerations in joint modelling and substructure coupling  chapter 6

CHAPTER 6

NON-LINEARITY CONSIDERATIONS
IN JOINT MODELLING

AND SUBSTRUCTURE COUPLING

6.1. MOTIVATIONS

Linear modelling of structural joints has been introduced and applied in the four
preceding chapters, chapter 2, 3, 4 and 5. A linear joint model is an idealised
description of joint properties in the sense that it has constant-valued mass,
stiffness and damping matrices. This idealisation is normally accurate enough to
represent most structural joints which are designed for firmly-fastened
connections such as welded, glued, bolted and riveted joints. The physica
explanation of this kind of joint is that there should be no relative movement
between interfaces; in other words, the interfaces are stuck together. In contrast,
joints which are designed for utilising friction damping to control vibration
response levels belong to a different regime. These connections are designed to

have relative movement between interfaces, i.e., macro-sip occurs between the
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interfaces. The friction introduced by macro-dlip dissipates vibration energy and

generally causes anon-linear behaviour of the system.

The classification of joints into two categories — stuck and macro-slip — is based
on the lumped parameter model and Coulomb friction theory [Caug60]. When a
continuous model is considered as developed by Meng [MeBG86], another
phenomenonmicro-dglip, can be revealed. This is a transition status between

stuck and macro-slip and is, of course, non-linear. Since it is possible for
micro-slip to occur in fastened joints, a comprehensive research on joint
modelling should not only include linear cases as the status of stuck joints, but
should also include non-linear cases, such as micro- and macro-slip. Macro-slip,
however, involving the entire relative motion of the contact surfaces in

tangential direction, can be defined as a failure to a fastened joint and is not

mainly concerned here.

In this chapter, the current status of research on friction in joint modelling is
reviewed including the related theoretical background and the applicability in
practice. The purpose of this chapter is to help users of linear joint models to
understand the possible errors caused by non-linearities and also to indicate a

direction for future work in the area of non-linear joint modelling.

To clarify the terminology, the three status of the contact surfaces are named as
stuck, micro-slip and macro-slip. Some other names appear in the relevant
publications are listed here:

stuck = locked, stop

micro-slip = partial slip, slip

macro-slip = gross slip, global slip, sliding

6.2. STATE OF THE ART

Research which specifically focuses on modelling non-linearity of fastened

joints is very limited compared with that on linear joint modelling methods,
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while alarge number of publications can be found on general non-linear topics,

and on contact and friction. Since contact and friction constitute the physical

essence of some commonly-used joints, such as bolted and riveted ones, we will

briefly look back at the milestones of their development and then pay more

attention in the analysis of micro-dlip, its theory and applicability aspects.

The main references of this chapter which cover 70 years are categorised here
asshownin Fig.6.1.

[DenH31]

[Mino47]

[DenH56] [GoKM56]

[Caug60] [Earl66] [Yeh66] [EaPh67]

[EaMo72] [Eawi72] [RoBo75]

[Grif80] [Prwisl) [MeGrg5] [MeBG88] [MeGB86] [Shawse]
[WeTY90] [WaCho2] [GaNw94] [LeGags] [SaSE95] [OaL 298] [YaCM9sg]
[HoLio0]

The meanings of different frame styles are:
parabeie ot viscoplastic book
models model model
Fig.6.1 Categorised references
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6.2.1. Friction Modelling Based on Coulomb Theory: Lumped Parameter Models

In analysing the dynamic response of structures it is common practice to
represent the friction that occurs at contact surfaces by means of single point
contact models. By using these Coulomb theory based models it is effectively
assumed that the bodies in contact are rigid and that the friction force at the
interface is proportional to the corresponding normal force. Basically, the use of
single point contact models can only represent accurately a fully-slipping or a

fully-stuck situation.

Since Den Hartog published his pioneering work in 1931 [DenH31], many
followers have been involved in the research area of friction damping. Most of
them studied the non-linear behaviour of a single-degree-of-freedom (SDOF)
system with a Coulomb friction element. These SDOF models have lumped
parameters and can describe either stuck or macro-dip status. The physical
model used by Den Hartog (without viscous damping) is shown in Fig.6.2 in
which the friction model is described by equation (6.1) and Fig.6.3.

il

P=P, cos(cwt + ¢)

Fig.6.2 The frictional vibration system [DenH31]

Fig.6.3 Friction model
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=F if x>0
fH[-F.F] if x=0 6.1)
H=-F if x<0

An exact solution is given in Den Hartog's paper [DenH31] for the motion of
the SDOF system with a sinusoidal excitation force and Coulomb friction
damping. He showed that for a resonant system, friction alone controls the
response amplitude only over a very narrow range of amplitude of the exciting
force. If the exciting force is less than the friction force, the mass will not move

at al (stuck) and if it is greater than 4/7 times the friction force, the amplitude

of an otherwise linear system is not limited at resonance. His results shown in
Fig.6.4 are widely accepted and collected in his later textbook [DenH56] and
Timoshenko's book [WeTY 90].
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Fig.6.4 Amplitude diagram with Coulomb damping only

The results shown in Fig.6.4 were obtained from two possible types of motion.
One is that the mass never comes to rest. This motion is depicted in Fig.6.5 and
corresponds to the part of Fig.6.4 above the broken line. The other type of

motion is that during each half-cycle the mass will stick for a while, and, while
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sticking, the value of the friction is within [— F, F], as shown in Fig.6.6 with

the result shown in the curves below the broken line of Fig.6.4.

— |
N A I

: | friction
|
|

ma / 2w y !

motion

Fig.6.5 Motion without stuck

Fig.6.6 Motion with one stuck (0<t <t, macro-dlip, t, <t < 77/w stuck)

The once-stuck motion had also been verified by experiment of Den Hartog.
The hysteresis loop obtained from his test shows the phenomenon of stuck and

macro-dlip as in Fig.6.7, where the straight lines construct an approximated
bilinear hysteresis.

pd
-

Fig.6.7 Record of motion with one stuck per half-cycle

To simplify the analysis of friction damping, Den Hartog proposed a concept of

equivalent viscous damping constant [DenH56], which works in such a manner
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that with sinusoidal motion the friction damping force does the same work per
cycle as is done by the equivalent viscous damping force. The equivalent

viscous damping constant ¢, thus obtained is a function of frequency, «, and

displacement amplitude, x,, as

C,=—— (6.2

The amplitude diagram for viscous damping is shown in Fig.6.8 and the
corresponding diagram for equivalent viscous damping is shown in Fig.6.9.
Considering the cases where the damping is reasonably small, we notice that the
results of Fig.6.9 are approximately the same as the corresponding curves in
Fig.6.4.

Fig.6.8 Amplitude diagram for viscous damping
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Fig.6.9 Amplitude diagram for equivalent viscous damping

A SDOF system, shown in Fig.6.10, which exhibits more general bilinear
hysteresis as shown in Fig.6.11 and undergoes sinusoidal excitation, was
analysed by Caughey [Caug60]. The method of solution is called the method of
slowly varying parameters. It supposes that the system response takes the form
of

x(t) = X cos(wt + @) (6.3)

where X and ¢ are dowly varying functions of t. These slowly varying

parameters can be replaced by their mean values over one cycle of 8, where

O=wt+g.

TP (t)= R, cos(wt)

Fig.6.10 A 3-parameter SDOF system
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iy
[

Fig.6.11 Bilinear hysteresis

The following conclusions were drawn from Caughey's results (refer to
Fig.6.12):

the system exhibits a “soft” type of resonantce;, the resonance peak
moves to a lower frequency as the amplitude of the driving force is
increased,;

the response curves are single-valued and stable, and show very steep slopes
on the low-frequency side of the resonance;

phase resonance and amplitude resonance occur at the same frequency in
this system,;

for large enough excitation, the system exhibits an undamped resonance.

amplitude of system receptance

Fig.6.12 System receptance obtained by Caughey
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The exact method for solving this non-linear problem is normally lengthy in
computation time and this factor may make it unacceptable in a practical
application to system with many DOFs. By comparison, methods whereby the
frictional force is replaced by an equivaent sinusoidal force are rapid, yielding
analytical solutions for the response of the system. A general, linear, MDOF
structure excited by m sinusoidally varying forces P, j=1,2,...,m, and
having a single frictional damper linking two co-ordinates was analysed by
Earles and Williams [EaWi72]. A linearised analysis of the frictionally-damped
system was proposed based on two basic assumptions about the form of the
frictional force: (i) at any frequency the frictiona force may be written as
F(t)=F_sin(at +¢), where ¢ is the phase angle between the frictional and
applied forces and is not a function of time; (ii) if macro-slip occurs at the
damper, the frictional forceis 180° out-of-phase with the relative slip velocity.
Depending on the limiting value of friction at the joint, the applied forces and
the frequency, macro-slip may or may not occur. These two states give rise to
two distinct response regimes for the analysis, stuck and macro-dlip. In the stuck
regime, there is no dip at the damper interface, the relative sip amplitude is

zero at all times, and @ = 0. The stuck conditionis
F<uN (6.4

where 1/ is the coefficient of static friction and N is the normal load across

the friction interface. The amplitudes of linearised friction force and response

have the forms

FL:Zaij and Xi:quF’j (6.5)
] J

where a; and b; are constants determined by the receptance coefficients of the

structure.

In the macro-slip regime, experiments showed that the measured amplitude of
the frictional force was not constant as described in Fig.6.3. The frictional force
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increased with increasing slip amplitude. It would appear reasonable, therefore,

to examine, as a possible aternative for F_, the expression
F. = uN+dU (6.6)
or
F.=uN (6.7)

where 4, =, +(0/N)U and J is assumed to be a constant for any given

system. Its magnitude basically depends on the material and configuration of the
interacting surfaces. For the rig used by Earles, and for the range of normal

loads and displacements tested, the term /N should be constant (= 29mm‘1).
This conclusion is consistent with the assertion that the term (J/N)U results

from the work required to deform the contacting asperities during sipping. By
substituting for the dlip amplitude, U , an expression of linearised frictional

forceisthen available explicitly as afunction of 1,0,N,P etc.

The curves of system receptance obtained from the linearised friction force
analysis gave a good prediction of the pattern — not the exact amplitude — of the
measured response of the system. FEariegarised analysis, as well as
experiments, verified the “soft” type resonance behaviour, which was concluded
from Caughey’s study. In addition, the use of (6.7) for the linearised frictional
force produces a significant improvement over Den Hé&tegpression where

o0 =0 only.

Since the early 1980s, Meng and his colleagues have published a series of
papers on the subject of friction damping. These papers developed the methods
used for stick-slip analysis and also made contributions to the analysis of micro-
slip phenomenon which is a transition between stick and macro-slip. Using the
same model as that used by Caughey, Fig.6.10, Meng assumed that the reaction
force from the damper can be approximated as a sinusoid by expanding it in a
Fourier series and keeping only the lowest terms [MeGr85]. The results
obtained in this way are identical to the steady-state solutions of Caughey. An

extensive application of this method to a beam structure with flexible damper
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system yielded a response diagram, shown here as Fig.6.13, which verified and
also completed Caughey's results.

normalised acceleration

65.45 73.23 81.01 88.79 96.57
frequency (Hz)

Fig.6.13 Responses of stuck and dlip states

Fig.6.13 illustrates the procedure that the damper is from fully-dlipping to fully-
stuck with the change of the damper dlip load, F,. The curves obtained for

F, <6.0 show typical non-linear features, the same “soft” character as
Caughey’s results in Fig.6.12, while the curves corresponding,t®10.0

describe the sticking condition. The system is linear under these two extreme

conditions — when the damper slip lo&] is zero or when it is completely

stuck.

Friction Modelling Based on Coulomb Theory: Continuous Contact Models

Laboratory experiments have shown that idealisation of the friction problem to
single point contact modelse., lumped parameter models, may be acceptable
if macro-slip occurs at the interface, usually as a consequence of the normal
load being small. For high normal loads, however, only micro-slip may be

expected. It has been recognised since the early 1950s when Mindlin showed
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that there is micro-slip at the interface between two elastic bodies in contact
[Dere74]. As aresult, the energy dissipation increases as the third power of the
displacement and Coulomb friction can control resonant vibration amplitude for

excitation levels less than that necessary to cause macro-dlip.

Mindlin tackled the problem from the viewpoint of contact mechanics [Dere74]

and used a 2-sphere contact model. In general, when non-conforming faces of

two elastic bodies are pressed together, the geometry of the contact area is a
non-linear function of the normal pressure. In many cases the normal stress

drops to zero at the contact boundary so that even small tangential loads cause

some dlip. The micro-dip at the interface between two eastic spheres with
contact normal force and oscillatory tangential force was first analysed and this
analysis led to further work on damping and stiffness of particulates under
oscillatory loading [Dere74]. Except for some relatively minor effects, the
energy dissipation at the interface increases with the cube of the displacement

and has some effect even a vanishingly small loads. This makes it quite
different from Den Hartog’s solution in which there is no effect at small loads
and where the energy dissipation increases linearly with the displacement. It is
also true in this case that there is a critical vibration amplitude above which the
frictional dissipation can no longer limit the vibration amplitude without help
from other dissipation mechanisnesg., viscous damping. Both the level of
damping and the critical amplitude depend on the normal force. The results
obtained from the analysis of spheres are applicable to beams and some of the

validated analyses were summarised by Goodman [Good88].

The research on friction damping has been pushed forwards since 1950s in part
due to the development of gas turbine engines. It has been known that slip in
blade roots can yield useful damping for turbine and compressor blades.

Goodman in the 1950s, Earls in the 1970s and Meng in the 1980s are some of

the representatives.

The micro-slip concept was clearly described by Goodman and Klumpp
[GOoKI56]. Mainly working on the purpose of reducing resonant stresses by

means of slip damping, Goodman and Klumpp gave an explicit formula for the
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energy dissipated per cycle of vibration. They also concluded that joints must be
designed so as to maintain a particular value of clamping pressure at the
interface in order to achieve a maximum energy loss as shown in Fig.6.14. This
result is consistent with that of Meng's shown in Fig.6.13. The stress analysis of
aplane interface under uniform pressure, but with variable dlip, was carried out.
The predictions of the theory were then confirmed by experiment. However,

Goodman and Klumpp did not give a frequency response function.

optimum
pressure

ratio of energy loss per cycleto
elastic strain energy of flexture

normal pressure

Fig.6.14 Variation of energy loss per cycle with joint normal pressure

A more systematic study of the micro-dlip condition was reported by Meng et al
[MeBG86] and a micro-slip model was proposed based on a continuous friction

contact physical model. In its general form, the model consists of two elastic

bars joined by an elastoplastic shear layer. One feature of this model is that the
deformation paths for cyclic or irregular loading and unloading are determined
automatically since the element has the inherent capacity to “memorise” the
relevant portions of the past loading history. Another feature is that the
relationship between the displacement and the force within the non-linear range
was given in parametric form in terms of a parameter that measures the amount
of slip in the element. Thus, it does not requareriori that the force be
expressed in terms of the displacement or, conversely, the displacements in

terms of the force. Instead, either choice is allowed.

The development of Merg partial-slip friction model is summarised as

follows.
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Fig.6.15 The continuous friction contact physical model

In the continuous model shown in Fig.6.15, it is assumed that the bar deforms
elastically. If it is further assumed that friction at each contact point is governed

by Coulomb’s law, then the bar will start to slip at p@ninmediately aftethe
application of the load. The region of slip will gradually extend leftwards with
increasing load untiP reaches the valugplL , for which case macro-slip will
occur. In order to model the actual physical behaviour, an idealised elastoplastic
shear layer of negligible thickness is placed between the elastic bar and the rigid
support. To allow for the possibility of strain hardening in the element after the
entire shear layer has yielded, it is convenient to add a discrete spring, of

stiffness 3, at the free end of the bar.

The elastic bar has a constant cross-sectional @&gand a uniform Young’s

modulus, E . The friction force in the shear layer per unit length,is given by

TZ%ku |u|srm/k 6.8)
T otherwise

where k is the stiffness per unit length of the shear layer for small

deformations, 7,, is the vyield level (usuallyr,, =up) and u(x) is the

displacement at a point a distaricefrom the left end of the bar.

The deformationu, and friction force,r, in the bar must satisfy the following

equilibrium equation:
EAU"'-7=0 Osx<sL (6.9)
together with the boundary conditions,

EAU'(0) — Au(0) =0 EAU(L) =P (6.10)
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For solving the above equations three separate cases must be considered,
depending on the deformed state of the shear layer: (i) purely elastic, (ii) micro-
dip and (iii) macro-dip. In the case of eastic deformation, the system will
respond elastically as long as the displacement at the right end of the bar
remains below the value 7,,/k . By solving equation (6.9) with the substitution

of 7 =ku, force P can be expressed in terms of displacement. P will, in general,
be non-zero and should vanish if only the relative stiffness of the shear layer to
the bar is infinite large. That means that the bar will start to slip for an
arbitrarily small value of the tangential force in the absence of a flexible shear
layer. As P increases beyond the value for which the shear layer starts yielding,
micro-slip occurs. The parameter a (0<a<1) denotes the fraction of the
contact length that has dlipped for a given value of P. The governing equations
of the micro-dlip situation are

EAU"-ku=0 for 0<x<(1-a)L

. B (6.11)
EAU" -1, =0 for (1-a)L<x<L

X
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Fig.6.16 Micro-slip model

Equation (6.11) is linear and can be solved explicitly. A set of two parametric
equations that define the portion of the skeleton curve corresponding to micro-
dip in terms of the plasticity index, a, are then obtained. The derivations were
given step by step in [MeBG86]. Macro-dip occurs when the entire contact
surface becomes plastic with increases of the tangential force P. This plastic
state will remain unchanged until unloading begins. The shape of the skeleton
curve is as shown in Fig.6.17 in which A is the displacement at point B as

shown in Fig.6.16 and subscript g stands for the start of macro-slip. Due to the

presence of the lumped spring at A, the skeleton curve does not become
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horizontal but exhibits linear strain hardening. The slope of the skeleton curve

becomes discontinuous as the shear layer becomes fully plastic.
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Fig.6.17 Skeleton curve of asingle bar contact model

The behaviour of alap joint shown in Fig.6.18 is similar to that of the single bar
studied previously and exhibits three distinct types of behaviour. In contrast to
the single bar behaviour, however, dip in the lap joint does not progress
monotonically from one end of the joint to the other. Slip, instead, isinitiated at
one end, progresses inwards with increasing load until the shear force at the
other end reaches the yield level and begins to dip. Thereafter, the dlipped
regions move inward from both ends until macro-slip occurs. The theoretical

formulation for the lap joint is similar to that for the single bar.

EA, — P
NENRRNANRRNNRRENNEEE

P+ EA, KT,
| |
1 - (

Fig.6.18 A lap joint model

A skeleton curve describing the relative displacement between the two points of
application of the loads versus the applied loads is sketched in Fig.6.19. The
similarity between this curve and that corresponding to the single bar element is
apparent.
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Fig.6.19 Skeleton curve of alap joint model

The hysteresis loop obtained by Masing rules [Herr65] for describing cyclic

unloading and reloading is shown in Fig.6.20.
Ll
PQ

1

Fig.6.20 Hysteresis loop

To demonstrate the characteristics of steady-state response, two separate cases

with different values of A, the relative stiffness between the shear layer and the

bar, were analysed by an approximate method. The results are shown in

Fig.6.21 for increasing values of the dimensionless normal load € (¢ = pL/f,,

where f, is the maximum amplitude of the sinusoidal excitation force). There

is no difference between the two cases for small values of the normal load. For a

softer shear layer (A =1), the load is transmitted almost uniformly through the

layer. Thus, depending on the values of the normal load and the excitation
frequency, the joint either remains completely locked or it undergoes macro-dlip
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as shown in Fig.6.21 (a), since yielding occurs simultaneously at every point of
the shear layer. For the stiffer layer, however, yielding develops gradualy,
giving rise to micro-dlip of the joint as shown in Fig.6.21 (b).

600 60-0
() {b}

€= €=0-04

45-0 45-0

300

peak deflection
8
[

150 15-C

o0 1
0900 1025

1 1 00 1 1 1
1150 11275 1400 0900 1025 1150 1275 1400

Fig.6.21 Freguency response functions. (8) A =1 (b) A =5

Three conclusions can be drawn from the frequency response curves shown

above:

» the presence of micro-dip affects the dynamic responses in such a way that
for a given value of the normal load the peak response of the system with
stiff layer is considerably smaller than that of the system with a soft layer;

» the resonant frequency of the system with a soft layer is not sensitive to
changes of the normal load, while normal load reduction results in a
softening of the system with the stiff layer; and

» for very high normal loads the system with a stiff layer exhibits a higher
resonant frequency due to the large stiffness of the shear layer as compared

to the case with a soft layer.

The frequency response characteristics obtained from simulations mentioned
above were validated by experiments and reported in [MeGB86a]. One of the
experiments was that an idealised turbine blade was excited at various
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frequencies and with different friction loads imposed by a rubbing block acting

on the blade's platform. The parameters used in the prediction model for
describing the shear layer property were k :1.5><10“(N/m/m) and ¢ =0.3.
The predictions agreed well with the measured data and exhibited both softened
and shifted response as shown in Fig.6.21 (b).

Friction Modelling Based on Other Principles

The mechanism of influence of joints on structural behaviour was investigated
more recently by Gaul et al [GNWL94]. Both response function measurements
and detailed finite element calculations were carried out based on a bolted joint
test rig, a resonator shown in Fig.6.22. The FE analyses helped to interpret the
measured results, thereby leading to a deeper insight into the dissipation
mechanism in bolted connections including the transition from micro-dlip to
macro-slip and the associated stress distributions.

mass mass

1/ bolted joint \ [ ]

S

J\ isolaedjoiﬁu |

flexure spring

Fig.6.22 A resonator with lap joint

Similar to the work reported earlier, such as [Caug60] [MeBG86] etc., the
response functions were measured with different excitation force levels. Their
characteristics can be summed up as. (i) the resonance frequency drops with
increasing excitation force. This is caused by softening of the system with
increasing dlip areas. At higher excitation forces the dlip portion of a cycle
increases, which results in a decrease of the equivalent stiffness. (ii) The inertia
decreases with increasing excitation force due to an increase of frictiona
damping. (iii) The run up flank is steeper than the run down flank, the same
effect as shown in Fig.6.12 and 6.21.
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Finite element analysis of the lap joint was carried out in two steps. In the first
step only an isolated joint (the shadowed part in Fig.6.22) was modelled,
discretising the lap joint using 450 four-node plain stress elements. In this
model, 40 gap friction elements with Coulomb-type constitutive equations
represented the friction interface. After the normal force was applied as a static
pre-load to simulate the bolt compression, the model was subjected to tangential
forces, both statically and dynamically. With this model, the theoretically
expected bilinear hysteresis was reproduced and no influence of inertia and
stiffness effects was observed. The transmitted force was limited to a finite
value after macro-dlip had occurred. Thus the 3-parameter model seemed to be
an inadequate description of the isolated joint. The typical form of a measured
hysteresis did not show up. In the second step, the whole resonator was
discretised. Asasimplification, the large resonator masses were lumped to point
masses and the flexure spring was discretised by simple spring elements. An
eigen-value analysis validated the finite element model by comparing measured
and calculated natural frequencies. The bending effects led to varying normal
pressure distributions in the contact interface and so did the shear stress
distributions. At the limit points, the dip limit was reached over almost the
whole contact length. Only a small portion in the middle remained stuck. This
indicated micro-dlip, progressing from the edges to the middle without reaching
amacro-dip state.

Gaul's finite element simulations revealed that a joint model not only has to
account for micro-dlip but also for the interaction with the dynamics of the
structure. The structural interaction of the test rig can influence the hysteresis.
In fact, both the isolated joint properties and the properties of the whole
resonator with a lap joint were included in the measured response function,

which could not be represented only by an isolated joint model.

The discrete parameter models of frictional systems have the advantages of
being mathematically smple and physically meaningful. As shown in Fig.6.11,
the bilinear hysteresis loop, which describes the relationship between

transmitted force and displacement and exists in systems with Coulomb friction
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and systems with elastoplastic material, is obtained from the discrete parameter
models. A drawback of this type of models is, however, their incompleteness —
they can only describe the regimes of stuck and macro-slip but not the regime of
micro-slip. Since the joint in a lumped parameter model is normally modelled

by three parameters,, k, and F, as shown in Fig.6.10, it can also be

described as a “3-parameter model”.

The equation of motion for the 3-parameter model shown in Fig.6.10 is
mx = P, cos(awt) - F (x, X) (6.12)
The transmitted longitudinal force in the joint is
F(x,x)=F,+F, (6.13)
where

F, =k,x (6.14)

e (x —.xd)+ Fegnk  if|Fy|<F (6.15)
sgn x if |Fb| >F

One modified lumped parameter model was proposed by ¢esiZ[LeGa95].
The purpose is to adapt the bilinear hysteresis loop, Fig.6.11, to the measured
one, as shown in Fig.6.7, where the round corners show the transition between

stuck and macro-slip,e. the micro-slip.

To capture the behaviour of all three regimes with one model, the Valanis
model known from plasticity [Vala7l] was adapted. Without slip-stick
parameters, and by assuming velocity independence, the model is governed by

the first order differential equation

dFd(Z)+/\F() E, q(z)+/\Eq(z) (6.16)

The relation between the generalised variabl® and physical timd was

given by

147



Non-linearity considerations in joint modelling and substructure coupling  chapter 6

dz(t) _|da(2) _ « dF ()| (6.17)
d | dt E, | '

where g isageneralised co-ordinate, A, E, and E, are material parameters, F

IS a generalised force and k is a dimensionless parameter, 0< x <1. Starting
from these two equations, a different equation for the joint hysteresis was
worked out as

Ead+
OD E0|

A q =
1+x 2 9(eq-F

MERG F)
U]

F= (6.18)

If interpreting that q=x and F has the same meaning as in (6.13), and

combing the joint model (6.18) with (6.12), the following differential equation

of motion in terms of the displacement x isthen achieved:

0
Exm+  (Ex )

MK = Es 4 Uy Fwsin(at) (6.19)
1+K||(Etx_ F)

The numerical solution of equation (6.19) can describe the transition between
stuck and macro-dlip, i.e. it can determine the load under which the transition
happens. The physical interpretation of the parameters in the description of the
joint model (6.18) is given in Fig.6.23. The stiffness moduli of stick condition
and slip condition are denoted by E, and E, respectively. The parameter, «,
can be used to control the portion of micro-dip. The parameter « = 0.99
approximates the 3-parameter joint model with dightly rounded corners. The

corner radius increases with the decrease of k value. The parameter o, denotes

astick limit equivaent to the yield stress and was defined by

(6.20)

el
o,H -k
0
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We notice that the Valanis model has 4 independent parameters: E,, E,, g,

and k. Parameter A was derived from these four as shown in (6.20).
Comparing the Vaanis model with the 3-parameter model, we find the
following relationships between their parameters:

E =k, E, =k, +k, and g, = F = ziN (6.21)

There is no counterpart in the 3-parameter model for parameter x in the
Vaanis model, which describes the transition from stick state to macro-dlip.
The parameters of the Vaanis joint model can be identified from measured

hysteresis and by iterative fitting of « .

Fig.6.23 parameters of the Valanis model

Another modification to the 3-parameter model was done by Sanliturk et al.
[SaEw95]. They developed a hybrid model for the study of friction dampers
used for turbine blade vibration control, which is a non-linear combination of
macro-slip and micro-sip models:

thb (X) = e_ﬁX/XU I:mic (X) + (1_ e_ﬁX/Xu ) Fmac (X) (622)
where the micro-slip model was given by Rogers and Boothroyd [RoBo75] as
Fric(X) = iN(1-€™) (6.23)

and the macro-dlip model is

[k, X X< X
Frac(¥)=0"° ”

0N xox (6.24)

Four independent parameters in this model are:
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Ky contact stiffness
F friction force, F = uN
B empirica factor
K micro-slip parameter

The empirical parameter, g, plays the role of controlling the portion of dlip in
the contact area. F,(X) =F,;.(x) when g=0 and F_ ,(X) - F.(X) when
B - «, while parameter « has the similar function working inside the micro-

dlip model. The shape of hysteresis loop described by the hybrid model with
different « -valuesis shownin Fig.6.24.

F

Fig.6.24 Hysteresis loop described by the hybrid model

It is noticed from studies of the dynamic behaviour of systems with frictional
mechanisms that in the present situation we can predict the behaviour of very
simple systems under laboratory conditions. We are far from being able either
to predict or to control the damping produced by micro-slip between surfacesin
complex, fabricated structures. More advanced research work is demanded
since several studies have shown that joints and connection damping are the
most important mechanisms for energy dissipation in most rea structures
[Unga73] [Bear79].

6.3. IMPORTANCE OF NON-LINEAR JOINT MODELLING

Many structures with mechanical joints possess dip interfaces. Lap joints, for
instance, are often used in practical structures to connect components. In one

such joint, two components are held together at their interfaces by the action of
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a pre-stressed bolt, which creates a clamping pressure on the components. The
axia force is transferred by the joint through the frictional force along the
interface, caused by the clamping pressure. Asloading is transferred through the
joint, macro-dlip aong the interface will not be alowed if the joints are
designed for the purpose of tightening or fastening. However, micro-dlip in the
friction interface is possible, i.e., the dlip aong the interface is localised in a

certain dlip region while the rest of the interface isin the stuck region.

As has been reported in the last section, macro-slip and micro-slip cause energy
dissipation and provide the dominant damping mechanism in many structures.
The dissipated work per cycle is the area traced out by the hysteresis loop as
shown in Fig.6.7. Lenz showed that the work vanishesin the stuck zone and is a
linear function of relative displacement in the macro-dip zone [LeGa95]. In his
experiments, the dissipated work per cycle from the measured hysteresis versus
the amplitude of the relative displacement is the same linear curve in the range
of macro-dlip as described by the 3-parameter model. This was also shown in
[GOKM56]. While in the range of smaller excitation forces, however, the curve
of dissipated work shows an increasing slope with increasing relative
displacement, and this regime is associated with micro-dip as shown in
Fig.6.25. The same characteristics were also observed by Rogers and Boothroyd
[RoBo75]. It is recognised from Fig.6.25 that the 3-parameter model is a
simplified one which ignores the transition process from stick to macro-dlip, the

micro-glip.

To simplify the models for joint non-linearity analysis, currently available
results on micro-dlip studies are mostly obtained from isolated joints and do not
include much of the influence from the components. However, the structural
interaction of the components affects the hysteresis, and the significance of joint
non-linear effect to the dynamic behaviour of structures changes from case to
case, even with the same type of joint. In normal working conditions, fastened
or tightened joints are in the stuck state and the systems are dominated by linear
performance.
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Fig.6.25 Dissipated work

An experiment was carried out to investigate the significance of non-linearity in

a practical assembled structure, the “breadboard structure” shown in Fig.6.26. A
beam is connected to a plate via two bolted joints. The details of the
components and joint have been shown earlier in Figs.5.4, 5.5 and 5.7. The

torque applied to fasten the bolts was 4N-m.

l

@ bolted joint

3 hole

Fig.6.26 A plate-beam structure

In this experiment, the structure was suspended vertically by two strings at the
top corners of the plate. A shaker was used as an exciter connected to point A
on the plate via a push rod, exactly normal to the plane of the plate. The system
response was picked up at point B by a Laser Doppler Vibrometer (LDV). The
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excitation was given on one side of the plate where the beam was assembled
and the responses were measured on the other side. The excitation signal was

stepped-sine and the input force level was controlled by a computer program.

The non-linear behaviour of the breadboard structure was monitored first from

the response time signal — the response signals were distorted sine waves at
some excitation frequencies. In the frequency range between 20 and 2,000Hz,
for the preliminary modal testing, four specific frequency zones were selected
and measurements of mobility were carried out in these frequency zones by
applying different levels of excitation force. Of all these four segments of FRFs,
only one of them, in the frequency range of 250Hz to 300Hz, displayed a non-
linear behaviour and the non-linearity affected less than a 10Hz frequency band.
The measured FRFs with non-linear characteristics are shown in Fig.6.27.
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Fig.6.27 Measured FRFs

An finite element model was constituted for the test structure. It is a linear
model, in which plate and beam were discretised by shell elements and the bolts
were modelled by solid elements. No gap friction element was used in the
contact interfaces. The linear finite element model shows good correlation with
the experimental results. As shown in Table 6.1, the first 10 natural frequencies
predicted by the finite element model have a maximum error less than 5% when

compared with the test results. That means the linear finite element model
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works well in describing the structure's dynamic properties. Two mode shapes,

the 7" and the 8", relating to the two modes in Fig.6.27, are shown in Fig.6.28

and 6.29. These two mode shapes show the modal displacements in z direction,

which is perpendicular to the plate.

Table 6.1
No. 1 2 3 4 5 6 7 8 9 10
FE | 3570 | 74.20 | 96.90 | 107.60 | 183.20 | 227.50 | 257.60 | 276.70 | 316.40 | 353.80
Test |36.40 |75.30 | 95.30 | 112.20 | 184.00 | 221.20 | 254.90 | 271.77 | 303.00 | 345.20
error% | 1.92 | 146 |-168 |410 |043 |-285 |-1.06 |-1.81 |-442 |-2.49

Fig.6.29 The 8" elastic mode at 276.70 Hz
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Since the excitation force was applied in the z direction and the responses were
mainly produced in the z direction as well, the tangential forces at the joints,
either in the x or y directions, can only be induced by deformation of the plate
and beam. In the circumstance of the experiment, these tangential forces were
not large enough to give rise to micro-slip between the joint interfaces at most
of the measurement frequencies. Therefore, the non-linear behaviour observed

in the measurement is not significant.

The non-linear phenomenon around 277Hz in Fig.6.27 shows some of the
features of friction damping. There exists a highly damped mode which exhibits
softening characteristics, and since the norma pressure in the joints was
constant (the tightening torque applied to the bolt was 4N-m), the amplitude of
the mobility at this frequency increased with the increase of the excitation force.

It is concluded from this case study that no significant non-linear behaviour
existed in the assembled breadboard structure, and so the effect of non-linearity
in the estimation of the system FRFs can be neglected as it appears in a small

frequency range.

6.4. STRATEGIES FOR DEALING WITH NON-LINEARITY IN FRF COUPLING

The substructure coupling methods discussed in Chapter 4 and 5 are based on
the assumption that the relevant systems to be coupled are linear. This
assumption is sometimes inadequate for the accurate description of some
systems due to the inevitable existence of non-linearity in many structural
joints. One of the outcomes of this problem is a method of solving the non-
linear equations of motion by approximate procedures. These approximate
procedures assume that the steady-state response is essentially harmonic. It is
efficient and also sufficient to keep only the first term of the Fourier series
expansion of the non-linear force and finally convert the non-linear differentia
equations of motion to a non-linear algebraic equation. One of the most popular
procedures is known as principle of harmonic balance, which is heavily based

on the Krylov-Bogoliubov approach [Mino47]. The describing function method,
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which is regarded as an application of the principle of harmonic balance, and is
widely used for the analysis of non-linear control systems [Silj69], can also be

employed in structural non-linear coupling analysis.

6.4.1. The principle of harmonic balance

Considering a non-linear system which is subjected to harmonic excitation, the

system differential equation can be written as
MX + Cx + Kx +f(x,x) = Pe*" (6.25)

where f(x,X) is a non-linear force. A steady-state solution for x(t) can be

represented by a Fourier series as
x(t) = Z)xm = ZﬁX”‘e‘m“t (6.26)

where superscript m indicates the mth order harmonic and x™ isthe mth order

component of displacement response. Then the complex displacement response

amplitude X at the jth co-ordinate in the mth harmonic, X", can be written

as
XM= X"e? (6.27)
where X i is the magnitude and ¢/" is the phase of the complex displacement

X; a the mth harmonic. If we consider the response to be dominated by the

fundamental component of the Fourier series, we can assume that the response

x(t) will be approximated by the fundamental component, x*(t), written as

x(t) = x'(t) = X" (6.28)
Theresponse x(t) at agenera coordinate j can be written as

X, (t) = x; (t) = X7 (6.29)
where the complex displacement response le is

X! =X =C! +iD! (6.30)
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where
1 1
Ci = Xjcos¢f
1 - 1
D = Xjsing'

Similarly, the relative displacement response y between the inter-coordinates

k and | (k#1), vy, can be represented as

Y =X~ X = Zy&‘.‘ =ZYkT‘e‘"‘"" (6.31)
where
Y= X" - XM =Y e (6.32)

If the variable, y,, ,in the non-linear function, f,(y, ), hasthe form assumed in
(6.31), the non-linear force, f,(y,),iscomplex andis also a periodic function

of time. It then can be expressed by a Fourier series as

fa(y) =) fi' = Fk?]eimwt (6.33)

where
Fklm — lfklmeiekT
0 _ 1 on
Fkl - ETJ‘O f|<| (ykl ) dt
Fr= 1 f” f (y,)e ™ dt (m=>1)
JTJ0

The Fourier series written in complex form (6.33) can also be expressed as
Z Frgmeat =p0 4 Z(Ag‘ cos(mat) + B sin(maut)) (6.34)

where

o= L 27 (v ydt
Ad_g_[_]’o w (Vi)

m 1 om .

A ZI_TIO fkl(Ym)S'n(mCUt)dt m=1
m 1 on

By :7_-[_IO fm(ykl)cos(mwt)dt m=>1
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6.4.2.

The non-linear force can be approximate by the fundamental component in its

Fourier series written as
fo(Ye) =1y (y;) = FkTeiwt = Ab cos(wt) + B; sin(wt) (6.35)
where
Ay _I_TIO fo (Yo )Sinawtdt

1 on
B, :7_T-I0 f, (Yy)cosawtdt

Substituting the fundamental component of response given by equation (6.28)
and the fundamental component of non-linear force given by equation (6.35)
into the non-linear differential equation (6.25), yields

(K -w’M +iaC)X* =P~F (6.36)

The solution of the response X' is based on finding the fundamental linear
coefficients C; and D for the response and A; and By for the non-linear

force in which al the fundamental harmonic forces in equation (6.36) are
balanced by each other. Different iterative methods are available to solve this
kind of mathematical problem.

Describing function method

The describing function method linearises the non-linearity by defining the
transfer function as the ratio of the fundamental harmonic components of the
input and the output to the non-linearity. In order to present the concept of the
describing function method, we consider an SDOF system with a non-linear

restoring force driven by asinusoidal excitation written as
mMX + cx + kx + f (x,X) = Asinat (6.37)

To solve the problem by the describing function method it is required to assume

that the variable x appearing in the non-linear function, f(x,X), is sufficiently

close to asinusoidal oscillation expressed as

x=Xsn(wt+¢)=Xsnd (6.38)
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where X isacomplex response amplitude, « is the excitation frequency and

¢ isphase angle.

If the variable, x, in the non-linear function, f(x,X), has the sinusoidal form
assumed in (6.38), the non-linear function, f(x,X), is complex and is adso a

periodic function of time. Defining now the describing function, v, as the
optimum equivalent linear complex stiffness representation of the non-linear
force, f(xX),as

f (X,X) = U(X,X)X (6.39)
If the type of non-linearity in f(x,x) is known, and assuming that the non-
linear force f(x,x) is aso dominated by its fundamental term, then it can be
simplified by the first harmonic component of its Fourier series, f*(x,X), and

the describing function u(x,X) can be obtained from it.

Substituting equation (6.38) and (6.39) into (6.37), the non-linear differential
equation, we have

(—w’m+iwc+k+0)X = A (6.40)

Equation (6.40) is an algebratic one.

6.5. CONCLUSIONS

A review on the research of friction in the joints of mechanical structures is
made which aims at an understanding of friction phenomena and an awareness
of currently available methods in dealing with friction in structural dynamics.
The importance of the consideration of joint non-linearity has been examined
and discussed via an experimental case study. The strategies in analysing
coupled structure with non-linear joints are also provided.

The following conclusions are drawn from the study in this chapter:
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in most engineering structures, friction joints are often tightly fastened so
that the non-linear problems caused by these joints can be avoided, and in
the meantime, the damping levels at these joints are also reduced to a
minimum;

the load-deformation relationships of afriction joint, in both the normal and
tangential directions, are not linear. However, the relationship in the normal
direction becomes effectively linear after a pre-load is applied and can be
considered as linear in most applications, while the relationship in the
tangential direction is always non-linear and energy is dissipated when a
cyclic load is applied;

the transition process between stuck and macro-dlip states usualy exhibits
the strongest degree of non-linearity. While in the status of either stuck or
macro-dlip the joint behaves amost linearly. This is concluded from both
discrete parameter model and continuous contact model studies,

the current study on joint dynamic non-linear behaviour is still far to the
application for engineering structures. The investigations on ssmple models
in laboratory conditions reveal the mechanics but the results cannot be
guantitatively generalised due to the complexity of rea joints, such as their
material, dimension, roughness of the contact surface and lubrication
condition etc;

an experiment on a practical structure with bolted joints showed that no
significant non-linear behaviour exists in that case. The non-linear effect in
the estimation of the system FRFs can be neglected as it appears in a small
frequency range,

If the non-linearity description of ajoint is available, the harmonic balance
method and describing function method are ready to be used for the
coupling analysis.
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CHAPTER 7

IMPACT OF

ROTATIONAL DOF INFORMATION

7.1. IMPACT OF RDOF DATA ON JOINT PARAMETER IDENTIFICATION

Rotational degrees of freedom (RDOFs) have to be taken into account in many
branches of structural dynamic analysis as independent co-ordinates. However,
the possibilities for measuring RDOFs are so limited that in some cases, the
attempt has to be given up and confined to measure translational degrees of
freedom (TDOFs) only. In the subjects described in this thesis, joint parameter
identification and substructure coupling anaysis, the information of RDOFs
plays an important role. The full consequences and errors caused by excluding
RDOF data in joint parameter identification and coupling analysis have not
been clearly understood in the past. This Chapter systematically investigates
this issue by theoretical analysis and numerical examples. At first, we discuss

the impact of RDOF data on joint parameter identification.
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7.1.1.

Theoretical Analysis - DOF Incompatibility

From the view point of discretisation, the motion of any node on a spatial
structure is generally described in a Cartesian co-ordinate system by six degrees

of freedom, namely three translations x, y, z and three rotations 6,, 6,, 6,.

As to the nodes at the coupling interfaces which are involved, the number of
DOFs of these nodes is critical to the identification results for the joint
parameters. For a specific joint, the number of DOFs of the interface nodes has
to be determined before the implementation of the identification procedure
proposed in Chapter 2.

If the supposed DOFs of the interface nodes are the same as those that exist in
practice; in other words, if the measurable DOFs on a joint are the same as the
practically-existing DOFs, then, the joint is DOF-compatible and it is possible
to identify the parameters. Otherwise, the joint is DOF-incompatible and it is
not possible to identify its parameters using the proposed method in Chapter 2 —

DOF-compatibility is a necessary condition for a correct identification.

The joint parameter identification method proposed earlier involves a basic
assumption that all FRFs related to the pre-determined DOFs of joints are
available, referring to (2.13) or (2.14). However, due to the difficulties in
practical measurement, some FRFs related to rotational degrees of freedom
(RDOF) cannot be measured even though they play significant roles in system
responses. In principle, in those cases where angular displacements of joints
cannot be neglected, if only translation degrees of freedom (TDOF) are pre-
determined and measured, the implementation of identification procedure will
yield an incorrect result. That is to say, it is the DOF-compatibility problem that
results in a failure of the identification process. This statement is further

explained as follows.

Thejoint parameter identification method proposed in Chapter 2 comes down to

solving a set of linear equations:

Ax =b (7.1)
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where x is the vector of unknown joint parameters, and A and b are
constructed using FRFs of both the substructures and the assembly, which are
either related with or affected by the practical joint DOFs.

To explain the concepts of DOF-compatibility and DOF-incompatibility, we
partition vector x to

t

(7.2)

X

]
LG
OO0

r

where X, is the sub-vector of parameters which relates to TDOFs only and X,

relates to the RDOFs. Substituting (7.2) into (7.1), we have

A, A, Ix.0O b0
%\t{ t |j]—‘_| ID: B)I |:| (7.3)
« ALIX0O 0

If the joint is DOF-compatible, all elements in matrix A and vector b are
measurable and, therefore, the unknown vector x can be solved. If the joint is
DOF-incompatible because FRFs relating to all or some of the RDOFs are not

measurable, then we are not able to solve the equation. An attempt to solve X,
by providing only the measurement result A, cannot be realised, either. From
(7.3), we know that

A X, =b, (7.9

holds if, and only if, A, =0. If equation (7.4) is used regardless of the fact of
A, #0, we could only obtain a wrong result. The expression A, =0 implies

that there is no RDOF active at any node of the joint.

7.1.2. Numerical Illustrations

Consider again the structure shown in Fig.2.4. The expected joint stiffness

matrix is
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The implementation of the partition algorithm (PA) yields the identified result
as shown in Fig.7.2, in which only the first 10 solutions present a steady
behaviour, and all the rest 990 solutions have very large errors. For instance, the

first element, k,, =2.64454x10°(N/m), is given by the first 10 solutions,

Compared with the exact value, k,, = 3.51858x10°(N/m), its error is 24.84%.
This case study shows that in the DOF-incompatible condition, the identified

result can go wrong and the errors of the identified parameters can be
unpredictably large.

Ny

stiffness (N/m)

-5
0 100 200 300 400 500 600 700 800 900 1000
index of solutions

Fig.7.2 Stiffnessidentified using PA when no RDOF FRF included
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7.2. IMPACT OF RDOF DATA ON FRF COUPLING ANALYSIS

In substructure coupling analysis, the information from the RDOFs also plays
an important role and the extent of errors resulting in coupling analysis without
using RDOF data needs to be clearly established. The investigation of the
consequence of omitting RDOF-related FRFs form FRF coupling analysis is
carried out here in a systematic study. The error analysis for FRF coupling
without using RDOF related FRFs is based on the Klosterman-Jetmundsen
method (K-J method) mentioned in Chapter 5. The importance of RDOF-related
FRFs is quantitatively described by explicit error functions. These error
functions reveal the composition of the error caused by the absence of RDOF-
related FRFs. In the error function for general cases, the error is decomposed
and the contributions of both TDOF and RDOF related FRFs to the error are
thoroughly discussed. Two case studies are also presented to demonstrate the

effectiveness of the analysis.

7.2.1. Theoretical Analysis

The K-J method for coupling analysisis given by the expression of

O.Hi  aHi 0 0 O.H.O
H=BH, H, 0 0 H T H +H L H, WHe —H] (76)
E 0 0 BHng E—BHicE

If the size of matrix ,H, is n, xn$ and matrix 4H, is ny xng, and notice that
the number of coupling DOFs aways has the relationship of n; =ng =n°, the
FRF matrix of the assembled structure, ;H , will be a symmetric matrix with the

dimension of (n'A +ny + n°)><(n‘A +ng + n°).

If only coupling co-ordinates are concerned, the equation can be simplified to
ZH:AHCC A [ HCC B (I:]_lAHCC (77)
by setting

AH":AHic:AH =0

1 cl
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and

in equation (7.6).

An arbitrary element of ;H from (7.7) will be

0 0j=12,...,n°

(H)i = (Ho)y = 55 (Ho) L Ho a2 (GHo 7

. (78
a4 =12,..,n

In general, the coupling DOFs consist of both tranglational DOFs and rotational
DOFs. The number of coupling DOFs, n°, can therefore be expressed as

n°=ng+n; (7.9)
Denoting the coupling DOFs using the right-hand-side superscripts, we can re-
write equation (7.7) as

-1

JH= Ho— HE (o He )" HE (7.10)
where
apH = H +gH® (7.11)

Partitioning each matrix in equation (7.10) according to the number of

trandational DOFs, n;, and the number of rotational FRFs, n’ , we have

%HE 5 zHﬁg
H=g - (7.12)
HHL ¢ :HLH
C_EﬁHE 5 AHEE
AHO=g : (7.13)
E&H(r:t AH?rE
C_%&BHE ABHEB
HeHi © xHLH

167



Impact of Rotation DOF Information Chapter 7

If the amplitudes of the FRFs in sub-matrix ,;H; in equation (7.14) are

numerically much smaller than those in the sub-matrces ,;H; and ,;H; , the

rr?

system is aweakly-coupled TDOF-RDOF system.

For a weakly-coupled TDOF-RDOF system, the summation of the FRF
matrices of substructure A and substructure B at the coupling DOFs can be
expressed approximately in the form of block diagonal matrix as

EfBH; : 0 B
E 0 ABHfrE
from which, we have
- Herd)? 0 3
. c V1
% 0 : (ABHrr)B

Substituting equations (7.12), (7.13) and (7.16) into equation (7.10), the sub-

matrix of ;H (which includes only the trandational FRFS) can be obtained as
c c c c\1 c c c 1 c
ZHtt:AHtt_AHtt(ABHtt) AHtt_AHtr(ABHrr) AH 5 (7.17)

If only the trandational FRFs of the substructures are taken into account for
predicting the FRFs of the assembled system, the predicted translational FRFs
of the assembly will be

Z|:|tct:AHtct_AHtct(ABHtct)_lAHtct (7-18)

Comparing equation (7.18) with (7.17), the error caused by ignoring rotational
FRFsis

c e — c c \? c
Ett:ZHtt_ZHtt __AHtr(ABHrr) AHrt (7-19)

In the cases when the condition of equation (7.15) is not satisfied, the inverse of
matrix ,,H® can then be partitioned with regard to the size of the partitioned

matrix of equation (7.14) and should hence have the form of
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sHe 1 gHLO
(ABHC)_l:Ef... S B (7.20)
HeHi 1 eHTH

The submatricesin (7.20) can be expressed by the submatricesin (7.14) as

e = (M) + (s HE ) e HE B HE e HE (s HE ) (7.21)
oM = (e ) e HE T HE (7.22)

oM = (aHE ) (7.23)

oHE = (oHe — o HE () e (7.24)

The derivation of equations (7.21) to (7.24) is given in Appendix E. Notice that

every partitioned sub-matrix of the matrix (ABHC)'l contains not only the

information of TDOF FRFs, but also that of the RDOF FRFs. These two sorts

of information cannot be split as was done in equation (7.16). The matrix is

partitioned to be the same size as equation (7.14), eg. ,H: has the same

dimension as (ABHE)_1 and so on. ,,HS can be equal to (ABH;)_l only if the

TDOF-RDOF weak coupling condition (7.15) is satisfied.

Substituting equations (7.12), (7.13) and (7.20) into (7.10), the sub-matrix of

> H , which includes only the translational FRFs, can be obtained as:

thctzAHtct_AHtcthquHtt AHe BHCIQHH AHz BHClaHrt AHe G rdrl-—ﬁlHrct(7'25)

Comparing equation (7.25) with equation (7.18), the error caused by ignoring
rotational FRFsis

E,=sHE = o= HE (e HE ) AHS = s HE L HE QHS — HE L HE GG (7.26)
_AHtCt BHCIqut AHtCr BHCIQH

Notice that

(uHg) =.He
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and
AU ci
(AB Htr ) :ABH rt
so that, equation (7.26) becomes
E,=E, +E,+E; (7.27)

Each individual termin (7.27) is

E,=-P" (HOP (7.28)
E,=— H.O,HIP-P [ LHIH® (7.29)
E, = ~(,HS) e HEGHS, (7.30)
where
P=, HE (o HE )" JHE (7.31)

Equations (7.27) to (7.31) provide the means to predict the errors in the TDOF-
FRFs of the coupled structure which are obtained without using RDOF related
FRFs. This tool is useful in the assessment of the importance of RDOF related
FRFs in FRF coupling analysis before implementing the procedure of coupling
analysis.

The contributions of the different componentsin (7.27), E,, E, and E,, to the
total error, E,, differ from case to case. Here, we can see that the TDOF RDOF
weakly coupled system isaspecia case of the general casewith E; =0, E, =0

and therefore

In the following numerical simulation, it will be demonstrated that the

significance of each component in equation (7.27) changesin different cases.
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7.2.2. Numerical Illustrations

WEAKLY-COUPLED SYSTEM
Two identical planar beams are coupled to form a longer beam as shown in

Fig.7.3. Thefirst beam, nodes 1 to 11, is taken as substructure A and the second
beam, nodes 11 to 21, is taken as substructure B. Each node has three DOFs; x,

z and 6,. Thetwo beams are fully coupled at node 11.

z
4

A
I
[ I I I I I I I I I TRV 77 A ¥ T x I i V77 A ]
1 2 3 4 5 6 7 8 9 10 9y4/ 12 13 14 15 16 17 18 19 20 21
11

Fig.7.3 Two beams coupled adjacently
The FRF matrix of substructure A at the coupling co-ordinatesis
H; H; H;O
WHO=HS HE HE P (7.32)
Ha Ha Ha

It is symmetric and all the elements are drawn in Fig.7.4.

0

&
o
e

-100

receptance (dB)

-150

_200 1 1 1
0 500 1000 1500 2000

frequency (Hz)

Fig.7.4 FRFs of substructure A at the coupling DOFs

These four FRFs shown in Fig.7.4 are, from bottom to top, H{,, H;,, H;, and
Hg, . Elements H,, and H,, in matrix (7.32) are zeros. The summation of

two FRF matrices of the substructures, ,,H°=,H +;H°, has its 4 elements

shownin Fig.7.5.
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Fig.7.5 Summation of two FRF matrices from substructure A and B

The four FRFs shown in Fig.7.5 are, from bottom to top, ,sHypy asHyr asHa

and ,;Hg, . Thecross FRF, ,;H3,, is much smaller than the three point FRFs,
and the system is therefore recognised as a TDOF-RDOF wesakly-coupled
system. The matrix ,,H°® isapproximately diagonal.

The coupling analysisis carried out in two steps. First, we suppose that all FRFs
are available for both substructures and use these accurate FRFs to predict the
FRFs of the coupled structure. Second, we suppose only trandation FRFs are
measurable (even though the rotational degree of freedom 6, istill kept in the
substructures) and use these TDOF FRFs only to predict the FRFs of the

coupled structures. These two results are then compared in Fig.7.6. The error
function is calculated according to equation (7.19). The specific compared FRF

shown in this figure is ;H,,, which is a point FRF of trandation z at the

sl

interface.
°|
)
£ .100 i i
3 |
c |
E | |
& -200 + :
[8) | | |
oL | | |
| | |
| | |
-300 ! ! ! !
0 200 400 600 800 1000
frequency (Hz)
Fig.7.6 Comparison of coupling results: ——exact ——eoupling error
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A MORE GENERAL CASE
This is a more general case than the first one: two planar beams are coupled

through a joint as shown in Fig.7.7. To simplify the analysis, the upper beam
and the joint are taken as substructure A and the lower beam is substructure B.

The DOFs at each node are x, zand 6, .

z
1 2 3 4 5 6 7 8 9 10 11 / ;
X

12 13 14 15 16 17 18 19 20 21 22 HV

Fig.7.7. Two planar beams are coupled through ajoint

Some elements of the FRF matrices of substructures A and B are shown in
Fig.7.8, specifically, those FRFs related to the degrees of freedom at the

interface, node 15. The elements of the summation of these two FRF matrices,
wH =,H +;H®, as shown in eguation (7.11) are presented in Fig.7.9, where

the lowest curveis ,,H,,.

A
A
A
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A zz

A’ z8

A 08

-200
-300

I T T T T T
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-500

0 500 1000 1500 2000
frequency (Hz)

B
B
B

XX
-50
XZ
X0
B 'zz

B 'z6

B 06

-100 ||

-150

I T T T T T

receptance (dB)

-200 |

-250

0 500 1000 1500 2000
frequency (Hz)

Fig.7.8 FRFs of substructure A and B
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It is noticed that both of the trandlation-rotation cross FRFs, ,,H,, and ,,H5,,

are not small compared with the point FRFs. Therefore, they are not negligible

and this situation exists in the general cases.

I 1 A | T ABHXX

@ 100 ¥\NJL\J/A\ = N7 i ABsz

© -200 | | 1] astho

E 300} 1 ABsz

gf \f—)\rﬂ\ — asHzo

© .400 - 1 T
-500

500 1000 1500 2000
frequency (Hz)

Fig.7.9 Summation of two FRF matrices from substructure A and B

The coupling analyses are carried out with and without RDOF-related FRFs and

the results are shown in Fig.7.10, where ‘exact’ means the result obtained using
both  TDOF-FRFs and RDOF-FRFs and ‘coupling’ represents the result
obtained using the TDOF-FRFs only. The discrepancy between these two
curves is obvious. It should be pointed out that, in general, the coupling analysis
without RDOF-related FRFs does not always underestimate the natural
frequencies as was shown in Fig.7.6, which relates to the TDOF-RDOF weakly

coupled system.

1 1 1
! ! | exact
-50 —— coupling []

-100

-150

receptance (dB)

-200

-250

frequency (Hz)

Fig.7.10 Comparison of coupling results
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Fig.7.11 The composition of error

The errors in the FRFs of the coupled system for the general case have been
given in equation (7.22). The three terms of the error of H; areillustrated in

Fig.7.11. The magnitudes of their values have the same order as their sequence
numbers as

E,>E,>E,

It is clear that, in this case, the total error is approximately equal to the first
term:

A PRACTICAL CASE
The plate and beam coupled structure introduced in Fig.5.6 (FE mode in

Fig.5.10) is examined here as a practical case. This case demonstrates the
impact of RDOF information to the GIDM coupling analysis. The error matrix
as eguation (7.27) for the K-J FRF coupling analysis is not given for GIDM
because of the mathematical complexity.
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Fig.7.12 Comparison between the no-RDOF coupling and the exact solutions

In the coupling process of the plate and beam coupled structure using GJIDM, a
significant advantage is that the joint impedance matrix can be adjusted
properly to match the number of DOFs on its interfaces to substructures. When
al trandation and rotation FRFs are measurable, as in the case shown in
Chapter 5, and the joint impedance matrix contains al the elements
corresponding to the measured DOFs, the result of the coupling analysis is
accurate, as shown in Fig.5.12. If only the translation FRFs of the substructures
are supplied, say, trandations in z-direction only, the joint impedance matrix
needs to be adjusted to include merely the elements of axia stiffness, which
makes the dimension of Z become 2x2. The result of coupling without
RDOF-related FRFs is given in Fig.7.12 where it is compared with the exact
solution. It is seen from this comparison that the error caused by the lack of
RDOF-related information is significant. In a certain frequency range, even
though FRFs from the no-RDOF coupling analysis can match some of the
modes of the exact solution, the number of modes in the TDOF-only coupling is
generaly less than that in the exact solution. This error may not be acceptable in

application.
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7.3. CONCLUSIONS

The impact of data from the rotation degrees of freedom (RDOFs) to the joint
parameter identification using LSM, and to the FRF coupling analysis, has been
studied. The following conclusions can be drawn from this study:

*  DOF-compatibility of the identified model has to be considered before the
implementation of the identification method. Since the input data to the
LSM based joint parameter identification procedure are measured FRFs of
the substructures and their assembly, the pre-determined DOFs of the joint
model, whose parameters are to be determined by the identification process,
have to be compatible with those of the joint in the measured practical
structure. DOF-incompatible case can result in unacceptably large errors;

» the RDOF-rdlated FRFs, which are ususally difficult to measure or to
measure precisely compared with the trandation FRFs, play a very
important role in FRF coupling analysis. Coupling made without RDOF-
related FRFs produces errornous results. The errors can be predicted
quantitvely using the error functions provided here using information from
substructures only;

» the development of an accurate experimental technique for the measurement
of RDOF-related FRFs is then important for the application of both the
LSM-based joint parameter identification method and the FRF coupling
analysis. The expected accuracy is the same as that of the trandation FRFs

obtained by the currently available techniques.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Substructure coupling analysis is an important subject in structural dynamics.
Its task is to facilitate the prediction of the dynamic behaviour of an assembled
structure from the dynamic properties of substructures. In practice,
substructures are physically assembled together using various types of joint, and
in many cases these joints significantly affect the dynamic response of the
assembled structure. Recognising the importance of joints in coupling analysis,
the author has made contributions in this thesis on joint modelling and on the
involvement of joints in coupling analysis. The work reported in the thesis
mainly comprises three parts. (i) method review and development for joint
parameter identification; (ii) method review and development for substructure
coupling analysis, and (iii) critical discussion of the relevant issues of non-
linearity and rotational degrees of freedom. Concentrating all these aspects
around the subject of substructure coupling analysis, thisthesisis based on solid
mathematical foundations and their validation by numerical studies. Overall
conclusions and suggested further developments on each part are summarised in

this chapter.

The main contributions of thisthesis are:

* anew algorithm for LSM based joint parameter identification;
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anew method for joint parameter identification using neural networks;

anew theorem on transmissibility;

development and validation of a CM S approach including joint impedance;

anew FRF coupling technique with joint impedance matrix included.

8.1. JOINT MODELLING

Methods for joint modelling in general are reviewed in this thesis. A least-
squares method (LSM) based joint parameter identification method has been
developed and presented here, including its basic equations, agorithm,
numerical validation and robustness investigation. As a further development,

neural networks are introduced into the area of joint parameter identification.

The LSM-based joint parameter identification method can identify mass,
stiffness and damping parameters from a joint impedance matrix. This method,
in principle, can identify parametersin al kinds of linear joint. The partitioning
algorithm (PA) presented in this work for implementation of the LSM
identification method, is superior to the non-partition direct algorithm (NPA)
because it not only significantly decreases the number of equations involved in
a solution but also improves the condition of the coefficient matrix in the linear

equations. Therefore, the PA approach is an efficient and accurate algorithm.

The transmissibility theorem, a side-product in the algorithm study, reveals an
important correlation between FRFs in chain-like structures and provides a
guideline for selecting internal DOFs for the application of the joint parameter
identification method.

Neural networks have a good reputation in mapping non-linear relationships
between input and output data. A neural network can learn from available input-
output pairs. In other words, it can be trained by a set of input-output data. A
well-trained neural network will produce an accurate answer with an arbitrary
input within the range of the training set. To apply neural networks to this
particular subject, joint parameter identification, the main difficulty is in the
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preparation of training sets. A technique based on parametric families of FE
models has been used in this work to generate FRFs for an assembled structure
with variety of joint parameters. These FRF data are then compressed by using
principal component analysis (PCA) to form a much more compact input data
set. The output data set is formed by uncertainty factors of joint parameters
rather than the physical parameters themselves because these dimensionless
factors have better numerical properties. Two types of feedforward network are
used in the numerical simulations, MLP and RBF networks. Both of these
successfully identified the joint parameters in numerical studies made to
validate the method. This implies that the training sets obtained in the pre-
processing procedure (applying PCA to the FRF matrix) reflect the features of
the structures dynamic behaviour with the variation of joint parameters. The
RBF networks are more accurate and more efficient compared with the MLPs.
The neural network methods in general, either MLP or RBF, are robust and easy

to implement in practice.

8.2. COUPLING ANALYSIS

Component mode synthesis (CMS) and FRF coupling anaysis are two
approaches for predicting the dynamic properties of an assembled structure
using the modal data or FRFs from its substructures. Developments have been
made in this thesis for both of these approaches by taking joints into account in
the coupling process. These developments are more complete and practical as
compared with the earlier attempts [Urgu89] [Ferr98] in the sense that the high

mode-truncation error is compensated and a more general joint model is used.

The CMS method with joints included, and residual attachment mode
compensation, (CMSJ), extends the conventional free-interface CM'S method by
introducing joints into the synthesis process. The joint appears in a genera
impedance matrix form and its parameters are easy to adjust. Since joints are
normally the most difficult part to model, this method provides a convenient
way to modify the representation of the joints and to predict the dynamic

characteristics of the assembly without re-analysing the substructures. The

180



Conclusions and Future work Chapter 8

residual attachment mode feature greatly increases the accuracy of the synthesis
analysis. In the second example of Chapter 4, when 6 and 4 modes were used
from substructures A and B, respectively, the first 10 predicted natural
frequencies of the assembled structure have a maximum error of only 1.1%. In
addition, the introduction of joints also makes the connection between the DOFs

of non-conforming interfaces possible.

A generalised joint describing method (GJDM) was derived and presented here
in which the FRF submatrices of the assembled structure are explicitely
expressed by the FRF submatrices of the substructures. The principle and
algorithm for this method have been validated by numerical studies. It has been
shown that the joint parameters can be tuned independently to change the
dynamic properties of the assembly. That is to say, the substructures need not
be re-analysed with respect to variations in the joint parameters. Thisis not only
an advantage for substructure coupling analysis, but also provides a means for
designing joints as dampers for vibration control. The numerical studies
presented also demonstrated that this method is insensitive to random noise on
the input FRFs. For higher noise levels, a singular-value truncation can be used

to improve the quality of the predicted FRFs.

8.3. NON-LINEARITY CONSIDERATIONS AND IMPACT OF RDOFSs

Almost al papers which mark the milestones of the research on non-linear joint
modelling have been reviewed in this thesis and their connections in respect of
analysis methods and conclusions are summarised. It is concluded that in most
engineering structures, friction joints are often tightly fastened so that their
potential non-linear behaviour is suppressed and so is not significant. This
conclusion is validated by an experiment on a practical structure. Numerical
studies on both discrete parameter models and a continuous contact model
indicate that the transition process between stuck and macro-slip conditions
usually coincide with the region of strongest non-linearity. While in the status
of either stuck or macro-dlip, the joint behaves aimost as if it were linear. The

load-deformation relationship in the normal direction becomes effectively linear
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after a pre-load and can be considered as linear in most applications, while the
relationship in the tangential direction is aways non-linear and energy is
dissipated when a cyclic load is applied. When the non-linearity description of a
joint is available, the harmonic balance method and description function method

areready for use in the coupling analysis.

The importance of RDOF-related FRFs for joint parameter identification (LSM
based method) and for FRF coupling analysis (K-J method) have been studied
theoretically. The effect on the GIDM is also demonstrated via a practical case
study. A DOF-compatibility concept is put forward in joint parameter
identification using measured FRFs. The pre-determined DOFs of a joint model
have to be compatible to those of the joint in the measured practical structure.
DOF-incompatible case (e.g. absence of RDOF information in the measured

FRFs) can result in unacceptably large errors.

In FRF coupling analysis, RDOF-related FRFs aso play a very important role.
Coupling analysis without RDOF-related FRFs produces erroneous results. The
errors can be predicted quantitvely using the error functions provided here using
information from the substructures only. The RDOF-related FRFs are ususally
difficult to measure, or to measured precisely, compared with the trandation
(TDOF) FRFs. Therefore, the development of an accurate experimental
technique for the measurement of RDOF-related FRFs is demanded by these
two applications with expected accuracy that is the same as that of the
tranglation FRFs obtained by the currently-available techniques.

8.4. SUGGESTED FUTURE WORK

All four methods presented in this thesis — LSM-based joint parameter
identification, using neural networks to identify joint parameters, CMS with
joint considered (CMSJ) and general joint description method (GJDM) for FRF
coupling analysis — are expected to experience more applications to complicated
and practical structures. Problems may be exposed in the application process

and the algorithms may therefore need to be updated.
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Further research on the methodology of this topic should include an uncertainty
study of the proposed methods and the solution to non-linear problems.
Uncertainty, or error propagation, study is critical to the FRF based methods
since it is practically very difficult to measure the required FRFs on redl
engineering structures with very good consistency and very low noise level. The
consistency and noise levelsin FRFs need to be quantitatively justified and their
propagation through the procedure of solution should be analysed. On the other
hand, starting form the solid basis of linear analysis, it should not be much work
to extend some of the methods developed in this thesis to deal with non-linear
cases. For instance, applying neural network method to identify the non-linear
properties in joints; introduce non-linear description of joints to CMSJ and
GJDM.
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APPENDIX A

TRANSMISSIBILITY PROPERTIES

OF MDOF SYSTEMS

A.1. INTRODUCTION

In many aspects of structural dynamics anaysis, FRFs - either measured or
generated - are used directly to represent the characteristics of the structures in
guestion. In system identification, model updating as well as substructure
synthesis, various FRF matrices are used. Accordingly, it is important to
understand the construction of FRF matrices and to be aware of the
relationships between the individual FRFs.

The issue of transmissibility properties of MDOF systems is addressed here to
clarify the concept and to provide a criterion for the existence of the properties
in MDOF systems.

A.2. THE THEOREM OF TRANSMISSIBILITY

For a system which has a diagonal mass matrix and a banded stiffness matrix,

such as

184



Transmissibility Properties of MDOF Systems Appendix A

m, O 00
O O
DO m, O 0 0
M=0: 0 ° : O (A.D
0. . O
; : 00
Ho o 0 mH
and
[k, k, O 0 O
O
%(21 Ko, k23 ]
K =00 0 O (A.2
0. ' K [
0- : (n-1n []
EO O kn(n—l) knn E
the following rel ationship between its FRFs holds:
AH ik (CU) _aHy (CU) (A3)

aHix (w) B aH ik (w)

a al frequencies when the following condition for the subscripts in (A.3) is
fulfilled:

(ky ko) < (iyr J2) or (ky ko) > (iss i) (A.4)

Here (k,,k,) representsapair of excitation co-ordination numbers, and (j 1 jz)
represents a pair of response co-ordination numbers. The sequence of k and |

Is the same as the co-ordinate index, i.e., the mass index givenin M matrix.

Proof A gpatial model is employed to prove this theorem. Consider the nDOF
system shown in
Fig. A.1, in which the excitation is applied at k and the responses are measured

on one side of the excitation DOF, at positions numbered as j,and |,.

fk

() @)

Fig. A.1 An n-DOF mass-spring system
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The equation of motion has the form of

Zx =f (A.5)
Its detailed form is
Sdl —ky %xlm 00 0o
Tkod, -k, 0 P H Bob
S % O 0O:0d
O 0,0
B —ki dp -k 07X O DOD
e ‘8 B:8
0 %: 0=0, 0(A.6)
S h*o o%o
5 a de ki 8 B g
S 0 h: o 00O
=1 N E R R
u % 0 0.0
E - kn-l dn Xn E EO E
where
d, =k, —w’m,
d, =k_ +k —w’m i=23,..,n-1
d, =k, _, —w'm and
J canbeeither j, or |,
Big zeros in the matrices stand for “zeros elsewhere” hereinafter.
Define sub-matrices oZ as Z,, | =1,2,3,...,n, which are square matrices

formed by taking the first rows and columns frord as
Z,=d,

, _0d —kO
*"Hk d,H
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From the fact that f, =0 for i =1,2,...,k -1, we can obtain the relationship

between x,, the displacement of m,, and X, :

 — (A7)

Similarly, the relationship between x; and x, is

X, _det(Z,,) & _
X_k _—det(Zk_l) !:! kp (j <k) (A.8)

These two equations are derived later from equation (A.18) through (A.24) and
they can be validated by using the following recurrence formula

d
X, = k_l X, (A.9)
1

ixI —hxl_l =23, .., k1 (A.10)
kI kI

X =

Similarly, x,,, can be derived using the last n — k equations from (A.6):

_ k, det(z¥?)

Xk+1 det(ZEﬂ) Xk (All)

where Z5*? is a sub-matrix of Z, which is formed by the (k +2)" to nth rows

and the (k +2)" to nth columns. The same rule also appliesto ZX™,

The kth equation in (A.6) is

~ K Xes X — KXy = i (A.12)
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Substituting (A.7) and (A.11) into (A.12), we have

X
Hoy :f_i
d , det(Z, ) det(Z¥™") - k? det(Z, l)det(Z k+2) kZ, det(Z,_,)det(Z5)
Substituting (A.8) and (A.11) into (A.12), we have
_ X
Hj = f_k
k-1 (A.19)

det(ZK) det(Z | 1)|‘| k

" d, det(Z,_,) det(Z") - kzdet(Zkl)det(Zm) K2, det(Z,_,) det(Z**%)

Equation (A.13) and (A.14) are FRFs expressed in the form of rational
fractions. The denominator is a 2n-order polynomial in ¢, and the highest order
of « for their numerator polynomials is 2n-2. The poles and residues of the
fraction correspond to the natural frequencies and moda constants of the

system.

Let j=j, and j = |, separately in equation (A.14), we have expressions for
H, and H,, , respectively. The ratio of H, and H,, is defined as

Transmissibility Function:

det(z )| ]k .
H - [l)_JIl det(zjl—l) 12—1k

T,,(w)= X =
iLj2 k-1 p
j2k det(ij ) |—I Kk det(Z 12—1) p=J1

p=j2

(A.15)

Specifically, whenlet j, =1 and j, = then

k-1 j-1

Kok
H B p
T, (w)=—%= b= A.16
B P = B = (2 (419
e(Z 1) [ ] Ko )
p=]

The expression of T(a)) in equation (A.15) is not a function of excitation co-

ordinate k, which means that T(w) is not dependent on the excitation position.
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From the derivation process, we know the only requirement for the excitation

positionis k > j . It means that if we rename the co-ordinate k, which isused in
the above derivation, to k,, and give the system an excitation at k, (k, >k,),

we will have the same function T(w). That is, the following relationship holds

H jlkl(w) _H jlkz(w)

T(w) = = (A.17)
H j2kl(w) H o2 (w)
Equation (A.17) can take the other form as
T(w) = H jlkl(w) _H j2k1(w) (A.18)

H jlk2(w) H j2k2(a))

So far, the theorem has been proved.
The derivation of equation (A.7) and (A.8) follows.

Thefirst (k—1) equationsin (A.6) are shown as equation (A.19). Changing the
Z matrix of (A.19) to a square matrix of (k—1)x(k-1),i.e, Z,,, by moving

x, totheright hand side, we have equation (A.20)

o~k Xy E 00
5 O X2 g Oy
ge * e O B)D
5 . g GO
a g
0 0=C0 (Al9)
O j-1 i j . %)D
: O . 0O ©Oo
q k-11 E)%
5 Keo, dy -k, %, B
S x O Oo0 O
Gkod -k 0 00,0
[+ K, P 2 X, B ]
B 000
g_d |
0 - kj—l d] - kJ X, =0 0 O (AZO)
- .00 O
B O b O O ° 0O
D “kes iy —kk_zfm_z% 00 O
i K, Ay égxk-lm H(k—lka

Solving for x; from equation (A.20) using Cramer's rule, we have a unique

solution when det(Z,,)# 0 as
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kk—le
x = ReiXe 7 | A.21
i det(Z k_l) l:( k—l)k—l,J ( )
where
(Zin, = (0 det(zict) (A.22)
and
0d, -k O
0 0
Tkod, -k, 0 .
0 0
0 0
4y _ 0 —k,  dg. 0
zZ3' =g e a9 (A3
O = O
0 dj+1 - kj+1 0
0 0
0 0 0
E kk 3 dk—2 kk—ZE

is the remainder of Z,_, when the (k —1)th row and the jth column are taken

away.

It is clear now that

oy i K2
det(z!) = det(z ., J-1) " K, (A.24)
p=]
Substituting (A.24) into (A.22), we have
k=1+] k=j-1 K2 K2
(Zk—l)k—l,j = (_ 1) (_ 1) da(zj—l)l_l kp = det(zj—l) kp (A.25)
pP=] p=]
Substituting (A.25) into (A.21), we have
o ke 2 _det(z,,)
— =— < [det|Z ._ k, =———=11]k A.26
= R | = | |

This is equation (A.8), and in the special case when j =1, we obtain equation
(A.7) from equation (A.26).
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A3.

A3l

EXTENSION OF THE THEOREM

The theorem proved in section A.2 is applicable to relatively simple cases, such
as the chain-like mass-spring systems. We will see in this section that this basic
theorem can be extended to more complicated cases and later, in section A.4,
the bounds of the correlation properties of FRFsis presented.

To extend this theorem, we consider two general positive-definite systems
connected with a single spring or several springs, without losing generality.
Combinations of more than two systems can always be treated as the two-

system case without any difficulty.

Two systems connected with a single spring: “ - connection

The case of two systems connected with a single spring is shown as Fig.A.2.
Equation (A.3) still holds in this case, regardless of the interior connections of
system A or system B, when excitations are given in system B and responses

are measured in system A. Of course, the Transmissibility function, T(w),

would not take exactly the same form as equation (A.15). However, it will be
seen that a more general expression can be derived and equation (A.15) is

simply a special case of this more general version.

When these two systems are coupled with a single spring, and an excitation acts
at the kth DOF of system B, eguation (A.5) has the form of (A.27).
X,

AR

C

system A J\N\r system B

Fig.A.2 Two general systems connected with a spring: “ - ” connection
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. 0
O O
0ono
4 a0 0. g
q - 0 M. U gg
g = O gop
i -k, Hax B O, O
0 e o, 0= 0Of.0 (A.27)
0 c Me*s0 OgO
o 0 z, |M: 0 OO
E % x 0 o: o
DBEkS HOH
o O
QBXn’a
Considering the first n equations of (A.27), we obtain
k.(Z,)
X. —_°¢t A X A.28
=z ) (A.28)
Considering al the equations of (A.27), we have
(Z)cen
X = = [f A.29
B Yj det(Z) k ( )

Substituting equation (A.29) into (A.28) and re-arranging, we have an

expression for the frequency response function, H , (w):

(@)
f,  ° det(z,)det

) qZ ), (A.30)

When the response of system A is measured at two DOFs, j, and j,, we have

theratio of two FRFs as a Transmissibility function:

Hjlk(w) _ (Z A)n,jl
Hj2k(w) (ZA)n,J2

le,jz(w) = (A.31)

We can certainly have equation (A.3) from equation (A.31), which shows that

T j2(a))is independent of k, the excitation co-ordinate on structure B. That

means the theorem has been successfully extended to the case of Fig.A.2.

It is not difficult to check that equation (A.31) and (A.15) are identical. When
Z , isatri-diagonal matrix, the result of equation (A.31) isequation (A.15).
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A.3.2. Systems connected with two springs I: “ < » connection

The “<” connection is demonstrated in Fig. A.3. One DOF in systemxA,
connects to two DOFs in system By, and; x, .

f

|<_k

X

il

| cl
system A ﬁ system B
k

c2

Fig. A.3 Two systems connected with two springs |: “ < ” connection

The Z matrix in equation (A.5), in this case, takes the form of

0 0 0
U U
0 Za O
E - kcl (_kcz)n,l B
Z = 0 - kcl 0 (A32)
0 U
O O
0 (_kcz)m Zg H
i 0 :
From the firstn equations, we can solve fQx; :
WX = 24)., kaldx, +keoldx,) (A.33)
bodet(z,) ° °
Considering all the equations of (A.32), we have
(Z)ce (),
X =—7=[f, andgx =—/=<f A.34
B ™M det(Z) k BN det(Z) k ( )

Substituting equations (A.34) into (A.33) and re-arranging, we have an
expression for the frequency response funct}em(,(w):
AXj _ kcl [(Z)k,Bl + kcz [(Z)k,j

ij(w): o det(z ) let(2) [(ZA)n,j (A.35)

When the response of system A is measured at two DQFend j,, we have

the samdransmissibility function as equation (A.31).
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Obvioudly, if the number of connections increases, say, from ,x, to al the

DOFs of system B, equation (A.31) still holds.

A.3.3. Two systems connected with two springs II: “ > » connection
The “ > " connection is demonstrated in Fig. A.4. Two DOFs in systenixA,

and ,x,,, connect to one DOF in system B, .

I_> ’ ‘4— fk

\/\/\C/l\/\
system A )@/ system B

Fig. A.4 Two systems connected with two springs Il: “> " connection

The Z matrix in equation (A.5), in this case, takes the form of

O O o
O O
] Z, (_kcz)m,Bl U]
O O
O O
Z=q -k, B (A.36)
B (_kCZ)Bl,m - kcl B
O Z, | O
4 O H
From the firsin equations, we have
(Z ), (Z ),
X, =—>" g + Tk A.37
AX; det(ZA) algX det(ZA) g% ( )

Considering all the equations of (A.36), we haye the same as (A.33).
Substituting equations (A.33) into (A.36) and re-arranging, we have the

expression of frequency response functkbﬁ(a)):

e L L CANPTSE AN RTES
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A4,

When the response of system A is measured at two DOFs, j, and j,, we have

the Transmissibility function:

T, (w) = A s (CU) = kCl [(ZA)nxil + kCZ |:(ZA)m,jl
iLj2 H (@) kg [(ZA)M2 +Kk,, [(ZA)m’j2

(A.39)

If the number of connections increases, say from al DOFs of system A to .x,

still exists and equation (A.39) becomes

) S ko2,

Hjlk(w
H

J2k(w) z Ky [(ZA)p,jZ
o=1

Ty (w) = (A.40)

LIMITATION OF THE THEOREM

It has been proved that the proposed theorem is valid in al the cases mentioned
above. Here we consider the case of two systems connected with two springs

[ll: * =" connection, shown as Fig. A.5. Two DOFs in system, 4, and ,x,,,

connect to two DOFs in system Bx, and . x, respectively.

alt "

system A system B

Fig. A.5 Two systems connected with two springs Ill: “ =" connection

The Z matrix in equation (A.5), in this case, takes the form of

0 O
O O
D ZA (_kcz)m,l D
O O
O O

Z= 0 - kCl 0 (A.4l)

U -k |
O ct O
U (_kcz)l,m Z B H
H O H

From the firstn equations, we have
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(Z ),
det(Z )

Considering all the equations in (A.41), we have ,x, and .x , which are the

@
X Gz,

|:n(cl Ig Xl +

k., [@X (A.42)

same as (A.33). Substituting equations (A.8) into (A.42) and re-arranging, we

have the expression of frequency response function H ;, (a)):

H () = WX _ Ka 1Z,), 02)en + ke UZ0), (@),
g fi det(z , ) et (z)

(A.43)

When the response of system A is measured at two DOFs, j, and j,, the ratio
of two FRFs, H , (w)/H 5 (w), is not independent of the subscript, k. That

means that the transmissibility function defined as equation (A.15) does not
apply in this case. Moreover, any connection between system A and system B
which is more complicated than this case, will make the whole assembly
inapplicable to the proposed theorem. In other words, the three types of
connection mentioned in section A.3 include not only the necessary conditions,

but also the sufficient conditions for the theorem to apply.

A.5. NUMERICAL DEMONSTRATION

Three numerical cases are presented here to illustrate the validity of the
theorem. These cases are formed by two basic systems connected in three
different ways. The two basic systems are FE models of plates and the

connections are rods. The parameters of the systems are:

plate: length 360 mm
width 200 mm
thickness 3 mm
Young’s modulusl10 x 10° N/m?
density 8.54 g¢m®
rod: Diameter 1.0 mm

distance between the two plates 120 mm
Young’s modulusL10 x10° N/m?
density 8.54 g¢m?
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Fig. A.6 shows the three assemblies of the two plates. They are (a) “ ="
connection, (b) “ < ” connection and (c) “ > ” connection. In all three cases,
excitations are applied az &nd %, and responses are measured ata2itl 4@.

To make the rods used as springs, only translationslirection are released at

the nodes where plates and rods meet. Fig. A.7 presents overlaid FRFs in the

left column and overlaid transmissibility functions in the right column.

In the cases of (b) and (c), the transmissibility functions are expressed as

HZl,l(aJ) — H21,5(w)

T, 0 (W) = = (A.44)
T Hipn(@) Hags(@)
S0, one can only see a single line.
In the general case, case (a), it is obvious that
H21,1(w) Z H21,5(w) (A45)

Hypi(@w) Hyps(w)

These results illustrate the validity of the transmissibility theorem.
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(©
Fig. A.6 Two plates connected with rods. (a) “ = ” connection, the general case.

(b) “ <” connection. (c) “> " connection.
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Fig. A.7 Overlaid FRFs and overlaid transmissibility functions
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A.5. CONCLUSION

The transmissibility properties of MDOF systems have been thoroughly
discussed here. A transmissibility function, defined as the ratio of FRFs, can
always be found wherever the properties exist. The extension of the theorem,
two systems connected in certain ways, shows that the transmissibility function
can be analytically expressed as a function of only one system's parameters. The
particular feature which results in systems exhibiting this property is that the
two response points must be separated from the excitation point by paths which
pass through a common single connection. Numerical case studies have shown

the validity of the theorem.

The discovery of the transmissibility properties of MDOF systems is valuable
for understanding the construction of FRF matrices. As FRF matrices are so
widely used in many aspects of structural dynamic and acoustic analysis, the
proposed theorem and its extensions are expected to play an important role in

these areas as essential knowledge.
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APPENDIX B

THE ANALYSIS OF PERTURBATION

The objective here is to study the relationship of perturbation of the data of the
LS problem to perturbation of its solution. In practice, the consideration of such
perturbations can arise due to the uncertainties with which observable
phenomena can be quantified. It is also possible to analyse the effects of round-

off errorsin the solution procedure as if their effects were due to perturbed data.

Results relating to perturbation of the pseudo-inverse or the solution of problem

LS are described as follows.

Let A and E be mx n matrices and define the perturbed matrix, A, as
A=A+E (B.1)
and theresidual matrix, R, as
R=A"-A" (B.2)

We wish to determine the dependence of R on E and, in particular, to obtain

bounds for |R|| interms of [A[| and ||E|.

It has been proved [LaHa95] that for the general case, the residual matrix R
satisfies
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R=R,+R,+R, (B.3)
where
R,=-AEA" (B.4)
R,=A*(1-Q)=A*ATE"(I -Q) (B.5)
R,=-(-P)A" =(1-P)ETAT*A" (B.6)
Q and P are projection matrices:
Q=AA"=AT"AT and P=A*A=ATAT (B.7)
These matrices are bounded as follows:
(B.8)
IR (B.9)
IR (B.10)
More specifically, if we assume that and that
Rank(A) < Rank(A) then
Rank(A) = Rank(A) (B.11)
and
IRy < |_ (B.12)
IR,||s ———" (B.13)
IR, < (B.14)
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(B.15)

where

1++/5
2

c=

=1.618 if Rank(A) < min(m,n)

¢ =+/2 =1.414 if Rank(A) = min(m, n) < max(m, n)
c=1if Rank(A)=m=n
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APPENDIX C

A NOTE ON ADDING DAMPING TO THE

SIMULATIONS

In finite element simulations, the proportional viscous damping mode is

considered as
C=aM + 8K (C1)
After the orthognality operation, one of the normal equations should be
6+20,&,q+wq=0 (C2)

where q isthe normal coordinate.

The process of orthogonalinisation is normally carried out as follows:

O'MP =| (C3)
®'K® =diag(w)) (C4)
®'CP =diag(a + Bw?) = diag(2w,¢,) (C.5)

Therefore, when a =0, ¢ =pw, /2, i.e. the modal damping ratios are

proportinal to the natural frequencies.
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In the process of simulation, the assembled system is constructed from the
spatial models of substructures and joint. The dampling coefficient matrix of the
coupled system, C, is built in the same way to keep it proportional to the
natural frequencies of the coupled system and so the dampings in substructures

and their assembly are of consistance.

Suppose now that the damping coefficient matrices of substructures A and B are

AC and ;¢ respectively, which take the forms of

UaCii aCic U

A= . (C.6)
@Cci ACCC a
s G 8Cic U

c=5-- . (C.7)
EXN 5 Cec

The damping coefficient matrix of joint is € and therefore, the damping

coefficient matrix of the assembly, C is

|]ACii ACic O H
c=He¢ c.+.c. +C ,c o (C.8)
T [R¥d A¥cc ' B“cc B™ic[] '

a 0 BCci BCii E

The identifier will output the estimation of the elements of submatrix €. The

accuracy of the estimation will be estimated by comparing € with c.

Since the stiffness matrices are known, we have

aCo =B K¢ (C.9)
5Cec =BeK (C.10)
Coc =K (C.11)

Therefore,

€=Cec~aCe8Cc (C12)
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This damping model is used in the finite element simulations throughout this
thesis, for joint parameter identificatin in Chapter 2 and coupling analysis in
Chapter 4 and 5.
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D.1.

APPENDIX D

AN ANALYSIS ON NOISE SIMULATION

It is unavoidable that all test data will contain a finite amount of noise. The
testing noises need to be considered in numerical simulations for examining the

robustness of the algorithms.

NOISE MODELLING — TYPE AND LEVEL

In general the testing noises come from the transducers and the cable leads. All
transducers have a signal level below which they cannot distinguish the signal
from their inherent noise. This level will vary depending on the required
amplitude and frequency ranges to be measured, and therefore depending on the
type of transducer selected for the application. Further, transducers may also
suffer from what is called transverse sensitivity. Thisis where part of the signal
comes from a direction other than the primary measurement direction due to off
axis vibration. Unfortunately, a certain amount of transverse sensitivity is an
inherent by product of transducer design. The cable leads and connections may
also add noise to the signal. The character of the noise depends on the quality of
the cable (including the connectors), the length of the cable run and the nearby
noise sources that may be picked up by the cable.
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Noise simulation is classified into two categories. amplitude-dependent
(sometimes referred to as “multiplicative”) andmplitude-independent

(sometimes referred to as “additive”).

The amplitude dependent noise is described by [Duar96][Noba91]

~

H(w)=H(w)+ym fH(w) (D.1)

where, y is the noise leveln, is thei™ element of a normally-distributed
random sequenca, and|H(a)I )| is the absolute FRF amplitude. This type of

noise is proportional to the amplitude of the FRF and it is not practical.

The amplitude-independent noise is described by
H(@)=H(@) +yi(w) (D.2)

This type of noise applies the same noise level to all amplitudes. It is most like a
real transducer in that the large amplitudes are contaminated less than the small
amplitudes. Therefore, the amplitude-independent noise is considered only in
the simulations. This random sequemcéas the statistical characteristics of

E(n) =0 (There is no DC component) awodn) =1
Its probability-density function is

—-m?/2

e

o

and the probability that the measured sample at time(t,), will fall in the

fo(m) =

(D.3)

rangem to m+dm is given by f_ (m)dm [Schw9Q].

The noise level (percentage) has different definitions, as presented in the

following:

¢ Definition 1

y=—"" x100 (D.4)
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Appendix D
» Definition 2
|
y=——"%_x100 (D.5)
H (@),
» Definition 3
y=_|n|max x100 (D.6)
D)
» Définition 4
y= LAB(] x100 (D.7)
[dB(H ()] e —[AB(H ()] i

D.2. THE THEORY BACKGROUND OF NOISE LEVEL DEFINITION
Consider models where extraneous noise is measured at the input and output
points to a linear system, H(w). Let the true signals be u(t) and v(t) and the
extraneous noise be m(t) and n(t), respectively. Assume that only u(t) passes

through the system to produce the true output v(t), but that the measured input
and output records are

X(t) = u(t) + m(t) (D.8)
y(t) = v(t) +n(t) (D.9)
n(t)
u(t) H ( w) v(t) y(t)

m(t) X(t)

Fig. D.1 A system with noise contaminated input and output

For arbitrary correlation between the signal and noise terms, auto-spectral and

cross-spectral density functionsfor x(t) and y(t) will be
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GXX (w) = GUU (w) + Gmm (CU) + Gum (w) + Gmu (w)
Gy (w) =G, () + G, (w) + G, (w) + G, (w) (D.10)
G,y (@) =G, () + Gy, (@) + Gy (W) + Gy (@)

where

Gy, (@) =|H (@)|*Gy, (@)

(D.112)
G, (w) =H(w) G, (w)

Suppose that both sources of noise, m(t) and n(t), are uncorrelated with each

other and with the signals, u(t) and v(t), we have
Gy (@) =Gy (@) =0 and G, (@) =0 (D.12)
Therefore,

Gy (W) =Gy, (W) + Gy (@)
Gy, (w) =G, (W) + G, (w)
Gy (@) =G, (w) = H(w)G,, (w)

Gy, (@) =|H(w) [ Gy, (@)

(D.13)

The frequency response function H(«w) cannot be determined from the
measured x(t) and y(t) without a knowledge or measurement of the input
noi se.

Gylw) Gylw)

=G @ ~ Gu(@) -G (@)

(D.14)

H(@)* = gw(“’) = Sy(@7 Gy (@) (D.15)
w(@) G, (w) -G, (w)

Express the directly measured frequency response function as I:I(a)),

G,y («)
G, (w)

XX

H(w) =

, the relative error of the measurement can be estimated by

_ H(w) - H(w) 4 H (w) _1_8y(@) G (@) -G (@)
" H (w) Hw  Gu(w) G,y (w)
—1- 5u (@) =G (@) _ G ()
Gy (w) Gy (w)

(D.16)
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D.3.

It can also be expressed as a function of noise-to-signal ratio of the input signal,

which is given by

a(w) =G, (w)/G,,(w) (D.17)

Gpn(@) _  Gn@) _ a(w)
Gu(@) Gy (@) +Go(@) 1+a(w)

e, () = (D.18)

This last expression for e, (w) indicates that the relative error of the system’s
FRF can be estimated by the noise-to-signal ratio of the input signal. Suppose
the relative errore, (w) is kept constant, then the noise level would change

with the amplitude of the FRF. This implys that the noise is proportional to the
FRF data as is was used in [Duar96]. Practically, however, the noise level
should be independent of the measured data. The noise level here is defined at
the frequency of the largest noise-signal-ratio, which corresponds to the

smallest signal.

* Definition 5

y H@) (D.19)

min
Here, o is used instead c}ﬁ|max to represent the statistic property of the noise,

which will result a higher noise level. This noise level definition will be used

here after in the FE simulations.

AN ILLUSTRATION OF NOISE SIMULATION

An example shows how heavily the FRFs are contaminated when 1% noise is
added according to the five different noise level definitions given above.
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Fig. D.2 Noise affected FRFs from different noise models
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APPENDIX E

DERIVATION OF EQUATIONS (7.21) TO (7.24)

From equation (7.9) and (7.15), we have

The equivalent form of (E.1) is
ABHftABH;:ti-'-ABHfrABH(r:i :|tt
ABHftABHfri-'-ABHfrABH(r:ir :0
ABH(r:tABHfti-'-ABH(r:r ABH(r:i :0
ABH:‘:tABHfri-'-ABH(r:r ABH:‘:ir =Irr

From equation (E.3),

ABH'fri :_ABHtCt_lABHfrABH‘r::'

Substituting (E.6) into (E.5), we have

¢ — c _ c c c
ABHrr _(ABHrr ABHrtABHtt ABHtr)

Er—\BHtct : ABH;%BHS : ABHSE %tt
D cee .:. cee DD cee ' .:. ce D: Ij..
EABH:':t : ABH‘r:r%ABHﬂ : ABH(r:IrE EY

=

OO0

(E.1)

(E.2)

(E.39)

(E.4)

(E.5)

(E.6)

(E.7)
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Appendix E

E.1 DERIVATION OF SUBMATRIX ,,H fj

From (E.4),
i _ -1 i
ABH:':t __ABH‘r:r ABH(r:t ABHtct
substituting (E.8) into (E.2), we have
c ¢l c ¢l c c —
aeHy (Itt_ABHtt aeHu asHo ABHrt)ABHtt =1y
Pre-multiply ,,H¢ in both sides of (E.9):
-1 -1 - -1
(IH_ABH; ABHfrABHfr ABH:;’[) ABHtCt_ABHtCt
and then
ci _( ¢l c ¢l c 1 ¢l
aeHe =\le—aeHe asHeasHe asHr) asHe
Using the general inverse relationship
(I-AB)*=1+A( -BA)'B
equation (E.11) becomes

¢l c1

c — cny-1 c ¢l
ABHtt _(ltt+ABHtt ABHtrD ABHrr ABHrt)ABHtt

where
D=1, +eH5 eHieHy aeHS
Since
(AB)*=B*A™
we have

D™ s H fr_l = (AB HY D)_l
Substituting (E.16) into (E.13)
Ci — ¢l c Ci c ¢l
ABHtt _(I tt+ABHtt ABHtr ABHrr ABHrt)ABHtt

therefore,

(E.8)

(E.9)

(E.10)

(E.11)

(E.12)

(E.13)

(E.14)

(E.15)

(E.16)

(E.17)
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Ho=oHE +aHE eHE HE e HE HY E.18
e —ase TaMe a8 ras e (E.18)
E.2 PROOF OF ,,H% =, H¢
Substituting (E.7) into (E.6), we have
c _ ¢l c c c ¢l c B
neHy == asHe asHy (ABHrr_ABHrt aeHi ABHtr) (E19)
Using equation (E.15), (E.19) becomes
i -1 -1 -1
ABHfr = _(ABH; ABHtct) (ABH‘r:r_ABH:':t]ABHtCt ABH;:I') (E.20)
and then
c _ c c ¢l c ¢l c
neHy = _((ABHrr_ABHrtABHtt e Hu \asHy ABHtt)) (E.21)
therefore
HE = ~(6HE, eHE T s HE = HE ) E.22
AB" 'tr — \AB''rrAB tr] AB' 'ttt AB' 'rt ( . )
Similarly, from equations (E.2) and (E.4), we have
i -1 -1
ABH(r:t :_ABH(r:r ABH(r:t](ABHtCt_ABHtCrABHfr ABH(r:t (E.23)
c _ c c ¢l c ¢l c
e Hire __((ABHtt_ABHtr e asHifeHe aeHn (E.24)
i -1 !
ABH‘r:t :_(ABHftABH(r:t ABHfr_ABHtCr) (E.29)
Thetranspose of ,,H¢ is
al c c1 c c )T T
e Hy :_gABHrrABHtr neHe—aeHn ﬁ (E.26)
( c ¢l c c )_l |
=-\eHuasHn aeHr—aeHe
Comparing (E.26) with (E.25), we know that
iT i
eHe =aHG (E.27)
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APPENDIX F

FREQUENCY RESPONSE ASSURANCE
CRITERIA (FRACQ)

The Frequency Response Assurance Criteria [NeSu96] helps to identify the

degree of similarity between a frequency response function that is measured,
H(w)*, and one that is synthesised from the finite element model, H(w)*. In
analogy to the MAC definition, the FRAC is defined as [HeAv98]

I 1 CV L)
H(w ) H"(w ) JH (@) H"(@))

J

FRAC(j) (F.1)
For identical frequency response functions for an analytical and experimental
model, the FRAC will be 1.0 indicating good correlation; when the frequency
response functions are significantly different, then the FRAC will approach zero

indicating that thereis little correlation between the two functions.

If a stiffness shifting factor, a, isincluded in the formulation, then the FRAC
definition becomes

‘H(,B'a))f.’[Il-l“(cu)*2

17 17

H(Be )t 1" (B ) R (@) ™ (@)

; (F.2)

FRAC(j) = max%

(-
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where [ isfreguency shifting factor which has the relationship with a as

a= (IBmax )2 (F3)

It also can be defined by absolute or logarithm values instead of the complex
values in some cases where the differences in order of magnitude of the values
of response functions are very large due to light damping or where the phase
differences are significant. In these cases, FRAC values can be quite low while

the analytical and experimental response functions visually show acceptable
correlation.
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