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Engineering structures normally exist in the form of assemblies of several

components or substructures, and the modelling, prediction and optimisation of the

assembled structures are presently achieving far from the required accuracy and

reliability, and from that which is attained for the individual components. This is the

essential problem addressed by this research.

The difficulties in achieving the required accuracy are almost certainly due to the

variety and complexity of joint types and to the lack of an accurate estimation of the

interactions between substructures. This thesis provides two approaches for joint

parameter identification, a least-squares method based and a neural network based

one. Their mathematical backgrounds are thoroughly presented and their validity is

examined by numerical case studies.

The coupling analysis method has the equal importance to the joint parameter

identification. Two branches of coupling methods, CMS and FRF-based, are

systematically investigated. Two new methods, one in each branch, are developed to

take joint effects into account in the analysis. Numerical studies show that these

methods are accurate and efficient. The significance of modal incompleteness and

measurement noise to the coupling analysis is also estimated.

Two relevant issues in joint modelling and substructure coupling are also discussed in

this thesis. They are (i) non-linearity considerations in joint modelling and

substructure coupling and (ii) impact of rotational DOF information. The former

reviews the progress of nonlinear joint modelling as well as the analysis methods

dealing with nonlinear coupling problem, indicating that the nonlinear behaviour of

fastening joints is not significant. The latter demonstrates the importance of the

RDOF-related information in both joint modelling and FRF coupling analysis.



ii

$&.12:/('*(0(176

I am deeply indebted to Professor D J Ewins for his supervision throughout this

research work. It is his initiatives and instructions that enabled me to achieve

developments in this area. I am also grateful to the other members of the staff who

helped me a lot during these years, Dr. Imregun, Mr. Robb, Mrs. Savage and Mr.

Woodward.

I wish to express my appreciation to my colleagues in the Dynamics Section of

Imperial College for their friendly cooperation and useful discussions.

I would to express my gratitude to Bosch GmbH and CVCP. It would have been

impossible for me to study here without the financial support from them.

Special thanks to my parents for all their love, encouragement and understanding.

Finally, I wish to thank my wife and son for their love and sacrifice. They shared my

happiness and disappointments.



iii

120(1&/$785(

Matrices and vectors

C viscous damping matrix of structure

& viscous damping matrix of joint

' structural damping matrix of joint

E error matrix

F force vector of assembled structure

H receptance matrix

I identity matrix

K stiffness matrix of assembled structure

. stiffness matrix of joint

M mass matrix of assembled structure

0 mass matrix of joint

R residual matrix

T transformation matrix

= joint impedance matrix

c viscous damping matrix of substructure

F viscous damping vector of joint

G structural damping vector of joint

f force vector of substructure

I force vector of joint

k stiffness matrix of substructure

N stiffness vector of joint

m mass matrix of substructure

P mass vector of joint

n noise sequence, a vector

p normal coordinates
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q generalised coordinates

x physical coordinates
2 eigen-value matrix, diagonal

mass normalised eigen-vector matrix

mass normalised eigen-vector

eigen-vector matrix

residual attachment mode matrix

Scalars

A cross section area

E Young’s modulus

)(th response function of unit pulse

)(ωH the simulated noise-free FRF

)(
~ ωH the simulated noise-contaminated FRF

I bending section modulus

L number of internal DOFs

l length of a beam element

n number of DOFs

cn number of coupling DOFs of an assembly of substructures

fn number of frequency points
2ω eigen-value

β proportional coefficient of damping matrix

σ singular value or standard deviation of added noise

γ percentage of noise
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Symbols

A substructure A

B substructure B

C coupling coordinate of assembled structure, subscript

C coupling coordinate on substructure A of assembled structure, subscript

C
~ coupling coordinate on substructure B of assembled structure, subscript

I internal coordinates of assembled structure, subscript

c coupling coordinate of a set of substructures, subscript

c coupling coordinate on substructure A in a set of substructures, subscript

c~ coupling coordinate on substructure B in a set of substructures, subscript

h subscript, high frequency range

i internal coordinates of a set of substructures, subscript

l subscript, low frequency range

ℜ real set

Abbreviations

CMS component mode synthesis

CMSJ CMS with joint considered and residual attachment mode compensation

DOF degree of freedom

FE finite element

FRAC frequency response assurance criteria

FRF frequency response function

GJDM general joint description method

K-J Klosterman-Jetmundsen method

LSM least-squares method

PCA principal element analysis

RBF radial basis function

RDOF rotational degree of freedom

TDOF translational degree of freedom
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Structural dynamics analysis is required more and more by industry to make

accurate predictions of the response of structures under a variety of

circumstances. With regard to increasing international competition, this

requirement is becoming urgent because successful predictions will lead to

more elegant and efficient designs, more durable and comfortable products as

well as to lower energy consumption related to dynamics.

The modelling and dynamic response prediction techniques for individual

structural components have been well developed and a number of sophisticated

and powerful software packages are in practical use. However, most

engineering structures exist in the form of assemblies of several components or

substructures, and the modelling, response prediction and optimisation of the

assembled structures′ dynamics are presently far from attaining the required
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accuracy and reliability, and from that which is obtained for the individual

components. This is the essential problem addressed in this thesis.

The difficulties encountered in achieving the required accuracy of dynamic

response predictions are almost certainly due to the variety and complexity of

joint types and behaviour as well as to the lack of an accurate description of the

interactions between substructures. However, general methods which are able to

model various types of joints have not been reported and the prediction methods

for substructure coupling with joints included have not been systematically

developed. Fundamental research on these two aspects is urgently demanded

and further progress on developing powerful applicable software is needed by

industry. It is intended that new methods are developed whereby we can not

only understand the characteristics of the joints and the mechanisms of

coupling, but also learn to utilise the dynamic properties of joints in coupling

analysis so as to modify and to optimise the dynamic response of our structures.

���� %5,()�5(9,(:�2)�67$7(�2)�7+(�$57

Engineering structures are often fabricated from components by using a variety

of connections, such as bolted, riveted, welded and bonded joints etc. In the past

three decades, the importance of joint modelling or descriptions of joint

dynamic properties has become more and more significant. Modelling methods

which have been reported are basically classified into two categories: linear

joint models and nonlinear joint models. The linear joint models are mostly

used in modelling tightly fastened joints in engineering structures and are the

main concern of this thesis. The nonlinear joint models normally exhibit

friction-related non-linearities.

Experimental investigations on adhesive bonded joints were carried out in 1972

by Thornley and Lees [ThLe72]. Static and dynamic experiments showed the

stiffness and damping properties of the joints by measuring loads as well as

displacements. The stiffness was found to be dependent on the type of machined

surface and the quality of surface roughness. In general, the smaller the
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roughness value of the surface the higher the stiffness. The stiffness was

basically linear and became softening after the interface pressure exceeded a

certain value. A small increase in damping was achieved when using the epoxy

resin adhesives compared with that obtained with dry friction. Normal loads

were applied without any significant sliding of the joint faces. Thornley and

Lees’ work revealed that the joint bonded by adhesives has improved stiffness

and damping characteristics.

A simple analytical joint model, comprising a spring and a parallel dashpot

connecting each co-ordinate direction of two substructures, was first proposed

by Yoshima [Yosh77] for describing welded and bolted joints. The stiffness of

the springs and damping coefficients of the dampers used in the model were the

equivalent stiffness and damping coefficients of the joints. They were identified

iteratively by comparing the resonance frequencies and damping ratios of the

first two modes. This method was later applied to a dynamic analysis of a

vertical lathe [Yosh79]. The joint model proposed by Yoshima is simple and

reliable in his case studies, but his algorithm for the identification is not

effective.

Wang and Liou used the same model, a group of parallel stiffnesses and

dashpots, to represent bolted joints and developed a direct identification method

[WaLi90][WaLi91]. The parameters of these connections, stiffness and

damping coefficients, were identified by employing a least-squares method with

the input of FRFs of the substructures as well as their assembly. This algorithm

is more general and effective compared with Yoshima’s [Yosh77]. Witek

applied the same model and similar algorithm to identify dynamic parameters of

vibro-isolation pads in machines [Wite97].

A more general joint model which is expressed by stiffness and damping

coefficient matrices was proposed by Wang and Sas [WaSa90]. The essential

algorithm for identifying the joint parameters is to transform the assembled

system into several single DOF systems using selected eigen-vectors. These

eigen-vectors should be sensitive to the identified parameters. It is obvious that
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this method relies on the availability and accuracy of the mode shapes of the

assembled structure. It is not very promising for practical applications.

To extract joint parameters without interference from complicated dynamic

characteristics of substructures, a method based on rigid-body dynamics and

frequency response function measurement was developed by Becker et al.

[BeWB99]. Joints are isolated by connecting rigid bodies instead of elastic

substructures. It is easy to obtain the stiffness matrix of the joint by means of

this method but the application of this technique is quite limited.

In the area of finite element model updating, joint modelling is of interest

because of the existence of unknowns in joints. Mottershead and Friswell et al

[MoFr94] used an eigen-value sensitivity analysis based method to update the

finite element models of structures which consist of adhesive, welded and

bolted joints. The updating parameters were chosen according to the

characteristics of different types of joint. For instance, in the study of two

adhesive joints between plates, stiffness parameters of the elements in the

adhesive area were selected as updating parameters. In the study of bolted joints

between two beams with welded flanges, the updating parameters were mass

and stiffness for the bolts and the offset dimensions of the beam elements in

both beam and flanges. This eigenvalue sensitivity based method was also

applied to the welded joints in a tubular H-frame [HoGu99]. It can be seen that

with this technique the updating parameters may not be unique to achieve the

same goal in the updating procedure and in most problems parametric

uncertainty exists in both the joints and the substructures simultaneously.

Similar to the work reported in [MoFr94], nodal offset dimensions were taken

as updating geometric parameters to update a structure with welded joints in

[AhMF96]. A generic element model approach, which decomposes the stiffness

matrices of an element or a group of elements into local modes and generates a

family of acceptable stiffness matrices, was applied to update the joints. The

Generic model approach was regarded as a more general method and yielded a

better result compared with the updated model using offset parameters.
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A general impedance joint model was proposed by Ren and Beards [ReBe95].

This is basically a generalised method developed from [WaLi90]. Compared

with Wang and Liou′s joint model, Ren′s method deals with a more general type

of joint. The impedance matrix of the joint is constructed using mass, stiffness,

viscous and/or structural damping matrices. FRFs measured from substructures

and their assembly are required for input data and a least-squares method is

employed for solving the joint parameters. The drawback of this method is that

the coefficient matrix of the linear equations about joint parameters is often ill-

conditioned and sensitive to noise in input FRFs.

A hybrid method, combining a finite element model with the modal testing

technique, was proposed by Yuan and Wu [YuWu85]. The finite element model

of an assembled structure is given with unknown joint parameters. Experimental

modal analysis provides eigenvalues and eigenvectors of the system, which are

applied to the finite element model to form such a hybrid equation of motion.

The unknowns in this equation are then calculated. A similar idea was also

reported by Park and Kim [PaKi95], who applied an optimisation method to

solve joint parameters and devising a cost function as the difference between

experimental and analytical results.

Nonlinear joint modelling has not been studied as thoroughly as that based on

linear models because of the difficulty in understanding the mechanisms and the

necessity in practical applications. A few papers published by Gaul et al on

bolted joint modelling [Gaul83][GaNW94][LeGa95] basically represent the

current situation. These papers will be introduced in Chapter 6 in detail.

Substructure coupling analysis has essentially two techniques: (i) component

modal synthesis (CMS) and (ii) the impedance coupling or frequency response

function (FRF) coupling methods. The CSM was first developed by Craig and

Bampton [CrBa68] and has been in use for over three decades with little

development was achieved so far [Crai00]. An attempt to introduce joints into

the synthesis procedure was tried by Urgueira in 1989 [Urgu89] and by Lou in

1993 [LoGh93]. Lou introduced a concept of residual attachment mode to
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compensate for the error caused by mode truncation encountered in [Urgu89]

and also devised quite a useful method.

The FRF coupling method reported by Jetmundsen et al [JeBi88] has an

inherent advantage of being able to use measured FRFs directly. There are

therefore no errors introduced by modal analysis but the noise contained in the

measured FRFs is usually the trade-off. A development of this method made by

Ferreira [Ferr98] introduces parallel scalar nonlinear springs between the

substructures and it can be applied to relatively simple cases.

To sum up, linear joint modelling, which includes mathematical expressions for

joints (spring and dashpot, impedance matrix etc.) and algorithms for solving

the parameters in these expressions, has not been fully developed. The currently

developed methods still have flaws either in the way that the mathematical

expressions for the joints are too specific or the algorithms to solve the

parameters are not efficient and robust. On the other hand, the classical CMS

methods do not have the joints involved [CrBa68] [CrCh77] and the recent

development of CMS with joints [LoGh93] needs to be validated. The FRF

coupling methods have similar problems as CMS and lack for a general

description for joints. Therefore, a general joint description and a robust

algorithm for joint parameter identification are needed and the coupling analysis

methods, both CMS and FRF coupling, should be developed systematically with

a general type of joint included.

���� 352326('�'(9(/230(176

The major purpose of this research is to develop methods which enable the

construction of mathematical models of assembled structures in order to predict

the required response levels to a required accuracy by giving the necessary input

data of damping and excitation levels.

The proposed developments of the research reported in this thesis are
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• development of a least-squares based method to model joints on the basis of

a linear assumption and thereby to identify the joint parameters;

• development of a neural networks based method to identify parameters of

joints, utilising parametric families of finite element models and PCA

techniques to extract feature vectors as training sets;

• development of conventional CMS and FRF coupling methods to analyse

coupled structures with joints involved and providing fundamental theories,

algorithms and examples for verification;

• understanding of the mechanics and extent of nonlinear effects in real joints;

• clarification of the impact of rotational degrees of freedom to both joint

parameter identification and coupling analysis.

���� 6800$5<�2)�7+(�7+(6,6

Two major issues are addressed in this thesis: joint parameter identification and

substructure coupling analysis. These two parts of the work determine the basic

profile of the necessary theory for solving the problem of interest. Logically,

these two aspects are independent in development and application but they deal

with related problems in structural dynamics, namely, the response prediction of

coupled structures. Classifying these two parts of work mathematically, we

regard coupling analysis as a direct problem and parameter identification as an

inverse problem. This thesis presents the methodologies for both aspects

systematically by building up fundamental mathematical principles and

validating these principles by numerical simulations. Two controversial topics,

the nonlinear effects and the impact of rotational degrees of freedom (RDOF),

are separately discussed in terms of their importance to the major issues. The

new methods developed in this thesis are validated by numerical studies and it

is expected to apply them to more complicated cases and to practical structures

in industry.

In Chapter 2, a least-squares method (LSM) based procedure to identify joint

parameters using measured frequency response functions (FRFs) is presented.

This procedure deals with general linear joint models and identifies joint mass,
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stiffness and damping coefficient matrices. Since the numerical problems

existed in the final linear equation for the solution of joint parameters, two

different algorithms are developed and the robustness is examined by numerical

investigations.

In Chapter 3, neural networks are used to identify appropriate equivalent joint

parameters. The application of neural networks to joint parameter identification

is a new development to the subject. This method is proposed due to the

consideration that neural networks have a good reputation in mapping nonlinear

relationships between input and output. After a network is properly trained, it

possesses very good generality and tolerance to input noise. Two relevant

techniques used to prepare training sets for the networks, the parametric

families of finite element models and principal element analysis, are also

introduced in this chapter.

Chapter 4 addresses the classical component modal synthesis (CMS) method

with developments for adding joint between the assembled components. This

basically is a computation-based method; e.g. component modal properties are

obtained from its finite element model. An inherent problem, the out-of-range

modes residual effects on the analysis results is discussed and a residual

attachment mode method is introduced to accommodate the problem.

Chapter 5 introduces the general joint description method (GJDM), which is

newly developed in this area and extends the conventional existing FRF

coupling analysis procedure to a more sophisticated level by including joints

between the substructures. The principle of the method, an algorithm to

implement the method and case studies to verify the method are provided.

Two relevant issues in joint modelling and substructure coupling are also

systematically discussed in this thesis. They are in Chapter 6, non-linearity

considerations in joint modelling and substructure coupling, and in Chapter 7,

the impact of rotational degrees of freedom (RDOFs) information in the

analysis. The former chapter reviews over 40 publications which represent the

progress of research on friction modelling and nonlinear properties of structural
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joints. The importance of nonlinear joint modelling is then discussed according

to the review and some experiences in experiment. A strategy to deal with non-

linearity in FRF coupling analysis is also discussed. The latter chapter indicates

the consequence of the absence of the RDOF-related information in both LSM

based joint parameter identification and FRF coupling analysis. The RDOF-

related FRFs play an important role in both of the applications.

Major conclusions drawn from the research are summarised in Chapter 8, the

last chapter. Detailed mathematical derivations arising from different parts of

the research are left to Appendix A through E.
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Joint modelling plays a critical role in practical coupled structure analysis.

Standard coupling methods are based on the assumption that substructures are

coupled with perfect joints, i.e. rigid connections in spatial coordinates. This

assumption can be far from the truth in some of the real-world situations where

structures are coupled with bolts, rivets, glue or welds. On the other hand, the

study of joint modelling or joint parameter identification has been developed

independently in the areas of FE model updating and vibration control. It is

expected that the combination of standard coupling methods and joint modelling

methods will produce more practical and more accurate solutions for the

analysis of coupled structures.



Linear Joint Modelling – Least Squares Method Chapter 2

11

Studies on joint modelling have been carrying out since it was realised that the

determination of joint parameters is critical to the analysis of assembled

structures, in both static and dynamic respects. A review of the studies on linear

joint modelling has been made in the first chapter of this thesis. Of the methods

reviewed the direct method for joint parameter identification developed by

Wang and Liou [WaLi90] [WaLi91] has the advantage of being simple and free

of factitious error by using the measured FRFs. The interface displacement

vectors of the coupling substructures are related to the interface force vector by

a transfer function. It is this transfer function that describes joint properties in a

diagonal impedance matrix, i.e. it corresponds to the point-wise connections as

shown in Fig.2.1. This joint model has two drawbacks: the specific form of

transfer function and the requirement of measurement at coupling DOFs of the

assembled structure. These two disadvantages confine the application of this

method.

M

k1

c1

c2

k2

kn

cn

sub A sub B

Fig. 2.1 A linear joint model

The linear joint model presented by Ren [Ren92] is more general. The transfer

function which relates the interface displacement vectors of substructures to the

interface force vector is a symmetric impedance matrix. This joint impedance

matrix, = , consists of all possible physical parameters of the joints such as . ,

0 , &  and ' . There are also more choices for the measurement DOFs in Ren′s

method. If the coupling DOFs in the assembled structure are not accessible, the

FRFs measured at other DOFs can be employed instead. Apart from these two
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advantages, the conditions of equilibrium and compatibility are the same in both

methods.  A problem of Ren′s method is that the coefficient matrix is often

being ill-conditioned and the solutions obtained using least-squares method are

then sensitive to the noise in measured FRFs.

In this chapter, a general method for the identification of linear joint parameters

using measured FRFs is presented based on Wang′s and Ren′s methods. The

development of this general method and the improvement of its constituent

algorithms are reported.

The objectives of the work in this chapter are:

• deriving the mathematical expressions of the identification method;

• providing numerical simulations to validate the developed method;

• investigating the robustness of the method, which includes noise simulation

in FRFs and error propagation analysis in the procedure of solution;

• refining the method by suggesting a proper usage.

���� 7+(25(7,&$/�%$&.*5281'

������ 'HILQLWLRQ�RI�-RLQW

A set of substructures, substructure A and B, which have not been assembled,

are shown in Fig. 2.2, where the joint is considered as a collection of the

connections between substructure A and B. The coupled system is shown in Fig.

2.3.

Fig. 2.2 Collected substructures and joint

c

i

substructure A

c~

i

substructure B

J

joint
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To distinguish the status of expressions before and after coupling, we use lower

case letters to denote the uncoupled system and use upper case letters for the

coupled system. In the uncoupled substructures, the DOFs related with the

connections are called "coupling DOFs" and are denoted by the subscript c, and

those DOFs not related with the connections are called "internal DOFs" and are

denoted by the subscript i.

Fig. 2.3 The coupled system

In the coupled system, the coupling DOFs are denoted by C and the internal

DOFs are denoted by I.

The joint has no internal DOFs. All its DOFs are coupling DOFs connecting

substructure A and substructure B.

������ &RQGLWLRQV�RI�&RPSDWLELOLW\�DQG�(TXLOLEULXP

The conditions of compatibility and equilibrium must be satisfied at the

coupling coordinates in the coupled structure. Therefore, the condition of

equilibrium should be expressed as

I+= cC fF (2.1)

The force vector of the assembled structure equals the vector summation of the

force vector of substructures and joint. Partitioning these force vectors

according to substructure A (subscripts with –) and substructure B (subscripts

with ~), we have









+








=








I
I
~

~~ c

c

C

C

f

f

F

F
(2.2)

The condition of compatibility is

I

I

C

C
~

J
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[== cC xX (2.3)

which means that at the coupling DOFs the displacement vector of the

assembled structure is equal to the displacement vector of the substructures and

the displacement vector of the joint. Similar to equation (2.2), the partitioned

form of the condition of compatibility is then









=








=








[
[
~

~~ c

c

C

C

x

x

X

X
(2.4)

������ (VVHQWLDO�(TXDWLRQV

Considering the coupled system, the relationship between the displacements and

the forces is built up via the system receptance matrix:

















=









C

I

CCCI

ICII

C

I

F

F

HH

HH

X

X
(2.5)

For any of the substructures, the relationship between the displacements and the

forces is then:

















=









c

i

ccci

icii

c

i

f

f

HH

HH

x

x
(2.6)

Also, the joint is described as:

I=[ = (2.7)

Forces and displacements of the internal coordinates keep no change before and

after coupling. Hence,

iI fF ≡ (2.8)

iI xX ≡ (2.9)

Substituting equations (2.1), (2.3), (2.6) and (2.8) into (2.7), we obtain

[ ] ( )IciCccc FHFHIf == −+= −1 (2.10)

Substituting equations (2.3), (2.9) and (2.10) into (2.6), leads to

( ) ( )
( ) ( ) 

















++−
++−=









−−

−−

C

I

ccccciccccci

ccicciccicii

C

I

F

F

HIHHHIHH

HIHHHIHH
X

X
11

11

===
===

(2.11)
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Comparing equation (2.11) with equation (2.5), the sub-matrices of the

receptance matrix of the coupled system can be obtained in terms of frequency

response sub-matrices of the substructures and the impedance matrix of joint as

follows:

( )
( )

( )
( ) 1

1

1

1

−

−

−

−

+=

+=

+−=

+−=

ccccCC

ccicIC

ciccccciCI

cicciciiII

HIHH

HIHH

HHIHHH

HHIHHH

=

=

==

==

(2.12)

Substituting the third equation in (2.12) into the first one, and substituting the

fourth equation in (2.12) into the second one then rearranging the first and the

second equations, we have

CIciciCC

IIiiciIC

HHHH

HHHH

−=
−=

=

=
(2.13)

Also, rearranging the third and the fourth equations in (2.12), we have

CCccccCC

ICicccIC

HHHH

HHHH

−=
−=

=

=
(2.14)

Equations (2.13) and (2.14) are the basic formulae which can be used to identify

the joint impedance matrix, = .

������ 'LVFXVVLRQ�RQ�WKH�$SSOLFDELOLW\

The two formulae in equation (2.13) and the other two in (2.14) provide

alternative ways to use FRF data for the identification of joint parameters.

When FRFs at the coupling DOFs of the assembled structure, CCH , are difficult

to measure because of accessibility, the FRF matrix ICH  can be measured

instead and the first formulae in (2.13) and (2.14) shall be used in the

identification. From this point of view, the first equations in (2.13) and (2.14)

are recommended rather than the second ones.

Furthermore, in order to avoid the problem of measurement accessibility, a

method which does not need FRFs related to the coupling DOFs of the coupled
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system at all, can be derived from the expression for IIH , one of the frequency

response function sub-matrices of the coupled system in (2.12). Since

( )cccc HHI +=+ −1=== (2.15)

( ) ( ) 1111 −−−− +=+ === cccc HHI (2.16)

in which =�has to be non-singular, we have

( ) cicciciiII HHHHH
11 −− +−= = (2.17)

( ) ccicIIiici HHHHH −−= −− 11= (2.18)

The trade-off of this method is that one more inversion is introduced, which

reduces the efficiency and accuracy of the solution and makes the method

sensitive to measurement errors and to other factors that affect the condition of

the FRF matrix.

Once the impedance matrix =  is obtained, the physical parameters of joint can

be calculated according to the definition of impedance matrix:

( )'&0.= ++−= ωωω i2)( (2.19)

where .,�0,�& and ' are the joint matrices of stiffness, mass, viscous damping

and structural damping coefficients.
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The implementation of the methods for joint parameter identification mentioned

in the preceding section of theoretical background are discussed here. Two

algorithms are proposed for computation of the required parameters, 0 , . , &

and ' . First, the general version of the basic equations (2.13) and (2.14) are

derived.

������ 'HULYDWLRQ�RI�WKH�/LQHDU�(TXDWLRQV�IRU�-RLQW�3DUDPHWHU�,GHQWLILFDWLRQ

According to equations (2.13) and (2.14), the expressions for the impedance

matrix, = , have the generalised form of

c
LL

b
Lnnn

a
nL cccc ×××× = HHH = (2.20)

For instance, if the first equation in (2.13) is employed, we have

IIii
c

ci
b

IC
a

HHH

HH

HH

−=

=

=

(2.21)

One of the elements of equation (2.20) has the expression of

∑∑
= =

=
c cn

q

n

p

c
kl

b
qlpq

a
kp HHH

1 1

=  where Lk ,,2,1 K=  and Ll ,,2,1 K= (2.22)

Rewriting equation (2.20) in the form of a standard set of linear equations as

bvA =~
(2.23)

we have the relationship among the elements of the matrices in equation (2.20)

and the matrix and vectors in (2.23) as follows

b
jl

a
kipq HHA =~

(2.24)

ijqv == (2.25)

c
klp Hb = (2.26)

The relationships among the subscripts are:
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( ) lLkp +−= 1        ( ) jniq c +−= 1 (2.27)

and the variation ranges of these subscripts are:

 Lk ,,2,1 K=  cni ,,2,1 K=  cnj ,,2,1 K=  Ll ,,2,1 K= (2.28)

These expressions, from equation (2.24) to (2.28), can be verified by examining

one of the elements in vector b of (2.23):

∑
=

=
2

1

~cn

q
qpqp vAb (2.29)

Substituting equations (2.24) and (2.25) into (2.29), splitting summation

variable q to i and j and noticing that when q varies from 1 to 2
cn , i and j both

vary from 1 to cn , therefore,

( )∑∑
= =

=
c cn

i

n

j
ij

b
jl

a
kip HHb

1 1

= (2.30)

Equation (2.30) is exactly the same as equation (2.22).

In fact, matrix A
~

is the Kronecker production of matrix aH  and matrix bH ,

ba HHA ⊗=~
(2.31)

and it is square if the first equation in (2.13) or the second equation in (2.14) is

imposed.

When the dynamic stiffness of the joint structure is expressed as

( ) ( )'&0.= ++−=× ωωω i
cc nn

2 (2.32)

its vector form should be

( ) ( ) ( )xT ωωωω =++−=× GFPN] i
cn

2
12 (2.33)

where the transformation matrix, ( )ωT , has the form

( ) [ ]IIIIT ii
cc nn ωωω 2

4 22 −=× (2.34)

and the unknown joint parameter vector is
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

















=
×

G
F
P
N

14 2
cn

x (2.35)

Substituting (2.33) into (2.23) leads to

( ) ( ) ( )ωωω bxTA =~
(2.36)

Let

( ) ( ) ( )ωωω TAA
~

24 =× cnKL (2.37)

then (2.36) becomes

( ) ( )ωω bxA = (2.38)

This is the set of simultaneous linear equations describing the unknown joint

parameters. The algorithms to solve (2.38) will be presented next.

������ 1RQ�SDUWLWLRQHG�$OJRULWKP

The matrix ( )ωA  and the vector ( )ωb  in (2.38) are generally complex as

( ) ( ) ( )
( ) ( ) ( )ωωω

ωωω
bbb

AAA

ImRe

ImRe

i

i

+=
+=

(2.39)

Equation (2.39) can be rearranged as follows:

( ) ( )ωω bxA = (2.40)

where

( ) ( )
( )






=

ω
ω

ω
A

A
A

Im

Re
; ( ) ( )

( )






=
ω
ω

ω
b

b
b

Im

Re
(2.41)

If the number of frequency points involved is fn , then

( )

22 32

1

1

)(Im

)(Re

)(Im

)(Re

cf
f

f

nLn
n

n

×






















=

ω
ω

ω
ω

ω

A

A

A

A

A M and ( )

12

1

1

2
)(Im

)(Re

)(Im

)(Re

×






















=

Ln
n

n

f
f

f

ω
ω

ω
ω

ω

b

b

b

b

b M (2.42)
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Equation (2.40) also has its separated form as

( ) ( )ωω RR bxA = (2.43)

( ) ( )ωω II bxA = (2.44)

where

22 3

2

1

)(Re

)(Re

)(Re

)(

cf
f nLn

n

R

×



















=

ω

ω
ω

ω

A

A

A

A
M

, 

1

2

1

2
)(Re

)(Re

)(Re

)(

×



















=

Ln
n

R

f
f

ω

ω
ω

ω

b

b

b

b
M

(2.45)

and

22 3

2

1

)(Im

)(Im

)(Im

)(

cf
f nLn

n

I

×



















=

ω

ω
ω

ω

A

A

A

A
M

, 

1

2

1

2
)(Im

)(Im

)(Im

)(

×



















=

Ln
n

I

f
f

ω

ω
ω

ω

b

b

b

b
M

(2.46)

The non-partitioning algorithm (NPA) solves equation (2.40), or its separated

form (2.43) or (2.44), for all frequency points concerned using a least squares

method (LSM) to find a real vector x  which minimises the euclidean length of

)()( ωω bxA − .

For the convenience of description, we let 22 Lnm f=  and 23 cnn =  so that A  is

a matrix of nm × . Suppose that A  is a matrix of rank k, the singular value

decomposition of A  is expressed as:

TUSVA = (2.47)

where U  is an mm ×  matrix and V  is an nn ×  orthogonal matrix, S  is an

nm ×  matrix of the form









=

00

0S
S 11  (2.48)

where 11S  is a diagnal matrix which has k non-zero singular values.
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Define the vector, g , as:

km

kT

−







==
}

}

2

1

g

g
gbU  (2.49)

and introduce the new variable, y :

kn

kT

−







==
}

}

2

1

y

y
yxV  (2.50)

Now, define 1
~y  to be the unique solution of

1111 gyS =  (2.51)

Then all solutions to the problem of minimising bxA −  are of the form









=
2

1
~

ˆ
y

y
Vx (2.52)

where 2y  is arbitrary.

Any such x̂  gives rise to the same residual vector, r, satisfying









=−=
2

ˆ
g

0
UxAbr  (2.53)

The norm of r satisfies

2ˆ gxAbr =−= (2.54)

The unique solution of minimum length is









=
0

y
Vx 1

~
~ (2.55)

Notice that the solution of minimum length, the set of all solutions, and the

minimum values, for the problem of minimising bxA − , are all unique; they

do not depend on the particular orthogonal decomposition.

In the cases of full rank, where nk = , the unique solution is simply as
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1
~ˆ yVx = (2.56)

������ 3DUWLWLRQHG�$OJRULWKP

The partitioning algorithm (PA) partitions the equations according to two

different frequency points, iω  and jω . Let

















−

−
=

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
2

2

jjjjj

iiiii

i

i

ωωωωω

ωωωωω
ω

AAA

AAA

A

MM

LLLLL

MM

(2.57)



























=

F

P

N

L

L

x  and 















=

)(

)(

)(

j

i

ω

ω
ω

b

b

b L (2.58)

where ji ωω < . Equation (2.38) can be partitioned into

( ) ( ) ( ) ( )iiiiii i ωωωωωω bAAA =+− FPN
~~~ 2 (2.59)

( ) ( ) ( ) ( )jjjjjj i ωωωωωω bAAA =+− FPN
~~~ 2 (2.60)

Pre-multiplying (2.59) with ( )+
iωA

~
 and pre-multiplying (2.60) with ( )+

jωA
~

,

we have

( ) ( )iiii i ωωωω bA +=+− ~2 FPN (2.61)

( ) ( )jjjj i ωωωω bA +=+− ~2 FPN (2.62)

Let

( ) ( ) ( )iii ωωω bAd += ~
(2.63)

( ) ( ) ( )jjj ωωω bAd += ~
(2.64)

and remember that the vectors ( )iωd  and ( )jωd  are complex, so that we have

( )ii ωω dRe2 =− PN (2.65)
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( )jj ωω dRe2 =− PN (2.66)

( )ii ωω dIm=F (2.67)

( )jj ωω dIm=F (2.68)

The joint parameter vectors are then solved from (2.65) to (2.68):

( ))(Re)(Re
1 22

22 jiij
ij

ωωωω
ωω

dd −
−

=N (2.69)

( ))(Re)(Re
1

22 ji

ij

ωω
ωω

dd −
−

=P (2.70)

)(Im
1

)(Im
1

j
j

i
i

ω
ω

ω
ω

dd ==F (2.71)

The kernel of the estimation is the computation of the pseudo-inverse of the

coefficient matrix, A
~

. It is an 22
cnL ×  complex matrix at each frequency, where

L stands for the number of measured internal DOFs and cn  stands for the

number of coupling DOFs.

The SVD is used in calculating the pseudo-inverse of matrix A
~

, which is

required in the partition algorithm (PA). The SVD of matrix A
~

 is

T
nn

nmnnm

nn
mmnm ×

××−

×
×× 








= V

0

S
UA

)(

~
(2.72)

 Set the tolerance of singular value truncation, tol:

ε⋅⋅= )max(),max( nmtol (2.73)

where ε  is the machine accuracy (floating point relative accuracy) and  is the

singular value vector. For double-precision representation of real numbers, i.e.

each real number is represented by 16 digits only, 16102.2204 −×=ε . Let r

be the number of singular values which are larger than tol , then

T
mrrrrnmn ×

−
××

+
× = USVA 1~

(2.74)
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The linear joint parameter identification method proposed in this chapter offers

two algorithms, the partitioning algorithm (PA) and the non-partitioning

algorithm (NPA). The robustness of each is to be investigated in this section via

numerical simulations and perturbation analysis. An algorithm is robust if it is

tolerant of the perturbations in the input data such as rounding errors and

measurement noise. In other words, the solution is convergent and to a feasible

answer.

������ 1XPHULFDO�6LPXODWLRQ����$�&URVVEHDP�6WUXFWXUH

A cross-beam structure shown in Fig. 2.4 is used as an example to illustrate the

application of the proposed method. Each substructure is discretised into 10

beam elements. To simplify the simulation, each node of the structure is

constrained such that only 2 DOFs are active: one is the translation DOF, z , and

the other is rotation DOF, θ y  for substructure A or θx  for substructure B. In

other words, substructures A and B are both planar beams. The joint between

the substructures is modelled as a beam element as well. Two internal DOFs are

selected from substructure A and the other two from substructure B, i.e. 4=L .

Fig. 2.4 A cross-beam structure
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The identified result is represented by an element of the joint stiffness matrix,

��
N , the axial stiffness of the joint element. The exact value of 

��
N  is

 91051858.3 ×==
l

EA
��

N  N/m

Both the partitioned algorithm (PA) and the non-partitioned algorithm (NPA)

are used to identify the joint parameters. The FRFs used in the identification

were generated from 1 to 2,000Hz with a frequency increment 1Hz.

The identified results from the PA method with noise-free input FRFs are

shown in Fig. 2.5. Since each solution uses two frequency data points only,

there are 1,000 solutions available between 1Hz and 2,000Hz. The condition

numbers of matrix A
~

 for each solution are also checked. These identification

solutions are accurate, which means that the partitioning algorithm works very

well in this case. How it works with noise contaminated FRFs will be shown in

numerical simulation 2.
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Fig. 2.5 Identified result for the joint in the cross-beam structure  - PA solutions

In contrast, the non-partition algorithm (NPA) does not work well in this case.

If all 2,000 frequency data points are used in the identification, The matrix A

thus formed in (2.42) is rank-deficient and the solution is therefore unreliable.
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Considering that the minimum number of frequency points used to form a set of

determined equations for the non-partitioning algorithm is 3, we use this

minimum number of frequency data, moving the frequencies from low to high

values, to produce 666 solutions in the range 1 – 2,000Hz. These identification

solutions are shown in Fig. 2.6. Of all the 666 solutions only the first three are

close to the design value. They are 91051859.3 × , 91051855.3 ×  and

91051852.3 × N/m. The first three corresponding A  matrices are of full rank

but all the rest of the A  matrices are rank deficient. The first three solutions

cover the frequency range 1 – 9Hz only. Increasing the number of frequency

points included gradually in the low frequency range for each NPA solution, we

have accurate results until the frequency range covers from 1Hz up to 17Hz.

When the 18th and/or higher frequency points are taken into account, matrix A

then becomes rank deficient and the results are not correct any more.
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Fig. 2.6 Result for the joint in the cross-beam structure  - NPA solutions

This simulation reveals that the partitioning algorithm (PA) improves the

condition of the linear equations in a least-squares solution and results in

accurate and stable solutions. These solutions are independent of frequency. In

addition, the partitioning algorithm is much more efficient than the non-

partitioning algorithm because the matrix on which pseudo-inverse is applied is

much smaller than that used in non-partitioning algorithm.
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This second numerical example is firstly designed to validate the proposed

method and algorithms, and it is then used for the algorithm robustness

investigation – checking how sensitive the algorithms are to data round-off and

to noise contamination. First of all, the procedure of the application of the

proposed identification approaches is demonstrated.

The structure shown in Fig. 2.7 is a free-free uniform beam. The beam is evenly

discretised into 6 elements and each node has two degrees of freedom, y  and

θ . The 4th element, between nodes 4 and 5, is regarded as the joint. The

segment to the left-hand side of the joint is substructure A and the part to the

right-hand side of the joint is substructure B.

1 2 3 4 5 6 7

sub-A sub-Bjoint

x

y

θ

Fig. 2.7 Two-beam substructures coupled via a joint

One of the joint parameters, the lateral stiffness of the joint element, 11N , is

chosen to represent the identified result. Its design value is

3
311 10320.4

12 ×==
l

EI
N  (N/m).

The y  direction translations at nodes 1, 2, 6 and 7 are selected as the internal

DOFs. The matrix )(
~

iωA  defined in (2.31) is then 1616 ×  ( 4== cnL ). The

required data of frequency response functions are generated by mode

superposition using the eigen-solution of the substructures and the assembled

finite element model. The frequency range of the generated FRFs is 0 – 1000Hz

with an increment of 1Hz. In the simulations for this section, there is no

damping in the structure and therefore equation (2.44) is not used.
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If all the FRF data in the frequency range 1 – 1000Hz are used in one

prediction, the answer is accurate. The size of matrix A  in (2.40) is

48000,3232 22 ×=× cf nLn . If equation (2.43) is used instead of (2.40), the

dimension of matrix RA  is 48000,163 22 ×=× cf nLn . The equation, either

(2.40) or (2.43), formed in this way is heavily over-determined. In other words,

there are too many (redundant) equations involved. If only the first 150

frequencies are used in the prediction, the size of RA  is 48400,2 ×  and the

answer is already accurate with 3
11 103200.4 ×=N . The condition number of

matrix RA  is 9107342.1 × and its rank is 48 .

However, it is not the situation that any segment of frequency data produces the

same result. For instance, the solution obtained from data in the frequency range

151 – 1,000Hz is far from accurate. The reason is that the matrix A  formed in

this frequency range is rank-deficient.

Ten sets of different frequency range data were selected and the results obtained

using these data are shown in Table 2.1. The frequency ranges investigated are

shown in Fig. 2.8. It is seen from the table that the data in low frequency range

play a very important role. The condition number κ  of matrix RA  decreases

with the increase of data involved in the low frequency range. The data sets

which exclude the data below 35Hz make the RA  matrix rank deficient. In

addition, the higher the starting frequency, the severer the deficient. The

phenomenon presented here may not be a general principle, but it at least poses

a question as to over what frequncy range the data should be used in order to

guarantee a full rank matrix RA  and a lower condition number?

Table 2.1

index freq. range
11N κ rank

1 (1,1000) 3103200.4 × 9103633.2 × 48
2 (26,1000) 3103200.4 × 10100268.9 × 48
3 (31,1000) 3103200.4 × 10107442.9 × 48
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4 (34,1000) 3103200.4 × 11103243.1 × 48
5 (35,1000) 3100423.2 × 11106415.1 × 47
6 (36,1000) 3102511.2 × 11100135.2 × 47
7 (41,1000) 3106414.2 × 11108126.3 × 47
8 (51,1000) 2105141.5 × 11105019.7 × 46
9 (101,1000) 2103367.4 × 12101626.7 × 40
10 (151,1000) 2103307.2 × 13103975.2 × 38
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Fig. 2.8 frequency ranges investigated
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If three frequencies are used for each solution, the matrix RA  is square,

48483 22 ×=× cf nLn

and the set of equations is determined according to (2.43). Selecting three

adjacent frequencies each time and moving the selection from low to high

frequency, we form 333 RA  matrices and obtain the same number of solutions.

The ranks of these

RA  matrices  and  their  corresponding  solutions  of 11N  are shown in Fig. 2.9.

It is
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Fig. 2.9 NPA with 3 frequencies for each solution

seen that the correct answers are given within the first 50 solutions. By

monitoring  ( )Rrank A  it is clear that it is the rank deficiency of matrix RA  that

results in the incorrect answers.

The three-frequency-points moving solution provides an indicator of selecting

an appropriate frequency range for the NPA method. Fig. 2.10 shows that data

in the frequency range covered by the first 50 solutions, 1 – 150Hz, are

applicable for NPA as has been validated in solution 1.
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Fig. 2.10 The first 50 solutions
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The direct use of partition algorithm (PA) in the frequency range of 1 –

1,000Hz, moving from low frequency to high frequency has 500 solutions. They

are shown in Fig. 2.11 with the corresponding condition numbers of matrices

( )iωA
~

 and ( )jωA
~

.

Matrices ( )iωA
~

 and ( )jωA
~

 are full-rank in the frequency range of 1 – 1,000Hz

for 500 , 2, 1,i K=  and 500 , 2, 1,j K= . The identified result 11N  shown in Fig.

2.11 is therefore much better than the result in Fig. 2.9. The first 250 solutions

are identically accurate and the errors of the identification in higher frequency

range, above 500Hz, are caused by the high condition number of the matrices

( )iωA
~

 and ( )jωA
~

 at specific narrow frequency bands.
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Fig. 2.11 A solution of PA

Compared with matrix RA  in solution 2, matrix A
~

 in PA has no the problem of

rank deficiency and also has a much smaller dimension:

161622 ×=× cnL

Hence, the time spent in the identification using PA is much less than that using

NPA and NPA with three frequencies for each solution. The time spent on each

algorithm is listed in Table 2.2.

Table 2.2

Algorithms NPA(1,1000) NPA 3-p moving PA moving
time (sec.) 118.91 129.71 34.77

������ ,PSURYHPHQW�RI�WKH�&RQGLWLRQ�RI�0DWUL[�A

The case study in section 2.4.2 suggests that the high condition number of the

matrix A  is the reason for the erroneous results. When the PA method was used

there, the minimum number of internal DOFs was chosen to make the problem

exactly determined. If more internal DOFs are included to form a series of over-

determined equations, the condition number of the new A
~

 matrix might be

lower. On the other hand, the FE simulation in section 2.4.2 is free of damping.

If damping is introduced into the FRF generation, the condition number of A
~
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might be decreased as well. The accuracy of the identified results should be

improved if the condition number of the coefficient matrix A  becomes smaller.

7+(�())(&7�2)�7+(�180%(5�2)�,17(51$/�'2)6

The same structure as used in numerical simulation 2 is studied further in this

section. When one more internal DOF is added, say, the y direction translations

at nodes 1, 2, 3, 6 and 7 are selected as internal DOFs, we have 45 =>= cnL

and dimension of matrix A
~

 becomes 1625×  rather than 1616 × .

The identified result shown in Fig. 2.12 is substantially improved when

compared with the previous result shown in Fig. 2.11 – the largest error here is

0.04% at 910Hz which is at the 4th resonant frequency of substructure B.

Comparing the two plots of the condition number of matrix A
~

 in Fig. 2.11 and

2.12, we notice that the condition of matrix A
~

 has been significantly improved

– the condition numbers have been decreased by up to 410  times.

This numerical experiment shows the importance of the selection of internal

DOFs in joint parameter identification. At this stage, a couple of new questions

arise: how many internal DOFs should be used to achieve an acceptable result?

and which internal DOFs should be chosen? To answer these questions, several

further numerical experiments are carried out.
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Fig. 2.12 Result of using 5 translation internal DOFs

When 5 rotational DOFs were used at nodes 1, 2, 3, 6 and 7, the identified result

is as shown in Fig. 2.13. The largest error is 0.54% at 544Hz, and the

corresponding condition number is higher than that found in Fig. 2.12.
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Fig. 2.13 Result of using 5 rotation internal DOFs
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When all ten possible internal DOFs are used, the identified result is shown in

Fig. 2.14. The dimension of matrixA
~

 is then 16100 × . This result is not as good

as the result in Fig. 2.12. The largest error in this case is 0.08% at frequency

840Hz.

It seems that there is a best or an optimal choice of the internal DOFs but it is

difficult to extrapolate. It is not exactly the case of “the more, the better”. From

the above simulations, the specific selection of 5 translation DOFs as internal

DOFs gives the best results.
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Fig. 2.14 Result of using 10 internal DOFs

7+(�())(&7�2)�'$03,1*

It is clear that introducing damping will decrease the amplitudes of the FRFs

and hence tend to reduce the condition number of matrix A
~

. In the simulations

of the damping effect, proportional damping is introduced to both substructures

and their assembly according to the principles mentioned in Appendix C.

Let 0=α  and 6104 −×=β  in equation (C.1). When 4 translation DOFs are

used as internal DOFs, the same condition as in section 2.4.2, solution 3, the
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identified result is as shown in Fig. 2.15. When 5 translation DOFs are used as

internal DOFs, the identified result is shown in Fig. 2.16.

Comparing Fig. 2.15 with Fig. 2.11 – the 4 internal DOFs case and Fig. 2.16

with Fig. 2.12 – the 5 internal DOFs case, we find that the condition numbers

decrease up to 210  by introducing the damping and the identified result is

significantly improved.
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Fig. 2.15  Four translation internal DOFs with damping
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Fig. 2.16  Five translation internal DOFs with damping
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In this section, simulated random noise is added to the generated FRFs to test

the robustness of the algorithms. The analysis of noise simulation is given in

Appendix D including the definition of noise levels and the theory background

of noise simulations.

Considering the structure shown in Fig. 2.7, we apply following two available

techniques to decrease the condition number of matrix A
~

: (i) selecting 5

translation DOFs as the internal DOFs; (ii) adding proportional damping

( 0=α , 6104 −×=β ) to the data from the substructures and their assembly.

When three different levels of noise are added to all the input FRFs, the

identified results obtained using PA are shown in Fig. 2.17.
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Fig. 2.17  Results from noisy data – 5 internal DOFs
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Fig. 2.18  Results of noisy data – 10 internal DOFs

Keeping all conditions the same as for Fig. 2.17 except for an increase in the

number of internal DOFs to 10, the identified results are shown in Fig. 2.18. It

is seen here again that the 10 internal DOFs case yields better results, i.e. it is

more tolerant of noise.

From a general point of view, the identified results shown in Fig. 2.17 and Fig.

2.18 are not satisfactory. The errors are analysed next using the perturbation

theory mentioned in Appendix B. The norms of the error matrix E , the inverse

of matrix A
~

, the residual matrix R  and the condition number of matrix A
~

 are

plotted in Fig. 2.19 to Fig. 2.22. Each matrix is shown for both 5 translation

internal DOF case and 10 internal DOF case for the purpose of comparison.
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Fig. 2.19 Norm of error matrix E

The norm of error matrix E  represents the level of the uncertainty of matrix A .

When 3% noise is introduced into each FRF used in the identification,

910−<E  for the 5 translation internal DOF case and 1010−<E  for the 10

internal DOF case.
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Fig. 2.20 Norm of the pseudo-inverse of matrix A
~

The norm of the pseudo-inverse of matrix A , +A , is shown in Fig. 2.20. The

values of )( iω+A , )( jω+A , )(
~

iω+A  and )(
~

jω+A  have no significant

differnce for both 5 and 10 internal DOFs cases since the noise level is low.
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Fig. 2.21 norm of the residual matrix R

The norm of the residual matrix R , which is defined by equation (B.2) in

Appendix B, is calculated from its definition and shown as the two lower curves

in Fig. 2.21 a) and b). The upper curves are the estimated bounds by equation

(B.3), (B.8), (B.9) and (B.10). The difference between these two figures is

obvious. The largest difference between the R  norm in Fig. 2.21 a) and the R

norm in Fig. 2.21 b) is up to 510  times. Observing the residual matrix norms

together with the identified results shown in Fig. 2.17 and Fig. 2.18, we find

that they are closely related. In Fig. 2.17 and Fig. 2.18, the unsteady solutons

start at 40th and 70th solutions for 5% noise level. The same solution indices in

Fig. 2.21 a) and b) correspond to the same residual matrix norm value, R ,

which is around 610 . When the R  value increases with the increase of the

frequency, larger R  values which happen beyond these frequencies cause the

errornous results.

In fact, for a certain noise level, the R  value relies on +A
~

. The tendency of

+A
~

 to vary with frequency shown in Fig. 2.20 are the same as their respective
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R  values. At the solutions where 610=R , 1010
~ ≈+A . Therefore, +A

~
 can

be used as a indicator to show which solutions are accepatable. Since

)max(
~

iσ=A (2.75)

where iσ  ( ),min(,...,2,1 nmi = ) is the singular value of matrix mnℜ∈A
~

,

therefore,

)min(/1
~

iσ=+A (2.76)

That is to say, the minimum singular value of matrix mnℜ∈A
~

 is a good

indicator for the possible accuracy of the solution.

Finally, the condition number of matrix A
~

 is shown in Fig. 2.22. It is hard to

distinguish them from their amplitudes and they cannot be used directly to tell

how the matrix A
~

 affects the accuracy of the solution.
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Fig. 2.22 Condition number of matrix A
~

In addition, NPA provides accurate results under all listed noise levels. As it has

been mentioned in section 2.4.2, the FRF data between 1 and 34Hz play a very

important role. The 5% noise level  does not affect the rank of the A  matrix and

the condition number κ  of matrix A  in the 5% noise case is 8104180.3 × ,

which is even smaller than the condition number in the noise free case,

9103633.2 ×=κ  in Table 2.1.
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In principle, the selection of internal DOFs is arbitrary. The only condition

which should be borne in mind is that the number of internal DOFs should at

least be equal to the number of unknown joint parameters. However, an

improper selection of internal DOFs in some structures may yield a rank-

deficient matrix, ( )ωA
~

. This phenomenon was explained by revealing the

physical meaning behind it and this explanation is expressed to the theorem of

transmissibility and given in Appendix A. This theorem gives a criterion to

select internal DOFs.

The problem encountered in the simulation is demonstrated in a coupled

structure shown in Fig.2.23: two parallel beams coupled via two joints.

x

y

θ 1 2 3 4 5 6 7

8 9 10 11 12 13 14

sub-A

sub-B

joint

Fig.2.23 Two parallel beams coupled via joint

If each node has one degree of freedom, which is in the y  direction, and nodes

1, 6, 9 and 13 are chosen to be internal DOFs, the identification procedure

yields an accurate result. However, if one of the internal DOFs, translation y  at

node 6, is moved to node 3, the identified result is completely wrong for all

three algorithms.

Checking the rank of matrix ( )ωA
~

 at each frequency in the latter case, we

notice that they are all rank-deficient. Looking into the construction of matrix

( )ωA
~

 at each frequency, we find that the rank deficiency is caused by linearly

dependent rows in one of the frequency response function matrices, ( )ωicA H .
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and the linear dependence among the elements of matrix ( )ωicA H  is then

defined by a transmissibility function

( ) ( )
( )

( )
( )ω
ω

ω
ωω

53
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T

A

A

A

A == (2.78)

Individual elements of matrix icA H  and the transmissibility function ( )ωT  are

shown in Fig.2.24. It is seen that curve ( )ω1T  is completely overlaid by curve

( )ω2T . That means ( ) ( ) ( )ωωω TTT == 21 .
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Fig.2.24 Matrix icA H  and ( )ωT  function

Since there is only one DOF at each node, substructure A is in fact equivalent to

a 7 DOF mass-spring system as shown in Fig.2.25.

Numerical experiments show that when co-ordinate numbers 4 and 5 are

“measured”, the FRFs as the elements of matrix icA H  obtained by giving two

excitations  either  at  any  two  co-ordinates of 1, 2 and 3 or at co-ordinates 6

and 7
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x5

Fig.2.25 A 7-DOF mass-spring system

satisfy the relationship of (A.17) in Appendix A. It seems that the

transmissibility property of matrix icA H  is not a coincidence with the selection

of structural parameters. There should be a physical principle that reigns the

FRFs in matrix icA H  to satisfy the transmissibility function. Appendix A

presents the principle named as the theorem of transmissibility and provides a

complete proof.
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An identification method for general linear joint models between substructures

has been developed in this chapter. Taking FRFs from both or all substructures

and their assembly as input data, this method yields mass, stiffness as well as

damping parameters of the required joint impedance matrix.

Two algorithms are proposed to solve the group of linear equations derived for

this task: the partitioning algorithm (PA) and the non-partition algorithm

(NPA).  The PA is superior to the NPA and should be applied as the first choice.

Compared with the NPA, the PA not only significantly decreases the number of

equations involved in a solution but also improves the condition of the

coefficient matrix in the linear equations. Therefore, it is an efficient and

accurate algorithm.

Numerical simulations show that a proper selection of internal degrees of

freedom and including damping in the simulated FRFs are two effective means

to improve the condition of the linear equations and they results in a convergent

and accurate solution. The theorem of transmissibility provides a guideline for

applying this identification method to some chain-like structures. As a general
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rule, the greater the number of internal DOFs used, the better the identified

result will be.

The robustness investigation of the proposed algorithms has also been carried

out. With the noise contaminated FRFs in the studied case, both algorithms can

produce an acceptable answer. However, in the second case study, the

coefficient matrix of the PA has a high condition number in some frequency

ranges, and when the input FRFs are noisy, the perturbations in the coefficient

matrix are magnified in the procedure of solution and results in an incorrect

answer.

In general, the method gives good performance in the numerical simulations and

it is promising that it works well with the experimental data if the frequency

response functions supplied are consistent and the measurement noise is

properly controlled.
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The least-squares method for joint parameter identification mentioned in the

previous chapter is mathematically precise and theoretically applicable. Clearly,

this sort of conventional deductive method is physically meaningful but it has

the drawback of being inflexible and having a low tolerance to input errors

(noise contamination, non-linearity or other distortions which prevents the input

data from completely satisfying the assumptions). Therefore, great care must be

taken in using the least-squares based method to deal with practical engineering

problems of this type. The variability and complexity of real structural joints

demonds some more flexible and adaptive methods to describe and to analyse

their properties. A method using neural networks to identify the joint parameters
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is explored in this chapter and is found to be a promising and a more advanced

method compared with the least-squares based approaches.

Neural networks have been used in mechanical engineering problems since the

early 1990s. The main research areas of the application are control [NaPa90],

identification [MaCh93] and damage detection [WuGh92]. The numerical

simulation of identifying non-linear damping using neural networks is a good

example to demonstrate the ability of generalisation of this method [LiEw95].

The use of neural networks in finite element model updating [AtIn96] [Levi98]

has also shown that a multilayer preceptron (MLP) or a radial-basis function

(RBF) network can provide a good mapping between frequency domain data

and the physical parameters of the system being studied. In fact, a well-trained

neural network has the ability to approximate any function to an arbitrary

accuracy [Lesh93]. The general ideas and procedures of using neural networks

to identify the joint parameters are:

• obtaining the training set from FE analysis, i.e. estimating  sets of possible

values of joint parameters and calculating the system′s corresponding

frequency response using an FE package;

• constructing and training a network by feeding the network with the training

sets obtained from the FE analysis so that the network can learn from them;

• testing the network by providing a typical input to see if the output is

correct;

• feeding the network with practical/experimental data to obtain the identified

joint parameters form the network′s output.

���� %5,()�5(9,(:�2)�1(85$/�1(7:25.6

Neural networks have been widely applied in many fields since the 1980s. The

applications are expanding because neural networks are good at solving

problems, not just in engineering, science and mathematics, but also in

medicine, business, finance and literature [HaDB96].
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A neural network can be considered as a non-linear mapping between a set of

inputs and a set of outputs, in which repeated input-output measurements are

used to develop the proper mapping. Multilayer perceptrons (MLPs) and radial-

basis function (RBF) networks are non-linear layered feed-forward networks

and are both universal approximators. The comparison of these two types of

network shows that there always exists an RBF network capable of accurately

mimicking a specified MLP, and vice versa. However, these two networks

differ from each other in several important respects [Hayk95], and provide

alternative ways to application.

������ 0XOWL�OD\HU�3HUFHSWURQV

A multilayer perceptron (MLP) is a multilayer feed-forward network. It has an

input layer, an output layer and one or more hidden layers. The presence of the

hidden units (neurons) allows the network to represent and to compute more

complicated associations between patterns. The input signal propagates through

the network in a forward direction, on a layer-by-layer basis, from the input

layer to the output layer. The pattern of connectivity and the number of

processing units in each layer may vary with some constraints. No

communication is permitted between the processing units within a layer, but the

processing units in each layer may send their output to the processing units in

higher layers, as shown in Fig. 3.1.
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Fig. 3.1 A multilayer perceptron

Associated with each connection is a numerical value which is the strength or

the weight of that connection. An element of matrix W  either in the hidden
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layer or the output layer, ijw , is the strength of connection between units i  and

j . The connection strengths are developed during training of the neural

network. There are several different training algorithms for feedforward

networks. All of these algorithms use the gradient of the performance function,

which is defined as the mean sum of squares of the network errors, to determine

how to adjust the weights to optimise performance. The gradient is determined

using a technique called back-propagation. This term refers to the manner in

which the gradient is computed for non-linear multi-layer networks [HaDB96].

At the beginning of the training process, the connection strengths can be

assigned random values. As the training set is presented during the training,

application of the ‘rule of learning’ modifies the connection strengths in an

iterative process. At the successful completion of the training, when the iterative

process has converged, the collection of connection strength captures and stores

the knowledge and the information present in the training set used in its

training. Such a trained neural network is ready to be used. When presented an

input pattern, a feed-forward network computation results in an output pattern

which is the result of the generalisation and synthesis of what it has learned and

stored in its connection strengths.

An MLP trained by the back-propagation algorithms proceeds in three steps. At

first, the units in the input layer receive their activation in the form of an input

pattern and this initiates the feedforward process. Secondly, the processing units

in the hidden layer receive outputs from the input units and perform the

following computations:

• compute their net input )1(
jn

)1(

1

)1()1(
j

R

k
kjkj bpwn += ∑

=

(3.1)

where kp = output from units impinging on unit j and R = number of units

impinging on unit j;

• compute their activation values from the net input values

)( )1()1(
jjj nFa = (3.2)
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Fj  is usually a sigmoid function like

)1(

1

1)1(

jnj
e

a
−+

= (3.3)
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Fig. 3.2 A sigmoid transfer function

• compute their outputs from their activation values

)2(

1

)1()2()2(
1

j

S

k
kjkj bawn += ∑

=

 and )2()2(
jj na = (3.4)

• the output values are sent to other processing units along the outgoing

connections.

Finally, this process continues until that the processing units in the output layer

compute their activation values. These activation values are the output of the

neural computations.
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The architecture of a RBF network is shown in Fig. 3.3. There is one hidden

layer (radial basis layer) and one output layer (linear layer). When the input

vector, p , is presented to the network its distance to the input weight matrix,

)1(W , is measured and each neuron in the hidden layer will output a number

between 0 and 1 according to the proximity of the input vector to the neuron′s

weight. This output, )1(a , is weighted then by the connections between the

hidden and output layers to yield the network output, )2(a . Neurons with

weights far from the input vector will have an output close to zero. This small

output will have only a small effect on the output neurons. In contrast, neurons
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with weights close to the input vector p  will output values close to one, and

will influence the final output, )2(a .
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Fig. 3.3 RBF network structure

Radial basis functions are special types of linear models defined by the

relationship

)2(

1

)1()2()2(
1

i

S

j
jiji bawa += ∑

=

(3.5)

in which

)( )1()1(
jj nFa =  and )1()1(

jjj bzn = (3.6)

where the argument jz  is a distance measure between vectors )1(
jw  and p

)()(
2
1 )1()1(

j
T

jjz wpQwp −−= (3.7)

Here, Q  is a matrix defining the metric, and F  is the radial basis function. The

vectors )1(
jw , which belong to the input space, are called input weights. For the

network to be a linear function of the free parameters, )2(
ijw , the number of

hidden layers, their positions and the metric all have to be constants.

Common choices for F  are Gaussian function of the form
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2

)( nenF −= (3.8)

and the Cauchy function of the form

21
1

)(
n

nF
+

= (3.9)
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Fig. 3.4 A Gaussian radial basis function
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Multilayer perceptrons and radial-basis function networks are examples of non-

linear layered feedforward networks. However, these two networks differ from

each other in several important respects as outlined below.

• An RBF network generally has a single hidden layer, whereas an MLP may

have one or more hidden layers.

• The computation nodes (neurons) of an MLP, located in a hidden or output

layer, share a common neuron model. On the other hand, the computation

nodes in the hidden layer of an RBF network are quite different and serve a

different purpose from those in the output layer of the network.

• The hidden layer of an RBF network is non-linear, whereas the output layer

is linear. On the other hand, the hidden and output layers of an MLP used as

a classifier are usually all non-linear, however, when the MLP is used to

solve non-linear regression problems, a linear layer for the output is usually

the preferred choice.
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• RBF networks differ from the perceptrons also in that they are capable of

implementing arbitrary non-linear transformations of the input space.

• RBF networks may require more neurons than standard MLPs but often

they can be designed in a fraction of the time it takes to train MLPs. They

work best when many training vectors are available.

In the cases we studied, both MLP and RBF networks are used and their

performances are compared.

���� ',6&866,21�21�3$5$0(7(5�6(/(&7,21

As mentioned in the first section of this chapter, the purpose of using neural

networks here is to present an experimental FRF to the trained network in order

to obtain an estimate of the physical joint parameters. The performance of a

neural network depends largely on the selection of the training set, which is

generated according to different joint parameter values.

A good training set should satisfy the following conditions:

• selected parameters should be able to represent the physical properties of the

joints. For a linear joint model, these can be stiffness of joint elements:

stretching and compressing, torsion, bending etc.;

• values of these parameters should be carefully chosen to include the real

values in their range, i.e. the minimum and maximum expected values of the

joint parameters need to be defined to train the network; and

• either FRF data or modal parameters which are used as input to the network

should be sensitive to changes in the joint parameters.

To identify the joint parameters of a dynamic structure it is first necessary to

obtain experimental data from the physical model. The experimental data are

usually provided in the form of FRFs and a set of modal data can be extracted

from these FRFs using modal analysis techniques. There has been a

disagreement on the issue of whether the FRF data or the modal data should be
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used to describe the dynamic properties of a system when neural networks are

employed as a tool in doing FE model updating [AtIn96] [Levi98].

Frequency response function (FRF) data were used by Atalla and Inman

[AtIn96] because these data are directly measured from structures, and there are

no approximations or assumptions introduced during modal analysis. In general,

however, the measured FRF data contain too many data points to use

realistically with neural networks. As the dimension of the input vector to the

neural net increases, the number of training data vectors required for adequate

network generalisation also increases, often exponentially. The FRFs may

contain tens of thousands of data points and adequate network generalization is

clearly unlikely in these circumstances. It is necessary to reduce the number of

data points to manageable proportions. There is no clear boundary given at

which the number of data points becomes manageable. Data reduction could be

achieved by simply discarding many of the FRF data points. On the other hand,

an alternative method of data reduction is to work in the modal domain, using

modal analysis of the FRFs to derive the mode shapes and natural frequencies

of the structure [Levi98]. The number of data points is typically reduced by

several orders of magnitude by modal analysis.

In this chapter, the advantages of using FRF data as input to the network are

kept and the drawback of having too many frequency points is overcome by the

application of principal component analysis (PCA), which is briefly introduced

in section 3.5. By applying PCA, the dimension of the FRF data is decreased

considerably and neural networks trained by the sets of PCA results and target

values are not sensitive to the noise presented in the normal measured FRFs.

Numerical simulations are given in section 3.6.
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The generation of training sets needs a family of the FE model in question to be

analysed in order to obtain the FRF data corresponding to different values of the

joint parameters. It is obviously too costly and awkward to analyse the full finite
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element model each time when only a few joint parameters of the structure are

changed. To be more efficient in doing this task, a method based on using a

constant basis of Ritz vectors to create parametric families of reduced models

was proposed and validated by analysing the FE model of a 3-bay truss

structure [Balm95a] [Balm95b].

The governing equations of a viscously damped finite element model can be

expressed in the form

cqx

buqKCM

=
=++ ][ 2 ss

(3.10)

where b and c are input and output shape matrices respectively.

The system properties are described using the DOFs, q, by mass, M, damping,

C, and stiffness, K, properties. All output, x, of the continuous structure can be

expressed as linear combination of the DOFs, q . Similarly, all inputs, u,

exciting the system, are described in the coordinate system, q , by forces which

depend linearly on u .

A training set required to train neural networks is equivalent to the solutions of

a family of models, which is defined here as a group of models of the general

form (3.9) where the matrices composing the dynamic stiffness depend on a

number of design parameters α :

)()()(),( 2 αααα KCMZ ++= sss (3.11)

Material density and modulus, beam section properties, plate thickness,

frequency dependent damping, node location etc. are typical α  parameters. It is

often desirable to use a model description in terms of other parameters β ,

which depend non-linearly on the α , to describe the evolution from the initial

model as a linear combination of modification matrices Z∆  with coefficient β

( ) )(),(),( 0 sss j
j

ZZZ ∑ ∆+= αβαα (3.12)

with each jZ∆  having constant mass, damping and stiffness properties.
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Displacement-based reduction approaches make the assumption that there exists

a reduced subspace spanned by the columns of a rectangular matrix T and

described by reduced DOFs, Rq . For all effectively found states, q, of the full-

order model there exists a close approximation in the reduced subspace

described by the coordinates, Rq :

RTqq ≈ (3.13)

The approximation (3.13) of the full order model DOFs, q, by a linear

combination of reduced model DOFs, Rq , leads to the creation of a model of

size Rn  rather than n . This reduction, when applied to families of models of the

form (3.11) and (3.13), leads to

R

T
R

T s

cTqy

buTTqZT

=
=),(α

(3.14)

For any model in a considered family, the reduced model (3.14) can give

estimates of all the solutions that can be predicted with the full order model.

In fact, the variations of joint parameters do not affect all the DOFs of the full

order model. A reduction matrix (Ritz vectors), T, can be obtained using

Guyan’s static model of the form

bu
0

I

q

q

KK

KK







=

















s

m

sssm

msmm (3.15)

where mq  is the DOF related to the changed parameters and sq  is rest of the

DOFs in q . From (3.13) we can then have









−

= −
smss KK

I
T 1 (3.16)
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Principal Component Analysis (PCA) represents a statistical technique for

analysing the covariance structure of multivariate statistical observations. The

principal components are the most important linear features of the random

observation vector. Through PCA many variables can be represented by fewer

components, so PCA can be considered either as a feature extraction or as a data

compression technique and is indisputably very important in applications of

signal or image coding, processing, and analysis.

PCA is a statistical technique under the general title of factor analysis. The

purpose of PCA is to identify the dependence structure behind a multivariate

stochastic observation in order to obtain a compact description of it. When there

is nonzero correlation between the observed variables the dimension, n, of the

data space, (i.e. the number of the observed variables) does not represent the

number of independent variables, m, which is really needed to describe the data.

We may suppose m to be the number representing the degrees of freedom of a

physical system. The stronger the correlation between the observed variables,

the smaller the number of independent variables that can adequately describe

them.

The n observed variables are thus represented as functions of m latent variables

called factors, where nm <  and often nm << . The factor variables are also

called features of the multivariate random signal, and the vector they form is a

member of the feature space.

������ 'HILQLWLRQ

Consider a random vector { }T
nxx ,,1 K=x  with mean 0][ =xE  and covariance

matrix, nnT
x E ×ℜ∈= ][xxR . The feature vector, y , is an orthogonal, linear

transformation of the data

Wxy = (3.17)
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where the columns of W  form an orthonormal basis of a subspace ℑ , namely,

IWW =T  and ( )Wspan=ℑ . The projection of x  onto ℑ  is the reconstruction

of x  from y  as

WxWyWx TT ==ˆ (3.18)

Minimise the mean square error between the observation and the reconstruction

]ˆ[
2

xx −= EJ (3.19)

to obtain the optimised W .

The procedure can be summarised as follows:

Let the eigenvalues nλλλ ,,, 21 K  of xR  be arranged in decreasing order, and let

the corresponding normalised eigenvectors be neee ,,, 21 K . Then the minimiser

of the mean square reconstruction error, J , under the constraint IWW =T , has

the form

[ ] T
mopt eeTW ±±= L1 (3.20)

where T  is any square orthogonal matrix.

The minimal reconstruction error is

∑
+=

=
n

mi
iJ

1

min λ (3.21)

The normal eigenvectors of xR  corresponding to its largest eigenvalues, i.e., the

row of optW , are called principal eigenvectors. The features, myyy ,,, 21 K ,

elements of the random vector y , are called the principal components of x .

They are statistically not correlated:

0][ == jx
T
iji yyE eRe (3.22)

their variances are equal to the eigenvalues of xR :

iix
T
iiyE λ== eRe][ 2 (3.23)
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and are arranged in order of decreasing variance

][][][ 22
2

2
1 myEyEyE ≥≥≥ L (3.24)

The first principal component, 1y , is a linear combination of the observed

variables

xwT
nn xwxwy 111111 =++= L (3.25)

such that its variance

1111
2
1 ][][ wRwwxxw x

TTT EyE == (3.26)

is maximum under the constraint that the coefficient vector is normalised

11 =w . According to the Rayleigh-Ritz theorem 11 ew =  and the maximum

eigenvalue 1λ  is equal to the variance of the first component.

The second principal component xwTy 22 =  maximise the variance of 2y  under

the constraint 12 =w  and 12 ew ⊥ . In general, for pew = , 1>p , the variance

is maximised under the constraint that w  is orthogonal to all prior eigenvectors

121 ,,, −peee K .
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The covariance matrix nnT
x E ×ℜ∈= ][xxR  can be estimated by

T
N

k

T
kkx NN

XXxxR
11

1

=≈ ∑
=

(3.27)

where [ ]NxxxX L21= . The matrix Nn×X  can be decomposed by SVD to

TUSVX = (3.28)

where nn×ℜ∈U  and NN×ℜ∈V  are orthonormal matrices, Nn×ℜ∈S  is a

diagonal matrix. If the matrices on the right hand side of equation (3.28) are

partitioned as
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where D  is the diagonal matrix of nonzero singular values

],,,[ 21 pdiag σσσ L=D       021 >>>> pσσσ L (3.30)

 and  are the matrices of left and right singular vectors, respectively,

corresponding to the nonzero singular values; ⊥  and ⊥  span the orthogonal

complements of the respective subspaces spanned by  and , we have

'X = (3.31)

The columns (rows) of  ( ) are called the left (right) principal vectors of X

and are pairwise orthonormal, i.e.,

p
TT I== (3.32)

where pI  is the p-dimensional identity matrix. From (3.31) and (3.32), we have

2'XX =T (3.33)

It implies that the vectors i  are eigenvectors of the matrix TXX  as

iii
TXX 2σ=     pi ,,2,1 L= (3.34)

Comparing (3.34) with (3.27), we obtain the relation between eigenvalues of the

covariance matrix xR  and the singular values in (3.30) as

21
ii N

σλ =      pi ,,2,1 L= (3.35)

The transformation matrix is then

T
optW = (3.36)
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Two numerical simulations are given in this section. The main issues addressed

in these simulations are the validity of the proposed method, the selection of
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frequency points, the determination of the network′s parameters and the

comparison with the previously presented results in chapter 2 using the LS

approach. The identification procedure is summarised in the flow chart in Fig.

3.5.

There are two phases in the identification procedure: phase one is network

training, connected by solid arrows, and phase two is parameter identifying,

connected by hollow arrows. These two phases are implemented in sequence.

FRFs obtained from
a parametric FE

model

FRF obtained from
measurement

PCA

neural
networks

feature vectors of
generated FRFs

feature vector of
measured FRF

target values identified
parameters

training set

transfer matrix Wopt

Fig. 3.5 Flowchart of the identification procedure
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In this simulation, the structure illustrated as in Fig. 3.6 is similar to the case in

Fig.2.7, two beam substructures coupled via a joint, in which the joint is also a

beam element.

1 24 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig. 3.6 Two beam substructures coupled via a joint
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It is supposed that both substructures are precisely known and the parameters of

the joint are uncertain but the knowledge about the uncertainty, i.e. the ranges of

the variations of these parameters, is available. In this case, the joint parameters

are its Young’s modulus E  and its mass density ρ . The uncertainty of these

two parameters is denoted by factors α  and β  so the true values of these

parameters are expressed as

0EE α=  and 0βρρ = (3.37)

where 0E  and 0ρ  are the initial guesses of the joint parameters, which are

determined according to the current knowledge to the structure. If the factor

[ ]1.5  0.5∈α  takes the values of 5.1  1.3,  1.1,  ,9.0  0.7,  ,5.0=α  in sequence and

factor [ ]1.5  0.5∈β  takes the values of 5.1  .0,1  ,5.0=β , there are 18

combinations of these two factors and the corresponding 18 point FRFs at the y

direction of node 12 obtained by the technique of parametric families are shown

in Fig.3.7. A fewer number of β  values are used because the change in joint

mass has a smaller effect to the structural dynamic properties compared with the

change in joint stiffness. Therefore, the accuracy of β  in the identification is

not as important as that of α .

With a frequency resolution of 0.5 Hz, these 18 FRFs can be put into a matrix:

Nn×H , in which n is the number of frequency points, 1600=n , and N is the

number of FRFs, 18=N . If the FRFs are evenly divided into four segments in

the frequency range and each segment is used in one identification, then we will

have 400=n  and 18=N  as the dimension of matrix H  in each frequency

segment. Fig.3.8 shows the second segment of the FRFs in frequency range 200

– 400Hz. It is seen from Fig.3.7 that the variation of FRF (resonance and anti-

resonance frequency shifts) corresponding to different joint parameters changes

from one frequency segment to another. For instance, the variation in frequency

range 200 – 400Hz is larger than that in the range of 0 – 200Hz. Therefore, it is

of interest to investigate the effect of using FRFs in different frequency ranges.
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A virtual FRF measurement, which is generated with 8.0=α , 7.0=β  and in

noise-free, is used as a test set and is highlighted in Fig.3.7 and 3.8.

Fig.3.7 Generated FRFs overlaid with the measured FRF

Fig.3.8 FRF segments used for training the network
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The application of the PCA technique to the matrix Nn×H  produces a set of

feature vectors of the FRFs, iy , Ni  , ,2 ,1 K= , which is also named as vectors

of principal elements. Each feature vector has only 17 elements, many fewer

than the number of frequency points in its corresponding FRF. The training set

for a neural network is therefore constructed of these feature vectors and their

corresponding target values of α  and β .

A 2-layer perceptron was built with 10 neurons in the hidden layer and 2

neurons in the output layer. The network was trained using back-propagation

algorithm and the number of epochs was set to be 70. The trained network was

then fed with the virtual test data. Six sets of the ‘test’ data were generated with

different levels of noise. The noise levels were indexed as: level 1 = 0%, level 2

= 1%, level 3 = 5%, level 4 = 10%, level 5 = 15% and level 6 = 20%. One of the

noise-contaminated FRF is shown in Fig.3.9 and the identification errors are

shown in Fig.3.10.

Fig.3.9 Measured FRF is contaminated by 15% noise
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Fig.3.10 Identification errors of the MLP

An RBF network was also trained using the same sets of training data. It creates

16 neurons in its radial basis layer and reaches the convergence faster than the

MLP. The identification errors are shown in Fig.3.11.

Fig.3.11 Identified errors of the RBF network

In general, both networks have a good tolerance to measurement noise, but the

RBF network gave a better performance. The accuracy of the identifications
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largely depends on the precision of the results obtained from the noise-free FRF

data. The effects of using different frequency segments are also illustrated in

Fig.3.10 and 3.11. For example, in Fig.3.11, frequency segments 0 – 200Hz and

400 – 600Hz yield accurate results with noise-free FRFs and perform well even

with highly polluted FRF data. Frequency segment 600 – 800Hz gives a larger

error because of the smaller dynamic range and the largest resonance frequency

shift. As predicted, the error on β  is much larger than the error on α . The

result should be improved if more training sets are provided.

������ 6LPXODWLRQ��

The model of structure used for the second simulation is shown in Fig.3.12. The

joint situated between the two beams is again a short beam element. In contrast

to simulation 1, the structure′s dynamic behaviour is not very sensitive to the

change of the joint parameters. According to (3.37), setting a series of α  and β

values as the same as in simulation 1, we obtain a set of FRFs using the

technique of parametric families and the FRFs are shown in Fig.3.13. Again,

those are point FRFs at coordinate 3-z, with frequency resolution 1.0Hz.

If the FRFs are evenly split into two segments in the frequency range 0 to 1500

Hz, then two Nn×H  matrices are formed where 750=n  and 18=N . The

‘measured’ FRFs were then generated with 0.1=α , 2.1=β .

Fig.3.12 A cross-beam structure
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To simulate the measurement FRFs, different levels of noise as specified in

simulation 1 were added into the ‘synthesised’ FRF. Following the same

procedure as discussed in the first simulation, we obtained the identified errors

from the two sets of FRFs in different frequency segments. They are shown in

Fig.3.16 and 3.17.

Fig.3.13 Generated FRFs overlaid with the measured FRF



Linear Joint Modelling - Neural Network Method Chapter 3

68

Fig.3.14 Frequency segment 1, measured FRF with 20 % noise

Fig.3.15 Frequency segment 2, measured FRF with 20 % noise
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Fig.3.16 Identification errors of the MLP

Fig.3.17 Identification errors of the RBF network

In this simulation, a 2-layer perceptron was built with the same number of

neurons, 16, in the hidden layer as that used in the RBF network, and the MLP

network was trained 100 epochs using backpropagation algorithm. Comparing

Fig.3.16 with Fig.3.17, we can still see a better performance presented by the

RBF network.
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This simulation demonstrates that with a small sensitivity to joint parameters,

the proposed neural network method can still perform well. It is confirmed

again that this method is robust and stable even with the noisy experimental

data.

���� &21&/86,21

A new method of identifying joint parameters using neural networks is

developed in this chapter. The basic techniques involved are parametric families

of finite element models, principal component analysis and neural networks.

The technique of parametric families of FE models and principal component

analysis are mainly used to generate training sets for neural networks to learn.

The MLP and RBF neural networks then play a role of identifier. By feeding the

trained neural network a feature vector extracted from a measured FRF, it yields

parameters of the joint.

Creating families of FE models and PCA are implemented here because the

former is efficient in obtaining dynamic properties of the system with joint

parameter changing and the later is effective in compressing FRF data or

extracting feature vectors from the FRFs. A large amount of redundant FRF

data are excluded by applying PCA, and the training sets are then made concise

without losing the necessary information.

The advantages of the developed method are:

• much fewer measured data are required compared with the LSM-based

method presented in Chapter 2. The measurement is carried out on the

assembled structure. No measurements are needed from the substructures.

The measurement DOFs on the assembly are not necessarily to be on the

interface between the substructures. In principle, any DOF at which a

variation of joint parameters is reflected can be a measurement DOF. The

reduction of measurement points also decreases the errors caused by

inconsistency of measured FRFs and by measurement noise etc.;
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• it is not sensitive to noise on the FRF input data. In other words, the

developed method is robust. This advantage is important since measured

FRFs are more or less always contaminated by noise;

• it can be extended for use in finite element model updating. Instead of using

only the measured FRFs, this method is a type of hybrid method, using both

the analytical model as well as measured data. The concept is to find a

group of joint parameters which make the system behave with the same

dynamic characteristics as those shown in the measured FRFs. If we

consider the joint parameters as the parameters to be updated in an

assembled structure, as the uncertainty of these parameters is obvious, the

process of joint parameter identification is exactly a case of finite element

model updating. Therefore, the proposed method can be regarded as a

updating/modification method as well dealing with assembled structures.

The advantages given above suggest that it is promising to apply this method to

practical structures. The application and further investigation will be subject of

future work.
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Component mode synthesis (CMS) techniques have been developed and used

extensively in the dynamic analysis of structures for over three decades. The

original idea, proposed in [CrBa68], was to idealise a structural system as an

assembly of discrete structural components or substructures, thereby obtaining

sets of matrix equations which predict the modal properties of the assembly.

With the development of the finite element method and more and more

powerful computers, the fundamental idea was then implemented and applied in

practice. The motivation and expectations of CMS method were clearly

described by Hintz [Hint75]. These descriptions were then widely referred by

the followers.
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The successful design of structures requires analysis for dynamic displacement

and stress responses when the structure is placed in its operating environment.

A vital part of this effort is the modal analysis of structural finite element

models. In the classical approach, it is usual to determine normal modes and

auxiliary static analysis directly from the finite element model. Complete

structural systems have become very complex and major components are often

produced by different organisations. As a result, it is often difficult to assemble

an entire finite element model in a timely manner. In addition, many finite

element models may contain so many degrees of freedom that they cannot be

handled directly on the computers in use. For these reasons, it is desirable to

develop methods for analysing substructures of a finite element model. Such

analysis has come to be known as Component Modal Synthesis (CMS) in

dynamics and Substructure Analysis in statics. It is desirable that component

mode techniques for dynamic analysis of structures have the following

characteristics [Hint75]:

• Computational efficiency: With the advent of powerful computers, finite

element static analyses structural problem with 100,000 DOFs or more have

become almost routine. However, problems with only 50,000 DOF can still

challenge the finite element dynamic analyses of structural problems,

especially when natural frequencies and mode shapes must be computed

[FaGe92]. While it is required that the component mode representation

should contain a minimum number of independent degrees of freedom or

modes for each component.

• Interchangeability: The component mode set should be independent of the

inertial and stiffness properties of adjacent components. Such a component

mode set may be used interchangeably in different structural systems with

compatible interfaces.

• Boundary flexibility: The method should permit optional interface degrees

of freedom in a component mode set that may be used or discarded at the

stage of synthesis. Such a mode set need not be redefined for each potential

interface or potential combination of interfaces.
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• Synthesis flexibility: A synthesis technique should not be constrained to a

particular type of component mode set. Synthesis techniques should be

amenable to accepting different types of component mode sets (i.e., fixed

interface, free interface or inertia loading, etc.)

There are several different CMS formulations and they can be grouped into

three different categories: fixed-interface, free-interface or hybrid methods. This

classification is based on whether the modes are obtained with the coupling co-

ordinates fixed, free or a combination of these two.

The principle of the CMS technique is that the substructures are projected from

the physical space onto the mode subspace spanned by a selected set of a few

lower mode shapes and other supplementary modes. As a result, the governing

equations of the structure can be reduced. Hence, modal analysis at the

substructure level is the basic computational effort in CMS methods. However,

it has not been notified that the contribution of connections between the

substructures to the modal properties of the assembly.

The objective of the study presented in this chapter is to develop such a modal

synthesis method in which the free interface substructures are not directly

coupled to each other as customarily done through their nodal interfaces.

Instead, there are particular media that connect these substructures, which are

independent of the modal analysis of the substructures. These connections are

termed joints. In principle, the behaviour of joints can be linear or non-linear.

The method presented here is for linear joints only. Its application to non-linear

joints is not included in this study since it is beyond the scope of this thesis.

Several concepts are described below before the introduction of the method.

They are normal modes, constraint modes, rigid body modes, attachment modes

and inertia relief attachment modes.
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Substructure normal modes are defined as the solutions of an eigen-value

problem

( ) 0mk =− rr
2ω (4.1)

It is assumed that the modes are normalised with respect to mass matrix, m ,

such that

nn
T
n Im = ,   ( )2

rnn
T
n diag ω≡=k (4.2)

where n  is a matrix whose columns are the substructure modes. The

complete normal mode set is hereafter denoted by a subscript n as n , and the

normal mode set which is usually truncated to a set of normal modes is denoted

by substript k as k , for kept modes.

&21675$,17�02'(6

Let the physical coordinates, x , be partitioned into a set C relative to which

constraint modes are to be defined, and let V be the complement of C.  A

constraint mode is defined by statically imposing a unit displacement on one

physical coordinate in the C set and zero displacement on the remaining

coordinates of the C set. Thus, the set of constraint modes is defined by the

equation









=

















cc

vc

cc

vc

cccv

vcvv

R

0

Ikk

kk
(4.3)

where ccR  is the set of “reactions” at the C coordinates. From the top row of the

partition

vcvvvc kk 1−−= (4.4)

The constraint mode matrix is thus









=








≡

−

cc

vcvv

cc

vc
c I

kk
I

1

(4.5)
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Although rigid-body modes may be obtained in the process of solving the eigen-

problem for component normal modes, they are also a special case of constraint

modes. If a component has r  rigid-body degrees of freedom, then an R set of

coordinates may be used to restrain the component against rigid-body motion.

The rigid-body modes corresponding to the R set are obtained by altering

subscript c  to r  in (4.5) and noting that there is no reaction at the statically

determinate constraint set R, that is, 0R =rr . Thus, if V is the complement of R,

rigid-body modes are defined by









=








≡

−

rr

vrvv

rr

vr
r I

kk
I

1

(4.6)
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Let the physical co-ordinates of a component be divided into three sets: R, A

and V, where R is a statically determinate constraint set which provides restraint

against rigid-body motion.  An attachment mode is defined as the static

deflection of the component which results when a unit force is exerted on one

co-ordinate of the A set, while the remaining co-ordinates in A are force-free.

Then the attachment modes relative to constraint set R are defined by






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






=








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






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













ra

aa

va

ra

aa

va

rrrarv
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vrvavv

R

I

0

0kkk

kkk

kkk

(4.7)

The attachment modes are essentially columns of a flexibility matrix, g . Thus,
















=
















=

ra

aa

va

ra

aa

va

a

0

g

g

0

(4.8)

where vag  and aag  are from the inverse of the upper-left partition of k  in (4.7).
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An alternative manner of defining attachment modes for a substructure with

rigid-body freedoms leads to the so-called inertia relief modes. Inertia relief
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modes are obtained by applying to an unrestrained substructure an equilibrated

load system, ef , which consists of the originally-specified force vector, f ,

equilibrated by the rigid body d’Alembert force vector, rxm && , where rx  is the

rigid-body motion due to f . Let the rigid-body modes, r , be orthonormalised

so that

rr
T
r Im = (4.9)

Then

Pfxmff =−= re && (4.10)

where

T
rrmIP −= (4.11)

Matrix P  designates the inertia-relief loading matrix and is simply an identity

matrix when there are no rigid-body modes.

The derivation of (4.10) comes from the normal equation of motion of the

substructure

fqkqm T
rrr

T
rrr

T
r =+&&   (4.12)

Because 0kx =r , the corresponding acceleration is obtained

( ) fmx T
rr

T
rrr

1−=&&   (4.13)

Therefore

fx T
rrr =&&   (4.14)

Thus, the imposed forces due to uniform acceleration in the rigid-body DOFs

can be expressed as

fmf T
rrr =   (4.15)

A special flexibility matrix of the unrestrained system is defined as:

NNrrrNr

rrNrNrN

××−×

×−
−

−×−












=

00
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G
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)(
1

)()(

~
  (4.16)
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where the singular stiffness system matrix, k , has been constrained at r DOFs

to remove rigid-body motion and 1~ −k  is its corresponding flexibility matrix.

The flexibility matrix, G , is therefore expanded with zeros at r DOFs to all N

DOFs of the FE model. Hence, the singularity of k and G  is the same and both

matrices are of rank ( )rN − .

Upon applying the equilibrated forces onto the static flexibility matrix G  the

corresponding deflection of the constraint component is

eGf=ˆ   (4.17)

Since it is of interest to find elastic attachment modes a  and elastic modes are

orthogonal to all r rigid-body modes, i.e.

0m =a
T
r   (4.18)

and the contribution of the constraint component of r rigid-body modes can be

removed from ̂  by:

rra q−= ˆ  (4.19)

then the attachment modes are found by pre-multiplying equation (4.19) with

mT
r  and solving for the generalised co-ordinates, rq , of the rigid-body modes

from

rr
T
r

T
ra

T
r qmmm −= ˆ   (4.20)

which resolves simply to

( ) mmq ˆ1 T
rr

T
rr

−=   (4.21)

Substituting equation (4.21) into equation (4.19) leads therefore to

( )( )mmI ˆ1 T
rr

T
rra

−−=   (4.22)

( )mI ˆT
rra −=   (4.23)

which are the flexible attachment modes as a linear combination of the columns

of the constraint deflections.
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Close inspection of equations (4.10), (4.11) and (4.17), however, reveals that

equation (4.23) is also:

P ˆT
a =   (4.24)

e
T

a GfP=   (4.25)

GPfPT
a =   (4.26)

or

fG e
a =   (4.27)

where eG  is referred to as the elastic flexibility matrix. Therefore, in order to

gain access to the flexibility matrix, G , artificial boundary conditions have

been imposed on the stiffness matrix k  and these have, in effect, been

eliminated with the transformation (or projection) matrix, P , leading to eG .

When the force vector, f , is expanded to a matrix and it has unit entries at the

junction DOFs and zeros elsewhere as specified in the definition of attachment

mode, a  defined in (4.26) is named Inertia Relief Attachment Modes.

��������5(9,(:�2)�7+(�(66(17,$/�35,1&,3/(6

The general principle of a method for reducing the size of an eigen-value

problem

0xkm =+− )( 2ω (4.28)

consists of building a subspace T  in such a way that the solution of (4.28) can

be written in the form

Tqx = (4.29)

where x  is the physical coordinates, q  is the substructure generalised

coordinates and T  is generally a matrix of preselected substructure modes of
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the following types: rigid-body modes, normal modes of free vibration,

constraint modes, and attachment modes.

If we go back to the origin variational form of Lagrange equation from which

(4.28) is derived

0mxxkxx =− )
2
1

2
1

( 2 TT ωδ (4.30)

we can deduce the reduced problem in the form

0qmqqkq =− )
2
1

2
1

( 2 TT ωδ (4.31)

That is to say

0qkm =+− )( 2ω (4.32)

with the reduced stiffness and mass matrices

kTTk T=  and mTTm T= (4.33)

Various substructuring methods differ from each other by the determination of

the reduction matrix, T . Three of the methods, which are based on the free-

interface concept, will be reviewed in this section and a more general

expression – a unified form of these methods – will be given. It is beneficial to

understand the connections in theory and also useful to integrate these methods

into one code for practical applications.

�������&06 ZLWKRXW�5HVLGXDO�&RPSHQVDWLRQ

This is Craig-Bampton method [CrBa68]. The normal modes of each

substructure can be obtained from the solution of the following eigen-value

problem

0xkm =+− )( 2ω (4.34)

Defining the uncoupled system as a collection of two subsystems, A and B,

without connecting to each other, we denote the number of DOFs as

BA nnn +=  and the number of modes of the uncoupled system as
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BA mmm += . The equation of motion of the uncoupled system in normal co-

ordinate is then

[ ]
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Corresponding to the compatibility equation for the interface displacements

c
B

c
A xx = (4.36)

we have
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The matrix S  may be partitioned as

[ ] 0

p

p

SS =












i

d

id LM (4.38)

where cc nn
d

×ℜ∈S  is a non-singular square matrix and )( cc nmn
i

−×ℜ∈S  is the

remaining part of S . This requires that the total number of modes for both

components ( BA mmm += ) be greater than the number of connection co-

ordinates cn , cnm > . Making use of this partition we have,

iidd pSSp 1−−= (4.39)

Then, the following transformation matrix can be constructed as
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To generate the matrix )( cnmm −×ℜ∈T , a set of im  independent vectors iS  must

be obtained from matrix S , while a set of dm  dependent vectors dS  is retained.

Substituting (4.41) into equation (4.35) and pre-multiplying by TT  yields,

fqkqm =+&& (4.42)

where

TTm T= (4.43)
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according to the equilibrium condition:

cc
B

c
A fff ==− (4.46)

The right-hand-side of equation (4.42) vanishes, since no external forces are

acting on the coupled system. Thus, the solution of this equation gives the

( cnm − ) natural frequencies 2  and mode shapes  for the overall system,

but referred to the q  co-ordinates. The mode shapes are then transformed to the

original co-ordinates, x , according to

T

0

0
















=

B

A

M

LML

M

(4.47)

The common coordinates of substructure A and substructure B should be

deleted afterwards from .
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The first free-free CMS formulation including residual compensation was

proposed by MacNeal in 1971 [MacN71]. It contains a first-order

approximation to the residual terms and is also called the static residual

compensation method.

The mode-shape matrix of each sub-system is partitioned according to lower

and higher modes. The lower modes include all rigid-body modes and all low-

frequency elastic modes. The higher modes are the unknown out-of-range ones,

which are generally truncated due to the need to limit the measured/analysis

frequency range.

For any of the substructures, we have

f

p

p

I0

0I
















=





























−

−

T
h

T
l

h

l

h

l

LL

M

LML

M

22

22

ω

ω
 (4.48)

The normal equation related to the high-order modes is then

( ) fpI T
hhh =− 22 ω (4.49)

In the case when

22 ω>h  (4.50)

we have

( ) ( ) ( ) ( ) LL+++=− −−−− 32422212122
hhhh I ωωω  (4.51)

If only the first term on the right hand side of equation (4.51) is taken into

acount, we have the first order approximation of the normal coordinates

fp T
hhh

12 )( −= (4.52)

If the first two terms are taken into acount, we then have

( ) fp T
hhhh

22212 )()( −− += ω  (4.53)

Substituting (4.52) and (4.53) back into the physical coordinates, we have
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Rfpx += ll (4.54)

and

fRRfpx 2ω++= ll (4.55)

where

T
hhhR 12 )( −= (4.56)

T
hhhR 22 )( −= (4.57)

and also

mRRR T= (4.58)

Considering the coupling coordinates only, for the first order approximation, we

have

cc
l

c
l

c fRpu += (4.59)

and for the second order approximation

( ) ccc
l

c
l

c fRRpu 2ω++= (4.60)

For the coupling analysis using the first-order approximation, the compatibility

condition (4.36) becomes

c
B

c
BlB

c
lB

c
A

c
AlA

c
lA fRpfRp +=+ (4.61)

Applying the equilibrium condition (4.46) to (4.61), we have

( ) [ ]












−+= −

lB

lA

c
lB

c
lA

c
B

c
A

c
A

p

p

RRf LM
1

(4.62)

( ) [ ]












−+= −

lB

lA

c
lB

c
lA

c
B

c
A

c
B

p

p

RRf LM
1

(4.63)

Substituting (4.62) and (4.63) into (4.35), we form the coupled equation of

motion
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[ ]








=


























−

−








+








+









0

0

p

p
K

0

0

0

0

p

p
I

lB

lA

c
lB

c
lA

c
lB

c
lA

cT
lB

cT
lA

lB

lA

lB

lA

2

2

&&

&&
(4.64)

where

( ) 1−+= c
B

c
A RRK (4.65)

The mode matrix from equation (4.64) can be transformed to physical space by

c
p

c
x PQ= (4.66)

where





















=

sc
B

s
lB

cc
B

c
lB

cc
A

c
lA

sc
A

s
lA

R00

R00

00R

00R

P (4.67)



















−

−
=

c
lB

c
lA

c
lB

c
lA

KK

I0

KK

0I

Q (4.68)

For the coupling analysis using the second-order approximation, the

compatibility condition is then

( ) ( ) c
B

c
B

c
BlB

c
lB

c
A

c
A

c
AlA

c
lA fRRpfRRp 22 ωω ++=++ (4.69)

Introducing the equilibrium equation, we have

( ) ( )( ) c
B

c
B

c
A

c
B

c
AlB

c
lBlA

c
lA fRRRRpp +++=− 2ω (4.70)

Pre-multiplying (4.70) by K , we have

( )( ) ( )lB
c
lBlA

c
lA

c
B

c
AB

c
B ppKRRKIf −++= −12ω (4.71)

The matrix inverse in (4.71) can be approximated by the first two terms of its

MacLaurin series expansion as

( )( ) ( )c
B

c
AB

c
B

c
AB RRKIRRKI +−≈++ − 212 ωω (4.72)

Let
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( )KRRKM c
B

c
A += (4.73)

we have

( )( )lB
c
lBlA

c
lA

c
B ppMKf −+= 2ω (4.74)

According to the condition of equilibrium, we have the expression of

( )( )lB
c
lBlA

c
lA

c
A ppMKf +−+= 2ω (4.75)

Substituting equation (4.74) and (4.75) into (4.35), we have

( ) ( ) 1
2

×=












++












+
cn

lB

lA

l

lB

lA

0

p

p

VKU

p

p

VMUI L

&&

L

&&

(4.76)

where









=

cT
lB

cT
lA

0

0
U (4.77)









−

−
=

cT
lB

cT
lA

cT
lB

cT
lAV (4.78)

To convert the mode shape matrix obtained from (4.76) to physical coordinates,

equations (4.66) can be used again, despite the second order approximation for

the residual terms. R  is nomally very small relative to R  and its influence in

the mode shape matrix is virtually negligible.

��������&06�:,7+�-2,176�&216,'(5('�0(7+2'��&06-�

The CMS methods reviewed in the last section do not include the contribution

of joints between substructures. The connections of substructures are therefore

supposed to be rigid. This assumption can be invalid in some engineering

structures where their components are connected via bolted or some other joints.

8UJXHLUD V� PHWKRG� >8UJX��@� WDNHV� WKH� MRLQW� VWLIIQHVV� LQWR� DFFRXQW� LQ� WKH

synthesis procedure but does not consider the effect of mode truncation. The

method presented in this chapter overcomes these drawbacks by including both

joints and compensation of mode truncation. Numerical simulation given in the
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next section show that it can yield very good result even only a few modes from

substructures are used.

�������&RXSOLQJ�(TXDWLRQV

The equations of motion of an assembled structure can be expressed as

)()()()( tttt fKxxCxM =++ &&& (4.79)

The stiffness matrix of the structure can be obtained from assembling the

stiffness matrices of the substructures and the joints as

j

L

j
j

T
jii

S

i

T
i kK ∑∑

==

+=
11

N   (4.80)

where ik  is the stiffness matrix of the i-th free substructure, ii NN
i

×ℜ∈k , jN  is

the stiffness matrix of the j-th joint in its local physical coordinates,

jj NN
j

×ℜ∈N , NN
i

i ×ℜ∈  and NN
j

j ×ℜ∈  are transformation assembly

matrices. The total number of DOFs of the assembled structure is N  and the

number of substructures is S . iN  and jN  are the numbers of DOFs of the i-th

free substructure and the j-th joint, respectively. The element of i  has the

value of

( )




=
otherwise0

DOF global   theis DOF local   theif1 thth qp
ipqα     (4.81)

The matrix j  has similar composition.

Similarly, the mass, damping and applied force matrices are formed as

j

L

j
j

T
jii

S

i

T
i mM ∑∑

==

+=
11

P (4.82)

j

L

j
j

T
jii

S

i

T
i cC ∑∑

==

+=
11

F (4.83)

)()()(
11

ttt j

L

j

T
ji

S

i

T
i I∑∑

==

+= ff (4.84)
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In the cases when there are no rigid-body modes in the substructures, the mode

shapes for the i-th substructure are generated from the following eigenvalue

equations:

( ) ( )ijiiiji Nj ,...,2,1, ==− 0mk λ   (4.85)

The displacement of the i-th substructure is therefore expressed in terms of the

modal matrix as

iii qx = (4.86)

Because there are no internal DOFs in the joints, any DOF in the structure must

belong to one and only one of the free substructures. Therefore, the

displacement of a substructure can be independently expressed in terms of its

mode shapes. The displacement vector of the whole structure is given by the

simple equation:

Tq

q

q

q

00

00

00

x =





































=

SS

M

L

LLLL

L

L

2

1

2

1

(4.87)

where T  is the transformation matrix of the structure from the physical

coordinates to the normal coordinates.

Substituting (4.87) into (4.79) and pre-multiplying by TT , we have the

governing dynamic equations for the assembled structure as

)()()()( **** tttt fqKqCqM =++ &&& (4.88)

where

 MTTM T=* , CTTC T=* , KTTK T=*  and )()(* tt T fTf =

From equation (4.80), the generalised stiffness matrix *K  can be calculated for

the substructures and the joints individually as

TTTkTK j

L

j
j

T
j

T
ii

S

i

T
i

T ∑∑
==

+=
11

* N (4.89)
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According to the definition of the matrices i  and j , the following

relationships are evident:







=
=

*

*

jjj

iii

T

T
(4.90)

where i  is the mode shape matrix of the i-th substructure; j  includes

interface subvectors of the modal shapes of the free substructures which

surround the j-th joint. *
i  and *

j  have analogous form and function to i  and

j , which represent the relationship between the overall generalised

coordinates and local generalised coordinates of the i-th substructure and the j-

th joint. The relationship between the overall and the local physical coordinates

is represented by i  and j .

Substituting (4.90) into (4.89) leads to

*

1

****

1

**
j

L

j
j

T
jii

S

i

T
i kK ∑∑

==

+= N (4.91)

where

 ii
T
ii kk =*  and jj

T
jj NN =*

A similar procedure is followed to obtain the corresponding expressions for the

mass, damping and applied load. It is seen from (4.91) that the generalised

stiffness matrix of the assembled structure can be expressed as the function of

the stiffness matrices of substructures and the joints. The generalised mass and

damping matrices of the assembled structure can be obtained in the same way.

�������5HVLGXDO�$WWDFKPHQW�0RGHV

The number of modes of the substructures used in (4.91) is normally limited due

to the expense in computation. To take into account the effect of the truncated

higher modes, we introduce a concept of  residual attachment modes.
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Let i  be the complete modal shape matrix of the n-th substructure. This

matrix can be partitioned to

[ ]h
i

l
ii = (4.92)

where l
i  contains the retained mode shapes with lower natural frequencies

which are used to span the subspace and h
i  contains the truncated higher mode

shapes.

The orthogonalisation of the mode shapes with respect to the stiffness matrix ik

and mass matrix im  are written as:





=
=

iii
T
i

iii
T
i

Im

k
(4.93)

Applying the inversion on both sides of the first equation in (4.93), we have

111 −−−− = i
T

iii k (4.94)

Pre-multiplying by i  and post-multiplying by T
i , equation (4.94) becomes

[ ] ( )
( )

( )
( ) ( ) ( ) ( ) ( )Th

i
h
i

h
i

Tl
i

l
i

l
iTh

i

Tl
i

h
i

l
ih

i
l
i

T
iiii

0

0
k

22

2

2
11 −−

−

−
−− +=
























==

(4.95)

If the higher modes are truncated, the residual flexibility matrix of the i-th

substructure will be

( ) ( )Tl
i

l
i

l
iii kR

21 −− −= (4.96)

Neglecting the inertia effect intruduced by the truncated mode shapes, the

compensatory displacement response of a substructure can be expressed in

terms of the residual flexibility matrix iR  as

iii fRx =∆ (4.97)

In the case of free vibration, there are only internal forces acting at the

interfaces of the free substructure. Therefore,
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







=








= c
i

c
i

i
i

i f

0

f

f
f (4.98)

If iR  is written in partitioned form corresponding to the internal and interface

DOFs, ix∆  can be written as

[ ] c
i

c
ic

i

c
i

i
ii fR

f

0
RRx =









=∆ (4.99)

The residual attachment modes of the free substructure are then defined on the

interface boundary DOFs as

c
ii R= (4.100)

Therefore, the displacement of the substructure can be represented in terms of

the mode shapes li  and the residual attachment modes i  as

c
ii

l
i

l
ii fqx += (4.101)

where c
if  is the internal force acting at the interfaces of the i-th substructure.

Equation (4.101) can be partitioned with respect to the internal and coupling

boundary DOFs:

















=









c
i

l
i

c
i

lc
i

i
i

li
i

c
i

i
i

f

q

x

x
(4.102)

From the second row of (4.102), the interface force c
if  can be written as

( ) ( ) l
i

b
i

c
i

a
i

l
i

lc
i

c
i

c
i

c
i qkxkqxf −=−= −1

(4.103)

Substituting (4.103) back into (4.102), we have
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
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
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
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l
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l
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i
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b
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i
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c
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i
i

x

q
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x

q

I0

kk

x

x
(4.104)

From equation (4.103), the total interface force vector of the substructures can

be expressed as
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(4.105)

Using equation (4.104), the displacement vector of the collection of the

substructures can be expressed as

















=









c

l

c

i

x

q
I0

BA

x

x
(4.106)

Compatibility conditions at the coupling points are used to eliminate the DOFs

at the interfaces. The compatibility conditions at the interfaces may be written

as

[=cx , 0f =+ Ic (4.107)

where the vectors [  and I  are the displacements and interface forces of the

joints which are related by the following equation

.[I = (4.108)

Substituting equations (4.107) and (4.108) into (4.105), the interface

displacement can be rewritten in terms of the generalised coordinates:

( ) lclbac qTqKKx =+= −1
. (4.109)

Substituting equation (4.109) into (4.106), the final transformation matrix T  of

the structure, considering the static effect of the truncated higher modes of the

substructures, is generated as follows:









=







 +
=

















=

c

i

c

c

c T

T

T

BTA
T

I

I0

BA
T (4.110)

To implement this method, a linear transformation should be applied on T ,

which is obtained from (4.110), in order to adjust its rows according to the

spatial coordinates of the assembled structure.

STT = (4.111)

The matrix T  can then be substituted into equation (4.89) as T .
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The local transformation matrix for the i-th substructure and the j-th joint can be

written as









=

c
i

i
i

i T

T
T , c

jj TT = (4.112)

where i
iT  is the submatrix of iT  in its rows, c

iT  and c
jT  are the submatrices of

cT  in its rows.

The reduced stiffness, mass and damping matrices as well as the load vector for

the i-th substructure are calculated by the following equations:











=
=
=
=

)()(*

*

*

*

tt i
T
ii

ii
T
ii

ii
T
ii

ii
T
ii

fTf

TcTc

TmTm

TkTk

(4.113)

Similar calculations can be performed for the joints as well.

�������7UHDWPHQW�RI�5LJLG�%RG\�0RGHV

When a substructure is unrestrained, the definition of the residual attachment

modes in equation (4.100) becomes obsolete since the stiffness matrix is

singular. Using the concept of inertia relief attachment modes mentioned in

section 4.1, the elastic flexibility matrix eG  can be determined as

GPPG Te =   (4.114)

Since the flexibility terms have been derived under inertia loading effects

leading to the elastic flexibility matrix eG , this flexibility matrix serves as the

inverse of the singular stiffness matrix. It should be noted that eG  is still

singular.

�������&$6(�678',(6

Two case studies are designed to validate the proposed method, CMS with joint

considered and residual attachment mode compensation. The first case is two
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simple beam structures coupled via a beam joint. It shows how well the method

works with different scale substructures. The second case is a more practical

structure, in which both substructures are in free-free boundary condition and

the joints are more complicated.

�������&ODPSHG�&ODPSHG�%HDP

The modal properties of a clamped-clamped beam are predicted by synthesising

modal properties of a pair of shorter cantilever beams with a joint in between.

Fig. 4.1 shows six pairs of substructures. The ratio of DOF numbers included in

substructures A and B is different in each pair. When the first three modes are

considered from substructure A and substructure B in each pair, the first six

natural frequency of the assembled structure are predicted successfully for pair

one and error increases for the rest of pairs as shown in Table 4.1.

The natural frequency comparison between substructures A and B in different

pairs is given in Fig. 4.3. With the increase of the difference in scale between

substructure A and B, the difference of the first three natural frequencies

increases dramatically. In the worst case, pair 6, first three natural frequencies

can still be predicted accurately. The relative errors of the natural frequencies

against index number of the pairs are shown in Fig. 4.2.

This example demonstrates that the method of CMS with joint considered and

residual attachment mode compensation can at least predict the same number of

modes of the assembled structure as the number of modes provided from by

each substructure. It also suggests that the scale of substructures had better be

similar in order to obtain accurate results.
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(a) pair 1 (14:14)                                                   (b) pair 2 (12:16)

               

(c) pair 3 (10:18)                                                  (d) pair 4 (8:20)

               

(e) pair 5 (6:22)                                                      (f) pair 6 (4:24)

Fig. 4.1  Six different pairs of substructures (The two numbers in parentheses are the

numbers of DOFs of substructure A and B, respectively)
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Table 4.1

1f 2f 3f 4f 5f 6f

exact 8.9601 24.7001 48.4291 80.0828 119.7072 167.3766

pair 1 8.9606 24.7001 48.4709 80.1001 120.1145 172.6389

error (%) 0.0056 0.0000 0.0863 0.0216 0.3402 3.1440

pair 2 8.9605 24.7019 48.4485 80.2146 120.6882 187.8944

error (%) 0.0045 0.0073 0.0401 0.1646 0.8195 12.2585

pair 3 8.9604 24.7050 48.4361 80.2214 128.8617 233.3507

error (%) 0.0033 0.0198 0.0145 0.1731 7.6476 39.4166

pair 4 8.9603 24.7052 48.4573 81.4308 152.9489 322.6363

error (%) 0.0022 0.0206 0.0582 1.6833 27.7692 92.7606

pair 5 8.9602 24.7032 48.4530 87.3631 205.8587 511.4926

error (%) 0.0011 0.0126 0.0494 9.0910 71.9685 205.5939

pair 6 8.9602 24.7028 48.6188 103.4081 330.8366 1048.428

error (%) 0.0011 0.0109 0.3917 29.1265 176.3715 526.3888

Fig. 4.2  Relative error of the natural frequencies vs. index number of the pairs for

case study 1
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Fig. 4.3 Natural frequency comparison between substructures A and B in different

pairs for case study 1

�������*$57(85�VWUXFWXUH

The GARTEUR structure shown in Fig. 4.4 was built by ONERA in France for

investigating modal test and analysis techniques. It consists of two main parts,

the wing and the fuselage with tail. These two main parts are connected by four

bolted joints. In this case study, the wing is taken as substructure A as shown in

Fig. 4.5 and the fuselage with tail is taken as substructure B as shown in Fig.

4.6.

Fig. 4.4 The assembly of GARTEUR structure
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Fig. 4.5 Substructure A: the wing

Fig. 4.6  Substructure B: the fuselage and tail

Fig. 4.7  Connections between subs

t

z

Fuselage
Wing
Join
98

tructures A and B

x y
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The joints between these two substructures are spring elements connecting 5

DOFs between substructure A and B, three translations and two rotations of xθ

and yθ .  They have an identical stiffness value, 14101× N/m.

Table 4.2 shows the parameters of FE models of substructure A and B. When 6

modes from substructure A and 4 modes from substructure B are used in the

coupling analysis, the first 10 natural frequencies predicted using CMSJ are

shown in table 4.3.

Table 4.2 Basic parameters of the FE model

substructure A substructure B

number of nodes 88 48

number of elements 60 24

number of DOFs 528 288

Table 4.3

mode exact Urgeria error (%) CMSJ error (%) reduced error (%)

1 6.5152 7.8362 20.2747 6.5205 0.0801 20.1946

2 16.3131 18.1972 11.5497 16.3251 0.0731 11.4766

3 37.9458 38.4248 1.2623 37.9758 0.0790 1.1833

4 39.2928 41.6822 6.0810 39.3204 0.0703 6.0107

5 39.6716 41.7039 5.1228 39.6979 0.0661 5.0567

6 52.4577 63.2477 20.5690 52.5092 0.0983 20.4707

7 53.6223 65.4051 21.9739 53.7543 0.2462 21.7277

8 57.2831 66.0479 15.3008 56.6558 1.0950 14.2058

9 69.8696 70.9170 1.4990 69.9124 0.0612 1.4378

10 70.0156 87.0351 24.3081 70.1765 0.2297 24.0784

The original method proposed by Urgeria [Urgu89] yields huge errors when

such a few number of modes are used in coupling analysis. In fact, the results of
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that method shown here were obtained using 60 modes of substructure A and 40

modes of substructure B, 10 times more than the number of modes used by

CMSJ.

�������&21&/86,21

The CMS method with joints considered and residual attachment mode

compensation (CMSJ) has been presented in this chapter and the numerical

simulations show that the method works very well. The main advantages of the

method are:

• Joints can be introduced in between the substructures. Since the joints are

normally the most difficult part to model, this method provides a convenient

way to modify the joints and predict the dynamic characters of the assembly

without re-analysing the substructures.

• In the currently available CMS methods, the inter-substructure continuity of

the displacement and rotation fields is enforced pointwise. However,

substructures are often designed by different teams of engineers, and their

respective finite element models often require different mesh resolutions. In

this case, the finite element substructure models are typically non-

conforming. The introduction of joints also makes the connection between

such non-conforming interfaces possible.

• The joints, which are excluded from the modal analysis of the individual

substructures, can be used to simulate local non-linearity such as micro-slip

in construction joints in structures. According to the principle of CMSJ

method, this simulation should be realised without many difficulties.

In general, the CMSJ method satisfies all the criteria proposed by Hintz

[Hint75] and it is worth to apply this method to large-scale structures.
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If CMS is mainly based on analytical models, i.e. the spatial type of model,

referring to Ewins� GHILQLWLRQ� >(ZLQ��@�� WKH� )5)� FRXSOLQJ� PHWKRG� LV� WKHQ

basically built on experimental models or in the other word, response models. In

fact, since all the models can be interrelated with each other [Urgu89], both

coupling methods allow the use of a combination of analytical and experimental

data. Compared with the CMS method, FRF coupling has the advantage of using

the measured FRFs directly, which implies that the errors introduced by modal

analysis, and the errors caused by high mode truncation, could be eliminated

since the effects of the higher modes are inherent in the measured data.

The widely used expression of FRF coupling [JeBi88] connects two substructures

rigidly at the coupling co-ordinates. Other coupling methods, either in the group
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of impedance coupling (spatial coupling method) or modal coupling (free

interface and fixed interface methods), follow the same compatibility condition of

displacement as well.

To refine the general coupling analysis techniques, more researches on some

specific aspects were carried out. Since the computed FRFs of the assembled

structure may be contaminated by errors, Otte et al [OtLe91] proposed two data

reduction methods to enhance the measured FRFs for coupling in the spatial and

frequency domains respectively. These methods are based on singular value

decomposition and resolve the problems of the ill-conditioned matrix inversion

and the influence of noise. Two sources of error are normally encountered: (i) the

inconsistencies of measured data (noise, frequency shifts), and the inability to

measure correctly all DOFs of the connection; and (ii) ill conditioned matrix

inversion for a large numbers of DOFs. Suatez [SuMa92] introduced a force

derivative method to compensate for the effect of the truncated higher modes in

the representation of the substructures’ response. It was demonstrated that the

method is capable of providing very accurate estimates of the natural frequencies

of the combined structure as well as the associated modes of vibration and elastic

forces.

It is worth pointing out that the essential principles in those methods mentioned

above are the same as the FRF coupling method in the treatment of connections

between substructures, i.e., they suppose the same compatibility conditions of

displacement at the interfaces of the connections. The substructures for numerical

simulation were designed to meet the conditions and, therefore, the solutions of

coupled structure analysis were satisfactory. Practically, however, the accurate

analysis of coupled structures requires not only good substructure data estimation

but also the reliable modelling of the joints, which connect the substructures. If

the rigid connection assumption cannot describe the characteristics of realistic

joints, it is clear that the FRFs obtained from the coupling analysis will certainly

differ from the experimental results of the corresponding assembled structure, no

matter how fine the algorithms are.
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Basically, the theory of coupled structure analysis developed so far has not taken

into account of the effect of practical joints. The effect of joints should be

estimated carefully and the joint models should be established. Furthermore, the

theory of substructure coupling analysis should be developed further to include

the joint effects.

���� 5(9,(:�2)�7+(�(66(17,$/�35,1&,3/(6

The currently used FRF coupling method was originally presented by Klosterman

in 1971 according to [OtLe90]. The basic idea of the method can be chased up to

1960 by Bishop and Johnson [BiJo60].

������ )5)�FRXSOLQJ�ZLWKRXW�MRLQW

The mathematical expression of FRF coupling method is well known as [JeBi88]
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in which H  is the FRF matrix of the assembled structure, HA , HB  is the FRF

matrix of substructure A and B respectively. Subscript i  represents internal

DOFs and c  is the coupling or interface DOFs.

If the FRF matrix of the coupled structure has the content as
















=

bbbcba

cbccca

abacaa

HHH

HHH

HHH

H (5.2)

then each submatrix can be expressed as
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and by symmetry,

T
cbbc

T
abba

T
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HH

HH

HH

=

=

=

(5.4)
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The FRF coupling method presented in (5.1) does not include joints between

substructures. A method of FRF coupling with joints was recently reported by

Ferreira [Ferr98], in which the description of substructures and their assembly are

the same as that mentioned in [Ren92]. The new development of the method  in

[Ferr98], in the aspect of substructure coupling analysis, is the joint description

and synthesis with substructures. However, it can be noticed in the derivation

process of the coupling method [Ferr98], that the expressions of the forces

applied on the substructures, cf and c~f , are not unique. It seems that the solution

should be consistent only if the describing function G  is infinite, or in the other

words, of 01 =−G . Obviously, this condition conflicts with the purpose of the

coupling analysis and, therefore, there must be an error in the derivation.

In fact, the joint model expressions given by Ferreira is

















−

−
=









−
c

c

c

c

~~ x

x
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f
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 (5.5)

This joint model is based on two essential assumptions (which are not clearly

mentioned in [Ferr98]): the first assumption is that the equilibrium condition and

the compatibility condition are given in the form of
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and the second assumption is that the stiffness matrix of the joint has to take the

specific form of









−

−
=

GG

GG
. (5.7)

The second assumption implies that the joints between the substructures can only

be parallel scalar springs.

According to the proposed equilibrium conditions in [Ferr98], the forces applied

at the interfaces of the assembled structure have to be always zeros:

0ffFF ≡+== ccCC ~~ (5.8)

Therefore, when these basic assumptions are used in the derivations, these two

forces, 
C

F  and 
C
~F , appear in the expressions of cf  and c~f , can have arbitrary

coefficients without affecting the values of cf  and c~f . That is why the solutions

are not unique.

���� *(1(5$/�-2,17�'(6&5,37,21�0(7+2'���1(:�'(9(/230(17

������ 7KHRU\�EDFNJURXQG

To correct the equilibrium condition used in [Ferr98], and to employ a general

joint description matrix, a generalised substructure coupling method using FRF

data is derived in this section.

-2,17�'(6&5,37,21

A joint can be analytically described as

=[I = (5.9)

where =  is the impedance matrix of the joint. Since it is normally symmetric,

such that
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





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cccc

cccc

~~~

~
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==

= (5.10)

with T
cccc == = , T

cccc ~~ == =  and T
cccc ~~~~ == = .

The joint has no internal degrees of freedom. All of its degrees of freedom are on

its boundaries. If the number of degrees of freedom at the boundary of

substructure A equals that of substructute B, cc nn ~= , then cc~=  is a square

matrix. Otherwise, in more general cases, if cc nn ~≠ , cc~=  is rectangular.

&21',7,216�2)�&203$7,%,/,7<�$1'�(48,/,%5,80

 The displacement vector of joint,[ , satisfies the compatibility condition:
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The force vector, I , satisfies the equilibrium condition at the coupling interfaces:
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where 
C

F  and 
C
~F are the external forces acting on the interface DOFs, and









=
I
I

I ~ (5.13)

When there are no external forces applied on the interface DOFs, equation (5.9)

becomes









−=
c

c

~f

f
I (5.14)

'(6&5,37,21�2)�68%6758&785(6

To describe each of the uncoupled substructures, we have
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'(5,9$7,21�2)�7+(�5(&(37$1&(�0$75,;�2)�7+(�&283/('�6758&785(

Solving cx  and c~x  from (5.15) and substituting them into (5.9), we have

( ) ( ) 0fHfHfHfHfHfH =−+++++ I== cccccciiccccccccciiccc ~~~~~~~~ (5.16)

( ) ( ) 0fHfHfHfHfHfH =−+++++ I==
~

~~~~~~~~~~ cccccciiccccccccciiccc (5.17)

Substituting (5.12) into (5.16) and (5.17), noticing that Ii Ff = , we have

( ) ( ) 0fFfHfHFHfHfHFH =+−+++++ cCccccccIicccccccccIiccc ~~~~~~~~ == (5.18)

( ) ( ) 0fFfHfHFHfHfHFH =+−+++++ cCccccccIicccccccccIiccc ~~~~~~~~~~~~ == (5.19)

Rearranging these two equations with respect to the force vectors, we have

ICcc FaFfafa 3~21 −=+ (5.20)

ICcc FbFfbfb 3~~21 −=+ (5.21)

Solving equations (5.20) and (5.21), we have the force vectors for the uncoupled

system uniquely expressed in terms of the external force vectors of the coupled

system as
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( )[ ]
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1
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~
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where
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Substituting (5.22) and (5.23) into (5.15) and using the following compatibility

conditions:

iI xX = , cC
xX =  and cC

~~ xX = (5.25)

the upper triangle part of the coupled structureV� )5)� PDWUL[� LV� REWDLQHG� DV

follows:
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Those FRFs compose the receptance matrix of the coupled structure:
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The expressions in (5.24) can be simplified according to the fact that
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0HH == cccc ~~ (5.29)

Substituting (5.29) into (5.24), we have
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and
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Rewriting (5.32) in a short form and comparing the expressions in the flower

brackets, we noticed that if denote

cc ~~HDB ++ = (5.33)

then
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(5.34)

Therefore, the FRFs of the coupled structure in (5.26) becomes
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From (5.30), we have
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Substitute (5.36) and (5.37) into (5.35), we have
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There is only one inverse operation for frequency response functions in equation

(5.38), which is +D . This is the same as the Klosterman-Jetmundsen  method (K-

J method) as shown in equation (5.3). Therefore, the computation time and the

sensitivity to noise in the FRF data are basically the same for both coupling

methods. The calculation of +cc~=  should not have a problem since matrix cc~=  is

given analytically and its size is relatively small.

The pseudo-inverse +D  is calculated using singular value decomposition (SVD).

Performing an SVD on matrix D , which has dimension cc nn ~× , we have

hUSVD = (5.40)

If matrix D  is ill conditioned or even singular, the singular value truncation

technique will be applied by setting a certain threshold value tol  and truncate the

singular values which are smaller than tol . If the remained number of singular

values is r , then we have
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h
rrr USVD =+ (5.41)

The dimensions of rV , rS  and h
rU  are rnc ×~ , rr ×  and cnr ×  respectively.

���� &$6(�678',(6

Two case studies are presented in this section. The advantages of the newly-

developed generalised joint description method (GJDM) for coupling analysis are

demonstrated by these examples.

The first case is designed to show how the properties of joint parameters, mainly

stiffness and damping, affect the coupling results. The second case is more

practical - a larger finite element model is used to investigate the high-order

mode truncation effect and tolerance to noisy data. The results are compared with

those obtained from the standard K-J method.

������ &URVV�EHDP�VWUXFWXUH
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Fig. 5.1 Cross beam structure

Two identical beams are placed horizontally in a right angle and are connected

vertically via another very short beam which plays the role of the joint. The lower

beam is named substructure A and the higher beam is substructure B. The length

of each of the substructures is mm419  and the length of the joint is mm3 . The
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cross section of the substructures is rectangular, mmmm 530 × . The cross section

of the joint beam is circular with diameter mm8=φ .

Each substructure is divided evenly into 10 Timoshenko beam elements. The

joint is described by a single beam element which has 6 degrees of freedom at

each end. Its mass and stiffness matrices are formed by standard finite element

method. The proportional damping is introduced to generate frequency response

functions for both substructures and the joint. The proportional viscous damping

model is

NF β= (5.42)

If the mass of the joint is neglected then the describing matrix of the joint

becomes

( ) ( )ωβωω ii +=+= 1NFN= (5.43)

*-'0�&283/,1*�$1$/<6,6

To validate the generalised joint describing method for coupling analysis, its

theory and algorithm, the coupling analysis result is compared with the result of

the complete assembled finite element model. In this comparison, the joint

parameters prepared for coupling analysis are set to be the same as those used in

the assembled finite element model. Based on noise-free input FRFs, all the

frequency response functions of the assembled structure are predicted accurately

using GJDM. An example is given in Fig. 5.2.

One of the advantages of GJDM is that the joint parameters can be modified

independently. This advantage makes it possible that the dynamic characteristics

of a structure can be tuned to some extend by varying the joint parameters only.

In other words, the joints, which are normally the most difficult parts in finite

element modelling, can be completely separated from the substructures and

treated independently. After the joint parameters are properly adjusted, they can

be used together with frequency response functions of the individual

substructures to implement the GJDM coupling analysis. In the case shown in

Fig. 5.1, for instance, if we increase the damping of the joint by setting a larger
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β  value in equation (5.42), 5101 −×=β , the coupling result will then show the

effect of this perturbation, as shown in Fig. 5.3 in which the proportional

damping factor for the assembled structure is 7105 −× .
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Fig. 5.2 Validation of GJDM

The flexibility of changing joint parameters cannot be so easily achieved in the

assembled finite element model. This means that GJDM coupling analysis not

only saves computation cost by breaking down a large structure into smaller

substructures, but it also solves problems which cannot be worked out efficiently

using the assembled finite element model.
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Fig. 5.3 Coupling result of increasing the joint damping
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If this same coupling problem is dealt with using Klostarman-Jetmunden

coupling method, the joint has to be assigned belonging to one of the

substructures. This will generally bring two problems: the first is that the

modification of joint parameters will no longer be achieved so flexibly. Any

small change of joint parameters will result in the need for a re-analysis of the

substructure to which the joint is attached. This is time-consuming if the number

of degrees of freedom of the substructure is large, or if the modification needs to

be done a number of times; the second problem is that the introduction of a joint

may cause the stiffness matrix of the joint attached substructure to be ill-

conditioning because, in general, the stiffness of the joint is much greater than the

stiffness of the substructure elements. The ill-conditioned stiffness martrix will

further cause  difficulties in the eigen-solution.

In this simple case, the coupling result of K-J method is as accurate as that of

GJDM as shown in Fig. 5.2. The tolerance to noisy input data is more or less the

same as GJDM, according to the analysis in section 5.3. More detail comparisons

between these two FRF coupling methods will be given and discussed in the next

section for a more complicated case study, a plate couples with a beam.

������ 3ODWH�FRXSOHV�ZLWK�EHDP
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A brass plate shown in Fig. 5.4 and a brass beam shown in Fig. 5.5 are to be

coupled together using a steel bolt. The alignment of the coupled system is shown

in Fig. 5.6. The detail of the connection joint is shown in Fig. 5.7 where the size

of the steel bolt is M4. The material properties of the structure are listed in Table

5.1.

Table 5.1

material Young’s modulus Poisson’s ratio density

brass 211 /1010.1 mN× 29.0 33 /1054.8 mkg×

steel 211 /1010.2 mN× 30.0 33 /1080.7 mkg×
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Fig. 5.4 Brass plate, thickness 3mm

Fig. 5.5  Brass beam, thickness 3mm

Fig. 5.6  The assembled structure
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plate

beam

Fig. 5.7  Bolt connection
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Fig. 5.8 FE mesh for coupling analysis

Substructure definition

The plate is taken as substructure A and the beam together with the bolt are taken

as substructure B. The FRFs of the two substructures, A and B, are generated

from the modal analysis of their finite element models. The 4-node 20-DOF plate

elements are used to model the plate, and Timoshenko beam elements are used to

analyse the beam, substructure B. FRFs were generated using the mode

superposition method: the numbers of modes used were: 300=Am , 50=Bm .

Coupling result

FRFs of the coupled structure were obtained by implementing the analysis based

on the Klosterman-Jetmundsen method. Input data were the FRFs of the

substructures. The result is compared with the “exact” FRFs which were

x
 y

z

o

substructure A

substructure B
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produced by analysing the finite element model of the whole assembled structure.

One FRF of the coupling analysis results, the point FRF zzH 55 , i.e. the translation

point FRF in the z direction of node 5, which is the coupling node on the plate, is

shown in Fig. 5.9 overlaid with its corresponding “exact” FRF. It is seen that the

K-J method works well in general except the frequency shift the frequency range

of 800Hz to 1200Hz.
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Fig. 5.9 Point FRF zzH 55  obtained from the K-J coupling analysis
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Substructure definition

In this analysis, the plate is still taken as substructure A but the beam is taken as

substructure B which excludes the bolted joint. FRFs of the two substructures, A

and B, are also generated from the modal analysis of their finite element models

using mode superposition method.

Joint definition

The bolt which connects plate and beam is defined as a beam element. Since the

mass of the bolt is very small compared with any of the substructures, either the

plate or the beam, only the bolt stiffness is taken into account to construct the

joint description impedance matrix, = . The compatibility of degrees of freedom
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is considered in forming the matrix, = . The beam element has 6-DOFs at the

boundary connecting it to the beam ( )6~ =cn  and 5-DOFs at the boundary

connecting to the plate ( )5=cn . Therefore, the dimension of matrix =  is 1111× .

Coupling result

FRFs of the coupled structure were obtained by implementing the programme of

the general joint description method. Input data were the FRFs of the

substructures as well as joint description matrix, = . The result is validated by the

“exact” FRFs which were produced by analysing the finite element model of the

whole assembled structure. One FRF of the coupling analysis results, the point

FRF of 5z, i.e. the translation DOF in z direction of node 5, which is the coupling

node on the plate, is shown in Fig. 5.10 overlaid with its corresponding “exact”

FRF. It is clear in Fig. 5.10 that the coupling analysis yields a very good result.

There are no significant frequency shifts as shown in Fig. 5.9.
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Fig. 5.10 Point FRF zzH 55  obtained from the GJDM coupling analysis

Substructure residual effect

It should be pointed out that the total numbers of modes used for substructures A

and B were 320 and 186 respectively, while the coupling result shown in Fig.
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5.10 was achieved by using only the first 300 modes from substructure A and the

first 50 modes from substructure B.

To investigate the substructure residual effect, the number of modes used in

generating the FRFs is set as a variable. Table 5.2 shows the numbers of modes

of substructure A (plate) which were used in the study, together with the

corresponding highest natural frequencies. In all cases, the FRFs of substructure

B (beam) were generated using 30 modes in which the highest natural frequency

was 7049 Hz.

Table 5.2

130=Am 150=Am 200=Am 250=Am 300=Am

)Hz(
Amf 12875 16545 28872 52693 95703

The coupling analysis results obtained by different numbers of high-order mode

truncations are shown in Fig. 5.11. This is the same FRF as shown in Fig. 5.10,

the point FRF at 5z. According to the modal analysis of the assembled system

finite element model, there are 43 elastic modes in the frequency range of 0 to

2,000Hz, but not all of them are included in this point FRF plot. It is noticed in

Fig. 5.11 that only three modes, numbered as 23, 24 and 28, which have the

frequency values of 903.7Hz, 927.8Hz and 1112.3Hz respectively, are

significantly affected by the high-order mode truncations. The rest modes are

almost consistent with respect to different numbers of mode truncation.

It is found that mode 28 in Fig. 5.11 (at 1112.3Hz) is dominated by residuals. Its

frequency shifts to a higher value and its amplitude becomes smaller with regard

to the decrease of Am , the number of modes included for generating FRFs of

substructure A, the plate. Further calculations show that if Am  is chosen such that

120<Am , this mode will disappear from this FRF plot.
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Fig. 5.11 Investigation of residual effect ( )30=Bm

It is obvious that the number of modes included in generating the FRFs for

substructure A plays a very important role in the accuracy of the coupling result.

The residual FRFs in the frequency range 0 to 2,000Hz were then generated

including the truncated modes, from mode 131 to 300, and are shown in Fig.

5.12. These FRFs are, from top to bottom: 
xx

H θθ 55 , 
yy

H θθ 55 , 
yx

H θθ 55 , 
xzH θ55 ,

yzH θ55 , zzH 55 , xxH 55 , yyH 55  and yxH 55 .

Comparing the amplitudes of these residual FRFs with those of the FRFs used for

coupling analysis, which are shown in Fig. 5.13, we can see that these residual

FRFs are not negligible even though the truncation frequency has already been 6

times of the highest interested frequency.
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Fig. 5.12 Residual FRFs of substructure A
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Fig. 5.13 FRFs of plate at coupling DOFs

Therefore, in principle, the GJDM method is recommended when measured FRFs

are available because they do not have mode truncation error. For analytical

coupling analysis, the improved CMS method, CMSJ, should be the first choice.

In the cases where FRF coupling method has to be applied, a large number of

modes need to be calculated in order to generate the substructures�)5)V�
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Tolerance to noisy data

The motivation to develop the K-J method and the GJDM is to permit direct use

of measured frequency response functions. Therefore, It is important to verify

that these methods can work properly when they are supplied with noise-

contaminated data.

If 10% random noise is added to the FRF matrices for both substructures A and

B, the coupled result obtained from GJDM previously shown in Fig. 5.10 is

shown here in Fig. 5.14.
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Fig. 5.14 Coupling result (GJDM) when 10% noise in input FRFs

Following the same procedure, Fig. 5.15 shows the coupling result when the FRF

matrices of the substructures are contaminated by 20% noise.
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Fig. 5.15 Coupling result (GJDM) when 20% noise in input FRFs

By applying singular-value truncation to the 20% noise case in which the

threshold was set as 610−=ε , the result is improved. To justify the quality of the

predicted FRFs which are obtained using noisy FRFs from the substructures, the

correlation (FRAC, defined in Appendix F) between the predicted FRF matrices

and the exact FRF matrix is calculated. The FRAC values shown in Fig. 5.16 are

the correlations of the upper triangle FRF matrices, in which there are 15 FRFs.

The corresponding full FRF matrix is shown in equation (5.44).
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Fig. 5.16 FRACs:    10% noise,    20% noise,    20% with σ -value truncation
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It is shown that GJDM is generally not sensitive to noise. All point FRFs, those

are number 1, 6, 10, 13 and 15, are very well predicted, even in the 20% noise

case. The results which have low FRAC values are basically those FRFs which

have low response levels. The FRAC values increase significantly when singular

value truncation is applied to the 20% noise case. They are almost the same as

10% noise case without the singular value truncation.

Comparison between K-J method and GJDM

The coupling results produced by K-J method and GJDM are compared under the

same conditions: the same numbers of modes are used to generate the FRFs of

the substructures and these FRFs are free of noise. The FRAC – correlation

between the coupling analysis results and the assembled finite element analysis

result – is calculated and displayed in Fig. 5.17.
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Fig. 5.17 FRAC of the two coupling methods:    GJDM,    K-J method

It is seen that the GJDM is universally superior to the K-J method in this

example.
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The development of a new FRF coupling analysis method, the generalised joint

describing method (GJDM) has been reported and it has the following advantages

compared with the conventional Klosterman-Jetmunden (K-J) method:

• the joint is completely separated from the main substrutures, and joint

parameters are modified independently. The substructures do not need to be

re-analysed with respect to the variation of joint parameters;

• separating the joint from the substructures will help to avoid generating an ill-

conditioned stiffness matrix and therefore to reduce the difficulties in solving

the eigen-problem of substructuresand the method is not sensible to the noise

in the input FRF data;

• the number of coupling degrees of freedom in one substructure can be

different from another to accommodate the DOF non-conforming

interfaces[FaGe92];

• the joint describing impedance matrix is very flexible. Its stiffness and

damping can be adjusted to fulfil the requirment of the system response. This

is not only an advantage for substructure coupling analysis but also provide a

technique for damper design in vibration control.
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Linear modelling of structural joints has been introduced and applied in the four

preceding chapters, chapter 2, 3, 4 and 5. A linear joint model is an idealised

description of joint properties in the sense that it has constant-valued mass,

stiffness and damping matrices. This idealisation is normally accurate enough to

represent most structural joints which are designed for firmly-fastened

connections such as welded, glued, bolted and riveted joints. The physical

explanation of this kind of joint is that there should be no relative movement

between interfaces; in other words, the interfaces are stuck together. In contrast,

joints which are designed for utilising friction damping to control vibration

response levels belong to a different regime. These connections are designed to

have relative movement between interfaces, i.e., macro-slip occurs between the
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interfaces. The friction introduced by macro-slip dissipates vibration energy and

generally causes a non-linear behaviour of the system.

The classification of joints into two categories – stuck and macro-slip – is based

on the lumped parameter model and Coulomb friction theory [Caug60]. When a

continuous model is considered as developed by Meng [MeBG86], another

phenomenon, micro-slip, can be revealed. This is a transition status between

stuck and macro-slip and is, of course, non-linear.  Since it is possible for

micro-slip to occur in fastened joints, a comprehensive research on joint

modelling should not only include linear cases as the status of stuck joints, but

should also include non-linear cases, such as micro- and macro-slip. Macro-slip,

however, involving the entire relative motion of the contact surfaces in

tangential direction, can be defined as a failure to a fastened joint and is not

mainly concerned here.

In this chapter, the current status of research on friction in joint modelling is

reviewed including the related theoretical background and the applicability in

practice. The purpose of this chapter is to help users of linear joint models to

understand the possible errors caused by non-linearities and also to indicate a

direction for future work in the area of non-linear joint modelling.

To clarify the terminology, the three status of the contact surfaces are named as

stuck, micro-slip and macro-slip. Some other names appear in the relevant

publications are listed here:

stuck = locked, stop

micro-slip = partial slip, slip

macro-slip = gross slip, global slip, sliding

������67$7(�2)�7+(�$57

Research which specifically focuses on modelling non-linearity of fastened

joints is very limited compared with that on linear joint modelling methods,
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while a large number of publications can be found on general non-linear topics,

and on contact and friction. Since contact and friction constitute the physical

essence of some commonly-used joints, such as bolted and riveted ones, we will

briefly look back at the milestones of their development and then pay more

attention in the analysis of micro-slip, its theory and applicability aspects.

The main references of this chapter which cover 70 years are categorised here

as shown in Fig.6.1.

[Caug60]

[Mino47]

[DenH31]

[DenH56]

[EaPh67]

[EaWi72]

[WeTY90]

[Grif80] [Shaw86][PrWi81]

[HoLi00]

[Yeh66]

[EaMo72]

[MeGr85]

[OaLa98] [YaCM98]

[MeGB86]

[SaSE95]

[RoBo75]

[MeBG86]

[LeGa95]

[GoKM56]

[GaNW94][WaCh92]

[Earl66]
The meanings of different frame styles are:
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Fig.6.1 Categorised references
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In analysing the dynamic response of structures it is common practice to

represent the friction that occurs at contact surfaces by means of single point

contact models. By using these Coulomb theory based models it is effectively

assumed that the bodies in contact are rigid and that the friction force at the

interface is proportional to the corresponding normal force. Basically, the use of

single point contact models can only represent accurately a fully-slipping or a

fully-stuck situation.

Since Den Hartog published his pioneering work in 1931 [DenH31], many

followers have been involved in the research area of friction damping. Most of

them studied the non-linear behaviour of a single-degree-of-freedom (SDOF)

system with a Coulomb friction element. These SDOF models have lumped

parameters and can describe either stuck or macro-slip status. The physical

model used by Den Hartog (without viscous damping) is shown in Fig.6.2 in

which the friction model is described by equation (6.1) and Fig.6.3.

m
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x

F±

( )ϕω +tP=P0 cos

Fig.6.2 The frictional vibration system [DenH31]
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Fig.6.3 Friction model
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An exact solution is given in Den Hartog′s paper [DenH31] for the motion of

the SDOF system with a sinusoidal excitation force and Coulomb friction

damping. He showed that for a resonant system, friction alone controls the

response amplitude only over a very narrow range of amplitude of the exciting

force. If the exciting force is less than the friction force, the mass will not move

at all (stuck) and if it is greater than π4  times the friction force, the amplitude

of an otherwise linear system is not limited at resonance. His results shown in

Fig.6.4 are widely accepted and collected in his later textbook [DenH56] and

Timoshenko′s book [WeTY90].

0 = F/P0

nωω

Fig.6.4 Amplitude diagram with Coulomb damping only

The results shown in Fig.6.4 were obtained from two possible types of motion.

One is that the mass never comes to rest. This motion is depicted in Fig.6.5 and

corresponds to the part of Fig.6.4 above the broken line. The other type of

motion is that during each half-cycle the mass will stick for a while, and, while
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sticking, the value of the friction is within [ ]FF ,− , as shown in Fig.6.6 with

the result shown in the curves below the broken line of Fig.6.4.
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Fig.6.5 Motion without stuck
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Fig.6.6 Motion with one stuck ( 00 tt <<  macro-slip, ωπ<< tt0  stuck)

The once-stuck motion had also been verified by experiment of Den Hartog.

The hysteresis loop obtained from his test shows the phenomenon of stuck and

macro-slip as in Fig.6.7, where the straight lines construct an approximated

bilinear hysteresis.

x

P

Fig.6.7 Record of motion with one stuck per half-cycle

To simplify the analysis of friction damping, Den Hartog proposed a concept of

equivalent viscous damping constant [DenH56], which works in such a manner
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that with sinusoidal motion the friction damping force does the same work per

cycle as is done by the equivalent viscous damping force. The equivalent

viscous damping constant ec  thus obtained is a function of frequency, ω , and

displacement amplitude, 0x , as

0

4
x

F
ce πω

= (6.2)

The amplitude diagram for viscous damping is shown in Fig.6.8 and the

corresponding diagram for equivalent viscous damping is shown in Fig.6.9.

Considering the cases where the damping is reasonably small, we notice that the

results of Fig.6.9 are approximately the same as the corresponding curves in

Fig.6.4.
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Fig.6.8 Amplitude diagram for viscous damping
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A SDOF system, shown in Fig.6.10, which exhibits more general bilinear

hysteresis as shown in Fig.6.11 and undergoes sinusoidal excitation, was

analysed by Caughey [Caug60]. The method of solution is called the method of

slowly varying parameters. It supposes that the system response takes the form

of

( ) ( )φω += tXtx cos (6.3)

where X  and φ  are slowly varying functions of t . These slowly varying

parameters can be replaced by their mean values over one cycle of θ , where

φωθ += t .

m

kd k0

F N= µ

( ) ( )tPtP ωcos0=

Fig.6.10 A 3-parameter SDOF system
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Fig.6.11 Bilinear hysteresis

The following conclusions were drawn from Caughey’s results (refer to

Fig.6.12):

• the system exhibits a “soft” type of resonance; i.e., the resonance peak

moves to a lower frequency as the amplitude of the driving force is

increased;

• the response curves are single-valued and stable, and show very steep slopes

on the low-frequency side of the resonance;

• phase resonance and amplitude resonance occur at the same frequency in

this system;

• for large enough excitation, the system exhibits an undamped resonance.
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Fig.6.12 System receptance obtained by Caughey
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The exact method for solving this non-linear problem is normally lengthy in

computation time and this factor may make it unacceptable in a practical

application to system with many DOFs. By comparison, methods whereby the

frictional force is replaced by an equivalent sinusoidal force are rapid, yielding

analytical solutions for the response of the system. A general, linear, MDOF

structure excited by m  sinusoidally varying forces jP , m, 2, 1,j K= , and

having a single frictional damper linking two co-ordinates was analysed by

Earles and Williams  [EaWi72]. A linearised analysis of the frictionally-damped

system was proposed based on two basic assumptions about the form of the

frictional force: (i) at any frequency the frictional force may be written as

( ) ( )φω += tFtF L sin , where φ  is the phase angle between the frictional and

applied forces and is not a function of time; (ii) if macro-slip occurs at the

damper, the frictional force is o180  out-of-phase with the relative slip velocity.

Depending on the limiting value of friction at the joint, the applied forces and

the frequency, macro-slip may or may not occur. These two states give rise to

two distinct response regimes for the analysis, stuck and macro-slip. In the stuck

regime, there is no slip at the damper interface, the relative slip amplitude is

zero at all times, and 0=θ . The stuck condition is

NF sL µ< (6.4)

where sµ  is the coefficient of static friction and N  is the normal load across

the friction interface. The amplitudes of linearised friction force and response

have the forms

j
j

jL PaF ∑=  and j
j

iji PbX ∑= (6.5)

where ja  and ijb  are constants determined by the receptance coefficients of the

structure.

In the macro-slip regime, experiments showed that the measured amplitude of

the frictional force was not constant as described in Fig.6.3. The frictional force
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increased with increasing slip amplitude. It would appear reasonable, therefore,

to examine, as a possible alternative for LF , the expression

UNF sL δµ += (6.6)

or

NF eL µ= (6.7)

where ( )UNse δµµ +=  and δ  is assumed to be a constant for any given

system. Its magnitude basically depends on the material and configuration of the

interacting surfaces. For the rig used by Earles, and for the range of normal

loads and displacements tested, the term Nδ  should be constant ( )129 −≈ mm .

This conclusion is consistent with the assertion that the term ( )UNδ  results

from the work required to deform the contacting asperities during slipping. By

substituting for the slip amplitude, U , an expression of linearised frictional

force is then available explicitly as a function of PNs ,,,δµ  etc.

The curves of system receptance obtained from the linearised friction force

analysis gave a good prediction of the pattern – not the exact amplitude – of the

measured response of the system. Earles′ linearised analysis, as well as

experiments, verified the “soft” type resonance behaviour, which was concluded

from Caughey’s study. In addition, the use of (6.7) for the linearised frictional

force produces a significant improvement over Den Hartog′s expression where

0=δ  only.

Since the early 1980s, Meng and his colleagues have published a series of

papers on the subject of friction damping. These papers developed the methods

used for stick-slip analysis and also made contributions to the analysis of micro-

slip phenomenon which is a transition between stick and macro-slip. Using the

same model as that used by Caughey, Fig.6.10, Meng assumed that the reaction

force from the damper can be approximated as a sinusoid by expanding it in a

Fourier series and keeping only the lowest terms [MeGr85]. The results

obtained in this way are identical to the steady-state solutions of Caughey. An

extensive application of this method to a beam structure with flexible damper



Non-linearity considerations in joint modelling and substructure coupling chapter 6

137

system yielded a response diagram, shown here as Fig.6.13, which verified and

also completed Caughey′s results.
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Fig.6.13 Responses of stuck and slip states

Fig.6.13 illustrates the procedure that the damper is from fully-slipping to fully-

stuck with the change of the damper slip load, dF . The curves obtained for

6.0 ≤dF  show typical non-linear features, the same “soft” character as

Caughey’s results in Fig.6.12, while the curves corresponding to 10.0 ≥dF

describe the sticking condition. The system is linear under these two extreme

conditions – when the damper slip load dF  is zero or when it is completely

stuck.

�������)ULFWLRQ�0RGHOOLQJ�%DVHG�RQ�&RXORPE�7KHRU\��&RQWLQXRXV�&RQWDFW�0RGHOV

Laboratory experiments have shown that idealisation of the friction problem to

single point contact models, i.e., lumped parameter models, may be acceptable

if macro-slip occurs at the interface, usually as a consequence of the normal

load being small. For high normal loads, however, only micro-slip may be

expected. It has been recognised since the early 1950s when Mindlin showed
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that there is micro-slip at the interface between two elastic bodies in contact

[Dere74]. As a result, the energy dissipation increases as the third power of the

displacement and Coulomb friction can control resonant vibration amplitude for

excitation levels less than that necessary to cause macro-slip.

Mindlin tackled the problem from the viewpoint of contact mechanics [Dere74]

and used a 2-sphere contact model. In general, when non-conforming faces of

two elastic bodies are pressed together, the geometry of the contact area is a

non-linear function of the normal pressure. In many cases the normal stress

drops to zero at the contact boundary so that even small tangential loads cause

some slip. The micro-slip at the interface between two elastic spheres with

contact normal force and oscillatory tangential force was first analysed and this

analysis led to further work on damping and stiffness of particulates under

oscillatory loading [Dere74]. Except for some relatively minor effects, the

energy dissipation at the interface increases with the cube of the displacement

and has some effect even at vanishingly small loads. This makes it quite

different from Den Hartog’s solution in which there is no effect at small loads

and where the energy dissipation increases linearly with the displacement. It is

also true in this case that there is a critical vibration amplitude above which the

frictional dissipation can no longer limit the vibration amplitude without help

from other dissipation mechanisms, e.g., viscous damping. Both the level of

damping and the critical amplitude depend on the normal force. The results

obtained from the analysis of spheres are applicable to beams and some of the

validated analyses were summarised by Goodman [Good88].

The research on friction damping has been pushed forwards since 1950s in part

due to the development of gas turbine engines. It has been known that slip in

blade roots can yield useful damping for turbine and compressor blades.

Goodman in the 1950s, Earls in the 1970s and Meng in the 1980s are some of

the representatives.

The micro-slip concept was clearly described by Goodman and Klumpp

[GoKl56]. Mainly working on the purpose of reducing resonant stresses by

means of slip damping, Goodman and Klumpp gave an explicit formula for the
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energy dissipated per cycle of vibration. They also concluded that joints must be

designed so as to maintain a particular value of clamping pressure at the

interface in order to achieve a maximum energy loss as shown in Fig.6.14. This

result is consistent with that of Meng′s shown in Fig.6.13. The stress analysis of

a plane interface under uniform pressure, but with variable slip, was carried out.

The predictions of the theory were then confirmed by experiment. However,

Goodman and Klumpp did not give a frequency response function.
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Fig.6.14 Variation of energy loss per cycle with joint normal pressure

A more systematic study of the micro-slip condition was reported by Meng et al

[MeBG86] and a micro-slip model was proposed based on a continuous friction

contact physical model. In its general form, the model consists of two elastic

bars joined by an elastoplastic shear layer. One feature of this model is that the

deformation paths for cyclic or irregular loading and unloading are determined

automatically since the element has the inherent capacity to “memorise” the

relevant portions of the past loading history. Another feature is that the

relationship between the displacement and the force within the non-linear range

was given in parametric form in terms of a parameter that measures the amount

of slip in the element. Thus, it does not require a priori that the force be

expressed in terms of the displacement or, conversely, the displacements in

terms of the force. Instead, either choice is allowed.

The development of Meng′s partial-slip friction model is summarised as

follows.
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For solving the above equations three separate cases must be considered,

depending on the deformed state of the shear layer: (i) purely elastic, (ii) micro-

slip and (iii) macro-slip. In the case of elastic deformation, the system will

respond elastically as long as the displacement at the right end of the bar

remains below the value kmτ . By solving equation (6.9) with the substitution

of ku=τ , force P can be expressed in terms of displacement. P will, in general,

be non-zero and should vanish if only the relative stiffness of the shear layer to

the bar is infinite large. That means that the bar will start to slip for an

arbitrarily small value of the tangential force in the absence of a flexible shear

layer. As P increases beyond the value for which the shear layer starts yielding,

micro-slip occurs. The parameter a ( )10 ≤≤ a  denotes the fraction of the

contact length that has slipped for a given value of P. The governing equations

of the micro-slip situation are

( )
( ) LxLauEA

LaxkuuEA

m <<−=−′′
−<<=−′′

1for    0

10for    0

τ
 (6.11)
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Fig.6.16 Micro-slip model

Equation (6.11) is linear and can be solved explicitly. A set of two parametric

equations that define the portion of the skeleton curve corresponding to micro-

slip in terms of the plasticity index, a , are then obtained. The derivations were

given step by step in [MeBG86].  Macro-slip occurs when the entire contact

surface becomes plastic with increases of the tangential force P.  This plastic

state will remain unchanged until unloading begins. The shape of the skeleton

curve is as shown in Fig.6.17 in which ∆  is the displacement at point B as

shown in Fig.6.16 and subscript g  stands for the start of macro-slip. Due to the

presence of the lumped spring at A, the skeleton curve does not become
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horizontal but exhibits linear strain hardening. The slope of the skeleton curve

becomes discontinuous as the shear layer becomes fully plastic.
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Fig.6.17 Skeleton curve of a single bar contact model

The behaviour of a lap joint shown in Fig.6.18 is similar to that of the single bar

studied previously and exhibits three distinct types of behaviour. In contrast to

the single bar behaviour, however, slip in the lap joint does not progress

monotonically from one end of the joint to the other. Slip, instead, is initiated at

one end, progresses inwards with increasing load until the shear force at the

other end reaches the yield level and begins to slip. Thereafter, the slipped

regions move inward from both ends until macro-slip occurs. The theoretical

formulation for the lap joint is similar to that for the single bar.

E1A1

E2A2

L

P

P mk τ,

Fig.6.18 A lap joint model

A skeleton curve describing the relative displacement between the two points of

application of the loads versus the applied loads is sketched in Fig.6.19. The

similarity between this curve and that corresponding to the single bar element is

apparent.
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Fig.6.19 Skeleton curve of a lap joint model

The hysteresis loop obtained by Masing rules [Herr65] for describing cyclic

unloading and reloading is shown in Fig.6.20.

1

1

g∆
∆

gP

P

Fig.6.20 Hysteresis loop

To demonstrate the characteristics of steady-state response, two separate cases

with different values of λ , the relative stiffness between the shear layer and the

bar, were analysed by an approximate method. The results are shown in

Fig.6.21 for increasing values of the dimensionless normal load ε ( 0fpLµε = ,

where 0f  is the maximum amplitude of the sinusoidal excitation force). There

is no difference between the two cases for small values of the normal load. For a

softer shear layer ( )1=λ , the load is transmitted almost uniformly through the

layer. Thus, depending on the values of the normal load and the excitation

frequency, the joint either remains completely locked or it undergoes macro-slip
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as shown in Fig.6.21 (a), since yielding occurs simultaneously at every point of

the shear layer. For the stiffer layer, however, yielding develops gradually,

giving rise to micro-slip of the joint as shown in Fig.6.21 (b).

nωω

Fig.6.21 Frequency response functions: (a) 1=λ  (b) 5=λ

Three conclusions can be drawn from the frequency response curves shown

above:

• the presence of micro-slip affects the dynamic responses in such a way that

for a given value of the normal load the peak response of the system with

stiff layer is considerably smaller than that of the system with a soft layer;

• the resonant frequency of the system with a soft layer is not sensitive to

changes of the normal load, while normal load reduction results in a

softening of the system with the stiff layer; and

• for very high normal loads the system with a stiff layer exhibits a higher

resonant frequency due to the large stiffness of the shear layer as compared

to the case with a soft layer.

The frequency response characteristics obtained from simulations mentioned

above were validated by experiments and reported in [MeGB86a]. One of the

experiments was that an idealised turbine blade was excited at various
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frequencies and with different friction loads imposed by a rubbing block acting

on the blade′s platform. The parameters used in the prediction model for

describing the shear layer property were ( )mmNk 4105.1 ×=  and 3.0=µ .

The predictions agreed well with the measured data and exhibited both softened

and shifted response as shown in Fig.6.21 (b).
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The mechanism of influence of joints on structural behaviour was investigated

more recently by Gaul et al [GNWL94]. Both response function measurements

and detailed finite element calculations were carried out based on a bolted joint

test rig, a resonator shown in Fig.6.22. The FE analyses helped to interpret the

measured results, thereby leading to a deeper insight into the dissipation

mechanism in bolted connections including the transition from micro-slip to

macro-slip and the associated stress distributions.

bolted joint

flexure spring

mass mass

isolated joint

Fig.6.22 A resonator with lap joint

Similar to the work reported earlier, such as [Caug60] [MeBG86] etc., the

response functions were measured with different excitation force levels. Their

characteristics can be summed up as: (i) the resonance frequency drops with

increasing excitation force. This is caused by softening of the system with

increasing slip areas. At higher excitation forces the slip portion of a cycle

increases, which results in a decrease of the equivalent stiffness. (ii) The inertia

decreases with increasing excitation force due to an increase of frictional

damping. (iii) The run up flank is steeper than the run down flank, the same

effect as shown in Fig.6.12 and 6.21.
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Finite element analysis of the lap joint was carried out in two steps. In the first

step only an isolated joint (the shadowed part in Fig.6.22) was modelled,

discretising the lap joint using 450 four-node plain stress elements. In this

model, 40 gap friction elements with Coulomb-type constitutive equations

represented the friction interface. After the normal force was applied as a static

pre-load to simulate the bolt compression, the model was subjected to tangential

forces, both statically and dynamically. With this model, the theoretically

expected bilinear hysteresis was reproduced and no influence of inertia and

stiffness effects was observed. The transmitted force was limited to a finite

value after macro-slip had occurred. Thus the 3-parameter model seemed to be

an inadequate description of the isolated joint. The typical form of a measured

hysteresis did not show up. In the second step, the whole resonator was

discretised. As a simplification, the large resonator masses were lumped to point

masses and the flexure spring was discretised by simple spring elements. An

eigen-value analysis validated the finite element model by comparing measured

and calculated natural frequencies. The bending effects led to varying normal

pressure distributions in the contact interface and so did the shear stress

distributions. At the limit points, the slip limit was reached over almost the

whole contact length. Only a small portion in the middle remained stuck. This

indicated micro-slip, progressing from the edges to the middle without reaching

a macro-slip state.

Gaul′s finite element simulations revealed that a joint model not only has to

account for micro-slip but also for the interaction with the dynamics of the

structure. The structural interaction of the test rig can influence the hysteresis.

In fact, both the isolated joint properties and the properties of the whole

resonator with a lap joint were included in the measured response function,

which could not be represented only by an isolated joint model.

The discrete parameter models of frictional systems have the advantages of

being mathematically simple and physically meaningful. As shown in Fig.6.11,

the bilinear hysteresis loop, which describes the relationship between

transmitted force and displacement and exists in systems with Coulomb friction
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and systems with elastoplastic material, is obtained from the discrete parameter

models. A drawback of this type of models is, however, their incompleteness –

they can only describe the regimes of stuck and macro-slip but not the regime of

micro-slip. Since the joint in a lumped parameter model is normally modelled

by three parameters, 0k , dk  and F , as shown in Fig.6.10, it can also be

described as a “3-parameter model”.

The equation of motion for the 3-parameter model shown in Fig.6.10 is

( ) ( )xxFtPxm &&& ,cos0 −= ω (6.12)

The transmitted longitudinal force in the joint is

( ) ba FFxxF +=&, (6.13)

where

xkFa 0= (6.14)

( )


 +−

=
xF

xFxxk
F dd

b &

&

sgn

sgn
     

FF

FF

b

b

≥
<

 if

 if
(6.15)

One modified lumped parameter model was proposed by Lenz et al [LeGa95].

The purpose is to adapt the bilinear hysteresis loop, Fig.6.11, to the measured

one, as shown in Fig.6.7, where the round corners show the transition between

stuck and macro-slip, i.e. the micro-slip.

To capture the behaviour of all three regimes with one model, the Valanis

model known from plasticity [Vala71] was adapted. Without slip-stick

parameters, and by assuming velocity independence, the model is governed by

the first order differential equation

)(
)(

)(
)(

0 zqE
dz

zdq
EzF

dz

zFd
tλλ +=+ (6.16)

The relation between the generalised variable )(tz&  and physical time t was

given by
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dt

tFd

Edt

zdq

dt

tdz )()()(

0

κ−= (6.17)

where q  is a generalised co-ordinate, λ , 0E  and Et  are material parameters, F

is a generalised force and κ  is a dimensionless parameter, 10 ≤≤ κ . Starting

from these two equations, a different equation for the joint hysteresis was

worked out as
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If interpreting that xq =  and F  has the same meaning as in (6.13), and

combing the joint model (6.18) with (6.12), the following differential equation

of motion in terms of the displacement x  is then achieved:
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The numerical solution of equation (6.19) can describe the transition between

stuck and macro-slip, i.e. it can determine the load under which the transition

happens. The physical interpretation of the parameters in the description of the

joint model (6.18) is given in Fig.6.23. The stiffness moduli of stick condition

and slip condition are denoted by 0E  and tE  respectively. The parameter, κ ,

can be used to control the portion of micro-slip. The parameter 99.0=κ

approximates the 3-parameter joint model with slightly rounded corners. The

corner radius increases with the decrease of κ  value. The parameter 0σ  denotes

a stick limit equivalent to the yield stress and was defined by







−

=

0
0

0

1
E

E

E

tκσ
λ (6.20)
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We notice that the Valanis model has 4 independent parameters: tE , 0E , 0σ

and κ . Parameter λ  was derived from these four as shown in (6.20).

Comparing the Valanis model with the 3-parameter model, we find the

following relationships between their parameters:

0kEt = , dkkE += 00  and NF µσ ==0 (6.21)

There is no counterpart in the 3-parameter model for parameter κ  in the

Valanis model, which describes the transition from stick state to macro-slip.

The parameters of the Valanis joint model can be identified from measured

hysteresis and by iterative fitting of κ .

x

F

0E

0σ

6.0=κ

99.0=κ

6.0=κ
0E

tE

Fig.6.23 parameters of the Valanis model

Another modification to the 3-parameter model was done by Sanliturk et al.

[SaEw95]. They developed a hybrid model for the study of friction dampers

used for turbine blade vibration control, which is a non-linear combination of

macro-slip and micro-slip models:

)()1()()( xFexFexF mac
xx

mic
xx

hyb
crcr ββ −− −+= (6.22)

where the micro-slip model was given by Rogers and Boothroyd [RoBo75] as

)1()( x
mic eNxF κµ −−= (6.23)

and the macro-slip model is





=
N
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xF d

mac µ
)(      

cr

cr

xx

xx

≥
<

(6.24)

Four independent parameters in this model are:
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dk contact stiffness

F friction force, NF µ=
β empirical factor

κ micro-slip parameter

The empirical parameter, β , plays the role of controlling the portion of slip in

the contact area. )()( xFxF michyb =  when 0=β  and )()( xFxF machyb →  when

∞→β , while parameter κ  has the similar function working inside the micro-

slip model. The shape of hysteresis loop described by the hybrid model with

different κ -values is shown in Fig.6.24.

x

F

Fig.6.24 Hysteresis loop described by the hybrid model

It is noticed from studies of the dynamic behaviour of systems with frictional

mechanisms that in the present situation we can predict the behaviour of very

simple systems under laboratory conditions. We are far from being able either

to predict or to control the damping produced by micro-slip between surfaces in

complex, fabricated structures. More advanced research work is demanded

since several studies have shown that joints and connection damping are the

most important mechanisms for energy dissipation in most real structures

[Unga73] [Bear79].

������,03257$1&(�2)�121�/,1($5�-2,17�02'(//,1*

Many structures with mechanical joints possess slip interfaces. Lap joints, for

instance, are often used in practical structures to connect components. In one

such joint, two components are held together at their interfaces by the action of
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a pre-stressed bolt, which creates a clamping pressure on the components. The

axial force is transferred by the joint through the frictional force along the

interface, caused by the clamping pressure. As loading is transferred through the

joint, macro-slip along the interface will not be allowed if the joints are

designed for the purpose of tightening or fastening. However, micro-slip in the

friction interface is possible, i.e., the slip along the interface is localised in a

certain slip region while the rest of the interface is in the stuck region.

As has been reported in the last section, macro-slip and micro-slip cause energy

dissipation and provide the dominant damping mechanism in many structures.

The dissipated work per cycle is the area traced out by the hysteresis loop as

shown in Fig.6.7. Lenz showed that the work vanishes in the stuck zone and is a

linear function of relative displacement in the macro-slip zone [LeGa95]. In his

experiments, the dissipated work per cycle from the measured hysteresis versus

the amplitude of the relative displacement is the same linear curve in the range

of macro-slip as described by the 3-parameter model. This was also shown in

[GoKM56]. While in the range of smaller excitation forces, however, the curve

of dissipated work shows an increasing slope with increasing relative

displacement, and this regime is associated with micro-slip as shown in

Fig.6.25. The same characteristics were also observed by Rogers and Boothroyd

[RoBo75]. It is recognised from Fig.6.25 that the 3-parameter model is a

simplified one which ignores the transition process from stick to macro-slip, the

micro-slip.

To simplify the models for joint non-linearity analysis, currently available

results on micro-slip studies are mostly obtained from isolated joints and do not

include much of the influence from the components. However, the structural

interaction of the components affects the hysteresis, and the significance of joint

non-linear effect to the dynamic behaviour of structures changes from case to

case, even with the same type of joint. In normal working conditions, fastened

or tightened joints are in the stuck state and the systems are dominated by linear

performance.
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Fig.6.25 Dissipated work

An experiment was carried out to investigate the significance of non-linearity in

a practical assembled structure, the “breadboard structure” shown in Fig.6.26. A

beam is connected to a plate via two bolted joints. The details of the

components and joint have been shown earlier in Figs.5.4, 5.5 and 5.7. The

torque applied to fasten the bolts was 4N-m.

Fig.6.26 A plate-beam structure

In this experiment, the structure was suspended vertically by two strings at the

top corners of the plate. A shaker was used as an exciter connected to point A

on the plate via a push rod, exactly normal to the plane of the plate. The system

response was picked up at point B by a Laser Doppler Vibrometer (LDV). The

≈ ≈
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excitation was given on one side of the plate where the beam was assembled

and the responses were measured on the other side. The excitation signal was

stepped-sine and the input force level was controlled by a computer program.

The non-linear behaviour of the breadboard structure was monitored first from

the response time signal – the response signals were distorted sine waves at

some excitation frequencies. In the frequency range between 20 and 2,000Hz,

for the preliminary modal testing, four specific frequency zones were selected

and measurements of mobility were carried out in these frequency zones by

applying different levels of excitation force. Of all these four segments of FRFs,

only one of them, in the frequency range of 250Hz to 300Hz, displayed a non-

linear behaviour and the non-linearity affected less than a 10Hz frequency band.

The measured FRFs with non-linear characteristics are shown in Fig.6.27.
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Fig.6.27 Measured FRFs

An finite element model was constituted for the test structure. It is a linear

model, in which plate and beam were discretised by shell elements and the bolts

were modelled by solid elements. No gap friction element was used in the

contact interfaces. The linear finite element model shows good correlation with

the experimental results. As shown in Table 6.1, the first 10 natural frequencies

predicted by the finite element model have a maximum error less than 5% when

compared with the test results. That means the linear finite element model
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works well in describing the structure′s dynamic properties. Two mode shapes,

the 7th and the 8th, relating to the two modes in Fig.6.27, are shown in Fig.6.28

and 6.29. These two mode shapes show the modal displacements in z direction,

which is perpendicular to the plate.

Table 6.1

No. 1 2 3 4 5 6 7 8 9 10

FE 35.70 74.20 96.90 107.60 183.20 227.50 257.60 276.70 316.40 353.80

Test 36.40 75.30 95.30 112.20 184.00 221.20 254.90 271.77 303.00 345.20

error% 1.92 1.46 -1.68 4.10 0.43 -2.85 -1.06 -1.81 -4.42 -2.49

Fig.6.28 The 7th elastic mode at 257.60 Hz

Fig.6.29 The 8th elastic mode at 276.70 Hz
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Since the excitation force was applied in the z direction and the responses were

mainly produced in the z direction as well, the tangential forces at the joints,

either in the x or y directions, can only be induced by deformation of the plate

and beam. In the circumstance of the experiment, these tangential forces were

not large enough to give rise to micro-slip between the joint interfaces at most

of the measurement frequencies. Therefore, the non-linear behaviour observed

in the measurement is not significant.

The non-linear phenomenon around 277Hz in Fig.6.27 shows some of the

features of friction damping. There exists a highly damped mode which exhibits

softening characteristics, and since the normal pressure in the joints was

constant (the tightening torque applied to the bolt was 4N-m), the amplitude of

the mobility at this frequency increased with the increase of the excitation force.

It is concluded from this case study that no significant non-linear behaviour

existed in the assembled breadboard structure, and so the effect of non-linearity

in the estimation of the system FRFs can be neglected as it appears in a small

frequency range.
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The substructure coupling methods discussed in Chapter 4 and 5 are based on

the assumption that the relevant systems to be coupled are linear. This

assumption is sometimes inadequate for the accurate description of some

systems due to the inevitable existence of non-linearity in many structural

joints. One of the outcomes of this problem is a method of solving the non-

linear equations of motion by approximate procedures. These approximate

procedures assume that the steady-state response is essentially harmonic. It is

efficient and also sufficient to keep only the first term of the Fourier series

expansion of the non-linear force and finally convert the non-linear differential

equations of motion to a non-linear algebraic equation. One of the most popular

procedures is known as principle of harmonic balance, which is heavily based

on the Krylov-Bogoliubov approach [Mino47]. The describing function method,
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which is regarded as an application of the principle of harmonic balance, and is

widely used for the analysis of non-linear control systems [Silj69], can also be

employed in structural non-linear coupling analysis.

�������7KH�SULQFLSOH�RI�KDUPRQLF�EDODQFH

Considering a non-linear system which is subjected to harmonic excitation, the

system differential equation can be written as

tie ωPxxfKxxCxM =+++ ),( &&&& (6.25)

where ),( xxf &  is a non-linear force. A steady-state solution for )(tx  can be

represented by a Fourier series as

tim

m

m

m

m et ω∑∑
∞

=

∞

=

==
00

)( Xxx (6.26)

where superscript m  indicates the thm  order harmonic and mx  is the thm  order

component of displacement response. Then the complex displacement response

amplitude X  at the thj  co-ordinate in the thm  harmonic, m
jX , can be written

as

m
jim

j
m
j eXX φ= (6.27)

where m
jX  is the magnitude and m

jφ  is the phase of the complex displacement

jX  at the thm  harmonic. If we consider the response to be dominated by the

fundamental component of the Fourier series, we can assume that the response

)(tx  will be approximated by the fundamental component, )(1 tx , written as

tiett ω11 )()( Xxx =≈ (6.28)

The response )(tx  at a general coordinate j  can be written as

ti
jjj eXtxtx ω11 )()( =≈ (6.29)

where the complex displacement response 1
jX  is

1111
1

jj
i

jj iDCeXX j +== φ (6.30)
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where
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Similarly, the relative displacement response y  between the inter-coordinates

k  and l  ( )lk ≠ , kly , can be represented as
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where

m
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m
kl eYXXY ψ=−= (6.32)

If the variable, kly , in the non-linear function, )( klkl yf , has the form assumed in

(6.31), the non-linear force, )( klkl yf , is complex and is also a periodic function

of time. It then can be expressed by a Fourier series as
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The Fourier series written in complex form (6.33) can also be expressed as
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The non-linear force can be approximate by the fundamental component in its

Fourier series written as

)sin()cos()()( 1111 tBtAeFyfyf klkl
ti

klklklklkl ωωω +==≈ (6.35)

where
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Substituting the fundamental component of response given by equation (6.28)

and the fundamental component of non-linear force given by equation (6.35)

into the non-linear differential equation (6.25), yields

( ) 112 FPXCMK −=+− ωω i (6.36)

The solution of the response 1X  is based on finding the fundamental linear

coefficients 1
jC  and 1

jD  for the response and 1
klA  and 1

klB  for the non-linear

force in which all the fundamental harmonic forces in equation (6.36) are

balanced by each other. Different iterative methods are available to solve this

kind of mathematical problem.

�������'HVFULELQJ�IXQFWLRQ�PHWKRG

The describing function method linearises the non-linearity by defining the

transfer function as the ratio of the fundamental harmonic components of the

input and the output to the non-linearity. In order to present the concept of the

describing function method, we consider an SDOF system with a non-linear

restoring force driven by a sinusoidal excitation written as

tAxx,fkxxcxm ωsin)( =+++ &&&& (6.37)

To solve the problem by the describing function method it is required to assume

that the variable x appearing in the non-linear function, )( xx,f & , is sufficiently

close to a sinusoidal oscillation expressed as

θφω sin)sin( XtXx =+≈ (6.38)
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where X  is a complex response amplitude, ω  is the excitation frequency and

φ  is phase angle.

If the variable, x , in the non-linear function, )( xx,f & , has the sinusoidal form

assumed in (6.38), the non-linear function, )( xx,f & , is complex and is also a

periodic function of time. Defining now the describing function, υ , as the

optimum equivalent linear complex stiffness representation of the non-linear

force, )( xx,f & , as

xxx,xx,f )()( && υ≈ (6.39)

If the type of non-linearity in )( xx,f &  is known, and assuming that the non-

linear force )( xx,f &  is also dominated by its fundamental term, then it can be

simplified by the first harmonic component of its Fourier series, )(1 xx,f & , and

the describing function )( xx,&υ  can be obtained from it.

Substituting equation (6.38) and (6.39) into (6.37), the non-linear differential

equation, we have

AXkcim =+++− )( 2 υωω (6.40)

Equation (6.40) is an algebratic one.
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A review on the research of friction in the joints of mechanical structures is

made which aims at an understanding of friction phenomena and an awareness

of currently available methods in dealing with friction in structural dynamics.

The importance of the consideration of joint non-linearity has been examined

and discussed via an experimental case study. The strategies in analysing

coupled structure with non-linear joints are also provided.

The following conclusions are drawn from the study in this chapter:
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• in most engineering structures, friction joints are often tightly fastened so

that the non-linear problems caused by these joints can be avoided, and in

the meantime, the damping levels at these joints are also reduced to a

minimum;

• the load-deformation relationships of a friction joint, in both the normal and

tangential directions, are not linear. However, the relationship in the normal

direction becomes effectively linear after a pre-load is applied and can be

considered as linear in most applications, while the relationship in the

tangential direction is always non-linear and energy is dissipated when a

cyclic load is applied;

• the transition process between stuck and macro-slip states usually exhibits

the strongest degree of non-linearity. While in the status of either stuck or

macro-slip the joint behaves almost linearly. This is concluded from both

discrete parameter model and continuous contact model studies;

• the current study on joint dynamic non-linear behaviour is still far to the

application for engineering structures. The investigations on simple models

in laboratory conditions reveal the mechanics but the results cannot be

quantitatively generalised due to the complexity of real joints, such as their

material, dimension, roughness of the contact surface and lubrication

condition etc;

• an experiment on a practical structure with bolted joints showed that no

significant non-linear behaviour exists in that case. The non-linear effect in

the estimation of the system FRFs can be neglected as it appears in a small

frequency range;

• if the non-linearity description of a joint is available, the harmonic balance

method and describing function method are ready to be used for the

coupling analysis.
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Rotational degrees of freedom (RDOFs) have to be taken into account in many

branches of structural dynamic analysis as independent co-ordinates. However,

the possibilities for measuring RDOFs are so limited that in some cases, the

attempt has to be given up and confined to measure translational degrees of

freedom (TDOFs) only. In the subjects described in this thesis, joint parameter

identification and substructure coupling analysis, the information of RDOFs

plays an important role. The full consequences and errors caused by excluding

RDOF data in joint parameter identification and coupling analysis have not

been clearly understood in the past. This Chapter systematically investigates

this issue by theoretical analysis and numerical examples. At first, we discuss

the impact of RDOF data on joint parameter identification.
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From the view point of discretisation, the motion of any node on a spatial

structure is generally described in a Cartesian co-ordinate system by six degrees

of freedom, namely three translations x , y , z  and three rotations θ x , θ y , θz .

As to the nodes at the coupling interfaces which are involved, the number of

DOFs of these nodes is critical to the identification results for the joint

parameters. For a specific joint, the number of DOFs of the interface nodes has

to be determined before the implementation of the identification procedure

proposed in Chapter 2.

If the supposed DOFs of the interface nodes are the same as those that exist in

practice; in other words, if the measurable DOFs on a joint are the same as the

practically-existing DOFs, then, the joint is DOF-compatible and it is possible

to identify the parameters. Otherwise, the joint is DOF-incompatible and it is

not possible to identify its parameters using the proposed method in Chapter 2 –

DOF-compatibility is a necessary condition for a correct identification.

The joint parameter identification method proposed earlier involves a basic

assumption that all FRFs related to the pre-determined DOFs of joints are

available, referring to (2.13) or (2.14). However, due to the difficulties in

practical measurement, some FRFs related to rotational degrees of freedom

(RDOF) cannot be measured even though they play significant roles in system

responses. In principle, in those cases where angular displacements of joints

cannot be neglected, if only translation degrees of freedom (TDOF) are pre-

determined and measured, the implementation of identification procedure will

yield an incorrect result. That is to say, it is the DOF-compatibility problem that

results in a failure of the identification process. This statement is further

explained as follows.

The joint parameter identification method proposed in Chapter 2 comes down to

solving a set of linear equations:

bAx = (7.1)
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where x  is the vector of unknown joint parameters, and A  and b  are

constructed using FRFs of both the substructures and the assembly, which are

either related with or affected by the practical joint DOFs.

To explain the concepts of DOF-compatibility and DOF-incompatibility, we

partition vector x  to









=
r

t

x

x
x (7.2)

where x t  is the sub-vector of parameters which relates to TDOFs only and x r

relates to the RDOFs. Substituting (7.2) into (7.1), we have
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(7.3)

If the joint is DOF-compatible, all elements in matrix A  and vector b  are

measurable and, therefore, the unknown vector x  can be solved. If the joint is

DOF-incompatible because FRFs relating to all or some of the RDOFs are not

measurable, then we are not able to solve the equation. An attempt to solve x t

by providing only the measurement result ttA  cannot be realised, either. From

(7.3), we know that

tttt bxA = (7.4)

holds if, and only if, 0A =tr . If equation (7.4) is used regardless of the fact of

0A ≠tr , we could only obtain a wrong result. The expression 0=trA  implies

that there is no RDOF active at any node of the joint.

������ 1XPHULFDO�,OOXVWUDWLRQV

Consider again the structure shown in Fig.2.4. The expected joint stiffness

matrix is
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The ideal case is simulated by assuming that all FRFs needed in the

identification are available and the identified result is shown in Fig.7.1, in

which all the 16 elements of matrix N are identified accurately.

Fig.7.1 identification of the joint stiffness

One of the elements in the stiffness matrix, 
l

EA=
��

N , is 91051858.3 × N/m and

the plot for all the solutions at different frequencies has been shown in Fig.2.5.

It is seen that all the 1000 solutions obtained from PA in the frequency range

between 0 and 2000Hz are accurate.

If the rotational DOFs at node 3 and 9 are not measurable, and only the

translation FRFs are used to identify the axial stiffness of the joint, the joint

stiffness matrix is then reduced to
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The implementation of the partition algorithm (PA) yields the identified result

as shown in Fig.7.2, in which only the first 10 solutions present a steady

behaviour, and all the rest 990 solutions have very large errors. For instance, the

first element, ( )N/m1064454.2
~ 9×=
��

N , is given by the first 10 solutions.

Compared with the exact value, ( )N/m1051858.3 9×=
��

N , its error is 24.84%.

This case study shows that in the DOF-incompatible condition, the identified

result can go wrong and the errors of the identified parameters can be

unpredictably large.

Fig.7.2  Stiffness identified using PA when no RDOF FRF included
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In substructure coupling analysis, the information from the RDOFs also plays

an important role and the extent of errors resulting in coupling analysis without

using RDOF data needs to be clearly established. The investigation of the

consequence of omitting RDOF-related FRFs form FRF coupling analysis is

carried out here in a systematic study. The error analysis for FRF coupling

without using RDOF related FRFs is based on the Klosterman-Jetmundsen

method (K-J method) mentioned in Chapter 5. The importance of RDOF-related

FRFs is quantitatively described by explicit error functions. These error

functions reveal the composition of the error caused by the absence of RDOF-

related FRFs. In the error function for general cases, the error is decomposed

and the contributions of both TDOF and RDOF related FRFs to the error are

thoroughly discussed. Two case studies are also presented to demonstrate the

effectiveness of the analysis.

������ 7KHRUHWLFDO�$QDO\VLV

The K-J method for coupling analysis is given by the expression of
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If the size of matrix icA H  is c
A

i
A nn ×  and matrix icB H  is c

B
i
B nn × , and notice that

the number of coupling DOFs always has the relationship of cc
B

c
A nnn == , the

FRF matrix of the assembled structure, HΣ , will be a symmetric matrix with the

dimension of ( ) ( )ci
B

i
A

ci
B

i
A nnnnnn ++×++ .

If only coupling co-ordinates are concerned, the equation can be simplified to

[ ] ccAccBccAccAccA HHHHHH 1−
Σ +−= (7.7)

by setting

0HHH === ciAicAiiA
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and

0HHH === ciBicBiiB

in equation (7.6).

An arbitrary element of HΣ  from (7.7) will be
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In general, the coupling DOFs consist of both translational DOFs and rotational

DOFs. The number of coupling DOFs, cn , can therefore be expressed as

c
r

c
t

c nnn += (7.9)

Denoting the coupling DOFs using the right-hand-side superscripts, we can re-

write equation (7.7) as

( ) c
A

c
AB

c
A

c
A HHHHH

1−
Σ −= (7.10)

 where

c
B

c
A

c
AB HHH += (7.11)

Partitioning each matrix in equation (7.10) according to the number of

translational DOFs, c
tn , and the number of rotational FRFs, c

rn  , we have
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If the amplitudes of the FRFs in sub-matrix c
trAB H  in equation (7.14) are

numerically much smaller than those in the sub-matrces c
ttAB H  and c

rrAB H , the

system is a weakly-coupled TDOF-RDOF system.

For a weakly-coupled TDOF-RDOF system, the summation of the FRF

matrices of substructure A and substructure B at the coupling DOFs can be

expressed  approximately in the form of block diagonal matrix as
















≈

c
rrAB

c
ttAB

c
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H0

0H

H

M

LLL

M

(7.15)

from which, we have
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Substituting equations (7.12), (7.13) and (7.16) into equation (7.10), the sub-

matrix of HΣ  (which includes only the translational FRFs) can be obtained as

( ) ( ) c
rtA

c
rrAB

c
trA

c
ttA

c
ttAB

c
ttA

c
ttA

c
tt HHHHHHHH

11 −−
Σ −−= (7.17)

If only the translational FRFs of the substructures are taken into account for

predicting the FRFs of the assembled system, the predicted translational FRFs

of the assembly will be

( ) c
ttA

c
ttAB

c
ttA

c
ttA

c
tt HHHHH

1ˆ −
Σ −= (7.18)

Comparing equation (7.18) with (7.17), the error caused by ignoring rotational

FRFs is

( ) c
rtA

c
rrAB

c
trA

c
tt

c
tttt HHHHHE

1ˆ −
ΣΣ =−−= (7.19)

In the cases when the condition of equation (7.15) is not satisfied, the inverse of

matrix c
AB H  can then be partitioned with regard to the size of the partitioned

matrix of equation (7.14) and should hence have the form of
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The submatrices in (7.20) can be expressed by the submatrices in (7.14) as

( ) ( ) ( ) 111 −−− ⋅⋅+= c
ttAB

c
rtAB

ci
rrAB

c
trAB

c
ttAB

c
ttAB

ci
ttAB HHHHHHH (7.21)

( ) ci
rrAB

c
trAB

c
ttAB

ci
trAB HHHH ⋅−= −1

(7.22)

( )Tci
trAB

ci
rtAB HH = (7.23)

( )( ) 11 −−−= c
trAB

c
ttAB

c
rtAB

c
rrAB

ci
rrAB HHHHH (7.24)

The derivation of equations (7.21) to (7.24) is given in Appendix E. Notice that

every partitioned sub-matrix of the matrix ( ) 1−c
AB H  contains not only the

information of TDOF FRFs, but also that of the RDOF FRFs. These two sorts

of information cannot be split as was done in equation (7.16). The matrix is

partitioned to be the same size as equation (7.14), e.g. ci
ttAB H  has the same

dimension as ( ) 1−c
ttAB H  and so on. ci

ttAB H  can be equal to ( ) 1−c
ttAB H  only if the

TDOF-RDOF weak coupling condition (7.15) is satisfied.

Substituting equations (7.12), (7.13) and (7.20) into (7.10), the sub-matrix of

HΣ , which includes only the translational FRFs, can be obtained as:

c
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c
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c
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Comparing equation (7.25) with equation (7.18), the error caused by ignoring

rotational FRFs is

( )
c
rtA

ci
rrAB

c
trA

c
rtA

ci
trAB

c
ttA

c
ttA

ci
rtAB

c
trA

c
ttA

ci
ttAB

c
ttA

c
ttA

c
ttAB

c
ttA

c
tt

c
tttt

HHHHHH

HHHHHHHHHHHE

⋅⋅−⋅⋅−

⋅⋅−⋅⋅−=−= −
ΣΣ

1ˆ
(7.26)

Notice that

( ) c
trA

Tc
rtA HH =



Impact of Rotation DOF Information Chapter 7

170

 and

( ) ci
rtAB

Tci
trAB HH =

so that, equation (7.26) becomes

321 EEEE ++=tt (7.27)

Each individual term in (7.27) is

PHPE ci
rrAB

T−=1 (7.28)

c
rtA

ci
rrAB

Tci
rrAB

c
trA HHPPHHE ⋅⋅−⋅⋅=−2 (7.29)

( ) c
rtA

ci
rrAB

Tc
rtA HHHE ⋅−=3  (7.30)

where

( ) c
ttA

c
ttAB

c
rtAB HHHP

1−= (7.31)

Equations (7.27) to (7.31) provide the means to predict the errors in the TDOF-

FRFs of the coupled structure which are obtained without using RDOF related

FRFs. This tool is useful in the assessment of the importance of RDOF related

FRFs in FRF coupling analysis before implementing the procedure of coupling

analysis.

The contributions of the different components in (7.27), 1E , 2E  and 3E , to the

total error, ttE , differ from case to case. Here, we can see that the TDOF RDOF

weakly coupled system is a special case of the general case with 01 ≈E , 02 ≈E

and therefore

3EE ≈tt

In the following numerical simulation, it will be demonstrated that the

significance of each component in equation (7.27) changes in different cases.
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Two identical planar beams are coupled to form a longer beam as shown in

Fig.7.3. The first beam, nodes 1 to 11, is taken as substructure A and the second

beam, nodes 11 to 21, is taken as substructure B. Each node has three DOFs: x ,

z  and yθ . The two beams are fully coupled at node 11.

1 2 3 4 5 6 7 8 9 10
11

12 13 14 15 16 17 18 19 20 21

x

z

yθ

Fig.7.3 Two beams coupled adjacently

The FRF matrix of substructure A at the coupling co-ordinates is



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
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cc
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c
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c
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HHH

HHH

HHH

θθθθ

θ

θ

H (7.32)

It is symmetric and all the elements are drawn in Fig.7.4.
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Fig.7.4 FRFs of substructure A at the coupling DOFs

These four FRFs shown in Fig.7.4 are, from bottom to top, c
xxH , c

zzH , c
zH θ  and

cHθθ . Elements c
xzH  and c

xH θ  in matrix (7.32) are zeros. The summation of

two FRF matrices of the substructures, c
B

c
A

c
AB HHH += , has its 4 elements

shown in Fig.7.5.
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Fig.7.5 Summation of two FRF matrices from substructure A and B

The four FRFs shown in Fig.7.5 are, from bottom to top, c
zAB H θ , c

xxAB H , c
zzAB H

and c
AB Hθθ . The cross FRF, c

zABH θ , is much smaller than the three point FRFs,

and the system is therefore recognised as a TDOF-RDOF weakly-coupled

system. The matrix c
AB H  is approximately diagonal.

The coupling analysis is carried out in two steps. First, we suppose that all FRFs

are available for both substructures and use these accurate FRFs to predict the

FRFs of the coupled structure. Second, we suppose only translation FRFs are

measurable (even though the rotational degree of freedom yθ  is still kept in the

substructures) and use these TDOF FRFs only to predict the FRFs of the

coupled structures. These two results are then compared in Fig.7.6. The error

function is calculated according to equation (7.19). The specific compared FRF

shown in this figure is c
zzHΣ , which is a point FRF of translation z  at the

interface.
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Fig.7.6  Comparison of coupling results:          exact          coupling          error
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This is a more general case than the first one: two planar beams are coupled

through a joint as shown in Fig.7.7. To simplify the analysis, the upper beam

and the joint are taken as substructure A and the lower beam is substructure B.

The DOFs at each node are x, z and yθ .

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

x

z

yθ

Fig.7.7. Two planar beams are coupled through a joint

Some elements of the FRF matrices of substructures A and B are shown in

Fig.7.8, specifically, those FRFs related to the degrees of freedom at the

interface, node 15. The elements of the summation of these two FRF matrices,

c
B

c
A

c
AB HHH += , as shown in equation (7.11) are presented in Fig.7.9, where

the lowest curve is c
xzAB H .

0 500 1000 1500 2000
-500

-400

-300

-200

-100

0

frequency (Hz)

re
ce

pt
an

ce
 (d

B
)

AHxx          

AHxz          

AHxθ     

AHzz          

AHzθ     

AHθθ

0 500 1000 1500 2000
-250

-200

-150

-100

-50

0

frequency (Hz)

re
ce

pt
an

ce
 (d

B
)

BHxx          

BHxz          

BHxθ     

BHzz          

BHzθ     

BHθθ

Fig.7.8 FRFs of substructure A and B
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It is noticed that both of the translation-rotation cross FRFs, c
xABH θ  and c

zABH θ ,

are not small compared with the point FRFs. Therefore, they are not negligible

and this situation exists in the general cases.
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Fig.7.9 Summation of two FRF matrices from substructure A and B

The coupling analyses are carried out with and without RDOF-related FRFs and

the results are shown in Fig.7.10, where ‘exact’ means the result obtained using

both TDOF-FRFs and RDOF-FRFs and ‘coupling’ represents the result

obtained using the TDOF-FRFs only. The discrepancy between these two

curves is obvious. It should be pointed out that, in general, the coupling analysis

without RDOF-related FRFs does not always underestimate the natural

frequencies as was shown in Fig.7.6, which relates to the TDOF-RDOF weakly

coupled system.
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Fig.7.10 Comparison of coupling results
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Fig.7.11 The composition of error

The errors in the FRFs of the coupled system for the general case have been

given in equation (7.22). The three terms of the error of c
zzHΣ  are illustrated in

Fig.7.11. The magnitudes of their values have the same order as their sequence

numbers as

321 EEE >>

It is clear that, in this case, the total error is approximately equal to the first

term:

1EEtt ≈

$�35$&7,&$/�&$6(
The plate and beam coupled structure introduced in Fig.5.6 (FE model in

Fig.5.10) is examined here as a practical case. This case demonstrates the

impact of RDOF information to the GJDM coupling analysis. The error matrix

as equation (7.27) for the K-J FRF coupling analysis is not given for GJDM

because of the mathematical complexity.



Impact of Rotation DOF Information Chapter 7

176

0 500 1000 1500 2000
−120

−100

−80

−60

−40

−20

0

frequency (Hz)

m
ob

ili
ty

 (
dB

)

exact  
no RDOF

Fig.7.12 Comparison between the no-RDOF coupling and the exact solutions

In the coupling process of the plate and beam coupled structure using GJDM, a

significant advantage is that the joint impedance matrix can be adjusted

properly to match the number of DOFs on its interfaces to substructures. When

all translation and rotation FRFs are measurable, as in the case shown in

Chapter 5, and the joint impedance matrix contains all the elements

corresponding to the measured DOFs, the result of the coupling analysis is

accurate, as shown in Fig.5.12. If only the translation FRFs of the substructures

are supplied, say, translations in z-direction only, the joint impedance matrix

needs to be adjusted to include merely the elements of axial stiffness, which

makes the dimension of =  become 22 × . The result of coupling without

RDOF-related FRFs is given in Fig.7.12 where it is compared with the exact

solution. It is seen from this comparison that the error caused by the lack of

RDOF-related information is significant. In a certain frequency range, even

though FRFs from the no-RDOF coupling analysis can match some of the

modes of the exact solution, the number of modes in the TDOF-only coupling is

generally less than that in the exact solution. This error may not be acceptable in

application.
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The impact of data from the rotation degrees of freedom (RDOFs) to the joint

parameter identification using LSM, and to the FRF coupling analysis, has been

studied. The following conclusions can be drawn from this study:

• DOF-compatibility of the identified model has to be considered before the

implementation of the identification method. Since the input data to the

LSM based joint parameter identification procedure are measured FRFs of

the substructures and their assembly, the pre-determined DOFs of the joint

model, whose parameters are to be determined by the identification process,

have to be compatible with those of the joint in the measured practical

structure. DOF-incompatible case can result in unacceptably large errors;

• the RDOF-related FRFs, which are ususally difficult to measure or to

measure precisely compared with the translation FRFs, play a very

important role in FRF coupling analysis. Coupling made without RDOF-

related FRFs produces errornous results. The errors can be predicted

quantitvely using the error functions provided here using information from

substructures only;

• the development of an accurate experimental technique for the measurement

of RDOF-related FRFs is then important for the application of both the

LSM-based joint parameter identification method and the FRF coupling

analysis. The expected accuracy is the same as that of the translation FRFs

obtained by the currently available techniques.
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Substructure coupling analysis is an important subject in structural dynamics.

Its task is to facilitate the prediction of the dynamic behaviour of an assembled

structure from the dynamic properties of substructures. In practice,

substructures are physically assembled together using various types of joint, and

in many cases these joints significantly affect the dynamic response of the

assembled structure. Recognising the importance of joints in coupling analysis,

the author has made contributions in this thesis on joint modelling and on the

involvement of joints in coupling analysis. The work reported in the thesis

mainly comprises three parts: (i) method review and development for joint

parameter identification; (ii) method review and development for substructure

coupling analysis, and (iii) critical discussion of the relevant issues of non-

linearity and rotational degrees of freedom. Concentrating all these aspects

around the subject of substructure coupling analysis, this thesis is based on solid

mathematical foundations and their validation by numerical studies. Overall

conclusions and suggested further developments on each part are summarised in

this chapter.

The main contributions of this thesis are:

• a new algorithm for LSM based joint parameter identification;
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• a new method for joint parameter identification using neural networks;

• a new theorem on transmissibility;

• development and validation of a CMS approach including joint impedance;

•  a new FRF coupling technique with joint impedance matrix included.

�������-2,17�02'(//,1*

Methods for joint modelling in general are reviewed in this thesis. A least-

squares method (LSM) based joint parameter identification method has been

developed and presented here, including its basic equations, algorithm,

numerical validation and robustness investigation. As a further development,

neural networks are introduced into the area of joint parameter identification.

The LSM-based joint parameter identification method can identify mass,

stiffness and damping parameters from a joint impedance matrix. This method,

in principle, can identify parameters in all kinds of linear joint. The partitioning

algorithm (PA) presented in this work for implementation of the LSM

identification method, is superior to the non-partition direct algorithm (NPA)

because it not only significantly decreases the number of equations involved in

a solution but also improves the condition of the coefficient matrix in the linear

equations. Therefore, the PA approach is an efficient and accurate algorithm.

The transmissibility theorem, a side-product in the algorithm study, reveals an

important correlation between FRFs in chain-like structures and provides a

guideline for selecting internal DOFs for the application of the joint parameter

identification method.

Neural networks have a good reputation in mapping non-linear relationships

between input and output data. A neural network can learn from available input-

output pairs. In other words, it can be trained by a set of input-output data. A

well-trained neural network will produce an accurate answer with an arbitrary

input within the range of the training set. To apply neural networks to this

particular subject, joint parameter identification, the main difficulty is in the
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preparation of training sets. A technique based on parametric families of FE

models has been used in this work to generate FRFs for an assembled structure

with variety of joint parameters. These FRF data are then compressed by using

principal component analysis (PCA) to form a much more compact input data

set. The output data set is formed by uncertainty factors of joint parameters

rather than the physical parameters themselves because these dimensionless

factors have better numerical properties. Two types of feedforward network are

used in the numerical simulations, MLP and RBF networks. Both of these

successfully identified the joint parameters in numerical studies made to

validate the method. This implies that the training sets obtained in the pre-

processing procedure (applying PCA to the FRF matrix) reflect the features of

the structures′ dynamic behaviour with the variation of joint parameters. The

RBF networks are more accurate and more efficient compared with the MLPs.

The neural network methods in general, either MLP or RBF, are robust and easy

to implement in practice.
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Component mode synthesis (CMS) and FRF coupling analysis are two

approaches for predicting the dynamic properties of an assembled structure

using the modal data or FRFs from its substructures.  Developments have been

made in this thesis for both of these approaches by taking joints into account in

the coupling process. These developments are more complete and practical as

compared with the earlier attempts [Urgu89] [Ferr98] in the sense that the high

mode-truncation error is compensated and a more general joint model is used.

The CMS method with joints included, and residual attachment mode

compensation, (CMSJ), extends the conventional free-interface CMS method by

introducing joints into the synthesis process. The joint appears in a general

impedance matrix form and its parameters are easy to adjust. Since joints are

normally the most difficult part to model, this method provides a convenient

way to modify the representation of the joints and to predict the dynamic

characteristics of the assembly without re-analysing the substructures. The
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residual attachment mode feature greatly increases the accuracy of the synthesis

analysis. In the second example of Chapter 4, when 6 and 4 modes were used

from substructures A and B, respectively, the first 10 predicted natural

frequencies of the assembled structure have a maximum error of only 1.1%. In

addition, the introduction of joints also makes the connection between the DOFs

of non-conforming interfaces possible.

A generalised joint describing method (GJDM) was derived and presented here

in which the FRF submatrices of the assembled structure are explicitely

expressed by the FRF submatrices of the substructures. The principle and

algorithm for this method have been validated by numerical studies. It has been

shown that the joint parameters can be tuned independently to change the

dynamic properties of the assembly. That is to say,  the substructures need not

be re-analysed with respect to variations in the joint parameters. This is not only

an advantage for substructure coupling analysis, but also provides a means for

designing joints as dampers for vibration control. The numerical studies

presented also demonstrated that this method is insensitive to random noise on

the input FRFs. For higher noise levels, a singular-value truncation can be used

to improve the quality of the predicted FRFs.
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Almost all papers which mark the milestones of the research on non-linear joint

modelling have been reviewed in this thesis and their connections in respect of

analysis methods and conclusions are summarised. It is concluded that in most

engineering structures, friction joints are often tightly fastened so that their

potential non-linear behaviour is suppressed and so is not significant. This

conclusion is validated by an experiment on a practical structure. Numerical

studies on both discrete parameter models and a continuous contact model

indicate that the transition process between stuck and macro-slip conditions

usually coincide with the region of strongest non-linearity. While in the status

of either stuck or macro-slip, the joint behaves almost as if it were linear. The

load-deformation relationship in the normal direction becomes effectively linear
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after a pre-load and can be considered as linear in most applications, while the

relationship in the tangential direction is always non-linear and energy is

dissipated when a cyclic load is applied. When the non-linearity description of a

joint is available, the harmonic balance method and description function method

are ready for use in the coupling analysis.

The importance of RDOF-related FRFs for joint parameter identification (LSM

based method) and for FRF coupling analysis (K-J method) have been studied

theoretically. The effect on the GJDM is also demonstrated via a practical case

study. A DOF-compatibility concept is put forward in joint parameter

identification using measured FRFs. The pre-determined DOFs of a joint model

have to be compatible to those of the joint in the measured practical structure.

DOF-incompatible case (e.g. absence of RDOF information in  the measured

FRFs) can result in unacceptably large errors.

In FRF coupling analysis, RDOF-related FRFs also play a very important role.

Coupling analysis without RDOF-related FRFs produces erroneous results. The

errors can be predicted quantitvely using the error functions provided here using

information from the substructures only. The RDOF-related FRFs are ususally

difficult to measure, or to measured precisely, compared with the translation

(TDOF) FRFs. Therefore, the development of an accurate experimental

technique for the measurement of RDOF-related FRFs is demanded by these

two applications with expected accuracy that is the same as that of the

translation FRFs obtained by the currently-available techniques.
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All four methods presented in this thesis – LSM-based joint parameter

identification, using neural networks to identify joint parameters, CMS with

joint considered (CMSJ) and general joint description method (GJDM) for FRF

coupling analysis – are expected to experience more applications to complicated

and practical structures. Problems may be exposed in the application process

and the algorithms may therefore need to be updated.
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Further research on the methodology of this topic should include an uncertainty

study of the proposed methods and the solution to non-linear problems.

Uncertainty, or error propagation, study is critical to the FRF based methods

since it is practically very difficult to measure the required FRFs on real

engineering structures with very good consistency and very low noise level. The

consistency and noise levels in FRFs need to be quantitatively justified and their

propagation through the procedure of solution should be analysed. On the other

hand, starting form the solid basis of linear analysis, it should not be much work

to extend some of the methods developed in this thesis to deal with non-linear

cases. For instance, applying neural network method to identify the non-linear

properties in joints; introduce non-linear description of joints to CMSJ and

GJDM.
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In many aspects of structural dynamics analysis, FRFs - either measured or

generated - are used directly to represent the characteristics of the structures in

question. In system identification, model updating as well as substructure

synthesis, various FRF matrices are used. Accordingly, it is important to

understand the construction of FRF matrices and to be aware of the

relationships between the individual FRFs.

The issue of transmissibility properties of MDOF systems is addressed here to

clarify the concept and to provide a criterion for the existence of the properties

in MDOF systems.

$������7+(�7+(25(0�2)�75$160,66,%,/,7<

For a system which has a diagonal mass matrix and a banded stiffness matrix,

such as
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and
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the following relationship between its FRFs holds:

( )
( )

( )
( )ω
ω

ω
ω

22

21

12

11

kjA

kjA

kjA

kjA

H

H

H

H
= (A.3)

at all frequencies when the following condition for the subscripts in (A.3) is

fulfilled:

( ) ( )2121 ,, jjkk <  or ( ) ( )2121 ,, jjkk > (A.4)

Here ),( 21 kk  represents a pair of excitation co-ordination numbers, and ( )21, jj

represents a pair of response co-ordination numbers. The sequence of k  and j

is the same as the co-ordinate index, i.e., the mass index given in M  matrix.

Proof  A spatial model is employed to prove this theorem. Consider the nDOF

system shown in

Fig. A.1, in which the excitation is applied at k and the responses are measured

on one side of the excitation DOF, at positions numbered as 1j and 2j .

mnmj1m2 mj2 mk

k1 k2 kj1 kj2 kk kn-1

xj1 xj2 fk

...... ... ...m1

Fig. A.1 An n-DOF mass-spring system
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The equation of motion has the form of

fZx = (A.5)

Its detailed form is
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(A.6)

where

1
2

11 mkd ω−=

iiii mkkd 2
1 ω−+= −          1- ..., 3, 2, ni =

nnn mkd 2
1 ω−= −  and

j  can be either 1j  or 2j

Big zeros in the matrices stand for “zeros elsewhere” hereinafter.

Define sub-matrices of Z  as lZ , nl  ..., 3, 2, 1,= , which are square matrices

formed by taking the first l  rows and columns from Z  as

11 d=Z









−

−
=

21

11
2 dk

kd
Z

  :
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From the fact that 0=if  for 1..., 2, 1, −= ki , we can obtain the relationship

between 1x , the displacement of m1 , and kx :

)det( 1

1

11

−

−

=
∏

=
k

k

p
p

k

k

x

x

Z
(A.7)

Similarly, the relationship between x j  and xk  is

∏
−

=−

−=
1

1

1

)det(

)det( k

jp
p

k

j

k

j k
x

x

Z

Z
     ( )j k< (A.8)

These two equations are derived later from equation (A.18) through (A.24) and

they can be validated by using the following recurrence formula

x
d

k
x2

1

1
1= (A.9)

1
1

1 −
−

+ −= l
l

l
l

l

l
l x

k

d
x

k

d
x          1 ..., 3, 2, k-l = (A.10)

Similarly, xk +1  can be derived using the last kn −  equations from (A.6):

( )
( ) kk

n

k
nk

k x
k

x
1

2

1 det

det
+

+

+ =
Z
Z

(A.11)

where 2+k
nZ  is a sub-matrix of Z , which is formed by the thk )2( +  to nth rows

and the thk )2( +  to nth columns. The same rule also applies to 1+k
nZ .

The kth equation in (A.6) is

kkkkkkk fxkxdxk =−+− +−− 111 (A.12)
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Substituting (A.7) and (A.11) into (A.12), we have
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Substituting (A.8) and (A.11) into (A.12), we have
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Equation (A.13) and (A.14) are FRFs expressed in the form of rational

fractions. The denominator is a 2n-order polynomial in ω , and the highest order

of ω  for their numerator polynomials is 2n-2. The poles and residues of the

fraction correspond to the natural frequencies and modal constants of the

system.

Let 1jj =  and 2jj =  separately in equation (A.14), we have expressions for

kjH 1  and kjH 2 , respectively. The ratio of kjH 1  and kjH 2  is defined as

Transmissibility Function:
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Specifically, when let 11 =j  and jj =2  then
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The expression of ( )ωT  in equation (A.15) is not a function of excitation co-

ordinate k, which means that ( )ωT  is not dependent on the excitation position.
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From the derivation process, we know the only requirement for the excitation

position is jk > . It means that if we rename the co-ordinate k, which is used in

the above derivation, to 1k , and give the system an excitation at 2k  ( )12 kk > ,

we will have the same function ( )ωT . That is, the following relationship holds
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Equation (A.17) can take the other form as
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So far, the theorem has been proved.

The derivation of equation (A.7) and (A.8) follows.

The first ( )lk −  equations in (A.6) are shown as equation (A.19). Changing the

Z  matrix of (A.19) to a square matrix of ( ) ( )lklk −×− , i.e., 1−kZ , by moving

xk  to the right hand side, we have equation (A.20)
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Solving for x j  from equation (A.20) using Cramer′s rule, we have a unique

solution when ( ) 0det 1 ≠−kZ  as
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is the remainder of  1−kZ  when the ( )lk − th row and the jth column are taken

away.

It is clear now that
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Substituting (A.24) into (A.22), we have
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Substituting (A.25) into (A.21), we have
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This is equation (A.8), and in the special case when 1=j , we obtain equation

(A.7) from equation (A.26).
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$������(;7(16,21�2)�7+(�7+(25(0

The theorem proved in section A.2 is applicable to relatively simple cases, such

as the chain-like mass-spring systems. We will see in this section that this basic

theorem can be extended to more complicated cases and later, in section A.4,

the bounds of the correlation properties of FRFs is presented.

To extend this theorem, we consider two general positive-definite systems

connected with a single spring or several springs, without losing generality.

Combinations of more than two systems can always be treated as the two-

system case without any difficulty.

$������7ZR�V\VWHPV�FRQQHFWHG�ZLWK�D�VLQJOH�VSULQJ��´���µ�FRQQHFWLRQ

The case of two systems connected with a single spring is shown as Fig.A.2.

Equation (A.3) still holds in this case, regardless of the interior connections of

system A or system B, when excitations are given in system B and responses

are measured in system A. Of course, the Transmissibility function, ( )ωT ,

would not take exactly the same form as equation (A.15). However, it will be

seen that a more general expression can be derived and equation (A.15) is

simply a special case of this more general version.

When these two systems are coupled with a single spring, and an excitation acts

at the kth DOF of system B, equation (A.5) has the form of (A.27).

 system A  system B

kc

fk
xj

Fig.A.2  Two general systems connected with a spring: “ - ” connection
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 (A.27)

Considering the first n equations of (A.27), we obtain

( )
( ) 1

,

det
x

k
x B

A

jnAc
jA ⋅=

Z

Z
(A.28)

Considering all the equations of (A.27), we have

( )
( ) k

Bk
jB fx ⋅=

Z

Z

det
1, (A.29)

Substituting equation (A.29) into (A.28) and re-arranging, we have an

expression for the frequency response function, ( )ωjkH :

( ) ( )
( ) ( ) ( ) jnA

A

Bk
c

k

jA
jk k

f

x
H ,

1,

detdet
Z

ZZ

Z
⋅

⋅
⋅==ω (A.30)

When the response of system A is measured at two DOFs, 1j  and 2j , we have

the ratio of two FRFs as a Transmissibility function:

( ) ( )
( )

( )
( ) 2,

1,

2

1
2,1

jnA

jnA

kj

kj
jj H

H
T

Z

Z
==

ω
ω

ω (A.31)

We can certainly have equation (A.3) from equation (A.31), which shows that

( )ω2,1 jjT is independent of k, the excitation co-ordinate on structure B. That

means the theorem has been successfully extended to the case of Fig.A.2.

It is not difficult to check that equation (A.31) and (A.15) are identical. When

AZ  is a tri-diagonal matrix, the result of equation (A.31) is equation (A.15).
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$������6\VWHPV�FRQQHFWHG�ZLWK�WZR�VSULQJV�,��´���µ�FRQQHFWLRQ

The “<” connection is demonstrated in Fig. A.3. One DOF in system A, A nx ,

connects to two DOFs in system B, B x1  and B lx .

 system A   system B

kc1

fk

xj

kc2

Fig. A.3 Two systems connected with two springs I: “ < ” connection

The Z  matrix in equation (A.5), in this case, takes the form of
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From the first n equations, we can solve for jA x :

( )
( ) ( )1211

,

det
xkxkx BcBc

A

jnA
jA ⋅+⋅⋅=

Z

Z
(A.33)

Considering all the equations of (A.32), we have

( )
( ) k

Bk
B fx ⋅=

Z

Z

det
1,

1  and 
( )

( ) k
lk

lB fx ⋅=
Z

Z

det
, (A.34)

Substituting equations (A.34) into (A.33) and re-arranging, we have an

expression for the frequency response function, ( )ωjkH :

( ) ( ) ( )
( ) ( ) ( ) jnA
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x
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,21,1
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==ω (A.35)

When the response of system A is measured at two DOFs, 1j  and 2j , we have

the same Transmissibility function as equation (A.31).
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Obviously, if the number of connections increases, say, from A nx  to all the

DOFs of system B, equation (A.31) still holds.

$������7ZR�V\VWHPV�FRQQHFWHG�ZLWK�WZR�VSULQJV�,,��´�!�µ�FRQQHFWLRQ

The “ > ” connection is demonstrated in Fig. A.4. Two DOFs in system A, A nx

and A mx , connect to one DOF in system B, B x1 .

  system B  system A

kc1

fk
xj

kc2

Fig. A.4 Two systems connected with two springs II: “ > ” connection

The Z  matrix in equation (A.5), in this case, takes the form of
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From the first n equations, we have
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Considering all the equations of (A.36), we have B x1  the same as (A.33).

Substituting equations (A.33) into (A.36) and re-arranging, we have the

expression of frequency response function ( )ωjkH :
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ZZ

ZZ

Z
⋅+⋅⋅

⋅
==ω (A.38)
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When the response of system A is measured at two DOFs, 1j  and 2j , we have

the Transmissibility function:

( ) ( )
( )

( ) ( )
( ) ( ) 2,22,1

1,21,1

2

1
2,1

jmAcjnAc

jmAcjnAc

kj

kj
jj kk

kk

H

H
T

ZZ

ZZ

⋅+⋅
⋅+⋅

==
ω
ω

ω (A.39)

If the number of connections increases, say from all DOFs of system A to B x1 ,

still exists and equation (A.39) becomes

( ) ( )
( )

( )

( )∑

∑

=

=

⋅

⋅
== n

p
jpAcp

n

p
jpAcp

kj

kj
jj

k

k

H

H
T

1
2,

1
1,

2

1
2,1

Z

Z

ω
ω

ω (A.40)
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It has been proved that the proposed theorem is valid in all the cases mentioned

above. Here we consider the case of two systems connected with two springs

III: “ = ” connection, shown as Fig. A.5. Two DOFs in system A, A nx  and A mx ,

connect to two DOFs in system B, B x1  and B lx  respectively.

  system B  system A

kc1

fkxj

kc2

Fig. A.5 Two systems connected with two springs III: “ = ” connection

The Z  matrix in equation (A.5), in this case, takes the form of





























−
−

−

−

=

0

0

,2

1

1

,2

)(

)(

Bmlc

c

c

lmcA

k

k

k

k

Z

Z

Z (A.41)

From the first n equations, we have
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( )
( )

( )
( ) lBc

A

jmA
Bc

A

jnA
jA xkxkx ⋅⋅+⋅⋅= 2

,
11

,

detdet Z

Z

Z

Z
(A.42)

Considering all the equations in (A.41), we have B x1  and B lx , which are the

same as (A.33). Substituting equations (A.8) into (A.42) and re-arranging, we

have the expression of frequency response function ( )ωjkH :

( ) ( ) ( ) ( ) ( )
( ) ( )ZZ

ZZZZ

detdet
,,21,,1

⋅
⋅+⋅⋅

==
A

jkjmAcBkjnAc

k

jA
jk

kk

f

x
H ω (A.43)

When the response of system A is measured at two DOFs, 1j  and 2j , the ratio

of two FRFs, ( ) ( )ωω kjkj HH 21 , is not independent of the subscript, k. That

means that the transmissibility function defined as equation (A.15) does not

apply in this case. Moreover, any connection between system A and system B

which is more complicated than this case, will make the whole assembly

inapplicable to the proposed theorem. In other words, the three types of

connection mentioned in section A.3 include not only the necessary conditions,

but also the sufficient conditions for the theorem to apply.

$������180(5,&$/�'(021675$7,21

Three numerical cases are presented here to illustrate the validity of the

theorem. These cases are formed by two basic systems connected in three

different ways. The two basic systems are FE models of plates and the

connections are rods. The parameters of the systems are:

plate: length 360 mm

width 200 mm

thickness 3 mm

Young’s modulus 29 N/m10110 ×

density 8.54 g/cm3

rod:    Diameter 1.0 mm

distance between the two plates 120 mm

Young’s modulus 29 N/m10110 ×

density 8.54 g/ 3cm
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Fig. A.6 shows the three assemblies of the two plates. They are (a) “ = ”

connection, (b) “ < ” connection and (c) “ > ” connection. In all three cases,

excitations are applied at 1z and 5z, and responses are measured at 21z and 40z.

To make the rods used as springs, only translations in z direction are released at

the nodes where plates and rods meet. Fig. A.7 presents overlaid FRFs in the

left column and overlaid transmissibility functions in the right column.

In the cases of (b) and (c), the transmissibility functions are expressed as

)(

)(

)(

)(
)(

5,40

5,21

1,40

1,21
40,21 ω

ω
ω
ω

ω
H

H

H

H
T == (A.44)

so, one can only see a single line.

In the general case, case (a), it is obvious that

)(

)(

)(

)(

5,40

5,21

1,40

1,21

ω
ω

ω
ω

H

H

H

H
≠ (A.45)

These results illustrate the validity of the transmissibility theorem.
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Fig. A.6  Two plates connected with rods. (a) “ = ” connection, the general case.

(b)  “ < ” connection. (c) “ > ” connection.
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Fig. A.7  Overlaid FRFs and overlaid transmissibility functions
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The transmissibility properties of MDOF systems have been thoroughly

discussed here. A transmissibility function, defined as the ratio of FRFs, can

always be found wherever the properties exist. The extension of the theorem,

two systems connected in certain ways, shows that the transmissibility function

can be analytically expressed as a function of only one system′s parameters. The

particular feature which results in systems exhibiting this property is that the

two response points must be separated from the excitation point by paths which

pass through a common single connection. Numerical case studies have shown

the validity of the theorem.

The discovery of the transmissibility properties of MDOF systems is valuable

for understanding the construction of FRF matrices. As FRF matrices are so

widely used in many aspects of structural dynamic and acoustic analysis, the

proposed theorem and its extensions are expected to play an important role in

these areas as essential knowledge.
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The objective here is to study the relationship of perturbation of the data of the

LS problem to perturbation of its solution. In practice, the consideration of such

perturbations can arise due to the uncertainties with which observable

phenomena can be quantified. It is also possible to analyse the effects of round-

off errors in the solution procedure as if their effects were due to perturbed data.

Results relating to perturbation of the pseudo-inverse or the solution of problem

LS are described as follows.

Let A  and E  be m n×  matrices and define the perturbed matrix, A
~

, as

~A A E= + (B.1)

and the residual matrix, R , as

++ −= AAR
~

(B.2)

We wish to determine the dependence of R  on E  and, in particular, to obtain

bounds for R  in terms of A  and E .

It has been proved [LaHa95] that for the general case, the residual matrix R

satisfies
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321 RRRR ++= (B.3)

where

++−= EAAR
~

1 (B.4)

Q)(IEAAQIAR −=−= +++ TT~
)(

~
2 (B.5)

+++ −=−−= AA)EP(I)AP(IR TT~~
3 (B.6)

Q  and P
~

 are projection matrices:

TT AAAAQ ++ ==  and ++ == TT AAAAP
~~~~~

(B.7)

These matrices are bounded as follows:

++ ⋅⋅≤ AAER
~

1 (B.8)

2

2

~ +⋅≤ AER (B.9)

2

3
+⋅≤ AER (B.10)

More specifically, if we assume that 1<⋅ +AE  and that

)()
~

( AA RankRank ≤  then

)()
~

( AA RankRank = (B.11)

and

+

+

⋅−

⋅
≤

AE

AE
R

1

2

1 (B.12)

+

+

⋅−

⋅
≤

AE

AE
R

1

2

2 (B.13)

2

3
+⋅≤ AER (B.14)
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+

+

⋅−

⋅
≤

AE

AE
R

1

2
c

(B.15)

where

618.1
2

51 ≈+=c  if ),min()( nmRank <A

414.12 ≈=c  if ),max(),min()( nmnmRank <=A

1=c  if nmRank ==)(A
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In finite element simulations, the proportional viscous damping model is

considered as

KMC βα += (C.1)

After the orthognality operation, one of the normal equations should be

02 2 =++ qqq rrr ωξω &&& (C.2)

where q is the normal coordinate.

The process of orthogonalinisation is normally carried out as follows:

IM =T (C.3)

)( 2
r

T diag ω=K (C.4)

)2()( 2
rrr

T diagdiag ξωβωα =+=C (C.5)

Therefore, when 0=α , 2/rr βωξ = , i.e. the modal damping ratios are

proportinal to the natural frequencies.



A Note on Adding Damping to the Simulations Appendix C

204

In the process of simulation, the assembled system is constructed from the

spatial models of substructures and joint. The dampling coefficient matrix of the

coupled system, C , is built in the same way to keep it proportional to the

natural frequencies of the coupled system and so the dampings in substructures

and their assembly are of consistance.

Suppose now that the damping coefficient matrices of substructures A and B are

cA  and cB  respectively, which take the forms of
















=

ccAciA

icAiiA

A

cc

cc

c

M

LLL

M

(C.6)
















=

ccBciB

icBiiB

B

cc

cc

c

M

LLL

M

(C.7)

The damping coefficient matrix of  joint is F  and therefore, the damping

coefficient matrix of the assembly, C  is
















++=

iiBciB

icBccBccAciA

icAiiA

cc0

cccc

0cc

C F (C.8)

The identifier will output the estimation of the elements of submatrix F
)

. The

accuracy of the estimation will be estimated by comparing F
)

 with F .

Since the stiffness matrices are known, we have

ccAccA kc β= (C.9)

ccBccB kc β= (C.10)

ccCC KC β= (C.11)

Therefore,

ccBccACC ccC −−=F (C.12)
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This damping model is used in the finite element simulations throughout this

thesis, for joint parameter identificatin in Chapter 2 and coupling analysis in

Chapter 4 and 5.
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It is unavoidable that all test data will contain a finite amount of noise. The

testing noises need to be considered in numerical simulations for examining the

robustness of the algorithms.

'������12,6(�02'(//,1*�²�7<3(�$1'�/(9(/

In general the testing noises come from the transducers and the cable leads. All

transducers have a signal level below which they cannot distinguish the signal

from their inherent noise. This level will vary depending on the required

amplitude and frequency ranges to be measured, and therefore depending on the

type of transducer selected for the application. Further, transducers may also

suffer from what is called transverse sensitivity. This is where part of the signal

comes from a direction other than the primary measurement direction due to off

axis vibration. Unfortunately, a certain amount of transverse sensitivity is an

inherent by product of transducer design. The cable leads and connections may

also add noise to the signal. The character of the noise depends on the quality of

the cable (including the connectors), the length of the cable run and the nearby

noise sources that may be picked up by the cable.
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Noise simulation is classified into two categories: amplitude-dependent

(sometimes referred to as “multiplicative”) and amplitude-independent

(sometimes referred to as “additive”).

The amplitude dependent noise is described by [Duar96][Noba91]

( ) ( ) ( )iiii HnHH ωγωω ⋅⋅+=~
(D.1)

where, γ  is the noise level, in  is the thi  element of a normally-distributed

random sequence n , and ( )iH ω  is the absolute FRF amplitude. This type of

noise is proportional to the amplitude of the FRF and it is not practical.

The amplitude-independent noise is described by

)()()(
~

iii nHH ωγωω ⋅+= (D.2)

This type of noise applies the same noise level to all amplitudes. It is most like a

real transducer in that the large amplitudes are contaminated less than the small

amplitudes. Therefore, the amplitude-independent noise is considered only in

the simulations. This random sequence n  has the statistical characteristics of

0)( ≈nE  (There is no DC component) and 1)( ≈nσ

Its probability-density function is

π2
)(

2/2m

n

e
mf

−

= , (D.3)

and the probability that the measured sample at time 1t , )( 1tn , will fall in the

range m  to  dmm +  is given by dmmfn )(  [Schw90].

The noise level (percentage γ ) has different definitions, as presented in the

following:

• Definition 1

100
)(

max

×=
ω
σγ

H
(D.4)
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• Definition 2

100
)(

max

max ×=
ω

γ
H

n
(D.5)

• Definition 3

100
)(

max

max ×=
th

n
γ (D.6)

• Definition 4

100
))](([))](([

)]([

minmax

max ×
−

=
ωω

γ
HdBHdB

ndB
(D.7)
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Consider models where extraneous noise is measured at the input and output

points to a linear system, )(ωH . Let the true signals be )(tu  and )(tv  and the

extraneous noise be )(tm  and )(tn , respectively. Assume that only )(tu  passes

through the system to produce the true output )(tv , but that the measured input

and output records are

)()()( tmtutx += (D.8)

)()()( tntvty += (D.9)

H Σu(t) v(t)
y(t)

n(t)

Σ x(t)m(t)

)(ω

Fig. D.1 A system with noise contaminated input and output

For arbitrary correlation between the signal and noise terms, auto-spectral and

cross-spectral density functions for )(tx  and )(ty  will be
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)()()()()(

)()()()()(

)()()()()(

ωωωωω
ωωωωω

ωωωωω

mnmvunuvxy

nvvnnnvvyy

muummmuuxx

GGGGG

GGGGG

GGGGG

+++=

+++=
+++=

(D.10)

where

)()()(

)()()(
2

ωωω
ωωω

uuuv

uuvv

GHG

GHG

=
=

(D.11)

Suppose that both sources of noise, )(tm  and )(tn , are uncorrelated with each

other and with the signals, )(tu  and )(tv , we have

0)()( == ωω vnum GG  and 0)( =ωmnG (D.12)

Therefore,

)()()(

)()()()(

)()()(

)()()(

2 ωωω

ωωωω
ωωω
ωωω

uuvv

uuuvxy

nnvvyy

mmuuxx
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GHGG

GGG

GGG

=

==

+=
+=

(D.13)

The frequency response function )(ωH  cannot be determined from the

measured )(tx  and )(ty  without a knowledge or measurement of the input

noise.
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Express the directly measured frequency response function as )(ˆ ωH ,

)(

)(
)(ˆ

ω
ω

ω
xx

xy

G

G
H = , the relative error of the measurement can be estimated by

)(

)(

)(
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)(

)()(

)(

)(
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)(ˆ
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ωω
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ω
ω
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ω

ω
ωω

xx

mm

xx

mmxx

xy

mmxx

xx

xy
H

G

G

G

GG

G

GG

G

G

H

H

H

HH
e

=
−

−=

−
⋅−=−=−=

 (D.16)
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It can also be expressed as a function of noise-to-signal ratio of the input signal,

which is given by

)(/)()( ωωωα uumm GG= (D.17)

as

)(1

)(

)()(

)(

)(

)(
)(

ωα
ωα

ωω
ω

ω
ωω

+
=

+
==

mmuu

mm

xx

mm
H GG

G

G

G
e (D.18)

This last expression for )(ωHe  indicates that the relative error of the system’s

FRF can be estimated by the noise-to-signal ratio of the input signal. Suppose

the relative error )(ωHe  is kept constant, then the noise level would change

with the amplitude of the FRF. This implys that the noise is proportional to the

FRF data as is was used in [Duar96]. Practically, however, the noise level

should be independent of the measured data. The noise level here is defined at

the frequency of the largest noise-signal-ratio, which corresponds to the

smallest signal.

• Definition 5

100
)(

min

×=
ω
σγ

H
(D.19)

Here, σ  is used instead of 
max

n  to represent the statistic property of the noise,

which will result a higher noise level. This noise level definition will be used

here after in the FE simulations.

'�����$1�,//8675$7,21�2)�12,6(�6,08/$7,21

An example shows how heavily the FRFs are contaminated when 1% noise is

added according to the five different noise level definitions given above.
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Fig. D.2 Noise affected FRFs from different noise models
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From equation (7.9) and (7.15), we have



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
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




=




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

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













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ci
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ci
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ci
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c
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c
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c
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c
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0I
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LLL
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M

LLL
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(E.1)

The equivalent form of (E.1) is

tt
ci
rtAB

c
trAB

ci
ttAB

c
ttAB IHHHH =+ (E.2)

0=+ ci
rrAB

c
trAB

ci
trAB

c
ttAB HHHH (E.3)

0=+ ci
rtAB

c
rrAB

ci
ttAB

c
rtAB HHHH (E.4)

rr
ci
rrAB

c
rrAB

ci
trAB

c
rtAB IHHHH =+ (E.5)

From equation (E.3),

ci
rrAB

c
trAB

c
ttAB

ci
trAB HHHH

1−=− (E.6)

Substituting (E.6) into (E.5), we have

( ) 11 −−−= c
trAB

c
ttAB

c
rtAB

c
rrAB

ci
rrAB HHHHH (E.7)
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From (E.4),

ci
ttAB

c
rtAB

c
rrAB

ci
rtAB HHHH

1−=−                            (E.8)

substituting (E.8) into (E.2), we have

( ) tt
ci
ttAB

c
rtAB

c
rrAB

c
trAB

c
ttABtt

c
ttAB IHHHHHIH =− −− 11

(E.9)

Pre-multiply c
ttAB H  in both sides of (E.9):

( ) 111 −−−
=− c

ttAB
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c
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c
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c
ttABtt HHHHHHI (E.10)

and then

( ) 1111 −−−−−= c
ttAB

c
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c
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c
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c
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ttAB HHHHHIH (E.11)

Using the general inverse relationship

 ( ) ( ) BBAIAIABI 11 −− −+=−             (E.12)

equation (E.11) becomes
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where

c
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c
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Since

( ) 111 −−− = ABAB                          (E.15)

we have

( ) 111 −−− = DHHD c
rrAB

c
rrAB                    (E.16)

Substituting (E.16) into (E.13)
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therefore,
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Substituting (E.7) into (E.6), we have
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Using equation (E.15), (E.19) becomes
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and then
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therefore
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Similarly, from equations (E.2) and (E.4), we have
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The transpose of ci
trAB H  is
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Comparing (E.26) with (E.25), we know that

ci
rtAB

Tci
trAB HH =                           (E.27)
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The Frequency Response Assurance Criteria [NeSu96] helps to identify the

degree of similarity between a frequency response function that is measured,

( )xωH , and one that is synthesised from the finite element model, ( )aωH . In

analogy to the MAC definition, the FRAC is defined as [HeAv98]

( )
( ) ( )
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ji
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⋅
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2

(F.1)

For identical frequency response functions for an analytical and experimental

model, the FRAC will be 1.0 indicating good correlation; when the frequency

response functions are significantly different, then the FRAC will approach zero

indicating that there is little correlation between the two functions.

If a stiffness shifting factor, α , is included in the formulation, then the FRAC

definition becomes

( )
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where β  is frequency shifting factor which has the relationship with α  as

( )2
maxβα = (F.3)

It also can be defined by absolute or logarithm values instead of the complex

values in some cases where the differences in order of magnitude of the values

of response functions are very large due to light damping or where the phase

differences are significant. In these cases, FRAC values can be quite low while

the analytical and experimental response functions visually show acceptable

correlation.
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