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Iron rusts from disuse, stagnant water loses its purity,

and in cold weather becomes frozen:

even so does inaction sap the vigour of the mind.

 (Leonardo da Vinci)

To my mother Anna
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Abstract

The research described in this thesis is focused on vibration monitoring in machinery

whose location makes it difficult to gain direct access. In particular, interest is focused

on electrical submersible pumps (ESPs) used in the petroleum industry, which are

situated in deep petroleum wells.

In this study, a signal processing technique has been developed for the purpose of

analysing vibration signals generated by ESPs and detected by remotely-located

accelerometers. Analysis of vibration signals has been achieved by adapting the

original Prony method to generate time-frequency representations that are able to

handle signals containing stationary and non-stationary components with high levels

of noise.

Analysis were made applying the extended Prony time-frequency representation

(PTFR) to simulated signals, and compared with the analysis resulted from the

application of four other signal processing techniques: the Fourier transform, the

Morlet wavelet transform, the Wigner-Ville and the pseudo Wigner-Ville

distributions. The new method was also applied to signals generated by a small-scale

experimental model which replicated, as closely as possible, the type of signals

normally found in full-size ESP installations.

The extended PTFR applied to simulated and experimental signals, has been shown to

be capable of detecting variations in the amplitude levels of weak components
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embedded in strong noise and non-stationary processes with an amplitude ratio of

1:100 (-40 dB).

Unexpectedly, the results also reveal that the extended PTFR can represent non-

stationary processes, thus providing a new way to analyse signals with these

components.

Although this project was stimulated specifically by a need to develop methods for

monitoring the performance of ESPs, the resulting technique has relevance for other

situations where it is difficult to install delicate sensors to measure vibrations, such as

motors that drive large furnace doors, internal mechanical components (gears, shafts

bearings) of mills, and mixers operating with strong corrosive compounds etc.
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Nomenclature

a = frequency scaling factor

A = amplitude

a(k) = parameters

ab = backward linear prediction coefficient vector

af  = forward linear prediction coefficient vector

AIC = Akaike Information Criterion

AR = autoregressive process

ARMA = autoregressive moving average process

ck = Prony series exponential damping

cv = proportional viscous damping

[Cv] = damping matrix of the system

d(t) = deterministic function of time

E = Modulus of elasticity

ESP = electrical submersible pump

eb = backward linear prediction error

ef = forward linear prediction error

FT = Fourier transform

f(t) = temporal function

fs = sample frequency

f0 = centre frequency of a Gaussian window

g(t) = weighting window applied in the time domain
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h(ν) = weighting window applied in the frequency domain

[H(ω)] = receptance FRF matrix

I = Second moment of inertia

IFT = inverse Fourier transform

[K] = bending stiffness matrix

kyii = Stiffness of each wire element

l = length of a wire element

LSQ = least-squares linear prediction estimation

m = mass

[M] = mass matrix

n = data sample number of a discrete time sequence

N = sequence length, number of data samples

p = polynomial order

PTF[Ak] = Prony time-frequency distribution matrix

PWVD = Pseudo-Wigner-Ville Distribution

q = frequency line in the Prony time-frequency plane

R = vector outer product

r(t ) = temporal function

RLS = recursive least-squares estimation

s(n) = discrete raw signal

s(t) = analog signal

S[νq ] = Prony time-frequency plane projection on the frequency domain

SNR = signal-to-noise ratio

t = time

Ts = sampling interval

u = time shifted each incremental period dT

Wj,k = Malat wavelet

WM = Morlet wavelet

WVD = Wigner-Ville Distribution

$( )x n  = estimator
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x(n) = discrete data vector

x(t) = signal

x*(t) = Hilbert transform or conjugate of a signal

y(n) = discrete system response function

y(t) = sample record of a stationary random process

z = roots of the characteristic polynomial

δ = data lag

ε(n) = error over the N data samples

Λ(δ) = autocorrelation sequence

µk = Malat wavelet coefficients

η = squared error

ηb = backward linear prediction squared error

ηf = forward linear prediction squared error

ν = frequency (Hz)

θ  = phase

$ρp  = AR input white noise variance estimator

τ = time delay

ω = frequency (rad/s)
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Chapter 1  
Introduction

1.1. Background and Context of the Research

The research described in this thesis is concerned with assessing the condition and

performance of inaccessible machinery by using signal processing techniques in the

analysis of vibration data gathered from remote transducers. The study will focus on

the analysis of deep-well petroleum pumping equipment, and in particular on the

electrical submersible pump (ESP). Interest in this area results from difficulties

experienced by engineers of the Brazilian Petroleum Industry when analysing the

performance of ESPs installed downhole in petroleum wells which, due to their virtual

inaccessibility, has proved to be a costly and time-consuming exercise. However,

although the focus is on pumping equipment used in the petroleum industry, the work

is equally relevant to any situation where it is difficult to install delicate measuring

instruments, such as artificial lift equipment located in deep wells, large furnace door

motors and internal mechanical components (gears, shafts, bearings) of mills and

mixers operating with corrosive compounds. It should be noted that there is a scarcity

of  research  into  vibration  analysis  where  the  transducers  used  to  gather data are
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placed at some considerable distance from the equipment. This is somewhat surprising

given the many situations, apart from petroleum wells, where it is necessary to

monitor and detect failures in equipment in locations that are difficult to access, and

where it is difficult to install sensors nearby.

Given the high investments in industrial machinery nowadays, it is extremely costly if

a plant has to be shut down for any length of time. Consequently, a tremendous

amount of effort and innovation is being devoted to the maintenance process. For

example, early detection and replacing of a faulty bearing could alleviate the

temporary shut-down of a paper mill. In certain cases, machines can be destroyed

completely if the fault is not detected at an early stage, such as when a rotor blade

breaks in a turbine. When this event occurs it can lead to a sudden change in the

vibration of the shaft, which, given an appropriate measuring device and

methodology, can be detected sufficiently early to avoid a major catastrophe, and

thereby save on high repair and other costs. At the present time, however, we do not

possess an adequate methodology for analysing vibration data from machinery located

in such a remote and hostile environment as an off-shore oil well. It will therefore be

the main objective of this study to develop a suitable method of analysing vibration

data gathered by means of transducers located at some distance from the equipment.

In which circumstance the signal components of interest may be masked by other

spurious components.

In order to gain a clearer insight into what our task entails, we will now provide a

brief description of a typical oil well, the electrical submersible pumps which we

intend to monitor, and the connections between the pump and the surface.
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1.2. Electrical Submersible Pump (ESP)

Electrical submersible pumps (ESPs) have been traditionally used for over half a

century for moving large volumes of fluids where other means of artificial lifts have

not been feasible. It is not uncommon for these pumps to handle more than 500 m3 of

fluid per day. A typical pump assembly is composed of hundreds of centrifugal

sections with a small diameter (commonly around 4” to 5” of diameter) serially

mounted. The pump is coupled to a motor which has a seal assembly and is filled with

an insulation fluid that is heavier than water. In the Brazilian installations this motor is

generally between 100 and 200 HP and is a two-pole, three-phase machine. It runs at

a relatively constant speed of 3500 rpm (approximately 58 Hz) on 60 Hz frequency

supply. The electrical supply is provided through a long electrical cable attached to

the tubing that supports the assembly. The motor housing is cooled by the well fluids

moving past the exterior surface of the motor.

Figures 1.1 and 1.2 show the internal section (stage) of a pump and its petroleum well

installation respectively.

In Figure 1.3 a diagram is shown which represents a typical petroleum well electric

submersible pump installation unit, and in Figure 1.4 the pump section is shown in

detail.
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Fig. 1.1 - Pump section

Fig. 1.2 - Pump being installed in a petroleum well
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Fig. 1.3 - Typical ESP installation
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Fig. 1.4 - Detail of the pump section and stage assembly
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1.3. Existing Monitoring Techniques

Until recently, the only means of performance analysis available for ESPs, in the

hostile environment of the petroleum well, with its high temperature and pressures,

has been through monitoring from the surface the electrical current of the motor that

drives the equipment. Haynes et al [1989/1990] and Krytes and Haynes [1989], are

examples of works which show how motor-driven machinery is monitored by

analysing the electrical motor current. However, work undergone in the Brazilian oil

wells has shown this method to be extremely unreliable due to the tendency for errors

to be made in the diagnosis. For example, when using this type of analysis it is difficult

to distinguish between variations in the electrical current from when a shaft in the

pump breaks, compared to when a pump fills with gas, as both situations present low

current peaks. However, in each of these scenarios different actions are required, in

the former, the ESP has to be pulled out of the well as the pump is cooled by a fluid

that is pumped through its casing, and an inoperative pump will lead to a burnt out

motor due to an increase in temperature of the internal motor. In the case of the latter

problem, if a pump fills with gas, the operator has to turn the motor on and off several

times until the pump is fully filled again with fluid [Ribeiro et al, 1991]. Figure l.5

shows an electrical current graph where an incorrect interpretation resulted in a burnt

out motor.

Although further attempts have been made to develop the technique for processing

the signal of the electrical current, they have not yet been proved to be effective. For

example, Jeon and Li [1995] developed a non-linear model-based fault detection for a

single compressor by measuring the motor current and angular velocity. This fault

detection scheme sought to detect faults without prior experience of them. It employs an

algorithm with non-linear difference equations that model the dynamics of the compressor.

However, they conclude in their work that this method is limited when applied to analyse

equipment under large mechanical friction conditions. The authors state that in these cases,

the results will present a large variance and this may lead to erroneous interpretations of

faults with the equipment. ESP equipment normally generates a large amount of friction
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between the impellers and the case. For, despite the existence of small clearances in the

pump, the long shaft, in which the impellers are fixed, will exhibit large whirling, and

contact between the impellers and the case is inevitable. Furthermore, as the pump cannot

be lubricated, due its operational conditions, a large friction noise will be made, even in

new equipment. Consequently, the method developed by Jeon and Li [1995] is not

appropriate for analysing faults in ESPs.

Fig. 1.5 - Electrical current graph of an ESP taken from a Brazilian wellhead.

In another work that analyses equipment by processing the signal of the electrical

current of the motor, Burnett and Watson [1996] state that the majority of the techniques

applied to analyse the electrical current signal are not efficient if the data are collected

from equipment not operating in steady-state conditions. To overcome this limitation, the

authors applied techniques used in non-stationary analysis for processing the electrical

current of a motor subjected to transient conditions. The techniques used include: the

spectrogram, the Wigner-Ville distribution, and the Morlet wavelet transform. Burnett and

Watson [1996] found that the best method to detect the broken bars of a rotor in the

signal of the electrical current of a typical induction motor is the Morlet wavelet transform.

However, although the graphs show a difference between the motor, with and without

broken rotor bars, this difference is so small that it would be eliminated in the vibration
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signal of an ESP, due to the large impedance that exists in the transmission of the current

signal through the long electrical cable (often more than 2 kilometres long).

In Burnett and Watson’s work [1996], the proposed techniques were only tested to detect

faults in electrical motors, in which the analysis of the electrical current is more

appropriate. The simulated fault analysed in the work generates strong electrical

components that are easily detected in the current signal (broken motor rotor bar). No

simulation was made in their work where mechanical faults are generated by external

sources that do not generate such a clear electrical current perturbation, as for example in

the case of a broken shaft of a pump.

1.4. Previous Research Attempts to Analyse ESP
Vibration

Due to the unreliability of analysing the signal of the electrical current, research has

moved on to focus on the analysis of the pump’s vibrations. Vibration in complex

machinery is related to different parameters of the excitation forces and its operating

conditions. The vibration behaviour of the machinery is related to external and internal

forces, which determine the significant frequency and amplitude behaviour. It is these

particular vibrations from the machinery, which are related to a specific behaviour,

that we intend to analyse for fault detection purposes. Analysis and information about

the ESP vibration can be found in the works of Sparks and Wachel [1977],

Brookbank [1992], Benedek [1995] and Makiola [1995].

Sparks and Wachel [1977] state that a pump or a compressor vibration is basically

dependent on the head curve slope, operating point, system flow damping, and strong

reactive resonances in the pipe network, particularly if they coincide with the vortex

frequencies. Based on several case studies, they define several conditions for

developing pipe network resonances due to centrifugal pulsations. In a study that

sought to reduce industrial plant noise pollution, Makiola [1995] describes the noise

characteristics of various pumps using three-dimensional charts considering the
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impeller diameter, flow rates, inlet pressures, and pump speeds. He states that a major

influence on the pump vibration is provided by variations in the rotation speed. In

Benedek [1995], a one-phase and two-phase one-dimensional fluid vibration in

complex pipe networks was investigated, and a transfer matrix is used to represent the

flow in rigid pipe hydraulic sections. His findings suggest that the flow and the

pressure ripple of a centrifugal pump do not influence the eigenfrequencies of a pipe

loop. In Brookbank [1992] a study of a more specialised analysis into ESP vibration is

presented. He analysed the ESP vibration on a test-bench and defined several sources,

the most predominant being the vibration caused by the unbalance of rotating parts.

Out-of-balance conditions may be due to casting defects in the pump impellers such as

voids, inclusions or core shift (which allows the impellers vanes to be off centre). The

second most predominant cause of ESP vibration is shaft straightness. Shafts may be

up to 10 metres long and do require extensive hand straightening. Bent or crooked

shafts produce vibrations in both radial and axial directions at the rotation frequency

and at two times the rotation frequency. The third major cause of ESP vibration is

rubbing in the sleeve bearing, impeller wear ring or between rotating and stationary

parts. An intermittent rub that has a contact once every other revolution will generate

a sub-harmonic vibration at one half of the rotation speed. Another cause of sub-

harmonic vibration, with frequency varying from 0.42 to 0.48 times of the rotation

speed, is due to the oil whirl phenomena, a condition in which several insulation fluid

filled closed slots of the electrical motor act as lightly loaded hydrodynamic bearings.

As mentioned above, there is limited existing research in ESP vibration signal analysis,

with most based on the application of the Fourier transform technique in the analysis

of the data. One of the first attempts at analysing the vibrations of ESPs installed

downhole in a petroleum well was made by Aliev [1982]. In a number of experiments

at different locations and with different pumps, Aliev placed transducers to gather

vibration data at various distances from the pumps. He noted that, as a result of noise

interference, it was better to measure the amplitude and shape of the ESP’s acoustic

oscillations rather than to make a spectral investigation of its vibration. He also

argued that the ESP’s motor protector, a chamber filled with fluid to isolate the motor
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against the environment, does not influence the spectra. However, he did not explain

how and why he arrived to these conclusions. What the study did show was that it

was possible to monitor an ESP by its vibrations transmitted through the long tubing

that is supporting it.

In a later study by Maksutov and Aliev [1984], 1100 ESPs were analysed in a more

systematic way. The authors describe a phenomenon of separation of magnetic

harmonics from mechanical harmonics when the equipment voltage is reduced. The

study showed that magnetic fields create a double frequency component due to the

motor dipole, and that the mechanical oscillation is determined by the first rotation

harmonic level.

Research conducted using an experimental test rig by Moore [1990], was the first

major systematic empirical study into the analysis of ESP equipment operating under

controlled conditions. This study was undertaken on two sites: on one site the ESP

did not operate due to an electrical insulation failure; on the other, an Anglia water

plant, where the pump was installed in a well 38 meters in depth, satisfactory results

were obtained. In this study, accelerometers were placed on the pump and at the

wellhead and several types of wear, such as to the bearings and the pump’s coupling,

were simulated and the obtained data processed through the Fourier transform. The

findings showed that the wear in the pump journal bearing was characterised by an

increase in the amplitude of the component at rotation frequency. Moore reports that

four weeks before the ESP failed, data gathered from the transducer attached to the

pump revealed an increase of between 30 to 60 times the rotation amplitude vibration.

But the transducer installed at the wellhead only showed the same problem two and

half weeks later. One possible explanation for this delay in identifying the problem

could be the use of inadequate filtering techniques associated with the Fourier

transform. What is encouraging about the results is that they show that vibrations can

be measured by transducers located at some distance from the pump, although the

distance of 38 meters used in the Moore’s project means we cannot be sure if the
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same results can be achieved when vibrations are measured in petroleum wells at

distances in excess of a 1000 meters.

The findings of Moore’s study are significant to the extent that he demonstrated,

contrary to the findings of Aliev [1982], that it could be useful to monitor several

parameters, including: riser-borne vibration; pump and motor vibration using sensors

mounted on the upper motor bearing and on the pump suction casing; and motor

cooling water conductivity. However, although Moore has provided much new

information which will be utilised in this study, the work is limited for our purposes as

it was carried out in a well of a water plant, where the conditions are not comparable

to those found in petroleum wells. Firstly, it is not feasible to fix a transducer on the

pump itself as it would not survive the harsh environment of the petroleum well; and

secondly, delicate transducers are likely to be damaged during the installation process.

Furthermore, the Fourier technique used in all three studies cited above, could be

inadequate for our purposes. According to Bendat and Piersol [1986], the Fourier

technique does not handle well signals containing noise and non-stationary conditions,

normally found in petroleum installations.

The analysis of vibrations at the wellhead is extremely problematic because they are

composed of a number of elements: (i) the vibration from the ESP itself; (ii) noise and

spurious vibrations generated by several types of equipment located near the

petroleum wellhead and transmitted through the pipe network; and (iii) the vibration

generated by fluid slugs flowing through the petroleum pipes. The fluid slug is also

found in water pipes in houses: when air enters into the water system and flows with

the water, an intermittent vibration appears. In the case of the petroleum wellhead,

gas is normally dissolved in the oil at high pressure inside the reservoir. When the oil

comes to the surface the pressure decreases and the gas starts to dissociate from the

oil, causing large bubbles and slugs. In a study by Leducq [1991], in which he sought

to describe a new method of deriving multiphase flow patterns by applying a time-

frequency analysis to fluctuating pressure and acceleration measure at the pipe-wall, he

stated that the majority of these components, associated with turbulent fluid-induced
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vibrations, have frequencies varying from 6 to 24 Hz. He also attempted to characterise

transitions between two-phase flow regimes. Four experiments were carried out, one for

gas-oil flow studies and three for air-water flow studies, and the data were analysed using

the Morlet wavelet transform. The work showed that it is possible to get access to the

void fraction of the two-phase flow by non-intrusive measurements analysed in this way.

Leducq and Hervieu [1991] concluded that two wavelet components corresponding to

two characteristic scales of flow configuration seemed sufficient to characterise the flow

configuration, and this can lead to a simplified signal processing technique. As we will

show below in the simulation carried out in Chapter 3, we expect that the spurious

component amplitude level will be greater by as much as 50 times the level of the weak

component amplitude (ESP vibration collected in the wellhead). As a consequence, the

signal to be analysed will be assumed to be composed as the slugs described in the work of

Leducq and Hervieu [1991], where several types of noise (white, random, pink, chirp)

represent the platform environmental noise, and the 58 and 60 Hz weak vibrations, which

is related to the rotation and motor magnetic field, with an amplitude level 50 times less

than the spurious slugs and noise (SNR -34 dB).

Given the complexity of the vibrations to be analysed, it is necessary to look in more

detail at the various signal processing techniques available for analysis of signals

containing high-level noise and non-stationary processes.

1.5. Noise Filtering and Non-Stationary Analysis: A
Review of the Literature

A suitable signal processing technique for using in the analysis of vibration data

generated downhole in a petroleum well will have to be able to discriminate, within

the vibration signal, a weak deterministic component embedded in high level noise and

non-stationary processes. However, the advances of the last decade have been mainly

restricted to the development of methods for handling non-stationary signals, with
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very little improvement in the area where signals are embedded in high-level noise. A

review of the literature made into noise filtering techniques and methods to process

non-stationary components is described below.

1.5.1. Noise Filtering

The measurement of periodic components embedded in noise is a very common

problem, which arises, for example, when analysing the complicated vibration

produced by several machines working together. If the frequencies and amplitudes of

any periodic components in the vibration can be measured, then this is the first step

towards tracing their origins. Less problematic is the retrieval of a periodic signal

from random noise when a reference waveform is available with which the signal is

known to be synchronous. This arises in A.C. testing when an alternative voltage is

applied to a system and a weak voltage induced elsewhere is to be measured in the

presence of the noise. Another context is that of impulse testing, when a repeated

delta function impulse is applied to a system, and the repeated response is to be

measured. The problem is further simplified if the shape of the signal to be retrieved is

known, and one merely wants to determine the phase lag relative to a reference signal.

Such is the case in pulsed radar when the amplitude and delay of an echo or reflected

signal are to be determined in the presence of noise [Bendat and Piersol, 1986].

Sometimes the shape of the signal to be extracted is known (at least approximately)

but no synchronising signal exists. This is the case with the seismic measurements

related to nuclear explosions and earthquakes. The signals associated with each

physical condition have their known characteristics and the problem is to determine in

the presence of noise whether such a signal has occurred and which type it is. The

problem of deciding which of several known types of signal has arrived occurs in

digital communications systems, and is often simplified when the arrival time is

known.  Morse  code  provides  a  simple  binary  example.  During each of successive
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equal periods there is either a uniform signal or no signal, and a device which will

distinguish between the alternatives in the presence of noise is required [Cover, 1991].

The various situations are classified according to whether the signal is coherent or

incoherent (i.e. whether a synchronising waveform is available or not) and according

to whether the signal is structurally determinate or indeterminate (i.e. whether the

shape of the signal is known in detail or whether only statistical information such as

the power spectrum is known).

It is worth noting here that digitising per se presents quantization errors that may

eliminate weak components in a signal. Due to the technical conditions, the time

values of the signals are represented with finite precision, which corresponds directly

to the data word length. The amplitude is separated in a number of intervals and this is

called amplitude quantization. Physically, this process of amplitude quantization

means that some values deviate from the real magnitudes. These maximum deviations

amount to a half step of quantization and cause a superimposed disturbance signal

with random amplitude distribution. This problem is called “noise of quantization”.

A further problem that may arise is that associated with the round-off error through

calculation. In situations where the detection of weak components is required, it may

be more appropriate to separate and classify all possible sought waveforms, before

performing any kind of filtering or smoothing operation on the signal. If this is not

carried out beforehand, the weak components of the signal that need to be identified

may be eliminated, particularly when applying an average to a signal with very weak

components, embedded in high-level noise. This would be likely to occur because the

quantization and round-off errors, through the averaging process, may eliminate the

little difference there is between those signals which have weak components and those

which do not.
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1.5.2. Basic Techniques for Noise Filtering

A basic technique used for noise filtering is based on a time-averaging procedure. It is

important to point out that with this technique, if the correct phase synchronisation is

not carried out, the specific component that is being sought will be eliminated.

Furthermore, when one attempts to analyse the whole spectrum signature, it is

necessary to perform a phase synchronisation for each component present in the

signal, and this may be rather impractical [Bendat and Piersol, 1986]. According to

Bendat and Piersol, this procedure is also problematic when applied to signals with

non-stationary components present, as they can generate severely distorted results.

This is the case of the petroleum wellhead vibration, which includes components

caused by fluid slug vibration. In these situations, Bendat and Piersol argue that there

may be a strong temptation in analysing non-stationary data to treat it as if the data

were a sample record from a stationary random process. In certain special cases of

non-stationary data parameters, time-averaging analysis procedures can produce

meaningful results. For the case of probability density functions, however, time-

averaging procedures will generally produce severely distorted results. In particular,

the probability density function computed by time-averaging data with a non-

stationary mean square value will tend to exaggerate the probability density of low

and high amplitude values at the expense of intermediate values.

Another technique used for filtering noise is the autocorrelation method. However, a

problem with the autocorrelation method is described in the work of To and Ewins

[1990], where attention has been drawn to the effects of noise and leakage on

estimators of Frequency Response Functions (FRF). The study shows that the leakage

problem for auto and cross-spectra emerges during the processing of finite data

records and, as a result, it is difficult to specify which FRF estimator will produce the

best estimate of FRF. Furthermore, attempts to apply the autocorrelation method to

filter signals containing strong noise have not produced satisfactory results because
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this method tends to eliminate the weak components through its calculations [Ribeiro,

1991].

A further limitation with the autocorrelation computation is that the phase information

is lost and a damping applied to the resulting data. However, as reported in the works

of Cappellini et al [1978] and Dyne [1995], it is possible to use matched filters, which

are defined as filters that have an impulse response equal to a time-reversed form of

the transient that it aims to detect. The response of the filter to a noiseless copy of the

transient is therefore the autocorrelation function of the transient. However, problems

are expected with this technique, as it is necessary to know a priori some information

about the component to be detected in signals containing high-levels of noise and non-

stationary processes.

1.5.3. Recent Developments in Noise Filtering
Techniques

Of the most recent works that focus on noise filtering, none address the problem of

signals containing such strong spurious components as are to be dealt with in this

study. Nevertheless, the most useful include those on the Kalman technique [Noriega

and Pasupathy, 1992, Rousseax and Troquet, 1986, Pitarque et al, 1991, Gibson et al,

1975], time-frequency [Womack and Cruz, 1994], the maximum likelihood estimator

[Cerrato and Eisenstein, 1977], non-linear [Servière and Baudois, 1995], and

autoregressive [Hsu and Giordano, 1977] filtering techniques.

In one of the first relevant works about the Kalman filter, Gibson et al [1975] applied

this technique for sequentially identifying predictor coefficients in digital speech

analysis. They demonstrate that a Kalman filter-based computer routine is feasible and

closely related to the autocorrelation and the covariance methods. The level of

Gaussian   noise  applied  to  the  signal  to  test  the  algorithm  in  a  voiced/unvoiced
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decision was very low (1/100 times of the component to be detected, SNR 40 dB)

and was correlated to the level of the background noise. The results show that the

speech filtering quality was degraded if the low-level noise is applied. One advantage

of the algorithm based on the Kalman filter developed by Gibson et al [1975] is the

capacity of this algorithm for multi-channel analysis; that is, it is appropriate to analyse

data collected from several sources. In another work of Kalman filtering, Rousseax and

Troquet [1986] applied deconvolution of the intracavitary ventricle’s pressure through

Kalman filtering to model the heart muscle. The main advantage of their method is the

capacity of applying the deconvolution for both time-invariant and time-varying systems

through the Kalman filter. The authors did not state the level of Gaussian white noise

added to signals collected in the experiments. In the work of Pitarque et al [1991] is

presented an algorithm based on the Kalman filter to retrieve sinusoidal frequencies from

noisy data. An interesting feature of this algorithm is that it establishes a connection

between a state-space formulation and the Pisarenko decomposition. The SNR of

Gaussian noise applied in the Pitarque et al experiments was -12 dB (4 times the level of

the components to be detected). The main conclusion of their work is that the Kalman

filter can be applied directly to the raw data instead of applying to the autocorrelation

sequence. In a more recent work about Kalman filtering, Noriega and Pasupathy [1992]

propose an algorithm based on a fixed-lag Kalman filter approach for automatic pre-

processing time data-sequence in real-time. This algorithm involves a model which uses a

state vector that consists of the signal, its first three differences, and a special variable used

to implement data editing functions. Two versions of the algorithm were developed, the

first based on the conventional form of Kalman filter, and the second one using a

sequential processing technique. In the simulations with real data, collected from an

electromagnetic airborne survey flown over the Bourget area in Quebec, Canada, the

authors added a white Gaussian noise with an amplitude 1/3 (SNR 9.5 dB) of the

components to be detected and achieved satisfactory results in their signal filtering

analysis.
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In the study by Womack and Cruz [1994] on time-frequency noise filtering, the authors

analyse seismic data using two techniques: the Gabor representation and the singular

value decomposition (SVD). The results of the analysis of synthetic data indicate that

the Gabor representation can outperform the SVD technique. The level of the

Gaussian white noise used in the simulation was set to 1/4 (SNR 12 dB) of the

component to be detected.

In an application of the maximum likelihood estimator, Cerrato and Eisenstein [1977]

developed two algorithms for applying the deconvolution in a signal with components

embedded in noise. However, only theoretical formulations are presented in their

work and no signal is provided to test their algorithm.

Servière and Baudois [1995] propose to estimate frequency spectra of noisy signals

through non-linear functions of the observations. The objective is to estimate the

frequency spectra of two linear filters that combine signals collected from two

different sources. No assumptions regarding the statistical distribution of the noise are

made in their work. The non-linearity is represented as an exponential real function

which can be separated into a product of functions. This allows the separation from,

firstly, the terms containing the sources and, secondly, the terms containing the noisy

signals. The results of the simulation show that the number of samples depends on the

SNR. The authors argue that 2000 signal samples are necessary for analysing signals

with 5 dB SNR (noise level 0.56 times the component amplitude level), and 3500

signal samples are necessary for analysing signal with 0 dB (noise level equal the

component amplitude level). No information about the data sampling conditions are

given.

There have been a number of studies that focus on underwater noise reduction and, of

these, the majority of the signals are collected by means of a large number of sensors in an
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array for the purpose of source detection (radar), where the noise is theoretically

modelled. These include works by Finette et al.[1993], Collins et al [1994], and Quinquis

and Rossignol [1996].

In Finette et al [1993], the focus is on source signature extraction in an ocean

environment. The main technique used for source extraction is the deconvolution through

Green’s functions as matched filters. This technique involves a multi-dimensional data

collection procedure through several sensors and is not viable to be applied in the case of

data collecting from sensors installed in the one-dimensional petroleum wellhead data

collection condition. The conclusion of this work is that source signatures were extracted

in a noisy multi-path environment for low SNR sources. The SNR considered for

signature source extraction is estimated to vary between 0-3 dB. A drawback of this

technique is that it is necessary to know in advance of the source signature to be detected.

In another research on underwater signals, Collins et al [1994] present a variation of a

noise-cancellation processor based on the Bartlett processor. A substitution of the noise

model time series for covariances is proposed. To test this method, noisy data were

collected from an array of 13 sensors (hydrophones) placed at a depth of 400 m in the sea.

The aim was for the processing signal technique to detect a 25 Hz source located at an

unknown ocean location. The processed signal contained a high-level noise (SNR -20 dB).

The results of the experimental analysis of the data showed that the proposed noise-

cancelling technique was able to filter the high-level noise present in the signal. However,

as in the work of Finette et al [1993], this technique requires a number of sensors multi-

dimensionally placed, as well as the necessity to know in advance the composition of the

source signal to be detected, which is not possible in the case when analysing an ESP from

vibrations transmitted through the production pipe and collected in the wellhead, and for

this reason it will not be considered further in this study.
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In a more recent work about underwater signals, Quinquis and Rossignol [1996] present

an interesting filtering technique based on the Malat wavelet transform. The level of noise

present in the analysis of experimental signal was very high (SNR -50 dB). However, this

technique involves a prior knowledge of the noise data composition for transformation

into a wavelet orthogonal domain. To accomplish the noise filtering, four correlated

observations are necessary, one for the signal with noise, and three with pure noise. This is

not possible in the case of ESP analysis because the noise generation condition in a

petroleum platform is not stable. The problem of handling non-stationary noise was

reported by the authors, who concluded that development is still necessary to improve this

technique for these filtering conditions.

1.5.4. Singular Value Decomposition and
Autoregressive Techniques for Filtering Noise

Developments in noise filtering autoregressive techniques have been made by Hsu and

Giordano [1977]. In this study, the authors developed an autoregressive algorithm to

identify components of signals with time-varying spectra in the presence of noise and

signal interferences. Power spectral estimation is accomplished using several

autoregressive spectral estimators (Yule-Walker, maximum entropy, and the gradient

linear prediction methods) as well as by the conventional Fourier transform. The

maximum amplitude of the noise added to the signals was equal to the amplitude of

the components to be detected (SNR 0 dB). However, the authors do not specify the

statistical assumptions of the noise utilised in the simulation.

In the work of Liu [1996], the state space method is applied through a singular value

decomposition (SVD) for noise cancelling. At the heart of this technique is the

eigendecomposition of the autocorrelation matrix in signal and noise subspaces. A

criterion, which is correlated to the signal subspace, was developed to define the lowest

matrix rank. This sets the order to be utilised in the method’s calculations. In Liu’s study, a
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comparison is made between the state space method, through the singular value

decomposition (SVD), and the original Prony technique. Liu considered the original Prony

technique to be less effective than the SVD for noise filtering. However, it may be argued

that in Liu’s work, it was incorrect to use the same order to execute the Prony exponential

evaluation as that defined in the SVD evaluation, as this results in a misleading comparison

between the two methods. The separation of two subspaces in the SVD reduces the order

of the method due the generation of ill-conditioned signal subspace matrices. As a

consequence, a low order, associated with the signal subspace matrices, is set to perform

the SVD method calculations. On the other hand, the original Prony technique "seeks"

exponentials in one matrix containing both components and noise data. In this case, it is

necessary to use higher orders to represent all components in the signal, including those

associated with noise. As a consequence, it may be argued that the signal with white noise,

used to compare both techniques (SNR 3 dB) in Liu’s work, should be analysed through

the original Prony technique with a much higher order than that set to perform the SVD

method.

To conclude this section on noise filtering, it would appear that existing techniques

are inadequate for filtering out weak components in signals where both noise and non-

stationary processes are present. Firstly, to analyse vibrations signals in the presence

of high-level noise requires a large quantity of data for statistical averaging in the

filtering process, which could lead to the weak component being filtered out.

Secondly, also present in the signal are strong non-stationary processes that corrupt

the signal. However, if one applies existing techniques of non-stationary analysis for

filtering purposes, short lengths of data are required for a better representation of the

local variations in the signal, is not consistent with the use of large quantity of data

points in the statistical averaging and Fourier transform techniques. An attempt to

seek a technique that can filter out strong spurious components through non-

stationary analysis is the subject of the next section.
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1.5.5. Techniques for Non-Stationary Analysis

As mentioned above, the majority of signal analysis has been restricted to the

measurement of stationary random data. The theoretical ideas, error formulas, and

processing techniques do not generally apply when the data are non-stationary

[Bendat and Piersol, 1986]. However, although much of the random data of interest

in practice are non-stationary when viewed as a whole, it is nevertheless often possible

to constraint data to be at least stationary for measurement and analytical purposes.

Procedures to set non-stationary conditions to stationary ones are commonly used.

One, for example, is to analyse part of the signal in which a specific set of conditions,

such as standard variation and variance, are fixed, and then to change these conditions

for the subsequent parts of the signal, until the entire signal has been represented in

adequate detail by piecewise stationary segments. However, there are a number of

situations where this approach to data collection and analysis does not make it

feasible, and individual samples of data must be analysed as non-stationary data. A

common situation is that in which the non-stationary phenomenon of interest is unique

and cannot be repeated under some statistical restrictions. Examples include ocean

waves, atmospheric turbulence, and economic time-series data. The basic factors

producing such data are too complex to allow the performance of repeated

experiments under similar conditions. The analysis of data in these cases must be

accomplished by calculations on single sample records as they involve non-stationary

components [Bendat and Piersol, 1986].

Non-stationary processes do not possess an ordinary spectral density because they

have a time-dependent covariance structure. These covariance structures describe the

evolution of the second-order properties of the process. In the very special case of

weak stationary processes, the second-order properties can be successfully

represented  in  the  frequency  domain  by  ordinary  spectral densities. The definition



Chapter 1 - Introduction

24

of a “time-varying spectrum” therefore can be considered as a natural generalisation

of the idea of a spectrum, but additionally exhibiting the time-dependent changes of

the second-order structure of the process. It should be noted that changes of this

structure are not necessarily given alone by changes of the mean power of the

process. In particular, if one deals with non-stationary processes possessing a slow

evolution time of second order structure (“quasi-stationary”), the time-varying

spectrum will exhibit different times of stationarity within different frequency bands

[Martin and Flandrin, 1985].

The method most often adopted in the vibration analysis of equipment is based on

frequency spectra. Analysis using this method has dramatically improved since the

development of the fast Fourier transform algorithm (FFT) in 1965. Since then, the

Fourier transform, with the associated concepts of convolution and correlation, have

been used extensively in signal processing [Bendat and Piersol, 1986, Braun, 1986,

Randall, 1980, Price, 1988, Bruel & Kjaer, Mechefske and Mathew, 1992a, 1992b,

1993 and 1995, Powell, 1992, Flashpohler, 1994, Lee and Joh, 1994, Delzingaro and

Mathews, 1995]. Whereas the Fourier series allows a periodic function to be

represented as an infinite sum of harmonic oscillations at definite frequencies equal to

the multiples of the fundamental, the Fourier transform allows a non-periodic function

to be expressed as an integral sum over a continuous range of frequencies [Champney,

1973]. However, care has to be taken when applying the Fourier transform to non-

stationary processes, as this technique may lead to incorrect results through its

calculation [Bendat and Piersol, 1986]. In these cases, the energy spectrum of the

standard Fourier transform does not tell us when a non-stationary event occurred.

There exist natural and man-made signals whose spectral content is changing so

rapidly that finding an appropriate short-time window is problematic since there may

not  be any time interval for which the signal is more or less stationary [Cohen, 1989].
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Normally, the non-stationary processes are depicted by what is known as “time-

frequency representation” techniques. The basic feature behind these techniques is the

“time-frequency plane”, which is the conjunction of the time and frequency domain

signal representations. The graph of Figure 1.6 shows the different directions to

“view” the time and frequency domain description of a signal and its respective “time-

frequency feature” analysis. The graph shows a signal with four components: two

stationary sine waves with frequencies 24 and 80 Hz, a transient (48 Hz) and a non-

stationary (32 Hz) component. The signal shown in the graph 1.6 (a) is decomposed

and two different views of its components are shown: the frequency domain view (1.6

(b)) and the time-frequency domain view (1.6 (c)), which will be the referred from

now on as “time-frequency plane”. The time-frequency plane represents the

“component energy distribution or intensity” of a signal, and what should be mainly

noted in a time-frequency plot is the way in which the points are distributed in the

plane to determine whether a component exists or not.

The non-stationary analysis motivation started with the necessity to analyse human

speech. Classic works of Gabor [1946], Ville [1948] and Page [1952], have been

developed as an alternative for the varying spectra. The basic idea is to devise a joint

function of time and frequency, a distribution that will describe the energy density or

intensity of a signal simultaneously in time and frequency. In an ideal case, such a joint

distribution would be used and manipulated in the same manner as any density

function of more than one variable. Many divergent attitudes towards the meaning,

interpretation, and use of these distributions have arisen over the years, ranging from

the attempt to describe a time-varying spectrum to merely using them as carrying the

information of a signal in a convenient way [Cohen, 1989].
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Fig. 1.6 - Different time frequency domain views

In a stationary process the ensemble averages are independent of the time t. If, in

addition, the process is ergodic, then any other sample function is completely

representative of the process as a whole. For non-stationary analysis, a general

assumption on which several signal processing methods are based, including for

example the short-time Fourier transform (STFT), is the so-called locally-stationary

process. In techniques which are based on this assumption, a short data window

centred at time t and spectral coefficients are calculated for a short length of data.
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However, there is a fundamental problem with this approach, in that high-resolution

cannot be obtained simultaneously in both the time and the frequency domains

[Newland, 1993]. Two additional techniques which have also been developed for non-

stationary analysis, the Wigner-Ville distribution and the wavelet transform, are

described in the next section.

1.5.6. Wigner-Ville Distribution and Wavelet

Transform

The methods considered to be most suitable for the analysis of non-stationary

processes include: the wavelet transform (Morlet and Malat techniques,); and the

pseudo-Wigner-Ville distribution. New developments in non-stationary analysis using

these techniques can be found in the works of Bonaldo [1993], Newland, [1993]

Flandrin [1985, 1989], Moss and Hammond [1994]. For example, new algorithms to

perform the wavelet transform, which improves the speed of the calculations, have

been developed by Newland [1993] (Malat wavelet), and Bonaldo [1993] (Morlet

wavelet). In Cohen [1989], Flandrin et al [1985], and Flandrin [1989], time-frequency

windows are applied to the Wigner-Ville distribution calculations in order to reduce

the appearance of cross-terms that normally appear in this distribution, which results

in a “smoothed” version of this distribution called the pseudo-Wigner-Ville

distribution. In a further development, Moss and Hammond [1994] applied Kondera’s

modification to reduce the spread in frequency caused by the lag time window and

thereby to improve the resolution of this distribution. However, the authors point out

that when applying this modification in multi-component analysis, a priori information

is needed about the signal.

Spectral analysis of non-stationary processes has attracted much attention since the

Wigner-Ville distribution has been applied for signal processing. It has been shown
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that a wide class of random processes with second-order non-stationary properties,

possess a Wigner-Ville spectrum [Cohen, 1989]. The Wigner-Ville method, which is

based on a concept of instantaneous ensemble average correlation functions, is a

straightforward option for analysing non-stationary processes. As with the STFT, the

data window is also centred at a time t but it has been adapted to shift a sliding

window through the data sample.

Although these recently-developed techniques are well suited for non-stationary

analysis, it is argued here that they are not adequate to detect deterministic

components embedded in signals with high-levels of noise. For instance, a major

drawback of the Wigner-Ville distribution, reported by Cohen [1989], is that this

distribution propagates noise. It has been shown that if there is noise present in a

small section of the signal, it will appear again within the distribution. This effect is a

general property of the Wigner-Ville distribution, and is related to the interference

caused by cross-terms, which appear when the cross-correlation of the two signals is

non-zero. In this case part of the data of one shift are repeated in the following one,

causing redundant information. Another drawback of the Wigner-Ville distribution is

the fact that negative amplitude values may be obtained in the results. To reduce these

problems, windows can be applied in the time and frequency domains, and it is then

renamed the “pseudo-Wigner-Ville” distribution. However, this window operation on

the pseudo-Wigner-Ville distribution, also known as smoothing and which forces the

distribution to generate positive values, causes a loss of phase information [Cohen,

1989].

In order to overcome the limitations of the Wigner-Ville and the pseudo-Wigner-Ville

distributions, alternative families of orthogonal basis functions called wavelets have

been attempted. The localised nature of wavelets makes them an effective tool in the

analysis of vibration signals, but the use of wavelets for machinery monitoring is not

as  straightforward  as  Fourier  analysis.  Wavelets  can  be  used  to  compare several



Chapter 1 - Introduction

29

signals only if each signal starts at the same position in time or space, which is a

difficult condition to fulfil in signal processing. Even when related to the same signal,

different wavelets cannot be used for comparison because it is impossible to be sure

whether any change in the wavelet domain is due to a shift in the location of the

signal. Therefore, each data set must be re-positioned to the same point in time or

space before it is transformed to the wavelet domain. This can be done through a

simple pulse to identify a specific point in the machine cycle [O’Brien and MacIntyre,

1994], but the problem with this procedure is that it is not feasible for all types of

equipment. In the case of petroleum submersible pumps, a pulse signal would have to

be generated by the pump through a delicate electronic instrument that would have to

be installed downhole in the petroleum well, which given the conditions of the

installation and the environment, do not make this a realistic possibility.

A further important limitation associated with the wavelet technique is that the

frequency is logarithmically scaled and, as a result, low resolution is obtained at

higher frequencies [Barschdorf and Femmer, 1995]. In fact, there is a fundamental

principle (Uncertainty Principle) for time-dependent spectra which makes it impossible

for the wavelet transform, to achieve high-resolution in time and frequency

simultaneously. For when high resolution is necessary to detect a weak component in

the time-frequency plane, this method will usually present amplitude peak leakage

through its computations, due to the use of the discrete Fourier transform, which is

limited by the Uncertainty Principle [Newland, 1993]. Given the limitations of the

Wigner-Ville distribution and wavelet transform methods for the purpose of this

study, the autoregressive parametric spectral estimation method (AR) will be

considered next.
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1.5.7. Autoregressive Techniques

There is much written material about the autoregressive parametric spectral

estimation method (AR) method, but less empirical experimentation. The main feature

of this method is its capacity to obtain high spectral resolution with short data sets.

Mechefske and Mathew [1992a, 1993] compared the Fourier transform with the

autoregressive method in a study that sought to detect and diagnose faults in low-

speed rolling element bearings. When they applied the Fourier transform method, they

found that a lengthy data set was necessary. This was because standard velocity and

accelerometer measurement transducers are generally insensitive at low frequencies,

therefore, an adequate data sample is required to compensate for this insensitivity.

However, the authors found that this is not the case with the AR method because it

only needs short data lengths to analyse signals, which resulted in a successful fault

diagnosis.

Mechefske and Mathew argue that between 30000 to 50000 data points are required,

depending on the amount of noise present in the signal, and collecting this amount of data

from rapidly rotating machinery is not a problem. A high sampling rate may be used to

collect the data in a relatively short time. Longer sampling times are required for low-

speed bearings in order to analyse the low frequency bandwidths of interest. One of the

advantages of the model-based approach to spectral estimation of AR techniques is that a

higher resolution is achievable with these techniques than with traditional Fourier

transform based techniques, especially for short data sets. The extended sample times

required to achieve acceptable frequency spectra has resulted in the Fourier transform

method being deemed impractical for monitoring low-speed rolling element bearings. The

study made by Mechefske and Mathew shows that only the AR spectral estimate revealed

a clear difference between a defective bearing and a good bearing.

In a study by Mars et al [1992], based on previous work by Martin [1986], the AR

method was extended to a time-frequency representation. In this study into non-
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stationary signals, a time-frequency representation was generated through a time-

shifting operation. The authors developed a hybrid technique combining a high-

frequency resolution estimator (autoregressive method on a sliding window) with a

power estimator (maximum likelihood method). This technique was successfully applied

to simulated seismic signals, with AR order 6 and considering a SNR of 20 dB. However,

the AR technique may give rise to problems as it is based on the assumption that the

unavailable data outside the window are not zero [Marple, 1986], and this does not

hold true in non-stationary analysis. Also, the SNR considered in Mars et al [1992]

simulation was more favourable than the proposed in this study (SNR -34 dB).

1.5.8. The Original Prony Method

As we have seen above, the autoregressive technique is not suited for non-stationary

analysis, primarily due the assumption that the unavailable data outside the window

are not zero. It is therefore necessary to consider a method which is not limited by this

assumption, and which is able to seek out transient components (short time duration

components). Non-stationary processes will now be considered as a special type of

transient, and the method arguably most suitable to analyse transient components is

the original Prony technique. For example in Poggio and Blaricum’s [1978] study, an

evaluation of transient data was made by the use of the original Prony method. In that

study the original Prony method was applied to analyse the impulse response of a

double exponential excited circuit in a synthesised network. The results show that the

original Prony method is useful to determine complex natural resonances and complex

amplitudes associated with exponential representation of waveforms.

According to Marple [1982], if the process undergoing spectrum analysis consists of

an unknown number of sinusoids embedded in additive noise, a better spectral

performance can be obtained by methods that produce spectral line estimates in which
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the original Prony method is included. The original Prony method is a technique for

modelling sampled data as a linear combination of exponentials. This method has the

capacity to seek out weak components in high level noise and to generate high

resolution frequency scales [Marple, 1987, Ribeiro, 1991]. Another significant

advantage is that the original Prony technique evaluates the exponential damping and

the phase for each component sought, and this can be used for filtering purposes.

Normally, a deterministic component presents no amplitude decay along the time axis,

and this is shown by the very low exponential damping values obtained using the

original Prony technique. Thus, deterministic component selection can be made due to

the low exponential damping values calculated by the original Prony method, to the

detriment of the transient ones (noise and non-stationary components) which present

high exponential damping values. A further positive feature of the original Prony

technique is that it brings together high-resolution analysis with limited signal data,

and in doing so, a better “instantaneous” representation of the stationary and non-

stationary components can be obtained. This is achieved by utilising short data lengths

in its calculations, which facilitates the representation of short length duration

phenomena in a signal. The signal can then be represented by several short length data

samples in order to obtain a better description of non-stationarities, arguably an ideal

condition for non-stationary analysis.

However, previous research has found the original Prony method to be unsatisfactory

when applied to signals with noise. Bucker [1977] found in a comparative study using

the original Prony method and the Fourier transform, applied for bearing estimation

from narrow-band signals in a realistic ocean environment, that the Fourier transform

worked better in the presence of noise. Also, according to Poggio and Blaricum’s

study [1978], the original Prony method was shown to have problems in the areas of

rank deficiency, aliasing, and noise effects. But it should be pointed that in these

cases, the original Prony method used was an old version. It did not include new

developments to the method made around 1981 such as applying least-squares fitting

and covariance incorporated in the first step of the technique’s calculations. One
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possible way to overcome the above problems is to apply a very efficient algorithm

for the calculations in the original Prony method.

An attempt was made by Ribeiro [1991] to apply the original Prony method in an

empirical study in a petroleum platform wellhead. In a comparative study of the

original Prony method and the Fourier transform technique, the study sought to

analyse vibrations generated from an ESP installed downhole in the well, and

transmitted through the pipe from a depth of 1000 meters. Figure 1.7 shows vibration

data being collected from a land petroleum wellhead and Figure 1.8 shows vibratory data

being collected from a petroleum wellhead of a sea platform manifold. Figures 1.9 and

1.10 show schematic diagrams representing a land petroleum wellhead and petroleum

wellhead of sea platform vibratory data collection respectively.

Fig. 1.7 - Vibratory data collection on a petroleum wellhead
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Fig. 1.8 - Vibratory data collection on a petroleum wellhead
of a sea platform manifold

Fig. 1.9 - Schematic diagram of a land petroleum wellhead ESP vibration signal
collecting and processing
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Fig. 1.10 - ESP vibration signal collecting in a petroleum wellhead of a sea platform

To gather the data in a petroleum wellhead on a sea platform, an accelerometer was

fixed on the tubing, 1 meter below and perpendicular to the main pipe line, as shown

in Figure 1.11.

Fig. 1.11 - Location of an accelerometer in a petroleum wellhead on a sea platform
for vibration data collection
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The research findings revealed that the signal collected in the platform wellhead

contained a lot of spurious components, whose amplitudes could reach 100 times the

component to be measured and analysed. These include platform environmental noise,

and fluid slugs. Figure 1.12 shows a typical signal that was collected on the wellhead

number 65 of the Vermelho Platform in Campos Basin, Brazil. In the graph, strong

modulations in the signal due to flow turbulence can be seen.

Fig. 1.12 - A real signal collected on a petroleum wellhead sea platform

The  frequency range from 0 to 200 Hz was selected for analysis of the resulting

signal with particular attention given to two components: (i) the pump rotational

frequency (58 Hz) and (ii) the electrical supply frequency (60 Hz).

The results showed that when the Fourier transform method is applied to the signal,

strong components will hide the weak signals generated by the ESP. In Figure 1.13 a

graph is shown with the results of applying the Fourier transform to the signal.
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Fig. 1.13 - Fourier transform of the signal from platform of Vermelho

It can be seen that there is effectively no discrimination between the rotation (58 Hz)

and electrical (60 Hz) frequencies. Another drawback associated with this method is

the difficulty in handling the non-stationary components generated by fluid vibrations

(fluid slugs). The Fourier transform and short Fourier transform methods do not

detect clearly deterministic components in the presence of noise and non-stationary

processes. A higher sampling rate, larger quantity of data, and longer time average

may be required in order to improve the resolution and to detect the weak

components in the high-level noise, but this is rather impractical in many situations. A

further problem was encountered when performing data averaging, in that the results

of the analysis were distorted, which may be due to the presence of non-stationary

components. Also, the ESP rotation frequency desired to monitor may be varying due

to the variable fluid load that the pump is subjected, which represents a further

difficulty for analysing this component through the Fourier transform.

The components sought by the original Prony method in the signal are generally

complex exponentials, which not only carry information of the frequency, but also of



Chapter 1 - Introduction

38

its phase and exponential damping values that are useful for filtering purposes

[Ribeiro, 1991]. The original Prony method was used in the analysis of the signal

collected on the manifold of the Platform of Vermelho due to its capacity of obtaining

high-resolution with few data samples, and its capacity of evaluating the component

exponential damping for filtering purposes. The aim was to obtain a good

discrimination of any exponential peak fitted by the method, including the weak ones

that are hidden by the strong components, and to filter out the spurious ones through

a “exponential damping selectivity”.

The fact that some low exponential damping values, associated with specific non-

transient components, were obtained by the original Prony method demonstrates that

this technique is potentially useful for filtering purposes. See, for example, the

exponential damping value obtained for the 57.15 Hz component (-0.004) compared

with the one obtained for the 47.77 Hz component (-0.1) in the table reproduced in

Appendix A. This means that the 47.77 Hz component is more “transient” than the

57.15 Hz, which may suggest that the latter presents a more deterministic behaviour

than the 47.77 Hz. However, in spite of this result, it is not sufficient evidence to

assume that this deterministic behaviour is associated with the ESP’s vibration. The

ESP rotation vibratory component, possibly associated with 57.15 Hz, seem to be still

heavily damped and no estimate about the noise level is available.

The results of this attempt into ESP spectral analysis, show that the original Prony

method may detect the rotation (58 Hz) and the electrical (60 Hz) frequencies of the

ESP equipment. (See table in Appendix A, values of lines 12th and 13th). However, the

findings also suggest that for our purposes, it is still necessary to develop the original

Prony method further.

The results of the above study give rise to the following questions:
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(i) is it possible to use the exponential damping values calculated by the original Prony

technique to filter out the spurious components present in the signal?

(ii) to what extent do vibrations generated by other sources near the transducer (such

as platform environmental noise and fluid slugs) conceal the pump’s vibration signal,

now weakened due to the damping loss effect caused in its transmission through the

petroleum pipe?

In the above discussion, the difficulties involved in searching for an adequate signal

processing technique to filter out noise and non-stationary processes present in the

signal, and thereafter able to detect weak components for fault detection purposes,

have been demonstrated. The basic problem areas which an adequate signal

processing technique will have to overcome, given the particular nature of the signal

we seek to analyse, have been outlined as have the limitations of the existing

techniques. It is apparent, therefore, that after reviewing the available literature, an

adequate signal processing method which is able to detect weak components

embedded in both high level noise and non-stationary conditions is not available.

What has been shown is that, although the original Prony method is potentially more

advantageous than the Fourier transform method, due to its capacity for filtering out

noise, in its present form it is still inadequate for handling non-stationary conditions.

An attempt will therefore be made to overcome this problem by considering non-

stationary processes as special types of transients, to which, it is agreed, the original

Prony technique is well suited [Marple, 1986]. However, for this to succeed the

original Prony method has to be extended to generate a time-frequency

representation. Any system not in a steady state can be said to be in a transient state,

which includes damped stationary conditions and non-stationary conditions

[Meirovitch, 1967]. What differentiates both conditions is the parameter variation

degree of freedom. In the case of wide non-stationary conditions, all parameters that
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govern the process may vary in time (mean, variance, standard deviation, kurtosis

etc). In the transients considered for original Prony technique detection, only the

amplitude of damped components is allowed to vary in time. As a consequence, some

distortions may be expected in the original Prony method’s calculations due to other

parameter variation, as for example, the variation in the component frequency values.

It has been argued above that the Wigner-Ville distribution, which does generate

time-frequency representations, is severely limited for the purposes of this study due

to noise propagation and the amplitude peak leakages that appear when the Fourier

transform is applied through its computations. It has also been argued, that the

wavelet transform, which also generates time-frequency representations, presents

difficulties when analysing signals that start at a different positions in time or space

and that contains relevant high-frequency components. Therefore, at this stage the

possibility of adapting the original Prony method will be examined, in order to seek a

viable alternative to existing signal processing techniques for the analysis of the ESP

signals.

1.6. Towards an Extension of an Existing Signal
Processing Technique

It has been demonstrated above that most existing methods are unable to deal with

signals containing high levels of noise and non-stationary components. Therefore, as

the main objective of this research is to develop a signal processing technique that is

able to filter out strong spurious components, whilst retaining the weak ones, an

attempt will be made to filter out the non-stationary conditions and noise by

considering them as transients. However, to achieve this it is necessary to adapt the

original Prony method to generate time-frequency representations, in much the same

way as they are generated in the Morlet wavelet transform and Wigner-Ville



Chapter 1 - Introduction

41

distribution methods, in which “sliding” windows are applied to the signal in the time

domain.

The main advantages in extending the original Prony method are as follows:

(a) It needs short lengths of data to perform its calculations, a feature which is

necessary for better local non-stationarities detection.

(b) It generates high-resolution graphs with short data lengths, which is useful when it

is not practical to collect large quantities of data.

(c) It represents transients which are useful for an approximate representation of non-

stationary components.

(d) It provides the component exponential damping information which can be used for

filtering purposes.

However, it is expected that problems will be encountered with the method to the

extent that (i) it may present instabilities in its calculations due to the nature of

polynomial and matrix evaluations; and (ii) it may need more computational effort for

its calculations than the Wigner-Ville distribution and the wavelet transform

techniques.

In the course of developing a new approach to analyse equipment through remote

accelerometers, a number of research tasks need to be undertaken in the area of signal

processing. These include:

(a) the  extended  Prony time-frequency representation will be tested in a comparative

simulation   study   with   the   wavelet  transform,  the  Wigner-Ville  distribution

and  pseudo-Wigner-Ville  distribution techniques.  These  methods  will be compared
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and contrasted in how they handle signals embedded in high-level noise with non-

stationary components (see Chapters 2 and 3);

(b) test and empirical validation of the extended theoretical formulations. For this

purpose, experimental data will be generated on a rig that is constructed to replicate,

as far as possible given the restraints of this research programme, a petroleum well

(see Chapter 4).

1.7. Scope and Structure of the Thesis

The remaining Chapters of this thesis have been organised in the following way:

theoretical background; simulation, experimental analysis; discussion, conclusions and

new research directions. The theoretical material (Chapter 2) provides the

mathematical foundation for the simulation and experimental analysis (Chapters 3 and

4), which in turn provide the basis for the discussion and the conclusions in Chapters

5 and 6. Figure 1.15 shows a diagram of the structure of this thesis.

The methods for signal processing are presented in Chapter 2. Non-stationary signal

processing analysis is fully explained, together with the way the original Prony

technique is extended to analyse on a time-frequency plane basis, as in the pseudo-

Wigner-Ville distribution or in the wavelet techniques.

In Chapter 3, several simulations using the methods developed for signal processing

are presented, and some conclusions discussed.
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Fig. 1.15 - Thesis flow chart diagram

The  experimental analysis involving an experimental apparatus is described in

Chapter 4. A scale model that seeks to replicate a petroleum well has been

constructed. The tubing of a petroleum well is represented by a 40 meters length wire

stretched vertically from the top to the ground level of the Queen’s Tower of the

Imperial College. This experiment provides some insight into what to expect in terms

of remote sensor measurements. All data collected in the experiment are specific,

although the signals obtained may resemble other signals collected in a situation in

which a remote transducer is used to collect vibration data.

In Chapter 5 is presented an analytical overview of this study which includes a

discussion about the relationship between the simulation/experiment and a “live”

situation.
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The major achievements and contributions of the research are summarised in Chapter

6, which also includes general conclusions and suggestions for new areas of further

research.

Appendix A presents a Table generated by the original Prony method applied on the

real wellhead data analysis. In the Appendix B, the technical drawings of the

experimental supports are presented. In the Appendix C, a theoretical assumption for

SNR level is made. In the Appendix D, the Kaiser-Bessel windows applied in the

simulation signals of Chapter 3 are defined.
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Chapter 2  
Theoretical Background 

2.1. Introduction

In this Chapter the theoretical background of the signal processing methods employed

in this study, together with the theoretical formulation of the extended Prony time-

frequency representation, will be presented.

As non-stationary analysis will be addressed, signal processing techniques that are

considered relevant for this purpose, the wavelet transform (both the Morlet and

Malat techniques), the Wigner-Ville distribution, and the extended Prony time-

frequency representation developed in this study, are explained. This will be followed

by a brief explanation about the convolution bandwidth filtering technique applied in

this research.

The signal analysis undertaken throughout this work involves developing and testing

signal processing methods with the aim of determining: (i) how a particular technique

can handle noise; (ii) how a particular technique can handle non-stationary

components (iii) how a particular method can handle both non-stationary and noise

components; and (iv) how to improve the detection of a weak deterministic component in

a signal in which both components are present. The intention is to improve the

detection of weak deterministic components in signals that contains strong non-
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stationary processes and high-level noise. In view of the difficulties in handling non-

stationary processes and high-level noise at the same time, a different filtering approach

will be explored. A signal with deterministic components embedded in high-level noise has

to be pre-processed in such a way as to emphasise the deterministic components to be

filtered. If one wants to detect weak components buried in noise, the signal processing

technique has to supply additional information about these components that the classic

Fourier transform, the wavelet transform and the Wigner-Ville distribution are unable to

yield. One technique that gives this additional information about the signal components is

the original Prony method. That is, in addition to the component amplitudes and phases,

the original Prony technique also evaluates exponential damping, which can be used for

our filtering purposes. However, some modifications have to be made to the method to

generate time-frequency representations, such as the ones generated by the wavelet

transform and the Wigner-Ville distribution, to process non-stationary signals. These

modifications will be discussed later in this Chapter.

To demonstrate the need for generating an extended time-frequency representation

via the original Prony method, the wavelet transform and the Wigner-Ville distribution

techniques will be compared and contrasted via the simulations of Chapter 3. This will

be followed by an analysis of multi-component signals resembling the live signal

collected at the wellhead (see Chapter 3 below). However, first a brief discussion

about non-stationary signal analysis will be made to provide an insight into the matter.

2.2. The Problem of Non-Stationary Process Analysis

Bendat and Piersol [1986] state that an appropriate general methodology does not

exist for analysing the properties of all types of non-stationary random data from

individual sample records. This is due partly to the fact that a non-stationary

conclusion is a negative statement specifying only a lack of stationary properties,

rather than a positive statement defining the precise nature of the non-stationarity. It

follows that special techniques must be developed for non-stationary data that apply

only to limited classes of these data. The usual approach is to hypothesise a specific
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model for each class of non-stationary random process. A non-stationary time-history

record data, x(t), may be constructed in many ways. Three different models may be

used [Bendat and Piersol, 1986]:

x t d t y t( ) ( ) ( )= +

x t d t y t( ) ( ) . ( )=

x t u.y t n( ) ( )=

where y(t) is a sample record of a stationary random process and d(t) is a

deterministic function of time that is repeated exactly on each record. The first model

represents a process whose mean value is varying in time. The second model

represents a process whose mean square value is varying in time. The third model

represents a process whose frequency is varying in time. Such elementary non-

stationary models can be combined or extended to generate more complex models as

required to fit various physical situations. A problem related to these complex models

appears when the quantity of combinations which is necessary to represent a non-

stationary process is large enough for their realisation. As Bendat and Piersol [1986]

argue, the measurement of non-stationary spectral density functions can be a

formidable task.

To introduce non-stationary analysis techniques with these comments in mind, an

analysis of the signal processing methods mentioned above will be made.

2.3. Wavelet Transforms

Wavelet transforms were developed in France by J. Morlet in 1987, a geophysicist, to

aid seismic analysis. They can be considered as the localised equivalent of Fourier

transforms and work on the principle that all signals can be reconstructed from sets of
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local signals of varying scale and amplitude, but constant shape [O’Brien and

MacIntyre, 1994].

In the wavelet transform, the signal is decomposed into wavelet components in the

same way that it is decomposed into harmonic components in the Fourier transform.

Each wavelet component is called a level and when the separate wavelet levels are

added together, the original signal is recovered. In the discrete Fourier transform, the

sequence length N of the signal determines how many separate frequencies can be

represented. In the wavelet transform when N=2 n there are n+1 wavelet levels. A set

of wavelet components consists of signals of a specified shape that can be scaled and

translated. The components of a decomposed signal depend on the shape of the

analysing wavelet. There are an infinite number of these, but only the ones which meet

the conditions to give accurate decomposition, and are also orthogonal to each other,

are utilised [Newland, 1993].

The overall effect of the transformation is to transfer the data from one domain to

another; whereas the Fourier transform moves from a time domain to a frequency

domain with sines and cosines as the basic functions, the wavelet transform moves

data from a space domain to a scale domain, where the wavelets are the basic function

(see Figures 2.1 and 2.2 represent two types of wavelets: Malat and Morlet

respectively). The size of the data to be transformed must be an integer power of 2,

i.e. of length 2n, as it has to be for the FFT algorithm [O’Brien and MacIntyre, 1994].

To compare wavelet transforms of different signals, but collected from the same

source, each signal must start at the same position in time or space, which is a difficult

condition to fulfil in signal processing.
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Fig. 2.1 - Shape of a Malat wavelet basic function
[Newland, 1993]

Fig. 2.2 - Shape of a Morlet wavelet basic function [Bonaldo, 1993]

Even related to the same signal, different wavelets cannot be used for comparison

because it is impossible to be sure whether any change in the wavelet domain is due to

a shift in the location of the signal [O’Brian and MacIntyre, 1994]. In order to

represent what O’Brian and MacIntyre claim, a graph of two signals is presented

below. Figure 2.3 shows the Morlet wavelet time-frequency description of 2 signals

containing a Dirac delta function with amplitude 1, located at two different time axis

positions. If we want to compare the signals with deltas on both graphs they must be

located in the same position on the time axis. It should be noted that in the case of
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these signals, the deltas are similar, but if a more complex signature is considered a

Morlet graph is unable to compare two complex similar signals in a straightforward

way. Therefore, as O’Brian and MacIntyre state, to compare data, such as in the case

of condition monitoring, each data set must be matched in order to start at the same

position in time or space before it is transformed to the wavelet domain.

Two forms of wavelet transforms will be discussed below: the first is based on the

work of Malat [Newland, 1993], and the second on the work of Morlet [Bonaldo,

1993].

Fig. 2.3 - Morlet wavelet transform of two signals with a Dirac delta located
in different time axis positions in a time-frequency plane plot
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2.3.1. Malat Wavelet Transform

The wavelet set utilised in the Malat analysis is also known as the Daubechies

wavelet. The fundamental basis of the Malat wavelet transform is that any random

signal, x(t), may be represented by [O’Brien and MacIntyre, 1994]:
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where µk are numerical constants called wavelet coefficients, t the time, and the Wj,k is

the wavelet scaling function defined as:

W t W t k for j and kj k
j j

, ( ) ( )= − ≥ ≤ ≤ −2 0 0 2 1 (2.2)

To implement this technique a table of coefficients µk is given in Newland [1993]. As

Newland [1993] points out, there are many different sets of coefficients, µk, but in

order to generate good wavelets these coefficients have to satisfy three different

categories  of conditions. The first is that the sum of the coefficients must always

equal 2. This is called the conservation of area condition in which the scaling function

Wj,k area remains constant during iterations. The second category sets the accuracy,

and basically implies that the Fourier transform of the scaling function Wj,k must be

periodically zero. If the function Wj,k extends to infinity without zeroing, it will not

represent a local signal variation precisely. The third category is required to ensure the

orthogonality between the scaling function, Wj,k, and its corresponding generated

wavelets.
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2.3.2. Morlet Wavelet Transform

The Morlet wavelet transform technique was developed in the 1980s and has been

applied with reasonable success in non-stationary analysis [Bonaldo, 1993]. In this

technique, a temporal Gaussian window with variable width is used. The time window

is reduced to detect any variation of high frequencies and is enlarged to detect any

variation in low frequencies. Physically, Morlet's wavelet analysis is equivalent to passing

the signal through a constant relative bandwidth filter bank. Each wavelet component can

be seen as the output in time of a constant filter. A Gaussian function is utilised because

the resulting function in the frequency domain remains Gaussian, only differing by a

parameter multiplication. This has the advantage of simplifying the calculations

performed by this method.

The Morlet wavelet is defined by the following formula:

WM t
a

s t g
t

a
dt( , ) ( ) . .ν τ= −



− ∞

+ ∞∫1

(2.3)

where s(t) is the signal in which is applied the window function:
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2
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(2.4)

which denotes a Gaussian multiplied by a complex harmonic function and where τ is

the time delay and a the scaling factor applied to the tested frequency ν in the Morlet

wavelet transform.

To perform the Morlet wavelet transform on a signal sample, an algorithm using the

Fast Fourier Transform was developed by Bonaldo [1993]. The objective was to

reduce dramatically the time of the calculations and to make the Morlet wavelet

analysis suitable for processing by computer. This technique was then applied by
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Bonaldo to analyse surge in compressors. Figure 2.4 shows a diagram of the Morlet

wavelet transform calculations.

Fig. 2.4 - Morlet wavelet calculation diagram

Bonaldo began to develop the algorithm by considering the theorem of Parseval,

which can be represented by the formula:

f t r t dt FT f t FT r t d( ) ( ) ( ( )) ( ( ))
− ∞

+ ∞

− ∞

+ ∞

∫ ∫= ν
(2.5)

where FT is the Fourier transform which is applied to the temporal functions f(t) and

r(t).



Chapter 2 - Theoretical Background

54

Inserting the defined wavelet transform, equation (2.3), into (2.5) will give:
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From this point, Bonaldo redefined the sliding Gaussian window on the time domain

as:
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Equation (2.7) is a Gaussian function multiplied by a complex harmonic function with

“anticlockwise” rotation (note the positive signs of the function arguments). Bonaldo

next developed an expression which is the Fourier transform of (2.7):
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Making the following variable substitution and rearranging the integrand of equation

(2.8):
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Substituting the integrand of equation (2.8) gives:
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Rewriting the exponent of the integrand of equation (2.9):

( )− + −





 = − + −





+ −








π

π
ν ν π

π
π ν ν π ν νt

a
i

t
a

a
t

a
i a a1

2

2
1

0
1

0

2

0
2

2
2

2
2 2( ) ( )

and substituting the exponent of the integrand of equation (2.9) by the right hand term

of the above expression results in:

( )FT g
t

a
e

e e dt
i

a t a i a1
2

2 2 2
12

2
0

2 1 0
2+










=

+
− − − + −

− ∞

+ ∞

∫τ
π

πντ
π ν ν π π π ν ν

. . .( ) / ( )

(2.10)

Making another variable substitution, and differentiating the exponential function of

the integrand of equation (2.10) gives:

t t a i a= + −1 02 2/ ( )π π ν ν

( )e et t a i a− − + −=π π π π ν ν2 1 0
2

2 2/ ( )

( )− = − + −− − + −
2 2 2 21

2 1 0
2

1 0
2 2

1π π π π ν νπ π π π ν ν
t e dt t a i a e dtt t a i a

( / ( ))
/ ( )

( )a e dt e dtt t a i a
2

2 1 0
2

2 2
1π π π π π ν ν− − + −= / ( )

Substituting the right hand exponential term of the above expression in (2.10) and

rearranging:

FT g
t

a
a e e e dta i t+










= − − + −

− ∞

+ ∞

∫τ π ν ν πντ π2 22
0

2 2( ) . . .
(2.11)

The right hand integral of the equation (2.11) equals to 1 and simplifying will give:

FT g
t

a
a e ea i+










= − − +τ π ν ν πντ. .( )2 22

0
2

(2.12)
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It is noted in equation (2.12) that the Fourier transform of the filter is a complex

Gaussian function and its centre is located at the frequency, ν0. Substituting (2.12) in

(2.6) will lead to:

( )1 2 22
0

2

a
s t g

t
a

dt a FT s t e e da i( ) . ( ) . . .( )+



 =

− ∞

+ ∞ − − +
− ∞

+ ∞

∫ ∫τ νπ ν ν πντ (2.13)

The right hand integral of the equation (2.13) corresponds to an Inverse Fourier

transform (IFT) operation applied to a Gaussian window centred at frequency ν0 and

rewriting the equation (2.13) will lead to the main equation of the algorithm:

( )WM t a IFT FT s t e a( , ) ( ( ) . )( )ν π ν ν
0

2 2
0

2

= − − (2.14)

Redefining equation (2.14) to a discrete domain will give:

WM t f a IFT S f
a n

f
fs

s

( , ) . $( . ) . exp
.

0
2

0

2

2= − −


























ν π (2.15)

where fs is the sample frequency and f0 is the centre frequency of the Gaussian

window.

After applying the wavelet transform it is possible to recover the original signal by

summing all frequency lines related to the same time shift. This is due to the fact that

the sum of the contributions of the Gaussian filters to generate one frequency line is

equal to the related signal data point projected in the time axis of the time-frequency

plane [Bonaldo, 1993]. In the graphical plot of the Morlet wavelet transform, the

levels are called “octaves” due the characteristic of scaling frequency in factors of

two. To improve the graph resolution, a sub-division of the octaves, fractions

between n and n+1 from 2n to 2n+1 which we will call voices, are used.
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The Morlet wavelet transform is a technique that has been widely used for non-

stationary analysis and, as a consequence, will be compared and contrasted with other

techniques in this study.

2.4. Wigner-Ville Distribution

The Wigner-Ville distribution was first defined for quantum mechanics by E. P.

Wigner (1932) and, later, by J. Ville (1948) who derived a joint representation from a

mathematical foundation to utilise it in signal representation. This distribution

approximates a specified time-frequency description in the minimum mean-square

error sense. This distribution presents a time-frequency representation of the non-

stationary auto-covariance function of the process, and it is a time-frequency

representation that preserves the time-frequency dualism of stationary processes,

tolerates linear filtering and modulation, and gives the expected instantaneous

frequency of the process as a first local moment of the representation. Thus, the

Wigner-Ville distribution can be interpreted as a generalised time-varying spectrum.

Some care has to be taken with terminology, as many words such as “distribution” in

the probability sense, are used for historical reasons. Distributions first arose in

quantum mechanics where the words “probability density” or “distribution” are

applied in the conventional meaning of the words. Therefore, distributions should be

read as “intensities” or “densities”, or simply as how the energy is “distributed” in the

time-frequency cells [Cohen, 1989].

Like the Morlet wavelet transform, the Wigner-Ville distribution is commonly used in

the analysis of non-stationary processes [Flandrin and Escudié, 1985, Chiollaz and
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Frave, 1993, Moss and Hammond, 1994]. The technique was developed to overcome

a limitation of the short-time Fourier transform (STFT), where high-resolution cannot

be obtained simultaneously in both the time and the frequency domains [Newland,

1993]. In the STFT, a short data window is applied, centred at time t, and spectral

coefficients are calculated for this short length of data. The window is then moved to

a new position and the calculation repeated. The Wigner-Ville distribution was

developed to utilise the Fourier transform in a similar way. Due to this similarity the

Wigner-Ville distribution has been interpreted by Flandrin and Escudié [1984] as a

modified version of the STFT.

In the Wigner-Ville distribution, no reduction of the number of data points in the

time-shifting operation is necessary. The starting point for this distribution is the Fourier

transform of the ensemble-average instantaneous correlation [Chiollaz and Frave, 1993]:

( )FT x t E x t x t e di( ( )) ( ) * ( )= + − −
− ∞

+ ∞∫ τ τ τπντ
2 2

2

(2.16)

where

x* = conjugate of x for complex signals or Hilbert transform of x for

real signals

which, in theory, is a measure of the frequency content of a non-stationary random

process, x(t). However, in practice, it is never possible to compute the ensemble-

average function accurately because an infinite number of data are necessary [Chiollaz

and Frave, 1993].

One solution to deal with the non-stationary case is to omit the ensemble-average in

(2.16):
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WVD x t x t x t e di( ( , )) ( ) * ( )ν τ τ τπντ= + − −
− ∞

+ ∞∫ 2 2
2

(2.17)

Equation (2.17) represents the Wigner-Ville distribution, which belongs to the class of

bilinear frequency distributions defined by Cohen [1989] and given by the equation below

[Moss and Hammond, 1994]:

C(t,v ) = e t x(u +
2

)x (u -
2

) dud di u; ( , ; , ) *( )φ π φ ξ τ ν τ τ τ ξξ τν ξτ1
2

− −
− ∞

+ ∞

− ∞

+ ∞

− ∞

+ ∞ ∫∫∫
(2.18)

where φ ξ τ ν( , ; , )t  is the kernel function, u is time, and ξ and τ are the bilinear

distribution time delays [Flandrin, 1987]. If the kernel function is set to 1 and equation

(2.18) is calculated for a specific time t and frequency f, an equation similar to (2.17)

will be obtained. For finite-duration signals, the Wigner-Ville distribution is zero up to

the start. This is a desirable feature for avoiding non-zero values for the distribution if

the signal is zero. The Wigner-Ville always goes to zero at the beginning and end of a

finite-duration signal [Cohen, 1989].

The discrete representation for the equation (2.17) is:

WVD x T
T

x t kT x t kT es
s

s s
i k T

k

s( ( , )) * ( ) ( )ν π
ν= − + −

=− ∞

+ ∞

∑ 2 (2.19)
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where Ts is the sampling period and must be chosen so that Ts ≤( / )maxπ ν2 , where

ωmax is the highest frequency in a random signal [Cohen, 1989].

This distribution exhibits a drawback due to the interference caused by cross-terms.

These cross-terms appear when the cross-correlation of the two signals is non-zero. This

is caused by the superposition of the Wigner-Ville transform of data arrays in the

time-shifting operation. Part of the data of one shift are repeated in the following one,

causing redundant information to be used. In general the Wigner-Ville distribution is not

zero when the signal is zero, and this causes considerable difficulty in interpretation. In

speech, for example, there are silences which are important, but the Wigner-Ville

distribution masks them [Cohen, 1989]. Figure 2.5 shows a diagram of a practical

calculation of the Wigner-Ville distribution performed on a signal with a 4 Hz sine wave

using 16 data samples/s.

If the discrete evaluation of the Wigner-Ville distribution is considered, the frequency

resolution, associated with dτ and which becomes Ts in equation (2.19), is different from

that obtained by Fourier transformation of the original N-point time record in two respects

[Shin and Jeon, 1993]. The first difference is that the argument of the time signal and its

conjugate contains a factor of 1/2, and the second is that the autocorrelation of the time

signal is twice the length of the original record and therefore the discrete Fourier transform

is evaluated over 2N. The result is that the Wigner-Ville distribution frequency resolution

is half the resolution of an ordinary power spectrum density function for the same number

of points.
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Fig. 2.5 - Wigner-Ville distribution calculation diagram

In the case of signals with multiple frequency components, the Wigner-Ville distribution is

very complicated and difficult to interpret due to the interference effect [Shin and Jeon,

1993]. Also, in practice unless the signal x(t) is a bandlimited signal, it is not possible to

calculate the Wigner-Ville distribution as it requires integration over all time or all
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frequency [Moss, Hammond, 1994]. Due to these problems, weighting windows are

applied to data arrays of each shift in both time and frequency domains, which will lead to

the formula of the pseudo-Wigner-Ville distribution (PWVD) [Shin and Jeon, 1993,

Moss and Hammond, 1994];

PWVD(x t,v ) = h g t x(t +
2

) x (t -
2

) e  d-2i v( ) ( ) ( ) *ν τ τ τπ τ

− ∞

+ ∞∫ (2.20)

where h(ν ) and g( t ) are weighting windows applied in the frequency and time domains

respectively. As examples, rectangular, Hamming, Gaussian and Kaiser-Bessel

weighting windows in the time and frequency domains have been applied in the

pseudo-Wigner-Ville distribution [Shin and Jeon, 1993, Chiollaz and Frave, 1993,

Moss and Hammond, 1994] (see Appendix D for the Kaiser-Bessel window definition).

The application of a weighting window in the time domain is straightforward and requires

only a multiplication of data arrays by a specific window. The application of a frequency

weighting window may be done through a convolution operation between data arrays and

a specific window sliding in the frequency domain.

2.5. Wavelet Transform and Wigner-Ville
Distribution Relationship

In a comparison between the two techniques, it is first important to separate the two

different concepts of wavelet transforms, the Morlet and the Malat techniques. The Malat

technique, due to its random association related to the equations (2.1) and (2.2), presents

some inherent difficulties for harmonic component identification. This technique is less

related to the harmonic analysis and presents a more confused time-frequency

representation than the Morlet technique, based on Bonaldo’s algorithm. The Malat

technique has proved to be more suitable for data compression in channel transmission due

to its capacity to recover the original signal. For example, in a study on signal compression

in hearing aids, Drake et al [1993] developed an algorithm based on the Malat wavelet

technique   that   combined   standard   compression  with  intensity- level  dependent  gain
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calculation to compensate a common hearing impairment known as “recruitment of

loudness”. If a listener suffers from recruitment of loudness, the perceived loudness grows

more rapidly with an increase in sound intensity than it does in the normal ear. The

proposed technique is applied in a compensation system, in which the impairment is

modelled in such a way to develop an attenuator for the sound intensity. The experiments

carried out by the authors showed low distortion in the signal compression by the use of

Malat wavelet.

The general bilinear class of time-frequency distributions defined by Cohen [1989] are

either Fourier transforms or spread versions of the Wigner-Ville distribution, whose major

feature is the generation of significant cross-terms for multi-component signals [Moss and

Hammond, 1994]. A basic difference between the Morlet wavelet transform and the

pseudo-Wigner-Ville distribution, which is a variant of the Wigner-Ville distribution, is the

way in which the windows are applied in the signal analysis. In the pseudo-Wigner-Ville

distribution the length of the windows are fixed (see equation (2.20)) and in the Morlet

wavelet transform they vary according with the centre frequency of the Gaussian window

(see equation (2.15)).

As was discussed above, these methods are reported to be inadequate for handling signals

containing high levels of noise. It was also shown in the introduction that the original

Prony method could be more suitable to analyse non-stationary data, when they are

considered as transients (see section 1.6 of Chapter 1). Therefore the theoretical

formulations of the original Prony method will now be analysed in greater detail.
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2.6. The Original Prony Method

The original Prony method was developed to provided solutions for a deterministic

exponential model. When the Fourier transform is applied, the unavailable data or

unestimated autocorrelation sequence values outside the window are implicitly zero,

which is an unrealistic assumption that leads to distortions in the spectral estimate

[Marple, 1987]. Spectral estimates produced with the autoregressive coefficients

estimated by the covariance method, used in the autoregressive procedures, usually have

less distortion than spectral estimates produced by methods that ensure the filter stability,

such as the autocorrelation method [Lang and McClellan, 1980]. To assume that the

values outside the window are not zero, an autoregressive procedure has been

adopted as represented by the following equation:

x n h y nk
k

p

( ) ( )=
=
∑

1 (2.21)

where n is data point number of a discrete time sequence, x(n) is a data vector, p is

the order of the autoregressive procedure, hk is a complex amplitude that represents a

time-independent parameter, and y(n) the system response function.

As the sought components in the signal are generally complex exponentials

[Marple,1987], the system response y(n) of equation (2.21) may be substituted for

exponentials to obtain a clearer representation of the deterministic components and

this will lead to the following equation:

x n h zk k
n

k

p

( ) = −

=
∑ 1

1 (2.22)

where

h A ik k k= exp ( )θ

( )z c i Tk k k s= +exp ( )2πν
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Ak = amplitude

θk = phase

ck = exponential damping

νk = frequency

Ts = sampling interval

p = polynomial order

Note that zk is a complex exponent that represents a time-dependent parameter.

The original Prony procedure provides solutions for the equation (2.22) by calculating

exactly-fitting purely-damped exponentials. This method was first developed in 1795

by Gaspard Riche, Baron de Prony, for interpolating data points in his measurement

of gas expansion.

Although it is not a spectral estimation technique, the original Prony method has a

close relationship to the least-squares linear prediction algorithms used for the

autoregressive (AR) and autoregressive moving average techniques (ARMA). The

original Prony method seeks to fit a deterministic exponential model to the data, in

contrast to the AR and ARMA models that seek to fit a random model to the second

order data statistics. In this way, exact damped exponentials may be fitted to the data

considering the p-exponent discrete-time function [Marple, 1987]. In the modern

version of the original Prony method, the least-squares and recursive least-squares

algorithms have been applied. As a consequence, in some works this technique is

called a “least-squares refinement” [DTA Handbook, 1993]. However, this

terminology is rather confusing as it does not correspond to the true aspect of the

method. For the least-squares algorithm may be applied in the first step of the method

as well as the Kalman and eigenvalue analysis techniques (see equations (2.34) to

(2.37) and (2.38) to (2.40) below). Figure 2.6 shows the calculation diagram of the

original Prony technique.
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Fig. 2.6 - Original Prony technique calculation diagram

The implicit difficulty associated with exponential fitting using equation (2.22)

appears when a minimisation of the squared error over the N data samples is

considered. This means minimising:

η ε=
=
∑ ( )n
n

N
2

1 (2.23)

where

ε ( ) ( ) $( )n x n x n= − (2.24)

This difficulty can be demonstrated by the single-exponent case of the estimator:

( )$( ) exp ( )x n A c n T= − 1 (2.25)



Chapter 2 - Theoretical Background

67

The minimisation procedure applied to equation (2.25) is obtained setting to zero the

derivatives of the estimator, $( )x n , with respect to A and c:

∂ρ
∂
∂ρ
∂

A
b b A

c
b b A

= − =

= − =

1 2

3 4

0

0
(2.26)

where:
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( )

( )

( )

b x n c n T
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b n x n c n T

b n c n T

n

N

n

N

n

N

n
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1

2
1

3
1

4
1

1

2 1

1 1

1 2 1

= −

= −

= − −

= − −

=

=

=

=

∑

∑

∑

∑

( )exp ( )

exp ( )

( ) ( )exp ( )

( )exp ( )
(2.27)

From the first equation of (2.26) A= b1 / b2 can be obtained, and substituted in the

second equation (2.26), and this will lead to:

b2 b3 = b1 b4

the above equation is a highly non-linear expression in terms of sums involving

( )exp ( )c n T− 1  which must be solved for c. No analytic solution is available [Marple,

1987].

A procedure was discovered by Baron de Prony to solve equation (2.22) as a set of

decoupled linear simultaneous equations, decoupling the variables h and z, and noting

that this expression is the solution for some homogeneous linear constant-coefficient

difference equation. To this end, a polynomial which has the exponents zk as its roots

may be defined:
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φ δ δ

δ
( ) ( ) ( )z z z a zk

p
p

k

p

= − = −

==
∑∏

01 (2.28)

where a[0] = 0 and δ is the data lag.

If the index in equation (2.22) is shifted from n to n-δ and a parameter a(δ) is

multiplied, this produces:

a x n a h zk
p l

k

p

( ) ( ) ( )δ δ δ− = −

=
∑

1 (2.29)

forming similar products and summing:
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and making the substitution into the equation (2.30):

z z zi
n

i
n p

i
p− − − − −=δ δ1 1 (2.31)

will lead to the following decoupled equation:

a x n h z a z
p

i
i
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i
n p

i
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δ

δ
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0 0

1

0 (2.32)
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Prony noted that the second right hand summation term can be recognised as the

polynomial characteristic equation (2.28) yielding a zero result. Equation (2.32) is the

linear difference equation whose homogeneous solution is given by equation (2.22).

The polynomial depicted by equation (2.28) is the characteristic equation associated

with this linear difference equation. The p equations representing the valid values of

a(n) that satisfy equation (2.32) may be expressed as the p p×  matrix equation:

x p x p x
x p x p x

x p x p x p

a
a

a p

x p
x p

x p

( ) ( ) ( )
( ) ( ) ( )
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
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(2.33)

Equation (2.33) represents the first step of the original Prony technique. To conclude,

the original Prony procedure may be summarised in three steps [DTA Handbook,

1993, Ewins, 1995]:

(1) Determination of parameters a(k) utilising 2 p sample data points, using equation

(2.33).

(2) Calculation of the roots of the characteristic polynomial defined by (2.28). The

damping and frequency of each component may be calculated using the following

equations:

c
z

Tk
k

s

=
ln

            ν
πk

k

k

s

z
z

T
=







−tan Im( )
Re( )

1

2

where Im(zk) and Re(zk) are the imaginary and the real part of zk.

(3) And finally, the calculation of equation (2.22) using the roots zk calculated in

equation (2.28) and p sample data points. The amplitude and phase of each

component may be calculated using the following equations:
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A hk k=               θk
k

k

h
h= 





−tan Im( )
Re( )

1

where Im(hk) and Re(hk) are the imaginary and the real part of hk.

Figure 2.7 shows a diagram of the application of the original Prony procedure to a

signal with 16 data points.

Fig. 2.7 - Original Prony step procedure diagram

In regard to the first step (equation (2.33)), the least-squares linear prediction

estimation (covariance) and the recursive least-squares methods can be used to

determine the a(k) parameters.
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The starting point for the application of the covariance method in the first step of the

original Prony technique is the minimisation of the forward and backward linear

prediction errors [Marple, 1987, Kay, 1993]:

e x n af
T

f= ( )          e x n ab
T

b= ( ) (2.34)

where xT(n) is the transposed data vector, af  and ab are the forward and backward

linear prediction coefficient vectors.

Based on the measured data samples, the covariance method minimises, in separate

calculations, the forward and backward linear prediction squared errors [Marple,

1987, Kay, 1993]:

η f f
n p

N

e=
= +
∑ 2

1

        ηb b
n p

N

e=
= +
∑ 2

1 (2.35)

resulting from the normal equations:

R a f
f

p
=
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




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η
0             Rab

b

p
=


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





η
0 (2.36)

where 0p is an all-zeros vector and R the vector outer product:

R x n x nT

n p

N

=
= +
∑ *( ) ( )

1 (2.37)

In the traditional recursive least-squares estimation, which is another technique that

may be used to compute the first step of the original Prony procedure, only the

forward linear prediction error is computed by the formula [Marple, 1987]:
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e x n x n kp f p p p f
k

p

, ,( ) ( )a= + −
=
∑

1 (2.38)

The squared error and the vector outer product are weighted by a positive real scalar,

ψ  (0 < ψ  ≤1), given all measured data up to time index, N

ρ ψf
N n

f
n

N

e= −

=
∑ 2

1 (2.39)

R x n x np
N n

p p
T

n

N

= −

=
∑ ψ * ( ) ( )

1 (2.40)

where Rp the vector outer product of order p.

What differentiates the two techniques that can be applied in the first step of the

original Prony method is the degree of freedom given to the order and time. The

covariance technique is recursive in order but fixed in time, and the recursive least-

squares technique is the opposite.

Despite being quite accurate for short-to-medium-length data records, a poor long-term

numerical stability is reported for the fast recursive least squares algorithm [Cioffi and

Kailath, 1984]. Sometimes this fast algorithm is called "fast Kalman", but this seems

inappropriate due to the non-random nature of the deterministic least-squares solution

[Marple, 1987].

2.7. Theoretical Formulation for an Extended Prony
Time-Frequency Representation

As stated above, several problems have consistently been associated with the wavelet

transform and the Wigner-Ville distribution techniques, and hence the need for a new

technique that can improve deterministic component detection in the presence of high-
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level noise and strong non-stationary processes. In this section, an attempt will be

made to demonstrate theoretically that the Prony method is suitable to be extended

for the purpose of filtering out strong spurious components and improving the

detection of the deterministic ones.

As it is expected that the actual signal to be analysed has an adverse signal-to-noise

ratio (SNR), the noise and non-stationary components will be considered as

transients, and will be eliminated through a technique extended from the original

Prony procedure, on the basis that they may indicate high exponential damping values.

It is argued here that an extended Prony time-frequency plane representation can be

developed in a similar way to the one represented in the Wigner-Ville distribution,

whose “sliding window in time shifts” approach is closer to the short Fourier

transform without its time-frequency resolution drawback. An advantage of the

original Prony technique is that it can extract exponentials on a limited amount of

data, although the amount of data may influence its performance under some

conditions. If only a few data values are used, this tends to induce the method to seek

more transient components. In this case, the polynomial order, p, has to be decreased

and this in turn will reduce the number of exponentials sought. If a large amount of

signal data are used, the method will work in a probabilistic sense and tend to

“smooth” the transient components, which are represented by short arrays of data.

These two outcomes are both due to the correlation between the amount of

parameters and data points (2p) in the calculations performed by the method.

In order to obtain an extended Prony time-frequency representation, a matrix

construction using the equation (2.22) is suggested as follows:

[ ]PTF x n x n x n x n h zu u k k
n

k

p

= = −

=
∑1 2

1

1

( ) ( ) ( ) , ( )L
(2.41)
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where u is the starting time point of each data sample shifted each incremental period

dT=1/N on the signal data, and xu(n) is a data vector related to that sample and

calculated using the equation (2.22).

As the original Prony method generates results which can be presented in a table

defining frequency, amplitude, phase and exponential damping of each component

sought by the method (see the table of Appendix A), it is necessary to arrange the

generated data in “a non-parametric spectrum graph shape” in order to create a time-

frequency plane using data generated from all samples at starting time points, u.

Figure 2.8 shows a plot of the Prony time-frequency representation generation. If zero

values corresponding to the frequencies not sought in each sample at a time point, u,

from 1 to N, of equation (2.41) are inserted within the p frequencies found in order to

obtain one spectrum line, q, from 1 to N/2 (see Figure 2.8 (a)), an extended Prony

time-frequency representation matrix may be defined as:

PTF u q

A c A c A c
A c A c A c

A c A c A c

u u u

u u u

q q q q q q q u q u q u

( , )

, , , , , ,
, , , , , ,

, , , , , ,

=









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







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11 11 11 11 12 12 1 1 1

21 21 21 22 22 22 1 2 2

1 1 1 2 2 2

θ θ θ
θ θ θ

θ θ θ

L
L

M M O M
L

(2.42)

where each column of the matrix of the equation (2.42) is related to one data vector

xu(n) referred to one sample starting at a time point, u, which, in turn, corresponds to

one calculation using the equation (2.22) (see the diagram of Figure 2.8 (b)).

Each element, Aqu of the PTF matrix has its associated values of exponential

damping, cqu, and phase angle, θqu. What is denoted by this is that the PTF is a three-

dimensional matrix with N/2 lines, N columns and 3 planes corresponding to the

amplitude, exponential damping and phase values for each component found by the

extended technique.
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Fig. 2.8 - Schematic diagram of the development procedures of the
extended Prony time-frequency representation

If the sampling period dT is equal to 1/N, an extended Prony time-frequency plane

projection on the frequency domain S(q) and the respective recovered signal s(u) may

be defined as:

S q
N

A q Nqu
u

N

( ) , , /= =
=
∑1

1 2 2
1

L
(2.43)

and,

s u A i u Nqu qu
q

N

( ) exp ( ) , ,
/

= =
=
∑ θ

1

2

1 2 L
(2.44)

Each S(q) of equation (2.43) represents the average amplitude of a specific line, q,

parallel to the time axis projected on the frequency axis and each s(u) of equation

(2.44) represents one recovered data point of the original signal. The recovered time

data points evaluated by equation (2.44) are the ones which are being proposed to be

filtered from the time-frequency plane by a selection using an exponential damping

level.
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In relation to the model order choices in the filtering procedure, it is not advisable to

determine the best method polynomial “fitting” order p of equation (2.41) using

criteria such as the Akaike criterion. The order selection criteria normally determine

the most suitable order related to the number of components “statistically” present in

a signal. In the case of weak component detection in the presence of strong spurious

components, a statistical criterion will look for the most statistically represented

components in the signal. This is not the case of the weak components. The Akaike

Information Criterion (AIC) is represented by the equation [Tong, 1975 and 1977]:

AIC p N pp( ) ln( $ )= +ρ 2

where p is the autoregressive order, N the number of data points, and $ρp  is the input

white noise variance estimator of an assumed autoregressive process with order p.

The term 2p represents the penalty for the use of extra autoregressive coefficients that

do not result in a substantial reduction in the prediction error variance estimator, $ρp .

The smaller the AIC, the better the autoregressive parameter fitting obtained for a

process which has Gaussian statistics. Many studies have found that the order selected

by the AIC is often too low for practical non-autoregressive data sets [Marple, 1986].

Also, Kashyap [1980] has found that the AIC is statistically inconsistent because the

probability error does not tend to zero, in the case of the right order choice, and when

N tends to infinity. Furthermore, when setting the order choice for applying the

original Prony procedure, a mistake is often made in the right order selection when

comparing a different method and the original Prony procedure. Take, for example,

the work of Liu [1996] cited in the section 1.5.1 of Chapter 1. Liu applied the state-

space method through a singular value decomposition (SVD) and compared it with the

original Prony method. The separation of two subspaces in the SVD generates low orders

that are associated with the signal subspace matrices. In contrast, the original Prony

technique order is associated with a matrix containing both components and noise data. In

this case, it is necessary to use higher orders to represent all components in the signal,

which includes those associated with noise. For this reason, signals used to compare both
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techniques should be analysed through the original Prony technique with a much higher

order than that set to perform the SVD method.

With regard to the possible exponential solutions generated throughout the original

Prony procedure, it must be pointed out that the maximum number of possible

solutions given by the original Prony technique is equal to p, which corresponds to the

method order. To apply the original Prony technique, 2p data are used for parameter

fitting in the left-hand matrix of equation (2.33). In this study, the first step of the

original Prony method, which corresponds to an exact exponential model, is

substituted by the least squares linear fitting procedure to perform the extended Prony

time-frequency representation. This means that in each data-set of a time point u of

equation (2.41), an over-determined set of equations system case with the number of

data points N is used to generate exponential solutions much greater than the order p.

This sub-optimum approach effectively reduces the non-linear exponential problem

into a linear factorisation in the first step of the original technique, which is used in the

extended Prony time-frequency representation.

A significant advantage with this extended Prony time-frequency representation is that

it produces parameters over the entire time-frequency plane, unlike the Wigner-Ville

distribution where negative amplitude values may appear, as Cohen [1989] mentioned

(see section 1.5.3 of Chapter 1).

A computer program was developed to generate extended Prony time-frequency

representations. In this program, the original Prony procedure is carried out in time

shifts through an array of data. With regard to the original Prony method exponential

detection model used in the program, which is central to the extended technique, it

should be noted that extra care is necessary to develop its program routines. The need

for precision and robustness to perform the matrix and polynomial evaluations

through the steps of the original Prony procedure requires specialised routines, rather

than “home-made” ones for developing the program. Examples of these routines are

those developed by Jenkins and Traub [1972] to perform complex polynomial
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evaluations, and by Marple [1987] to execute Cholesky matrix decomposition, both of

which are used in the second and in the third steps of the original Prony procedure

(equations (2.28) and (2.22)). Also, a large number of “check-test” program lines are

necessary for detecting singular matrices, divisions by zero, and other mathematical

abnormalities. This is necessary because the original Prony procedure involves the

manipulation of non-linear exponential functions that are not always well behaved.

A problem with the original Prony method has been reported by Poggio and Blaricum

[1978] if the number of components, which is correlated to the order of the method, is

unknown. If the selected order is greater than the actual number of components

present in the signal, singular matrices may appear in the calculations performed by

the method. To avoid this problem, a routine is incorporated in the computer program

to perform a loop to reduce the order p of the method. This means that, if a routine

fault due to floating errors or singular matrices appears in the calculations, the

program is reset and the order of the method is reduced. This requires several

numerical tests to avoid faulty operations being executed by a particular subroutine of

the program. Since the program to execute the extended Prony time-frequency

representation is moderately large (close to 2000 FORTRAN lines), an exhaustive

task was performed to check every sub-loop of the program. Finally, the debugged

extended Prony time-representation program was then applied to the simulated and

experimental signals of Chapters 3 and 4. This program generates three matrices, each

containing, in separate, the amplitude, exponential damping, and phase values of the

components detected in the time-frequency plane. Just what is meant by the “time-

frequency plane” is discussed in the next section.

2.8. Time-Frequency Plane Interpretation

For a better visualisation of non-stationary components, it is necessary to show how a

specific technique depicts the signal on a time-frequency plane plot. To this end, a

signal composed of a 32 Hz sine wave, which is sampled at 512 Hz, will be analysed
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by the techniques discussed in this study. The respective time-frequency planes are

shown on Figures 2.9, 2.10 and 2.11. Every point in the time-frequency plane

represents an amplitude or energy peak perpendicular to the plane. Actually, the plane

is a numerical matrix carrying the values of amplitude or energy peaks corresponding

to each point of the time-frequency plane. The results of the pseudo-Wigner-Ville

distribution are shown in the two graphical views in Figure 2.9, and Figures 2.10 and

2.11 show the time-frequency representations obtained by the Morlet wavelet

technique and the extended Prony time-frequency representation with least-squares

fitting in the first step. In the three time-frequency representations, the amplitude of

the 32 Hz component is projected on the vertical axis and is generally represented in

grey scale maps on the time-frequency plane. The frequency scale in the wavelet

graph is always represented in log2 scale due to the nature of its evaluation. This can

be seen in equation (2.2) where the wavelet coefficients W are scaled 2j x - k in the

frequency axis (levels).

Fig. 2.9 - Pseudo-Wigner-Ville of the 32 Hz signal (perspective
view (a) and time-frequency plane view (b))

The original Prony method is a time-fitting method but when extended to generate

frequency lines, calculated from data arrays of shifting time windows, defined by
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equation (2.41), in order to generate a time-frequency matrix, defined by equation

(2.42), the graph representing a time-frequency plane of Figure 2.11 can be mounted.

Fig. 2.10 - Wavelet transform of the 32 Hz signal (Morlet technique - perspective
view (a) and time-frequency plane view (b))

Fig. 2.11 - Extended Prony time-frequency representation of the 32 Hz signal (least-
squares in the first step - perspective view (a) and time-frequency plane view (b))



Chapter 2 - Theoretical Background

81

The perspective view graphs (a) in Figures 2.9 to 2.11 are intended to illustrate and

help visualise the time-frequency plane graph (b) arrangement. The time-frequency

plane represents the “component amplitude or energy distribution” of a signal, and

what should be mainly noted in the time-frequency plane is the way in which the

points are distributed.

The theoretical work presented above not only deals with stationary components, but

also with non-stationary processes. What is in question is the capacity of each

technique to depict both stationary and non-stationary components in the presence of

noise. The Morlet wavelet transform, the Wigner-Ville distribution, and a variant of

the latter, the pseudo-Wigner-Ville distribution, process signals through the use of the

Fourier transform and they present some characteristics of this method. The Malat

wavelet transform is based on random theory to generate its time-frequency

representation and is the most recent technique that has been applied to signal

processing analysis. The extended Prony time-frequency representation developed in

this study to apply for non-stationary processes represents a new approach which uses

the original Prony method. This new approach is based on the idea of considering

non-stationary conditions as transients, for which the original Prony method, an

autoregressive class technique, is the most suitable mean of representation, and each

of these techniques, theoretically described above, will be compared in several specific

simulation conditions below, in order to depict their “best” and “worst” signal

processing conditions and to select the most suitable one for detecting weak

deterministic components in signals containing strong spurious components.

The extended Prony time-frequency representation will be "forced" to seek all

components present in the signal before selecting specific components to be filtered in

order to reduce the possibility of the elimination of weak components through the

filtering procedures. As the extended Prony time-frequency representation will
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generate time-frequency planes which may provide signal recovery by projecting plane

values in the time axis (equation (2.44)), it is firstly intended to utilise these planes, to

limit a specific signal frequency bandwidth directly to the plane rather than applying

the convolution technique to the signal. In the following section, the theoretical

formulations of the convolution technique, as well a new way of performing

bandwidth signal filtering, will be presented.

2.9. Convolution and Time-Frequency Plane Filtering
Techniques

As the main components in the vibration signal of an ESP have frequencies between

55 and 62 Hz, a bandwidth frequency window set within these specific limits applied

to the signal may improve the detection of the ESP weak components. To improve

the weak component detection, the signal may be convolved in the time domain with a

bandwidth filter prepared in the frequency domain. This convolution is represented

mathematically by the following equation [Ifeachor, E. C. and Jervis, B. W., 1993]:

x n IFT n s n IFT n s n k n m
k

m

( ) ( ) ( ) ( ) ( ) , , , ... ,= ⊗ = − = −
=

−

∑
0

1

0 1 1
(2.45)

where

x(n) = signal band filtered

IFT(n) = inverse Fourier transf. of a frequency bandwidth flat window

s(n) = raw signal

n = data sample number of the discrete time sequence
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To illustrate this operation, a signal with frequency components each 10 Hz up to 200 Hz

is windowed in a frequency bandwidth between 40 to 70 Hz. Figure 2.12 shows the

resulting graphs.

Fig. 2.12 - Convolution applied to a signal limiting
the frequency bandwidth to 40 to 70 Hz

As was suggested above, a more convenient frequency bandwidth selection may be

achieved by selecting frequency lines in the time-frequency plane, as shown in Figure

2.13. As both stationary and non-stationary components are represented in the time-

frequency plane, it may be more convenient to adopt the plane “band-selection”

procedure than adopting the traditional convolution filtering.

As the Prony time-frequency representation plane depicts what is "non-stationary" and

what  is "stationary", the non-stationary components may be eliminated setting to zero
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parts of the time-frequency plane in which they are detected. The rest of the

components may be recovered by summing the corresponding amplitude values in the

frequency bandwidth selection along the time axis of the plane, after multiplying by its

respective phase (see equation (2.44)).

Fig. 2.13 - Separating stationary from non-stationary components
and applying the plane “band-selection” operation

A simple example is given in the diagram of Figure 2.14. The time-frequency filtering

and recovering operation described above is applied to a signal containing an 8 Hz

component (Figure 2.14 (a)). An extended Prony time-frequency representation of the

original signal, which contains amplitude, frequency, phase, and exponential damping

is generated. Figure 2.14 (b) shows a plot of the time-frequency plane amplitude

values. A “bandwidth slice” is selected from the time-frequency plane (Figure 2.14

(c)), and each amplitude value is then multiplied by its associated phase value to

recover the original signal (Figure 2.14 (d)). In this case no exponential damping

filtering procedure is applied.
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Fig. 2.14 - Time- frequency plane “band-selection” and recovery operation of a signal
containing an 8 Hz component

Figure 2.15 shows the graph of the procedure by which a signal is analysed and

filtered. This procedure involves the following steps:

(1) The signal is decomposed using the extended Prony time-frequency

representation,  and  the  resulting  amplitude  peaks  of  all  components found by the

method are rearranged on the time-frequency plane (Figure 2.15 (a)). The time-

frequency plane generated can then be used for filtering purposes.

(2) A bandwidth selection can be made by setting to zero all amplitude values outside

the  selected  frequency  bandwidth  on  the  time-frequency  plane,  as  depicted  by

Figure 2.15 (b).

(3) In this step, all amplitude values of the components which have high exponential

damping (transients) are set to zero. The remaining amplitude values of the relevant
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components on the bandwidth are multiplied by their respective phase and projected

on the time axis generating the signal shown in the graph of Figure 2.15 (c).

(4) To the resulting signal shown in Figure 2.15 (c), which has a high information

content of the deterministic weak components, is applied the Fourier transform (Fig.

2.15 (d)). We can now utilise the resulting spectrum to detect weak component

amplitude variation.

Fig. 2.15 - Time- frequency filtering and recovering operation
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2.10. Conclusion of the Signal Processing Theoretical
Analysis

It may be noted with the above theoretical analysis of the signal processing techniques

that the extended Prony time-frequency representation developed in this study

(equations (2.41) and (2.42)) will require much more computational effort than the

counterpart wavelet transform and pseudo-Wigner-Ville distribution techniques

(equations (2.15) and (2.20)). The reason for this resides in the fact that each time

step of the extended Prony time-frequency representation requires two matrix

computations (equations (2.22) and (2.33)) and a complex polynomial of order 2p

evaluation (equation (2.28)). These matrix computations require more numerical

calculations than are required to evaluate the Fourier transform by the use of a fast

algorithm (FFT). This may cause some difficulties when implementing the extended

Prony time-frequency representation to a real time analysis as implemented in the case

of the spectral analysis using Fourier transform through a fast algorithm (FFT).

Furthermore, in equations (2.22), (2.28) and (2.33), which are the heart of the original

Prony technique calculation, some singular matrices and floating point errors can be

expected. To overcome this problem, the order of the original Prony method for each

time step has been set with an initial value of 96 (maximum computer program order

evaluation) which will automatically reduce if an abnormal error should occur.

The extended Prony time-frequency representation will be regarded throughout this

thesis as more of a filtering technique than a technique for observing true spectra of

signals. With regards to the time-frequency plane signal recovery (see Figure 2.14),

Flandrin [1985] applied this operation to the Wigner-Ville distribution and concluded

that this can be reasonably applied to time-frequency distribution results. This can also be

stated for the extended Prony time-frequency representation. In Chapter 3, the extended

Prony-time-frequency representation will be compared with the Wigner-Ville and

pseudo-Wigner-Ville distributions, and Wavelet transform techniques by applying

then to simulated signal data.
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Chapter 3  
Signal Simulation 

3.1. Introduction

In this chapter, the theoretical methods described in Chapter 2 will be compared and

contrasted under simulated conditions. Simulated signals will be used to test the

Fourier and the Morlet wavelet transforms, the Wigner-Ville distribution, the pseudo-

Wigner-Ville distribution and the extended Prony time-frequency representation

methods for their effectiveness in depicting deterministic and non-stationary

components under specific conditions. Once these tests have been completed, multi-

component signals will be generated in an attempt to represent the live signal

collected at the petroleum wellhead. Since the aim of this study is to develop a

method to detect the rotation-related vibration of an electrical submersible pump, with

a frequency value close to 58 Hz, the focus will be on detecting signal components

with frequencies that are around that value. Finally, additional signals with unknown

compositions will be prepared for processing in order to avoid any bias when seeking

a specific component in the signal.
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3.2. Preliminary Tests of Some Existing Signal
Processing Techniques

It will be shown below that preliminary tests carried out in this study using simulated

signals revealed basic problems with the average and the autocorrelation (biased and

unbiased) filtering techniques, the Fourier and the Malat wavelet transforms, and the

extended Prony time-frequency representation with a recursive least squares routine

initialisation. These problems were encountered when applying these techniques to

detect weak components in signals with high-levels of spurious components and non-

stationary characteristics.

3.2.1. Time Average Phase Synchronisation Problem

When using time signal averaging, which is one of the most basic techniques for

filtering data from signals, care has to be taken to set the correct frequency phase

synchronisation between the averaging time steps of the component to be analysed. If

the correct frequency phase synchronisation is not observed, the component to be

detected will be eliminated through the averaging process. However, it is difficult to

avoid this problem when the frequency of the weak component, or any related trigger,

is not known precisely, and high-levels of noise are present in the signal. In this case,

the averaging process is not efficient at detecting a weak component present in the

signal. Figure 3.1 shows an example in which the wrong phase synchronisation was

deliberately used to collect data samples to demonstrate what happens to a 32 Hz time

signal component (graphs of Figure 3.1 (a) and (b)). Here it can be seen that the

average of only two time traces will eliminate the 32 Hz component (graph of Figure

3.1 (c)).
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Fig. 3.1 - Average problem (sine wave of 3 Hz, 1 second of data, sampling frequency
512 Hz)

3.2.2. The Autocorrelation Filtering Problems

With regard to autocorrelation filtering techniques, both the biased and unbiased

approaches have been found to present problems. The unbiased autocorrelation estimate

sequence is defined by the equation [Marple, 1987]:

Λu
n

N

N
x n x n for n( ) ( ) * ( ),δ

δ
δ δ

δ

=
−

+ < < −
=

− −

∑1
0 1

0

1 (3.1)

where Λ(δ) is the autocorrelation sequence, δ is the lag, N is the number of data

points, n is the data point index, and x*(n) is the complex conjugate of x(n). It must

be pointed out that the unbiased autocorrelation estimate may not generate valid

autocorrelation sequences. The autocorrelation sequence is defined as [Marple, 1987,

Newland, 1993]:
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( )Λ( ) ( ) ( ) ,δ δ δ= + < < −E x n x n for n0 1 (3.2)

If the lag δ is zero the autocorrelation will correspond to the mean square value of a

random process:

( )Λ( ) ( ) ( )0 2 2= =E x n E x (3.3)

If a random process x(n) is uncorrelated to x(n+δ ), for any lag δ greater than zero (δ>0):

Λ Λ( ) ( )0 ≥ δ (3.4)

Equation (3.4) represents a property of the true autocorrelation sequence. In the case of

the  unbiased  autocorrelation  estimate, if a large lag δ  is used the reduced denominator

n-δ of equation (3.1) may generate Λ(δ) values greater than Λ(0), which is inconsistent

with the concept of the autocorrelation sequence.

A biased autocorrelation estimator that has also been applied for signal filtering is

defined by the equation [Marple,1987]:

Λb
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x n x n for n( ) ( ) * ( ),δ δ δ
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=

− −

∑1 0 1
0

1 (3.5)

The problem of the appearance of Λ(δ) values greater than Λ(0) in the unbiased

autocorrelation techniques is not observed in the biased estimate, since the lag is not

subtracting the number of data points as in the unbiased estimate (see equation (3.1)).

For this reason, the biased autocorrelation is often the preferred estimator. However,

it can be demonstrated through a simulation that due to the bias, the biased

autocorrelation estimator distorts an existing sinusoid component, gradually reducing

its  amplitude  in the time axis, if a reasonable number of data lags are not used. In the
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graph of Figure 3.2, an example of the signal containing a 32 Hz component is shown

together with its respective biased autocorrelation. In this case, only two signal traces

of 512 data samples were used to generate the autocorrelation sequence, and a decay

can be seen in the amplitude values of the 32 Hz component. This problem may be

reduced if a large number of data samples are used [Marple, 1987]. Due to this decay,

if a biased autocorrelation is applied to filter a signal, followed by the extended Prony-

time-frequency representation, the results may depict false exponential damping

values for the detected components and, as a consequence, the proposed “exponential

damping filtering” mask in that representation will be distorted.

Fig. 3.2 - Example of autocorrelation damping effect ((a) signal containing a 32 Hz
component, (b) the biased autocorrelation sequence - sampling frequency 512 Hz)
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It must be also be pointed out that if an autocorrelation operation (either biased or

unbiased) is applied to a signal, the information about the component phase will be

lost. To demonstrate this problem, a signal with a 32 Hz component was processed

using the unbiased autocorrelation equation (3.1) (see Figure 3.3). It may be noted in

the graph that the original signal phase of 0 degrees (graph of Figure 3.3 (a) - t = 0)

was changed to 90 degrees (graph of Figure 3.3 (b) - t = 0). This is embedded in the

intrinsic definition of the autocorrelation sequence, the maximum value of the

autocorrelation sequence corresponds to an element correlated with itself (100 %

correlated). As a consequence, the autocorrelation has no real phase information.

Fig. 3.3 - Example of phase loss in the autocorrelation technique (original signal (a)
and the autocorrelated signal (b), calculated using two lags - sampling

frequency 512 Hz)
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3.2.3. The Fourier Transform Resolution Problem

One problem associated with the Fourier transform method is that due to the

resolution limitation related to the uncertainty principle. To demonstrate this problem,

a comparison can be made with the original Prony method. As mentioned above, the

original Prony method is an autoregressive type of procedure, and due to the nature

of its calculations, a high resolution may be obtained when using limited signal data

(see section 2.6 of Chapter 2), which is not possible when the Fourier transform is

used.

The resolution of the Fourier transform and the original Prony technique were

compared by using a signal with a single 32 Hz component. The results shown in

Figure 3.4. reveal clearly the difference in resolution. In the graph obtained using the

original Prony procedure, only one point in the frequency scale is exactly associated

with the 32 Hz component, whereas in the graph obtained using the Fourier transform

technique several points represent that component (see Figure 3.4). The shape of the

peak corresponding to the 32 Hz component presents a wide base in the graph of the

Fourier transform, and this induces the idea of the existence of some components

around the 32 Hz component. This phenomenon is known as “leakage”, and is

commonly associated with the Fourier transform.

The results from the original Prony method involved the least squares routine in the

first step of the algorithm, and used 256 signal data samples for exponential fitting

purposes. To generate the Fourier transform results, 512 signal data samples were

used. The graph of Figure 3.4 is an adapted form to represent the only exponential

found by the original Prony technique. All other graph points were set to zero value.

The graph of the original Prony procedure of Figure 3.4 corresponds to one frequency

line of the extended Prony time-frequency representation, which corresponds to one

calculation of equation (2.22) (see section 2.7 of Chapter 2). As can be seen in the

Figures 3.4, to obtain an equivalent resolution using the Fourier transform method a
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greater number of data points would be necessary due the leakage problem

(Uncertainty Principle).

Fig. 3.4 - 32 Hz sine wave signal (512 samples/s) with its Fourier Transform
(frequency resolution = 1 Hz) and original Prony method graphs

3.2.4. The Malat Interpretation Problem

A problem found to be associated with the Malat wavelet technique, when attempting

to detect weak components in the presence of strong spurious ones, is the basic

difficulty of interpreting the results generated by this method. To demonstrate this

problem, a signal consisting of two deterministic components and modulations was



Chapter 3 - Signal Simulation

96

generated and processed by this technique. The signal’s composition is described in

Table 3.1 and the results of the Malat wavelet transform are shown in Figure 3.5.

Components Time
length (s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag.)

Phase
(degrees,

t = 0)
sine wave 1.0 512 58 0.1 0
sine wave 1.0 512 60 0.3 90

modulated sine
waves (3)*

1.0 90
initial = 6

centre = 24
final = 6

5.0 ---

Table 3.1 - Composition of the signal with deterministic components and modulations
(* 3 non-stationary local modulations with 90 data points approximately)

The 58 and 60 Hz deterministic components (sine waves) used in several signals

throughout of this study were generated according with the following formula:

( )x n A t n
N( ) sin ( )= +2πν θ

where,

n = data sample number of a discrete time sequence (0 1≤ ≤ −n N )

x(n) = sine wave discrete data point

A = amplitude (Magnitude)

N = number of data points per time interval

ν = frequency (Hz) (58 and 60 Hz)

t = time (s)

θ = phase (rad - fixed value)

The modulation components used in this signal were generated according to the

following formula:

( )x n A t n
N( ) sin ( )var= +2πν θ
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where the frequency νvar is varied according with the formula:

( )
ν ν

ν ν
var min

max min

,

sin( )

= + →
= −

n for t t

V

∆ν
∆ν Θ

1 2

and where,

νmin = minimum frequency (6 Hz)

νmax = maximum frequency (24 Hz)

t1 = initial modulation time point (s) (initial frequency 6 Hz)

t2 = final modulation time point (s) (final frequency 6 Hz)

Θ V = angle varying from 0 to π for t t1 2→

Figure 3.5 (a) shows a plot of this signal, and its time domain Malat wavelet transform

is shown in the graph of Figure 3.5 (b). The original signal is decomposed into several

Malat wavelet levels representation (level 0 - (c), level 2 - (d), level 4 - (e), level 6 -

(f), level 8 - (g)), and the signal can be reconstructed again through the sum of the

levels (Figure 3.5 (h)). The Malat wavelet decomposition has a similar meaning as the

harmonic decomposition in the Fourier transform. As is shown in Figure 3.5 (h), in

spite of a good reconstruction of the signal by adding the wavelet levels, the wavelet

representation through levels 0 to 8 (graphs from (c) to (g) in Figure 3.5) has no

comparable association between the levels and the physical phenomena as would be

expected from a harmonic analysis. It is difficult to make any association with the

deterministic components presented in the original signal (58 and 60 Hz). The

computer program used to apply the Malat wavelet technique is taken from Newland

[1993].
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Fig. 3.5 - Wavelet Transform based on Malat method applied to the signal with 58 Hz
component (sampling rate of 512 data points per second, (a) original signal, (b) Malat

wavelet transform, (c) level 0, (d) level 2, (e) level 4, (f) level 6, (g) level 8, (h)
reconstructed signal)

The main point to mention about the graphs in Figure 3.5 is the problem with

interpretation that will occur if one tries to interpret the levels as the counterparts of

harmonics in the Fourier transform. The wavelet levels have to be regarded as a

completely new representation of vibration signals and the Malat wavelet transform

should not be compared with an harmonic time-frequency based technique. If the

signal contains noise, this difficulty is increased because numerous noise-related

components will appear in the Malat wavelet levels generating more confusing graph

results. For this reason, the Malat wavelet technique is not considered suitable for this

study.
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3.2.5. Noise Filtering Problems in the Extended
Prony Time-Frequency Representation with
Recursive Least Squares Initialisation Routine in the
First Step

With regard to the extended Prony time-frequency representation, which has two

initialisation routines: recursive least-squares (RSL) and least-squares (covariance),

problems were found in the simulation when the RSL routine was used to start up the

calculations of this technique. The extended Prony time-frequency representation,

with the recursive least-squares initialisation in the first step, was applied to a signal

containing a single 58 Hz component of amplitude 1 both with and without high-level

white noise of amplitude of magnitude 50 (SNR -34 dB - see section of 3.3.3 of

Chapter 3 for white noise definition and Appendix C for SNR assumption). To

process the signal without noise, a quantity of 64 data points per time-shift, order 2

with no exponential damping limit was used. The slight variation around the 58 Hz

frequency  line is due to the instabilities with the calculations of the method (see

Figure 3.6).

The extended Prony time-frequency representation with the recursive least-squares

routine initialisation in the first step, which has a close relationship with the Kalman

filtering technique, is recognised to be appropriate for non-stationary components due

to the degree of freedom given to the time parameter (see equations (2.38) to (2.40)).

In the case of a slow-time-varying signal, Kalman filtering shows how the incoming

raw measurements can be processed to produce more effective autoregressive

parameter estimates as a function of time [Press et al, 1992]. However, this method

presents problems due to instabilities in the calculations. The weighting window of the

recursive time-shifting operation in the first step of this procedure generates a slight

variation in the frequency component results (see equations (2.39) and (2.40)). The

instability problem of the calculations observed in the graphs of Figures 3.6 (the

calculated frequency values are varying) and 3.7 (great number of points randomly
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scattered in the plane) would suggest that this method is not suitable for the simulated

signals.

Fig. 3.6 - Extended Prony time-frequency representation with recursive least-squares
initialisation in the first step applied to the signal with the 58 Hz component, no noise
was added (64 data points per time-shift, order 2 and no exponential damping limit)

If a signal with high-level noise is processed, the inherent calculation instabilities are

stressed. This may be noted in the graph of Figure 3.7, which was obtained by

applying the extended Prony time-frequency representation, with RSL routine in the

first step, to a signal with high-level noise (maximum amplitude 50 times greater than

the 58 Hz component, SNR -34dB), where data arrays with 64 data points per time-

shift, of order 62 and a exponential damping limit of 0.05 s-1 were set to generate the

results shown. As may be noted in the plot of Figure 3.7, the recursive based

technique seems to present difficulties when operating with noise. Its respective time-

frequency plane representation presents points that are randomly scattered (see Figure

3.7) and no information about the 58 Hz component present in the analysed signal is

given.
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Fig. 3.7 - Extended Prony time-frequency representation with recursive least-squares
initialisation in the first step applied to the signal with the 58 Hz component

embedded in high-level noise (64 data points per time-shift, order 62
and exponential damping limit set to 0.05 s-1)

As a consequence of the problems presented in the preliminary testing simulation, the

average and the autocorrelation (biased and unbiased) filtering techniques, the Malat

wavelet transform, and the extended Prony time-frequency representation with a

recursive least squares routine initialisation will not be considered in the detailed

simulations set below. As the Fourier transform resolution problem may be overcome

in certain signal processing conditions, for example in the analysis of stationary

components by using a large number of data points, this method has been chosen for

more detailed tests in the next section. As the Wigner-Ville and the pseudo-Wigner-

Ville distributions, the Morlet wavelet transform and the extended Prony time-

frequency representation with least-squares initialisation in the first step, did not

present any basic problems to analyse non-stationary processes and signals containing

noise, they have also been selected for tests with several simulation signals in the next

section.
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3.3. Signal Processing Techniques: Basic Simulation

In this section, the Fourier and the Morlet wavelet transforms, the Wigner-Ville and

the pseudo-Wigner-Ville distributions, and the extended Prony time-frequency

representations will be tested with some basic signal conditions. However, first a

critique will be made of the programs used to perform each signal processing

technique.

What distinguishes the  Wigner-Ville from the pseudo-Wigner-Ville distribution is that  the

latter uses weighting windows applied to each data array in both the time and the

frequency domains. This is used to reduce the interference caused by superposition of the

extremities of the signal sets. Rectangular, Hamming, Gaussian and Kaiser-Bessel

weighting windows in the time and frequency domains have been applied in the

pseudo Wigner-Ville distribution [Shin and Jeon, 1993, Chiollaz and Frave, 1993,

Moss and Hammond, 1994] (see Appendix D for Kaiser-Bessel window definition).

Because it has good selectivity, the Kaiser-Bessel window has been applied to obtain

a good two-tone separation of closely-spaced frequency components with widely

different levels [Flandrin, 1989], and, for this reason it will be adopted in this study. A

MATLAB program has been developed for the purpose of calculating the Wigner-Ville

and the pseudo-Wigner-Ville distributions of the signals to be tested.

The program used to apply the Morlet wavelet transform algorithm, where a temporal

Gaussian window with variable width is used, is based on the work of Bonaldo

[1993]. This latter program involves an algorithm to execute the Morlet wavelet

transform via the fast Fourier transform to improve the speed of the calculations.

The original Prony procedure with the least-squares linear prediction estimation

(covariance), that is used in the extended Prony time-frequency representation in this

simulation, involves a modified least-squares algorithm with computational

improvements [Marple, 1981]. It is used in place of the original version to solve the

covariance normal equations made by Morf et al [1977]. As the original Prony technique is
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considered an autoregressive (AR) process, a loss of resolution can be expected due to the

fact that the estimated AR poles are drawn towards the origin of the Z plane due to the

noise [Kay, 1979]. Noise only affects the zero-lag autocorrelation term. Covariance and

correlation are similar concepts, the correlation is covariance of a process with the mean

removed. Take, for example, an uncorrelated noise process, according to the

autocorrelation sequence concept (see section 3.2.2 of this Chapter) a large value will be

set to the zero-lag term and very low values will be set to the rest of the lags. To reduce

this problem, an alternative noise compensation method is offered by Kay [1980] to reduce

noise effects on the computational routine that evaluates the covariance for fitting data

purpose in the autoregressive techniques. The noise compensation proposed by Kay

[1980] is simply accomplished by subtracting all autocorrelation terms by the value

obtained in the calculation of the autocorrelation zero-lag term. This alternative has been

incorporated in the computational program which uses covariance in the first step of the

original Prony procedure, for use in the extended Prony time-frequency representation.

The least-squares routine used in the computational program of the extended Prony

time-frequency representation has been modified to accelerate the calculation and to

reduce the possibility of obtaining singular matrices. This was accomplished through

the insertion of several command lines to check dependent vectors, divisions by zero

etc.

Finally, to execute test simulations with the processing methods, a FORTRAN

subroutine has been developed to generate signals with a variety of sought and

spurious components. The true time-frequency representation graphs, given below,

refers to the exact time-frequency representation of the instantaneous components of

a simulated signal.
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3.3.1. Signal with two Deterministic components

(Signal S1)

For this basic simulation phase, three signals were prepared: signal S1 with two

deterministic components (58 and 60 Hz); signal S2 comprising a 58 Hz component

with amplitude variation, and signal S3 containing a 58 Hz weak component

embedded in high-level noise. By using such a basic signal as each of these it is

possible to see how each technique involved in this study depicts deterministic

components separately. Table 3.2 describes the composition of signal S1 and Figures

3.8 to 3.10 show the signal, its true time-frequency representation, and its Fourier

transform. The signal processing results of each time-frequency representation method

are shown in Figures 3.11 to 3.14.

Component Time
length (s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t = 0)
sine wave 1.0 512 58 0.1 0
sine wave 1.0 512 60 0.3 90

Table 3.2 - Signal S1 with deterministic components  (see section 3.2.4 for
component definition)

Fig. 3.8 - Signal S1with 58 and 60 Hz deterministic components
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Fig. 3.9 - True time frequency representation of signal S1

Fig. 3.10 - Fourier transform of signal S1 (frequency resolution = 1 Hz, no window)



Chapter 3 - Signal Simulation

106

Fig. 3.11 - Morlet wavelet transform of signal S1 (8 octaves & 20 voices per octave)

Fig. 3.12 - Wigner-Ville distribution of signal S1 (time-shift = 1 data point)
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Fig. 3.13 - Pseudo-WV distribution of signal S1 (KB time window exponential
argument 70, no frequency window - time-shift = 1 data point)

Fig. 3.14 - Extended Prony time-frequency representation of signal S1 (128 data
points per sample - total data points used = 639, order 16 and no exponential

damping limit)
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As expected, the two deterministic components were clearly (though not perfectly)

represented when analysed by the Fourier transform (see Figure 3.10). It can be seen

that the 60 Hz deterministic component is reasonably depicted by the Wigner-Ville

distribution and by the extended Prony time-frequency representation, but the 58 Hz

component is not depicted so clearly (see Figures 3.12 and 3.14). The graphs

generated by the Morlet wavelet transform and the pseudo-Wigner-Ville techniques

do not discriminate adequately the two components. Furthermore, it should be noted

that the variation in the tone of the trace of the graph may mistakenly be interpreted

as an amplitude or frequency modulation (see Figures 3.11 and 3.13). Due to the

windowing effect the pseudo-Wigner-Ville distribution may present different energy

peak values from the Wigner-Ville distribution (see Figures 3.12 and 3.13).

3.3.2. Signal Containing a 58 Hz Component with

Random Amplitude Variation (Signal S2)

The results of applying each time-frequency representation method to a signal

containing a single 58 Hz component with random amplitude variation are shown in

Figures 3.18 to 3.21. Table 3.3 describes the composition of this signal and the graphs

of Figures 3.15 to 3.17 show the respective signal, its true time-frequency

representation, and its Fourier transform.

Component Time
length (s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t=0)
sine wave 1.0 512 58 min. = 0.0

max. = 1.0
0

Table 3.3 - Signal S2 with deterministic component whose amplitude varies randomly
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The 58 Hz deterministic component whose amplitude varies randomly (sine wave)

used in this signal was generated according with the following formula:

( )x n A t n
NR( ) sin ( )= +2πν θ

where,

n = data sample number of a discrete time sequence (0 1≤ ≤ −n N )

x(n) = deterministic component discrete data point

AR = amplitude randomly varied using a random generator computational

routine (Magnitude, 0 - 100%)

N = number of data points per time interval

ν = frequency (58 Hz)

t = time (s)

θ = phase (rad - fixed value)

Fig. 3.15 - Signal S2 with deterministic component whose amplitude varies randomly
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Fig. 3.16 - True time-frequency representation of signal S2

Fig. 3.17 - Fourier transform of signal S2 (frequency resolution = 1 Hz, no window)
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Fig. 3.18 - Morlet wavelet transform of signal S2 (8 octaves & 20 voices per octave)

Fig. 3.19 - Wigner-Ville distribution of signal S2 (time-shift = 1 data point)
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Fig. 3.20 - Pseudo-WV distribution of signal S2 (KB time window exponential
argument 70, no frequency window - time-shift = 1 data point)

Fig. 3.21 - Extended Prony time-frequency representation of signal S2 (256 data
points per sample - total data points used = 767, order 4, no exponential

damping limit)
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As may be noted in the above Figures 3.17, 3.19, and 3.21, the Fourier transform, the

Wigner-Ville distribution and the extended Prony time-frequency representation do

not depict well the amplitude variation of the 58 Hz component. In regards to the

Wigner-Ville distribution and the extended Prony time-frequency representation, the

low sensitivity to amplitude variation is due to the data arrays with large quantity of

data points used to calculate the time-frequency planes (see Figures 3.19 and 3.21). In

the case of the extended Prony time-frequency representation, the data arrays with

large quantity of data points are necessary to “force” the method to detect

deterministic components, and, as a consequence, the amplitude values will be

averaged. In the numerical evaluations performed to generate the extended Prony

time-frequency representation, exponentials are fitted to depict the most

representative components of a specific data set. If large data sets are used, the

method tends to detect deterministic components because there are more data

associated with them. As a matter of fact, the exponential fitting of the original Prony

calculations essentially “forces” the method to “search” components which are

represented by the greatest number of data points. The pseudo-Wigner-Ville

distribution depicts the amplitude variation of the deterministic component due to the

windowing effect (see Figure 3.20), the narrow time window applied to data arrays in

the time-shifting operation (KB time window exponential argument 70) “forces” the

method to detect the local amplitude variation. However, it is difficult to discern in

the graph generated by the pseudo-Wigner-Ville distribution if the variations in the

graph spots is due to the amplitude or frequency variation. This also applies to the

Morlet wavelet transform technique (see Figure 3.18).

3.3.3. Signal Containing a Weak Component
Embedded in High-Level Noise (Signal S3)

In this section the weak signal component detection performance of the Fourier and

the Morlet wavelet transforms, the Wigner-Ville and pseudo-Wigner-Ville
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distributions, and the extended Prony time-frequency representation methods will be

assessed using simulated signals containing high-level noise.

The white noise used in the simulation was generated through a FORTRAN

subroutine [Press et al, 1992], where a minimal random number generator of Park and

Miller, with Bays-Durham shuffle and added safeguards, is generated. This routine

returns a uniform random number between 0.0 and 1.0 (exclusive of the point end

values). The authors do not know of the existence of any statistical test this routine

fails to pass, except when the number of calls starts to become greater than 10 8. This

routine generates a white noise which is fairly uncorrelated. Figure 3.22 shows a signal

composed of pure pseudo-white noise with maximum amplitude 1 generated by this

routine and its autocorrelation. The autocorrelation applied to the signal depicted in Figure

3.22 (b) is the biased one and is defined by the equation (3.5) above. It was performed

with 15 data lags with 512 data samples each. The Fourier transform of this signal with

pure white noise presents a broadband spectrum in the 200 Hz bandwidth (see Figure

3.23).

Fig. 3.22 - Signal with pure pseudo white noise  (a) and its autocorrelation (b)
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Fig. 3.23 - Fourier transform of signal with pure pseudo white noise (maximum amplitude
peak of the time signal = 1, frequency resolution = 1 Hz, no window)

In order to test the method’s ability to identify a weak component embedded in white

noise, a signal was prepared according to the composition described in Table 3.4.

Figures 3.24 and 3.25 show the respective signal S3 and its Fourier transform. For

comparative purposes, the Fourier transform method was applied to two different sets

of signal data samples, one containing 512 data points and another containing 524288

data points (see Figure 3.25). The figures 3.26 to 3.29 show the results generated by

each time-frequency representation method.

Component Time
length(s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t = 0)
sine wave 1.0 512 58 0.1 0

white noise 1.0 512 --- 5.0 (max.) ---

Table 3.4 - Signal S3 with deterministic component embedded in high-level noise (see
section 3.2.4 for component definition and Appendix C for SNR assumption)
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Fig. 3.24 - Signal S3 with a weak component embedded in high-level noise

Fig. 3.25 - Fourier transform of signal S3 ((a) 512 data points, 1 second, freq.
resolution = 1 Hz, (b) 524288 data points, 1024 seconds, freq.

resolution = 0.001 Hz - no averaging, no window)
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Fig. 3.26 - Morlet wavelet transform of signal S3 (8 octaves & 20 voices per octave)

Fig. 3.27 - Wigner-Ville distribution of signal S3 (time-shift = 1 data point)
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Fig. 3.28 - Pseudo-WV distribution of signal S3 (KB time and frequency window
exponential arguments 70, 2 - time-shift = 1 data point, frequency shift = 8 Hz)

Fig. 3.29 - Extended Prony time-frequency representation of signal S3 (512 data
points per sample - total data points used = 1023, maximum order 96, maximum

exponential damping 0.02 s-1)
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For the case of weak components embedded in high-level white noise, the Fourier

transform depicts the weak component quite well if a very large number of data points

is used (see Figure 3.25 (b)). However, long data arrays are not always available. The

Morlet wavelet transform does not depict any deterministic component clearly (see

Figure 3.26). The Wigner-Ville distribution does not depict these components due to

the cross-term drawback, as mentioned above, which propagates the noise (see Figure

3.27). Although windows were applied to reduce the appearance of cross-terms in the

pseudo-Wigner-Ville distribution, no improvement is observed when attempting to

detect weak components in the presence of high-level noise (see Figure 3.28).

However, in the graph of the extended Prony time-frequency representation (see

Figure 3.29), the weak component is depicted fairly well.

Table 3.5 is a summary of the results obtained using the techniques involved in this

study applied to the signals S1, S2, and S3.

Signal feature
(basic simulation)

Technique
    FT       MWT    WVD    PWVD   PTFR

Two deterministic components
(signal S1)

D
>B<

NC NC NC D

Amplitude variation
(signal S2)

ND NC ND NC
>B<

ND

Weak component embedded in high-
level noise (signal S3)

D
>B<*

NC ND NC D

ABBREVIATIONS

FT        - Fourier transform
MWT   - Morlet wavelet transform
WVD   - Wigner-Ville distribution
PWVD - Pseudo-Wigner-Ville distribution
PTFR   - Extended Prony time-frequency rep.

* for long data arrays

ND  - not detected
NC  - not clear
D    - detected
>B<- best method

Table 3.5 - Method component detection performance
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3.4. Signal Processing Techniques: Depicting Non-
Stationary Processes

To test the performance of the Fourier transform and the Morlet wavelet transform

methods, the Wigner-Ville and the pseudo-Wigner-Ville distributions, and the

extended Prony time-frequency representation for handling non-stationary

components, the following signals were prepared:

- A signal containing two sine sweeps (signal S4).

- A signal containing  a component whose frequency varies with the time (signal S5).

- A signal with modulations (signal S6)

- A signal with three Gaussian waves (signal S7).

3.4.1. Signal with 2 Sine Sweeps (Signal S4)

A signal with two simultaneous sine sweeps was prepared to demonstrate the capacity

of each time-frequency representation method to depict component frequency linear

variation. Table 3.6 describes the composition of this signal, and Figures 3.30 to 3.32

show the signal, its true time-frequency representation, and its Fourier transform.

Figures 3.33 to 3.36 show the results generated by each method.

Component Time
length (s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t=0)
sine sweep 1.0 512 min. = 20

max. = 40
1.0 0

sine sweep 1.0 512 min. = 30
max. = 90

1.0 90

Table 3.6 - Signal S4 with two sine sweeps
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The sine sweep components used in this signal were generated according with the

following formula:

( )x n A t n
N( ) sin ( )var= +2πν θ

where the frequency νvar varies according with the formula:

ν ν ν ν
var ,= + = −

1
2 1n
N

∆ν ∆ν

and where,

n = data sample number of a discrete time sequence (0 1≤ ≤ −n N )

x(n) = sine sweep discrete data point

A = amplitude (Magnitude)

N = number of data points per time interval

ν1 = initial frequency (Hz) (20 Hz in the first sine sweep and 30 Hz in the

second)

ν2 = final frequency (Hz) (40 Hz in the first sine sweep and 90 Hz in the

second)

t = time (s)

θ = phase (rad - fixed value)

Fig. 3.30 - Signal S4 containing two sine sweeps
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Fig. 3.31 - True time-frequency representation of signal S4

Fig. 3.32 - Fourier transform of signal S4 (frequency resolution = 1 Hz, no window)
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Fig. 3.33 - Morlet wavelet transform of signal S4 (8 octaves & 20 voices per octave)

Fig. 3.34 - Wigner-Ville distribution of signal S4 (time-shift = 1 data point)
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Fig. 3.35 - Pseudo-WV distribution of signal S4 (KB time and frequency window
exponential arguments 70 and 2 - time-shift = 1 data point, frequency shift = 8 Hz)

Fig. 3.36 - Extended Prony time-frequency representation of signal S4 (16 data points
per sample - total data points used = 527, order 4, no exponential damping limit)
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As may be noted in Figures 3.32 to 3.36, all techniques except the Fourier transform

(see Figure 3.32) depict the sine sweeps. As shown in the graph of Figure 3.32, the

Fourier transform cannot be considered an appropriate technique to process signals

with non-stationary processes. The Morlet wavelet and the pseudo-Wigner-Ville

distribution present low resolutions due to the windowing effect of their calculations

(see Figures 3.33 and 3.35). However, the Wigner-Ville distribution shows a good

resolution, although it has the disadvantage of generating cross-terms in its

calculations, which are clearly depicted  by the large spot located in the middle of the

two sine sweeps (see Figure 3.34). The extended Prony time-frequency representation

is shown to have the best graphical results for this signal (see Figure 3.36).

3.4.2. Signal with a Component with Frequency

Variation (Signal S5)

This second signal was used to test the methods for their capacity to analyse another

non-stationary condition. The signal is composed of a single component whose

frequency varies with time. The component frequency is varied sinusoidally between

56 to 59 Hz. This signal is designed to represent variations in the rotation speed of the

ESP, which in turn are caused by variations in the load to which the ESP is subjected.

The fluid pumped by the ESP varies in density, and this may be also reflected in the

rotation speed. This signal is intended to test the capacity of the methods to depict

small variations in a component frequency in the 56/59 Hz frequency bandwidth.

The signal composition is described in Table 3.7 below, and Figures 3.37 to 3.39

show the signal S5, its true time-frequency representation, and its Fourier transform.

Figures 3.40 to 3.43 show the results generated by each method.
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Component Time
length(s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t = 0)
sine wave (frequency
varied sinusoidally)

1.0 512 min. = 56
max. = 59

0.1 0

Table 3.7 - Signal S5 with a component whose frequency varies sinusoidally with time

The sine wave whose frequency varies sinusoidally used in this signal was generated

according with the following formula:

( )( )x n A t n
Nc( ) sin var= +2πν θ

where

x(n) = sine wave discrete data point

n = data sample number of a discrete time sequence (0 1≤ ≤ −n N )

A = amplitude (Magnitude)

νc = central frequency (57.5 Hz)

t = time (s)

N = number of data points per time interval

θvar = variable phase (rad)

The central frequency νc of a component may be varied through a phase addition or

subtraction as the frequency of this component is increased or reduced. Thus, the

phase θvar may be varied according with the formula:

( )( )θ θ πνvar max modsin= 2 t n
N

where νmod is the modulated variation frequency along the time axis (3.5 Hz) and the

maximum phase variation θmax is calculated by the formula:

θ π ν
νmax

mod

=
4

r

where νr is the frequency range variation (3 Hz).
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Fig. 3.37 - Signal S5 containing a single component whose frequency varies
sinusoidally between 56 to 59 Hz

Fig. 3.38 - True time-frequency representation of signal S5
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Fig. 39 - Fourier transform of signal S5 (frequency resolution = 1 Hz, no window)

Fig. 3.40 - Morlet wavelet transform of signal S5 (8 octaves & 20 voices per octave)
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Fig. 3.41 - Wigner-Ville distribution of signal S5 (time-shift = 1 data point)

Fig. 3.42 - Pseudo-WV distribution of signal S5 (KB time window exponential
argument 150, no frequency window - time-shift = 1 data point)
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Fig. 3.43 - Extended Prony time-frequency representation of signal S5 (4 data points
per sample - total data points used = 515, order 2, no exponential damping limit)

It can be seen in Figures 3.39 to 3.43 that the technique which best depicts the signal

containing a single component whose frequency varies between 56 to 59 Hz is the

extended Prony time-frequency representation. The Fourier transform of this signal

again, does not represent the frequency variation properly (see Figure 3.39) and the

graph generated by the Wigner-Ville distribution does not depict the signal correctly

due to the existence of the cross-terms (see Figure 3.41). The frequency variations in

the graphs generated by the pseudo-Wigner-Ville distribution and the Morlet wavelet

transform, on the other hand, can be clearly seen. However, in these cases the

component is “smoothed” due to the windowing effect (see Figures 3.40 and 3.42)

and is not as clearly identified as in the extended Prony time-frequency representation.
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3.4.3. Signal with Modulations (Signal S6)

The third signal of this simulation (signal S6) is designed to test the methods’ capacity

for detecting fluid slug vibration components. It contains a component whose

frequency varies from 6 to 24 Hz. and represents the fluid slug vibration present in the

petroleum wellhead. Fluid slug vibration has been studied by Leducq and Hervieu

[1991] through the Morlet wavelet analysis and it has been shown that generally the

component frequency varies from 6 to 24 Hz. It has been also shown that this fluid

slug vibration also presents some higher frequency components caused by moderate

shocks between the fluid slug and pipe deviations or connections. In these signals, the

values used to represent the modulation frequency correspond to the experimental

values obtained by Leducq and Hervieu [1991].

Table 3.8 describes the composition of signal S6, and Figures 3.44 to 3.46 show the

signal, its true time-frequency representation, and its Fourier transform. The graphs in

Figures 3.47 to 3.50 show the results generated by each time-frequency representation

method involved in this study.

Component Time
length (s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t = 0)

modulations (2)* 1.0 512
initial = 6

centre = 24
final = 6

5.0 0

Table 3.8 - Signal S6 with frequency modulations (each modulation has 90 data points
approximately, see section 3.2.4 for modulation component definition)
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Fig. 3.44 - Signal S6 containing frequency modulated components

Fig. 3.45 - True time-frequency representation of signal S6
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Fig. 3.46 - Fourier transform of signal S6 (frequency resolution = 1 Hz, no window)

Fig. 3.47 - Morlet wavelet transform of signal S6 (8 octaves & 20 voices per octave)
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Fig. 3.48 - Wigner-Ville distribution of signal S6 (time-shift = 1 data point)

Fig. 3.49 - Pseudo-WV distribution of signal S6 (KB time window exponential
argument 70, no frequency window - time-shift = 1 data point)
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Fig. 3.50 - Extended Prony time-frequency representation of signal S6 (4 data points
per sample - total data points used = 515, order 2, no exponential damping limit)

The composition of signal S6 is best depicted by the extended Prony time-frequency

representation (see Figures 3.46 to 3.50). The Fourier transform of this signal does

not represent the frequency variation properly (see Figure 3.46). The graph generated

by the Wigner-Ville distribution depicts the modulations, but it also shows cross-

terms that result from its calculations (see the spot between the two true modulations

in the graph of Figure 3.48). The modulations are not depicted clearly in the graphs

generated by the pseudo-Wigner-Ville distribution or the Morlet wavelet transform

(see Figures 3.47 and 3.49). In the Morlet wavelet transform, the “smoothed” results

due to the windowing effect make it difficult to infer the true nature of the

components (see Figure 3.47). The results also show non-existent components

between 2 and 6 Hz (see Figure 3.47). Normally, in the Morlet wavelet transform the

windowing effect is less prominent in the low-frequency bandwidth than in the high-

frequency bandwidth. This is because, as a feature of the method, the size of the

Gaussian time windows set for low frequencies is larger than those set for high-

frequencies (see equation (2.15)).
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3.4.4. Signal with Gaussian Waves (Signal S7)

The fourth signal containing non-stationary components to be analysed (signal S7)

was generated by adopting the same components as those described in the work of

Chiollaz and Frave [1993]. It contains three Gaussian waves disposed in such a way

as to depict the cross-terms problem in the Wigner-Ville distribution and the

subsequent elimination of these terms by the windowing operation performed in the

pseudo-Wigner-Ville distribution. Signals containing only Gaussian components have

been commonly used to demonstrate the capacity of the Wigner-Ville distribution to

depict non-stationary conditions, because they will always generate positive results in

the distribution time-frequency plane [Cohen, 1989, Chiollaz and Frave, 1993].

Table 3.9 shows the composition of signal S7, and Figures 3.51 to 3.53 show the

signal,  its  true  time-frequency representation, and its Fourier transform respectively.

The graphs in Figures 3.54 to 3.57 show the results generated by of each time-

frequency representation method involved in this study.

Component Time
length (s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t = 0)

1st Gaussian 1.0 512
initial = 24
centre = 32
final = 40

1.0 ---

2nd Gaussian 1.0 512
initial = 40
centre = 48
final = 56

1.0 ---

3rd Gaussian 1.0 512
initial = 88
centre = 96
final = 104

1.0 ---

Table 3.9 - Signal S7 with Gaussian waves
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To obtain the right Gaussian shape in the frequency domain, each Gaussian

component of this signal was generated from the frequency domain according with the

following formula:

x n A
s

n N

sf ( ) exp ( )
( )

= −
+











1
2

1 2
2 2

2

π
ν

where,

n = data sample number of a discrete time sequence (minimum

frequency≤ ≤n maximum frequency)

xf (n) = Gaussian wave discrete data point in the frequency domain

A = amplitude (Magnitude)

s = standard deviation (value set to 4 for all Gaussian waves)

N = number of data points per time interval

ν (n) = frequency data point (varied from 24 to 40 Hz to generate the 1st

Gaussian, from 40 to 56 Hz to generate the 2nd Gaussian, and

from 88 to 104 Hz to generate the 3rd Gaussian)

After generating the Gaussian waves according with the above formula in the

frequency domain, the inverse Fourier transform was applied to the data xf (n) in

order to obtain the temporal signal containing the Gaussian waves as shown in the

graph of Figure 3.51.
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Fig. 3.51 - Signal S7 with Gaussian waves

Fig. 3.52 - True non-stationary time-frequency representation of signal S7
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Fig. 3.53 - Fourier transform of signal S7 (frequency resolution = 1 Hz, no window)

Fig. 3.54 - Morlet wavelet transform of signal S7 (8 octaves & 20 voices per octave)
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Fig. 3.55 - Wigner-Ville distribution of signal S7 (time-shift = 1 data point)

Fig. 3.56 - Pseudo-WV distribution of signal S7 (KB time window exponential
argument 150, no frequency window - time-shift = 1 data point)
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Fig. 3.57 - Extended Prony time-frequency representation of signal S7 (48 data points
per sample - total data points used = 559, order 46, no exponential damping limit)

It can be seen in the graphs of Figures 3.53 to 3.57, that the best representation for

the signal with Gaussian waves was obtained using the pseudo-Wigner-Ville

distribution, which also corresponds closely to the true representation of this signal.

The same results were obtained in the work of Chiollaz and Frave [1993], who

suggested the use of time and frequency windows in order to reduce the interference

effect that appears in the results of the Wigner-Ville distribution. This interference,

caused by the cross-terms problem, can be seen in the graph of Figure 3.55 which was

generated using the Wigner-Ville distribution. This graph also shows a second-order

cross-term generated by propagation, which is depicted by the spot in the middle of

the two first-order cross-terms generated by this distribution. The distortion in the

graph generated by the Morlet wavelet transform (see Figure 3.54), is caused by the

logarithm frequency scale of its results. In this test the extended Prony time-frequency

representation does not depict the Gaussian waves properly (see Figure 3.57). A large

order (46) is necessary to force the extended Prony time-frequency representation to

represent the large number of points that exists in the centre of the Gaussian waves.
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Table 3.10 summarise the results obtained using the techniques involved in this study

applied to the signals S4, S5, S6, and S7.

Signal feature
(non-stationary simulation)

Technique
    FT       MWT    WVD    PWVD   PTFR

Sine sweeps
(signal S4)

NC D D D D
>B<

56/59 Hz component
(signal S5)

NC D NC D D
>B<

Modulations
(signal S6)

NC D D D D
>B<

3 Gaussians
(signal S7)

NC D D D
>B<

D

ABBREVIATIONS

FT        - Fourier transform
MWT   - Morlet wavelet transform
WVD   - Wigner-Ville distribution
PWVD - Pseudo-Wigner-Ville distribution
PTFR   - Extended Prony time-frequency rep.

ND  - not detected
NC  - not clear
D    - detected
>B<- best method

Table 3.10 - Method component detection performance

3.5. Signal Processing Techniques: Analysis of Multi-
Component Signals

In this section the components of basic signals analysed in the previous section will be

combined in order to obtain more complex signals for testing the processing

techniques involved in this study.

3.5.1. Signal with a Deterministic Component and a

Component with Frequency Variation (Signal S8)

This signal S8 consists of two components that are commonly found in the signals of

ESP vibrations. The first component, whose frequency varies between 56 to 59 Hz is
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associated  with  the rotation of an ESP pump subjected to load variation. A second

60 Hz deterministic component is associated with the electrical torque of the motor

due the magnetic field. This signal is difficult to analyse due to a combination of the

proximity of the component frequencies (56/59 and 60 Hz) and the non-stationary

condition of the 56/59 Hz component. Table 3.11 shows the composition of this

signal, and Figures 3.58 to 3.60 show the signal, its true time-frequency

representation, and its Fourier transform. Figures 3.61 to 3.64 show the results

generated by of each time-frequency representation method involved in this study.

Component Time
length (s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t = 0)
sine wave 1.0 512 min. = 56

max. = 59
0.1 0

sine wave 1.0 512 60 0.3 90

Table 3.11 - Signal S8 containing a component whose frequency varies  between 56
to 59 Hz and a 60 Hz deterministic component (see sections 3.2.4 and 3.5.2

respectively for component definitions)

Fig. 3.58 - Signal S8 containing a component whose frequency varies between 56 to
59 Hz and a 60 Hz deterministic component
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Fig. 3.59 - True time-frequency representation of signal S8

Fig. 3.60 - Fourier transform of signal S8 (frequency resolution = 1 Hz, no window)
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Fig. 3.61 - Morlet wavelet transform of signal S8 (8 octaves & 20 voices per octave)

Fig. 3.62 - Wigner-Ville distribution of signal S8 (time-shift = 1 data point)
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Fig. 3.63 - Pseudo-WV distribution of signal S8 (KB time and frequency window
exponential arguments 70 and 2 - time-shift = 1 data point, frequency shift = 8 Hz)

Fig. 3.64 - Extended Prony time-frequency representation of signal S8 (16 data points
per sample - total data points used = 527, order 8, no exponential damping limit)
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None of the time-frequency representations show the composition of the signal

described in Table 3.9 properly (see Figures 3.60 to 3.64). It is only in the results of

the Fourier transform technique that there is some indication that there are two

definite components in the signal (see Figure 3.60).

3.5.2. Signal with Deterministic Components and

Modulations (Signal S9)

This signal S9 is designed to test the methods capability to analyse strong non-

stationary conditions, which represent the fluid slug vibration (modulations), together

with deterministic components. This signal is described in Table 3.12, and Figures

3.65 to 3.67 show the signal, its true time-frequency representation, and its Fourier

transform. For comparative purposes, the Fourier transform method was applied to

two different sets of signal data samples, one containing 512 data points and another

containing 524288 data points (see Figure 3.67). The results of the application of each

time-frequency representation method to the signal S9 are shown in Figures 3.68 to

3.72 in logarithmic vertical scale (dB) due to the great disparity between the

amplitude values of the 58 and 60 Hz components and the frequency modulations.

Components Time
(s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t=0)
sine wave 1.0 512 58 0.1 0
sine wave 1.0 512 60 0.3 90

modulations (3) 1.0 90
initial = 6

centre = 24
final = 6

5.0 ---

Table 3.12 - Signal S9 with stationary and non-stationary component data (see section
3.2.4 for component definition)
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Fig. 3.65 - Signal S9 containing modulations and two deterministic components with
frequencies of 58 and 60 Hz each

Fig. 3.66 - True time-frequency representation of signal S9 (dB Magnitude)
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Fig. 3.67 - Fourier transform of signal S9 ((a) 512 data points, 1 second, freq.
resolution = 1 Hz, (b) 524288 data points, 1024 seconds, freq.

resolution = 0.001 Hz - no averaging, no window)

Fig. 3.68 - Morlet wavelet transform of signal S9 (8 octaves & 20 voices per octave -
note that the grey-scale is inverted in order to provide a clear depiction of

the weak component)
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Fig. 3.69 - Wigner-Ville distribution of signal S9 (time-shift = 1 data point - note that
the grey-scale is inverted in order to provide a clear depiction of

the weak component)

Fig. 3.70 - Pseudo-WV distribution of signal S9 (KB time and frequency window
exponential arguments 70 and 2 - time-shift = 1 data point, frequency shift = 8 Hz -

note that the grey-scale is inverted in order to provide a clear depiction of
the weak component)
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Fig. 3.71 - Extended Prony time-frequency representation of signal S9 (16 data points
per sample - total data points used = 527, order 14, no exponential damping limit)

The deterministic components are clearly depicted by the graph of the Fourier

transform shown in Figure 3.67, but the modulations are not represented properly due

to the difficulty in performing non-stationary analysis with this method. The

modulations are represented in a more precise way, in terms of component frequency

composition, by the Wigner-Ville distribution (Figure 3.69), the pseudo-Wigner-Ville

distribution (Figure 3.70), the Morlet wavelet transform (Figure 3.68) and the

extended Prony time-frequency representation (Figure 3.71). Only in the graph

generated by the extended Prony time-frequency representation are the signal

components fairly depicted.

It is possible to adjust the exponential damping limit of the extended Prony time-

frequency representation in order to “extract” deterministic components to the

detriment of the non-stationary ones. The graph in Figure 3.72 demonstrates this

operation, where the method was set to calculate the time-frequency representation

with reduced amplitude and exponential damping limits, which caused the elimination
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of the modulations values. This filtering procedure of non-stationary elimination is

what is referred to above as time-frequency exponential damping filtering obtained

using the exponential damping values calculated by the original Prony method and

associated with each component depicted in the time-frequency plane (see equation

(2.22)).

Fig. 3.72 - Extended Prony time-frequency representation of signal S9 (16 data points
per sample - total data points used = 527, order 14, exponential damping limit

set to 0.02 s-1)

3.5.3. Signal with Deterministic Components, High-

Level Noise, and Modulations (Signal S10)

The first signal to represent a live signal collected in a petroleum wellhead is

composed of deterministic components corresponding to the rotation of the ESP

equipment (58 Hz) and to the electrical power supply (60 Hz), white noise and
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modulations corresponding to the fluid-slugs as defined in the work of Leducq and

Hervieu [1991]. Table 3.13 describes this signal, and Figures 3.73 and 3.74 show the

signal and its Fourier transform. For comparative purposes, the Fourier transform

method was applied to two different sets of signal data samples, one containing 512

data points and another containing 524288 data points (see Figure 3.74). Figures 3.75

to 3.78 show the results generated by the methods applied in this study.

Components Time
length (s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t = 0)
sine wave 1.0 512 58 0.1 0
sine wave 1.0 512 60 0.3 90

white noise 1.0 512 --- 5.0 ---

modulations (2) 1.0 90
initial = 6

centre = 24
final = 6

5.0 ---

Table 3.13 - Signal S10 containing deterministic components, high-level white noise
and non-stationary modulations (see section 3.2.4 for deterministic and modulation

component, 3.3.3 for white noise definition, and Appendix C
for SNR level assumption)

Fig. 3.73 - Signal S10 containing deterministic components, high-level white noise
and non-stationary modulations
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Fig. 3.74 - Fourier transform of signal S10 ((a) 512 data points, 1 second, freq.
resolution = 1 Hz, (b) 524288 data points, 1024 seconds, freq.

resolution = 0.001 Hz - no averaging, no window)

Fig. 3.75 - Morlet wavelet transform of signal S10 (8 octaves & 20 voices per octave)
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Fig. 3.76 - Wigner-Ville distribution of signal S10 (time-shift = 1 data point)

Fig. 3.77 - Pseudo-WV distribution of signal S10 (KB time and frequency window
exponential arguments 70 and 2 - time-shift = 1 data point, frequency shift = 8 Hz)
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Fig. 3.78 - Extended Prony time-frequency representation of signal S10 (512 data
points per sample - total data points used = 1023, order 64, maximum

exponential damping 0.02 s-1)

In the graphs generated by the Morlet wavelet transform, the Wigner-Ville

distribution and the pseudo-Wigner-Ville distribution, only the modulations are

depicted (see Figures 3.75 to 3.77). In the graph of Figure 3.78 are shown the results

obtained when the extended Prony time-frequency representation is applied to a

simulated signal with a 512-data-point-shift. In this case  the exponential damping was

limited to 0.02 s-1.

The modulation components shown in Figure 3.74 are not properly depicted because

the Fourier transform is not appropriate to analyse non-stationary conditions. Also,

some signal sample processed using the extended Prony time-frequency representation

(see section 2.7) does not depicts the modulation components (see Figure 3.79).

However, for the detection of deterministic components in the presence of high-level

noise and strong non-stationary conditions, one signal sample processed using the

extended Prony time-frequency representation is more efficient than the Fourier

transform. For an adequate depiction of the deterministic components using the
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Fourier transform, a very large number of data points are necessary to process the

signal. It can be seen that the results generated by one signal sample processed using

the extended Prony time-frequency representation are less confusing than that

processed by the Fourier transform (see Figures 3.74 and 3.79). This is a consequence

of the way that this technique processes the signal. The signal sample processed using

the extended Prony time-frequency representation, which is related to the original

Prony method, is not a transformation with consequent domain change, as is the

Fourier transform, when an exponential is “found” on the time domain, that may really

correspond to one deterministic component which may be damped, or not. The graph

in Figure 3.79 shows another useful advantage of the signal samples processed using

the calculation of the extended Prony time-frequency representation, in that there are

fewer detected components, and the probability of one of them being a sought

component is higher than in the Fourier transform spectrum. In a 200 Hz range, 200

peaks were registered in the Fourier spectrum as a trivial characteristic of this non-

parametric method (see Figure 3.74), while only 21 peaks were found in one signal

sample processed using the extended Prony time-frequency representation (see Figure

3.79), resulting in a “less confusing” spectrum.

Fig. 3.79 - One signal sample processed using the extended Prony time-frequency
representation of signal S10 (order 64, 512 data points, 1 second)
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If the number of data points per sample is reduced to 128, the resulting Prony time-

frequency plane does not show properly the deterministic component (see Figure

3.80). This suggests that when deterministic components need to be detected, a larger

number of data points per sample has to be used. In fact, the larger the quantity of

data points per sample used, the stronger is the tendency to find more lightly-damped

exponentials (deterministic components). However, this will lead to a greater sacrifice

of computational evaluation, because the method will handle large matrices in the

equations (2.22) and (2.33) (see section 2.6 of Chapter 2).

Fig. 3.80 - Extended Prony time-frequency representation of signal S10 (128 data
points per sample - total data points used = 639, order 64, maximum exponential

damping 0.02 s-1)
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3.5.4. Main Component with Frequency Variation

Embedded in High-Level Noise (Signal S11)

The second signal used to represent a live signal collected in a petroleum wellhead is

composed of a component whose frequency varies from 56 to 59 Hz, corresponding

to the rotation of the pump under fluid loads, and a 60 Hz deterministic component

corresponding to the electrical power supply. White noise was added to the signal, as

described in Table 3.14, and the graphs of Figures 3.81 and 3.82 show the signal and

its Fourier transform respectively. For comparative purposes, the Fourier transform

method was applied to two different sets of signal data samples, one containing 32768

data points and another containing 524288 data points (see Figure 3.82). The graphs

of Figures 3.83 to 3.86 show the results generated by the methods applied in this

study.

Components Time
length (s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t = 0)
sine wave 1.0 512 min. = 56

max. = 59
0.1 0

sine wave 1.0 512 60 0.3 90
white noise 1.0 512 --- 5.0 ---

Table 3.14 - Signal S11 containing 56/59 and 60 Hz components, and high-level white
noise (see sections 3.2.4 for deterministic component, 3.3.3 for white noise, 3.5.2 for

56/59 Hz component definitions, and Appendix C for SNR level assumption)
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Fig. 3.81 - Signal S11 containing 56/59 and 60 Hz components, and high-level
white noise

Fig. 3.82 - Fourier transform of signal S11 ((a) 32768 data points, 64 seconds,
frequency resolution = 0.016 Hz, no window, (b) 524288 data points, 1024 seconds,

frequency resolution = 0.001 Hz, no window)



Chapter 3 - Signal Simulation

161

Fig. 3.83 - Morlet wavelet transform of signal S11 (8 octaves & 20 voices per octave)

Fig. 3.84 - Wigner-Ville distribution of signal S11 (time-shift = 1 data point)
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Fig. 3.85 - Pseudo-WV distribution of signal S11 (KB time and frequency window
exponential arguments 70 and 2 - time-shift = 1 data point, frequency shift = 8 Hz)

Fig. 3.86 - Extended Prony time-frequency representation of signal S11 (256 data
points per sample - total data points used = 767, order 4, maximum exponential

damping 0.02 s-1)
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It can be seen that when the Fourier transform method is applied to the signal no

detection of the 56/59 Hz component can be made using a long data array (32768

data points - see Figure 3.82 (a)). However, when the Fourier transform is applied to

a very long data array (524288 data points) it is possible to infer that there is a

component with a frequency of 57.5 Hz, although it is not possible to infer about the

true nature of the component (see Figure 3.82 (b)). This is due to the non-stationary

condition of the 56/59 Hz component. When the Morlet wavelet transform, the

Wigner-Ville, and the pseudo-Wigner-Ville distribution is applied to this signal, no

noticeable result is found for the 56/59 Hz and the 60 Hz components (see Figures

3.83 to 3.85). When the extended Prony time-frequency representation is applied to

the signal S11 the 56/59 and the 60 Hz components are detected, albeit not well (see

Figure 3.86).

3.5.5. Main Component with Frequency Variation

Embedded in High-Level Noise and with Modulations

(Signal S12)

This signal is similar to the one in 3.6.2, except for the addition of the non-stationary

conditions representing the fluid slugs (modulations). Table 3.15 describes this signal,

and the graphs in Figures 3.87 and 3.88 show the respective signal and its Fourier

transform. For comparative purposes, the Fourier transform method was applied to

two different sets of signal data samples, one containing 32768 data points and

another containing 524288 data points (see Figure 3.88). Figures 3.89 to 3.92 show

the results generated by the methods applied in this study.
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Components Time
length (s)

No. of data
points

Frequency
(Hz)

Amplitude
(Mag)

Phase
(degrees,

t = 0)
sine wave 1.0 512 min. = 56

max. = 59
0.1 0

sine wave 1.0 512 60 0.3 90
white noise 1.0 512 --- 5.0 ---

modulations (2) 1.0 90
initial = 6

centre = 24
final = 6

5.0 ---

Table 3.15 - Signal S12 containing 56/59 and 60 Hz components, high-level white
noise and non-stationary modulations (signal S12, see sections 3.2.4 for deterministic

and modulation component, 3.3.3 for white noise, 3.5.2 for 56/59 Hz component
definitions, and Appendix C for SNR level assumption)

Fig. 3.87 - Signal S12 containing 56/59 and 60 Hz components, high-level white noise
and non-stationary modulations



Chapter 3 - Signal Simulation

165

Fig. 3.88 - Fourier transform of signal S12 ((a) 32768 data points, 64 seconds,
frequency resolution = 0.016 Hz, no window, (b) 524288 data points, 1024 seconds,

frequency resolution = 0.001 Hz, no window)

Fig. 3.89 - Morlet wavelet transform of signal S12 (8 octaves & 20 voices per octave)
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Fig. 3.90 - Wigner-Ville distribution of signal S12 (time-shift = 1 data point)

Fig. 3.91 - Pseudo-WV distribution of signal S12 (KB time and frequency window
exponential arguments 70 and 2 - time-shift = 1 data point, frequency shift = 8 Hz)
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Fig. 3.92 - Extended Prony time-frequency representation of signal S12 (256 data
points per sample - total data points used = 767, order 62, maximum exponential

damping 0.02 s-1)

It may be noted in the graphs of Figures 3.88 to 3.92 that practically the same results

were obtained as in the previous test, except for the fact that the Morlet wavelet, the

Wigner-Ville and the pseudo-Wigner-Ville distributions show the modulations. When

using a very long data array (524288 data points) the Fourier transform gives an

indication  of  the 56/59 Hz and the 60 Hz component, but the true nature of the

56/59 Hz component is not shown in the graph (see Figure 3.88 (b)). In the case of

the extended Prony time-frequency representation (see Figure 3.92), is shown only

one component in the 55/65 Hz frequency bandwidth. The 60 Hz component is not

properly represented in the plane. This corruption may be caused by the strong

spurious components (noise and modulations).

A summary of the results obtained from the techniques applied to the signals S8 to

S12 is shown in Table 3.16.
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Signal feature
(multi-component simulation)

Technique
    FT       MWT    WVD    PWVD   PTFR

56/59 and 60 Hz components
(signal S8)

NC NC NC NC NC
>B<

58 and 60 Hz components in the
presence of modulations (signal S9)

NC ND ND ND D
>B<

58 and 60 Hz comps. in the presence of
white noise+modulations (signal S10)

D NC ND ND D
>B<

56/59 and 60 Hz comps. in the presence
of white noise (signal S11)

NC NC ND NC NC
>B<

56/59 and 60 Hz comps. in the presence
of white noise+modulations (signal S12)

NC NC ND ND NC
>B<

ABBREVIATIONS

FT        - Fourier transform
MWT   - Morlet wavelet transform
WVD   - Wigner-Ville distribution
PWVD - Pseudo-Wigner-Ville distribution
PTFR   - Extended Prony time-frequency rep.

ND  - not detected
NC  - not clear
D    - detected
>B<- best method

Table 3.16 - Method component detection performance

The results of the simulations above have shown that a better systematic detection of

the components that have frequencies in the 56 to 60 Hz bandwidth has been obtained

using the extended Prony time-frequency representation (see Figures 3.71, 3.79, 3.86,

and 3.92). Only in four simulation signals did the extended Prony time-frequency

representation not achieve the best result: signal S1 and S3 - where the best result was

obtained using the Fourier transform due to its graph and computation simplicity (see

Figures 3.10, 3.14 and 3.25); and signals S2 and S7 - where the best results were

obtained using the pseudo-Wigner-Ville distribution (see Figures 3.20 for signal S2,

and 3.56 for signal S7). The extended Prony time-frequency representation, therefore,

may be considered the most appropriate technique for processing the live signal

collected in the petroleum wellhead. In the following sections additional simulations

will be carried out in order to show, in more detail, certain features and the capacity

this method has for detecting variations of weak components present in signals

containing strong spurious components within the 56 to 60 Hz frequency bandwidth.
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3.6. Signal Processing Techniques: Plane “Band-
Selection” Filtering Technique

In section 2.9 of Chapter 2 we saw that an important feature of the extended Prony

time-frequency representation is its capacity to perform a convolution filtering directly

on the results of the time-frequency plane. Here an attempt is made to demonstrate,

this time-frequency plane “band-selection” operation via a signal simulation. As

mentioned above, some components of a specific frequency bandwidth may be filtered

using the results generated in the time-frequency plane. This corresponds to a

convolution performed on the signal and has the advantage of being able to analyse a

selected frequency bandwidth directly in the time-frequency plane. To demonstrate

this operation, the signal defined in Table 3.17 was generated. Figure 3.93 shows the

signal and its Fourier transform. The graph in Figure 3.94 shows the extended Prony

time-frequency representation of the raw signal, Figure 3.95 shows the results of this

frequency plane “band-selection” operation by zeroing the plane values out of the

55/60 Hz frequency bandwidth, and Figure 3.96 shows the recovered signal and its

Fourier transform.

Frequency (Hz) Amplitude (Mag) Phase (degrees, t = 0)
50 1.0 40
55 1.0 90
60 1.0 10
65 1.0 130

white noise 0.1 ---

Table 3.17 - Signal component composition (see sections 3.2.4 and 3.4 respectively
for component and white noise formula definition)
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Fig. 3.93 - Signal and its respective Fourier transform (frequency
resolution = 1 Hz, no window)

Fig. 3.94 - Extended Prony time-frequency representation (512 data points per sample
- total data points used = 1023, order 24, no exponential damping limit)
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Fig. 3.95 - Extended Prony time-freq. representation, 55/60 Hz “band-selection” in
the plane (values outside the 55/60 Hz bandwidth set to zero)

Fig. 3.96 - Filtered signal recovered from the time-frequency plane values and its
respective Fourier transform (frequency resolution = 1 Hz, no window)
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It can be seen by the simulation above that it is possible to apply a frequency

bandwidth selection in the extended Prony time-frequency representation and to

recover a filtered signal. However, some low-level corruption may be expected in the

component results when this operation is performed. It may be noticed in the graphs

of the recovered signal and its respective Fourier transform (see Figure 3.96 (a) and

(b)), that some level of noise will result. This noise is not present in the results

obtained from the application of the Fourier transform method in the signal with low-

level noise (see the graph of Figure 3.93 (b)). As in some time-shifts the order does

not correspond to the number of components present in a signal, some spurious

components with low amplitude values are generated in the calculation of the

extended Prony time-frequency representation, and noise appears when these values

are used in the recovering operation. Also, due to non-exact values obtained in the

exponential fitting process of the extended Prony time-frequency representation, the

amplitude and phase values may present slight differences between the evaluated and

real values of a component along the time axis. As a consequence of this non-exact

fitting process, different phase values may be obtained in the signal recovery

operation, which may be associated with the difference that exists between the shape

of the graph of the recovered signal (Figure 3.96 (a)) and the shape of the graph of

the signal resulting from the convolution with the bandwidth frequency flat window

(Figure 3.97 (a)). If a frequency “band-selection” is performed in the signal using the

convolution with a bandwidth frequency flat window, a more efficient frequency

“band-selection” operation is obtained (see the Figure 2.12 of item 2.9 of Chapter 2).

The plot of Figure 3.97 (b) shows the results of the frequency “band-selection”

operation performed on the signal described in Table 3.17 using a convolution with a

57/62 Hz bandwidth frequency flat window filter.

If a signal is previously convolved with a bandwidth frequency flat window it will

present less noise than the signal bandwidth filtered and recovered from the Prony

time-frequency representation, and the necessary order for the characteristic

polynomial to be evaluated in each sample of the extended Prony time-frequency

representation is reduced. A consequence of this polynomial order reduction is that
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less processing computational effort will be required. The efficiency of the frequency

“band-selection” operation using the convolution is also apparent when the signal

S10, analysed in the section 3.5.3 and described by Table 3.13, is previously

convolved with a 57/62 Hz bandwidth frequency flat window, and analysed through

the extended Prony time-frequency representation. Due to the elimination of most of

the spurious components present in the signal, the weak 58 and 60 Hz signal

components are more easily detected and, as consequence, they are more clearly

depicted (see Figure 3.98).

Fig. 3.97 - Signal recovered from the convolution filtering and its respective Fourier
transform (frequency resolution = 1 Hz, no window)

Although an improvement is obtained when the convolution with a frequency-

bandwidth window is applied, the frequency bandwidth limiting to be used in this

study will be the “band-selection” performed in the plane of the extended Prony time-

frequency representation. This is because this technique represents an additional

feature of the extended Prony time-frequency representation, and it needs to be tested

more rigorously in order to determine if it can generate acceptable results (see next

section).



Chapter 3 - Signal Simulation

174

Fig. 3.98 - Extended Prony time-frequency plane of the signal S9 defined above
convolved with a bandwidth frequency flat window between 57 to 62 Hz (512 data
points per sample - total data points used = 1023, order 8, maximum exponential

damping filtering set to 0.02 s-1)

3.7.Extended Prony Time-Frequency Representation:
Filtering Systematic Simulations (Signals S13 to S22)

From this point systematic filtering of simulated signals will be performed using the

extended Prony time-frequency representation. The aim here is: (a) to test the

capacity of filtering out spurious components more extensively; and, (b) to determine

if the weak component amplitude variations can be detected by applying the Fourier

transform to filtered and recovered signal samples. Ten signals with weak components

at different amplitude levels, embedded in strong spurious components, will be

generated (signals S13 to S22). A difference of two times in the magnitude of

amplitude level of the sought component will be set for each signal pair. An analysis

will be made of the 20 tests for each signal generated. In each step the amplitude of

the sought component will be compared in the two pairs of signals. The composition

of the first two signals (S13 and S14) were previously known to this author, and are
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described in Table 3.18. However, the composition of the other eight signals, from

S15 to S22, were unknown prior to their analysis in order to avoid a “predisposition”

to seek a specific component in the signals. The main aim is to detect the amplitude

level of the weak component in filtered and recovered signals using the extended

Prony time-frequency representation. A frequency bandwidth containing the weak

component to be detected (58 Hz) will be selected in the resulting time-frequency

plane (“band-selection”) and a filtering operation will be performed using the

exponential damping associated with each component sought by the extended Prony

time-frequency representation. The Fourier transform will be applied to signal samples

filtered and recovered from the extended Prony time-frequency representation (see

section 2.9 of Chapter 2).

Deterministic Component Data
   Component 1      Component 2
Freq  Amp   Pha   Freq  Amp  Pha
(Hz) (Mag) (t=0) (Hz) (Mag) (t=0)

6-24 Hz
Modulations
Amplitude

White
Noise

Amplitude

Signal S13 58 0.1 0 o 60 0.3 90 o 5.0 5.0
Signal S14 58 0.2 0 o 60 0.3 90 o 5.0 5.0

Table 3.18 - Signals S13 and S14 (see sections 3.2.4 for deterministic and modulation
component, 3.3.3 for white noise definitions, and Appendix C for SNR level

assumption)

The results of the systematic simulation applied to the signals S13 and S14 are shown

in the graphs of Figures 3.99 and 3.100. Samples of both signal S13 and S14 were

filtered by using the extended Prony time-frequency representation. This operation

was performed by projecting the component amplitudes with the associated phase

values, in a frequency bandwidth between 55 and 65 Hz (see section 2.9 of Chapter 2

for more detailed explanation of this operation).

For this systematic simulation, 20 samples of signal S13 and 20 samples of signal S14

were filtered by using the extended Prony time-frequency representation (512 data

points per time-shift - total data points of each sample = 1023, order 64, maximum

exponential damping 0.02 s-1). Figure 3.99 shows waterfall plots of 20 Fourier
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transforms (frequency resolution = 1 Hz) applied to that filtered and recovered data

arrays (signal S13 Figure 3.99 (a) and signal S14 Figure 3.99 (b)).

Fig. 3.99 - Waterfall graph of Fourier transforms of signal data arrays filtered and
recovered by using the extended Prony time-frequency representation ((a) 20

samples of signal S13 and (b) 20 samples of signal S14, sampling
frequency 512 Hz, frequency resolution = 1 Hz)
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As shown in the waterfall graphs of Figure 3.99, it is not possible to observe the

amplitude variation of the 58 Hz component in every array of filtered and recovered

signal data using the extended Prony time-frequency representation. Only in 68 % of

the Fourier transforms of the filtered samples show the correct amplitude relationship,

i. e., amplitude values of the 58 Hz component of signal S14 greater than the

amplitude values of the 58 Hz component of signal S13. For the purpose of

comparing both S13 and S14 signals an average of several spectra is still necessary.

Figure 3.100 shows the results of averaging the spectra of each signal group of

Fourier transforms shown in the waterfall graph of Figure 3.99.

Fig. 3.100 - Spectra average of the filtered signals S13 and S14
(solid line - signal S13, dashed line- signal S14)

In the results of an average of the 20 Fourier transforms performed in filtered data

arrays with 512 samples of both recovered signals (see Figure 3.100) there is an

amplitude difference corresponding to the greater amplitude of the 58 Hz in signal

S14. This is what will be used for detecting equipment failure. Normally, when an

ESP pump is going to fail, an increase in the amplitude peak on the rotation frequency

is expected.
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If one set of filtered signal data is compared with another after applying the extended

Prony time-frequency representation and the time-frequency plane “band-selection”, it

will still be difficult to detect any variation in a signal with strong spurious

components (see Figure 3.99). This leads to the assumption that an average of the

resulting transformed of each set of filtered signal data are still necessary if a more

reliable detection is required.

In a second stage designed to test the capacity of the extended Prony time-frequency

representation for detecting the weak components in the signal, eight additional 1024

data-sample computer simulated signals were prepared containing weak components

with different frequencies. First, six signals (S15 to S20) were generated with

different frequency gaps between each deterministic component inside the 55-65 Hz

frequency bandwidth. Then, two more signals (S21 and S22) were generated to detect

weak component variations in the 0-200 Hz frequency bandwidth. The sampling

frequency of the simulated signals was set to 512 Hz. As stated above, the

composition of signals S15 to S22 was unknown to the author at the time of the

analysis in order to avoid a “predisposition” to seek specific components in the

signals. These signals were generated by another researcher at Imperial College

through a computer program. In the generation of the signals S15 to S22, the same

component amplitude relationships of the signals S13 and S14 was maintained, i. e.,

amplitude of the spurious components 50 times greater than the weakest component

in one signal and 25 greater in another signal. A 55/65 Hz frequency bandwidth was

limited for placing the weak components in the signals S15 to S20 and a 0/200 Hz

bandwidth was limited for placing the weak component in he signals S21 and S22. No

previous information was given about which component had its amplitude varied or in

which signal it was increased.

Figures 3.101 through 3.104 show the average of the 20 Fourier transforms of data

arrays taken from each signal S15 to S22 and filtered by using the extended Prony

time-frequency representation. This methodology is the same that was applied to the

signals S13 and S14 to generate the graph of Figure 3.100. A 55/65 Hz frequency
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bandwidth of time-frequency plane “band-selection” was applied to signals S15 to

S22. The graphs in Figures 3.101 through 3.104 show the results of an average of 20

Fourier transforms performed in filtered data arrays with 512 samples of signals S15

to S22.

The graphs of Figures 3.101 and 3.103 show that the amplitude level of the 63 Hz

component was increased, and the graph of Figure 3.102 shows that the amplitude

level of the 57 Hz component was increased.

As no frequency bandwidth window filtering was applied before recovering the

filtered signals S21 and S22, numerous peaks appeared in the spectrum, as can be

seen in the graph in Figure 3.104. It is difficult to determine which amplitude variation

corresponds to the sought weak component in the 0/200 Hz frequency bandwidth.

Fig. 3.101 - Spectra average of the filtered signals S15 and S16
(solid line - signal S16, dashed line - signal S15)
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Fig. 3.102 - Spectra average of the filtered signals S17 and S18
(solid line - signal S17, dashed line - signal S18)

Fig. 3.103 - Spectra average of the filtered signals S19 and S20
(dashed line - signal S19, solid line - signal S20)
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Fig. 3.104 - Spectra average of the filtered signals S21 and S22
(solid line - signal S21, dashed line - signal S22)

The  unknown  signals  were  generated  in  accordance with the data depicted in

Table 3.19.

Deterministic Component Data
       Component 1           Component 2
  Freq   Amp     Pha    Freq    Amp    Pha
  (Hz)  (Mag)   (t=0)   (Hz)   (Mag)  (t=0)

6-24 Hz
Modulations
Amplitude

White
Noise

Amplitude

Signal S15 61 0.3 70 o 63 0.2 20 o 5.0 5.0
Signal S16 61 0.3 70 o 63 0.1 20 o 5.0 5.0
Signal S17 57 0.1 40 o 63 0.3 90 o 5.0 5.0
Signal S18 57 0.2 40 o 63 0.3 90 o 5.0 5.0
Signal S19 59 0.3 10 o 63 0.2 80 o 5.0 5.0
Signal S20 59 0.3 10 o 63 0.1 80 o 5.0 5.0
Signal S21 117 0.15 15 o --- --- --- 7.3 7.3
Signal S22 117 0.3 15 o --- --- --- 7.3 7.3

Table 3.19 - Additional signals for simulation (see sections 3.2.4 for deterministic and
modulation component, 3.3.3 for white noise definitions, and Appendix C for SNR

level assumption)

Comparing the components amplitudes depicted in the graphs of Figures 3.101 to

3.103 with the true component amplitudes depicted in Table 3.19, it may be noted
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that the amplitude values are significantly reduced. This may be due to the spurious

component filtering process, which incorrectly eliminates some component points.

It can be seen in Figure 3.104 that it is still difficult to determine which amplitude

variation corresponds to the sought weak component in a 200 Hz frequency

bandwidth. This leads to the assumption that it is still necessary to set a narrow

frequency bandwidth to detect variation in a specific weak component.

3.8. Signal Simulation Conclusions

In this Chapter, our objective has been to test five signal processing techniques using

numerically-simulated signals in order to determine which technique is the most

appropriate to detect weak components in signals with strong spurious components.

Of these techniques, particular attention has been given to the extended Prony time-

frequency representation, and to how this technique compares with the others.

To conclude this chapter, the main findings of the simulations can be summarised as

follows:

a) The extended Prony time-frequency representation developed in this study has been

shown to be generally the most effective of the 5 techniques studied in detecting weak

deterministic components in signals containing strong spurious components, when

using few data points (maximum 1023 data points - 512 data points per sample -

sampling frequency of 512 Hz - see Figures 3.26, 3.79, 3.86, and 3.92);

b) The extended Prony time-frequency representation can also handle non-stationary

components reasonably well. This may be seen in Figures 3.33, 3.40, 3.47, and 3.54

and 3.18, where the non-stationary processes are represented in the graphs with the

correct frequency composition;
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c) When an analysis of certain specific non-stationary components, such as the ones

that need a large amount of data points to be represented in a small area of the time-

frequency plane, the pseudo-Wigner-Ville distribution and the Morlet wavelet

transform may be better choices than the extended Prony time-frequency

representation. See, for example, the case of the time-frequency representation of the

Gaussian waves in the section 3.4.4 (see Figure 3.53);

d) When using the extended Prony time-frequency representation, a narrow frequency

bandwidth time-frequency plane “band-selection” is necessary for component level

comparison (see Figure 3.104); and

e) It is necessary to average the Fourier transforms of the signals, which have been

filtered and recovered from the extended Prony time-frequency representation, in

order to depict better weak component peak variations.

Based on the above findings, the extended Prony time-frequency representation was

considered to be a good option for filtering technique to be developed for the

objective  of  monitoring  variations  in the amplitude of weak components, within a

10 Hz frequency bandwidth, in signals containing high levels of noise and with non-

stationary components. As a consequence, the extended technique was tested with

signals generated in the experimental apparatus described in the following Chapter 4.
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Chapter 4  
Experimental Analysis 

4.1. Introduction

In this Chapter, an experimental apparatus is described which was designed and

constructed to generate data with which to test the filtering capacity of the extended

Prony time-frequency representation formulated in Chapter 2. The purpose of the

experimental apparatus was to generate vibration data which is representative of that

produced by ESP equipment operating in a real petroleum well. Therefore, the

experimental apparatus was designed to replicate an ESP installation as closely as

possible, although using a very small-scale model.

As was mentioned above, the first major systematic vibration analysis of ESP

equipment operating under controlled conditions was performed by Moore [1990]

(see section 1.4 of Chapter 1). In that research, accelerometers were placed on the

pump and at the wellhead 38 meters above. Several types of wear, such as to the

bearings and the pump’s coupling, were simulated and the collected data processed

through the Fourier transform. Moore states that before the ESP failed, data gathered

from the transducer attached to the pump revealed an increase of between 30 and 60

times  in  the  amplitude  of  the  rotational  vibration.  However,  Moore  also reports
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a delay of two weeks in detecting when the ESP failed - that is, the time lag between

identifying the failure using the data gathered by an accelerometer installed in the

pump and the failure identified by the data gathered from the accelerometer installed

in the wellhead 38 meters above the equipment. One possible explanation for this

delay in identifying the problem could be the use of inadequate filtering techniques

associated with the Fourier transform. Since in this study the extended Prony time-

frequency representation, based on the original Prony method, has been developed to

improve the signal filtering operation, the task in this section is to test and to validate

this new extended representation with experimental signals focusing on the relevant

ESP vibration signal components, generated experimentally at a distance between the

vibration source and accelerometer close to the distance used in the Moore

experiment (38 metres).

As stated above, a complete ESP assembly is generally 15 to 20 metres (50 to 65 ft)

long and needs to be erected vertically. This equipment is fixed in a pipe composed of

several sections and installed in wells which are normally more than 1 km deep. In this

study, the large size of the ESP installation is reduced to a scale model in an

experimental apparatus where it is possible to generate data resembling that collected

under real conditions. Figure 4.1 depicts a comparison between a schematic diagram

of the intended experimental apparatus and the real ESP installation.

As shown in Figure 4.1, the vibration data is generated by a lower shaker, which is

then corrupted by strong spurious components generated by an upper shaker and

fluid-induced vibrations, the resulting data is then collected through a remote

accelerometer close to the upper shaker. The scale model used approximately a 40 m

length of wire to represent a petroleum pipe of 1000 m long, installed in the Queen’s

Tower of Imperial College.
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Fig. 4.1 - Comparison between a schematic diagram of the intended experimental
apparatus and the real ESP installation

It should be noted that because of the location of the experimental apparatus, a three-

week time constraint was placed on the period allowed to undertake the experiment,

and this restricted the quantity of data which could be collected. However, sufficient

experimental data was gathered to fulfil the statistical requirements of the programme,

with  the  minimum  of  200 signal samples for each signal comparison (100 sets per

58 Hz component amplitude condition) for each of the three noise conditions. The

experimental results described above represent a total of 600 signal samples. A further

problem was that, due to the precarious nature of the experimental environment, an

assistant had to be in attendance in the Tower at all times in case of an accident.
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4.2. Design and Construction of the Experimental
Apparatus

The experimental apparatus was designed to represent the conditions of ESP

installations such as those normally found in petroleum wells. The pumps in such ESP

installations generate two main vibration components, one at 58 Hz, corresponding to

the rotation frequency of the pump and containing information about the state of the

pump, and the other at 60 Hz, which corresponds to the electrical power supply. The

60 Hz signal is generated by oscillating magnetic fields in wires, transformers etc that

exist in the ESP installations. Analysis of these vibrations has shown that the 60 Hz

frequency component is very strong compared with the pump rotation vibration signal

at 58 Hz which is transmitted and attenuated through a long tubing that supports the

ESP assembly located downhole in the well. Also present in the signal are vibrations

caused by non-stationary fluid slugs (gas-liquid fractions pumped through the pipe)

and high levels of noise (general platform equipment vibration, sea noise, structural

resonances etc.), which corrupt the pump vibration signal.

To represent the above conditions, a model with a 25 to 1 scale of a real ESP

installation was constructed. Figure 4.2 shows a schematic diagram of the installation

inside the Tower and Figures 4.3 to 4.6 show the configuration of each support. The

design of the apparatus involved two wire supports: a lower one (Figures 4.5 and

4.6), which represents the ESP itself and an upper one (Figures 4.3 and 4.4), which

represents the wellhead. On each support a shaker was mounted to generate the

vibrations at 58 Hz (lower support) and 60 Hz (upper support). Accompanying each

shaker  was  an  accelerometer  which  was  fixed  to  the support plate to measure the

vibrations generated, together with a force gauge to verify the data. The force gauge

measured the force on a 0.360 kg rigid mass, which included the accelerometer mass,

and  the  deduced  acceleration  values  could  then be compared with the acceleration

values   collected   by   the   accelerometer.   A  support  plate  held  in  alignment  the
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accelerometer (Figure 4.5), the force gauge and the shaker, as well as transmitting the

generated one-dimensional transverse vibration waves to the wire. The combined

weight of the lower support, with the force gauge, the mass to activate the force

gauge and the dead weight, was 55 N. Technical drawings of the experimental

supports are included in Appendix B.

To represent a 1000 m pipe leading from the ESP to the wellhead, commonly found in

full-scale offshore exploration installation, a 2 mm diameter, 39.15 m long stainless

steel wire, with a self-weight of 10 N, was fixed to each support of the experimental

test rig. The wire was tensioned by the weight of the lower support (55 N).

The experimental facility also included a fluid-slug simulation rig, built to generate

non-stationary vibration (fluid turbulence) signals in order to corrupt the signal

generated by the lower shaker (see Figures 4.7 and 4.8). The aim here was to test the

capacity of the extended Prony time-frequency representation to detect small

deterministic components which are contained in signals corrupted by these non-

stationary vibrations. A centrifugal pump was incorporated in the slug simulation rig

to generate air slugs through a hose. One section of this hose was fixed to the lower

support of the experimental apparatus. The vibration generated by the fluid slug was

transmitted to the plate which supported the wire (see Figures 4.5 and 4.6).
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Fig. 4.2 - Experimental facility installation in the Queen’s tower
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Fig. 4.3 - Upper support

Fig. 4.4 - Configuration of the upper support (lateral view)
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Fig. 4.5 - Lower support

Fig. 4.6 - Configuration of the lower support (lateral view)
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Fig. 4.7 - Experimental slug simulation rig

The Queen’s Tower of Imperial College which, being an historical building, restricted

the design of the rig as the authorities were concerned about the preservation of the

Tower. This meant that the fluid slug rig had to be mounted on the ground floor

rather than at the top of the apparatus due to the risk of water spillage on the upper

floors.

The intention of the Queen’s Tower experiment was not only to determine if a weak

component (58 Hz) buried in a noisy signal could be detected at the upper support,

but also to identify if any variation in its amplitude could be measured accurately. To

this end, five accelerometers were fixed at ≈10 m intervals, to the 39.15 m wire to

determine the 58 Hz vibration component propagation along the wire. Figure 4.9

shows an accelerometer on the wire installed at a height of 10.11 m from the lower

support. The positions of the accelerometers were carefully selected in order to avoid

58/60 Hz vibration nodes that could reduce the chance of detecting the vibration

transmission along the wire.
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Fig. 4.8 - Rig to simulate slugs

In the case of a real wellhead installation, a mechanical moment component due to the

high stiffness of the tubing transmits the amplitude of the waves through a rigid joint

support. As may be seen in the diagram of Figure 4.10, no transverse vibration

crosses the junction between the wellhead and the petroleum pipe, and this end effect

cannot be simulated in a small-scale model. The sketches of Figure 4.10 illustrate the

problem of recreating the wellhead vibration boundary conditions in the scale rig. In

the case of a real installation an equivalent downhole vibration amplitude value, which

corresponds to amplitude values collected above the wellhead deck plate, can be

obtained below the deck plate (see Figure 4.10). In the scale-model, the vibration that

represents the ESP obtained below the deck plate is collected from the accelerometer

placed 2 cm below the upper shaker central axis (see Figure 4.10).
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Fig. 4.9 - Accelerometer installed at 10.11 m on the cable

Fig. 4.10 - Wellhead junction transmission problem

The instrumentation used for collecting data in the Queen’s Tower experiment

included a Kiowa RTP-701 tape recorder with 14 channels, an HP-35665 dynamic

analyser and a Kistler 16-channel transducer amplifier. These instruments were

connected and a phase and mass calibration was performed using the force gauge

prior to the tests [Ewins, 1995]. Figures 4.11 and 4.12 show the calibration graph of
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the experimental facility and its respective phase. The measurements shown in the

graphs are taken from the HP-35665A dynamic analyser.

Fig. 4.11 - Equipment mass calibration graph

Fig. 4.12 - Equipment phase calibration graph
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Figure 4.13 shows the final configuration of the experimental test-piece mounted

vertically in the Queen’s Tower of the College with its 39.15 m long wire and 7

accelerometers, 5 on the cable and 2 on the supports.

Fig. 4.13 - Experimental test-piece vertically mounted in the Queen’s Tower
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4.3. Experimental Data Collection

The experimental data collection set out below are based on a series of seven

experiments undertaken in the Queen’s Tower of the Imperial College. The

experimental data collected included three hours of signals recorded on two VHS

tapes. The seven experiments and the signals recorded are listed in Table 4.1 below:

Test no. Description
1 58 Hz component generated by the lower shaker with

acceleration of ±1.5 m/s2, measured by the accelerometer #1
installed aligned with the lower shaker

2 60 Hz component generated in the lower shaker with
acceleration of ±1.5 m/s2, measured by the accelerometer #7
installed aligned with the upper shaker

3 58 and 60 Hz components, with approximately the same
amplitudes, generated in the lower and the upper shakers
respectively with accelerations of ±1.5 m/s2, measured by the
accelerometers #1 and #7 installed aligned with the lower and the
upper shakers, respectively

4 58 and 60 Hz components, generated in the lower and upper
shakers, as in test no. 3, the 58 Hz wave amplitude reduced to
1/2 of the original value

5 58 and 60 Hz components, generated in the lower and the upper
shakers as in test no. 3, the 58 Hz wave amplitude reduced to 1/4
of the original value

6 58 and 60 Hz components, with approximately the same
amplitudes, generated in the lower and upper shakers, as in test
no. 3, and with the fluid slug vibration added

7 Pure fluid slug vibration collected from accelerometer #1 aligned
with the shaker of the lower support

Table 4.1 - Test signals generated in the Tower experiments
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Only the signals generated in the tests 3, 4 and 7 were considered relevant for the

purpose of the experimental analysis. The signals generated in the tests 1 and 2 served

the purpose of checking the operation of the experimental equipment. The signal

generated in test 5 was discarded as it did not conform to the amplitude relationship

of the 58 Hz and 60 Hz components used in the simulation. It can be seen in Table 4.1

that the 58 Hz wave amplitude was reduced by 1/4, whereas in the simulation it was

reduced by 1/2 (see section 3.7 of Chapter 3). The signal generated in the test 6 was

discarded because it was not possible to generate a fluid-slug vibration with an

amplitude level at least 50 times greater than the amplitude level of the 58 Hz

component. As a consequence, in test 7 a pure fluid-slug vibration had to be

generated and recorded in isolation, in order to multiply its amplitude by the factor

described in table 4.2 (see section 4.4 below). Figure 4.14 shows graphical plots of

the signal recorded in test no. 3 and its respective Fourier transforms (58 Hz vibration

generated by the upper shaker and the 60 Hz vibration generated by the lower

shaker). The 58 Hz component vibration was detected by all accelerometers together

with its respective amplitude variation values and its decrease over the distance.

It  may be noted in the spectral graphs of Figure 4.14 that the vibration levels of the

58 Hz component are related to the distance from the generation point. This means

that the longer the distance the greater the attenuation (see Figure 4.14).

Figure 4.15 shows the Fourier transform of the signal with pure 58 and 60 Hz

components collected in test 4 at a height of 39.13 m.

Figure 4.16 shows the Fourier transform of the signal with pure 58 and 60 Hz

components collected in test 3 at a height of 39.13 m. It should be noted that in

Figure 4.16, the amplitude of the 58 Hz component is twice that in Figure 4.15. Also,

Figures 4.15 and 4.16 depict the presence of some harmonics of the 58 and 60 Hz

components.
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Fig. 4.15 - Long Fourier transform of the signal with 58 and 60 Hz pure components
collected in the test no. 4 at a height of 39.13 m (accelerometer #6) in the Tower

experiment (frequency resolution = 0.01 Hz, no window).

Fig. 4.16 - Long Fourier transform of the signal with 58 and 60 Hz pure components
collected in the test no. 3 at a height of 39.13 m (accelerometer #6) in the Tower

experiment (frequency resolution = 0.01 Hz, no window - amplitude of the
original 58 Hz is doubled)
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Three additional experimental signals, each containing a specific type of noise, were

generated by the HP-35565A analyser and mixed with the vibration signals generated

in tests 3, 4 and 7. The first signal contained random noise (Figure 4.17 (a)), the

second a chirp (Figure 4.17 (c), chirp-noise frequency range 10-130 Hz and time

interval 0.84 s) and the third pink noise (Figure 4.17 (e)). Figure 4.17 shows the noise

signals generated by the analyser, with their respective Fourier transforms. Figure

4.18 shows plots of the autocorrelation functions of these signals containing noise. It

may be noted that the noise is highly uncorrelated in each case.

Fig. 4.17 - Additional signals containing noise utilised in the experimental analysis
(random (a and b) chirp (c and d) and pink noise (e and f))
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Fig. 4.18 - Autocorrelation of the noise signals (random noise (a),
chirp noise (b), pink noise (c))

A statistical evaluation of the required quantity of data to be digitised and analysed

from the collected signals of the experimental facility had to be made to restrict the

number of points used in the signal processing analysis. It was decided to assume an

uncertainty of 10% with a 95% probability to obtain correct experimental results, and

to fulfil this assumption, 100 sets of data samples were prepared for each signal

analysis [Harrington, Spiegel, 1961].
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4.4. Results of the Application of the Extended Prony
Time-Frequency Representation to the Experimental
Data

As mentioned above, for the purpose of this research, the 58 and 60 Hz signals which

represent the pump rotation and the electrical supply current of Brazilian ESPs, are

generated in the test rig by the two shakers, and measured separately by selected

accelerometers (tests 3 and 4). To these signals were added high-level noise generated

by the HP-35565A analyser, and fluid-slug vibration generated by the fluid-slug

experimental rig (test 7), to generate new multi-component experimental signals.

Before adding noise and the signal containing fluid-slug vibration, the experimental

signals were multiplied by several factors in order to: (a) generate new multi-

component signals resembling a signal collected at a petroleum wellhead (see section

1.5.8 of Chapter 1 and Appendix C); and, (b) to maintain the same 58 Hz component

amplitude variation between two signals, as in the simulation, in one signal of each

pair the weak component amplitude is doubled (see section 3.7 of Chapter 3).

As may be noted in Table of Appendix C, the 57.15 Hz and 61.95 Hz component

amplitude values, identified when the original Prony method is applied to the signal

collected on the wellhead of the platform of Vermelho (see Table of Appendix C), are

respectively 0.20 and 0.73 m/s2. The maximum amplitude level of this signal is above

10 m/s2. The 57.15 Hz component and signal amplitude relationship is -34 dB (the

signal peak is approximately 50 times greater than the amplitude of the 57.15 Hz

component, related to the rotation of the ESP). As the amplitude level of 58 Hz

component of the signal generated in test 3 is 0.80 m/s2, it was necessary to multiply

the signal by a factor in order to set that component amplitude level to a maximum of

0.20 m/s2. In order to maintain the appropriate component amplitude relationship, this

factor multiplying-operation was performed in all experimental signals (see Table 4.2

for component amplitude values with their respective multiplying factor).
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All selected signals, recorded in the Tower experiment and multiplied by their

respective factor (see Table 4.2), were added to prepare multi-component signals

labelled from E1 to E6. These multi-component signals are described by Table 4.3.

Component
Test
no. Accel.

Max. Ampl.
(m/s2)

Multiplying
Factor

New Max.
Ampl. (m/s2)

58 Hz 4 #6 0.39 0.51 0.20
60 Hz 1.46 0.74
58 Hz 3 #6 0.80 0.50 0.40
60 Hz 1.45 0.73

Tower Fluid Slug 7 #1 0.13 153.85 20.00
Random Noise --- #1 0.83 24.10 20.00

Chirp Noise --- #1 1.19 16.81 20.00
Pink Noise --- #1 1.08 18.52 20.00

Table 4.2 - Signals registered in the Tower experiment and noises with its respective
multiplying factor

Component
Experimental Signals (amplitudes (m/s2))

       E1            E2            E3            E4            E5            E6
58 Hz 0.20 0.40 0.20 0.40 0.20 0.40
60 Hz 0.74 0.73 0.74 0.73 0.74 0.73

Tower fluid slug 20 20 20 20 20 20
Random noise 20 20

Chirp noise 20 20
Pink noise 20 20

Table 4.3 - Signal composition for the experimental analysis with the slug vibration
component generated in the Tower experiment

The signals described in Table 4.3, E1 to E6, were processed through the extended

Prony  time-frequency  representation and filtered using the same procedures as were

applied  in  section  3.7.  Each waterfall graph of Figure 4.19 shows the results of 100
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Fourier  transforms  (frequency resolution = 1 Hz)  of  100 filtered and recovered data

arrays using the extended Prony time-frequency plane representations. The results

shown in Figure 4.19 correspond to the application of the extended Prony time-

frequency representation applied to 100 data arrays of signal E1 and 100 data arrays

of E2 (signals with random noise - 512 data points per time shift - total data points

per sample = 1023, order 64, maximum exponential damping 0.02 s-1). The average of

the Fourier transforms over these one hundred sets of one second, as seen in Figure

4.20, shows that 58 Hz component amplitude was increased 4.5 times from signal E1

to E2. The frequency band-pass filtering range for applying the extended Prony time-

frequency representation plane “band-selection” is 56-59 Hz.

The waterfall graph of Figure 4.19 clearly depicts the difference that exists between

58 Hz component amplitude levels in the filtered and recovered samples using the

extended Prony time-frequency representation. The correct variation has been

detected in virtually all sets evaluated from the filtered samples. The larger peaks in

graph (b) of Figure 4.19, related to the signal E2, indicate an increase in the 58 Hz

component amplitude values over the signal E1 (graph (a) of Figure 4.19). The graph

of Figure 4.20 was obtained from an averaging process, which was applied to 100

Fourier transforms of data arrays with 512 samples of signals E1 and E2 previously

filtered by using the extended Prony time-frequency representation. This graph clearly

depicts the 58 Hz component amplitude value variation. The amplitude value of the

58 Hz component of signal E2 noted in the graph of Figure 4.20 (0.45 - dashed line)

is greater than twice the true amplitude value of this component. This oversized

amplitude of the 58 Hz component may be due to residual noise that was not

eliminated in the filtering process.
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Fig. 4.19 - Waterfall graph of Fourier transforms of signal data arrays filtered and
recovered by using the extended Prony time-frequency representation ((a) 100

samples of signal E1 and (b) 100 samples of signal E2, sampling
frequency 512 Hz, frequency resolution =1 Hz)
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Fig. 4.20 - Average of the 100 Fourier transforms of the filtered and
recovered signal data arrays shown in the waterfall graph of
Figure 4.19 (signal E1 - solid line, signal E2 - dashed line)

Figures 4.21 to 4.24 show graphs of the results obtained from the analysis of the

signals E3 to E6, when the same methodology used in the analysis of signals E1 and

E2 above was applied.

The results shown in the graphs of Figures 4.21 to 4.24 indicate that the variations in

the 58 Hz component amplitude have been clearly detected in the samples of signals

E3 to E6, filtered and recovered using the Prony time-frequency representation. The

fact that signals E2, E4 and E6, in which the weak component amplitude was

increased, have greater amplitude values than the signals E1, E3, and E5, confirms

that in all signal test cases from E1 to E6 the amplitude variation of the weak

component was detected.
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Fig. 4.21 - Waterfall graph of Fourier transforms of signal data arrays filtered and
recovered by using the extended Prony time-frequency representation ((a) 100

samples of signal E3 and (b) 100 samples of signal E4, sampling
frequency 512 Hz, frequency resolution =1 Hz)
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Fig. 4.22 - Waterfall graph of Fourier transforms of signal data arrays filtered and
recovered by using the extended Prony time-frequency representation ((a) 100

samples of signal E5 and (b) 100 samples of signal E6, sampling
frequency 512 Hz, frequency resolution =1 Hz)
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Fig. 4.23 - Average of the 100 Fourier transforms of the filtered and
recovered signal data arrays shown in the waterfall graph of
Figure 4.21 (signal E3 - solid line, signal E4 - dashed line)

Fig. 4.24 - Average of the 100 Fourier transforms of the filtered and
recovered signal data arrays shown in the waterfall graph of
Figure 4.22 (signal E5 - solid line, signal E6 - dashed line)
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Comparing the graphs of Figures 4.19, 4.21, and 4.22, with the graph of Figure 3.99

of Chapter 3, it is easier to detect the 58 Hz component amplitude variation in the

experimental signals E1 to E6 than in the simulated signals S13 and S14. The

discrimination difficulty in detecting amplitude variation that occurred in the analysis

of the signal with slug component generated in the simulations (see section 3.9 of

Chapter 3) was not observed in the experimental signal analysis. To confirm this, a

comparison can be made between the graphs (a) and (b) of Figure 3.99 of the

simulation analysis (see Chapter 3). In the waterfall graph (b) of Figure 3.99, several

sets of the signal containing the 58 Hz component with greater amplitude were

represented by lower peaks. In the case of simulated signals S13 and S14, it is unclear

which amplitude component increased without performing a spectrum average. Also,

the small difference in the average of Fourier transforms in terms of amplitude that

was found in the simulation signals S13 to S14 (see Figure 3.100) suggests that it is

difficult for the methodology to discriminate weak component variations in some

samples of those signals.

The discrimination problem did not arise in the analysis of the signals containing slug

components generated in the Tower experiment as it is less problematic than the

simulated signals S13 and S14 of Chapter 3 for filtering the deterministic components

using the extended Prony time-frequency representation. A possible explanation for

this may be obtained by observing the graph of Figure 4.25. The Prony time-

frequency representation of the signal generated in the Tower experiment contains

mostly components around 90 Hz, which may be eliminated by a high-pass band filter

(see Figure 4.25).
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Fig. 4.25 - Extended Prony time-frequency representation of the signal with fluid slug
vibration generated in the Tower experiment(32 data points per sample - total data

points used = 527, order 8, no exponential damping limiting)

The detection of the correct variation in the amplitude level in virtually all signals

samples to which the extended Prony time-frequency representation has been applied,

indicates that the extended technique is suitable for detecting variations in ESP

vibration amplitudes, transmitted through the petroleum pipe and collected in the

wellhead on the surface.

The results show that the extended Prony time-frequency representation can

successfully “extract” deterministic components from noisy signals, and is therefore a

useful tool in the elimination of transients. A further positive feature of the results is

the discovery that the application of the plane “band-selection” filtering to the

extended Prony time-frequency representation (see section 3.6), can generate

acceptable results.
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4.5. Conclusion of the Experimental Study

The main findings of the results of the experimental study can be summarised as

follows:

(a)The experimental data collection confirms that the vibration levels of the 58 Hz

component are related to the distance from the generation point. That is, the longer

the distance the greater the attenuation (see Figure 4.14);

(b)A successful 58 Hz weak component detection was obtained in 100 % of the

Fourier transforms of signal data arrays, filtered and recovered by the plane “band-

selection” and exponential damping filtering through the extended Prony time-

frequency representation (minimum SNR = -34 dB and maximum SNR = - 40 dB for

experimental signals E1 to E6); and,

(c)A successful non-stationary and noise process elimination was made through the

extended Prony time-frequency representation, in this research study, by setting a

maximum level for component exponential damping of 0.02 s-1. However, the

maximum level for component exponential damping of 0.02 s-1 may not be adequate

for filtering spurious components different from that considered in this study (fluid-

slug vibration). This maximum level component exponential damping has been used

considering an exponential decay of the kind e-ct, where c is the exponential damping

of the component evaluated through several preliminary tests using simulated and

experimental signals. If a signal contains transients which present an amplitude decay

that cannot be modelled as an approximation of an exponential decay, an error may

occur in the filtering process.

It should be noted that, although a number of elements that represent a real petroleum

well are reproduced in the experimental facility, a number of other intervening

variables that will influence the vibration signal have to be expected in the real system.

These include the variation in the fluid density along the pipe of a petroleum well,
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which is not feasible to reproduce in laboratory conditions. This is due to the fact that

the fluid density varies continuously in the presence of gas fractions, and in relation to

the location and height of the pipe.
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Chapter 5  
Discussion

As stated in Chapter 1, the aim of this research is to develop tools for studying the

condition of petroleum electrical submersible pumps installed downhole, by analysing

the vibration signals transmitted through the petroleum tubing and collected at the

surface in the wellhead. In particular, the primary objective has been to develop a

signal processing technique for detecting weak components in signals with high levels

of noise and containing strong non-stationary features.

At the outset, we expected to obtain weak component detection using the recently-

developed Malat wavelet transform technique, given its excellent ability to recover

signals. It was intended to detect the weak signal components through the Malat

wavelet levels, and to recover them by separating the components through a filtering

operation applied using the wavelet levels. However, a preliminary analysis showed

that it was not easy to differentiate what is non-stationary from what is stationary in

the Malat wavelet transform levels (see section 3.2.4 of Chapter 3). We then moved

on to test the Morlet wavelet transform and the pseudo-Wigner-Ville distribution, but

here difficulties were encountered with handling high-level noise using these

techniques (see 3.3.3 of Chapter 3). Until this stage it was believed that it would be

appropriate to use these techniques to separate stationary from non-stationary

components in a signal in which the noise was eliminated using a filtering procedure.
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However, tests showed that the weak component of interest was also being eliminated

during the filtering procedures (see sections 3.2.1 and 3.2.2 of Chapter 3).

Existing filtering techniques, such as those using the autocorrelation and the Kalman

filter, are based on statistical criteria, and weak components have a “weak” statistical

weight in the signal. Therefore, we were now faced with the task of finding a

technique with a different filtering criterion. One option was to test the component

selection in terms of its amplitude reduction along the time axis. This reduction is

associated with transient components (uncorrelated noise and non-stationary

processes) that can be eliminated by this criterion, in favour of the deterministic

components.

As we needed to evaluate the component amplitude reduction, the original Prony

method appeared to be well-suited because it is a specific method for analysing

transient components. However, for our purposes this technique had to be extended

for noise and non-stationary analysis. This was achieved by positioning the amplitude,

phase and exponential damping values, evaluated for a specific frequency component

by the original Prony procedure (equation (2.22) of Chapter 2) in a time-frequency

representation matrix (equation (2.42)). To generate the extended Prony time-

frequency representation, the original Prony method is performed in a loop to evaluate

amplitude, frequency, phase and exponential damping values of each time-set of the

signal data points. This operation resembles the generation of a common Fourier

transform waterfall graph. What differentiates the extended Prony time-frequency

representation from the common Fourier transform waterfall graph is the composition

of the spectral lines and the period (dT=1/N) in the time-shifting operation applied. As

a common feature of a non-parametric method, in each signal set of data points of the

waterfall graph the Fourier transform generates a spectrum containing all frequency

component amplitudes in an N/2 Hz frequency bandwidth, where N is the number of

signal data points. As in any other parametric method, the number of frequency

components evaluated by the original Prony method is limited by a polynomial order

p<<N/2. For this reason, it is necessary to generate a “spectrum” vector with N/2
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zeros that “represents” the frequency scale (see section 2.7). The component

amplitude values evaluated by the original Prony method are then added to the vector

zero elements associated with the frequency calculated by the method. The same

procedure is performed to generate the “phase” and “exponential damping” vectors.

To generate the waterfall type graph of the extended Prony time-frequency

representation, the “spectrum” vectors are aligned to form a “spectrum” time-

frequency matrix. To complement the extended Prony time-frequency representation

for signal filtering and recovering purposes, the same procedure is performed to

generate the “phase”, and “exponential damping” time-frequency matrices. The final

result  of  the  procedures  described  above is the construction of three matrices of

N× N/2 points containing the time-frequency signal component spectra with their

associated phase and exponential damping matrices.

5.1. Analysis of the Simulated Signals

In order to test the effectiveness of the extended Prony time-frequency representation

it was subjected to a rigorous comparative analysis, using simulated signals, together

with the Fourier transform, Morlet wavelet transform, and Wigner-Ville and pseudo-

Wigner-Ville distribution signal processing techniques (see Chapter 3). This was

followed by the application of the new representation to the analysis of experimental

data generated from the small-scale model of a petroleum well installation (see

Chapter 4).

Our first task for the simulation and experimental analysis was to define or classify the

petroleum wellhead signal. We generated, in the simulation and in the experimental

apparatus (see Chapters 3 and 4), some common features that are believed to be

present in a real signal collected at the wellhead. One of these features, fluid

turbulence (slugs), has been studied previously in terms of frequency content [Leducq

and Hervieu, 1991], but in regard to the other, related to environment noise, it was

difficult to obtain an experimental description of its composition. The sea platform
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environmental noise presents such a number of different variables governing its

frequency behaviour that we opted to generate four types of noise to test the signal

processing methods. Although these four types of noise may not represent a real

wellhead noise exactly, they were thought to contribute the major features of interest.

5.1.1. Results of the Analysis of the Simulated
Signals: Detecting Deterministic and Non-stationary
Components

The results of the simulation show that the extended Prony time-frequency

representation with least-squares initialisation has more potential to detect

deterministic components in noisy signals with non-stationary components than do the

other methods we have considered for this study (see Figures 3.29, 3.79, 3.86, and

3.92). As can be seen in Figures 3.26 to 3.28, 3.75 to 3.77, 3.83 to 3.85, and 3.89 to

3.91, the deterministic components were difficult to detect on the time-frequency

plane by the Fourier-based methods. This is not the case for the extended Prony time-

frequency representation where a maximum set containing 1023 data points were used

in the simulation of Chapter 3 (512 data points from the 1st to the 512th time-shift). As

a consequence, the first conclusion that can be drawn is that the extended Prony time-

frequency representation is more effective at detecting weak components in short

length data signals containing strong spurious components such as high-levels of noise

and non-stationary fluid slug vibration components. This statement is supported by

the fact that in 66 % of the simulated signal analysis (S1 to S12) it was considered to

be the best method to represent the signal components and by the 70 % average

success obtained in detecting weak component amplitude variations, measured

directly in the data signal sets (e.g. numerical results plotted in the graph of Figure

3.99 for signals S13 and S14). As an additional feature, the extended Prony time-

frequency representation computes component exponential damping values, which are

useful to distinguish non-stationary components that are more heavily damped than

the deterministic ones (see the graphs of Figures 3.71 and 3.72).
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An unexpected finding of the study is that the extended Prony time-frequency

representation could also depict the non-stationary components reasonably well. This

may be seen in Figures 3.36, 3.43, 3.50, and 3.57, where the non-stationary processes

are represented in the graph with the correct frequency compositions. However, in

some specific cases of non-stationary component analysis, the pseudo-Wigner-Ville

distribution and the Morlet wavelet transform can still be better than the extended

Prony time-frequency representation for this task. This is clearly seen in the

representation of the Gaussian waves (see Figures 3.54 for Morlet wavelet transform,

3.56 for pseudo-Wigner-Ville distribution, and 3.57 for extended Prony time-

frequency representation). Their time-frequency planes display more information

about these non-stationary components than does the extended Prony time-frequency

representation. In the time-frequency plane of the Morlet wavelet transform all points

of the Gaussian waves are represented, and the observed distortion of their shapes in

the graph of Figure 3.54 are due to the logarithm vertical scale. In the time-frequency

plane of the pseudo-Wigner-Ville distribution (see Figure 3.56) the Gaussian waves

are fully represented with the correct shapes. In contrast with these techniques, the

Gaussian waves are represented as a few detected points by the extended Prony time-

frequency representation (see Figure 3.57).

The difficulty in representing the Gaussian waves suggests that the extended Prony

time-frequency representation is not adequate for representing high-density

components. Such is the case, for example, of components containing a large quantity

of non-stationary sub-components concentrated in a small area of the time-frequency

plane. These high-density components need a large amount of data points

concentrated in a small area to be properly represented in the time-frequency plane.

The Prony time-frequency representation is not suited for this type of analysis as it

needs to use short data sequences for representing a more localised non-stationary

phenomena. The use of short data sequence generates small matrices in the equations

2.22 and 2.33 and this, in turn, reduces the solution order and hence the number of

components that may be sought in a frequency line of the time-frequency plane. This
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is because the Gaussian waves are represented with a lower number of wave points

than used for the Wigner-Ville and the pseudo-Wigner-Ville distributions (see the

graphs in Figures 3.55 to 3.57). In the case of depicting a non-stationary feature by a

large number of points, concentrated in a small area of the time-frequency plane, the

pseudo-Wigner-Ville distribution and the Morlet wavelet transform are still better

choices than the extended Prony time-frequency representation. This can be seen by

comparing the true time-frequency plane representation given in the graph of Figure

3.52 with the graphs of Figures 3.54, 3.56, and 3.57. However, in the component

analysis of signals S1, S3, S4 to S6, and S8 to S12, the Wigner-Ville and the pseudo-

Wigner-Ville distributions did not performed as well as the Prony time-frequency

representation.

5.1.2. Malat Wavelet and the Extended Prony Time-
Frequency Representation with RSL Routine in the
Initialisation Step

With regard to the Malat wavelet method, it can be seen from the graphs of Figure 3.5

that it is difficult to associate deterministic components to wavelet levels, and the

wavelet transform developed by Malat does not seem to be appropriate for this type

of analysis. The Malat wavelet analysis has its particular component representation

and, as a consequence, is somewhat difficult to interpret. The Malat wavelet of one

level is not associated with physical phenomena in a clear way. The physical meaning

of one wavelet level is not straightforward, as is the case for the Fourier harmonic

representation, and a new way to interpret it is required. As we can see in Figure

3.5(h), this technique recovers the original signal faithfully. However, the difference

between what is stationary and what is non-stationary in the levels is not explicit. This

makes it difficult to apply any complementary technique to separate the deterministic

components.

We sought to overcome the difficulty of handling non-stationary components in the

original Prony procedure by substituting the covariance method of linear prediction
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(represented by the equations (2.34) to (2.37)), which determines the initial set of AR

parameters in the first Prony step, for an adaptive algorithm such as the Kalman

filtering technique (represented by the equations (2.38) to (2.40)). However, this did

not improve the deterministic component detection (see Figure 3.7). The recursive

based technique seems to present difficulties when operating with noise. Its respective

time-frequency plane representation of a signal containing high levels of noise

presents points which are randomly scattered (see Figure 3.7). The degree of freedom

given to the time parameter in the recursive based technique (see equations (2.38) to

2.40)) permits the method to detect non-stationary processes, and thus several

spurious components that are represented by a small quantity of data, such as noise

components, are detected. In the recursive based technique, the number of data points

is less than the order used to perform the calculations of the method (note the indices

of the equation (2.38)). As the larger the number of data points per sample the greater

the probability to detect deterministic components, the limitation in the number of

data points per sample of the recursive based technique makes it inefficient for

stationary analysis.

5.1.3. Application of Averaging and other Statistical
Methods after Signal Filtering Using the Extended
Prony Time-Frequency Representation

The average of Fourier transforms of the signals recovered and filtered using the

extended Prony time-frequency representation (see Figures 3.100 to 3.104), reflects

the capacity of the extended technique to detect amplitude variations of a specific

component. However, it must be pointed out that the variation is not clear all the

time. In the Fourier transform waterfall graph of Figure 3.99 (b), some sets of filtered

and recovered data points suggest that an inverse condition occurred (32 % of the

cases). Instead of pointing, correctly, to an increase in the 58 Hz component

amplitude value, a decrease is shown. There are some peaks of the waterfall graph (a)

that are greater than some peaks in waterfall graph (b). This points to the necessity of

averaging the results in order to depict the correct peak variation. The filtering
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process of the extended Prony time-frequency representation removes the limitations

of applying signal averaging processing or any other similar statistical method,

because a great part of the noise and the non-stationary components are eliminated.

5.2. Comparison of the Extended Prony Time-
Frequency Representation Applied to Simulated and
Experimental Data

As we mentioned above, due to limitations of time, site location and resources, a rig

was constructed to represent the conditions of a petroleum well for the experimental

analysis. The Queen’s Tower experiment sought to demonstrate what to expect in

terms of measurable results when the vibration signal is collected at some considerable

distance from the equipment. Although we would have preferred a more authentic

model on which to carry out experiments, the data generated by the Tower model has

served the purpose of this study.

The experimental results of Chapter 4 show that in all cases the amplitude variation of

the 58 Hz weak component was detected by the extended Prony time-frequency

representation. This is demonstrated in the graphs of Figures 4.19, 4.21, and 4.22,

where the weak component amplitude peaks of signals E2, E4, and E6 are greater

than those of the signals E1, E3, and E5. However, it is difficult to detect the 58 Hz

component amplitude variations in the signal S13 with the simulated fluid slug

vibration component added (see Figure 3.99). Comparing the graphs of Figures 4.19,

4.21, and 4.22 of Chapter 4 with the graphs of Figure 3.99 of Chapter 3, it may be

noted that greater differences in the 58 Hz component amplitude values are

encountered when the 58 Hz component amplitude is doubled in the signals with slug

component generated at the Tower rig (signals E1 to E6 described by the Table 4.3 of

Chapter 4) than when the 58 Hz component is doubled in the simulated signals

(signals S13 to S20 described by the Tables 3.18 and 3.19 of Chapter 3). This can be

seen in the graph of Figure 3.99 (see Chapter 3) of the analysis using signals

containing fluid slug vibration generated in the simulation. The waterfall graphs of
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Figure 3.99 reveal that several sets of data points of the signal containing the 58 Hz

component with greater amplitude were represented with lower peaks (32 % of the

waterfall lines). In this case, it is easier to note which amplitude component increased

if a spectrum average is performed. The discrimination difficulty of the 58 Hz

component amplitude variation did not occur in the analysis of the signals containing

slug components generated in the Tower experiment (100 % correct peak

discrimination) because it is less problematic to filter the deterministic components

using the extended Prony time-frequency representation in this case. An explanation

for the less problematic deterministic component filtering may be given by observing

the graph of Figure 4.25 of Chapter 4 that shows the extended Prony time-frequency

representation of the signal with the pure fluid slug vibration generated in the Tower

experiment. The signal generated in the Tower experiment contains components

mostly  around  90  Hz, which may be eliminated by a high-pass band filter (see

Figure 4.25).

5.3. Possible Outcome of Applying the Extended
Prony Time-Frequency Representation to Live
Signals

We have seen in the Chapter 4 that the experimental signals E1 to E6 have been

generated to represent some relevant components that exist in the real vibration

signals collected from the wellhead. These relevant components include: the 58 and

60 Hz deterministic components, the non-stationary fluid slug vibration component

and the background noise introduced by the environment of a petroleum sea platform

in the pipe network. Because of the limitations of our simulation and experiment to

reproduce a completely realistic representation, it is necessary at this point to

speculate as to what is expected to occur when the extended Prony time-frequency

representation is applied to the signals collected in a petroleum wellhead.

The three types of experimental noise generated by the HP-35565A analyser added to

the experimental signals of Chapter 4 (signals E1 to E6), cover a wide range of noise
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situations that may be expected in the live signal and provide a fair number of signal

test conditions for the extended Prony time-frequency representation, although, of

course, the actual number of possible components found in the sea platform

environmental noise is much larger. This is not the case of the fluid slug vibration,

which has been studied widely due the fact that these vibrations cause strong shocks

that may destroy well-reinforced pipe manifolds.

As some difficulty occurred when processing simulated signals containing a fluid slug

vibration similar to those described in the work of Leducq [1991], which resemble

real petroleum well fluid slug vibration components, one should expect to experience

difficulties when filtering out real petroleum well fluid slug vibration components.

This may be due to the fact that the real petroleum well fluid-slug vibration present

more random behaviour than those simulated in controlled conditions.

The results of the analysis using the experimental signals, E1 to E6, shown in the

graphs of Figures 4.19 to 4.24 indicate that the variations in the 58 Hz component

amplitude have been clearly detected in the experimental signals, which contain a fluid

slug vibration component generated in the Tower experiment with three types of noise

(100 % of the cases). This did not happen in the analysis of simulated signals S13 and

S14. The waterfall graph of Figure 3.99 presents 58 Hz weak component amplitude

peaks that are incorrectly reduced in 32 % of their waterfall lines. This different

degree of difficulty in the analysis of signals containing two types of slug vibration

(simulated and experimentally generated) and practically no influence associated with

different noises (see for example the analysis of the simulated signal S3 in the section

3.3.3 of Chapter 3), indicates that it might be more difficult to filter out the real

petroleum well fluid slug vibration than the uncorrelated environmental high-level

noise of the platform. Taking into consideration the existence of a variety of

conditions that generate different fluid-slugs in the real petroleum well, there clearly

still persists a degree of difficulty with live signal analysis. However, overall results

suggest that significant advances have been made with the development of the



Chapter 5 - Discussion

225

extended Prony time-frequency representation, to be speculate that the technique will

be satisfactory for ESP failure detection.

5.4. An Experimental Comparison

Arguably, a valid comparison can be made between the results of Moore’s study

[1990], where the Fourier technique were applied to the vibration signals of an ESP

(see section 1.4 of Chapter 1), and this study, where the extended Prony time-

frequency representation has been applied. Moore installed an ESP at a depth of 38

metres to simulate several types of wear, and accelerometers were placed on the

pump and at the wellhead. Although the Tower experiment of this study is limited in

terms of simulating the various problems to be found in an ESP, the fact that vibration

data was collected from an accelerometer located 39.13 metres from the source,

means that some tentative conclusions can be drawn from the experimental data.

It has been demonstrated with the above results that the Fourier technique used in this

study is limited for handling signals containing noise and non-stationary processes, but

what is more to the point in regard to this comparison, is that in Moore’s findings four

weeks before the pump failed, data gathered from the accelerometer attached to the

pump revealed an increase of between 30 to 60 times in the amplitude of the

rotational vibration. When these findings are compared with those in this study, where

variations of two times in the 58 Hz component amplitude were identified in

experimental  signals  containing  strong  spurious  components  (SNR  varying  from

-40 dB to -34 dB), it becomes apparent that it would be arguably less problematic for

the new extended Prony time-frequency representation to deal with such a large

variation as that found in Moore’s study in a real ESP.
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5.5. Some Limitations of the Extended Prony Time-
Frequency Representation

One problem found with the extended Prony time-frequency representation is that it is

difficult to determine exactly the differences in amplitude between different

frequencies, as may be noted in the graphical values evaluated for 58 and 60 Hz

frequencies, using signals S13 and S14 in section 3.9 of Chapter 3. In some instances,

the amplitude values evaluated for the 60 Hz frequency component are lower than

those evaluated for 58 Hz, which is not correct. This problem may be caused by the

incorrect elimination of some time-frequency plane points which are associated with

stationary components, but as they have an exponential damping level slightly above

the cut-off level (0.02 s-1) in the exponential damping filtering procedures, they have

been deleted.

A second criticism of the method concerns the time involved for the numerical

calculations. For example, to evaluate an entire extended Prony time-frequency

representation, which uses the original Prony method to compute its frequency lines,

may take up to 10 times longer than when using the Wigner-Ville distribution. Much

of the time needed for the calculation for the original Prony procedure is taken in the

second step, where the roots of large complex polynomials are evaluated. However,

with the developments of new computers significance of this drawback will be

diminished.

5.6. Summary and Conclusion of the Discussion

An essential feature of the extended Prony time-frequency representation has been

shown to be the capacity to differentiate what is stationary from what is non-

stationary in a signal. The incorporated feature of evaluating the level of signal

component exponential damping to analyse transients of the extended Prony time-

frequency representation is an effective tool for filtering purposes, and the decision to
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treat non-stationary processes as transients has also proved to be effective. We have

also seen that the extended Prony time-frequency representation has proved to be a

successful method for detecting weak components in signals containing high levels of

noise (maximum SNR = -34 dB and minimum SNR = -40 dB for the experimental

signals E1 to E6), as well as being suitable for filtering and recovering signals for

further analysis using less complex techniques such as the Fourier transform. A further

feature of the extended Prony technique is the convenience of the frequency

bandwidth filtering through a time-frequency plane “band-selection”, as described in

section 3.6 of Chapter 3. A frequency bandwidth to filter a signal may be chosen

directly by observing the results in the time-frequency plane. This is particularly

advantageous when attempting to identify the correct frequency of a deterministic

component in a signal.

Until the present time, most research on signal processing has considered a non-

stationary process as being composed of several short stationary ones [Bendat and

Piersol, 1986]. Apart from Mars et al [1992], who applied an autoregressive method,

very few research programmes have developed more suitable methods to analyse

short-duration phenomena, and it is unclear why the majority of non-stationary

analysis research is based on the Fourier transform method, when it is manifestly an

inappropriate technique for this task. In the comparative analysis of section 3.4 of

Chapter 3, apart from the Gaussian wave signal analysis, the results of the extended

Prony time-frequency representation demonstrate that this method is clearly superior

to the Morlet wavelet transform, Wigner-Ville and pseudo-Wigner-Ville distributions

in analysis of non-stationary signal components. This is not to say, however, that with

these results, the extended Prony time-frequency representation is suited to analyse all

types of non-stationary processes. Nevertheless, given that this technique is designed

specifically for analysing transients, and the practicability of considering non-

stationary processes as transients, it is considered to be a good option for the analysis

of these processes.
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Chapter 6  
Summary and Conclusion of the

Study

6.1. Summary of the Results and Observations of this
Research

The results of this study demonstrate that the extended Prony time-frequency

representation is more effective for detecting weak components in signals containing

strong spurious components, such as high-levels of noise and non-stationary fluid slug

vibration components, than the Fourier transform, the Morlet wavelet transform and,

the Wigner-Ville and the pseudo-Wigner-Ville distributions. In 66 % of the simulated

signals (S1 to S12) it proved to be the best method to represent the signal

components. A 70 % success rate was also obtained in detecting weak component

amplitude variations, measured directly in the data signal sets (e.g. numerical results

plotted in the graph of Figure 3.99 for signals S13 and S14). A maximum set with

1023 data points containing strong spurious components such as high-levels of noise

and non-stationary fluid slug vibration components (SNR = - 34 dB) were used in the

simulation of Chapter 3.

The results also show that the component exponential damping values, computed by

the extended Prony time-frequency representation, are useful to distinguish non-
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stationary components, those which are more heavily damped than the deterministic

ones. Furthermore, the extended Prony time-frequency representation is able to depict

the non-stationary components reasonably well. However, in some specific cases of

non-stationary component analysis, such as in the signal containing the Gaussian

waves (see section 3.5.4), the pseudo-Wigner-Ville distribution and the wavelet

transform may still be marginally better than the extended Prony time-frequency

representation.

With regard to the wavelet transform developed by Malat, this does not seem to be

appropriate for analysing vibration signals containing harmonic components. The

difference between what is stationary and what is non-stationary in the levels is not

explicit. This makes it difficult to apply any complementary technique to separate the

deterministic components.

It was shown above that the use of an adaptive algorithm such as the Kalman filtering

technique in the first step of the extended Prony time-frequency representation did not

improve the deterministic component detection. The recursive based Kalman filtering

technique  seems  to present  difficulties  when  operating with high-level noise (SNR

- 34 dB).

The original Prony procedure normally requires a considerable amount of calculation

time, and a great bulk of the procedure is consumed in the second step in which the

roots of large complex polynomials are evaluated. It was shown that a defined short

bandwidth is still necessary for component level comparison after the filtering of high-

level spurious components through the extended Prony time-frequency representation

(successful results were obtained considering a 10 Hz frequency bandwidth).

However, the method is able to depict a signal containing a component that represents

the  rotation of an ESP under variable load (frequency component varying in the

56/59 Hz bandwidth - see the graphs of Figures 3.86 and 3.92), but the results still

show some distortion.
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The difficulty of detecting amplitude variations of the 58 Hz weak component in some

simulated and experimental signals points to the necessity of averaging the results in

order to depict the correct peak variation. This process of averaging, or any other

similar statistical method, is not restricted by such factors as noise and non-stationary

components as they are mostly eliminated in the extended Prony time-frequency

representation signal filtering process.

With regard to filtering strong spurious components, such as those in signals

containing two types of slug vibration (simulated and experimental) and the three

different experimental types of noise, it was shown that greater difficulty can be

expected when filtering out the real petroleum well fluid slug vibration compared with

the uncorrelated environmental high-level noise of the platform.

Finally, this study revealed that the optimum value for exponential damping level filtering,

for selecting what is stationary and what is non-stationary, is 0.02 s-1. However, due to the

noise disturbance, the component exponential damping levels will not correspond exactly

on all subsequent occasions. The value of 0.02 s-1 seems to be adequate for differentiating

deterministic components from fluid-slug vibration, as well as the three types of noise that

composed the experimental signals. As a consequence, this exponential damping value

may be used as a starting point for filtering out fluid-slug vibration using the extended

Prony time-frequency representation. It should be noted that the exponential damping

value of 0.02 s-1 is only relevant for the signals in this study, other signals my require their

own specific exponential damping levels.

6.2. Conclusions and Contributions of this Research
Study

In this study, a series of signal processing methods have been tested by means of

several simulated and actual experimental signals collected by remote transducers.

The main objective of the research was to provide a methodology with which to
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detect variations in weak deterministic components in vibration signals in which high-

level noise and non-stationary components are present, with the ultimate aim of

diagnosing the condition of inaccessible machinery.

In the course of this research study to analyse equipment though remote transducers,

three major research tasks were accomplished in the area of signal processing. These

are:

(1) the development of an extended time-frequency processing technique based on the

original Prony method to detect weak component amplitude variations in signals

containing strong noise and non-stationary components (maximum SNR of -34 dB

and a minimum of -40 dB for experimental signals E1 to E6).

(2) a systematic comparison of the extended Prony time-frequency representation with

four other signal processing techniques: the Fourier transform, the Morlet wavelet

transform, the Wigner-Ville distribution, and the pseudo-Wigner-Ville distribution

(see Chapters 2 and 3) based on 12 carefully-designed simulated signals; and finally,

(3) the construction of a scale-model of an ESP installation with which to generate

experimental data for the extended Prony time-frequency representation to be applied

(see Chapter 4).

In relation to the first research task, the original Prony method has successfully been

extended to create a time-frequency representation that can handle both stationary and

non-stationary components in the presence of high-level noise. It was also

demonstrated that the extended Prony time-frequency representation can be used in

non-stationary analysis with satisfactory results, as well as for analysing non-

stationary processes as transients. The adaptation of a technique based on an

autoregressive class of method, which is also specialised in the analysis of transients,

is the main contribution of this research work. The positive overall results of this
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study suggest that the method is an efficient tool for detecting weak components in

signals in which both these processes are present.

Based on the results of this study, it appears that the extended Prony time-frequency

representation is capable of analysing signals collected in a petroleum wellhead, and is

therefore arguably a major contribution to existing ESP performance analysis.

Finally, it is argued that the theoretical and methodological work carried out in this

study will prove relevant for other areas of enquiry into noise reduction, non-

stationary signals analysis and  fault detection of different types of equipment.

6.3. Suggestions for Further Research

Further research in the analysis of fluid effects on wave transmission would be

beneficial to infer how a specific equipment vibration signature will be distorted by

these effects. The distortion in the wave transmission by the fluid effects may lead to

complimentary techniques. Also, since the wave propagation in a fluid-filled pipe, as in

the case of a petroleum well, involves coupled motions of the solid and fluid components,

an investigation needs to be made in order to determine to what extent the fluid will absorb

the wave energy.

Although positive results were obtained using simulated vibratory signatures, the

methodology developed in this study still requires testing in the detection of amplitude

variations of weak components present in noisy live signals, different from ESP signals

collected in the petroleum wellhead. For example, in this research, a successful filtering

elimination could be made considering components whose exponential damping value

exceeded the level of 0.02 s-1 as non-stationary and noise processes. This value may not be

adequate for signals containing non-stationary processes different from that considered in

this research (fluid-slug vibration). An incorrect choice of the exponential damping level in

a signal filtering operation may eliminate a relevant weak component which one wishes to
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monitor. The component exponential damping level is evaluated by the original Prony

method considering an exponential decay of the kind e-ct , where c is the exponential

damping of the component (see equation (2.22) of Chapter 2). This exponential decay

assumption is not valid for all transients. If a signal contains transients which present an

amplitude decay that cannot be modelled as an approximation of an exponential decay, an

error may occur in the exponential damping filtering selection. Thus, to compliment

research in this work a tool needs to be developed to determine the level of component

exponential damping that may be associated with different kinds of non-stationary

processes, and to determine how far the exponential decay model for exponential damping

can be considered adequate to processes, different from the fluid-slug vibration and noise

components analysed in this study.

Another related area concerns the definition of the optimum quantity of data points for

non-stationary and deterministic component detection. As a starting point, this research

study used 128 to 512 data points per sample if deterministic components detection was

desired, and from 4 to 32 data points per sample if non-stationary processes was desired.

A better signal analysis may be achieved if a new automatic statistical tool, incorporated in

the extended Prony time-frequency representation, could determine the optimum quantity

of data points to analyse both stationary and non-stationary processes that are present in a

signal. This statistical tool may substitute, with advantage, the use of the order loop

reduction in the computer program to set the order of the original Prony method, which is

central to the extended Prony time-frequency representation. That is, when the quantity of

data points is reduced, the order is automatically reduced due to the reduction in the rank

of the matrices of the original Prony method which is the basis for the extended Prony

time-frequency representation. The choice of quantity of data points to analyse is related

to a “degree of non-stationarity” that a set of data points presents, and it will not restrict

the “search” for any component, even for the deterministic ones.

Finally, further considerations could also be given to the spurious components added to

the simulated and experimental test signals, which are not interdependent processes. The

fluid-slug vibration generated in the simulation and in the experiments do not have a
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relationship with the noise, or with the 58 Hz weak component, neither does the real

petroleum fluid-slug vibration have a relationship with the platform noise. Sometimes a

live signal contains dependent processes, an example being the noise generated by a mill

which is related to its rotation. As there exists a large number of possible process

dependency conditions, which are not relevant for this study, several tests are required to

observe the behaviour of the extended Prony time-frequency representation in processing

signals containing such dependent components.
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Appendix A - Prony Results from Platform of
Vermelho

Sample number = 512 Order = 96 Pos. peak = 10.20 m/s2
Time window = 1.0 s Covariance error = 0.19E-03 Neg. peak = - 11.18 m/s2

FREQUENCY
(Hz)

DAMPING
(1/s)

AMPLITUDE
(m/s2)

PHASE
(degrees)

7.45E-14
7.16E-13
5.308484
15.16509
17.39938
25.62237
32.88338
37.01711
40.86618
47.77416
49.45403
57.15440
61.94883
67.58185
70.38882
75.57373
83.74615
87.61118
93.68661
96.93795
105.2552
111.0353
116.1445
121.7553
126.3900
130.9755
139.5112
144.2285
150.8704
153.7809
159.9329
166.7486
167.8112
174.7984
181.3717
186.6613
192.3689
197.4547
199.1472

-1.06E-02
-5.24E-02
-3.78E-02
-2.94E-02
-1.16E-02
-1.13E-02
-2.59E-02
-1.25E-02
-2.99E-02
-1.01E-01
-5.98E-02
-4.38E-03
-1.14E-02
-1.48E-02
-1.51E-02
-4.87E-02
-1.97E-02
-1.38E-02
-1.06E-02
-4.73E-02
-9.21E-05
-9.58E-03
-7.80E-03
-5.37E-03
-2.48E-02
-3.92E-02
-2.37E-02
-2.63E-02
-1.95E-02
-9.35E-03
+1.44E-04
-2.86E-02
-1.89E-02
-1.54E-02
-2.87E-02
-7.80E-03
-1.65E-02
-1.37E-01
-2.05E-02

5.32E-01
3.75E-01
1.15E-01
5.39E-01
2.24E-01
1.30E-01
3.10E-02
3.76E-01
6.24E-02
2.06E-01
2.00E-02
2.13E-01
7.22E-01
3.69E-01
9.84E-01
1.47E-01
2.95E-01
2.26E-02
2.65E-02
3.71E-01
7.48E-03
3.19E-03
1.36E-01
1.42E-01
5.87E-01
6.27E-01
2.79E-02
9.29E-03
1.82E-01
2.58E-02
1.09E-01
7.72E-02
4.43E-01
1.19E-02
1.99E-02
1.28E-01
1.61E-01
1.17E-01
1.84E-02

269.9906
89.96252
194.9925
123.7895
225.5116
142.1156
41.50234
-87.19909
56.36644
118.14

-43.2008
103.8865
150.7605
-34.04441
92.33857
183.9954
183.0363
168.1376
214.5848
-66.76524
2.294213
114.424

3.637527
-5.672506
65.57542
159.9624
151.6044
-72.16124
80.43964
188.5381
140.419
168.331
-27.9339
154.53

197.9804
249.0752
186.7659
247.1871
262.0139
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Appendix B - Technical Drawings of the Tower
Supports

Upper Support Technical Drawing
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Lower Support Technical Drawing



Appendix C

239

Appendix C - Theoretical Assumption for the Signal-
to-Noise Ratio (SNR)

In this study, signals containing high-level noise and strong non-stationary processes

together with deterministic components were prepared to represent, as near as

possible, a live signal collected at the petroleum wellhead. For this purpose it was

necessary to estimate a SNR for applying to the  simulated signals in Chapter 3.

Preliminary data collection carried out on Brazilian sea platforms in a previous study

by Ribeiro [1991] showed that the typical signal to be analysed contains strong

spurious components that can reach 100 times the weak ESP vibrations. However,

due to the lack of information about the ESP vibration amplitude value, an initial

assumption, based on a theoretical model, will be made to estimate the amplitude

values of the ESP rotation vibration (58 Hz) where the signal is transmitted through

the petroleum pipe and collected at the wellhead. Another weak component present in

the signal collected at the petroleum wellhead is related to the electric power supply

frequency (60 Hz in Brazil), which is normally associated with the presence of some

electrical equipment near the petroleum wellhead. As mentioned above, the strong

spurious components present in the signal refer to high-level noise and fluid slugs. The

high-level noise encountered in the platform signals is generally associated with

equipment used there, such as turbines, pumps, electrical panels, gear boxes etc. In

addition to the excitations generated by these equipment, a large number of vibrations

come from natural frequencies of several structures (pipes, manifolds, beams etc.) that

exist on the platform. Due to the large frequency span of a sea petroleum platform

noise, a white noise will be used to represent this in the simulation.
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To estimate the attenuation in the amplitude level due to damping in the ESP vibration

pipe transmission, a theoretical model of the real petroleum well installation has to be

made. For the purpose of the simulation of Chapter 3, it will be assumed that waves

are generated on the lower extremity of the pipe, where a weight W is fixed, and

propagated through the vertically-positioned flexible pipe. As may be noted in the

diagram of Figures 1.3 (see section 1.2 of Chapter 1) and 4.10 (see section 4.2 of

Chapter 4), in the case of a real petroleum wellhead, virtually no compression waves

are being transmitted through the wellhead rigid joint support. Only the amplitude of

transverse waves are transmitted through a mechanical moment component due to the

high stiffness of the tubing. As a consequence, only transverse waves will be

considered in this SNR theoretical assumption. In Figure C.1 a schematic diagram is

shown of the theoretical model.

In the model shown in Figure C.1, no sharp distinction is made between what is meant

by a bar and what is meant by a string. In general, tension is more important as a

restoring force than stiffness for a string, and stiffness is more important for a bar

[Morse and Ingard, 1968]. As very long bars are being used, the ideal system will

consist of a string under tension with stiffness.

Therefore, an evaluation of the vibration transmission will be made by constructing a

mathematical model which represents a vertical pipe in terms of a system composed of

several strings with stiffness k, and length l. Figure C.2 shows a schematic diagram of

this model.
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Fig. C.1 - Idealised system in analysis

The lateral stiffness of each element can be obtained from the beam deflections

formulas taken from Roark [1954] and Griffel [1970].

The stiffness which represents the element that is fixed in the upper support, is

[Roark, 1954, Griffel, 1970]:

k
T

l E I
T l T

E I
y 1

2
=

− × 



tanh (C.1)

The stiffnesses of the rest of the string elements are [Roark, 1954, Griffel, 1970]:

k
T

l E I
T

l T
E I

y 2

2 2

=
− × 



tanh (C.2)

where
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ky1 = Stiffness of the fixed wire element (upper support, N/m)

ky2 = Stiffness of the rest of the string elements

E = Modulus of elasticity (N/m2)

I = Second moment of inertia (m4)

l = length of a wire element (m)

Fig. C.2 - Schematic diagram of the stiff string model analysis
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The equations (C.1) and (C.2) may be used to define the elements of a matrix that

represents the transverse stiffness of the entire string. The bending stiffness matrix,

considering two degrees-of-freedom for each element is [Broughton and Ndumbaro,

1994, Crawley et al, 1993, and Lardner et al, 1994]:
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The mass matrix [M] is:
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where m is the mass of each element (kg) and ms is the mass of the lower support

element (kg). Assuming proportional viscous damping for a simplified model, a

suitable damping matrix may be represented by:
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where cv is the proportional viscous damping of each string element (kg/s), and [Cv] is

damping matrix of the system.

The receptance [H(ω)] of the system is defined as [Ewins, 1995]:

[ ( )] ( [ ] [ ] [ ] )H K i C Mvω ω ω= + − −2 1 (C.6)

The equation (C.6) may be used to generate theoretical data to obtain an estimate of

what to expect in terms of amplitude values for the ESP rotation component.

A 2 7/8 inch diameter petroleum pipe of 1000 metres length composed of 100000

elements each of 0.01 metres was set to evaluate numerically the amplitude

attenuation of waves due to the proportional viscous damping in the 0 to 100 Hz of

frequency bandwidth. An approximate damping ratio value of 0.01 for steel [Lazan,

B. J., 1968] was used to evaluate the proportional viscous damping value cv. The

results of the numerical computation using the equation (C.6) are shown in the graph

of Figure C.3. The graphs (a) and (b) of Figure C.3 show the calculated values for

receptance versus frequency measured at the distances of 0 and 1000 metres from the

point at which a transverse dynamic force of 1 N was applied on the lower extremity

of the 1000 m long pipe. The graph (c) of Figure C.3 shows the results of the

calculated values for amplitude ratio Xi /X1.

The  average  of the amplitude ratio due to the proportional viscous damping for

57/61 Hz waves transmitted through this model in a 1000 metre length of pipe, taken

from the calculated values (see graph (c) of Figure C.3), is 52.12 times. Based on

these results of the numerical computation, a 58 Hz component amplitude value 50
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times lower than the strong spurious components was utilised in the simulation of the

live signal (SNR -34 dB).

Fig. C.3 - Receptance at 0 (a) and 1000 m (b) of height or pipe length, and amplitude
ratio (Xi/X1 - (c)) between 0 and 1000 m
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Appendix D - Kaiser-Bessel Window

The Kaiser-Bessel window applied to generate the pseudo-Wigner-Ville distributions

in this study is defined as:

B i J i x en
n

n( , ) ( )β
β= − − (E.1)

where Jn(i x) is a Bessel function of first kind, and β is referred as the exponential

argument of the Kaiser-Bessel window. The greater the exponential argument the

narrower the Kaiser-Bessel window [Chiollaz and Frave, 1993]. The Kaiser-Bessel

window has been applied in this study through a MATLAB computer routine. The

graph of Figure E.1 shows two Kaiser-Bessel windows of 512 data points, and

exponential arguments 70 and 2, used in this study.

Fig. E1 - Kaiser-Bessel windows
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