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Abstract

This thesis investigates several methods for updating numerical models in structural

dynamics with a view to identify and develop the most suitable algorithms. To achieve

this objective, the work initially focused on reviewing existing updating techniques

in a broad sense. The constrained eigenstructure assignment method, often used in

control applications, was identified as a possible updating route. The basic algorithm

was modified so that it could deal with the updating of large-order systems and its

formulation was made compatible with more conventional updating techniques such

as the response function and the inverse eigensensitivity methods.

Model updating based on forced vibration testing was introduced next. Its formula-

tion and the computational aspects of the technique were described in detail. Satis-

factory results were obtained, even in the case of noisy and incomplete experimental

data. The effects of including damping were also addressed and some recommenda-

tions for an appropriate choice of frequency points were made.

Different regularisation techniques for the solution of ill-posed problems were investi-

gated and presented in a unified notation. Such techniques were applied to incomplete

and noisy measured FRF data sets and the results obtained were considered to be

superior to those computed using conventional updating methods.

The use generic elements in both FE modelling and updating was considered in the

later part of the work as their internal formulation allows a certain amount of so-

lution adaptivity. The findings showed that generic elements could deal with both

physical parameter errors and discretisation errors. A generic element family for rect-

angular plates was introduced and used successfully in the case of a uniform square
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plate. A similar route was also followed for exact elements but the results looked less

encouraging in this latter case.

In parallel with updating methods, a number of fundamental questions were also

addressed. The required experimental accuracy that must be attained when updating

finite element models using measured vibration test data was determined via a matrix

norm solution. It was shown that a well-defined relationship, that can be expressed

as a characteristic function, exists between the system’s properties, the correction

matrices and the actual amount of experimental noise. The formulation was then

applied to the standard response function updating formulation and it was shown

that the updating algorithm was dependent on a number of conditions which arose

from two distinct cases: one convergent and the other divergent.

Finally, the use of physical parameters in model updating is implemented and then

verified by experimental case studies on two configurations of a rectangular plate.

Some recommendations for further work in this area were also forwarded.
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Nomenclature

Basic Terms, Dimensions and Subscripts

i, j, k, l integers

i
√
−1

J Number of load cases/Optimisation function

L Number of elements in Finite Element Model

m Number of measured modes

n Number of measured set of degrees of freedom

N Total number of degrees of freedom/co-ordinates

Nf Number of selected frequencies in the measurement spectrum

r Number of rigid body modes/ Number of modes

used to form transformation matrix

s Number of slave set of degrees of freedom

x, y, z Translational degrees of freedom/co-ordinates

θx, θy, θz Rotational degrees of freedom/co-ordinates

δ Kronecker delta function

σ Uniformly-distributed noise

Matrices, Vectors and Scalars

[ ] Matrix

{ } Column vector
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[ ]T ; { }T Transpose of a matrix; vector

[ ]−1 Inverse of a matrix

[ ]∗ Complex conjugate of a matrix

( )† Generalised/Pseudo inverse of a matrix

Re( ), ( )R Real part of a matrix; vector

Im( ), ( )I Imaginary part of a matrix; vector

[ Red] Reduced matrix

|| || Frobenious norm of a matrix/vector

Cond[ ] Condition number of a matrix

Range[ ] Range of a matrix

Diag[ ] Diagonal matrix

Trace[ ] Trace of a matrix

[I ] Identity matrix

[U ], [V ] Matrices of left and right singular values

[Σ] Rectangular matrix of singular values

[S] Sensitivity matrix

[T ] Transformation Matrix

[ε] Error matrix

Spatial and Modelling Properties

Nk Total number of mass elements

Nm Total number of stiffness elements

Nc Total number of viscous damping elements

Nd Total number of hysteretic damping elements

[K] Stiffness matrix

[M ] Mass matrix

[C] Viscous damping matrix

[D] Hysteretic damping matrix
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[∆K], [K̄] Stiffness correction matrix

[∆M ], [M̄] Mass correction matrix

[∆D], [D̄] Hysteretic damping correction matrix

[Ke] Element stiffness matrix

[Me] Element mass matrix

[ZA] Analytical dynamic stiffness matrix

[∆ZA] Dynamic stiffness correction matrix

[∆Z] Difference between analytical and experimental dynamic stiffness matrices

[HX] Experimental receptance matrix

[HA] Analytical receptance matrix

{f} Force vector

{p} Vector of design variables

{X} Displacement vector

pmi i-th correction factor for mass matrix

pki i-th correction factor for stiffness matrix

pci i-th correction factor for viscous damping matrix

pdi i-th correction factor for hysteretic damping matrix

Modal and Frequency Response Properties

ωr r-th natural Frequency

[Λ] Eigenvalue matrix

[Ψ] Unit-normalised mode shape/eigenvector matrix

[Φ] Mass-normalised mode shape/eigenvector matrix

{φr} r-th mode shape

(φX)ir i-th element of r-th experimental mode shape
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Standard Abbreviations

DOF(s) Degree(s) of freedom

FE Finite element

FRF Frequency response function

MAC Modal assurance criterion

COMAC Co-ordinate modal assurance criterion

SVD Singular value decomposition

RFM Response function method

IESM Inverse eigen sensitivity method

CEAM Constrained eigenstructure assignment method
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Chapter 1

Introduction

1.1 Background

The dynamic analysis of engineering assemblies is becoming increasingly complex,

and it will continue to do so in order to meet the challenges and demands of the

21st century. Interest in the vibration properties arises because nearly all structures

are subject to vibration of one form or another, which is usually undesirable. For

example, unwanted vibration effects include noise, decrease in fatigue strength of

machines and equipment and lost precision in measuring instruments and machine

tools. Sometimes, however, vibration is desirable, as in vibratory conveyors, friction

dampers, the delimitation and consolidation of materials and so on. Because of

devastating effects that vibration can have on machines and structures, vibration

analysis and testing have become a standard procedure in the design and development

of most engineering systems.

The subject of dynamics and vibration has probably started with the work of Galileo

(1564-1642) who examined the oscillations of a simple pendulum. He was the first to

discover the relationship between the frequency of a simple pendulum and its length.

At the age of 26, Galileo established the law of falling bodies and wrote the first trea-

tise on modern dynamics. In 1636 he disclosed the idea of the pendulum clock which

21
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was later constructed by Huygens in 1656. Based on Galileo’s work, Sir Isaac Newton

(1642-1727) formulated the laws of motion in which the relationship between force,

mass, and momentum is established. In particular, Newton’s second law has been a

fundamental tool for formulating the dynamic equation of motion of a vibratory sys-

tem. Later, French mathematician Jean le Rond d’Alembert’s (1717-1783) expressed

Newton’s second law in a different form in which the inertia forces are treated in

the same way as the applied forces. Based on d’Alembert’s principle, Joseph Louis

Lagrange (1736-1813) developed his well-known equations. Unlike Newton’s second

law which uses vector quantities, Lagrange’s equations can be used to formulate the

differential equations of dynamic systems using scalar energy expressions. The La-

grangian approach, compared to the Newtonian approach, lends itself more easily to

formulating the dynamic equations of multi-degree of freedom systems.

Another significant contribution to the theory of vibration was made by Robert Hooke

(1635-1703) who was first to announce, in 1676, the relationship between the stress

and strain in elastic bodies. Hooke’s law for deformable bodies states that the stress at

any point on a deformable body is proportional to the strain at that point. Based on

Hooke’s law of elasticity, Leonhard Euler (1707-1783) in 1744 and Daniel Bernoulli

(1700-1782) in 1751 derived the differential equation that governs the vibration of

beams and obtained the solution in the case of small deformations.

Towards the end of the 19th century, however, high speed machinery introduced many

new problems including the phenomena now associated with mechanical vibration.

Baron William Strutt and Lord Rayleigh (1842-1919), developed the theory of me-

chanical vibration to its current form. Rayleigh developed a method for finding the

natural frequency of vibration for mechanical systems and made a correction to the

existing beam theory by considering the effect of rotary inertia of the cross section of

the beam. Later, in 1921, Stephen Timoshenko (1878-1972) presented an improved

theory, known as Timoshenko beam theory, for the vibrations of the beams. In mod-

ern times, there have been many workers who contributed to theoretical dynamics

and the subject matter has expanded enormously. Special reference can be made

to the work of J. P. den Hartog who was a pioneer in studying industrial vibration
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problems.

Today, for the dynamic design and analysis of complex structures, it is necessary to

have reliable dynamic mathematical models. This is especially true for structures

whose operation, integrity, safety and control critically depend on the structure’s

dynamic characteristics. The study of a structure’s dynamic behaviour can be cate-

gorised into two distinct activities, namely analytical modelling and vibration tests.

Due to different limitations and assumptions, each approach has its advantages and

disadvantages. these will be briefly discussed below:

1.2 The Finite Element Method

The finite element method is a numerical analysis technique for obtaining approximate

solutions to a wide variety of engineering problems. Because of its diversity and

flexibility as an analysis tool, it became a well established procedure in industry.

Finite element method originated in the field of structural analysis and was widely

developed and exploited in the aerospace industry during the 50s and 60s. Information

on this and other advanced topics may be found in Zienkiewicz (1971), Desai & Abel

(1972), Nath (1974), Bathe (1982) and Zienkiewicz & Taylor (1989).

The finite element method involves dividing the actual physical system into small

subregions or elements. Each element is a simple unit, the behaviour of which can

readily be analysed using approximation of displacement or stress fields by second or

third-order shape functions. Once the elements and their interpolation functions have

been chosen, the matrix equations, expressing the properties of individual elements,

must be determined. For this task, one of the following four approaches may be used:

the direct approach, the variational approach, the weighted variational approach, or

the energy balance approach. The next step is to assemble all the element properties.

The resulting model is composed of mass and stiffness matrices of dimension N, N

being the number of degrees of freedom in the model. The choice of N is arbitrary and

it should be large enough to minimise discretisation errors. The number of degrees of
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freedom and the mass and stiffness matrices of a structure can vary from one analyst

to another, and from one FE code to another. In any case, an accurate representation

of damping matrices is not yet possible, the most common way being a proportional

damping matrix which is based on experimentally-derived modal damping factors.

The resulting mathematical model is simply a set of differential equations that may

or may not accurately represent the actual structure. The inaccuracies or uncertain-

ties that may be represent in finite element models can be divided into two broad

categories:

(i) those which are inherent to the finite element technique, and

(ii) those which are introduced by the analyst.

The first category includes inevitable errors that arise because of employing numer-

ical techniques. The most critical one is the discretisation error which is due to

approximating a continuous structure by a finite number of individual elements. The

magnitude of this error depends on the mesh quality and on the efficiency of the ele-

mental shape functions. Discretisation errors can be subdivided into approximation

errors and interpolation errors, where the first type manifest themselves as global

errors and the second as elemental ones (Fletcher, 1984). Errors in this first cat-

egory also include inaccuracies due to integration, truncation, round-off and eigen

parameter extraction techniques.

The second category consists of modelling errors due to the assumptions made by the

analyst: choice of elements to represent a given geometry, omission of unimportant

details, uncertainties associated with the boundary conditions, etc. Although some

of these errors will primarily manifest themselves at an elemental (i.e. local) level,

others will contribute significantly to the global eigen parameters. From an error

location viewpoint, these global errors may pose major problems since, in general,

there are no elements that are directly associated with them.
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1.3 Modal Testing

Due to lack of confidence in analytical models, actual dynamic testing of structures

has become a classical procedure to verify an existing finite element models or adjust

them to match test results. Over the past thirty years, modal analysis has been a

fast developing technique in the experimental evaluation of the dynamic properties.

The data from a modal analysis has several uses:

• to verify finite element or other mathematical models,

• to predict the effects of a design change by structural coupling,

• to provide a basis for model updating.

The modal testing basically consists of two steps: Data acquisition and data analysis

for the extraction of modal parameters such as natural frequencies, mode shapes and

damping ratios.

There are two main methods for exciting a structure. The structure can be either

hit by an instrumented hammer or excited by a shaker which is connected to the

structure through a push rod. Sometimes more than one shaker may be used to

excite the structure, a technique called multi-point excitation.

Transducers, which made from piezoelectric materials, are generally used to measure

both the response and the excitation force on the structure. The response can be

measured at one or more points, usually by accelerometers, which are connected to a

data acquisition device.

After measurements have been performed, a modal analysis or modal identification is

carried out to find the modal properties of the system. This area has been extensively

developed and various techniques for identifying modal models from FRF data have

been proposed. Further details of the theoretical and practical aspects of vibration

measurement techniques are given by Zaveri (1984), Ewins (1984) and Snoeys et al.

(1987). As for the analytical modelling, modal testing has also a number of problems:
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• The maximum number of measurement locations is limited and the size of the

experimental model is always less than that of the analytical model.

• With the present technology, it is not possible to measure some degrees of

freedom, such as rotational and internal ones.

• The number of identified modes is limited by the frequency range.

• The modal analysis usually yields complex mode shapes while the theoretical

analysis is usually based on the normal mode theory.

• Measured data are contaminated by a certain level of noise.

• Some modes of the structure may not be excited during the test or, even if

excited, some modes may not be identified.

• The clamped boundary conditions are very difficult to achieve while free-free

boundary conditions are subject to suspension effects.

• The test structure may exhibit significant nonlinearities while analytical model

assumes linearity.

1.4 Model Updating

Because of the different limitations and assumptions in the two approaches, the finite

element model and the experimental modal model have different advantages and dis-

advantages. The finite element model provides information on dynamical behaviour

of the structure while the experimentally-derived model contains information from

actual structure.

Generally, it is believed that more confidence can be placed on experimental modal

data than on the finite element model. Therefore, in order to determine the spa-

tial properties of the structure which can reproduce the whole characteristics of the
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test structures (measured or unmeasured), reconciliation processes including model

correlation and model updating, must be performed.

Model updating can be defined as the adjustment of an existing analytical model in

the light of measured vibration test. After adjustment, the updated model is expected

to represent the dynamic behaviour of the structure more accurately.

There are two model updating philosophies (Nobari et al., 1994). The first one

states that model updating consists of two distinct stages, namely error localisation

and error correction. The first stage being a pre-requisite for the second stage. It

is inherently assumed that the mathematical model possesses a number of discrete

errors which cause the observed discrepancies between predictions and measurements.

The updated model is based on the correction of locatable errors, hopefully associated

with a physical meaning. The second philosophy advocates a global correction of the

finite element model which may or may not contain discernible errors in the first

place. Hence, corrections must be made in a curve-fitting sense in order to minimise

a number of pre-set criteria. The corrections do not, in general, correspond to specific

modelling errors and hence there are several such updated models.

1.5 Objective of Thesis

Over the last fifteen years, a significant number of model updating techniques have

been proposed. However, no reliable and generally-applicable procedures have been

formulated so far. As there is an obvious need to a robust and practical updating

strategy for industrial problems, this work is an attempt:

• to critically review the existing techniques and find out the advantages and

disadvantages of various methods.

• to identify new techniques and to develop them further in order to be able to

cope with industrial problems.
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• to find the required experimental accuracy that must be attained for successful

model updating.

1.6 Overview of Thesis

Chapter 2 reviews the methods that are currently used for the correlation of the

experimental and analytical models. It is also contain a comprehensive review of

normal mode extraction technique from measured complex response functions. A

literature survey of the available reduction and expansion techniques is also presented.

Finally, a survey of finite element model updating technique is given in a unified

notation, followed by a brief discussion of different regularisation techniques for ill-

posed problems.

Chapter 3 deals with the updating of finite element models using FRF data. It outlines

the formulation used in this thesis and discusses the advantages and shortcomings of

the approach. Additionally, a series of examples has been considered to demonstrate

the capability of the technique when dealing with different problems. Computational

considerations, a strategy for the selection of updating frequency points and an initial

guess procedure for the damping matrix are also discussed.

Chapter 4 introduces some popular regularisation techniques for ill-posed problems.

A comparative study has been conducted to show the effectiveness of such techniques

on noisy FRF data.

Chapter 5 deals with the determination of the required experimental accuracy that

must be attained when updating finite element models using measured vibration

test data. It is shown that a well-defined relationship, that can be expressed as a

characteristic function, exists between the system’s properties, the correction matrices

and the actual amount of experimental noise. The findings are illustrated in the

case of a 3D space frame and the efficiency of the proposed characteristic function is

discussed in some detail. Finally, a way of selecting the optimum excitation frequency

values is presented as a means of relaxing the minimum experimental accuracy.
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Chapter 6 examines the method of constrained eigenstructure assignment in some

detail. The existing approach is modified to handle the effect of hysteretic damping

and the non-linear optimisation of the original formulation is changed to a quadratic

optimisation which not only converges faster but also enables the solution for large-

size problems. Cases with polluted FRF data are investigated and the results show

that a small amount of noise can be tolerated by the algorithm.

Chapter 7 deals with the theory and application of a relatively new model updating

technique which is based on the use of generic finite elements. In this particular

approach, the element mass and stiffness matrices are allowed to change dynamically

while retaining their full physical meaning and mathematical properties by virtue of

belonging to a same consistent family of such matrices. The existing formulation is

extended to include some 2D and 3D finite elements and a number of case studies are

presented to investigate the effect of various modelling errors as well as experimental

noise. The performance of the generic element method is compared to the other

popular updating methods, namely RFM and IESM.

Chapter 8 explains the use of physical parameters in model updating. A number of

case studies involving 3D beam elements and 2D plate elements are presented in order

to show the advantages of using physical parameters in model updating.

Chapter 9 is devoted to experimental case studies on two different configurations of a

rectangular plate. A comparison of the measured and predicted modal properties for

both structures is carried out to find the degree of correlation between the initially-

predicted results and the experimental data. The advantages and shortcomings of

the proposed physical parameters approach is then investigated in some detail using

true experimental data.

Chapter 10 concludes the discussions of the previous chapters and includes recom-

mendations for further work in the area of model updating.

An overview of the thesis is given in Fig. (1.1).
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Chapter 2

Literature Survey

2.1 Introduction

In spite of extensive research over the past fifteen years, the state-of-the-art in finite

element model updating is far from maturing and no reliable and generally applicable

procedures have been formulated so far. Literature reviews which have been published

by Ibrahim & Saafan ( 1987), Caesar ( 1987), Heylen & Sas ( 1987), Natke (1988),

Imregun & Visser (1991), Mottershead & Friswell (1993) and Friswell & Mottershead

(1995) compare various techniques but fall short of agreeing on methods or practices.

Given the extensive list of publications in model updating, the aim of this chapter is

to review the latest developments only and to present a number of state-of-the-art of

model updating techniques in a consistent and unified notation.

2.2 Correlation Methods

Correlation can be defined as the initial step to assess the quality of the analytical

model. Test data are considered to be more accurate and thus used as reference to

assess the quality of the available finite element model. If the difference between

31
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the analytical and experimental data is within some pre-set tolerances, the analytical

model can be judged to be accurate and no updating is necessary. If larger than

acceptable differences exist but there is reasonable overall agreement, updating may

still be possible.

In almost all cases, the experimental data set is incomplete as the measurements are

taken at selected locations in selected coordinate directions. The lack of measured

degrees of freedom can be solved in two ways, either by reducing the FE model to

the size of experimental one or by expanding the experimental data to include the

unmeasured degrees of freedom in the FE model. Another problem is the absence of

damping in the FE model. So the complex mode shapes are usually identified from

modal analysis while the FE model are based on normal modes. Hence, a number

of methods concerned with the realisation of normal modes from complex measured

modes were proposed. These issues will be reviewed below in Sections (2.2.1) to

(2.3.2).

2.2.1 Direct Natural Frequency Correlation

The most common and simplest approach to correlate two modal models is the direct

comparison of the natural frequencies. If a plot of the experimental values against

analytical ones lies on a straight line of slope 1, the data are perfectly correlated. A

percentage difference can also be defined as:

εωi =
|ωAi − ωXi |

ωAi
× 100 (2.1)

and an overall frequency scatter indicator may be used as:

εω =


L∑
i=1

(ωAi − ωXi)2

L∑
i=1

ω2
Ai


1/2

× 100 (2.2)
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where L is the number of measured natural frequencies or mode shapes in the fre-

quency range of interest.

2.2.2 Direct Mode Shape Correlation

Mode shapes can also be compared by plotting the analytical ones against experi-

mental ones. As before, for a perfect correlation the resulting curve should lie on a

straight line of slope one. The slope of the best straight line through the data points

of two correlated mode can be defined as the modal scale factor (MSF) (Allemang &

Brown, 1982):

MSF (φA, φX) =
{φA}T {φX}∗
{φA}T {φA}∗

(2.3)

The modal scale factor (MSF) also provides a means of normalising all estimates

of the same modal vector. Since the mass distribution of the finite element model

and that of the actual structure may be different, the experimental and analytical

mode shapes should be scaled correctly. When two modal vectors are scaled similarly,

elements of each vector can be averaged, differenced, or sorted to provide a better

estimate of the modal vector or to provide an indication of the type of error vector

superimposed on the modal vector.

2.2.3 The Modal Assurance Criterion (MAC)

Mode pairing is one of the most critical tasks when the updating is based on modal

data. The matching of modes can be a very difficult task especially for structures with

high modal densities. The modal assurance criterion (MAC) (Allemang & Brown,

1982) is often used in pairing and comparing mode shapes. A matrix of MAC coeffi-

cients is computed from:
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MACij =

(
{φA}Ti {φX}∗j

)2

{φA}Ti {φA}∗i {φX}Tj {φX}∗j
(2.4)

A MAC value close to 1 suggests that the two modes are well correlated. An overall

mode shape error indicator may be calculated from:

εΦ =

1− 1

L

√√√√ L∑
i=1

(MAC)2
i

× 100 (2.5)

2.2.4 The Coordinate Modal Assurance Criterion (COMAC)

The coordinate MAC (COMAC) was developed by Lieven & Ewins ( 1988) from the

original MAC concept in such a way that the correlation is now related to the degrees

of freedom of the structure rather than to mode numbers. Having first constructed

the set of L mode pairs via MAC, COMAC calculates the amount of correlation at

each coordinate over all correlated mode pairs as:

COMACi =

L∑
r=1

|(φA)ir (φX)∗ir|
2

L∑
r=1

(φA)2
ir

L∑
r=1

(φX)2
ir

(2.6)

Again, to have a good coordinate correlation the COMAC value should be near to 1.

2.2.5 Orthogonality Methods

The self compatibility of a set of measured vibration modes is usually checked by the

mass orthogonality check (MOC) which can be defined as (Targoff, 1976):

[ε] = [ΦX]T [MA][ΦX] (2.7)



Chapter 2 Literature Survey 35

A commonly-accepted goal is to keep the off-diagonal terms of [ε] to .1 or less and to

have diagonal elements greater than .9 (Chu & DeBroy, 1989). Since the order of

the mass matrix is generally greater than the number of test coordinates, the mass

matrix is usually reduced before the mass orthogonality check. The error introduced

by this condensation process can exceed the difference between the analytical and

experimental modal vectors. However, Parker & Ujihara (1982) proposed an improved

procedure by expanding the size of the test data.

Another approach is the cross orthogonality method (COM) which uses a mixture of

analytical and experimental eigenvectors:

[ε] = [ΦA]T [MA][ΦX] (2.8)

Avitabile & O’Callahan ( 1988) proposed a method called Pseudo Orthogonality

Check (POC) which uses SEREP to reduce the mass matrix down to the set of test

DOF such that the effects of condensation on the mass matrix are minimised. Alter-

natively, they also used the transformation matrix developed by the SEREP reduction

technique (Section 2.4.6) to expand the measured modal vector back to the full set

of analytical DOFs of the system and found an improved analytical mass matrix. In

addition, a general normalisation of either the analytical or the experimental vector

was used to adjust the vector sets. Therefore, at either the measured or the full

analytical DOFs, the following four pseudo orthogonality checks can be made:

[ε1] = [ΨX ]T [MA][ΨA]

[ε2] = [ΨX ]T [MI][ΨA]

[ε3] = [ΦX ]T [MA][ΦA]

[ε4] = [ΦX ]T [MI ][ΦA]

(2.9)

where [ΨX] and [ΦX] are set of experimental and normalised set of experimental

modal vectors respectively and:
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[MI ] = [MA] + [Vg]T ([I ]− [ΦX ]T [MA][ΦX]) [Vg]

[Vg] = ([ΦX]T [MA][ΦX])−1 [ΦX ]T [MA]
(2.10)

The first and third equations of (2.9) have a bias on the analytical set of vectors

since the mass matrix is directly related to the analytical vectors while the second

and fourth equations have a bias on the experimental vectors since the mass matrix

is improved by the help of experimental vectors.

Recently, O’Callahan ( 1995) proposed a general pseudo orthogonality correlation

where a weighting matrix is used to scale and normalise the vector sets in a more

consistent fashion. Again, the SEREP procedure was used to show that the POC

calculation in the full and reduced spaces are equivalent and that the expansion

and the full space POC need not be performed. Therefore, the reduced POC is

computationally efficient and does not require any system mass matrix.

A different form of orthogonality, that between the experimentally-derived mode

shapes and their reciprocal modal vectors, was proposed by He & Imregun (1995)

as a criterion for the quality of modal analysis. The method is based on the use of

measured FRFs and the corresponding modal vectors. Thus, a spatial description of

the system is not required. Imregun & Ewins ( 1996) developed the previous method

by including structural damping, and applied it to the analysis of a large industrial

structure.

2.2.6 Energy Comparison and Force Balance

Bugeat & Lallement (1976) proposed a method for comparing the kinetic and poten-

tial energies for each mode of the experimental and analytical models:

εP = 1
2
{φX}Ti [MA]{φX}i − 1

2
{φA}Ti [MA]{φA}i

εK = 1
2
{φX}Ti [KA]{φX}i − 1

2
{φA}Ti [KA]{φA}i

(2.11)

where the index i denotes the mode number.
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A static force balance for ith measured and analytical mode shapes is proposed by

Wada (1980) as:

{FX}i = [KA]{φX}i
{FA}i = [KA]{φA}i

(2.12)

Fissette & Ibrahim ( 1988) developed a procedure based on a simple force balance

approach by defining a force vector:

{F}i = ([KA]− ω2
Xi[MA]) {φX}i (2.13)

where high unbalance forces indicate coordinates that need updating.

2.2.7 Frequency Response Function Correlation

To compare analytical and experimental transfer functions, a visual inspection is

usually sufficient to determine agreement. In addition, an error indicator may be

computed using the Euclidean norm of the frequency response function vectors mea-

sured at discrete frequencies as (Ibrahim, 1993):

εHij =
‖ (HA)ij − (HX)ij ‖

‖ (HA)ij ‖
(2.14)

Based on MAC technique, and on the concept of frequency shifting Pascual et al. (

1996) proposed to measure the closeness between measured and analytical FRF by

using the following criterion:

FDAC(ωA, ωX , j) =

(
{HA(ωA)}Tj {HX(ωX)}

)2(
{HA(ωA)}Tj {HA(ωA)}j

) (
{HX(ωX)}Tj {HX(ωX)}j

) (2.15)
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Where j corresponds to the measured column of [H]. ωA corresponds to the frequency

at which {HA} is calculated and ωX corresponds to the frequency at which the FRF

was measured experimentally. The frequency Domain Assurance Criterion (FDAC)

can be regarded as equivalent to MAC in the FRF domain. As for MAC, values of

FDAS are limited between 0 and 1. A value of 1 means perfect correlation while 0

means no correlation at all.

2.3 Dealing with Complex Mode Shapes

2.3.1 Realisation Methods

Normal modes are those with modal vectors consisting of real elements. Such modes

exist for structures with no or proportional damping. Unlike normal modes, complex

modes may possess any phase angle distribution, each element of modal vector being

described by a complex number. The normal mode approximation is the simplest

and the most frequently used approach to the complex modes:

|φR| =
√
|Re{φC}|2 + |Im{φC}|2 (2.16)

The sign of the element is determined by the sign of the cosine of its phase angle and

this technique works reasonably well for lightly damped structures.

Ibrahim (1983a) proposed a method for estimating the matrix [M ]−1[K]. Having

calculated the matrix [M ]−1[K], the normal modes can be obtained according to the

eigenvalue equation:

[M ]−1[K]{Φ} = ω2{Φ} (2.17)

In this approach, the equation of motion for a N degree-of-freedom system with viscous

damping can be written as:
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 {ẋ(t)}{ẍ(t)}

 =

 0 [I ]

−[M ]−1[K] −[M ]−1[C]


 {x(t)}{ẋ(t)}

 (2.18)

or compact form:

{ẏ} = [A]{y} (2.19)

where {y} is the system’s state vector containing the displacements and velocities

responses. By repeating equation (2.19) for 2n time instants, the following equation

can be formed:

[Ẏ ] = [A][Y ] (2.20)

where [Ẏ ] and [Y ] contain responses measured at the 2n time instants. From equation

(2.20) the matrix [A] can be identified as:

[A] = [Ẏ ][Y ]−1 (2.21)

By computing the matrix [A], the [M ]−1[K] matrix give normal modes according to

(2.17).

Another approach which was proposed by the same author (Ibrahim, 1983b), assumed

that the structure under consideration is linear and the measured modal parameters

satisfy the following equation:

[
[M ]−1[K] [M ]−1[C]

]  {φX}i
λXi {φX}i

 =
{
−λ2

Xi {φX}i
}

i = 1, . . . ,m (2.22)

Equation (2.22) represents N ×m complex equation or 2N ×m real equations where
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m and N are the number of measured modes which are assumed to be complete and

the number of measured DOFs respectively.

Since no information is available beyond the measured frequency range of interest,

the analytical modes can be used to fill in for the missing measured modes:

[
[M ]−1[K] [M ]−1[C]

]  {φA}i
λAi {φA}i

 =
{
−λ2

Ai {φA}i
}

i = m+ 1, . . . , N

(2.23)

Combining equation (2.22) and equation (2.23), the 2N2 linear equations can be

solved and the corresponding normal modes can be computed from the undamped

eigenproblem.

Wei et al. ( 1987) and Wei & Zhang ( 1987) studied the use of a transformation matrix

to express the incomplete physical coordinates in modal coordinates and thus deal

with a reduced but complete system. The method is iterative since it is based on as-

suming an initial transformation matrix which is updated till convergence is achieved.

Ibrahim & Fullekrug ( 1990) presented a method for computing a non-iterative trans-

formation matrix from the decomposition of the complex eigenvector matrix. Sestieri

& Ibrahim ( 1993) analysed the errors introduced by such transformation matrices

and showed that the errors can be quite significant when the system is incomplete

and highly damped. Finally, Ibrahim & Sestieri ( 1995) concluded that using normal

modes obtained through such transformations can lead to an erroneous updating of

the analytical model since erroneous experimental modes are being matched.

A frequency domain technique to determine the real eigenvalues and eigenvectors of

the undamped system from the identified modes was suggested by Zhang & Lallement

( 1985). The method assumed that the identified complex eigenvectors could be rep-

resented by a linear combination of the corresponding eigenvectors of the associated

undamped system. Lembregts & Brughmans ( 1989) and Lembregts et al. ( 1989)

also proposed a frequency-domain algorithm, theirs being based on a state-space for-
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mulation and on extracting the normal modes by direct parameter estimation. The

measurement data were described by a second-order linear model with real-valued

constant matrices. The state transition matrix was then estimated in a global least

square sense. The normal modes were identified by removing the mass-modified

damping matrix from the second order eigenvalue problem.

Hsu & Tsuei ( 1993) and Chen & Tsuei (1993) proposed a relationship between the

frequency response function (FRF) of the complex and the normal modes. For a

structure with viscous damping, the equation of motion in the frequency domain is:

([K]− ω2[M ]) {XC(ω)}+ i ω [C] {XC(ω)} = {f(ω)} (2.24)

Since the first term in the left hand side of the above equation represent the inverse

of normal FRF matrix, equation (2.24) can be written as:

[HR]−1{XC(ω)}+ i ω [C] {XC(ω)} = {f(ω)} (2.25)

where subscripts C and R refer to complex and realised modes respectively and [HR] is

the frequency response function matrix generated from the normal modes. Equation

(2.25) can be rearranged as:

{XC(ω)} = ([I ] + i[G(ω)])−1 [HR(ω)] {f(ω)} (2.26)

where [G(ω)] = ω[HR(ω)] [C]. On the other hand, the complex frequency response

function equation can also be represented as:

{XC(ω)} = [HC(ω)]{f(ω)} (2.27)

Comparing equation (2.26) and (2.27), the relationship between the FRFs of Complex

modes and normal modes can be written as:
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[HR(ω)] = ([I ] + i[G(ω)]) [HC(ω)] (2.28)

By separating [HC(ω)] into its real and imaginary parts and by denoting that the left

hand side of equation (2.28) is real, one can get:

[HR(ω)] = Re[HC(ω)] + Im[HC(ω)]Re[HC(ω)]† Im[HC(ω)] (2.29)

Noting that {XR(ω)} = [HR(ω)]{f(ω)}, equation (2.26) yields:

{XR(ω)} = ([I ] + i[G(ω)]) {XC(ω)} (2.30)

When the excitation frequency is equal to the ith natural frequency, the displacement

vector represents the ith mode shape of the structure:

{φR(ωi)} = ([I ] + i[G(ωi)]) {φC(ωi)} (2.31)

separating the complex mode shape into its real and imaginary parts and using the

fact that the left hand side of the above equation is real:

{φR(ωi)} = ([I ] + Im[HC(ω)])2 Re[HC(ω)]2 †{φC(ωi)} (2.32)

It should be noted that the magnitude and phase of FRFs are required at resonance

only.

A technique by Niedbal (1984) involves the use of a complex transformation given by:

[ΦR] = [ΦC] [T ] (2.33)
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Separating (2.33) into its real and imaginary parts, it can be shown that [ΦR] can

be expressed in terms of [ΦC] and of Re([T ]). Assuming that the latter can be

approximated into a unit matrix, the realised mode shape matrix can be written as:

[ΦR] = Re[ΦC ] + Im[ΦC]
(
Re[ΦC]T Re[ΦC]

)−1
Re[ΦC ]T Im[ΦC] (2.34)

Imregun & Ewins ( 1993) proposed to use the MAC value to assess the degree of suc-

cess between the complex modes and extracting real modes in the realisation methods.

They also maximised this correlation by assuming that a better approximation of the

realised mode shape can be written as:

{φ′R} = {φR}+ κ {γ}

where {γ} is an arbitrary vector and κ is a tuning parameter. The MAC value between

the complex mode shape {φC} and the corrected vector {φ′R} can be written as:

MAC =
A+Bκ + C κ2

D + E κ+ F κ2

where

A = {φC}∗T{φR}{φR}T{φC}∗

B = {φC}∗T ({γ}{φR}T + {φR}{γ}T ){φC}∗

C = {φC}∗T{γ}{γ}T{φC}∗

D = {φR}T{φR}T{φC}T{φC}∗

E = ({γ}{φR}T + {φR}{γ}T ){φC}T{φC}∗

F = {γ}T{γ}{φC}T{φC}∗

Since the objective is to obtain maximum correlation between the complex and the

normal modes, the partial derivative of MAC with respect to κ must vanish. After
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some manipulation, the following equation yields:

(CE −BF )κ2 + 2(CD −AF )κ+ (BD− AE) = 0

and the roots of this equation make the correlation between {φC} and {φR}maximum.

Ahmadian & Gladwell ( 1995) presented a generalisation of the above method. They

showed analytically that the realised mode and the real part of the initial complex

mode should correlated most, when the complex mode is rotated properly. However,

it is not possible to find such a rotation without identifying the damping in the system.

Ozguven & Imregun ( 1991) investigated complex modes arising from linear identifi-

cation of non-linear systems. They showed that nonlinearities in the system may be

falsely identified as complex linear modes and investigated some of the consequences

of applying linear modal parameter extraction techniques to non-linear systems. They

concluded that even a small nonlinearity in a system may influence the modal param-

eter identified. The most affected parameter is the phase of modal constant which

makes the identified modes to be significantly complex. Imregun & Ewins ( 1995)

studied various cases that lead to complex modes, such as non-linear structure be-

haviour, non-proportional damping, aerodynamic damping, gyroscopic effects and

experimental noise. They also introduced two indicators, called modal complexity

factors, to assess the amount of modal complexity.

2.3.2 Force Appropriation Methods

The aim of force appropriation methods is to provide an estimate for the force pattern

required in order to excite a ”pure” normal mode using multiple exciters. For instance,

in aerospace industry, it is common practice to try to measure undamped natural

frequencies and the corresponding mode shapes. In many cases, a single or a pair of

symmetric or antisymmetric forces may be adequate but a true multi-point excitation

approach may be needed where the modes are close in frequency. A ”pure” mode is
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excited when all responses are in monophase and in quadrature with the sinusoidal

excitation. A number of methods have been developed to determine the force vector

required to excite normal modes. These methods can be classified into iterative

and direct methods. Iterative methods are those in which the force distribution is

progressively adjusted until some cost criterion is satisfied. On the other hand, direct

methods use the measured FRF matrix relating a selected number of responses to

the excitation positions and then generally use some eigenproperties of that matrix

to yield the necessary force distribution. In the following, only the direct methods

are discussed.

Consider a structure with m modes and n measurement transducer locations:

{x} = (Re[H(ω)] + i Im[H(ω)] ) {f} (2.35)

where {f} is the monophase excitation force vector defined at e locations. A pure

mode is excited when response and excitation are in quadrature or when the real part

of the response is zero, i.e.:

Re[H(ω)]{f} = 0 (2.36)

For a square Re[H] matrix (n = e), a non-trivial solution for (2.36) is possible only

if its determinant is zero:

|Re[H(ω)] | = 0 (2.37)

There are several methods for obtaining the solution of (2.37). The Asher method

finds the roots of determinant |Re[H(ω)] | to obtain the natural frequencies and then

solves equation (2.36) to find the appropriated force vector by using the adjoint matrix

of Re[H(ω)], or by Gauss-Sidel method. The modified Asher approach (Alexiou &

Wright, 1985) tries to solve the following eigenvalue problem:
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Re[H(ω)]{f} = λ{f} (2.38)

The natural frequencies are found when one of the eigenvalues of equation (2.38) is

zero. The appropriated force vectors are the eigenvectors of the system at the cor-

responding frequencies. The Traill-Nash method (Alexiou & Wright, 1987) considers

the following equation:

Re[H(ω)]{f} = µIm[H(ω)]{f} (2.39)

Again, the natural frequencies and force patterns can be found in a similar fashion

to the modified Asher method.

When the FRF matrix is not square (n > e), the problem can still be solved approxi-

mately by minimising the real parts of the response in some way. The extended Asher

method was used by Ibanez & Blakely ( 1984) with the following cost function:

n∑
i=1

|Re(xi)|2 (2.40)

It can be shown that the above equation is equivalent to the following eigenvalue

problem:

Re[H(ω)]T Re[H(ω)]{f} = α{f} (2.41)

Finally, the multivariate mode indicator function (MMIF) minimises a cost function

in the form of (Williams & Crowley, 1986):

n∑
i=1

|Re(xi)|2

n∑
i=1

|xi|2
(2.42)
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When no weighting is employed, the minimisation reduces to the solution of the

following eigenvalue problem:

Re[H(ω)]T Re[H(ω)]T{f} = β
(
Re[H(ω)]T Re[H(ω)] + Im[H(ω)]T Im[H(ω)]

)
{f}
(2.43)

In this case, the natural frequencies correspond to minima in the eigenvalues α and

β and the eigenvectors give the force patterns as before. Alternatively, Nash ( 1991)

defined a variant cost function of the MMIF:

n∑
i=1

|Im(xi)|2

n∑
i=1

|xi|2
(2.44)

He also overcame the difficulty associated with a large number of exciting forces by

using the principal force vectors.

One major problem is the selection of the right number of exciters and their correct

locations. Some methods become ill-conditioned if more excitation positions than

the required maximum are selected. Juang & Wright ( 1991) proposed a method

based on SVD to eliminate the ill-conditioning in the evaluation of the appropriated

force vectors. Cooper & Wright ( 1992) used the experimental FRFs of a rectangular

perspex plate with close modes to find the appropriated force vectors. With the use of

24 accelerometers and 2 exciters, it was possible to identify the close modes. Only the

SVD method and the MMIF technique using the principal force vectors were able to

realise the pair, when four exciters were used. Otte ( 1993) reduced the order of FRF

matrix [H] by retaining the most significant singular values and the corresponding

singular vectors from the decomposition of [H]. A transformation matrix, constructed

by the retained singular vectors and the appropriated force vectors, was obtained

from the reduced FRF matrix. Holmes & Cooper ( 1996) presented a criterion for

the prediction of optimum exciter locations in normal mode testing using an a priori
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mathematical dynamic model of the test structure. The criterion was successfully

tested on the rectangular perspex plate and a representative aircraft structure by the

help of a genetic algorithm.

2.4 Reduction Techniques

2.4.1 Introduction

The reduction (or expansion) of experimental modal vectors is a necessary process in

the comparison, correlation, error localisation and model updating stage of structural

modelling.

Due to the large size mismatch between the analytical and experimental degrees of

freedom, substantial effort has been devoted to the investigation of the effects of model

reduction and the most popular technique being the static condensation of Guyan

(1965). Other important techniques are: Dynamic Reduction, Improved Reduction

System (IRS), System Equivalent Reduction Expansion Process (SEREP).

2.4.2 Reduction of System Matrices

In all reduction techniques, there exists a relation between the measured (or master)

’n’ degrees of freedom and the unmeasured (or slave) ’s’ degrees of freedom:

{xN} =

 {xn}{xs}
 = [T ] {xn} (2.45)

where
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{x} is the physical displacement,

[T ] is the transformation matrix,

N is the total number of FEM DOFs,

The reduced mass and stiffness matrices can be written as:

[Mn] = [T ]T [MN ] [T ]

[Kn] = [T ]T [KN ] [T ]

2.4.3 Guyan Reduction

Guyan reduction (1965) has been used for many years as one of the most common

tools for the reduction of large analytical models.

Starting from the time domain equation of motion, one can write:

[M ] {ẍ}+ [K] {x} = {f} (2.46)

Partitioning the matrices into measured (or master) ’n’ and slave ’s’ DOFs and ne-

glecting inertia terms, one obtains:

 [Knn] [Kns]

[Ksn] [Kss]


 {xn}{xs}

 =

 {fn}{fs}
 (2.47)

Using the lower set of equations in (2.47) leads to:

{xs} = −[Kss]
−1 [Ksn] {xn}+ [Kss]

−1 {fs} (2.48)

Assuming that there are no external forces at the slave DOFs, the Guyan reduction
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transformation matrix will be obtained as:

[T1] =

 [I ]

−[Kss]−1 [Ksn]

 (2.49)

Since the inertia terms are neglected, this technique is also called static reduction. The

Guyan reduction depends heavily on the selection of the master degrees of freedom,

a poor selection yielding inaccurate models.

2.4.4 Improved Reduced System Technique (IRS)

The Improved Reduced System (IRS) was developed by O’Callahan ( 1989) to com-

pensate for the mass misappropriation of the Guyan reduction process, especially

when the selection of measured DOF is not optimum. It improves the accuracy

over the static condensation technique by approximating the second term in equation

(2.48) as:

[Kss]
−1 {fs} =

[
[Kss]

−1[Msn]− [Kss]
−1[Mss][Kss]

−1[Ksn]
]

[MR]−1 [KR] {xn} (2.50)

where [MR] and [KR] are the Guyan reduced mass and stiffness matrices given by:

[MR] = [T1]T [M ] [T1]

[KR] = [T1]T [K] [T1]

Substituting (2.50) into (2.48) and comparing the terms related to the transformation

matrix, yields:

[T2] = [T1] + [T ′2] (2.51)
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where

[T ′2] = [S] [M ] [T1] [MR]−1 [KR]

[S] =

 0 0

0 [Kss]−1]


(2.52)

2.4.5 Dynamic Reduction

An extension of Guyan reduction can be introduced by considering the inertia terms

in equation (2.46). The procedure is almost identical to Guyan reduction except that

the transformation is based on the dynamic stiffness matrix [Z] instead of stiffness

matrix [K]. In this case, the transformation matrix is given by:

[T3] =

 [I ]

−([Kss]− ω2 [Mss])−1 ([Ksn]− ω2 [Msn])

 (2.53)

The selection of the best frequency point for a exact response of the system is of

particular importance, the centre frequency point being recommended by Paz (1984).

It can be seen that the inversion of dynamic stiffness matrix in equation (2.53) is

computationally expensive. The procedure not only involves the inversion of [Zss] =

[Kss]−ω2 [Mss] matrix but the transformation matrix has also to be calculated for each

mode. A number of approximate techniques based on series expansion and spectral

decomposition have been proposed by various authors to obtain a computationally

efficient inversion of [Zss].

Kidder (1973) used the geometric series to expand the inverse of [Zss].

( [Kss]− ω2 [Mss] )
−1

= [Kss]−1 [ [I ]− ω2[Mss] [Kss]−1]
−1

= [Kss]−1 ( [I ] + ω2 [Mss] [Kss]−1+

ω4 [Mss] [Kss]−1 [Mss] [Kss]−1 + · · ·)
(2.54)
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Substituting equation (2.54) into equation (2.53):

[T3] =


[I ]

−[Kss]
−1[Ksn] + ω2 ( [Kss]

−1 ( [Msn]− [Mss][Kss]
−1[Ksn]) ) +

ω4 ( [Kss]−1[Mss][Kss]−1 ( [Msn]− [Mss][Kss]−1[Ksn] ) ) + · · ·

 (2.55)

By neglecting the ω2 terms, (2.55) reverts back to (2.49) which is for static Guyan

reduction. If terms up to ω2 are included, the result is identical to the IRS formulation.

Petersman (1984) calculated the inverse of [Zss] using the eigensolution of the eigen-

problem associated with [Zss]:

[Zss]
−1 = [Φ] ([Λ]− ω2 [I ])−1 ΦT (2.56)

where [Φ] and [Λ] are the mass-normalised modal and spectral matrices related to the

slave DOFs respectively. It can be seen from equation (2.56) that only the diagonal

matrix ([Λ − ω2[I ])−1 is frequency dependent. Thus, its inversion is simpler than

that of the corresponding dynamic stiffness matrix. It is also obvious that element

(λi − ω2)−1 will tend to zero for λi � ω2. Therefore, the problem can be further

simplified by ignoring of those elements of spectral matrix with λ� λi. The number

of terms used depends on the actual natural frequency and on the eigenvalues of the

slave-only system. However, a large number of modes may well have to be included

in order to increase the accuracy of the reduced system.

2.4.6 System Equivalent Reduction expansion Process (SEREP)

This method was originally introduced by O’Callahan et al. ( 1986) who suggested

that the rotational degrees of freedom for the experimental model could be derived

from those analytical counterparts. Since then, SEREP has been found to provide
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improved accuracy in applications such as cross orthogonality checks between analyt-

ical and experimental modal vectors, linear and non-linear forced response studies,

and analytical model improvement.

Using a collection of modes that are to be preserved in the reduction process, a

transformation matrix can be developed using a generalised inverse of the modal

matrix:

[T4] =

 [Φnr]

[Φsr]

 [Φnr]
† (2.57)

where † denotes pseudo-inverse and r is the number of modes used to form the trans-

formation matrix. Using a generalised inverse, which carries information pertaining

to the selected modes at the selected set of ’n’ DOFs, the formulation allows the

reduction process to preserve the dynamics of the full system in a reduced set of

matrices, a feature which not possible by Guyan or IRS reduction techniques.

2.5 Coordinate expansion

An alternative approach to reducing the finite element model is to expand the mea-

sured mode shapes by estimating the unmeasured degrees of freedom. In general

more confidence can be placed in the expanded results by increasing the number of

measurement points. It is noticeable that any reduction method can also be used for

expansion.

All expansion methods use a transformation matrix that relates the experimental

modal vectors [Φ]X to the full space vectors [Φ]:

[ΦNr] =

 [Φnr]

[Φsr]

 = [T ]Nn [ΦX]nr (2.58)
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whereN, n, r represent the number of FE model DOFs, the number of measured DOFs

and the number of measured modes respectively. In the following, the derivation of

the transformation matrix for various expansion methods will be explained.

2.5.1 Guyan/Irons Expansion

This expansion technique is effectively the inverse of the static condensation process

described in Section (2.4.3) and it is based on the partitioned eigenvalue equation:


 [Knn] [Kns]

[Ksn] [Kss]

− λi
 [Mnn] [Mns]

[Msn] [Mss]



 {φn}i{φs}i

 = 0 (2.59)

Using the same procedure as Guyan reduction technique, one can easily obtain the

transformation matrix [T1] as:

[T1] =

 [I ]

−[Kss]−1 [Ksn]

 (2.60)

The Guyan expansion can be interpreted as the determination of an expanded mode

shape {φi} which minimise the total strain energy of mode i such that its elements

are the same as the test values at measured DOFs. (Levine-West & Kissil, 1994)

2.5.2 IRS Expansion

The IRS expansion is a modified version of the Guyan expansion. Instead of minimis-

ing the strain energy, the method minimise both the strain energy and the potential

energy of applied forces.

The transformation matrix for the IRS expansion is given by:
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[T2] = [T1] + [S] [M ] [T1] [MR]−1 [KR] (2.61)

where [S], [MR] and [KR] are defined by (2.52).

2.5.3 Dynamic expansion

The dynamic expansion process is based on the frequency domain equation of mo-

tion written at a single frequency. Relating the measured and slave DOFs through

the second set equations in (2.59), the transformation matrix of dynamic expansion

becomes:

[T3] =

 [I ]

−([Kss]− λi [Mss])−1 ([Ksn]− λi [Msn])

 (2.62)

where λi is ith eigenvalue of the system. Another approach is to calculate {φsi} by

using the upper part of (2.59). Since the number of measured DOFs are almost always

less than the number of unmeasured DOFs, this latter approach usually gives poor

results.

2.5.4 Gysin Modified Dynamic Expansion

Gysin ( 1990) modified the dynamic expansion process to include all the DOFs in the

inverse processing. By considering both the upper and lower sets in (2.59):

 [Knn]− λi[Mnn]

[Ksn]− λi[Msn]


 {φ}n{φ}s

+

 [Kns]− λi[Mns]

[Kss]− λi[Mss]


 {φ}n{φ}s

 = 0 (2.63)

Solving for the generalised inverse of (2.63) and comparing terms for the transforma-

tion matrix, a transformation matrix is obtained as:
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[T4] =


[I ]

−


 [Kns]

[Kss]

− λi
 [Mns]

[Mss]



† 

 [Knn]

[Ksn]

− λi
 [Mnn]

[Msn]



 (2.64)

2.5.5 SEREP Expansion

The concept of SEREP was first developed as equivalent Reduction (ER) by O’Callahan

et al. ( 1986). The collection of the analytical modes used in the SEREP process will

control the expansion. The system matrices are not used directly in the formation of

transformation matrix as they are in all other techniques.

The SEREP method assumes that a full-space eigensolution has been obtained and

that the modal equation from the physical full space to the modal space is:

{xN} = [ΦNr] {Pr} (2.65)

where {xN} is the displacement vector in the physical full space, [ΦNr] the modal

matrix obtained from the finite element mass and stiffness matrices and {Pr} is the

displacement modal vector. Partitioning equation (2.65) into measured and slave

DOFs yields:

 {xn}{xs}
 =

 [Φnr]

[Φsr]

 {Pr} (2.66)

Consider the upper equation set, we obtain:

{xn} = [Φnr]{Pr} (2.67)

Solving the above equation by performing a generalised inverse:
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{Pr} = [Φnr]
†{xn} (2.68)

Substituting (2.68) into (2.65) and comparing terms related to the transformation

matrix, produces the SEREP transformation matrix as:

[T5] =

 [Φnr]

[Φsr]

 [Φnr]
† (2.69)

2.5.6 SEREPa Expansion

To prevent the SEREP process from modifying the test data in the expansion process,

a non-smoothing version, SEREPa was proposed by O’Callahan & Li ( 1990). The

consistency of the SEREP is maintained and the measured DOFs are not modified.

It is assumed that the number of measured modes ’r’ in the SEREP transformation

are equal to the number of measured DOFs ’n’. By applying this additional condition

to the SEREP process, the SEREPa transformation matrix becomes:

[T6] =

 [Inn]

[Φsn] [Φnn]−1

 (2.70)

2.5.7 Test Analysis Model Expansion

The TAM approach is similar to SEREP and SEREPa except that the transformation

for the measured DOFs is fixed during the expansion process (Kammer, 1987). The

transformation matrix for the TAM is defined as:

[T7] =

 [Inn]

[Φsn] [Φnn]†

 (2.71)
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The hybrid TAM (Kammer, 1991) which is a mixture of TAM and Guyan expansion,

combines the accuracy of the TAM with the robustness of the static Guyan reduction.

An oblique projection is formed using the FE mode shapes, the transformation matrix

of 2.71, and the FE mass matrix as:

[Q] = [Φ][Φ]T [T7]
T [M ][T7] (2.72)

The final transformation matrix for the hybrid TAM is a combination of the trans-

formation matrices for Guyan reduction and modal TAM methods:

[T8] = [T1] + ([T7]− [T1]) [Q]

2.6 Model Updating Methods Using Modal Data

This section is a review of existing model updating techniques using modal data. Two

categories, namely direct and iterative methods, will be considered.

2.7 Direct Methods using Modal Data

The updated model is expected to match some reference data, usually consisting of

an incomplete set of eigenvalues and eigenvectors derived from measurements. Such

approaches are called direct or representation models (Zhang & Lallement, 1987).

The main advantages of direct methods are:

• assured convergence, since the method do not need any iterations.

• the CPU time is usually less than that required by the iterative methods.
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• the methods try to produce the reference data set exactly.

However, there are also disadvantages:

• high quality measurements and accurate modal analysis are needed.

• the mode shapes must be expanded to the size of finite element model.

• the methods are usually unable to keep the connectivity of the structure and

the updated matrices are usually fully populated.

• there is no guarantee for the positive definiteness of the updated mass and

stiffness matrices.

2.7.1 Lagrange Multiplier Methods

All Lagrange multiplier methods try to minimise an objective function subject to

some constraints on the independent variables.

Such a method was proposed by Baruch & Bar Itzhac (1978) who assumed that

the mass matrix was correct and found a matrix [ΦU ] that minimised the weighted

Euclidean norm:

J =‖ [MA]1/2 ([ΦU ]− [ΦX)] ‖ (2.73)

and satisfied the weighted orthogonality condition:

[ΦU ]T [MA] [ΦU ] = [I ] (2.74)

The final result may be expressed as:
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[ΦU ] = [ΦX ]([ΦX]T [MA][ΦX])−1/2 (2.75)

Baruch (1978) proposed another method in which the mass matrix was correct and

updated the stiffness matrix by minimising:

JK =‖ [MA]−1/2 ([KU ]− [KA]) [MA]−1/2 ‖ (2.76)

subject to the following constraints:

[KU ] = [KU ]T

[KU ] [ΦX] = [MU ] [ΦX ] [ω2
X]

(2.77)

which enforce the symmetry of stiffness matrix and the equation of motion respec-

tively. The updated stiffness matrix can then be obtained as:

[KU ] = [KA]− [KA][ΦX][ΦX]T [MA]− [MA][ΦX][ΦX]T [KA] +

[MA][ΦX][ΦX]T [KA][ΦX][ΦX]T [MA] + [MA][ΦX][ω2
X][ΦX]T [MA]

Berman (1979) and Baruch (1982) assumed that the measured modes were correct and

tried to update the mass matrix. Berman & Nagy (1983) used the same assumptions

and updated the mass and stiffness matrices sequentially. They defined the problem

as the minimisation of:

JM =‖ [MA]−1/2 ([MU ]− [MA]) [MA]−1/2 ‖ (2.78)

subject to:
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[ΦX]T [MU ] [ΦX ] = [I ] (2.79)

The minimisation procedure results in the following expression for the updated mass

matrix:

[MU ] = [MA] + [MA] [ΦX] [mA]−1 ([I ]− [mA]) [mA]−1 [ΦX ]T [MA] (2.80)

where [mA] = [ΦX]T [MA] [ΦX ].

After the computation of [MU ], the stiffness matrix can be calculated by the minimis-

ing:

JK =‖ [MA]−1/2 ([KU ]− [KA]) [MA]−1/2 ‖ (2.81)

subject to three constraints:

[KU ] = [KU ]T

[ΦX]T [KU ] [ΦX ] = [ω2]

[KU ] [ΦX ] = [MA] [ΦX] [ω2
X ]

(2.82)

which enforce the stiffness symmetry, the orthogonality condition and the equation

of motion. The result is:

[KU ] = [KA] + ([∆] + [∆]T) (2.83)

where
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[∆] =
1

2
[MA] [ΦX ] ([ΦX]T [KA] [ΦX] + [ω2

X]) [ΦX ]T [MA]− [KA] [ΦX ] [ΦX]T [MA]

Caesar ( 1986) suggested a range of methods that updated the mass and the stiff-

ness matrices using different cost functions and constraints. To improve the physical

meaning of the updated results, he also introduced additional constraints from rigid-

body considerations, such as the position of the centre of gravity, total mass and

moments of inertia.

Wei (1990) updated the mass and stiffness matrices simultaneously using the mea-

sured eigenvectors and a cost function of the form:

J =‖ [MA]−1/2 ([KU ]− [KA]) [MA]−1/2 ‖ + ‖ [MA]−1/2 ([MU ]− [MA]) [MA]−1/2 ‖
(2.84)

He used the usual constraints of mass orthogonality, the equation of motion and the

symmetry of the updated matrices. The corrected mass and stiffness matrices which

satisfy the above requirement are:

[MU ] = [MA]− [M0] + ([I ]− [P ][ΦX]T )[S][Y ] + [Y ]T [S]T([I ]− [ΦX ][P ]T

[KU ] = [K0] + [P ]([ΦX]T [KA][ΦX]] + [ω2])[P ]T − [U ][ΦX][P ]T − [P ][ΦX]T [U ]T

(2.85)

where
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[M0] = [MA][ΦX][Q]−1([Q]− [I ])[Q]−1[ΦX ]T [MA]

[K0] = [KA]− [KA][ΦX][P ]T − [P ][ΦX]T [KA] + [U ]T + [U ]

[P ] = [MA][ΦX][Q]−1

[Q] = [ΦX]T [MA][ΦX]

[S] = [KA][ΦX]([Q] + [ω2][Q][ω2])

[U ] = [P ][ω2][Q][ω2][S]T

[Y ] = [ω2][ΦX]T [MA]

Fuh & Chen (1984) developed a reference basis method for representational updating

of structural system with non-proportional damping. A detailed review of methods

based on Lagrange multiplier is given by Heylen & Sas ( 1987).

2.7.2 Matrix Mixing Methods

The matrix mixing method is due to Ross (1971) and Thoren (1972) and further

development are introduced by Caesar ( 1987) and Link et al. ( 1987). If one can

assume that all vibration modes are measured at all degrees of freedom, one can

construct the mass and stiffness matrices directly. If we assume the eigenvectors are

mass normalised then:

[MU ]−1 = [ΦX] [ΦX ]T =
N∑
i=1

{φX}i {φX}Ti

[KU ]−1 = [ΦX] [ω2
X] [ΦX ]T =

N∑
i=1

{φX}i {φX}Ti
ω2
Xi

(2.86)

There are two main difficulties with the above approach. First, the number of mea-

sured modes is usually much less than the number of degrees of freedom. Second, the

response of the structure can only be measured at a limited number of coordinates.

However, the second difficulty may be partly overcome by expanding the experimental
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mode shapes to full size by using mass and stiffness matrices from the finite element

model.

In early work, Ross (1971) added some linearly independent vectors to the modal

matrix to make it square and invertible. Sometimes the number of measurement

locations is less than the number of measured modes. In this case Thoren (1972)

limited the number of degrees of freedom to be equal to the number of measured

modes while Luk ( 1987) applied a pseudo inverse to incomplete modal matrix.

Caesar ( 1987) and Link et al. ( 1987) assumed that the measured mode shapes

were expanded to analytical degrees of freedom. Also, they used the data from the

corresponding finite element model to fill the non-measured modes. Under such as-

sumptions, the mass and stiffness matrices can be written as:

[MU ]−1 =
m∑
i=1

{φX}i {φX}Ti +
N∑

i=m+1

{φA}i {φA}Ti

[KU ]−1 =
m∑
i=1

{φX}i {φX}Ti
ω2
Xi

+
N∑

i=m+1

{φA}i {φA}Ti
ω2
Ai

(2.87)

where m and N are the number of measured modes and the number of total degrees

of freedom respectively. If the number of measured modes is much less than the total

number of modes in the finite element model, equations (2.87) becomes:

[MU ]−1 = [MA]−1 +
m∑
i=1

{φX}i {φX}Ti −
m∑
i=1

{φA}i {φA}Ti

[KU ]−1 = [KA]−1 +
m∑
i=1

{φX}i {φX}Ti
ω2
Xi

−
m∑
i=1

{φA}i {φA}Ti
ω2
Ai

(2.88)

2.7.3 Error Matrix Method

Error matrix methods are a group of techniques that directly estimate the error in

the mass and stiffness matrices by assuming that the error is very small. One of
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the earliest papers in this subject is due to Sidhu & Ewins ( 1984) who defined an

expression for the error matrix as:

[∆K] = [KX ]− [KA] (2.89)

Due to the incompleteness of the experimental data, the error matrix cannot be

obtained from the above equation directly. Sidhu & Ewins ( 1984) rearranged equation

(2.89) and expanded the flexibility matrix [KX]−1 by a geometric series. The error

matrix can then be approximated by considering the first order terms of the expansion

as:

[∆K] ∼= [KA]([KA]−1 − [KX ]−1)[KA] (2.90)

A similar approach can also be applied to the mass matrix. Gysin ( 1986) has ex-

pressed the two pseudo-flexibility matrices , [KA]−1 and [KX ]−1, in (2.90) by using

modal data:

[∆K] ∼= [KA]
(
[ΦA][ 1

ω2
A
][ΦA]T − [ΦX ][ 1

ω2
X

][ΦX]T
)

[KA]

[∆M ] ∼= [MA]
(
[ΦA][ΦA]T − [ΦX ][ΦX]T

)
[MA]

(2.91)

Further work has been carried out on this technique by He & Ewins ( 1986) who

applied the error matrix method to investigate the damping properties of a simulated

vibration system. Lawrence ( 1987) carried out a number of case studies, including

a practical example. Zhang & Lallement (1987) expanded the flexibility matrix to

include some of the second order terms. Park & Lee (1988) used the weighted er-

ror matrix method to search the damage area using stiffness changes smaller than

measurement errors. Lieven & Ewins ( 1990) proposed a modified version of the er-

ror matrix method by using the singular value decomposition (Maia, 1989). They

defined the stiffness error matrix in equation (2.90) as:
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[∆K] =
(
[ΦX ][ω2

X][ΦX]T
)†
−
(
[ΦA][ω2

A][ΦA]T
)†

(2.92)

The advantage of this approach is that the analytical system matrices are no longer

required. Lieven & Ewins ( 1992) discussed the effect of incompleteness and noise on

the quality of the results obtained from the error matrix method.

2.7.4 The Eigenstructure Assignment Methods

The basic approach is adapted from the control theory and the updated model is

expected to reproduce a number of measured modes exactly. If only the eigenval-

ues are used, then the method is called pole placement (Porter & Crossley, 1972).

Using state feedback Moore (1976) formulated the necessary and sufficient condi-

tions for simultaneous eigenvalue and eigenvector assignment for the case of distinct

eigenvalues. Srinathkumar (1978) addressed the problem of pole-assignment in lin-

ear time-invariant multi-variable systems using output feedback. Andry & Chung

(1983) were among the first apply the technique to a linear mechanical system for the

purpose of parameter identification.

Consider the equation of motion for a system containing N degrees of freedom:

[MA] {Ẍ}+ [CA] {Ẋ}+ [KA] {X} = [B0] {U} (2.93)

where {U} is the input force vector and the matrix [B0] determines the location of

forces on the structure.

An arbitrary output {Y } can be a combination of displacements and velocities:

{Y } = [D0] {X}+ [D1] {Ẋ} (2.94)

In control applications, the problem is usually to find the feedback matrix, [G], such
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that:

{U} = [G] {Y } (2.95)

which ensures that the closed loop system has the desired eigenvalues and eigenvec-

tors. Combining the above equations, the result for the updated stiffness and damping

matrices is:

[KU ] = [KA]− [B0] [G] [D0]

[CU ] = [CA]− [B0] [G] [D1]

(2.96)

where the matrix [B0] can be chosen arbitrary. The matrices [D0] and [D1] must be

chosen such that [D1] [ΦX] [ΛX]+[D0] [ΦX] is invertible. The matrices [ΛX] and [ΦX]

are the experimentally-derived eigenvalues and eigenvectors that are to be assigned

to the initial structural model.

Minas & Inman ( 1988) and Inman & Minas (1990) used expanded mode shapes and

determined the matrix [G] as:

[G] = ([MA] [B0])
† ([ΦX] [Λ2

X] + [MA]−1 [CA] [ΦX] [ΛX] + [MA]−1 [KA] [ΦX ])

([D1] [ΦX] [ΛX] + [D0] [ΦX])†

(2.97)

In general, the updated stiffness and damping matrices are not symmetric unless

constraint equations are used. Inman & Minas (1990) proposed an iterative scheme

to ensure symmetry of the updated matrices.

Zimmerman & Widengren (1990) used a modified algorithm that allowed a symmetric

eigenstructure assignment when correcting the damping and stiffness matrices. Their

method required the solution of a general algebraic Riccati matrix equation, the size
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of which depended on the number of assigned modes, thus requiring very considerable

CPU power for large order systems.

Recently, Shulz & Inman (1994) used the eigenstructure assignment technique with a

number of constraints that could be related to the physical properties of the system

to be updated. The constraints were built into a non-linear optimisation procedure

that preserved the desired properties of updated model. They considered small-order

system that were symmetric, banded and bounded.

Ziaei Rad & Imregun (1996a) modified the Shulz and Inman formulation to accom-

modate large systems by developing a quadratic linear optimisation procedure which

is unconditionally stable. They also considered the updating of damping matrices.

2.8 Iterative Methods Using Modal Data

The basic approach of iterative updating methods using modal data is to improve the

correlation between the experimental and analytical models via a penalty function.

Because of the general nature of penalty functions, the problem has to be linearised

and thus optimised iteratively. Since the penalty function is usually non-linear, the

iterations may not converge. In any case, iterative methods have two main advantages.

First, a wide range of parameters can be updated simultaneously and second, both

measured and analytical data can be weighted, a feature which can accommodate

engineering intuition.

On the other hand, there are three major problems with the use of iterative methods:

• the experimental and theoretical modes must be paired from the outset. Though

the modal assurance criteria (MAC) is a useful tool, there is no guarantee that

all modes will be matched.

• since the mass distribution of the finite element model and that of the actual

structure may be different, the experimental and analytical mode shapes should
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be scaled correctly. This problem can be solved by using modal scale factor

(MSF).

• in the absence of damping in the theoretical model, either a real mode shape

should be extracted from measured complex FRF data or the updating algo-

rithm must be able to cope such disparities (Section 2.3).

2.8.1 Penalty Function Methods

The methods are generally based on the use of a Taylor series of the modal data

expanded as a function of the unknown updating parameters. This series is often

truncated to produce a linear approximation of the form:

{∆wi} = [Si] {∆pi} (2.98)

where the superscript i is the iteration index, {∆pi} is the unknown vector of design

parameters, and {δwi} represents the difference between the measured and estimated

modal data, via:

{∆wi} = {{∆φi1}T , · · · , {∆φim}T , {∆λi1, · · · , ∆λim}T}T (2.99)

[Si] in (2.98) is the sensitivity matrix and contains the first derivatives of the eigenval-

ues and eigenvectors with respect to the design parameters. Equation (2.98) is solved

for {∆pi} which is then used to obtain the updated mass and stiffness matrices at the

ith iteration. The process is repeated until convergence is achieved within a specified

tolerance.

The sensitivity methods differ in the choice of design parameters and the definition of

optimisation constraints. Design parameters such as individual elements of the mass

and stiffness matrices, sub-matrices, geometric or material properties can be defined.

Constraints are usually imposed on natural frequencies and mode shapes.
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Fox & Kapoor (1968) calculated the first derivatives of the eigenvalues with respect

to the design parameters. The result for the derivative of the rth eigenvalue, λr, with

respect to the sth design parameter ps is:

∂λr

∂ps
= φTr

(
∂[K]

∂ps
− λr

∂[M ]

∂ps

)
φr (2.100)

They have also suggested two methods for calculating the first derivative of the eigen-

vectors. Lim (1987) suggested an approximate method for calculating the first deriva-

tive of the eigenvectors which is only valid for the low frequency modes. Other meth-

ods for calculating mode shapes derivatives have been suggested by Chu & Rudisill

(1975), Ojalvo (1987) and Tan & Andrew (1989).

Usually, the number of design parameters and that of measurements are not equal and

hence the matrix [Si] in (2.98) is not square. The case in which there are more design

parameters than measurements was considered by Chen & Garba (1980). They found

the solution to the problem by seeking a set of design parameters by minimising the

norm as an additional constraint equation:

Q =
∑
s

∆p2
s (2.101)

Similarly, the SVD technique was used by Hart & Yao (1977) and Ojalvo et al. ( 1989)

for a case with less design parameters than measurements. The solution of (2.98) can

be calculated by minimising the penalty function:

J({∆pi}) =
(
{∆wi} − [Si] {∆pi}

)T (
{∆wi} − [Si] {∆pi}

)
(2.102)

Differentiating J with respect to {∆pi} and setting the result equal to zero, it can be

shown that the solution is given by:

{∆pi} = ([Si]T [Si])−1 [Si]T {∆wi} (2.103)
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and an updated estimate of the unknown design parameter vector is obtained by:

{pi+1} = {pi}+ {∆pi} (2.104)

In practical situations, all measured data do not have the same accuracy. Usually,

mode shape data are less accurate than natural frequency data. The accuracy of

measured data can be incorporated into the updating process by including a positive

definite weighting matrix [Vεε]. Equation (2.102) becomes:

J({∆pi}) =
(
{∆wi} − [Si] {∆pi}

)T
[Vεε]

(
{∆wi} − [Si] {∆pi}

)
(2.105)

The minimisation of (2.105) yields:

{∆pi} = ([Si]T [Vεε] [S
i])−1 [Si]T [Vεε] {∆wi} (2.106)

Another approach (Natke, 1988) is to add an extra term to minimise the change of

the design parameters. The extended weighted penalty function can be expressed as:

J({∆pi}) =
(
{∆wi} − [Si] {∆pi}

)T
[Vεε]

(
{∆wi} − [Si] {∆pi}

)
+ {∆pi}T [VPP ]{∆pi}

where [VPP ] is a weighted matrix which estimates the variance of the current param-

eters. The solution of {∆pi} is given by:

{∆pi} = ([Si]T [Vεε] [S
i] + [VPP ])−1 [Si]T [Vεε] {∆wi} (2.107)

Many researchers have used this method with different sets of unknown parameters.

Thomas ( 1986) and Dascotte & Vanhonacker ( 1989) used the approach to update

the elements of the mass and stiffness matrices. Dascotte ( 1990) demonstrated and
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discussed the relative merit of combining analytical and experimental modal data on

a practical application. Physical parameters were also chosen by many authors. Such

parameters allows an easier interpretation of the updated model. Wei ( 1989) selected

moments of inertia as design parameters to update a simple 3D beam structure. They

compared the results with that of using p-values whereby each elemental matrix is

corrected on a non-physical basis. Dascotte ( 1992) updated a composite structure

selecting the material constant as design parameters.

A second-order sensitivity method has been tried by Kuo & Wada (1987) who pro-

duced correction terms to improve the convergence properties compared to that of

the linearised algorithm. Ojalvo & Pilon ( 1991) used second-order natural frequency

sensitivities to update the system mass and stiffness matrices.

2.8.2 Minimum Variance Methods

These methods can be regarded as penalty function methods in which the weight

matrices change from one iteration to the next. They are also based on the assumption

that both the measured data and the initial model have errors which can be expressed

in terms of variance matrices.

Collins & Young (1972) introduced the minimum variance method by assuming that

that the measured data and the initial model are statistically independent, a fea-

ture which is only true in the first iteration. In subsequent iterations, the measured

data will have been used to predict the unknown parameters and hence the two are

correlated.

Friswell (1989) calculated the correlation matrix between the measurements and the

updated data at each iteration. This matrix was then used to calculate the next

estimate of the unknown parameters, thus addressing the above shortcoming.
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2.8.3 Updating Methods Using Frequency Response Data

This family of methods uses the measured FRF data directly and optimises a penalty

function which is some difference between the initial and target values.

The penalty functions can be defined in terms of two types of error function, namely

equation error and output error.

2.8.4 Equation Error Methods

Consider the equation of motion for a viscously damped system:

(−ω2 [MA] + i ω [CA] + [KA]) {X(ω)} = {f(ω)} (2.108)

where [MA], [CA] and [KA] are the initial mass, viscous damping and stiffness matrices

respectively. The above equation can be rewritten in terms of the dynamic stiffness

matrix as:

[ZA(ω)] {XA(ω)} = {fA(ω)} (2.109)

The equation error method minimises the difference between the measured and cal-

culated forces in the form of :

{εEE} = {fX(ω)} − [ZA(ω)] {XA(ω)} (2.110)

A more detailed discussion can be found in papers by Cottin et al. (1984), Fritzen

(1986), Natke (1988) and Fritzen & Zhu (1991). Assuming that equation error is a

nonlinear function of updating parameters {p}, a penalty function can be defined as:
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J({p}) = ‖ {εEE} ‖2

N∑
i=1

Nf∑
j=1

∣∣∣{fX(ωj)}i − [ [ZA({p}, ω)] {XA(ωj)}]i
∣∣∣2 (2.111)

where N is the total number degrees of freedom and Nf is the number of frequencies

in the measurement spectrum.

Let us assume that all degrees of freedom are measured and that the dynamic stiffness

matrix can be written as a linear combination of the design parameters:

[ZA({p})] = [Z0
A] + [Z1

A] p1 + [Z2
A] p2 + . . .+ [ZN

A ] pN (2.112)

In this case, minimising J is equivalent to :

[A] {p} = {b} (2.113)

where

[A] =



[Z1
A(ω1)] {XA(ω1)} [Z2

A(ω1)] {XA(ω1)} . . . [ZN
A (ω1)] {XA(ω1)}

[Z1
A(ω2)] {XA(ω2)} [Z2

A(ω2)] {XA(ω2)} . . . [ZN
A (ω2)] {XA(ω2)}

...
...

...
...

[Z1
A(ωNf )] {XA(ωNf )} [Z2

A(ωNf )] {XA(ωNf )} . . . [ZN
A (ωNf )] {XA(ωNf )}



and

{b} =



{fX(ω1)} − [Z0
A(ω1)] {XA(ω1)}

{fX(ω2)} − [Z0
A(ω2)] {XA(ω2)}
...

{fX(ωNf )} − [Z0
A(ωNf )] {XA(ωNf )}


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The SVD technique can be applied for the solution of (2.113). The major advantage

of the equation error method is that the error is a linear function of the spatial

parameters so that a rapid convergence can be achieved. The major disadvantages

of the method are that all degrees of freedom should be measured and that the

parameters are biased due to the presence of measurement noise. However, model

reduction may be used to overcome the first problem while unbiased estimates may

be obtained by using instrumental variable approach.

Foster & Mottershead (1990) and Link ( 1990) used static and dynamic reduction to

condense the system matrices and to evaluate the equation error. Friswell & Penny

(1990) used modal truncation to reduce the state space system matrices and then

minimised an equation-error based penalty function.

Cottin et al. (1984) showed that with significant amount of noise, results from an

equation-error formulation are more biased than those from an output-error formu-

lation. Fritzen (1986) suggested the use of instrumentation variable to eliminate

the bias problem by pre-multiplying the equation-error function by a matrix which

is uncorrelated with measurement noise. The details of such an unbiased estimate

method have been investigated further by Eykhoff (1980) and Ljung (1987) where

the choice of the instrument matrix is also discussed. Mottershead & Lees (1987)

performed a non-linear optimisation based on a recursive frequency domain filter to

update the structural parameters. Mottershead (1988) further developed the tech-

nique to include an instrumental variable filter to eliminate bias. Mottershead (1990)

and Mottershead & Foster (1991) modified the linear filtering method by using the

SVD to find a minimum norm solution.

Larsson & Sas (1991) used a Taylor series for the expansion of the dynamic stiffness

matrix, the so-called modified equation approach. They used an exact reduction to

overcome the size incompatibility. They introduced an algorithm (Larsson & Sas,

1992b) which was stable up to a cut-of frequency for both large variations in design

parameters and for incomplete measured data.
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2.8.5 Output Error Methods

For the output error method, the penalty function can be defined as :

J({p}) =‖ εOE ‖2 (2.114)

where

{εOE} = [HA(ω)] {fA(ω)} − {XX(ω)} (2.115)

For this case, a non-linear penalty function should be solved which is prone to con-

vergence problems and may require significant CPU effort.

Lin & Ewins ( 1990) presented a method that express changes in the receptance

matrix as linear functions of the design parameters in the case of complete measured

data. They recommended to use the elements of the analytical receptance matrix

for missing measured receptances. However, when the measured data are incomplete,

their method can be shown to revert to a weight-equation error. Mottershead & Shao

(1991) expressed the output error as a first order series in the design parameters.

Imregun & Visser ( 1991) and Imregun et al. ( 1993) generated a set of linear equation

in terms of the design parameters based on the experimental and analytical receptance

matrices. The use of more frequency points was shown to be useful in improving the

condition of the problem.

2.9 Regularisation Technique

The basic idea of a method of regularisation is to replace an ill-posed equation by

a nearby well-posed one. Since there is a huge amount of literature on methods

for approximate solutions of inverse problems, it is not possible to review all such

techniques here. Only a few main themes will be discussed in this section.
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2.9.1 Tikhonov Regularisation

Consider an ill-posed equation of the form:

[A] {p} = {b} (2.116)

where [A] is a linear, ill-posed operator. A generalised solution to the above equation

can be found from:

([A]∗ [A]) {p} = [A]∗ {b} (2.117)

which yields:

{p} = ([A]∗ [A])−1 [A]∗ {b} (2.118)

where [A]∗ is the adjoint of [A]. Since the problem is ill-posed, ([A]∗ [A])−1 is near to

singular. Tikhonov’s approximation considers the following well-posed problem:

{p} = ([A]∗ [A] + α [I ])−1 [A]∗ {b} (2.119)

where α is a positive number. Equation (2.119) reverts back to (2.118) for α = 0.

Tikhonov’s paper, published in 1963, has been seminal for further development of the

theory of approximation. Many authors have discussed the optimum choice of the

regularisation parameter, α, see for instance Heinz & Neubauer (1987).
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2.9.2 Iterative Methods

Iterative methods for solving sets of linear equations are popular because they use

relatively simple operations which are performed repeatedly. There are many itera-

tive methods that can be applied to ill-posed problems. One of the simplest on is

Landweber-Fridman iteration (Landweber, 1951).

Consider the equation:

([A]∗ [A]) {p} − [A]∗ {p} = 0 (2.120)

The Landweber-Fridman method suggests an iterative solution of the form:

{pn+1} = {pn}+ β ([A]∗ {b} − [A]∗ [A]{pn}) (2.121)

where β is a positive number. It can be shown that if 0 < β < 2
λ1

where λ1 is the

largest eigenvalue of ([A]∗ [A]), then the iteration will converge. The major drawback

of the method is its slow convergence. Zhou & Rushforth (1991) and King (1992)

applied multigrid ideas adopted from the CFD field to accelerate the convergence.

Some applications of the method can be found in Abbiss (1983). In any case, (2.121)

can be written as:

{pn+1} = Qn([A]∗[A]) [A]∗ {b} (2.122)

where Qn is an arbitrary polynomial of degree n which must be chosen in order to

optimise the iteration. One approach would be to construct a polynomial so that the

residual:

‖ [A] {pn+1} − {b} ‖2 (2.123)
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is as small as possible, the solution technique being called the conjugate gradient

method. King (1989) provided an in-depth discussion of this particular technique

while Kammerer & Nashed (1972), Brakhage (1987) and Louis (1987) discussed its

convergence in some detail.

2.9.3 Truncated Singular Value Decomposition (TSVD)

A straightforward approach to computing {p} = [A]† {b} is to truncate the corre-

sponding singular decomposition of [A]. Therefore the truncation yields a solution

for {p}:

{p} =
nt∑
i=1

σ−1 ({ui}T {b}){vi} (2.124)

where nt is truncation level and σi, {ui} and {vi} are singular values and the orthonor-

mal set of basis vectors from singular value decomposition of [A] respectively. As with

any regularisation method for ill-posed problems, the choice of the truncation level in

the TSVD method is a delicate matter. Hansen (1987) investigated the TSVD as a

means of regularisation and compared it with Tikhonov’s work. The truncated SVD

method, with the level of truncation chosen by generalised cross validation method,

was investigated by Vogel (1986) for data contaminated by white noise error. The

convergence rate for the expected value of the square error was obtained under certain

assumption on the decay rates of the singular values.

Fregolent (1996) presented an updated model based on the use of the input resid-

ual. In order to treat the ill-conditioning, they used a TSVD, the truncation being

based on response minimisation. They claimed that such a criterion yielded more

reliable results than other truncation selectors, irrespective of the distance between

the theoretical and experimental models.
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2.9.4 Total Least Square Method

The total least square (TLS) is a method of solving over-determined sets of linear

equations of the form:

[A]{p} = {b} (2.125)

where both the observation vector {b} and the data matrix [A] contain errors. The

technique has been discussed by several authors: Madansky (1959) and Golub &

Vanloan (1979). In their further work Golub & Vanloan (1980) used a singular value

decomposition and obtained a solution by fitting a best subspace to [ [A], {b} ]. They

also explored the sensitivity of the TLS method as well as its relationship to ordinary

least-squares regression. Van Huffel & Vandewalle (1985) presented a geometrical

interpretation of the TLS method. They showed that TLS was superior to ordinary

LS in system identification and parameter estimation when the measured data were

contaminated by noise.

2.9.5 The Maximum Entropy Method

The origin of the maximum entropy method for estimating solution to inverse prob-

lems can be traced back to the fundamental work of Boltzmann on statistical me-

chanics (Boltzmann, 1910). Recently, the maximum entropy idea has been used to

regularise solutions of integral equations of the first kind. As in Tikhonov regulari-

sation, the idea is to seek a function which combines the features of a least-squares

solution with the regularity of an additional constraint by minimising an augmented

least-squares functional.

There is a huge amount of literature on maximum entropy method. Klaus & Smith

(1988) showed that for certain Fredholm integral equations of the first kind, the

maximum entropy method is stable. Amato & Hughes (1991) compared the results for

the Fredholm integral equation obtained both from the maximum entropy method and
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from the Tikhonov’s regularisation. They showed that, under most circumstances,

the maximum entropy method is regular in the sense of Tikhonov. The convergence

rate for the entropy-regularised approximation of a Fredholm integral equation of the

first kind was addressed by Engl & Landl (1991).

2.10 Concluding Remarks

• In spite of extensive research over the past fifteen years, the state-of-the-art in

finite element model is far from maturing and no reliable and generally appli-

cable procedure have been formulated so far.

• While many researchers have reported successful results for different updating

algorithms, there are no robust techniques which can handle industrial problems

routinely.

• The uniqueness and existence aspects of the updating problems are vital and

should be investigated further. In most case studies the solution seems to de-

pend on the selected parameters and constraints as well as the employed up-

dating technique.

• In general, all expansion methods produce reasonable results as long as the

measured set of DOFs remains spatially distributed. The Guyan and IRS yield

inaccurate results for a poor selection of master DOFs. SEREP expansion

produces consistently good results for different distributions of master DOFs.

SEREPa, which uses over-expansion, is very sensitive to the selection of the

master DOFs but produces better results than SEREP when a good selection

of masters is achieved. The relative ranking of the expansion methods is given

by O’Callahan & Li ( 1995) as SEREP, SEREPa, TAM, Dynamic, IRS and

Guyan expansion.

• In analytical model validation, it is common practice to convert the complex

measured mode shapes into a set of real mode shapes. For significantly-complex
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modes, the use of a global transformation matrix can introduce misleading re-

sults. However, further improvements can be obtained by tuning the realised

modes.

• It seems that sensitivity and FRF-based methods are the most promising updat-

ing techniques. Both methods depend largely on the reduction and expansion

technique used.

• Many researchers use simulated experimental data to assess their proposed

method. Such data are not necessarily a true reflection of the actual situation.

However, this avoids additional difficulties which are present in true experimen-

tal data, such as experimental and modal analysis errors, the effect of damping

and modal complexity.

• In principle, regularisation techniques can be used when the experimental data

are contaminated by noise so that a solution which is close enough to an ac-

ceptable solution can be obtained. However, many numerical difficulties exist

and such techniques should be used with caution.



Chapter 3

FRF Based Model Updating

3.1 Introduction

The use of frequency response functions instead of modal parameters for model up-

dating in relatively recent (Lin & Ewins, 1990; Larsson & Sas, 1992b; Lammens,

1993; Nalitolela, 1993). The approach presents some advantages. Since the FRF is a

measured quantity, errors due to modal parameter extraction are avoided. Further-

more, a large amount of data can be used to improve the stability of the updating

equations. In other words, the problem can be made overdetermined due to the avail-

ability of FRF data at a large number of frequency points, although it is not possible

to write down as many independent equation as there are frequency points.

In this Chapter the response function method (RFM), an updating technique using

frequency response function data, is investigated. A modified version of this updating

technique was recently presented by Larsson & Sas (1992b), the basic algorithm

being reviewed in Chapter 2. This approach has two important advantages: FRF

approximation for large parameter variation and incomplete measurement data. The

effects of some regularisation techniques, such as truncated SVD, total least square

solution and minimum entropy regularisation on the accuracy of the results will be

addressed in the next chapter.

83
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3.2 Theory

3.2.1 Background

A fundamental difference between various methods of model updating is related to the

definition of the residual terms. Some methods define the residual as the difference

between the experimental and analytical displacements when the structure is excited

by the same harmonic force:

{ε1({p})} = {XX} − {XA({p})} (3.1)

where {p} is the vector of updating parameters. For the analytical system:

{XA} = [HA(ω)] {fA} (3.2)

where [HA(ω)] is the receptance FRF matrix. On the other hand, applying a unit

force at the jth experimental degree of freedom yields :

{XX} = {HX}j (3.3)

where {HX}j is the jth column of experimental receptance FRF matrix. Substituting

(3.3) and (3.2) into (3.1):

{ε1({p})} = {HX}j − [HA({p})] {I}j = {HX}j − {HA({p})}j (3.4)

The approach results in a complex-valued residual vector {ε1}. For a good corre-

lation at a given frequency point ω, the residual vector {ε1} should be less than a

set tolerance or the sum of ‖{ε1}‖ over a number of frequency points should be a

minimum.
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Although equation (3.4) is very straightforward, its application is limited by the fact

that the elements of matrix [HA] do not vary smoothly for changes in parameters pi at

any given frequency. In addition, [HA] is discontinuous near resonances particularly

for low damping system.

The above remarks lead us to a different way of formulating the problem. The residual

instead of being the difference between the experimental and analytical displacements,

can also be defined as the difference between the forces acting on the real structure,

{fX}, and those predicted by the analytical model at the same frequency:

{ε2({p})} = {fX} − {fA({p})} (3.5)

Since {fA} = [ZA]{XA} then:

{ε2({p})} = {fX} − [ZA({p})] {XA} (3.6)

where

[ZA] = [KA] + i [DA] + iω[CA]− ω2 [MA]

[KA], [DA], [CA] and [MA] being the stiffness, structural damping, viscous damping

and mass matrices respectively.

By applying a unit load at jth degree of freedom and using equation (3.3):

{ε2({p})} = {I}j − [ZA({p})] {HX}j (3.7)

Equation (3.7) represents a set of non-linear equations, whose solution for {p} =

{p1, p2, . . . }T may or may not exist. Assuming that the solution exists and the
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components of matrix [ZA] behave in an almost linear fashion, matrix [ZA] can be

linearised by a truncated Taylor series:

[ZA({p})] = [Z0
A] +

∑
i

∂[ZA]

∂pi
∆pi +O(∆pi)

2 (3.8)

By substituting equation (3.8) into equation (3.7) and setting the residual vector {ε2}
to null vector, one obtains:

{I}j − [Z0
A]{HX}j = (

∑
i

∂[ZA]

∂pi
∆pi) {HX}j (3.9)

3.2.2 Incomplete Data and Dynamic Reduction

The quantity {HX} appears on both sides of equation (3.9). On the left hand side,

the incompleteness of {HX} is not a problem but a full vector of {HX} is required

on the right hand side. One way of dealing with incompleteness is the expansion of

measured data. Many attempts have been made for the expansion of measured data

but experience shows that none have been particularly satisfactory.

An alternative is to reduce the size of analytical model by using a matrix condensation

technique, many such techniques being discussed in Chapter 2. An exact dynamic

condensation will be considered here. The proposed algorithm is effective provided

that the components of the reduced impedance matrix, [ZRed
A ], are well approximated

by linear functions of the updating parameters.

Starting with the following identity:

[Z] [H] = [I ] (3.10)

and partitioning the matrices [Z] and [H] into measured, n, and unmeasured, s,

degrees of freedom, one obtains:
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 [Znn] [Zns]

[Zsn] [Zss]


 [Hnn] [Hns]

[Hsn] [Hss]

 =

 [Inn] 0

0 [Iss]

 (3.11)

The first column of (3.11) can be written explicitly as:

[Znn] [Hnn] + [Zns] [Hsn] = [Inn]

[Zsn] [Hnn] + [Zss] [Hsn] = 0
(3.12)

By eliminating [Hsn] from (3.12), one obtains:

(
[Znn]− [Zns] [Zss]

−1 [Zsn]
)

[Hnn] = [Inn] (3.13)

Post-multiplying (3.13) by [Hnn]−1:

[Hnn]
−1 = [Znn]− [Zns] [Zss]

−1 [Zsn]

If we define [ZRed
A ] as the inverse of Hnn, then:

[ZRed
A ] = [Znn]− [Zns] [Zss]

−1 [Zsn] (3.14)

3.2.3 Formulation of FRF Based Model Updating

Based on the exact dynamically-reduced dynamic stiffness matrix, it is possible to

avoid the introduction of additional approximations which detract from the solution

of the updating equations. The approach here is based on the following observations:

(i) The dynamically-reduced system is exact in the sense that it has identical dynamic

properties as the original system.
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(ii) The reduced model contains the information in terms of the reduced degrees of

freedom only.

(iii) The problem can be defined in terms of a well-behaved mathematical function.

Starting with (3.7), a new formulation can be expressed as (Chargin & Miura, 1993):

{ε2({p})} = {I}j − [ZRed
A ({p})] {HX}j (3.15)

By expanding [ZRed
A ] in (3.15) via a Taylor series and setting the residual vector {ε2}

to the null vector:

{I}j − [ZRed
A ]0{HX}j = (

∑
i

∂[ZRed
A ]

∂pi
∆pi) {HX}j (3.16)

Now, the aim is to find a relationship between the derivatives of matrices [Z] and

[H], as well as those of [ZRed] and [HRed]. By considering the identity [HA] [ZA] = [I ]

and calculating its partial derivative with respect to pi, one can get:

∂[HA]

∂pi
[ZA] + [HA]

∂[ZA]

∂pi
= 0

or

∂[HA]

∂pi
= −[HA]

∂[ZA]

∂pi
[HA] (3.17)

Similarly for the derivative of [Z] :

∂[ZA]

∂pi
= −[ZA]

∂[HA]

∂pi
[ZA] (3.18)
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Using equations (3.17) and (3.18) for [ZRed
A ], the following exact expression for the

derivative of [ZRed
A ] with respect to pi can be obtained (Larsson & Sas, 1992b):

∂[ZRed
A ]

∂pi
= [ZRed

A ]

[
[HA]

∂[ZA]

∂pi
[HA]

]Red
[ZRed

A ] (3.19)

inserting equation (3.19) into equation (3.16), one obtains:

∑
i

[ZRed
A ]

[
[HA]

∂[ZA]

∂pi
[HA]

]Red
[ZRed

A ] ∆pi

 {HX}j = {I}j − [ZRed
A ]0 {HX}j

j = 1, . . . , n (3.20)

where

[ZA] = ([KA] + i [DA]) + i ω [CA] − ω2 [MA]

and [DA] and [CA] are analytical matrices of structural and viscous damping respec-

tively, thus:

∂[ZA]
∂pi

= ∂[KA]
∂pi

+ i ∂[DA]
∂pi

+ i ω ∂[CA]
∂pi
− ω2 ∂[MA]

∂pi

If we assume that the total number of unknown parameters is Q, then equation (3.20)

can be rewritten in matrix form as:



∂[ZRedA ]

∂p1
{HX}1

∂[ZRedA ]

∂p2
{HX}1 . . .

∂[ZRedA ]

∂pQ
{HX}1

∂[ZRedA ]

∂p1
{HX}2

∂[ZRedA ]

∂p2
{HX}2 . . .

∂[ZRedA ]

∂pQ
{HX}2

...
...

...
...

∂[ZRedA ]

∂p1
{HX}J ∂[ZRedA ]

∂p2
{HX}J . . .

∂[ZRedA ]

∂pQ
{HX}J





∆p1

∆p2

...

∆pQ


=
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

{I}1 − [ZRed
A ]0 {HX}1

{I}2 − [ZRed
A ]0 {HX}2

...

{I}J − [ZRed
A ]0 {HX}J


(3.21)

Where J is the number of load cases. It should be mentioned that the number of

independent load cases, J, is a subset of number of degrees of freedom of which the n

FRFs are measured (Chargin & Miura, 1993).

Taking an undamped structure modelled with N degrees of freedom yields a maximum

of N (N + 1) unknowns when both the mass and stiffness matrices are symmetrical.

Assuming that a full column of the FRF matrix can be measured for each of the J

load cases, the number of equations at each frequency point becomes N × J . If Nf

defines the number of frequency points, then the total number of equations is equal

to N × J × Nf Hence, the minimum requirement for the solution is the knowledge

of any column of the FRF matrix at N+1
J

frequency points since there are N(N + 1)

unknowns. It should also be noted that the problem can be made overdetermined

since, in general, there are many frequency points within the range of interest.

Although many frequency points are available within the frequency range of interest,

it does not mean that it is possible to write down as many independent equations as

frequency points. It seems that the updating frequencies that produce independent

equations and their actual position are case dependent, the number of measured

modes in the frequency range being the most important factor.

In reality, FRFs are measured at n degrees of freedom only, such that n � N .

Therefore, the total number of responses available will be n × J × Nf . So, the

minimum requirement for the solution becomes the knowledge of any column of the

FRF matrix at N×(N+1)
n×J×Nf frequency points.
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3.2.4 Error Modelling

In the case of coordinate incompleteness, the solution of the updating equations is

non-unique. Additional constraints, taking into account physical connectivities, can

be introduced. For instance, forcing the zero elements to remains zero in order to

limit the number of possible solutions is an obvious route to take.

Further constraints can be introduced by considering the mass, stiffness and damping

matrices of individual finite elements. Let us assume that modelling errors can be

expressed as linear combination of the individual element mass, stiffness and damping

matrices:

[MA] =
Nm∑
i=1

(1 + pmi )[Me]i

[KA] =
Nk∑
i=1

(1 + pki )[K
e]i (3.22)

[CA] =
Nc∑
i=1

(1 + pci )[C
e]i

[DA] =
Nd∑
i=1

(1 + pdi )[D
e]i

Referring to equation (3.21), the p-values derivatives of the receptance matrix and of

the reduced receptance matrix can be calculated as:

∂[ZA]
∂pmi

= −ω2 [Me]i i = 1, . . . , Nm

∂[ZA]

∂pki
= [Ke]i i = 1, . . . , Nk

∂[ZA]
∂pci

= i ω [Ce]i i = 1, . . . , Nc

∂[ZA]

∂pdi
= i [De]i i = 1, . . . , Nd

(3.23)
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∂[ZRedA ]

∂pmi
= −ω2 [ZRed

A ] ([HA][Me]i[HA])Red [ZRed
A ] i = 1, . . . , Nm

∂[ZRedA ]

∂pki
= [ZRed

A ] ([HA][Ke]i[HA])Red [ZRed
A ] i = 1, . . . , Nk

∂[ZRedA ]

∂pci
= iω [ZRed

A ] ([HA][Ce]i[HA])Red [ZRed
A ] i = 1, . . . , Nc

∂[ZRedA ]

∂pdi
= i [ZRed

A ] ([HA][De]i[HA])Red [ZRed
A ] i = 1, . . . , Nd

(3.24)

Thus, for linear modelling errors, one can write equation (3.21) as:

[R(ω)](n×J×Nf )×(Nm+Nk+Nc+Nd) {p}(Nm+Nk+Nc+Nd)×1 = {q}(n×J×Nf )×1 (3.25)

where {p} = {pm1 , . . . , pmNm , pk1, . . . , pkNk , p
c
1, . . . , p

c
Nc, p

d
1, . . . , p

d
Nd
}. As the p-values are

always real, equation (3.25) can be separated into its real and imaginary parts and

the resulting equation re-arranged as:

 Re[R(ω)]

Im[R(ω)]

 {p} =

 Re{q}
Im{q}


or in short form as:

[A(ω)](2×n×J×Nf )×(Nm+Nk+Nc+Nd) {p}(Nm+Nk+Nc+Nd)×1 = {b}(2×n×J×Nf )×1 (3.26)

The matrix equation (3.26) is inverted by SVD to calculate the unknown vector {p}
so as to obtain an updated estimate of the stiffness, mass and damping matrices for

the next iteration. The process continues until the convergence of vector {p}.
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3.3 Case 1: 10 Degree-of-Freedom System

A 10-DOF lumped parameter system, shown in Fig. (3.1), was employed to investi-

gate the use of the reduced dynamic stiffness matrix technique of previous section.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

m1 = 1.0 Kg
m2 = 1.0 Kg

m3 = 2.0 Kg

m4 = 3.0 Kg

m5 = 6.0 Kg

m6 = 5.0 Kg

m7 = 4.0 Kg 

m8 = 2.0 Kg

m9 = 1.0 Kg

m10 = 1.0 Kg

k1 = 0.40 MN/m

k2 = 0.48 MN/m

k3 = 0.60 MN/m

k4 = 1.20 MN/m

k5 = 2.20 MN/m

k6 = 1.60 MN/m

k7 = 1.32 MN/m

k8 = 1.00 MN/m

k9 = 0.80 MN/m

k10 = 0.68 MN/m

Figure 3.1: The 10 DOF system

The experimental model was provided by a version of the basic system in which there

was 10% and 25% decrease in the values of m1 and m4 and 15%, 10%, 30% and 10%

increase in those of m7, k3, k5 and k9 respectively. A typical receptance FRF, α55,

computed for both models over the 20-200 Hz frequency range is plotted in Fig. (3.2).
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Figure 3.2: Receptance FRF, α55, obtained from the experimental
and analytical models of 10 DOF system
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3.3.1 Updating Using Complete Experimental Data

At first it was assumed that all required FRFs were measured. One load case and

ten frequency points were selected in the range of 20-200 Hz, namely 20, 30, 60,

80, 90, 110, 120, 150, 170 and 180 Hz. The selection of the frequency points is a

very important step: if a point is selected in the immediate vicinity of a resonance,

the inversion of matrix [A] becomes prone to ill-conditioning. In this first case, the

frequency response functions were updated correctly in the sense that they matched

those of experimental model. The receptance FRF, α55, obtained from the updated

analytical model is shown in Fig. (3.3) together with the measured receptance. Both

curves are seen to be identical within the frequency range of interest and beyond.
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Figure 3.3: Receptance FRF, α55, obtained from the experimental
and updated analytical models of 10 DOF system (com-
plete experimental model)
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3.3.2 Using Incomplete Experimental Data

The incomplete experimental model consisted of 5 FRFs only, these being measured

at coordinates 1, 4, 6, 7 and 10. Ten points were selected from the frequency range

20-80 Hz. The convergence criterion was defined as ‖{p}‖ < 10−4 and convergence

was obtained after 11 iterations. The solution path was also examined by selecting

different sets of frequency points from the same range. In all cases, the FRFs of the

updated system were found to be identical to the experimental ones (Fig. 3.4).
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Figure 3.4: Receptance FRF, α55, obtained from the experimental,
analytical and updated analytical models of 10 DOF
system (incomplete experimental model)
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Although incomplete measured data were used, the solution seemed to be unique.

Figs (3.5-a), (3.5-b) and (3.5-c) show convergence towards this unique solution after

1, 2 and 3 iterations respectively. This reduced dynamic stiffness matrix algorithm

seems to be more stable than the method used by Visser (1992) in a similar study.
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(a) p-values after 1 iteration
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Figure 3.5: Convergence toward unique solution
(All plots have the same scale)
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3.3.3 Using FRF Data Polluted by Noise

At this stage, it should be noted that there are no realistic models for the introduction

of simulated experimental noise into analytically-generated data. Basically, experi-

mental noise consists of correlated and uncorrelated noise, the former comprising

errors arising from signal conditioning, transduction, signal-processing and the inter-

action of the measurement system with the structure. The latter includes errors due

to thermal noise in electronic circuits as well as those due to external disturbances.

In the absence of a more realistic representation, a simple frequency-domain model

with uniformly-distributed noise will be used here:

H ′ij = (1 + σ%) Hij (3.27)

where H and H ′ are the noise-free and polluted values of the FRF. σ is a random

number that varies between zero and maximum expected error, typically 2% − 5%

depending on the type of structure that is being tested. The experimental data in

Section (3.3.2) were polluted by adding noise between 1% to 10%. The number of

frequency points was increased to 25 to compensate for the expected adverse effects of

random noise. The calculations were repeated with different set of frequency points

in order to check the repeatability of the solution. Although, good agreement was

reached at the FRF level, it was observed that the updated model was not unique.

Fig. (3.6) shows the receptance, α55, computed for analytical, measured and updated

models when there is 10% noise in the experimental data.



Chapter 3 FRF Based Model Updating 98

20 40 60 80 100 120 140 160 180
−200

−175

−150

−125

−100

  −75

  −50

−25

0

Frequency (Hz)

R
ec

ep
ta

nc
e 

(d
B

 r
e 

1 
m

/N
)

−−−−

........

Experimental

Updated (10% noise)

Figure 3.6: Receptance FRF, α55, obtained from the experimen-
tal and updated analytical models of 10 DOF system
(Incomplete experimental model with 10% noise)

3.4 Case 2: 3D Bay Structure

The second example was based on a three dimensional free-free frame structure which

is called 3D Bay structure. The structure was chosen to be representative but simple.

It was modelled using twenty 12-DOF 3D beam elements. The material properties

were modulus elasticity of 207 × 109 N/m2 and mass density of 7850 Kg/m3. All

beams have a rectangular cross section with a width of 10cm and height of 1cm. Four

models were created:

1- Model FE1 has 10 elements for which the Young’s modulus was increased by 8 %.

2- Model FE2 has 8 elements for which the X and Y moments of inertia were increased

by 30%.
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Figure 3.7: Model FE1
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Figure 3.8: Model FE2
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3- Model X1 contains no errors and was used to generate the simulated experimental

data.

4- Model X2 is the same as model X1 but its mesh is double in size.

Models FE1 and FE2 are shown in Figs. (3.7) and (3.8), the bold lines indicating

those elements that contain the errors.

A typical FRF, exemplified here by receptance α33, is plotted in Fig. (3.9) for models

FE1 and X1.
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Figure 3.9: Receptance FRF, α33, obtained from experimental (X1)
and analytical (FE1) models
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3.4.1 Noise-free Experimental Data - FE1 Vs X1

Two initial cases were carried out using noise-free data. In the first case, all elements

of the receptance vector (rotations as well as translations) were assumed to be known

while in the second case it was assumed that measurement were made only in X, Y

and Z directions at node 1 plus in the Z direction at nodes 5, 7, 9, 11, 13, 15 and

18. For this second case the correspondence factor, or the ratio of the number of

measured DOFs to the total number of DOFs is 8.7%.

By using 10 frequency points in the range of interest and 10 measured coordinates,

the number of rows in matrix [A] is 100, while the number of unknowns is 40 since

there are 2 unknowns per element. The first case converged in 2 iterations only while

the second one required 5 iterations for convergence. The p-values for the second case

are shown in Fig. (3.10).
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Figure 3.10: p-values for the case of 10 measured coordinates

Since the errors are linear combinations of individual finite elements, the dynamic stiff-
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ness matrix is a linear function of p-values for the complete measured data. Therefore,

it is expected to have a unique solution in the first case. In the second case only 9 out

of 114 DOFs were known. Thus, the reduced dynamic stiffness matrix is not a linear

function of p-values anymore and the uniqueness of the solution cannot be guaran-

teed. It is also noticeable that in the second case the model was corrected using a

receptance column for excitation in Z direction as well as X and Y directions. In this

example, no improvement were achieved for excitation in just Z direction because in

a simple beam model the axial and lateral variation are decoupled.

3.4.2 Noisy Experimental Data - FE1 vs X1

In the case of incomplete FRF data with added noise, the solution is not unique and

different sets of p-values can be obtained for different sets of frequency points. The

adverse effects of coordinate incompleteness and noise can be partly offset by choosing

more frequency points than the required minimum. However, there is a cut-off fre-

quency above which the linear approximation in equation (3.16) is not valid anymore

and causes the divergence of the solution. Also by adding more frequency points, the

CPU time for each run will increase. Nevertheless, updated models obtained from

FRF data with .5% and 1% random noise showed a marked improvement over the

original model (Fig. 3.11). Noise levels of more than 1% led to the instability of the

updating algorithm and no solution was found. This matter will be discussed in some

detail in Chapter 5.
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Figure 3.11: Receptance FRF, α33, obtained from experimental and
updated models with .5% and 1% noise levels

3.4.3 Updating of FE2 vs X1

In this model, the X and Y moments of inertia for eight elements were increased

by 30%. These changes affect both the mass and stiffness matrices and the errors

are no longer linear combinations of the individual finite elements. Consequently, the

updating solution was not unique and different for each frequency points set. Another

reason for non-uniqueness is due to the fact that the amount of error for each element

is large (30%) so that a first-order approximation is not accurate enough.

3.4.4 Updating of FE1 vs X2

In the previous case studies, it was assumed that there was a one-to-one correspon-

dence between the theoretical and experimental models, a feature which cannot be
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achieved in practice. In other words, the fact that models FE1, FE2 and X1 were

discretised using the same mesh not only simplifies the problem of model updating

significantly, but also the situation is not all representative of the real engineering

problem where the errors are not explicitly present in the model. After some de-

liberation, it was decided to update Model FE1 using Model X2 which has double

the mesh size of X1. In spite of using the complete FRF vector obtained from X2

(target model), the solution diverged and no improvements were obtained in this

case. During the first few iterations, p-values of -1.0 were obtained, implying that

the corresponding element should be deleted from the updated matrices, resulting in

numerical instability and divergence. The problem could not be cured by selecting

different sets of frequency points, a fact which indicates that the discretisation errors

cannot be expressed as linear combinations of the individual element mass, stiffness

matrices. This observation has far reaching implications in FE model updating as it is

unlikely that discretisation differences between the two models will ever be resolved.

3.5 Computational Aspects of the Method

3.5.1 Frequency Range Considerations

As mentioned before, the force-based residual is a function of [ZA({p})] or [ZA({p})]Red,
the former for complete and the latter for incomplete systems respectively. The ana-

lytical dynamic stiffness matrix for an undamped structure at a particular frequency

ω, can be written as:

[ZA({p})] = [KA({p})]− ω2 [MA({p})] (3.28)

where the vector {p} contains the updating parameters. In most cases, the elements

of [ZA] are smooth functions of the updating parameters. For instance, Fig. (3.12)

shows a typical element, here Z33, of the dynamic stiffness matrix for model FE1
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of the Bay structure. Fig. (3.12b) shows the variation of many such curves with a

typical design variable, here the change in the stiffness of element 13.
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Figure 3.12: Component Z33 of the dynamic stiffness matrix of model
FE1

As expected, the elements of the dynamic stiffness matrix are smooth functions of

frequency for a particular vector {p} of updating variables. As long as the changes in

these parameters remain physically acceptable, the elements will keep their smooth

behaviour, a feature that justifies the linearisation of equation (3.8). The same justi-

fication is also necessary for the reduced dynamic stiffness matrix. Fig. (3.13) shows

element Z33 in the same format as Fig. (3.12), but this time for the reduced dynamic

stiffness matrix resulting from incomplete measurements, the reduction being that of

Section (3.4.1). In this case, the co-ordinate reduction ratio is 10/114 and significant

discontinuities are apparent from Fig. (3.13).

If the stiffness, damping and mass matrices are smooth functions of the updating

parameters, the only singularities will be due to [Zss]
−1 in (3.14). Matrix [Zss] can

be viewed as the impedance matrix of a structure which is obtained by grounding all

n measured degrees of freedom of the main structure. Assuming that the structure is

undamped, the natural frequencies of this partially-grounded structure can be found

as, ωR1 , ωR2, ..., ωRs . A typical element of matrix [Zss]
−1 can then be written as:
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Figure 3.13: Component Zred
33 of the reduced dynamic stiffness matrix

of model FE1

(αss)ij =
A(ω)

(ω2
R1
− ω2)(ω2

R2
− ω2) · · · (ω2

Rs − ω2)
(3.29)

From equation (3.29), it is obvious that the reduced impedance matrix is singular

when the excitation frequency ω is near one of the natural frequencies of the par-

tially grounded structure. In other words, in such situations the partially grounded

structure cannot be assumed to yield a smooth [ZRed].

The above discussion is important when selecting the range of the updating frequen-

cies. Larsson & Sas (1992b) suggest using the first natural frequency of the partially

grounded structure as the upper bound. However, this criterion is too restrictive

and may prevent the consideration of practical uses. The useful range of excitation

frequencies is not necessarily limited by the first frequency of the partially-grounded

structure, but it is difficult to draw any general conclusions for finding a reduced

impedance matrix whose elements are smooth functions of both the excitation fre-

quencies and the updating parameters. Further research is recommended to establish

guidelines for the calculation of a cut-off frequency or for the avoidance of disconti-

nuities.
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3.5.2 Noise Sensitivity Reduction

Two types residuals will be used for reducing the sensitivity of the updating formu-

lation to experimental noise:

(i) Receptance residue

{ε1({p}, ω)} = {HX(ω)}j − {HA({p}, ω)}j (3.30)

The receptance residue is based on minimising the distance between the experimental

and analytical receptance values at selected frequencies. The corresponding cost

function, denoted by J1({p}) can be written as:

Min J1({p}) =
Nf∑
i=1

(
‖{ε1({p}, ωi)}‖2

‖{HX(ωi)}‖2

)
(3.31)

The minimisation of the receptance residue is one of the most straightforward ways to

use the experimental data directly. However, as discussed earlier, the disadvantages

are the non-smoothness of analytical receptances as a functions of the updating pa-

rameters and the excitation-frequency. Thus, the linearisation assumption of (3.8) is

not always applicable and the algorithm may become unstable. Convergence towards

local minima and/or divergence are very likely to happen during the minimisation

process.

(ii) Force-balance residue

{ε2({p}, ω)} = {I}j − [ZA({p}, ω)]Red {HX(ω)}j (3.32)

The minimisation of the force balance residue is not as direct as that of the receptance

residue. The corresponding cost function, denoted by J2({p}) can be written as:
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Min J2({p}) =
Nf∑
i=1

(
‖{ε2({p}, ωi)}‖2

‖{HX(ωi)}‖2

)
(3.33)

This minimisation is more likely to be stable. However, convergence cannot be guar-

anteed and divergence and/or convergence towards local minima is still possible. Fig.

(3.14) shows typical values of the cost function J2 which are obtained by varying two

out of forty pi parameters, namely the stiffness of the first and 8th elements (pk1 and

pk8) in the second example of Section (3.4.1).
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Figure 3.14: Variable of the cost function J2 for pk1 ∈ [−.9, .9] and
pk8 ∈ [−.9, .9]

The importance of this observation is that, around resonance, a small change in

the updating parameters can lead to very large amplitude differences between the

measured and predicted receptances. It is also evident that the radius of convergence

based on (3.33) is usually very small and perhaps even unstable for some applications.

Figs. (3.15a & b), which illustrate the behaviour of J2 for a specific test case, show

this point clearly.
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Figure 3.15: Cost function J2

The minimisation of the force-balance residue is also prone to numerical problems

since equation (3.32) is inherently ill-conditioned. {ε2({p}, ω)} is a vector of small-

valued elements. As a consequence, the J2 cost function is very sensitive to mea-

surement errors in {HX}j and leads to biased parameters. Thus, it is recommended

to weight {ε2({p}, ω)} by pre-multiplying it by the dynamic flexibility matrix of the

analytical model:

{ε̃2} = [H0
A]Red{ε2} (3.34)

or

{ε̃2} = {H0
A}j − [H0

A]Red[ZA]Red{HX}j (3.35)

Expanding [ZA]Red using Taylor series yields:

{ε̃2} = {H0
A}j − [H0

A]Red
(

[Z0
A] +

∑
i

∂[ZA]Red

∂pi
∆pi

)
{HX}j (3.36)
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For maximum correlation at a given frequency point, the residue should be equal to

zero:

(
[H0

A]
∑
i

∂[ZA]Red

∂pi
∆pi

)
{HX}j = {H0

A}j − {HX}j (3.37)

Equation (3.37) is better conditioned than equation (3.32). It can be seen from

equation (3.35) that if one puts [H0
A] = [HA], the new force residue will be the

same as the receptance residue. So, in this final form, the minimisation of the new

receptance residue leads to the minimisation of the receptance residue. However, for

most selection of updating parameters, this minimisation is more stable.

3.5.3 Choice of the Damping Matrix

Experimental FRFs contain information about the damping behaviour of the struc-

ture while the FE model describes this behaviour in a very approximate way or ne-

glects it altogether. Model updating procedures which use experimental FRFs must

somehow deal with such a discrepancy or their applicability is limited to structures

with low damping. Different approaches to include damping in the FE models will be

described here. Most methods use experimentally-identified damping ratios to con-

struct a viscous damping matrix [C] or a structural damping matrix [D]. Although

damping is the least accurate of the identified modal parameters, such a route is an

accepted way of incorporating realistic damping values into a finite element model.

Viscous Damping

In most cases, the finite element model is undamped and hence the individual element

damping matrices are not available. Nevertheless, a form of proportional damping

can be assumed as a starting point:
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[Ce
i ] = αi [K

e
i ] (3.38)

This form of proportional damping also allows for variations in damping values over

parts of the structure. For a more refined description of damping, a linear combination

of the elemental mass and stiffness matrices can be considered:

[Ce
i ] = αi [K

e
i ] + βi [M

e
i ] (3.39)

In such case, there will be two additional updating parameters associated with each

finite element. This route will increase the number of unknowns and the benefit of

the finer description of the damping may be lost in some cases. However, using (3.39)

and discretising the structure into N finite elements:

[C] =
N∑
i=1

αi [K
e
i ] + βi [M

e
i ] (3.40)

The coefficients αi and βi are initially estimated and then corrected by an appro-

priate updating procedure. The main difficulties are the initial estimation of the

[C] matrix and the physical significance of the damping parameters. For the initial

approximation, the structure is assumed to be homogenous and isotropic, i.e.:

[C] = α [K] + β [M ] (3.41)

where [M ] and [K] are the global mass and stiffness matrices. One approach is

to determine α and β from the experimental damping ratios by assuming SDOF

behaviour around resonances. The damping ratio for a single degree of freedom

system is:

ξr =
c/m

2ωr
r = 1, . . . , N (3.42)
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Since c = αk + βm:

ξr =
αω2

r + β

2ωr
r = 1, . . . , N (3.43)

Having obtained ξr and ωr from experimental modal analysis, values of α and β can

be determined through a least square solution and used as initial guesses in (3.40).

Modal Damping

The modal damping approach defines a viscous damping matrix of the form:

[C] =
N∑
r=1

2ωrξr{φX}r{φX}Tr (3.44)

where {φX}r is the rth mass-normalised measured mode shape. The coefficients ξr are

initially estimated by the modal damping ratios and then corrected by the updating

procedure. In this case, there is only one additional updating parameters per each

finite element.

Structural Damping

A structural damping matrix, [D], can be defined in a similar manner to the viscous

damping matrix of equation (3.38):

[De
i ] = ηi [K

e
i ] (3.45)

or

[D] =
N∑
i=1

ηi [K
e
i ] (3.46)
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As a first approximation, one can assume that all ηi are equal to some averaged value

η given by:

η =
2

m

m∑
r=1

ξr (3.47)

3.5.4 Case 3: Complex FRF Data

A free-free rectangular plate was used as an example to carry out model updating

using complex FRF data. The dimensions of the plate were 0.25m× 0.45m × .001m
with a mass density of 7860 Kg/m3. ( Fig. 3.16)

Figure 3.16: The plate model

The plate was divided into 45 three dimensional plate elements on a mesh of 6× 10.

The total number of DOFs was therefore 60 × 6 = 360. The elemental mass and

stiffness matrices were taken from the FE code ANSYS. Since the finite element

model was undamped, the individual element damping matrices were formed using

proportional damping in the form of:
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[De] = η [Ke]

where η was taken as 1% initially. The experimental data were simulated using a

uniform plate model with 1% structural damping and the FRF data for this damped

plate consisted of all Z direction receptances obtained for a Z direction excitation at

node 1. The analytical model contains errors in the form of 10% increase in the mass

matrix of elements 1, 6, 11, 16, 21, 26, 31, 36 and 41 and 10% increase in the stiffness

matrix of elements 3, 8, 13, 18, 23, 28, 33, 38 and 43. Nine known errors of 10% were

also introduced to damping matrices of elements 5, 10, 15, 20, 25, 30, 35, 40 and 45.

A typical FRF, here α33, computed from the experimental model is depicted in Fig.

(3.17).
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Figure 3.17: Receptance FRF, α33, obtained from experimental
model of uniform plate
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Two case studies were considered at this stage. In the first one, the experimental FRFs

were generated with 0% random noise for 60 out of the 360 known coordinates. Several

runs, each with a different set of frequency points, were considered. Convergence was

obtained within a few iterations and both the location and the size of errors were

correctly identified in spite of model incompleteness (Fig. 3.18).

(a) p-values for mass matrix (b) p-values for stiffness matrix

(c) p-values for damping matrix

Figure 3.18: Incomplete data and 0% noise
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In the second case, the incomplete experimental data were polluted with 2% noise.

Although the convergence of the p-values required more iterations than the first case,

the solution was again satisfactory. Fig. (3.19) shows the location and magnitude of

the errors in the mass, stiffness and damping matrices.

(a) p-values for mass matrix (b) p-values for stiffness matrix

(c) p-values for damping matrix

Figure 3.19: Incomplete data and 2% noise

The results indicate that complex FRF data with or without noise make the con-

vergence process numerically more stable. This can be explained by the fact that

damping makes the FRF data more smooth near the resonance and anti-resonance

points.
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3.5.5 The Selection of Frequency Points

Experimental FRFs consist of data acquired at a large number of frequency points in

a given frequency range. Using all available data in an updating procedure needs a

significant amount of CPU time. Moreover, there is a lot of redundant information in

the measured FRFs. As a consequence, a small number of optimum frequency points

should be used. However, the minimum number and their position in the frequency

range of interest are case dependent. Nevertheless, some general considerations will

be pursued here.

A set of selected frequency points should contain all information that is given by the

experimental data. It means that the number of frequency points should be equal

to, or greater than, the number of modes in the measured frequency range. In order

to reduce the effect of noise, this number is usually more than twice the number of

measured modes.

The position of the frequency points is obtained by a rule of thumb which states that

at least one frequency point needs to be selected between two consecutive resonances.

The quality of the selection can later be checked by a singular value decomposition

of the FRF matrix using the selected points only:

[Hsel
X ]j =

[
{HX(ω1)}j {HX(ω2)}j . . . {HX(ωNf )}j

]
(3.48)

As mentioned before, matrix [Hsel
X ]j should contain all the information which is present

in the full set of experimental receptances. To do so, the rank of the matrix [Hsel
X ]j

should be at least equal to the number of modes, m, in the experimental frequency

range. Also the ratio of the first and the mth singular values, σ1

σm
, should not be too

large.

The accuracy of the experimental data may vary from point to point. Due to the

influence of noise, the FRF data close to anti-resonances are not very accurate. The

data near the resonance frequencies are biased by measurement errors like leakage.
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Thus, it is recommended to avoid choosing the frequency points near such areas. The

coherence data can also give some information about possible errors.

Another important point in the selection of frequency points is the stability of the

updating technique (see Section 3.5.1). As was pointed out previously, the stability

of the updating procedure is independent of the updating frequencies when these are

chosen below the first natural frequency of the grounded structure. However, some

numerical considerations must still be made. The solid line curve in Fig. (3.20)

shows the experimental model X1 for the Bay structure while the dash line shows the

corresponding analytical model FE1.
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Figure 3.20: Three different updating frequencies for experimental
model X1

The natural frequencies of the experimental and analytical models are 265.8 and

270 Hz respectively. Three updating frequencies were selected in the 200 Hz-285 Hz

frequency range:
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(1) below the experimental natural frequency. (point A)

(2) between the experimental and analytical natural frequencies. (pointB)

(3) above the analytical natural frequency. (point C)

The vertical lines A−A′, B−B′ and C −C ′ show the differences between the exper-

imental and the analytical receptances at these updating frequencies. The aim of the

updating procedure is to minimise these differences. However, during the iteration,

when the analytical natural frequency shifts to a value close to an updating frequency

(here point B), the analytical receptance at that updating frequency becomes very

large. Such a large increment in the receptance difference can cause numerical prob-

lems and instability. As a result, the selection of an updating frequency between

analytical and experimental resonances should be avoided whenever possible.

3.5.6 An Improved Formulation for the Iterative Calculation

of p-values

Most researchers suggest the following expression for the calculation of consecutive

p-values:

{p}new = {p}old + {∆p} (3.49)

or

{p}i = {1}+ {∆p}1 + {∆p}2 + . . . + {∆p}i

where i is the iteration number and {p}0 is the initial guess vector, usually assumed

to be one. At each iteration, the original mass and stiffness matrices are multiplied

by the corresponding elements of {p}i and the new global mass and stiffness matrices

are assembled. This scheme is employed until the difference between the predicted

and the analytical models is within a predefined tolerance.
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An alternative route will be investigated here. The updated elemental stiffness matrix

j at iteration i for instance is:

[Ke
j ]

1 = [Ke
j ]

0 (1 + ∆p1
j)

[Ke
j ]

2 = [Ke
j ]

1 (1 + ∆p2
j) = [Ke

j ]
0 (1 + ∆p1

j) (1 + ∆p2
j)

... =
... =

...

[Ke
j ]
i = [Ke

j ]
i−1 (1 + ∆pi−1

j ) = [Ke
j ]

0 (1 + ∆p1
j) (1 + ∆p2

j) . . . (1 + ∆pij)

(3.50)

Using this approach, the final correction factor associated with the initial stiffness

matrix [Kj]0 of element j is:

pij = (1 + ∆p1
j)(1 + ∆p2

j) . . . (1 + ∆pij)

pij = (1 + ∆p1
j + ∆p2

j + . . .+ ∆pij + ∆p1
j∆p

2
j + . . .+ ∆p1

j∆p
2
j∆p

3
j + . . .

(3.51)

The above equation is a special case of the usual approach in which the higher terms

are neglected. By using this new form, the stability of the algorithm was improved

considerably. It was also found that the speed of convergence was affected favourably.

This can be explained as follows. The updating optimisation problem is non-linear

function of the correction factors and hence it must be solved iteratively. The iteration

for the jth unknown parameter can be written in the following general form:

pij = pi−1
j + λij ∆pij (3.52)

where i denotes the iteration step number. The new parameter is dictated by the

search direction ∆pij and the step length λij. In that form, the old and the new form

of the final correction factors can be written as:
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Old Formulation: pij = pi−1
j + ∆pij

New Formulation: pij = pi−1
j + pi−1

j ∆pij

In the old form the step length is assumed to be unity while in the new form the step

length λij = pi−1
j . This may explain the faster convergence and stability of the new

formulation. It should be mentioned that neither of the above form give an optimal

value for λij . However, the optimal step length λij in the ith search direction ∆pij can

be determined via a uni-directional line search.

3.6 Concluding Remarks

• The response function method based on forced vibration testing was introduced

in this chapter. It has been shown that the elements of the reduced dynamic

stiffness matrix are smooth functions of the updating parameters and of the

excitation frequency, provided that the upper limit of the updating range is the

first natural frequency of the partially-grounded system of the measurement

points. However, this limit is a sufficient but not necessary condition and the

updating range may be increased, subject to other considerations.

• The use of the method was investigated in some detail on a number of case

studies: a 10 DOF lumped parameter model, a free-free 3D Bay structure and

a damped 3D plate, all with known modelling errors. Satisfactory results were

obtained even in the case of noisy incomplete experimental data.

• The problem of discretisation errors was investigated by doubling the mesh for

the 3D Bay structure. It was found that the discretisation errors could not

be corrected as they cannot be expressed as a linear combination of individual

finite elements. Therefore, only approximate solutions can be found in such

case.
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• When the experimental data are incomplete and contaminated by noise, the so-

lution is not unique. However, the incompleteness problem of the experimental

model can be overcome by introducing an exact reduction technique albeit by

reducing the updating frequency range.

• It should be noted that the minimum number of updating frequencies that

is needed and the position of them in the available frequency range are case

dependent. However, some general criteria were presented.

• A new p-value formulation was introduced and implemented in the RFM algo-

rithm. The results show that by using this new formulation, the algorithm is

more stable and converges faster.

• Different approaches to include damping in the FE models were described.

Moreover, the effect of damping (complex FRFs) on the solution stability was

investigated. It is shown that the damping makes the convergence process nu-

merically more stable.

• A strategy for the selection of updating frequency points was introduced. The

quality of the selection can later be checked by a singular value decomposition

of the FRF matrix formed by the selected points only.

• A treatment to avoid ill-conditioning in the minimisation of force balance residue

was made by pre-multiplying the residue vector by the dynamic flexibility ma-

trix of the analytical model. This can reduce the sensitivity of the method to

measurement errors.



Chapter 4

Regularisation Techniques

4.1 Introduction

As it was mentioned, non-uniqueness may arise under several conditions such as

incomplete models and noisy measurement data. In such cases, the problem may

also become ill-conditioned, which results in rank deficiency of matrix [A] in equation

(3.26). If it happens, then serious errors may occur in the estimated parameters {p}.

There is a growing literature on findings approximate solutions to ill-conditioned

problems but only two main themes will be discussed in this section.

4.2 Least-Squares Solution via SVD

Model updating formulations yield a set of overdetermined algebraic equations of the

form [A]{p} = {b}, where vector {p} contains the unknowns. A least-squares solution

can be obtained using the generalised inverse or the singular value decomposition

(SVD).

The SVD, applied to structural dynamics problems in the last fifteen years, is one

of the most important tools in numerical analysis (Frosythe et al., 1977; Golub &

123
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Van Loan, 1983).

The SVD of a n×m matrix [A] is defined by:

[A]n×m = [U ]n×n [Σ]n×m [V ]Tm×m (4.1)

where [U ] and [V ] are orthogonal matrices, i.e.:

[U ]T [U ] = [U ] [U ]T = [I ]

[V ]T [V ] = [V ] [V ]T = [I ]
(4.2)

The columns of [U ] and [V ] are called the left and right singular vectors, respectively.

[Σ] is a real matrix with the following form:

[Σ] =

 S 0

0 0

 (4.3)

where

S = Diag(σ1, σ2, . . . , σr) r ≤ min(n,m) (4.4)

with σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The rank of a matrix is given by the number

of independent rows (or columns) of the matrix. If a matrix [A] is nearly rank

deficient, it is said to be ill-conditioned, meaning that the solution of a linear system

of equations, [A]{p} = {b} is very sensitive to small variations in {b} and not much

confidence can be placed in the solutions. A measure of [A]′s rank is given by r, the

number of non-zero singular values of [A]. The ratio of the largest singular value,

σ1, to the smallest non-zero one, σr, can be an indicator for ill-conditioning. The

so-called condition number is defined as Cond[A] = σ1/σr. If Cond[A] is small, a

small change in {b} cannot produce a large relative change in {p} and the problem is
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said to be well-conditioned. Conversely, if Cond[A] has a large value, a large change

in {p} may result from a small perturbation in {b}. If ill-conditioning is caused by

round-off errors, the singular values tend to separate into two groups, one large- and

one small-valued.

In the case of incomplete and noisy vibration test data, the separation of large- and

small-valued singular values does not occur and the singular values spread over a wide

range (Link, 1985; Foster & Mottershead, 1990). So, some techniques should be used

to improve the conditioning of least-squares problem for incomplete and noisy data.

Such issues will be addressed in the next sections.

4.3 Tikhonov Regularisation Technique

The idea of the method of regularisation is to replace an ill-conditioned problem by a

well-conditioned one which has an almost identical, albeit different, solution. Consider

equation (3.26) where [A] is a linear operator from one Hilbert space into another

one. We have seen that the equation does not generally have a unique solution.

Therefore, we seek a particular generalised solution, namely the least-squares solution

of minimum norm.

[A]T [A]{p} = [A]T {b} (4.5)

The product [A]T [A], which is quadratic, has non-negative eigenvalues and therefore,

for any positive number α, the quantity [A]T [A] + α [I ], where [I ] is the identity

matrix, has positive eigenvalues. Of particular interest, [A]T [A] + α [I ] is guaranteed

to have an inverse, that is to say equation:

([A]T [A] + α[I ]){pα} = [A]T {b} (4.6)

is well-posed. Equation (4.6) is a regularised form of equation (4.5) and has a unique
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solution of the form:

{pα} = ([A]T [A] + α [I ])−1 [A]T {b} (4.7)

which is called the Tikhonov approximation to [A]† or the minimum norm solution

of equation (4.5). It can be shown that:

lim
α→ 0
{pα} = [A]†{b} (4.8)

This method can be viewed as a variant of least square problem:

 [A]

α[I ]

 {p} =

 {b}
α[I ]{x∗}



where x∗ is an initial estimate.

Many attempts have been carried out to find an optimum value for the parameter α

(Vogel, 1986). Although some theoretical results are formulated, it seems that a case-

dependent regularisation parameter, which is calculated on the basis of the actual

computations would be more effective in practice. A related approach is the so-called

L-curve technique which is a plot of ‖{p}‖ versus ‖[A]{p} − {b}‖ parametrised by

α. The log-log plot presents an L-corner where the value of α is optimum (Hansen,

1992).

4.4 Truncated Singular Value Decomposition (TSVD)

Another approach to computing [A]† {b} is to truncate the singular value decompo-

sition of [A]†. This technique is called truncated singular value decomposition or

TSVD.
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Using (4.1), one can re-write (3.26) as:

[U ] [Σ] [V ]T {p} =
n∑
i=1

σi ({v}Ti {p}) {u}i = {b} (4.9)

Using the orthogonal properties of matrices [U ] and [V ], the solution of (4.9) can be

sought as:

{p} = [U ]T [Σ−1] [V ] {b} =
n∑
i=1

σ−1
i ({u}Ti {b}) {v}i (4.10)

If we suppose that the first r singular values are not zero, the upper limit of summation

in equations (4.9) and (4.10) will change from n to r.

The terms corresponding to zero singular values do not contribute to the summation in

equation (4.9). However, in ill-conditioned problems, the singular values of the second

group i.e. i = r + 1, . . . , n (see Section 4.1) are not exactly zero and not necessarily

very small compared to the first group. Such values have a small contribution to

the summation of (4.9) which becomes very large in the inverse equation (4.10). In

any case, in updating problems errors contained in the FRF data affect all terms in

the summation but the highest effect is on those which correspond to the smallest

singular values. One way of dealing with this problem is using TSVD by considering

the following series:

{p} =
nt∑
i=1

σ−1
i ({u}Ti {b}) {v}i (4.11)

where nt is the truncation level, the choice of which has been the subject of many

research papers (Engl & Gfrerer, 1988; Vogel, 1986). Pickard’s condition (Hansen,

1990) can be used to decide where the summation (4.10) has to be truncated. By

comparing the decay rate of |{ui}T {b}| with the corresponding singular values, the

subsequent singular values can be excluded as they will not be able to filter out the

error contained in the data.
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4.5 Total-Least-Squares Method

In the previous methods, it was assumed that the measurement uncertainty was

associated with the vector {b} and that the matrix [A] was completely free of noise.

In many of model updating problems using FRF data, both [A] and {b} contain

noise. The total linear least-squares (TLSQ) approach can be applied to such cases

as it possesses noise rejection properties.

Assume that there are more equations n than unknowns m. The classical linear least-

squares problem [A] {p} = {b} try to find a best approximation {b̂} to the vector

{b} such that [A] {p} = {b̂} is not contradictory. If the equation [A] {p} = {b} has

no solution, this implies that the m dimensional subspace Range([A]), which has

been generated by the columns of matrix [A], does not contain the vector {b}. In

the linear least-squares method, the solution is obtained by projecting the vector {b}
orthogonally onto Range([A]) and solving [A] {p̂} = {b̂} (Fig. 4.1).

Range([A])

Figure 4.1: The linear least-squares solution

To put in another way, one is looking for a vector {r} which satisfies the following

conditions:
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‖ [D] {r} ‖2 is minimum subject to {b̂} = {b}+ {r} ∈ Range([A]) (4.12)

where [D] is a weighting matrix.

The total-least-squares solution is then:

Define matrix [E] as:

[E] = [Â]− [A] (4.13)

Given two non-singular weighting matrices for n equations and m unknowns:

[D] = diag(d1, d2, . . . , dn)

[T ] = diag(t1, t2, . . . , tm+1)
(4.14)

One seeks to find vector {r} and matrix [E] such that :

‖ [D] [ [E] , {r} ] [T ] ‖F is minimum subject to {b̂} ∈ Range([Â]) (4.15)

where F stands for the Frobenius norm of matrix. Geometrically the TLSQ bends

{b} and [A] towards each other to find a new set of equations such that the relation

(4.15) is satisfied (Fig. 4.2).

In other words, The TLSQ method is equivalent to solving a nearest compatible

LLS problem, min ‖ [Â] {p} − {b̂} ‖2, where nearness is measured by the weighted

Frobenius norm above.

TLSQ algorithms for the solution of [A] {p} = {b} can be found in Golub & Vanloan

(1980) and Van Huffel & Vandewalle (1985). A summary is given below:
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Range([A])

Range([A])

Figure 4.2: The total linear least-squares solution

Step 1 : Compute the SVD of products [D][ [A] {b} ][T ]:

[U ]T [D] [ [A] , {b} ] [T ] [V ] = diag(σ1, . . . , σm+1) (4.16)

Step 2 : Determine the rank r of [ [A] , {b} ] :

σ2
1 ≥ . . . ≥ σ2

r ≥ 2max(n,m)σ2
ν ≥ σ2

r+1 ≥ . . . ≥ σ2
n+1 (4.17)

where σ2
ν is the noise variance

Step 3 : If r < m compute a Householder matrix [Q] such that

[vr+1, . . . , vm+1] [Q] =



• • . . . • y1

• • . . . • y2

...
...

. . .
...

...

• • . . . • ym

0 0 . . . 0 α


(4.18)
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Step 4 : If | α |< ε, lower the rank with multiplicity of σr. Go back to step3.

Otherwise {p} = − 1
α
{y}.

It is expected that the method and algorithm will be useful in linear problems where

both the matrix and the observation vector are polluted with errors. The main

advantage of TLSQ over LLS is that a solution can be found with a smaller changes

of data in [A] and {b}. So, for a comparable amount of computational efforts TLSQ

is likely to yield more accurate result than LLS.

4.6 The Maximum Entropy Method

The origin of the maximum entropy method for estimating the inverse problem can be

traced back to the fundamental work of Boltzmann (1910) on statistical mechanics.

Boltzmann analysed a large number N of gas molecules by subdividing the phase

space into s cells. The statistical state of such a system is then given by partitioning

(N1, N2, . . . , Nk, . . . , Ns) where:

N1 +N2 + . . .+Nk + . . .+Ns = N (4.19)

Nk being the number of molecules in the kth cell.

It can be shown that the entropy of the probability distribution (p1, p2, . . . , ps) is

(Smith & Grandy, 1985):

H = −
s∑

k=1

pk ln(pk) (4.20)

where pk = Nk
N

represents the probability that a molecules occupies the kth cell in the

phase space.

In general, the entropy function of a probability distribution measures the degree of

uncertainty involved in guessing the exact state of a system having this distribution.
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It should be mentioned that the entropy function provides a meaningful measure of

the disorder of a system, or equivalently, the uncertainty involved in choosing a given

state for a system. The maximum entropy method for inverse problems exploits this

idea by invoking a kind of principle of parsimony in trying to reconstruct a solution

of the problem. Namely, if the solution is known to be non-negative, and hence

may be normalised so that it is essentially a probability distribution, one chooses

the distribution satisfying the given constraints which is maximally uncommitted

with respect to the missing information. To put in another way, one chooses the

distribution which satisfies the given constraints has maximum entropy.

Recently, the maximum entropy idea has been used to regularise solutions of integral

equations of the first kind. To the author’s best knowledge, nobody has yet applied

the method to finite element model updating.

As in Tikhonov regularisation, the idea is to seek a function which combines the

features of a least-squares solution with the regularity of an additional constraint

by minimising an augmented least-squares functional. In Tikhonov’s theory, the

regularising term has the job of damping some norm of the solution, while in maximum

entropy regularisation the goal is to choose an approximate solution that has large

entropy, or equivalently, small negative entropy, i.e.:

v({p}) =
s∑

k=1

pk ln(pk) (4.21)

So, in attempting to find an approximate non-negative maximum entropy solution of:

[A] {p} = {b} (4.22)

one minimises the functional :

F ( {p} ) =‖ [A] {p} − {b} ‖ +α v({p}) (4.23)

where α is a regularisation parameter. A non-linear conjugate gradient algorithm,

such as the Fletcher-Reeves method, can be used to compute the regularised solution
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(Vanderplaats, 1984). Almost always to update the design parameters from iteration

i− 1 to i, it is assumed that:

{p}i = {p}i−1 + {q}i (4.24)

where {q}i is the search direction and determines the value of moving in this direction.

The search direction in this method has the form of:

{q}i = −∇F ({p}i−1) + βi {q}i−1 (4.25)

where

βi = ‖∇F ({q}i−1)

∇F ({q}i−2)
‖ (4.26)

The step-length parameter minimises F ({p}i−1 + {q}i) with the constraint that all

elements of {p}i−1 + {q}i should be positive. The choice of βi has the advantage

that it gives automatic restart to the steepest descent direction in the case of slow

convergence.

This is a much costlier procedure than the Tikhonov regularisation because the min-

imisation of this functional requires the solution of a non-linear problem while the

algorithm remains linear in Tikhonov’s approximation.

4.7 Some Case Studies Using Regularisation Tech-

nique

In the following numerical examples, different regularisation techniques have been

applied to simple test cases, which already been presented in Chapter 3. Random

noise with a Gussian distribution was added to the simulated experimental receptance

FRFs.
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4.7.1 10 DOF System - Incomplete Experimental Model

The case of Section (3.3.3) will again be considered here. The simulated experimental

data were polluted by adding 10% random noise with zero mean value. The same

number of frequency points, 25 points, were selected in the range of 0-200 Hz. Fig.

(4.3) illustrates the results of applying different truncation level when using the TSVD

method. The reference solution, i.e. the target experimental FRF, is displayed as the

solid line, the TSVD solutions with nt = 20 and 17 are displayed as dashed and point

lines respectively.
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Figure 4.3: Receptance FRF, α55, obtained from the experimental
and updated analytical models of the 10 DOF system
( different TSVD levels)

The results for nt = 17 match the experimental ones almost perfectly. It was observed,

by running the code with different values for nt, that the best results were indeed those

for nt = 17, indicating that an optimum level had been achieved. It was observed
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that the convergence of the updating algorithm was faster with the use of TSVD and

that the number of iterations was also less.

The previous example was repeated again, this time using the total-least-squares

technique. Fig. (4.4) illustrates the effect of ε on the results. As before, the reference

data are plotted in solid line.
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Figure 4.4: Receptance FRF, α55, obtained from the experimental
and updated analytical models of the 10 DOF system
( different ε values)

It was again observed that there is an optimum value for ε, the choice of which is

the single most important feature. This task is left to the analyst’s judgement and

experience, indicating once again the difficulty of dealing with inverse problems.

As mentioned before, the total-least-square method is useful in problems where both

the coefficient matrix and the observation vector are contaminated by noise. Fig.

(4.5) compares the updating results from the previous example for TSVD and TLSQ
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techniques when the data were polluted by 15% noise. For a comparable amount of

computations TLSQ seems to yield a more accurate result than TSVD, both being

better than the standard LLS.
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Figure 4.5: Receptance FRF, α55, obtained from the experimental
and updated analytical models of the 10 DOF system
(different regularisation techniques)
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Finally, it was decided to apply the maximum entropy regularisation technique, again

to the same case. The non-linear conjugate gradient algorithm with inexact line search

was used as part of the solution algorithm.
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Figure 4.6: Receptance FRF, α55, obtained from the experimental
and updated analytical models of 10 DOF system using
maximum entropy regularisation

Fig. (4.6) compares the results of updating obtained without regularisation (dashed

line) and by applying the maximum entropy method for an optimal regularisation

parameter α (dotted line). This technique is much costlier than the other two be-

cause the minimisation of this functional requires the solution of a non-linear set of

equations. From an accuracy point of view, the additional effort seems unjustified as

the updated FRF is not any closer to the reference one.
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4.7.2 Frame Example - Incomplete Experimental Model

The second example was based on the three dimensional Bay structure of Section

(3.4.2) shown in (Fig. 3.7). It was assumed that measurements were made in the Z

direction at all nodes plus X and Y directions at node one only. Five frequency points

were selected from the 0-200 Hz range and the FRF data were polluted by 1% using

random noise with Gaussian distribution.

0 100 200 300 400 500 600 700
−250

−225

−200

−175

−150

−125

−100

  −75

  −50

Frequency (Hz)

R
ec

ep
ta

nc
e 

(d
B

 r
e 

1 
m

/N
)

____

−−−−

........

Experimental

Updated (no regularisation)

Updated (nt=32)

Figure 4.7: Receptance FRF, α33, obtained from experimental and
updated models with different TSVD levels

In the case of incomplete experimental model with added noise, the solution is not

unique and different sets of p-values can be obtained by choosing different sets of

frequency points. However, the adverse effects of coordinate incompleteness and noise

can be partly offset by choosing more frequency points than the minimum required.

This has been discussed in detail in Section (3.4.2).
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The solution can also be improved by applying the TSVD technique. This is illus-

trated in Fig. (4.7) where the results for the case of 1% noise are displayed. The

reference FRF is plotted as a solid line, the non-regularised solution is displayed as

dashed lines and the TSVD solution with nt = 32 is displayed in dotted line.

Very similar results were obtained by applying the different regularisation techniques,

namely LLS, TLSQ and maximum entropy methods to this case and they are not given

here.

4.7.3 A Comparison of Regularisation Methods

At this stage it was decided to carry out a set of numerical experiments in order

to confirm if TLSQ would yield consistently better results in the presence of noise.

We start with an overdetermined set of equations obtained from the Bay structure.

The size of matrix [A] is 105 × 40 and noise with zero mean and progressively large

variances was added to the measured receptances. Both the matrix [A] and the right

hand side vector {b} were polluted by noise. When there is no noise the solution is

called ’reference’ solution, {pref}. The noise variance, σ2, was changed between 0 and

1× 10−3. The relative error was defined as:

Relative Error =
‖{p} − {pref}‖f
‖{pref}‖f

× 100

The optimum choice of the truncation level for the problem was found to be nt = 38

and the optimum ε was determined as 0.05. Fig. (4.8) compares TSVD and TLSQ

with optimum parameters with the standard linear least-squares approach. For each

value of noise variance, 50 sets with random noise were created and the relative error

was averaged and curve fitted over these sets.

It is obvious that the relative error will increase steadily if the variance of noise is

increased. From the graph, one can see that, as the noise variance increases the

difference between the relative errors also increases. It is also noticeable that TLSQ
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Figure 4.8: Comparison of TLSQ and TSVD with LLS

shows its superiority over LLS and TSVD when the noise variance is large. However,

this is unlikely to happen in updating cases, since most updating procedures can

tolerate a small amount of error. For instance, referring to the examples of the

previous sections, the solutions will diverge when the noise variance is more than

1× 10−4. As a result, the difference between the results of LLS, TSVD and TLSQ is

not all that significant within the radius of convergence.

The number of equations, n, plays an important role in the TSVD and TLSQ methods.

If n increases (n > m) the subspace R([A]) spanned by the columns of [A] gets thinner

and thinner with respect to Rn. Hence, noise becomes more important in the subspace

of R([A]). As the effects of noise on each subspace is inversely proportional to the

corresponding singular value (Parlett, 1980), noise will mostly affect the smallest

singular values and their corresponding vectors. These are the singular values which

are removed by the TSVD or TLSQ algorithms. Thus, by increasing n, the accuracy

of TSVD or TLSQ solutions will improve faster than that of LLS. From a practical

view point, the application of TLSQ is more attractive since it is much easier to
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increase the number of measurements than to increase the measurement accuracy.

This topic will be discussed in Chapter 5.

4.8 Concluding Remarks

• As expected, noise on the FRF data has an adverse effect on updating results:

convergence becomes slow and often numerically unstable. However, an accept-

able and potentially more accurate solution can be found by using regularisation

techniques.

• Three different methods of regularisation are presented and compared with each

other. The results show that, in the case of updating problems, the TLSQ

method can handle noise better than the other methods.

• The numerical experiments have shown that the difference between the solutions

from TLSQ and LLS is quite substantial for large noise variance. However, this

is unlikely to be the case for updating problems.

• By increasing the number of equations, the accuracy of TSVD and TLSQ solu-

tions increase faster than that for LLS.

• The maximum entropy method was applied to the solution of the updating

equations. The results showed that the method required significantly more

computational effort without any increased accuracy.



Chapter 5

On The Accuracy Required of

Experimental Data For Finite

Element Model Updating 1

5.1 Overview

This Chapter deals with the determination of the required experimental accuracy that

must be attained when updating finite element models using measured vibration test

data. A theoretical basis is developed for FRF-based updating techniques as these

use measured data directly. It is shown that a well-defined relationship, that can

be expressed as a characteristic function, exists between the system’s properties, the

correction matrices and the actual amount of experimental noise. The formulation

is then applied to the standard response function updating formulation where the

element mass and stiffness matrices are corrected using a single multiplier, the so-

called p-value. In the presence of noise, the convergence of the updating algorithm is

shown to be dependent on a number of conditions which arise from two distinct cases:

one convergent and the other divergent. The findings are illustrated in the case of a

1published on Journal of Sound and Vibration, Vol. 196, No. 3, Sept. 1996, pp323-
336

142
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Table 5.1: Summary of Direct and Inverse Problems

Problem Type Knowns Unknowns

Direct F, H X
Inverse 1st Kind: Force Identification X , H F
Inverse 2nd Kind: Model Updating F , X H

3D space frame and the efficacy the proposed characteristic function is discussed in

some detail. Finally, a way of selecting the optimum excitation frequency values is

presented as a means of relaxing the minimum experimental accuracy.

5.2 Introduction

In spite of extensive research over the past fifteen years, the state-of-the-art in finite el-

ement model updating is far from maturing and no reliable and generally-applicable

procedures have been formulated so far. Several review articles reveal a wealth of

updating algorithms but the success seems to remain case dependent and the appli-

cability bounded by the skill of the analyst in choosing a correct updating procedure

(Natke, 1988; Imregun & Visser, 1991; Mottershead & Friswell, 1993). A review of

the case studies reported in the literature unveils a fundamental problem: a particular

solution is usually non-unique and a generated solution does not necessarily represent

a true physical meaning (Imregun, 1995).

Given a model (or operator) H, which relates the input F to the output X via the

relationship X = H ∗F , it is possible to define direct and inverse problems which are

commonly encountered in structural dynamics. These are listed in Table (5.1) and

illustrated schematically in Fig. (5.1).

Let us now define the inverse, the domain and the range of the operator H.
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• The inverse of H is a transformation such that the multiplication of its result

with H yields the identity operator.

• The range of H is a set of all values resulting from its application as an operator.

• The domain of H is the set of all values for which operator H is defined.

• An operator H is called injective if it produces distinct outputs for distinct

inputs.

H

Domain(H) Range(H)

F

F

1

n

X

X

X

1

i

n

F i

Figure 5.1: A non-injective operator H

A discussion of the force identification (or force updating) inverse problem is outside

the scope of this thesis and we shall focus on the model updating inverse problem.

From the outset, one can envisage four distinct possibilities while seeking a solution.

(a) Non-convergence. If the output X does not belong to the range of H, then the

inverse problem has no solutions. In such cases, numerical behaviour can be random

divergence or it can exhibit oscillations about some arbitrary mean value.

(b) Non-uniqueness. If H is not injective, then its inverse does not exist. In this case,

even if X belongs to the range of H, the inverse problem will have several solutions.

(c) Instability. If the inverse of H exists but it is not continuous on X, then the

solution will depend on the condition of the inverse operator.
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(d) Existence. If the inverse of H exists and is continuous on X, then a unique

solution will exist.

The difficulties associated with model updating are self-evident since Case (d) has

very stringent requirements, a feature that probably explains the lack of consistency

and success in many studies reported so far. However, even when one can satisfy the

conditions imposed by Case (d), the determination of an updated model cannot be

guaranteed in situations when the output X is polluted by noise. As it is not possible

to eliminate experimental errors altogether, the fundamental question becomes the

determination of the required experimental accuracy for model updating studies.

Another important issue is the reliability of specimen consistency when reference test

data are acquired for updating purposes. Let us assume that we are given several

nominally- identical specimens, all of which are represented by a single finite element

model. For simplicity, let us further assume that there are no measurement errors

at all. As we cannot guarantee that all specimens will exhibit identical dynamic be-

haviour, we can see that the previous problem of measurement error has now been

transformed into one of manufacturing consistency. Therefore, a manufacturing con-

sistency threshold, analogous to measurement error threshold, will exist as a limiting

factor for model updating. We will assume that there is only one reference specimen

and hence it will focus on measurement errors only. However, the findings are equally

applicable to the variability between the nominally-identical specimens.

A review of the reported cases using experimental data seems to suggest that the

required measurement accuracy is determined by trial-and-error. The main objective

of the present Chapter is to present a more systematic treatment and to provide

general guidelines. To this end, it is proposed to use the response function method as

its direct handling of measured data will provide a suitable vehicle for such a study. A

second objective is to develop a methodology for the selection of optimum excitation

frequencies that must be used during the updating process.
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5.3 Determination of The Required Experimental

Accuracy

The response function method for finite element model updating is based on the

following identity (Cottin et al., 1984; Lin & Ewins, 1990; Visser & Imregun, 1991):

[I ]− [ZA][HX] = [∆Z][HX] (5.1)

where [I ], [ZA] and [HX] are the identity, analytical impedance and experimental re-

ceptance matrices respectively, [∆Z] being the unknown dynamic stiffness correction

matrix. Given the number of recent publications on the subject, no detailed deriva-

tion will be given here. If the experimental data are free of noise and if there is a

one-to-one correspondence between the discrepancies and the analytical model, the

experimental response function matrix can be written as:

[HX] = ([ZA] + [∆ZA])−1 (5.2)

From the outset, it should be noted that the assumption above is not a realistic propo-

sition for the purposes of conducting model updating investigations. However, our

sole concern here is the determination of experimental error bounds for an otherwise

well-posed problem.

In this case, it can easily be shown that:

[∆Z] = [∆ZA] (5.3)

which is the expected result since equation (5.1) is an identity. It has been assumed

that the experimental and analytical models are have been made compatible in size

by reduction or expansion.
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Let us now assume that the experimental FRF matrix [HX ] contains measurement

errors which can be due to noise, transduction, signal processing, shaker-structure

interaction, non-linear behaviour of the test structure, loss of digital accuracy, etc.

With the addition of such an error matrix [ε], equation (5.2) becomes:

[HX ] = ([ZA + [∆ZA])−1 + [ε] (5.4)

Remembering that [∆Z] = [HX]−1 − [ZA] we obtain:

[∆Z] = ( [ZA + ∆ZA]−1 + [ε] )
−1 − [ZA]

= ( [ZA + ∆ZA]−1([I ] + [ZA + ∆ZA][ε]) )
−1
− [ZA]

= ( [I ] + [ZA + ∆ZA][ε] )
−1

[ZA + ∆ZA]− [ZA]

(5.5)

Let us impose the following constraint on the spectral radius ρ of [ZA + ∆ZA][ε] :

ρ ([ZA + ∆ZA][ε]) = MAX{ | Eigenvalue of [ZA + ∆ZA][ε] | } < 1 (5.6)

In this case, [∆Z] can be computed by expanding the first term in the right hand side

of equation (5.5):

[∆Z] =
(
[I ]− [ZA + ∆ZA][ε] + ([ZA + ∆ZA][ε])2− . . .

)
[ZA + ∆ZA]− [ZA] (5.7)

After some manipulation, equation (5.7) becomes:

[∆Z] = [∆ZA]− [ZA + ∆ZA][ε][ZA + ∆ZA]

+[ZA + ∆ZA][ε][ZA + ∆ZA][ε][ZA + ∆ZA]− . . . (5.8)
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Since the correction is to be applied to the analytical model, the norm of [∆Z] must

be equal (or very close) to that of [∆ZA]. In order to satisfy this condition, we must

have:

|| [ZA + ∆ZA][ε][ZA + ∆ZA] || � || [∆ZA] || (5.9)

Because of the norm property ||ABC|| ≤ ||A|| ||B|| ||C||, the LHS of (5.9) must satisfy:

|| [ZA + ∆ZA][ε][ZA + ∆ZA] || ≤ || [ZA + ∆ZA] || || [ε] || || [ZA + ∆ZA] || (5.10)

Considering (5.9) and (5.10) together, one can impose a more stringent criterion:

|| [ZA + ∆ZA] || || [ε] || || [ZA + ∆ZA]|| � || [∆ZA] || (5.11)

Equation (5.11) can be re-arranged to give:

|| [ε] || � || [∆ZA] ||
|| [ZA + ∆ZA] ||2 (5.12)

Equation (5.12) is an important relationship between the maximum allowable experi-

mental error (or discrepancy between nominally identical specimens), the initial model

and the correction that needs to be applied. It also highlights the case-dependent na-

ture of the updating process: for a given structure and testing conditions, the norm

of the left hand side experimental error matrix is likely to remain constant while the

matrix norms of the right hand side will depend on the actual mathematical model

that is being used.

An alternative way of looking at equation (5.12) is to write equation (5.4) as:

|| [HX]− [ε] || = || ([ZA] + [∆ZA])−1 || (5.13)
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It can than be shown that:

|| [ZA] + [∆ZA] || ≥ 1

|| [HX]− [ε] || (5.14)

Multiplying both sides by ||[ε]|| and using equation (5.12) gives:

|| [ε] ||
|| [HX ]−[ε] || ≤ || [ε] || || [ZA] + [∆ZA] || � || [∆ZA] ||

|| [ZA]+[∆ZA] || (5.15)

In this form, equation (5.15) can be related to what is intuitively known already:

the relative measurement error (first term) must be much smaller than the relative

modelling error (last term).

5.4 Application to the p-Value Formulation

Next, let us consider the formulation discussed in Chapter 3 where the global errors

can be expressed as a linear combination of individual elements:

[∆K] =
nk∑
i=1

pKi [Ki]

[∆M ] =
nm∑
i=1

pMi [Mi]
(5.16)

where the design parameters pi, the so-called p-values, will be zero if there are no

errors. In order to simplify the algebra of the following analysis, it will be assumed

that nm = nk = n, nm and nk denoting the number of individual design parameters

for the mass and stiffness matrices. This simplification brings no loss of generality

and it is in line with a number of updating methods that consider one correction

factor per individual finite element matrix.

The initial and updated dynamic stiffness matrices can now be written as:
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[Z] =
n∑
i=1

[Zi] (5.17)

where [Zi] = [Ki]− ω2 [Mi]

and

[Z + ∆ZA] =
n∑
i=1

(1 + pKi )[Ki]− ω2
n∑
i=1

(1 + pMi )[Mi] (5.18)

Substituting equations (5.16) and (5.18) into equation (5.1):

[I ]−
[ (

[K1 − ω2[M1]
)

[HX ] + . . .+
(
[Kn − ω2[Mn]

)
[HX]

]
=[

pK1 [K1] + . . .+ pKn [Kn]− ω2
(
pM1 [M1] + . . .+ pMn [Mn]

) ]
[HX ] (5.19)

In the general case, for a given column of the FRF matrix in equation (5.19), there will

be more unknowns (i.e. p-values) than there are equations available. The accepted

way of dealing with this problem is to write equation (5.19) at a number of excitation

frequencies, the so-called frequency points, and to form an over-determined set of

equations. However, one of the main difficulties of such an approach is the determi-

nation of suitable frequency points as no rigorous guidelines exist when dealing with

measured FRF data. However, a technique for optimal selection will be discussed

later in Section (5.5).

Let us consider the jth column of equation (5.19) written s times at each of the s

frequency points:



Chapter 5 On The Accuracy Required of ... 151


[K1][HX ]j . . . [Kn][HX ]j . . . −ω2

1[M1][HX]j . . . −ω2
1 [Mn][HX]j

...
. . .

...
. . .

...
. . .

...

[K1][HX ]j . . . [Kn][HX ]j . . . −ω2
s [M1][HX]j . . . −ω2

s [Mn][HX]j





pK1
...

pKn

pM1
...

pMn



=


{I}j − ([K1] + . . .+ [Kn]− ω2

1([M1 + . . .+ [Mn])){HX}j
...

{I}j − ([K1] + . . .+ [Kn]− ω2
s([M1 + . . .+ [Mn])){HX}j



In compact form:

[A]{p} = {b} (5.20)

If we introduce some error {ε}j into the experimental FRF vector {HX}j , equation

(5.20) becomes:


[K1]({HX}j + {ε}j) . . . . . . −ω2

1 [Mn]({HX}j + {ε}j)
...

. . . . . .
...

[K1]({HX}j + {ε}j) . . . . . . −ω2
s [Mn]({HX}j + {ε}j)





pK1
...

pKn

pM1
...

pMn



=
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
{I}j − ([K1] + . . .+ [Kn]− ω2

1([M1 + . . .+ [Mn])) ({HX}j + {ε}j)
...

{I}j − ([K1] + . . .+ [Kn]− ω2
s([M1 + . . .+ [Mn])) ({HX}j + {ε}j)

 (5.21)

It should be noted that {HX}j and {ε}j are functions of measured frequencies.




[K1] {HX}j . . . [Kn] {HX}j −ω2
1 [M1] {HX}j . . . −ω2

1 [Mn] {HX}j
...

. . .
...

...
. . .

...

[K1]{HX}j . . . [Kn] {HX}j −ω2
s [M1] {HX}j . . . −ω2

s [Mn] {HX}j

 +


[K1] {ε}j . . . [Kn] {ε}j −ω2

1 [M1] {ε}j . . . −ω2
1 [Mn] {ε}j

...
. . .

...
...

. . .
...

[K1] {ε}j . . . [Kn] {ε}j −ω2
s [M1] {ε}j . . . −ω2

s [Mn] {ε}j






pK1
...

pKn

pM1
...

pMn



=


{I}j − ([K1] + . . .+ [Kn]− ω2

1([M1 + . . .+ [Mn])) {HX}j
...

{I}j − ([K1] + . . .+ [Kn]− ω2
s([M1 + . . .+ [Mn])) {HX}j

−


([K1] + . . .+ [Kn]− ω2

1([M1 + . . .+ [Mn])) {ε}j
...

([K1] + . . .+ [Kn]− ω2
s([M1 + . . .+ [Mn])) {ε}j

 (5.22)

In compact form, equation (5.22) can be written as:
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([A] + [Aε]){p′} = {b}+ {bε} (5.23)

where

[A] Known matrix in terms of system’s properties

{b} Known vector in terms of system’s properties

{p′} Unknown vector of updating variables corresponding to the case where ex-

perimental data are polluted by noise,

[Aε] =


[K1]{ε}j . . . [Kn]{ε}j −ω2

1 [M1]{ε}j . . . −ω2
1[Mn]{ε}j

...
. . .

...
...

. . .
...

[K1]{ε}j . . . [Kn]{ε}j −ω2
s [M1]{ε}j . . . −ω2

s [Mn]{ε}j



{bε} = −


([K1] + . . .+ [Kn]− ω2

1 ([M1 + . . .+ [Mn])){ε}j
...

([K1] + . . .+ [Kn]− ω2
s ([M1 + . . .+ [Mn])){ε}j



(5.24)

Equation (5.23) can be solved using a pseudo-inverse, denoted by †.

{p′} = ([A] + [Aε])
† ( {b}+ {bε} ) (5.25)

Two possible cases will be discussed here. The first case is when the norm of matrix

[Aε] is much smaller than the norm of matrix [A] while the situation is reversed in

the second case.

Case 1: || [A†] || || [Aε] || � 1
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In this case the norm of the error matrix is much smaller than that of system matrix,

i.e.

|| [Aε] || � || [A] ||

If the following conditions are also satisfied:

Range([Aε]) ⊆ Range([A])

Range([Aε]T ) ⊆ Range([A]T )

it can be shown that (Ben-israel, 1974):

{p′} =
(
[I ] + [A]† [Aε]

)−1
[A]† ({b}+ {bε}) (5.26)

Assuming that matrix [A] has full rank, the range conditions will automatically be

satisfied. Expanding (5.26) as before:

{p′} = {p} −
(
[A]† [Aε]

)
({p} − {pε}) +

(
[A]† [Aε]

)2
({p} − {pε})− . . . (5.27)

where {pε} = [Aε]† {bε}. From equation (5.27), it is evident that the noise-affected

solution {p′} will tend to the true solution as || [Aε] || → 0. A solution is therefore

possible for Case 1.

Case 2: || [A] || || [Aε]†|| � 1

In this case the norm of the error matrix is much greater than the norm of the system

matrix, i.e. || [Aε] || � || [A] ||.

As before, it can be shown that:
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{p′} =
(
[I ] + [Aε]

† [A]
)−1

[Aε]
† ({b}+ {bε}) (5.28)

Expanding, one obtains:

{p′} = {pε} −
(
[Aε]

† [A]
)

({pε} − {p}) +
(
[Aε]

† [A]
)2

({pε} − {p}) − . . . (5.29)

Remembering that {pε} = [Aε]† {bε} and using equations (5.24), it can be shown that:

{pε} = {−1,−1, . . . ,−1}T (5.30)

In other words, the noise-affected solution {p′} will tend to {pε} as || [Aε] || � || [A] ||
and hence a meaningful solution is not possible. This finding is of significant practi-

cal importance as the {−1,−1, . . . ,−1} solution is often encountered in cases where

p-value convergence cannot be obtained because of excessive noise. Such numerical

behaviour simply indicates that the corrections and the initial model are of self can-

celling nature. In this context, {−1,−1, . . . ,−1} is analogous to the trivial (zero)

solution of a problem of the form: [0]{X} = {0}.
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5.5 Case Study

From the outset, it must be stressed that the main purpose here is the determination

of the required experimental accuracy for successful model updating. To this end, it

is proposed to use a simple and artificial case so that the true difficulties of model

updating are eliminated for the purposes of focusing on our objective. First, there is

a one-to-one correspondence between the errors and the finite element model, so that

error location becomes possible. Second, the design parameter is chosen to be the el-

emental Young’s modulus, a feature that insures a further one-to-one correspondence

between the unknowns (or p-values) and the design parameters. Third, although

the measurement vector is incomplete, the updating technique used (Larsson & Sas,

1992b) ensures the existence of a unique solution up to a cut-off frequency by reducing

equation (5.1) into the measurement co-ordinates only. In other words, the example

under study concurs with Case (d) of Section (5.3), and there is little doubt that

both the location and the correction of the Young’s modulus errors will be successful

for the noise-free case. Hence, the noise-free case has a unique reference solution and

the objective of the case study is to investigate the relationship between the amount

of experimental noise and the quality of the solution obtained. In other words, even

with added noise, the solution will still remain unique but it will deviate from the

reference one and we are seeking to quantify this deviation in terms of measurement

accuracy. However, it should be noted that an understanding of the experimental

error threshold does not guarantee that updating will be possible for the general case

which includes several other factors.

Specifically, it is proposed to use the 19-node 3D space frame of Chapter 3 which is

modelled using 20 12-DOF 3D beam elements. The analytical model contains errors

in the form of 8% Young’s modulus increase in 10 of its elements, as shown in Fig.

(3.7). The experimental model, which contains no errors, consists of all 19Z direction

receptances as well as 1X and 1Y direction receptances, both measured at node 1.

The excitation is applied in the Z direction at node 1 and there are 15 modes within

the frequency range of interest 0 Hz - 600 Hz. Therefore, we have 40 unknowns
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corresponding to 2 p-values for each of the 20 finite elements and an incomplete

measurement vector with 21 elements, the full size being 19 × 6 = 114 degrees of

freedom.

A solution was obtained first for the noise-free case and, as expected, the p-values

associated with the modified elements had a value of -0.08 while the remaining ones

were found to be zero. Using equation (5.12), the maximum error threshold that would

still produce the same result, albeit within acceptable error bounds, was investigated

next.

As before, a simple frequency-domain model with uniformly-distributed noise will be

used here:

H ′ = (1 + σ%) H (5.31)

where H and H ′ are the noise-free and polluted values of the FRF. σ is a random

number that varies between maximum expected error, typically 2%− 5% depending

on the type of structure that is being tested.

Using a frequency resolution of 1 Hz, equation (5.12) was evaluated for the 0 Hz -600

Hz frequency range and cases of 0.1%, 0.5%, 1%, 5% and 10% random added noise

were considered. For convenience, the Frobenious norm was used throughout and

equation (5.12) was expressed in the following format, referred to as the characteristic

log function hereafter.

log

 || [ε] ||
|| [∆ZA] ||

|| [ZA+∆ZA] ||2

 < 0 (5.32)

Five such characteristic functions are plotted in Fig. (5.2), a close inspection of which

reveals three important features.
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Figure 5.2: Characteristic log function for 0.1%, 0.5%,
1.0%, 5.0% and 10% noise

(i) Even for the 0.1% noise case, there is no guarantee that the model can be updated

successfully since the corresponding log function is well above the zero line for some

of the frequency range.

(ii) On the other hand, it is possible to eliminate this particular problem by some

judicious choice of the excitation frequency values. In this example, most of the local

minima of the characteristic log function will be suitable for this purpose.

(iii) Perhaps most importantly, for a given system, it is possible to determine the

required experimental accuracy by plotting the characteristic log function, provided

the norm of || [∆Z] || can be estimated. In this particular example, it is unlikely that

more than 1% error can be tolerated by the updating algorithm.

From Fig. (5.2), it can also be observed that the position of the best frequency points

seems to be independent of the amount of noise. It was therefore decided to plot the

error component (log || [ε] ||) and the system component log
(
|| [∆Z] ||

|| [Z+∆Z] ||2
)

separately, the
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latter being the straight line-like curve within the 0 Hz - 350 Hz region and exhibiting

several sharp drops thereafter (Fig. 5.3). This last format represents a convenient

way of selecting the optimum excitation frequencies since it provides a direct means of

quantifying the adverse effect of noise. In this particular example, it is clear that 5%

and 10% noise cases have no chance of success since the error component is well above

the system component. As expected, the best results will be obtained for 0.1% noise

since this case corresponds to the maximum distance between the two components of

the characteristic function.
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Figure 5.3: Error component log(‖ε‖) and the system component
log(‖[∆ZA]‖/‖[ZA + ∆ZA]‖2) of the characteristic log
function

To check the validity of the arguments above, it was decided to select 10 optimal

frequency points (135 Hz, 155 Hz, 180 Hz, 210 Hz, 230 Hz, 257 Hz, 280 Hz, 300 Hz,

310 Hz, 325 Hz) and to update the FE model for 0.1%, 0.5% and 1.0% added noise

cases. The characteristic log function is shown for these optimum points only in Fig.

(5.4).
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Figure 5.4: Characteristic log function at optimum frequency points

It is clear that the 1.0% noise case is very marginal since some values of the charac-

teristic function are above acceptable levels. The computed p-values for the 0%, 0.1%

and 0.5% noise cases are shown in Figs. (5.5a) to (5.5c), the pattern in 5a being the

reference one and consisting of ten bars of -0.08 in the stiffness matrix (i.e. 10 indi-

vidual elements, each with 8% change in the elastic modulus). Although the solution

remains unique and well-conditioned for cases 5b and 5c, its heavy dependence on

the amount of experimental noise is obvious. This is not a particularly encouraging

result as a maximum error bound of even 0.5% may be rather difficult to achieve in

practice. The p-values corresponding to the remaining three cases exhibit a totally

random pattern and will not be shown here.
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(a) 0% noise - Reference case

1 5 10 15 20  1 5 10 15 20
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Element numbers

P
−

va
lu

es

Mass matrix Stiffness matrix

(b) 0.1% noise
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(c) 0.5% noise

Figure 5.5: p-values for different amount of
noise

Next, it was decided to compute the p-values of the 0.5% noise case, this time using

randomly-chosen excitation frequency points but excluding obvious error zones such

as the vicinity of resonances. The two sets of results are overlaid in Fig. (5.6) from

which the positive effect of the optimum frequency selection is immediately seen: the

randomly- selected set produce a very distorted pattern while the optimum set are

somewhat reminiscent of the expected result.
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Figure 5.6: p-values for the 0.5% noise case - 10 frequency points
Optimum (darker bar) vs. random selection of the ex-
citation frequency points

Finally, it was decided to repeat the case of 0.5% noise, this time choosing 30 frequency

points in two sets: one optimum and one random selections. The two sets of results

are plotted in Fig. (5.7) which exhibits a very similar pattern to that of the previous

findings. The optimum set produces much better results than the randomly-selected

one, though it is also seen that an increase in the number of frequency points is

beneficiary to both cases.
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Figure 5.7: p-values for the 0.5% noise case - 30 frequency points
Optimum (darker bar) vs. random selection of the ex-
citation frequency points

5.6 Concluding Remarks

• Starting from a response function based updating technique, it has been possible

to develop a mathematical formulation in the form of a simple relationship

between the system’s properties, the correction matrices and the amount of

experimental noise. However, it should be noted that the discussion is for a

well-posed problem which is guaranteed to have a solution in all cases studied.

Therefore, the results reported on the experimental error bounds should be

considered as necessary but not sufficient conditions.
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• It has been shown that the proposed formulation can be used to assess the threshold

of maximum allowable experimental error. The most convenient way is probably to

compute and plot the characteristic log function for a range of expected error bounds.

• A further use of the characteristic function lies in its ability to yield the optimum

excitation frequency points that must be provided to the updating algorithm. This

feature can be used for either relaxing the error threshold or for improving the nu-

merical stability.

• The present calculations, as well as further numerical studies which are not reported

here, suggest that the maximum allowable error is small, say within the 0.10% - 0.25%

range. This finding is likely to have implications on the acquisition and processing

of vibration test data which are going to be used in the updating of mathematical

models.



Chapter 6

A Modified Eigenstructure

Assignment Technique For Finite

Element Model Updating 1

6.1 Introduction

This Chapter deals with an extended application of the constrained eigenstructure

assignment method (CEAM) to finite element model updating. The existing formu-

lation is modified to accommodate larger systems by developing a quadratic linear

optimisation procedure which is unconditionally stable. Further refinements include

the updating of the mass matrix, a hysteretic damping model and the introduction of

elemental correction factors. Six numerical test cases, dealing with effects of damp-

ing and measurement noise, mode shape incompleteness and discretisation differences,

have been conducted in the case of a 3D frame model with 114 co-ordinates. The

performance of the CEAM has been evaluated systematically both for the purpose of

error location and the global correction of the initial model. The same cases have also

been studied using another model updating approach, namely the response function

1published on Shock and Vibration, Vol. 3, No. 4, 1996, pp247-258
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method (RFM) of Chapter 3. It was found that the CEAM had a number of distinct

advantages, such yielding a non-iterative direct solution, requiring much less comput-

ing power and providing acceptable results for cases that could not be handled using

the RFM.

Eigenstructure assignment was first introduced in the field of control theory. Moore

(1976) formulated the necessary and sufficient conditions for simultaneous eigenvalue

and eigenvector assignment using state feedback for the case of distinct eigenval-

ues. Srinathkumar (1978) addressed the problem of pole-assignment in linear time-

invariant multi-variable systems using output feedback. Andry & Chung (1983) ap-

plied the eigenstructure assignment technique for a linear mechanical system for pa-

rameter identification. Minas & Inman ( 1988), and Inman & Minas (1990) applied

the constrained assignment technique for the correction of damping and stiffness ma-

trices of a finite element model. They also used pole placement method for systems

with unknown mode shapes. Zimmerman & Widengren (1990) used a modified al-

gorithm that allowed a symmetric eigenstructure assignment when correcting the

damping and stiffness matrices. Their method required the solution of a general

algebraic Riccati matrix equation, the size of which depended on the number of as-

signed modes, thus requiring very considerable CPU power for large order systems.

Finally, Shulz & Inman (1994) used the eigenstructure assignment technique with a

number of constraints that were related to the physical properties of the system to

be updated. They considered small-order systems that were symmetric, banded and

bounded. The constraints were built into a non-linear optimisation procedure that

preserved the desired properties of updated model.

The work presented in this Chapter is an extension of the work by Shulz & Inman

(1994) and the following features are common to both studies. The correction of the

finite element model is based on a subset of modes and frequencies, as would be in

the case of measured data because of various practical limitations. The symmetry

of the system matrices, the connectivity information and other conditions such as

positive-definite mass matrix, the maximum allowable change in design variables,

etc. are introduced in the form of constraints. Although the solution is bounded by
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the limited variability of the design parameters, no formal functional constraints exist

since the limits can only be expressed in terms of inequalities.

The primary purpose of this Chapter is to make the methodology applicable to large

systems by both developing a quadratic linear optimisation procedure instead of the

non- linear one and by reducing the number of unknowns via an error representation

that involves one design parameter per individual finite element matrix. Although

further variants of this latter feature, such as the allocation of design parameters

to physical quantities, they will not be explored here. The main disadvantages of

a non-linear optimisation procedure are the extensive CPU requirements and slow

convergence. Further refinements embrace the inclusion of the mass matrix in the

updating procedure and the use a hysteretic damping model as well as a viscous one.

A further objective is to compare the performance of the CEAM against the response

function method (RFM) of Chapter 3.

6.2 Review of the CEAM Formulation

Although the formulation below is similar to that given by Shulz & Inman (1994), two

differences can be noticed: (i) the mass matrix is included in the updating process,

and (ii) a hysteretic damping model used instead of a viscous one.

Consider an N degree-of-freedom spatial model with structural damping:

[M ] ¨{X}+ ([K] + i[D]) {X} = 0 (6.1)

where [M ], [K], [D] are the mass, stiffness and hysteretic damping matrices.

Let us assume that it is possible to find an updated system which satisfies the equation

of motion:
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[
[M ] + [M̄ ]

]
¨{X}+

[(
[K] + [K̄]

)
+ i

(
[D] + [D̄]

)]
{X} = 0 (6.2)

where [M̄ ], [K̄], [D̄] denote the corrected mass, stiffness and hysteretic damping

matrices. Two conditions will be imposed on the updated model.

(a) The updated matrices must remain real, symmetric and preserve the initial con-

nectivity information.

(b) The initial and updated models must have the same m modes, characterised by

natural frequencies and mode shapes {φr} where r = 1, . . . ,m. At this stage, it will

be assumed these are error-free and that they can obtained from a modal analysis of

the measured data.

Using equations (6.1), (6.2) and the two constraints above, we get:

(
[M ]ω2

r + [K] + i[D]
)
{φr}+

(
[M̄ ]ω2

r + [K̄] + i[D̄]
)
{φr} = 0 (6.3)

Equation (6.3) can be written as:

[Γr] {Ψr} = 0 (6.4)

where

[Γr] =
[
[M ]ω2

r + [K] + i[D] [I ]
]

and

{Ψr} =

 {φr}(
[M̄ ]ω2

r + [K̄] + i[D̄]
)
{φr}





Chapter 6 A Modified Eigenstructure Assignment Technique ... 169

Using a QR decomposition, the vector {Ψr} becomes:

{Ψr} =

 [Vr]

[V̄r]

 {er} (6.5)

where the vectors forming the columns of the 2N × N matrix

 [Vr]

[V̄r]

 are the or-

thonormal basis for the null space of the matrix [Γr] and {er} is an N × 1 vector of

complex coefficients. Combining equations (6.4) and (6.5) we get:

{φr} = [Vr] {er} (6.6)

If all N(> m) modes are measured:

{er} = [Vr]
−1 {φr} (6.7)

However, if only m < N mode shapes are available:

{er} = [Vr]
† {φr} (6.8)

where † denotes the pseudo-inverse of [Vr].

Again, combining equations (6.4) and (6.5), one obtains:

(
[M̄ ]ω2

r + [K̄] + i [D̄]
)
{φr} = [V̄r] {er} (6.9)

Substituting equation (6.6) into equation (6.9) gives:

(
[M̄ ]ω2

r + [K̄] + i [D̄]
)

[Vr] {er} = [V̄r] {er} (6.10)
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Extending equation (6.10) into full matrix form yields:

[M̄] [V ] [E] [Ω]2 + ( [K̄] + i [D̄] ) [V ] [E] = [V̄ ] [E] (6.11)

Rearranging equation (6.11) we get:

[
[M̄ ] [D̄] [K̄]

] 
[V ] [E] [Ω]2

i [V ] [E]

[V ] [E]

 = [V̄ ] [E] (6.12)

where [ [M̄ ] [D̄] [K̄] ] isN×3N , [ [V ][E][Ω]2 [V ][E] i[V ][E] ]
T

ism×3N and [V̄ ] [E]

is N ×m.

Separating equation (6.12) into its real and imaginary parts:

[
[M̄ ] [D̄] [K̄]

] 
([V ][E])R ([Ω2

R]− [Ω2
I])− 2([V ][E])I [ΩR][ΩI ]

−([V ][E])I

([V ][E])R

([V ][E])I ([Ω2
R]− [Ω2

I ])− 2([V ][E])R [ΩR][ΩI]

([V ][E])R

([V ][E])I

 =
[

([V̄ ][E])R ([V̄ ][E])I

]

or

[
[M̄ ] [D̄] [K̄]

]
[G] = [Q] (6.13)

where the real-valued matrices [ [M̄ ] [D̄] [K̄] ], [G] and [Q] are N × 3N , 3N × 2m

and N × 2m respectively.
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The uniqueness of the solution and the importance of imposing constraints is discussed

in some detail by Shulz & Inman (1994). It is reported that, in the general case, an

optimisation method will have to used to solve equation (6.13), especially in cases

such as finite element model updating when constraints are needed to preserve the

form and connectivities of the mass, stiffness and damping matrices. The next section

will deal with the derivation of such a solution procedure.

6.3 Formulation of a Quadratic Solution Proce-

dure

A solution to equation (6.13) is sought by finding the minimum of:

J = ||
[
[M̄ ] [D̄] [K̄]

]
[G]− [Q]||f (6.14)

subject to various constraints on matrices [M̄ ], [D̄] and [K̄] and || ||f denoting the

Frobenious norm of a matrix.

There are at least two ways of minimising J : the first one is to use a non-linear

technique which results in an iterative scheme (Shulz & Inman, 1994); the second

one, which will be developed here, is to use a quadratic formulation which has the

added advantage of being unconditionally stable. Let us define J as:

J =
1

2
{Θ}T [A] {Θ}+ {B}T{Θ} (6.15)

where [A] is 3N2 × 3N2 matrix and {B} is a 3N2 × 1 vector. The partial derivatives

are given by:
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∂J
∂Θi ∂Θj

= Aij

∂J
∂Θi

∣∣∣
Θj=0

= Bi

(6.16)

Let [C] = [ [M̄ ] [D̄] [K̄] ] and [S] = [C] [G] − [Q]. With the new notation equation

(6.14) becomes:

J = Trace([S]T [S]) = Siq Siq i = 1, . . . , N q = 1, . . . , 2m (6.17)

where repeated index means summation over the index.

Using the definition of matrix [S]:

i = 1, . . . , N

Siq = Cij Gjq −Qiq q = 1. . . . , 2m

j = 1, . . . , 3N

(6.18)

Inserting equation (6.18) into equation (6.17):

i = 1, . . . , N

J = CijGjqCilGlq − 2CijGjqQiq +QiqQiq q = 1. . . . , 2m

j = 1, . . . , 3N

(6.19)

By differentiating equation (6.19) with respect to Clm and using equation (6.16) we

get:


Aij kl = 2δikGjqGlq q = 1, . . . , 2m

i, k = 1, . . . , N

Bij = −2GjqQiq j, l = 1, . . . , 3N

(6.20)
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where δ is the Kronecker delta function.

The size of matrix [A], 3N2 × 3N2, is prohibitive for any practical application to

be considered. However, as in most updating studies, there is no particular need to

update the individual elements of the global mass, stiffness and damping matrices.

Common practice is to assign correction factors, the so-called p-values, to the indi-

vidual finite element matrices and to compute those to obtain the required global

changes. In other words, it is assumed that the errors are proportional to the elemen-

tal matrices:

[M̄ ] =
L∑
i=1

pmi [Mi]

[D̄] =
L∑
i=1

pdi [Di]

[K̄] =
L∑
i=1

pki [Ki]

(6.21)

Referring to equation (6.13), let us define

[G] =


[G1]

[G2]

[G3]



where [G1], [G2], [G3] are N × 2m matrices. Inserting equations (6.21) into equation

(6.13), one obtains:

(
L∑
i=1

pmi [Mi]

)
[G1] +

(
L∑
i=1

pdi [Di]

)
[G2] +

(
L∑
i=1

pki [Ki]

)
[G3] = [Q] (6.22)

Equation (6.22) can explicitly be written as:
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



(M1G1)1,1

...

(M1G1)N,1

(M1G1)2,1

...

(M1G1)N,N





(M2G1)1,1

...

(M2G1)N,1

(M2G1)2,1

...

(M2G1)N,N



. . .



(MLG1)1,1

...

(MLG1)N,1

(MLG1)2,1

...

(MLG1)N,N





(D1G2)1,1

...

(D1G2)N,1

(D1G2)2,1

...

(D1G2)N,N



. . .



(DLG2)1,1

...

(DLG2)N,1

(DLG2)2,1

...

(DLG2)N,N





(K1G3)1,1

...

(K1G3)N,1

(K1G3)2,1

...

(K1G3)N,N



. . .



(KLG3)1,1

...

(KLG3)N,1

(KLG3)2,1

...

(KLG3)N,N







pm1
...

pmL

pd1
...

pdL

pk1
...

pkL



=



Q1,1

...

QN,1

Q2,1

...

QN,N



In short matrix notation, equation (6.22) becomes:

[A]× {p} = {b} (6.23)

Where [A] is a 2Nm × 3L matrix, {p} is a vector of 3L × 1 unknowns and {b} is a

2Nm× 1 vector. Therefore the initial 3N2× 3N2 problem has now been transformed

to an over- determined problem of size 2Nm×3L where m is the number of measured

modes and L is the number of finite elements in the mathematical model. The 3L×1

vector of correction factors can be found by applying a singular value decomposition

to matrix [A].
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6.4 Numerical Study

6.4.1 CEAM Case Studies

It is now proposed to apply the CEAM to the case of the 3D frame, the Bay structure,

which has already been used in Chapter 3. Four different models were created for

the purposes of conducting parametric studies. Model FE1 had 20 elements, for 10 of

which the Young’s modulus was increased by 8%. Model FE2 had also 20 elements

but this time 30% changes in the X and Y moments of inertia were introduced (Figs.

3.7 and 3.8). X1 and X2 were considered to be the reference models and hence they

contained no errors, the latter being double the size of the former. The aim of the

numerical studies was to correct models FE1 and FE2 using simulated experimental

data obtained from models X1 and X2. The various models used are summarised in

Table (6.1).

Table 6.1: The target and initial FE Models of the Frame Structure
(E: Young’s modulus, Ix and Iy: moments of inertia)

Model FE1 (initial) FE2 (initial) X1 (target) X2 (target)

No of elts 20 20 20 40
Mesh size 19 nodes 19 nodes 19 nodes 39 nodes
No of DOFs 114 114 114 234
Errors 8% in E 30% in Ix and Iy None None

The main objective of the case study is to examine the performance of the CEAM

from both numerical efficiency and updating quality viewpoints. The mass matrix

was excluded from the updating process for all cases but the fifth one as its inclusion

created numerical problems when there are no associated mass errors.
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Case 1. Assigning Real and Complete Modes

The first case studied is a straightforward check of the formulation whereby the first

10 modes of model X1 are assigned to model FE1 without the presence of any damping

or experimental noise. In this particular case, the p-values indicate the exact location

of the error (Fig. 6.1) and the response obtained from the updated model is identical

to that of the reference model X1 (Fig. 6.2). However, this is an expected result

since:

(i) the problem is over determined with 40 unknowns (mass and stiffness p-values for

the 20 finite elements) and 10 complete modes, each containing 115 data items,

(ii) the changes made are directly proportional to the correction factors and hence

equations (21) are exact in this particular case, and

(iii) the initial and target models have identical meshes and hence the discretisation

errors cancel each other.
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Figure 6.1: Computed p-values for Case1 (CEAM)
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Figure 6.2: Initial, target and updated responses for Case1 (CEAM)
The updated and target responses are identical
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Case 2. Effect of Damping

The same exercise was repeated by including 1% hysteretic damping in both models,

i.e. FE1 and X1. The damping in model X1 was forced to be non-proportional by

considering some of the elements only. The initial damping in FE1 was assumed to

be proportional by allocating a damping matrix for each element. In this case the

number of unknowns is 3×20 = 60 and the elements of the target mode shape vector

are complex. Using again 10 complete modes, the errors were identified exactly,

including those associated with the non-proportional damping (Fig. 6.3). As a direct

consequence, the responses obtained from the reference and updated models were

found to be identical. This result is somewhat encouraging because other updating

approaches are known to be prone to numerical problems in similar cases (Imregun

et al., 1995b).
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-0.2

0

                             Mass Matrix                      Stiffness Matrix                    Damping Matrix

Figure 6.3: Computed p-values for Case2 (CEAM)

Case 3. Effect of Measurement Noise

The undamped and damped cases above were repeated for 5% random noise which

was added to the simulated FRFs obtained from X1. The target eigenproperties were

then obtained by applying a global rational fraction curve-fitting algorithm to the

polluted FRFs. The computed p-values are shown in Fig. (6.4) and it is immediately

seen that there is little correspondence between the actual errors and the proposed

corrections. The responses obtained from the target (X1) initial (FE1) and updated
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models are overlaid in Fig. (6.5). Although noise has an obvious detrimental effect

on the updating quality, the updated model still shows a marked improvement over

the initial one, indicating that the model has been corrected in some global sense

without particular emphasis on the location or magnitude of the initial discrepancy.

This finding is in line with those of many other studies that use a formulation similar

to equation (6.21).
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Figure 6.4: Computed p-values for Case3 (CEAM)
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Figure 6.5: Initial, target and updated responses for Case1 (CEAM)
The updated and target responses are identical
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Case 4. Effect of Mode Shape Incompleteness

One of the well-known problems in model updating is the size incompatibility be-

tween the experimental and theoretical models. The difficulties arise because of poor

accessibility and due to the lack of reliable methods for measuring the rotational de-

grees of freedom. This latter situation is simulated here by removing the rotational

co-ordinates from the target mode shapes. Three different sets of results, correspond-

ing to 40-, 60- and 80-mode assignments, are shown in Fig. (6.6). The adverse effect

of co-ordinate reduction is obvious and it can, to a certain extent, be compensated

by using more and more modes in the assignment, though no updated model is able

to match the target one exactly.
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Figure 6.6: Effect of increasing the number of assigned
modes - Case4 (CEAM)
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Case 5. Effect of Localised Changes

Model FE2 was used to investigate the effect of localised changes. In this case,

the discrepancies between X1 and FE2 are not directly proportional to the p-values

and hence equations (6.21) are no longer exact in this particular case. In other

words, the moment of inertia errors are not global in nature since the elements of

the individual stiffness matrices are not all affected the same way. As the inertia

errors are associated with the mass matrix, this was also included in the updating

process. Initial calculations produced p-values which were not representative of the

inertia discrepancies between the two models. More alarmingly, the resulting response

model showed very poor agreement with the target one. After some deliberation it was

decided to increase the number of modes to be assigned as this approach was observed

to be a numerical cure in the previous case study. Given the practical limitations on

the availability of higher experimental modes, 30 modes of the initial finite element

FE2 were assigned to the updated model. The resulting p-values are shown in Fig.

(6.7) and the FRFs obtained from the updated model are compared to the initially-

predicted and target ones in Fig. (6.8). Although the error location is quite very

poor, the performance of the updated model is acceptable at the response function

level, a feature which again suggests that accurate error location is not necessarily a

pre-requisite for updating.
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Figure 6.7: Computed p-values for Case5 (CEAM)
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Figure 6.8: Initial, target and updated responses for
Case5 (CEAM)

Case 6. Effect of Discretisation Differences

All cases studied so far are based on a one-to-one correspondence between the theoret-

ical and experimental models, a feature that cannot be achieved in practice. The fact

that models FE1, FE2 and X1 have been discretised using the same mesh not only

simplifies the problem of model updating significantly, but is also unrepresentative

of the real engineering problem where the discrepancies between the experimental

and theoretical models not explicitly present in the theoretical model in the form of

directly correctable parameters. It was therefore decided to update Model FE1 using

Model X2, the mesh of which is double in size. Initially, it was attempted to assign the

modal properties of model X2 to model FE1 directly. However, after few attempts,

it was noticed that p-values were all approaching the value of -1, indicating that only

the trivial solution could be found. The explanation for such behaviour is relatively

straightforward. As shown in Figs. (6.9) and (6.10), the assignment can only succeed

if the target and initial sets belong to the same eigen domain. If the two sets are not
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in the same domain, it is not possible to find mass and stiffness correction matrices so

that the initial and updated models span the same set of eigenvalues and eigenvectors

for a given frequency range and hence no updated model can be guaranteed until the

closeness of the two sets is improved. Such an approach will be adopted here in the

form of a two-stage assignment.

M, K

Target

Initial

Eigen Operator
Updating
Operator

M’, K’

’ ’,

,

λ φ

λ φ

Figure 6.9: Target and Initial Models belong to the same domain
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M, K

M’, K’

No Immediate 
updating Operator

λ , φ

λ’, ’φ

Figure 6.10: Target and Initial Models do not belong to the same
domain

After some deliberation, it was decided to assign the first 10 eigenvalues (but not

eigenvectors) of model X2 to model FE1 and to keep the eigenvectors of FE1 un-
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changed. This approach is equivalent to changing the global material properties of

the system, say as density and Young’s modulus, since such a modification will pro-

duce shifts in natural frequencies only. Once an updated model was obtained, a

further assignment was made by using the first 10 eigenvalues and eigenvectors of X2.

To force model closeness, a further 60 modes (both eigenvalues and eigenvectors) of

model FE1 were self-assigned. The results of this two-stage assignment are plotted in

Fig. (6.11) in the form of initial, target and updated FRFs. It is interesting to note

that the first mode is not particularly well corrected but the remaining part of the

response shows a marked improvement. The problem is, once again, in the closeness

of the initial and target models. For the two given sets, it was not possible to find a

modification that could correct the first mode.
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Figure 6.11: Initial, target and two updated responses for Case6
(Two-stage CEAM)
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6.4.2 A Comparison with the Response Function Method

It is now proposed to compare the performance of the response function and eigen-

structure assignment methods by repeating the six cases above using the former

technique. From the outset, it must be stressed the RFM is an iterative method

where the convergence of the p-values cannot be guaranteed. On the other hand, the

CEAM is based on the direct solution of an over-determined set of linear equations

and the optimisation algorithm is unconditionally stable by virtue of being quadratic.

Although both methods will yield identical results for noise-free and complete modal

information cases, very significant differences can be seen in other situations. The

results are listed in Table (6.2).

Table 6.2: Computational effort for RFM and CEAM updating.
All CPU seconds normalised with respect to Case 1 - CEAM solution

Case Description CEAM RFM
Seconds Seconds/iter No of iters

1
FE1 vs X1, 10 complete modes

100 284 3
no damping, no noise

2
FE1 vs X1, 10 complete modes

106 431 4
1% damping, no noise

3
FE1 vs X1, 10 complete modes

359 No. conv. -
1% damping, 5% noise

4
FE1 vs X1, 60 incomplete modes

471 170 12
no damping, no noise

5
FE2 vs X1, 50 complete modes

746 207 20
no damping no noise

6
FE1 vs X2, 70 complete modes

881 No. conv. -
no damping, no noise

For the first two cases, both methods produced identical answers but the CEAM

is seen to be about an order of magnitude faster, as the RFM needs 3-4 iterations

for convergence. For the third case, where the measured FRF data are polluted by

noise, the RFM fails to converge while the CEAM produces an updated model, the
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response from which is in good agreement with the target one. The fourth case,

where incomplete mode shapes are used, is handled better by the RFM in the sense

that both the discrepancies are identified and the agreement at the response level

is good. However, it should be noted that relatively small errors still appear in the

mass matrix. A comparison of the p-values computed using the two methods is given

in Figs. (6.12) and (6.13). The performance of the two methods is about the same

for the fifth case for which the changes are in the moments of inertia. The last case,

for which there is no one-to-one correspondence between the target and the initial

models, can only be dealt with the CEAM and the agreement of the target and

updated models at the response level is acceptable, except in the vicinity of the first

mode.
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Figure 6.12: Computed p-values for Case4 (CEAM)
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Figure 6.13: Computed p-values for Case4 (RFM)
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6.5 Concluding Remarks

• The existing constrained eigenstructure assignment method has been modified

so that it can deal with the updating of large-order systems. The resulting

formulation is compatible with the response function and inverse eigensensitivity

methods in the sense that the individual mass, stiffness and damping matrices

are corrected by simple multipliers, the so- called p-values.

• The inherent difficulties associated with finite element model updating are, once

again, illustrated by the case studies that are undertaken. Using a correction

factor formulation, the model can only be corrected in a global sense without

particular emphasis on the actual sources of discrepancy between the theoret-

ical and experimental models. However, the response obtained from globally-

updated models is a better match to the measured ones in most cases.

• Numerical case studies seem to indicate that the updating of the damping ma-

trix becomes an easier, and certainly less ill-conditioned task, by virtue of using

an unconditionally stable quadratic optimisation algorithm.

• As in many other case studies, the closeness of the initial and target models

is found to be a key issue for successful updating. However, in the case of

the CEAM, it is possible to employ a two-stage updating procedure to partly

overcome this difficulty.

• The eigenstructure assignment method yields the solution directly and hence

it has a significant advantage over the response function method, its iterative

counterpart. A comparative study between the two methods reveals that the

RFM requires substantially more CPU power in all cases. Also, the conver-

gence of the RFM cannot be guaranteed in cases where the measured FRFs are

polluted by noise or when the discretisation differences are significant. On the

other hand, the RFM seems to be able to cope better with incomplete measured

data.

• Of particular note is the fact that both methods can only correct the finite
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element model in a global sense since the location of specific discrepancies cannot

be achieved by the present formulation based on elemental correction factors.

In any case, this feature is an inherent problem in model updating studies, as

illustrated by the last case study: unless the discrepancies are actually present

in the model to be updated in a one-to-one fashion, it is difficult to see how

they can be remedied by changing other, albeit related, parameters.

• The importance of the model closeness is clearly illustrated by the last case

study. No updated model can be guaranteed for cases where the initial and

updated models do not span the same set of eigenvalues and eigenvectors by

virtue of belonging to the same eigen domain. This observation is general and

underlines one of the fundamental problems in model updating.



Chapter 7

Model Updating Using Generic

Elements 1

7.1 Introduction

Most updating approaches are based on parameter correcting: a set of design variables

(alternately, individual finite element matrix multipliers, the so-called correction fac-

tors or p-values) are considered to be the unknowns, the correct values of which are

expected to yield a correct model. Such a methodology is based on the assumption

that the elemental mass and stiffness matrices can be expressed as sums or products

of further intermediate matrices which are governed by one or more parameters from

the chosen set. However, the elemental matrices equally depend on the integration

of shape functions, the matter becoming much more complicated if the element can-

not be expressed in closed form. For instance, the mass and stiffness matrices can be

written directly for uniform beams if all material and geometric properties are known.

In this case, it is relatively straightforward to determine a number of intermediate

matrices that are directly related to the design variables. On the other hand, the

task is far less well defined for more complex cases, say a 20-noded brick element,

1Presented at 1996 International Conference on Noise and Vibration Engineering,
Leuven, Belgium
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the mass and stiffness matrices of which result from numerical integration. Moreover,

even in cases where the intermediate matrices can be defined, the required changes

in the design parameters may become unrealistic. Such situations are often encoun-

tered for awkward geometries (e.g. joint modelling using springs or beams) or when

the discrepancy between the initial and target models is large so that it cannot be

accommodated by relatively small changes in the design parameters.

An alternative method is to find a method in which the parameter changes are part

of the finite element formulation so that a degree of consistency can be maintained

throughout. Such an approach, referred to as generic element or acceptable element

updating (Ahmadian et al., 1994a,b; Gladwell & Ahmadian, 1995), will be adopted

here. In this particular technique, the elemental mass and stiffness matrices are al-

lowed to change dynamically while retaining their physical meaning and mathematical

properties (symmetric, positive-definite, etc.) by virtue of belonging to a same consis-

tent family of such matrices. The idea is somewhat reminiscent of adaptive meshing

techniques that are routinely used in computational fluid dynamics applications.

The main purpose of this Chapter is to adapt the generic element formulation to

any case where the mass and stiffness matrices are numerically known and to provide

a benchmark against other more established updating methods which are based on

direct parameter correction. It is further proposed to use a response function based

objective function, though a sensitivity based formulation is also possible.

7.2 Basic Theory

Let us consider the stiffness and mass matrices, [Ke] and [Me], of a typical finite

element. It is possible to seek an eigensolution at the elemental level:

([Ke]− λ[Me]) [Φ] = 0 (7.1)

If the element has n degrees of freedom and r rigid body modes (r ≤ 6) then [Φ] can
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be written as:

[Φ] = [[ΦR] , [ΦS]] (7.2)

Because of the relationship between the rigid body modes and the stiffness matrix,

one can write:

[Ke] [ΦR] = 0 (7.3)

Since [Ke] and [Me] are positive semi-definite and positive definite respectively, it is

possible to write them in a diagonal form as:

[Ke] = [U ] [Θ] [U ]T =
n∑

i=r+1

θiuiu
T
i

[Me] = [V ] [Σ] [V ]T =
n∑
i=1

σiviv
T
i

(7.4)

where [U ] and [V ] are orthogonal element decomposition matrices and [U ]T [ΦR] = 0.

The proposed way of constructing a family of generic elements is to consider some

initial [Ke
0 ] and [Me

0 ] matrices, usually the standard FE matrices, and find their

corresponding constituent matrices [U0] and [V0]. In some simple cases, it is possible

to relate [Ke
0 ] and [Me

0 ] directly to material and geometric properties of the element

(Ahmadian et al., 1994b). However, this particular approach requires those matrices

to be available in parametric form and hence it is not applicable to the general case

where the matrices can only be derived numerically.

In any case, a second set of constituent matrices can then be defined by:

[U ] = [U0] [R]

[V ] = [V0] [T ]
(7.5)
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Where [R] and [T ] are two orthogonal matrices, the choice of which is arbitrary. Using

equations (7.4) and (7.5), a new set of elemental mass and stiffness matrices can be

written as:

[Ke] = [U0] [R] [Θ] [R]T [U0]T

[Me] = [V0] [T ] [Σ] [T ]T [V0]T

(7.6)

In equations (7.6), the diagonal elements of matrices [Θ] and [Σ], where θi (i = r +

1, · · · , n) and σi(i = 1, · · · , n), can also take some arbitrary values, thus increasing the

number of possible updating parameters. Remembering that most model updating

methods are based on minimising some objective function between the reference and

the target models, an iterative solution involving matrix building over equations (7.6)

is somewhat undesirable.

In order to reduce the number of unknowns in the symmetric matrix products [R] [Θ] [R]T

and [T ] [Σ] [T ]T, it is possible to update just the dominant modes of each matrix and

keep the remaining ones unchanged. This can be achieved by considering the singular

values σi and θi of the mass and stiffness matrices. Ross (1971) has indicated the

importance of accurate representation of the mass contributions at the high frequen-

cies and of the stiffness contributions at lower frequencies. This observation will have

implications for both selecting and computing the σi and θi parameters.

Some more restrictions can be applied on diagonal matrices [R] and [T ]. For instance,

the number of rigid body modes remain the same in both old and new system and

the new rigid body modes are linear combinations of the original ones. This causes

the matrices [R] and [T ] to be in block form.

A further reduction is also possible by considering the symmetry of the elemental

matrices. For example, the symmetric eigenvectors are a linear combination of initial

symmetric eigenvectors and the same can be applied to the anti-symmetric eigenvec-

tors.
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Therefore equations (7.6) are the main equations for constructing a generic family.

In the following, the mass and stiffness matrices for rod, 2D beam and 4-nodes plate

element will be described.

7.3 Rod Elements

Consider the longitudinal vibration of a straight, thin rod of length L. The mass and

stiffness matrices for the lumped mass model of a uniform element are:

[Ke
0 ] = k0

 1 −1

−1 1

 (7.7)

[Me
0 ] = m0

 1/2 0

0 1/2

 (7.8)

where m0 = ρAL, k0 = EA/L and ρ, E, A and L are density, module of elasticity,

cross section and the length of the rod.

The initial mass and stiffness matrices [Me
0 ] and [Ke

0 ] can be decomposed to find [U ],

[Θ], [V ] and [Σ] matrices:

[Ke
0 ] = k0

 − 1√
2
− 1√

2

− 1√
2

1√
2


 0 0

0 2


 − 1√

2
− 1√

2

− 1√
2

1√
2


T

(7.9)

[Me
0 ] = m0 [I ]

 1
2

0

0 1
2

 [I ] (7.10)

Let’s first consider the stiffness matrix. Since the system possesses one rigid mode

which remains the same in the new system, the orthogonal matrix [R] should be equal

to identity matrix. Therefore, the new stiffness matrix, [Ke], can be constructed as:
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[Ke
0 ] = k0

 − 1√
2
− 1√

2

− 1√
2

1√
2


 0 0

0 θ1


 − 1√

2
− 1√

2

− 1√
2

1√
2


T

(7.11)

After some manipulations:

[Ke
0 ] = k

 1 −1

−1 1

 (7.12)

where k = 1
2
k0θ1. It is noticeable that [Ke] does not change its form and is specified

by one parameter, i.e. k.

Now consider the elemental mass matrix [Me
0 ]. By considering a general form for the

orthogonal matrix [T ], the new [Me] can be defined as:

[Me] = m0 [I ]

 cos ζ sin ζ

− sin ζ cos ζ


 σ1 0

0 σ2


 cos ζ sin ζ

− sin ζ cos ζ


T

[I ] (7.13)

After some simplifications, one gets:

[Me] =

 m1 m12

m12 m2

 (7.14)

where

m1 = σ1 cos2 ζ + σ2 sin2 ζ

m2 = σ1 sin2 ζ + σ2 cos2 ζ

m12 = (σ2 − σ1) cos ζ sin ζ

(7.15)

The mass matrix is symmetric and is determined by three parameters. If one considers
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the element symmetry about its centre, then ζ = 45o and m1 = m2 and the number

of parameters will be reduced to two parameters per each elemental mass matrix.

Thus, there are three parameters for each rod element, one for the stiffness and two

for the mass matrix, and for the purpose of updating the derivatives of [Ke] and [Me]

matrices with respect to the unknown parameters should be calculated.

7.4 Beam Elements

Let’s consider a simple Euler Bernoulli beam. We assume a lumped-mass model for

mass matrix and a stiffness matrix with cubic shape functions. Then, for a uniform

beam element :

[Ke
0 ] = k0



12 6 −12 6

6 4 −6 2

−12 −6 12 −6

6 2 −6 4

 (7.16)

[Me
0 ] = m0



1/2 0 0 0

0 1/24 0 0

0 0 1/2 0

0 0 0 1/24

 (7.17)

Where m0 = ρAL, k0 = EI/L3 and the displacement vector is {wi−1, Lw
′
i, wi, Lw

′
i}.

The stiffness matrix may be written in the form of:

[Ke
0 ] = k0



1√
2
− 1√

3
0 2√

10

0 1√
3

1√
2

1√
10

1√
2

0 0 − 2√
10

0 1√
3
− 1√

2
1√
10





0 0 0 0

0 0 0 0

0 0 2 0

0 0 0 30





1√
2
− 1√

3
0 2√

10

0 1√
3

1√
2

1√
10

1√
2

0 0 − 2√
10

0 1√
3
− 1√

2
1√
10



T



Chapter 7 Model Updating Using Generic Elements 196

Since the rigid body modes remain unchanged for both systems, therefore the matrices

[Θ] and [R] will be:

[Θ] =



0 0 0 0

0 0 0 0

0 0 θ1 0

0 0 0 θ2

 (7.18)

[R] =



1 0 0 0

0 1 0 0

0 0 cos ζ sin ζ

0 0 − sin ζ cos ζ

 (7.19)

After some calculations, the most general stiffness matrix will obtain as:

[Ke] =



0 2√
10

1√
2

1√
10

0 − 2√
10

− 1√
2

1√
10


 x1 x12

x21 x2


 0 1√

2
0 − 1√

2

2√
10

1√
10
− 2√

10
1√
10

 (7.20)

where

x1 = θ1 cos2 ζ + θ2 sin2 ζ

x12 = (θ2 − θ1) sin ζ cos ζ

x2 = θ1 sin2 ζ + θ2 cos2 ζ

(7.21)

There are two rigid body modes and two strain modes for this system. Two of these

modes are symmetric and the other two modes are antisymmetric about the centre of

element. If the symmetry property for the element is preserved then matrix [T ] will

be in the form of:
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[T ] =



cos η 0 sin η 0

0 cos γ 0 sin γ

− sin η 0 cos η 0

0 − sin γ 0 cos γ

 (7.22)

If one writes [Σ] = diag{σ1, σ2, σ3, σ4}, the final result for the mass matrix will be:

[Me] = m0[V0]



s1 0 s13 0

0 s2 0 s24

s13 0 s3 0

0 s24 0 s4

 [V0]
T (7.23)

where s1, . . . , s4 are functions of σ1, . . . , σ4, η and γ.

Thus, in this family, there are six unknown parameters for mass matrix, namely

s1, s2, s3, s4, s13 and s24 and three unknown parameters for stiffness matrix, namely

x1, x12 and x2. As mentioned by Gladwell & Ahmadian (1995), different types of 2D

beam elements belong to this family. For instance, the Timoshenko beam element

mass and stiffness matrices. Again, for the purpose of updating the derivatives of

[Ke] and [Me] matrices with respect to each parameter should be calculated.

7.5 Plate Elements

In this section, the bending of rectangular plates will be considered. The family

consists of 12 degree-of-freedom elements, with two axis of symmetry (See Fig. 7.6).

Each node has three degrees of freedom namely, deflection in Z direction and rotation

around X and Y axis. This element has three rigid body modes and nine strain

modes. For the latter case when a/b = 2 and ν = .3, there are four symmetric modes

around XZ and YZ planes, labelled as u1, u5, u8 and u9. There are also two modes, u2

and u7, which are symmetric around Z axis. The element has two symmetric modes
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around x axis namely, u4 and u6 and one around y axis, u3. By considering such a

symmetry, the generic family for the stiffness matrix can be constructed as:

[U ] =
[
u1 u5 u8 u9 u2 u7 u3 u4 u6

]


[R1]

[R2]

1

[R3]

 (7.24)

where [R1] is a 4 × 4 orthogonal matrix while [R2] and [R3] are 2 × 2 orthogonal

matrices. The family for the stiffness matrix contains 17 parameters. In general case

all nine eigenvalues may change, i.e. λi (i = 1, · · · , 9). The matrices [R1], [R2] and

[R3] have six, one and one parameters respectively. If we assume that the effects of

the three highest modes u7, u8 and u9 are negligible, the orthogonal matrices [R1],

[R2] and [R3] can be written as:

[R1] =



cos ζ sin ζ 0 0

− sin ζ cos ζ 0 0

0 0 1 0

0 0 0 1

 (7.25)

[R2] =

 1 0

0 1

 (7.26)

and

[R3] =

 cos η sin η

− sin η cos η

 (7.27)

Now, the family specifies by 8 parameters namely, ζ, η and λi (i = 1, · · · , 6). The

above process can be applied for the mass matrix as well. Having constructed the
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family of stiffness and mass matrices, the derivatives of [Ke] and [Me] with respect to

the selected parameters can be calculated. The next step is the selection of updating

procedure which will be discussed in the next section.

7.6 Model Updating

Once the (unknown) correction parameters are selected, [Ke] and [Me] can be ex-

pressed as a function of those parameters, i.e.

[Ke] = [Ke(α1, α2, · · · αk)]
[Me] = [Me(β1, β2, · · · βm)]

(7.28)

where α1, α2, · · · αk are the updating parameters for the element stiffness matrix

while β1, β2, · · · βm are the updating parameters for the element mass matrix.

In any case, the global stiffness and mass matrices may be written as:

[K] =
N∑
i=1

[Ke
i ]

[M ] =
N∑
i=1

[Me
i ]

(7.29)

For simplicity of notation, it has been assumed that both global matrices have N

elements.

Defining a vector {p} of the unknown updating parameters as:

{p} =
{
α1

1, · · · , α1
k, · · · , αN1 , · · · , αNk ; β1

1 , · · · , β1
m, · · · , βN1 , · · · , βNm

}

one can write 2:

2see Chapter 3
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{ε ({p})} = {I}j −
[
ZRed ({p})

]
{HX}j (7.30)

where {ε} is a complex-valued vector of residuals, [ZRed] and {HX}j are the reduced

dynamic stiffness matrix and the vector of measured receptance respectively. The

unknown parameters are contained in [ZRed] as the full dynamic stiffness matrix is

given by:

[Z] =
N∑
i=1

(
[Ke

i ]− ω2[Me
i ]
)

(7.31)

Because of the mathematical non-linearities involved in computing the α and β values

of the elemental stiffness and mass matrices, equation (7.30) may or may not have a

solution. In any case, [ZRed] can be expressed as a truncated Taylor series:

[
ZRed ({p})

]
=
[
ZRed

(
{p}0

)]
+
∑
i

∂[ZRed]

∂pi
∆pi +O(∆pi)

2 (7.32)

By substituting equation (7.32) into equation (7.30) and assuming null residual vector,

one obtains:

{I}j −
[
ZRed

(
{p}0

)]
{HX}j =

(∑
i

∂[ZRed]

∂pi
∆pi

)
{HX}j (7.33)

Calculating the derivatives of [ZRed] with respect to the unknown parameters and

writing equation (7.33) at different frequency points gives:

[A]× {p} = {b} (7.34)

Equation (7.34) can now be solved iteratively to obtain the unknown vector {p}. In

most cases, [A] will not be a square matrix and hence a generalised inverse will need

to be used.
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7.7 Case Studies

7.7.1 Uniform Rod

This case study deals with a uniform rod which is fixed in one end and free to vibrate

at the other end (Fig. 7.1).

x

Figure 7.1: Uniform rod

The length of the rod is 1 meter, its circular cross section has a diameter of 1 cm.

The rod is made of steel with modulus of elasticity of 207GN
m2 and density of 2.700

Kg/m.

The experimental data are based on an analytical solution taken from Bishop &

Johnson (1960). The rod is modelled by a 10-DOF mass-spring system in which

the individual masses (.254Kg) and springs (6.28× 108N/m2) are the initial generic

elements for the system. The analytical model contains errors in the form of 10%

mass decrease as well as discretisation errors due to the modelling of a continuous

rod with a mass-spring system.

Fig. (7.2) shows the receptances in X direction at node 1, located at 10 cm from

the fixed end of the bar, all obtained from a X direction excitation at node 1. Using

a frequency resolution of 20 Hz, the receptances are evaluated for the 0-20,000 Hz

frequency range.

In this case the number of unknowns is 3× 10 = 30, as there are two unknowns for

the mass matrix and one for the stiffness matrix of each element. Using 10 frequency

points in the frequency range of interest, the modelling errors are identified and the

discretisation errors are somewhat compensated for as there is good agreement at the

response level (Fig. 7.2).
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Figure 7.2: Initial, target and updated FRFs
Rod example

7.7.2 Uniform Beam

The second case study is a 2D uniform beam with a rectangular cross section (Fig.

7.3). The FE model consists of 10 elements which have lumped mass matrices while

the stiffness matrices have cubic shape functions. Two cases will be considered here.

L

1 2 3 4 5 6 7 8 9 10

Y

X
θ

Figure 7.3: Uniform Beam

Case A. The experimental model, which contains no errors, consists of 11 Y direction

receptances, all obtained for an excitation in the same direction at node 1. The

analytical model contains errors in the form of 10% height decrease in all of its

elements, which corresponds to a 27.1% decrease in moment of inertia. Ten frequency

points, namely 500, 690, 900, 1000, 1145, 1600, 1700, 1883, 2200 and 2750 Hz, were

selected from the range of 0-3000 Hz and equation (7.34) was used for calculating
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the generic element parameters α and β. The point receptance at node 1 is depicted

in Fig. (7.4) for the initial, experimental and updated cases. The success of the

generic element formulation in updating this particular model is evident from the

FRF overlays.
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Figure 7.4: Initial, target and updated FRFs
Beam example - case A

Case B. The purpose of Case B is to investigate the effect of discretisation errors

and hence the reference data are obtained from the closed-form expressions provided

by Bishop & Johnson (1960). In this particular case, the FE model has discretisation

errors only, since it uses the same nominal dimensions and material properties as

the closed-form beam solution. As before, the experimental model consists of 11 Y

direction receptances, all obtained for an excitation in the same direction at node 1.

For this case, 17 frequency points were selected from the 0-4600 Hz frequency range

(500, 690, 900, 1000, 1145, 1600, 1700, 1883, 2200, 2750, 3290, 3710, 3900, 4000, 4100,

4200 and 4600 Hz).

The FRFs obtained from the updated model are compared to the initial and exper-

imental (i.e. closed-form solution) ones in Fig. (7.5). Although the experimental
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and updated FRFs are not completely coincident, the results still show a good im-

provement over the initial model. More significantly, other formulations (p-value or

actual design parameter) were unable to produce a converged solution for the same

case, the objective function being still based on the difference of the response func-

tions. Therefore, it appears that the generic element formulation is somehow able to

compensate for discretisation errors as well as correcting parametric differences.
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Figure 7.5: Initial, target and updated FRFs
Beam example - case B

7.7.3 Uniform Plate

The generic element formulation was applied to the case of a 4-nodded 12 DOF

shell element next (Fig. 7.6). A free-free uniform plate, shown in Fig. (7.7), was

analysed in two different configurations. In order to maintain compatibility with

existing finite element programs, it was decided to import the elemental mass and

stiffness matrices from the FE code ANSYS and to use them as the initial generic
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elements. In this example, [R] and [T ] were kept constant by assigning them a

unit matrix throughout the updating process. Thus, only the singular values of the

elemental mass and stiffness matrices were used as correction parameters and hence

the number of unknowns was reduced to 21. Three cases will be studied here:

t

X

Y

Z

1

2

3

4

Figure 7.6: A four-node rectangular 2D plate element

1 2 3

4 5 6

7 8 9

w

h

Figure 7.7: The two mesh configurations for the plate example
( E = 207GN/m2 , ρ = 7800Kg/m3 , width= height=
.15 m, thickness= .001m)



Chapter 7 Model Updating Using Generic Elements 206

Case A. The plate was divided into nine elements, thus yielding 16× 3 = 48 degrees

of freedom. The analytical model contains errors in the form of 10% overall decrease

in the mass matrix (elements 1, 3, 5, 7 and 9) and 10% overall increase in the stiff-

ness matrix (elements 2, 4, 6 and 8). Here it should be noted that the chosen error

configuration (direct matrix multiplier) does not correspond to a physical change in

the structure. The experimental model, which contains no errors, consists of all Z

direction receptances, obtained for a Z direction excitation at node 1. Ten frequency

points, namely 50, 110, 170, 230, 300, 350, 450, 500, 600 and 700 Hz, were selected

from the range of 0-800 Hz and equation (7.34) was used to compute the required

generic element parameters. The initial, experimental and updated FRFs correspond-

ing to this case are shown in Fig. (7.8). The results clearly show the capability of

the generic element formulation for the identification of proportional errors in both

the mass and stiffness matrices.
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Figure 7.8: Initial, target and updated FRFs
Plate example - Case A
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Case B. As before, the purpose of Case B is to investigate the effect of discretisation

errors and reference data, same as Case A, were obtained from a refined FE model

with a 6×6 the mesh (Fig. 7.7). The FE model to be corrected used the previous 3×3

mesh but had the same geometry and the material properties as the 6× 6 mesh. The

results of this case study is plotted in Fig. (7.9) in the form of initial, experimental

and updated FRFs. As expected, the discretisation errors are more prominent after

the first few modes but, nevertheless, they are corrected with remarkable success by

the generic element formulation.
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Figure 7.9: Initial, target and updated FRFs
Plate example - Case B
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Case C. It was decided to investigate the effects of using experimental data polluted

by noise and Case B was repeated by adding 1% random noise to the measured

FRFs. The results are shown in Fig. (7.10) and it is immediately seen that noise has

a relatively minor effect on the results.
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Figure 7.10: Initial, target and updated FRFs
Plate example - Case C

7.7.4 Computational Considerations

From the outset, it must be stressed that the generic element formulation is com-

putationally very expensive and its application to large models requires careful opti-

misation of the existing formulation. This is the main reason of using small-size 2D

elements in the numerical case studies. For instance, the beam generic element of the

first study had 8 parameters per element (6 for the mass and 2 for the stiffness matrix)
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while the plate generic element had 21 parameters per element (12 for the mass and

9 for the stiffness matrix). A 3D brick element with 8 nodes may well require over

30 parameters, depending on the details of a particular implementation. In any case,

any finite element can be used to derive a corresponding family of generic elements,

provided the finite element is known to full numerical accuracy.

Table 7.1: Computational effort for generic element and p-value formulations
(CPU seconds are for an IBM RS/6000 model 540 computer)

Generic element formulation p-value formulation

Case Study 9 correction factors/beam element 2 correction factors/element

21 correction factors/plate element

No of iterations Seconds/iteration No of iterations Seconds/iteration

Beam - Case A 4 52 3 12

Beam - Case B 5 161 No convergence N/A

Plate - Case A 3 2067 2 349

Plate - Case B 5 2067 No convergence N/A

Plate - Case C 7 2067 - -

7.8 Concluding Remarks

• A generic element formulation, together with a response function based objec-

tive function, has been used to update a number of small FE models. The results

show that the approach can deal with both physical parameter and discretisa-

tion errors. The extension of the work to include a sensitivity-based objective

function is believed to be straightforward.

• Although the generic element formulation can be based on the use of true design

parameters such as material and geometric properties, this particular technique

can only be applied to a small number of elements since the analytical formu-

lation must be known.

• In the general case, where compatibility with existing FE programs is essential,

it is possible to generate a family of generic elements for any given finite element.
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In such situations, the correction parameters become the element singular values

and/or the orthogonal constituent matrices and hence their physical meaning

is lost.

• The main disadvantage of the method is the large amount of CPU effort that is

needed for the solution a feature that arises from the number of unknowns per

element and the nonlinear form of the objective function. However, the latter

is not a specific generic element problem.



Chapter 8

Model Updating based on Physical

Parameters

8.1 Introduction

When correcting mass and stiffness matrices via p-values, a correction in Young’s

modulus and density is inherently implied for most elements. The aim here is to

extend the method of Chapter 3 to consider model updating through changes in

physical parameters such as moment of inertia, Poisson’s ratio, thickness and so on.

Using such parameters, the model is likely to be adjusted more accurately and its

connectivities will be preserved.

Sections (8.2) and (8.4) discuss a 3D beam element and a 2D plate element respec-

tively, while an exact 3D beam element is addressed in Section (8.6).

8.2 Three Dimensional Beam Element

A general vibration analysis of a prismatic bar requires simultaneous consideration

of its motion in all six directions and such an approach will be employed here.

211



Chapter 8 Model Updating based on Physical Parameters 212

Figure 8.1: Spatial coordinates of beam element

Consider the case of a three-dimensional Euler-Bernouilli beam element where the

degrees of freedom are ordered as:

[vx1 vy1 vz1 θx1 θy1 θz1 vx2 vy2 vz2 θx2 θy2 θz2]

The subscripts 1 and 2 refer to the two nodes of the element, and v and θ denote the

displacement and rotation fields, respectively. The elemental stiffness matrix is given

by Przemieniecki (1968):

[Ke] =



α
l

0 0 0 0 0 −α
l

0 0 0 0 0

0 12γz
l3

0 0 0 6 γz
l2

0 −12γz
l3

0 0 0 6γz
l2

0 0 12 γy
l3

0 −6γy
l2

0 0 0 −12γy
l3

0 −6γy
l2

0

0 0 0 β
l

0 0 0 0 0 −β
l

0 0

0 0 −6γy
l2

0 4 γy
l

0 0 0 6 γy
l2

0 2 γy
l

0

0 6γz
l2

0 0 0 4 γz
l

0 −6γz
l2

0 0 0 2γz
l

−α
l

0 0 0 0 0 α
l

0 0 0 0 0

0 −12γz
l3

0 0 0 −6γz
l2

0 12γz
l3

0 0 0 −6 γz
l2

0 0 −12γy
l3

0 6 γy
l2

0 0 0 12γy
l3

0 6 γy
l2

0

0 0 0 −β
l

0 0 0 0 0 β
l

0 0

0 0 −6γy
l2

0 2 γy
l

0 0 0 6 γy
l2

0 4 γy
l

0

0 6γz
l2

0 0 0 2 γz
l

0 −6γz
l2

0 0 0 4γz
l


(8.1)
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where:

α = A× E
β = G× J
γy = E × Iy
γz = E × Iz

and the elemental mass matrix is given by:

[Me] = κ



1
3

0 0 0 0 0 1
6

0 0 0 0 0

0 az 0 0 0 bz 0 cz 0 0 0 dz

0 0 ay 0 −by 0 0 0 cy 0 −dy 0

0 0 0 ε
3

0 0 0 0 0 ε
6

0 0

0 0 −by 0 ey 0 0 0 dy 0 fy 0

0 bz 0 0 0 ez 0 −dz 0 0 0 fz
1
6

0 0 0 0 0 1
3

0 0 0 0 0

0 cz 0 0 0 −dz 0 az 0 0 0 −bz
0 0 cy 0 dy 0 0 0 ay 0 by 0

0 0 0 ε
6

0 0 0 0 0 ε
3

0 0

0 0 −dy 0 fy 0 0 0 by 0 ey 0

0 dz 0 0 0 fz 0 −bz 0 0 0 ez



(8.2)

where:

az = 13
35

+ 6 γz
5α l2

bz = 11 l
210

+ γz
10α l

cz = 9
70
− 6γz

5α l2

dz = −13 l
420

+ γz
10α l

ez = l2

105
+ 2 γz

15α
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fz = − l2

140
− γz

30α

ay = 13
35

+ 6 γy
5α l2

by = 11 l
210

+ γy
10α l

cy = 9
70
− 6γy

5α l2

dy = −13 l
420

+ γy
10α l

ey = l2

105
+ 2 γy

15α

fy = − l2

140
− γy

30α

κ = ρA l

ε = J
A

It is now proposed to use a sensitivity based updating method given by:

{I}j −
[
ZRed ({p}0)

]
{HX}j =

(∑
i=1

∂[ZRed]

∂pi
∆pi

)
{HX}j (8.3)

We must now choose our physical parameters, say α, β,γy, γz, κ and ε, and express the

element sensitivity matrices with respect to these parameters. For a given element,

the stiffness and mass sensitivity matrices will have the same pattern as [Ke] and

[Me]. Only the coefficients α, β, · · · need to be redefined, as done in Appendix A.

After assembling the global [K] and [M ] matrices, the reduced dynamic stiffness

matrix, [ZRed], and its derivatives with respect to the unknown parameters need to

be calculated. Writing equation (8.3) at different frequency points at each iteration

step yields:

[A]{p} = {b} (8.4)

Equation (8.3) can now be solved iteratively together with equation (8.4) until con-

vergence solution to a prescribed tolerance is obtained.
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8.3 Case Study

Let us now consider model FE2 of Section (3.4). As before, the X and Y moments of

inertia for eight elements were increased by 30%, the reference structure remaining

X1. A p-value approach has already been used to update model FE2 in Chapters 3

and 6. Although convergence was obtained in some cases, the results were found to

be non-unique and did not match the experimental results identically. The idea here

is to update this structure using physical parameters and to show that it is possible

to have a unique solution which will also show the exact errors locations.

A computer program BEAM3D-P was developed in MATLAB for the case of the 3D

beam element described by equations (8.1) and (8.2). The sensitivity based algorithm

of equation (8.3) was also programmed. An initial test case was carried out using

noise-free FRF data. All elements of the FRF vector (rotations as well as translations)

were assumed to be known. Nine frequency points, namely 20, 40, 75, 80, 135,

142, 190, 210 and 245, were selected in the frequency range 0-250 Hz. The solution

converged after 4 iterations. All elements in error were correctly identified (Fig. 8.2)

and the computed parameters were used to update the model. It was observed that

the experimental and the updated FRFs were identical.

Figure 8.2: Error location for structure FE2

In the case of incomplete FRF data, no convergence was achieved for noise levels of

1% to 5% in spite of using different sets of frequency points. This can be explained

by the non-linear behaviour of the objective function. Since the dynamic stiffness
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matrix is no longer a linear function of the updating parameters, the FRF incom-

pleteness, coupled with noise, can cause major errors in calculating the derivatives of

the objective function and hence no convergence can be obtained.

8.4 Plate Element

A 2D plate element was considered next. Its degrees of freedom are ordered as:

[vz1 θx1 θy1 vz2 θx2 θy2 vz3 θx3 θy3 vz4 θx4 θy4]

The subscripts 1, 2, 3 and 4 refer to the four nodes of the element, and v and θ denote

the displacement and rotation fields, respectively. The elemental stiffness matrix is

given by Mansfield (1964):

[Ke] = κ



F H −G L N M O Q P I K −J
H V −Z −N X 0 −Q Y 0 K W 0

−G −Z R M 0 T −P 0 U J 0 S

L −N M F −H −G I −K −J O −Q P

N X 0 −H V Z −K W 0 Q Y 0

M 0 T −G Z R J 0 S −P 0 U

O −Q −P I −K J F −H G L −N −M
Q Y 0 −K W 0 −H V −Z N X 0

P 0 U −J 0 S G −Z R −M 0 T

I K J O Q −P L N −M F H G

K W 0 −Q Y 0 −N X 0 H V Z

−J 0 S P 0 U −M 0 T G Z R


(8.5)

where
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κ = E h
180 (1−ν2)

β = a
b

F = (42− 12 ν + 60β2 + 60
β2 )

h2

a b

G = (30β + 3
β

+ 12 ν
β

) h
2

b

H = (30
β

+ 3β + 12 ν β) h
2

a

I = (−42 + 12 ν − 60β2 + 30
β2 )

h2

a b

J = (30β + 3 (1−ν)
β

) h2

b

K = (15
β
− 3β − 12 ν β) h

2

a

L = (−42 + 12 ν − 60
β2 + 30β2) h2

a b

M = (−15β + 3
β

+ 12 ν
β

) h
2

b

N = (30
β

+ 3(1− ν)β) h
2

a

O = (42− 12 ν − 30β2 − 30
β2 )

h2

a b

p = (−15β + 3 (1−v)
β

) h
2

b

Q = (15
β
− 3 (1− v)β) h

2

a

R = (20β + 4 (1−v)
β

)h2

S = (10β − 1−v
β

)h2

T = (10β − 4 (1−v)
β

)h2

U = (5β + 1−v
β

)h2

V = (20
β

+ 4(1− v)β)h2

W = (10
β
− 4 (1− v)β)h2

X = (10
β
− (1− v)β)h2

Y = ( 5
β

+ (1− v)β)h2

Z = 15 ν h2

(8.6)

The elemental mass matrix is given by:

[Me] = Co [α] [m] [α] (8.7)

where:
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[m] =



3454 461 −461 1226 −274 −199 394 −116 116 1226 199 274

461 80 −63 274 −60 −42 116 −30 28 199 40 42

−461 −63 80 −199 42 40 −116 28 −30 −274 −42 −60

1226 274 −199 3454 −461 −461 1226 −199 274 394 116 116

−274 −60 42 −461 80 63 −199 40 −42 −116 −30 −28

−199 −42 40 −461 63 80 −274 42 −60 −116 −28 −30

394 116 −116 1226 −199 −274 3454 −461 461 1226 274 199

−116 −30 28 −199 40 42 −461 80 −63 −274 −60 −42

116 28 −30 274 −42 −60 461 −63 80 199 42 40

1226 199 −274 394 −116 −116 1226 −274 199 3454 461 461

199 40 −42 116 −30 −28 274 −60 42 461 80 63

274 42 −60 116 −28 −30 199 −42 40 461 63 80



Co =
hρa b

25200
(8.8)

[α] =



[α1] 0 0 0

0 [α1] 0 0

0 0 [α1] 0

0 0 0 [α1]

 (8.9)

and

[α1] =


1 0 0

0 a 0

0 0 b

 (8.10)

For this case the design variables are thickness h, Poisson’s ratio ν, density ρ and

Young’s modulus E. The derivatives of the mass and stiffness matrices with respect

to these variables are given in Appendix A. The same procedure described in Section
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(8.2) can also be applied for this case.

8.5 Case Study

The rectangular plate of Section (3.5.4) was used again to carry out the sensitivity

analysis of Section (8.4).

The plate was divided into 45 elements, the total number of DOFs being 60×3 = 180.

The initial mass and stiffness matrices were calculated from the equations given in

Section (8.4).

Here, the finite element model was assumed to be undamped. In this case, there will

be four parameters for each finite element, a feature which will increase the number of

unknowns substantially. The analytical model had errors in the form of 15 % increase

in the height of elements 1, 4, 7, ..., 40, 43 and 8% increase in the modulus of elasticity

of elements 1, 5, 9, ..., 41, 45. Nine known errors of 10% were also introduced into

the density of some elements namely, 1, 6, 11, ..., 36, 41. Finally a 12 % increase

in the Poisson’s ratio of fifteen elements, 2, 5, 8, ..., 44, was also introduced to the

analytical model. The experimental data consisted all Z direction receptances of the

corresponding uniform error-free plate.

The errors were identified with good accuracy and it was seen that the updated FRFs

were almost identical to the measured ones. A typical FRF, α33, is depicted in Fig.

(8.3) for the initial, reference and updated models.

Since physical parameter updating requires substantially more CPU time, it was

decided to use macro-elements to reduce the computational effort. Several elements

which have the same physical parameters were grouped together into one element.

Four macro elements were introduced initially. The first macro element consisted of

all elements with 15% increased height. The second, third and fourth macro elements

were grouped according to modulus of elasticity, density and Poisson’s ratio changes.

The computation was carried out with the macro elements and convergence achieved
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Figure 8.3: Comparison of the measured, analytical and
updated receptance FRF, α1Z1Z

after a few iterations. The updated parameters were found to be very close to those

obtained from the previous run, i.e. without the macro elements (Table 8.1). However,

it was observed that the CPU requirement was reduced by about 90%.

In any case, further runs, not reported here, showed that the choice of the macro

elements was crucial to obtain convergence. However, as the grouping of the elements

was based a-priori knowledge of the errors, the use of macro elements is unlikely to

be straightforward in practice.
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Table 8.1: Computational effort for macro elements

Macro Elements Parameter Change Prediction CPU
in Macro Introduced time

(Sec)
1 [1, 4, . . . , 43] h [+15 %] [+14.91 %]
2 [1, 5, . . . , 45] E [+8 %] [+8.1 %]
3 [1, 6, . . . , 41] ρ [+10 %] [+9.6 %] 110
4 [2, 5, . . . , 44] ν [+12 %] [+10.8 %]
1 [1][4] . . . [43] h [+15 %] [+14.33 %] a

2 [1][5] . . . [45] E [+8 %] [+7.7 %]
3 [1][6] . . . [41] ρ [+10 %] [+8.7 %] 1190
4 [2][5] . . . [44] ν [+12 %] [+11.9 %]
1 [1][2] . . . [45]b h [+15 %] [+14.98 %] c

2 [1][2] . . . [45] E [+8 %] [+7.9 %]
3 [1][2] . . . [45] ρ [+10 %] [+9.7 %] 4274
4 [1][2] . . . [45] ν [+12 %] [+11.8 %]

aAveraged over macros
bInitial (without the macro elements)
cAveraged over non-zero macros

8.6 Updating of Exact elements Using Design Pa-

rameters

8.6.1 Introduction

For a limited number of geometries, such as uniform beam and discs, the vibration

properties of the corresponding structures can be expressed in an exact fashion, based

on available analytical solutions. In such cases, there is no need to use many elements

for better spatial discretisation, the requirement to use additional elements being

dictated by geometrical considerations, such as changes in beam’s cross section. We

propose to call these analytically-derived elements as exact elements and we propose

to update, as before, a number of selected design parameters that correspond directly

to the physical properties of the structure.
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Here it is proposed to use a beam structure as the demonstration vehicle. 3D Tim-

oshenko beams (Timoshenko, 1935), vibrating in flexure, coupled with simultaneous

longitudinal vibration and torsional vibration will be used for this case study.

8.6.2 Spatial Vibration of a Prismatic Bar

The equation of motion of a prismatic bar including rotary inertia effects, can be

expressed as (Timoshenko & Young, 1945):

EI
∂4v

∂x4
+ ρA

∂2v

∂t2
− ρI ∂4v

∂x2 ∂t2
= 0 (8.11)

If the effects of shear deformation are also added, the Timoshenko equation for the

flexural vibrations of uniform, prismatic bar will be obtained (Huang, 1967):

EI
∂4v

∂x4
+ ρA

∂2v

∂t2
− ρI (1 +

E

κG
)

∂4v

∂x2 ∂t2
+
ρ2I

κG

∂4v

∂t4
= 0 (8.12)

where

EI = flexural rigidity

A = cross sectional area

ρ = material density

κ = shearing constant

G = modulus of rigidity in shear

I = second moment of area of the beam’s cross section

The constant κ is based on the shape of the section and is usually less than unity.

(for example, κrectangular = .85 and κcircular = .9)

The equation of motion in longitudinal direction is given by (Den Hartog, 1956):

EA
∂2u

∂x2
− ρA ∂2u

∂t2
= 0 (8.13)
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where

E = modulus of elasticity

A = area of cross section

ρ = density

u = axial displacement

Since longitudinal and transverse vibrations of beam elements can take place simulta-

neously, an exact analysis should consider the two motions together. It can be shown

that the resulting motion can expressed as a linear superposition of the separate

motions considered previously (Afolabi, 1978).

When a beam is subjected to torsional vibration only, the equation of motion is given

by (Den Hartog, 1956):

GJ
∂2θ

∂x2
− ρJ ∂

2θ

∂t2
= 0 (8.14)

where

G = shear modulus

ρ = density

J = torsional constant

For circular cross sections, J is equal to the polar moment of inertia. For rectangular

cross section, a list of torsional constants is given by Roark (1954).

For a free-free Timoshenko beam, the complete equation of motion can be obtained

by a linear superposition of the in-plane and out-of-plane motions. By solving the

equations (8.12), (8.13) and (8.14) with free-free boundary conditions and using the

principle of superposition, one can obtain the dynamic stiffness matrix for a 3D beam

element as (Afolabi, 1978):
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[Zij ] =



G1 0 0 0 0 0 G2 0 0 0 0 0

0 −f1 0 0 0 −f2 0 f3 0 0 0 f4

0 0 −g1 0 −g2 0 0 0 g3 0 g4 0

0 0 0 G3 0 0 0 0 0 G4 0 0

0 0 −g2 0 g5 0 0 0 −g4 0 g6 0

0 −f2 0 0 0 f5 0 −f4 0 0 0 f6

G2 0 0 0 0 0 G1 0 0 0 0 0

0 f3 0 0 0 −f4 0 −f1 0 0 0 f2

0 0 g3 0 −g4 0 0 0 −g1 0 g2 0

0 0 0 G4 0 0 0 0 0 G3 0 0

0 0 g4 0 g6 0 0 0 g2 0 g5 0

0 f4 0 0 0 f6 0 f2 0 0 0 f5



(8.15)

where:

ν2 = ρω2/G

ψ2 = ρω2/E

G1 = EAψ cot(ψ`)

G2 = −EAψ csc(ψ`)

G3 = GJν cot(ν`)

G4 = −GJν csc(ν`)

ε1 =
√

[ρ2ω4( 1
κG
− 1

E
)2 + 4ρω2A

EI
]

ε3 = ρω2( 1
κG

+ 1
E

)

α =
√

ε1+ε3
2

β =
√

ε1−ε3
2

γ1 = α2 − ρω2

κG

γ2 = β2 + ρω2

κG

ε2 = γ1

α
γ2

β

δ = 2ε2(cos(α`) cosh(β`)− 1) + (
γ2

1

α2 − γ2
2

β2 ) sin(α`) sinh(β`)

K = EI
δ

(8.16)
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f1 = Kε1ε2
[
γ1

α
sin(α`) cosh(β`) + γ2

β
cos(α`) sinh(β`)

]
f2 = Kγ1γ2

[
( γ1

α2 + γ2

β2 ) sin(α`) sinh(β`) + γ2−γ1

αβ
(cos(α`) cosh(β`)− 1)

]
f3 = Kε1ε2

[
γ1

α
sin(α`) + γ2

β
sinh(β`)

]
f4 = Kε1ε2 [cos(α`) − cosh(β`)]

f5 = Kε1
[
γ1

α
cos(α`) sinh(β`)− γ2

β
sin(α`) cosh(β`)

]
f6 = Kε1

[
γ2

β
sin(α`) − γ1

α
sinh(β`)

]
(8.17)

ω is the excitation frequency and g1, . . . , g6 are the same as f1, . . . , f6 when Iy

replaced by Iz.

There are seven physical parameters per element, namely, ρ,A,E,G, J, Iy and Iz. For

updating purpose, the derivatives of [Zij] with respect to these parameters should be

calculated (See Appendix A).

8.7 Case Study

As before, equation (8.3) will be used for updating the analytical model against some

reference data. Model X1 1 of Section (3.4), consisting of 19 nodes, will also be

used as reference model here. Table (8.2) lists the errors that were introduced to the

analytical model.

Table 8.2: Details of the errors in the analytical model

Properties Perturbed elements Description
Density 1, 5, 9, 13, 17 10% decrease

Elasticity Modulus 1, 2, 3, 4, 8, 13, 17, 18, 19, 20 10% increase
Shear Modulus 5, 6, 7, 8, 12, 13, 19, 20 10% increase

Width 1, 6, 11, 16 10% increase

To make the study more realistic, 2% structural damping was introduced by making

the Young’s modulus complex, i.e.:

1E = 207GN/m2, G = 79.6GN/m2, ρ = 7850Kg/m3, b = 1cm, h = 10cm
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Ē = E (1 + i η) (8.18)

The case of noise-free FRF data was investigated first, and all elements of the mea-

sured FRF vector were assumed to be known. Eight frequency points, namely 30, 70,

110, 135, 155, 180, 210 and 2305 Hz, were selected in the frequency range of 0-250 Hz.

The solution converged after a few iterations and all errors were identified correctly.

The computed parameters were used to compute a new set of FRFs. It was observed

that the experimental and the updated FRFs were almost coincident (Fig. 8.4).
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Figure 8.4: Comparison of the measured, analytical and
updated receptance FRF, α1Z1Z

The updating process needed not only more iterations but also significantly more

CPU time per iteration than the other updating approaches such as p-values or 3D

beam element of section (8.2). This is mainly due to the presence of trigonometric and

hyperbolic functions in the dynamic stiffness matrix which increase the computational

time. It was also noticed that by increasing the perturbations of some of the elements,

the convergence became slower and could not be obtained in all cases. This can be
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explained by the linearisation of the dynamic stiffness matrix up to the first term

only. However, the problem can probably be alleviated by considering the higher

terms in the Taylor series expansion of the dynamic stiffness matrix.

8.8 Concluding Remarks

• The use of physical parameters, instead of elemental p-values, is introduced

into the FRF-based updating technique. The approach has been investigated

for 3D beams and plate elements on a number of case studies, namely the FE2

structure and a plate structure.

• In the general case, modelling errors cannot be expressed as a linear combina-

tion of the individual mass and stiffness matrices, as assumed by the p-value

approach. So, by using physical parameters it is possible to adjust the model

more accurately without losing the connectivity information.

• In common with many other updating techniques, the incompleteness and noise

in the experimental data remains a major problem. Noise makes the process of

convergence unstable while incompleteness restricts the updating range.

• Since the objective function is highly non-linear respect to local minima, the

solution may again not be unique.

• The physical parameter method needs more CPU time and more iterations than

the more conventional p-value. However, this disadvantage can partly be offset

by the use of macro elements.

• An exact element based updating approach was also reported in this chapter.

The derivatives of the dynamic stiffness matrix with respect to design parame-

ters were derived using exact closed-form expressions. The basic idea is to start

from an initial model that is free from discretisation errors. Such a route is

possible for some simple beam systems, such as pipingworks, space frames, etc.
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It is expected that the technique can also be applied to the updating of joints

in such structures.



Chapter 9

Experimental Case Study

9.1 The Two Plate Structures

The overall aim of this Chapter is to investigate the applicability of the introduced

model updating techniques to a simple but represantative engineering structure such

as a uniform rectangular plate subjected to some design modification. The first

structure to be studied is the uniform plate of Fig. (9.1), hereafter referred to as

Structure A. The second one is a derivative of Structure A, re-enforced by two crossing

strips which were spot welded on both side of the plate, called hereafter as Structure

B (Fig. 9.2).

The nominal dimensions of the base plate are 665 × 455 × 2.5mm and the material

properties are estimated to be E = 206GN/m2 and ρ = 7860Kg/m3 . The strips have

the same properties as the base plate and are welded to both sides of Structure B by

12 equally-spaced and nominally-identical spot-welds.

229
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Figure 9.2: Structure B
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9.2 Experimental Data

The structures were suspended by two soft strings and tested in free-free condi-

tions (Fig. 9.3). The experimental data were obtained via hammer testing using

a B&K analyser connected to an IBM compatible PC running data acquisition pro-

gram MODACQ. A B&K piezoelectric accelerometer model 2222c (0.5g) was attached

to the structure by using wax.

Figure 9.3: Experimental set-up

Forty eight Z-direction inertance FRFs were measured for Structure A (Fig. 9.4).

Seventy two inertance FRF measurements were made for Structure B. The extra

twenty four measurements were carried out to check the effect of the location of

accelerometer near the edges of the strips. The accelerometer positions are shown in

Fig. (9.5). The responses were measured at 801 frequencies between 8 and 408 Hz

and the number of averages was set to 5.
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Figure 9.4: Measurement points for Structure A

Figure 9.5: Measurement points for Structure B



Chapter 9 Experimental Case Study 233

9.3 The FE Models

Both structures were modelled using 4-node plate elements which were described in

Chapter 8. It should be noted that there is only one FE model as the aim is to detect

the cross-shape stiffeners from the measurements. Fig. (9.6) shows the FE mesh

consisting of 35 plate elements and having 48× 3 = 144 DOFs.

Individual mass and stiffness matrices, together with the connectivity information,

were read into Program Update, written in MATLAB language. The global mass

and stiffness matrices were assembled internally and the derivatives of the unknown

parameters were calculated by the program to formulate the sensitivity matrix at

each iteration.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

Figure 9.6: The FE model for both Structures A and B
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9.4 Correlation of Experimental and Predicted Re-

sults for Structure A

Prior to updating the FE model of Structure A, a comparison of the experimental and

FE data sets was carried out in several stages. Measured and predicted FRFs were

overlayed first, as shown in Fig. (9.7). There is good agreement between two sets

for the lower part of the frequency range, the discrepancies increasing with increasing

frequency. It seems that the experimental model is stiffer than the analytical model.
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Figure 9.7: Experimental and analytical receptance FRFs, α1z1z -
Structure A

In a second stage, the experimental FRF data were analysed using the MODENT

suite, a modal analysis package running on IBM compatible PCs. A global multi-

FRF analysis method called GLOBAL-M was used. GLOBAL-M is based on complex

singular value decomposition of a system matrix expressed in terms of measured FRFs

and then on a complex eigensolution which extracts the required modal properties.

This particular algorithm was chosen because of its ability in detecting close modes.
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Each measured data set contained 48 individual FRFs in the appropriate file format

for MODENT. The data were analysed by applying 5 GLOBAL-M runs to several

frequency windows, thus covering the entire frequency range. The most consistent

results were saved in a modal data set.

After the modal analysis, the natural frequencies obtained from the FE model and

those extracted from modal analysis were compared. It is obvious from Table (9.1)

that there are good agreement between two sets, the maximum natural frequency

discrepancy being less than 6% and the MAC values showing a very good correlation.

Table 9.1: Measured and predicted natural frequencies
of Structure A

Measured FE Relative a Damping MAC
(Hz) (Hz) Error % %
29.6 27.9 5.7 3.1 98.5
32.5 30.8 5.2 3.1 89.1
66.6 66.7 .15 1.1 97.7
67.7 64.7 4.4 1.3 97.2
84.5 81.3 3.8 .78 98.9
93.9 92.8 1.2 .95 99.6
124.7 120.8 3.1 .78 99.3
140.4 134.6 4.1 .67 99.8
175.2 173.8 .80 .43 99.5
182.6 183.1 .27 .41 99.2
202.9 201.0 .90 .39 98.6
209.5 205.0 2.2 .38 95.6
210.9 201.3 4.6 .38 96.2
259.1 248.8 3.9 .31 99.7
287.8 288.2 .15 .27 99.6
301.7 286.9 4.9 .30 99.3
319.9 313.4 2.0 .27 92.6
339.7 321.4 5.4 .45 91.9
360.4 364.4 1.1 .27 98.6
376.9 376.0 .24 .35 99.0

aRelative Error = ABS(Measured−Predicted)
Measured × 100
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A further comparison was made by plotting the natural frequencies of the experimen-

tal and predicted data sets (Fig. 9.8).

Figure 9.8: 45 Degree lines for natural frequencies of Structure A

The MAC values between the experimental and analytical modes were calculated

next (Fig. 9.9 and Table 9.1). The correlation is very good since there is a one-to-one

correspondence between the two data sets.

Figure 9.9: MAC values for Structure A
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The COMAC values were calculated using the 20 correlated mode shape pairs of Fig.

(9.9) and are plotted in Fig. (9.10). Again, the results indicate very good agreement.

Figure 9.10: COMAC values for Structure A

Finally, 45 degree lines were plotted for mode shapes 1 and 9 (Fig. 9.11). Once again

the results confirm the basic agreement between two data sets.

(a) Mode pair (1,1) (b) Mode pair (9,9)

Figure 9.11: 45 degree plots for selected mode shapes

The correlation results indicate that there is good agreement between the two models,

an essential requirement for successful model updating.
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9.5 Model Updating for Structure A

The previously-described FE model will now be updated using the experimentally

obtained FRFs of Structure A. In this particular case, there are no obvious modelling

errors and the task is to make the experimental and theoretical models as close as

possible. To this end, it is proposed to use a physical parameter based updating

technique. Damping was ignored initially as the modal analysis showed that Structure

A was lightly damped, most modes having a structural damping values of less than

0.4%.

In order to reduce the effects of measurement noise and other experimental incon-

sistencies, it was decided to use synthesised FRFs which were regenerated using the

identified modal parameters. However, such a treatment cannot solve the problem of

consistent bias errors in the experimental data. A typical FRF curve, here α1z1z, is

plotted in Fig. (9.12) for both raw and synthesised FRFs.
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Figure 9.12: Measured and synthesised receptance FRF α1z1z - Structure A

As it mentioned before, the updating will be based on the physical parameter version



Chapter 9 Experimental Case Study 239

of frequency response function method, as discussed in Chapter 8. The unknown

physical parameters for each plate element are thickness, modulus of elasticity, density

and Poison’s ratio, giving a total of 4 × 35 = 140.

It was decided to focus on the frequency in the range of 10-260 Hz which contained 14

modes. The frequency points were selected in accordance with the recommendations

made in Chapter 3. A total of 20 frequency points, namely 20, 25, 35, 40, 60, 70, 90,

100, 105, 115, 126, 145, 150, 165, 170, 177, 184, 191, 195 and 215 were used in this

particular case.

As the structure was assumed to be lightly damped, the imaginary part of the mea-

sured FRFs were set to zero. All plate elements were included in the updating of finite

element model. A converged solution was obtained after 7 iterations. The physical

parameter values were saved and used for the calculation of updated mass and stiff-

ness matrices. The FRFs of the updated model were then computed via the direct

inversion of the updated mass and stiffness matrices. After some runs with different

sets of frequency points, it was found that different sets of physical parameters were

obtained in each case but the corresponding FRFs were almost indistinguishable. Fig.

(9.13) illustrates a typical convergence path of the design parameters with respect to

iteration number for elements 1 and 30.
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Figure 9.13: Convergence of the physical parameters - Structure
A (* ..... ph, x ..... pν , o ..... pe, + ..... pρ)
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Having updated the finite element model of Structure A, it was decided to overlay

the point FRF obtained from the updated models together with the corresponding

measured and initially-predicted FRFs for several co-ordinate locations (Fig. 9.14).

A marked improvement is achieved by the updated model over the initially one.
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Figure 9.14: Experimental, initially-predicted and updated receptance FRF
α1z1z - Structure A

In order to assess the success of the updated model, the frequencies obtained from

the updated model are presented in Table (9.2) together with the initially-predicted

and measured ones. It is immediately seen that the average error is almost halved.
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Table 9.2: Measured, initially-predicted and updated
natural frequencies of Structure A

Measured Initially Relative a Updated Relative b

predicted Error % Error %
(Hz) (Hz) (Hz)
29.6 27.9 5.7 28.3 4.4
32.5 30.8 5.2 31.8 2.2
66.6 66.7 .15 64.5 3.1
67.7 64.7 4.4 69.3 2.3
84.5 81.3 3.8 84.4 .19
93.9 92.8 1.2 94.9 1.0
124.7 120.8 3.1 123.5 .96
140.4 134.6 4.1 139.5 .64
175.2 173.8 .80 175.9 .40
182.6 183.1 .27 184.1 .82
202.9 201.0 .90 203.1 .10
209.5 205.0 2.2 208.2 .62
210.9 201.3 4.6 211.1 .10
259.1 248.8 3.9 252.6 2.5
287.8 288.2 .15 292.0 1.4
301.7 286.9 4.9 295.5 2.1
319.9 313.4 2.0 320.4 .16
339.7 321.4 5.4 322.5 5.1
Ave.

- 2.70 - 1.56
Error

aRelative Error = ABS(Measured−Predicted)
Measured × 100

bRelative Error =
ABS(Measured−Updated)

Measured × 100

9.6 Correlation of Experimental and Predicted Re-

sults for Structure B

Prior to updating the FE model, a comparison of the experimental and initial FE

models was carried out. Here, it is appropriate to remind the reader that the FE

model used remains the same as the previous section but the measured FRFs now

belong to Structure B which is a modified version of Structure A.
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The measured and predicted FRFs were overlayed first (Fig. 9.15).
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Figure 9.15: Experimental and initially-predicted receptance FRF
α1z1z - Structure B

In this second case, there is no good response agreement, even for the lower frequency

range. This can be explained by the expected effect of the stiffeners in the physical

structure.

A modal analysis was performed next and a MAC comparison is given in Table (9.3).
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Table 9.3: Comparison of experimental model with
initially-predicted model - Structure B

Measured Initially Relative a MAC value
predicted Error %

(Hz) (Hz)
36.8 27.9 24.2 99.5
38.5 30.8 20.0 97.5
75.0 64.7 13.7 98.7
82.6 66.7 19.2 95.3
91.8 81.3 11.4 96.5
108.8 92.8 14.7 96.1
142.2 120.8 15.5 91.8
149.7 134.6 10.0 87.4
195.5 173.8 11.1 85.5
204.2 183.1 10.3 95.6
210.7 201.0 4.6 97.6
223.1 201.3 9.8 89.2
235.4 205.0 12.9 91.8

aRelative Error = ABS(Measured−Predicted)
Measured

× 100

The COMAC values were also calculated using the correlated mode shape pairs above

and the results are shown in Fig. (9.16).

Figure 9.16: COMAC values between experimental and FE data - Structure B

It is seen the contribution from all measurement points is about the same, a feature
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that suggests that there are no obvious test errors.

9.7 Model Updating for Structure B

It is clear from Table (9.3) that there is significant stiffness mismatch since all MAC

values are above 85 % but the relative natural frequency errors are high (max. = 24

%).

Once again, the structure was assumed to be undamped and the imaginary part of

the measured FRFs was set to zero. The incompleteness of the measured data was

dealt with the exact reduction method of Chapter 3.

9.7.1 Updating Using Simulated Experimental Data

To assess the feasibility of the proposed updating exercise, it was decided to use

simulated experimental data first. The simulated data were noise-free and, like the

experimental data, they consisted of 48 FRFs for an excitation at node 1 in the Z

direction. Convergence was achieved after 5 iterations. Although the error locations

were not correct, the updated FRFs showed a remarkable improvement over the

initially-predicted ones (Fig. 9.17). The reason for this may be explained by the

non-linear nature of the algorithm. The objective function is a highly non-linear

function of the unknown parameters and the optimisation algorithm may not be able

to capture the true minimum. In such cases, convergence towards local minima is a

very likely possibility.

The same test case was repeated for different levels of added random noise. Conver-

gence was achieved for low noise levels (up to 1%) but more iterations were needed to

achieve convergence. Again error localisation was poor but the updated FRFs were in

a good agreement with the original simulated experimental receptances for the cases

converged. Further studies, not reported here, indicated that increasing the number
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Figure 9.17: Experimental, initially-predicted and up-
dated receptance FRF α1z1z - Structure B

of measurement co-ordinates or reducing the noise levels improved the convergence

and made the updated response model closer to the simulated experimental FRFs.

The findings, once again, highlight the difficulty of updating FE models. A particular

solution is not only non-unique but does not necessarily have a physical meaning. In

spite of this, better predictive models can be found in a ”best match” sense but their

use for further analysis remains questionable as long as a full validation is not carried

out.
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9.7.2 Updating Using Measured FRF Data

Earlier studies indicated that convergence could not be achieved when raw measured

FRFs were used directly. Therefore synthesised FRF data were used instead of raw

measured data in order to reduce the effects of random noise and other inconsistencies.

The Z-direction FRF set was computed using modal analysis results and a typical

FRF is plotted in Fig. (9.18) in both original (raw) and synthesised form. The

discrepancy is seen to be minimal for updating purpose.
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Figure 9.18: Experimental and synthesised FRF α1z1z - Structure B
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Here, one is confronted with another problem. In the FE model, it is possible to

generate a response function at a node that is situated exactly on the stiffener line.

However, the accelerometer has a finite contact area and can be placed on one or the

other side of this thickness change line. In other words, it is either on the extra metal

strip, or the base plate. The response that is measured in each case is plotted in Fig.

(9.19).

Although the difference is small, it can be a source of error which can affect the

updating procedure adversley. After some deliberation, it was decided to compute

the average FRFs at the thickness line and use these in updating procedure.
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Figure 9.19: Measured FRF α1z9z - Structure B

As before, several sets of physical parameters were obtained by selecting different

frequency point sets, convergence being achieved in most cases tried. The best results

were obtained for 24 frequency points selected from the 0-240 Hz frequency range,

these being at 21, 25, 27, 40, 43, 54, 61, 70, 76, 85, 95, 105, 115, 125, 140, 152, 165,
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180, 190, 200, 210, 221, 230 and 240 Hz. Although the updated parameters were not

representative of the thickness errors, the natural frequency difference of Table (9.3)

was improved by 60.4 %. The results are summarised in Table (9.4).

Table 9.4: Measured, initially-predicted and updated
natural frequencies of Structure B

Measured Initially Relative a Updated Relative b

Predicted Error % Error %
(Hz) (Hz) (Hz)
36.8 27.9 24.2 31.3 14.9
38.5 30.8 20.0 33.2 13.7
74.9 64.7 13.6 71.2 4.9
82.6 66.7 19.2 79.5 3.8
91.7 81.3 11.3 89.7 2.2
108.7 92.8 14.7 104.9 3.5
142.1 120.8 14.9 135.6 4.5
149.6 134.6 10.0 143.5 4.1
195.4 173.8 11.1 185.8 4.9
204.1 183.1 10.3 199.4 2.3
202.9 201.0 .90 203.1 .10
210.7 201.3 4.6 210.3 .19
223.1 205.0 8.2 212.9 4.9
235.4 248.8 5.7 230.5 2.3
Ave.

- 12.90 - 5.09
Error

aRelative Error = ABS(Measured−Predicted)
Measured × 100

bRelative Error = ABS(Measured−Updated)
Measured × 100

The MAC values either stayed the same or decreased slightly after updating (Table

9.3). The measured, initially-predicted and updated receptance FRF α1Z 1Z is plotted

in Fig. (9.20), from which it is seen that updating has been successful in bringing

the FE model closer to the experimental model. However, once again, this has been

achieved in a ”curve-fitting” sense rather than ”error-correction” sense.



Chapter 9 Experimental Case Study 249

0 50 100 150 200
−160

−140

−120

−100

−80

−60

−40

−20

Frequency (Hz)

R
ec

ep
ta

nc
e 

(d
B

 r
e 

1 
m

/N
)

_____
−−−−−
..........

Experimental
FE
Updated

Figure 9.20: Experimental, initially-predicted and up-
dated FRF α1z1z - Structure B

9.8 Concluding Remarks

• As expected, the model updating quality depend heavily on the quality of exper-

imental FRFs, noise and systematic errors causing both instability and multiple

solutions. The effects of random noise were reduced by using synthesised FRFs

but consistent bias errors are still present in the updating process.

• The procedure based on physical parameters seems to be more effective than its

p-values based counterpart. However, the algorithm has a non-linear objective

function with many local minima. It also needs more CPU time than the

conventional RFM using p-values.

• It is concluded that response function based updating procedures demand a de-

gree of accuracy which may not be available from the conventional measurement

techniques. This is in line with the results from Chapter 4 of this thesis.



Chapter 10

Conclusions and Recommendations

for Further Work

10.1 Conclusions

(i) In spite of extensive research over the past fifteen years, the state-of-the-art in

finite element model updating is far from maturing and no reliable and generally

applicable procedures have been formulated so far. Despite a wealth of updating

algorithms, success seems to be case-dependent and applicability appears to be

bounded by the skill of the analyst in choosing a correct set of parameters.

(ii) The response function method, based on forced vibration testing, was investi-

gated in some detail. It was shown that the elements of the reduced dynamic

stiffness matrix were smooth functions of the design parameters and of the ex-

citation frequency up to the first natural frequency of the partially-grounded

system clamped at the measurement points. However, this limit is a sufficient

but not necessary condition and the updating range may be increased, subject

to other considerations.

(iii) A new p-value formulation was introduced and implemented in the RFM al-

gorithm. The results show that the modified algorithm is more stable and

250
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converges faster.

(iv) Different approaches to include damping in the FE models were described and

the effect of damping on the solution stability was investigated. It was found

that damping made the convergence process numerically more stable.

(v) A strategy for the selection of updating frequency points was introduced. The

quality of the selection was checked via a singular value decomposition of the

FRF matrix formed by the selected measurement points.

(vi) Numerical ill-conditioning, associated with the minimisation of force balance

residue, was avoided by pre-multiplying the residue vector by the dynamic flex-

ibility matrix of the analytical model. Such an approach was found to reduce

the sensitivity of the method to measurement errors.

(vii) In most cases, incomplete and noisy data result in non-unique solutions. How-

ever, the incompleteness problem of the experimental model was overcome by

introducing an exact reduction technique, albeit by reducing the updating fre-

quency range.

(viii) Measurement noise has a significant adverse effect on model updating if the

FRF data are used directly. However, an acceptable and potentially more ac-

curate solution can be found by using regularisation techniques. Some popular

techniques, namely truncated SVD, Tikhonov method, linear-least-squares(LLS)

method, total-least-squares(TLSQ) method and entropy method were discussed.

The numerical experiments have shown that the solution quality substantially

deteriorates for TLSQ and LLS in case of large noise variance. However, such

noise variances are unlikely to be encountered in updating problems. By in-

creasing the number of equations, the accuracy of TSVD and TLSQ solutions

increases faster than that for LLS. The maximum entropy method was then

applied to the solution of the updating equations. The results showed that the

method required significantly more computational effort without yielding any

increased accuracy.
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(ix) The determination of the required experimental accuracy that must be attained

when updating finite element models with use of measured vibration test data

was investigated in detail. Starting from a response function based updating

technique, it has been possible to develop a mathematical formulation in the

form of a simple relationship between the system’s properties, the correction

matrices and the amount of experimental noise. It was shown that the pro-

posed formulation can be used to assess the threshold of maximum allowable

experimental error.

(x) A further use of the characteristic function lies in its ability to yield the optimum

excitation frequency points that must be provided to the updating algorithm.

This feature can be used for either relaxing the error threshold or for improving

the numerical stability. The present study suggests that the maximum allowable

error is small, say within the 0.10% - 0.25% range. This finding is likely to have

implications on the acquisition and processing of vibration test data which are

going to be used in the updating of mathematical models.

(xi) The existing constrained eigenstructure assignment method was modified to

deal with the updating of large-order systems. The resulting formulation is

compatible with the response function and inverse eigensensitivity methods in

the sense that the individual mass, stiffness and damping matrices are corrected

by simple multipliers, the so-called p-values. The eigenstructure assignment

method yields the solution directly and hence it has a significant advantage

over its iterative counterparts such as RFM and IESM. A comparative study

reveals that the RFM requires substantially more CPU power in all cases. Also,

the convergence of the RFM cannot be guaranteed in cases where the measured

FRFs are polluted by noise or when the discretisation differences are significant.

On the other hand, the RFM seems to be able to cope better with incomplete

measured data.

(xii) The existing generic elements formulation was extended to include some 2D and

3D finite elements and a number of case studies were presented to investigate

the effect of various modelling errors as well as experimental noise. A generic
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element formulation, together with a response function based objective function,

has been used to update a number of small FE models. The results showed

that the approach can deal with both physical parameter and discretisation

errors. The performance of the generic element method was compared to the

other popular updating methods. The main disadvantage of the method is the

excessive computational effort that is required in comparison with the other

finite element updating techniques.

(xiii) The use of physical parameters, instead of elemental p-values, is introduced

into the FRF-based updating technique. The approach has been investigated

for 3D beam and plate elements on a number of case studies. The use of design

parameters in exact 3D beam elements was also introduced. In common with

many other updating techniques, the incompleteness and noise in the experi-

mental data remains a major problem. Noise makes the process of convergence

unstable while incompleteness restricts the updating range. The method also

needs more CPU time and more iterations than the more conventional p-value

approach. However, this disadvantage can partly be offset by the use of macro

elements.

(xiv) An exact element based updating approach, where the derivatives of the dy-

namic stiffness matrix with respect to the design parameters are calculated, was

also reported. The basic idea was to start from an initial model that is free of

discretisation errors. Such a route is possible for some simple beam systems,

such as pipingworks, space frames, etc. It is expected that the technique can

also deal with the updating of joints in such structures.

(xv) Two experimental case studies using actual measured data on two real structure

were carried out. The updating procedure was based on physical parameters,

as this approach was judged to be more effective than the use of p-values. Al-

though the convergence achieved in both cases and improvement was obtained

in FRF overlays, the location of the errors could not be determined correctly. It

was concluded that systematic updating procedures demanded an experimen-

tal degree of accuracy which was not readily available from the conventional
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measurement techniques.

10.2 Suggestions for Further Work

(i) On the required experimental accuracy

The present calculations, as well as other numerical studies, suggest that the

maximum allowable error is small. This finding is likely to have implications

on the acquisition and processing of vibration test data which are going to be

used in the updating of mathematical models. Therefore, the success of model

updating depends on the accuracy of the experimental data and the development

of appropriate data acquisition techniques are of primary importance. This

requirement is particularly important for the rotational degrees of freedom as

current techniques are particularly limited.

(ii) Development of new techniques

The use of the boundary elements method (BEM) for constructing the initial

model can be a promising avenue to explore. Using BEM, only the external

points have to be modelled, thus providing a natural compatibility with exper-

imental response points.

(iii) Further considerations

- There is a need to define the number of measurement locations for successful

model updating.

- The uniqueness and existence aspects of the updating problem are still not

fully understood and should be investigated more.

- When physical or exact parameters, the linearisation of the dynamic stiffness

matrix up to the first term may not be adequate and the inclusion of higher

order terms in the formulation is necessary.

The use of the updated model for further analysis remains an important but

unaddressed aspect since updating is not an end in itself.
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10.3 Summary of Contributions of Present Work

• All major state-of-the-art updating techniques were classified on the basis of

their approach and were presented in a consistent notation. A survey on regular-

isation techniques was carried out and the most popular methods were applied

to incomplete and noisy model updating problems.

• Problems with forced vibration testing based updating methods were illustrated.

Some recommendations for the selection of updating frequencies and of the

initial damping matrix were proposed.

• The required experimental accuracy for updating finite element models was

determined using an analytical approach.

• The existing constrained eigenstructure assignment method was modified to

deal with large-order systems.

• The existing generic element method was extended to include some 2D and 3D

finite elements and a number of case studies were presented to investigate the

effect of various modelling errors as well as experimental noise.

• The use of physical parameters was introduced into the FRF-based updating

technique. An updating approach, referred as ’exact method’, was also devel-

oped.

• Practical problems encountered during physical parameters updating were demon-

strated on two true experimental test cases.

10.4 Closure

The initial aim of this study was to develop a practical approach to update mathe-

matical structural dynamics models using measured test data. Although a number

of contributions were made, it is recognised that the problem is far from being solved
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in the general case. A 1000-fold increase in computing power and a corresponding

increase in experimental accuracy might make some of today’s engineering models

updatable in a global sense. However, a true improvement will probably come from

a thorough re-evaluation for current modelling methodologies.



Appendix A

Derivatives of the Sensitivity

Matrices with Respect to the

Updating Parameters

A.1 3D Beam Element

Updating parameters: E, A, G, J , Iy, Iz and ρ

Coefficient of sensitivity matrices with respect to E:

∂α
∂E

= A , ∂β
∂E

= 0 , ∂γy
∂E

= Iy
∂γz
∂E

= Iz , ∂κ
∂E

= 0 , ∂ε
∂E

= 0
(A.1)

Coefficient of sensitivity matrices with respect to A:

∂α
∂A

= E , ∂β
∂A

= 0 , ∂γy
∂A

= 0

∂γz
∂A

= 0 , ∂κ
∂A

= ρ ` , ∂ε
∂A

= − J
A2

(A.2)
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Coefficient of sensitivity matrices with respect to G:

∂α
∂G

= 0 , ∂β
∂G

= J , ∂γy
∂G

= 0

∂γz
∂G

= 0 , ∂κ
∂G

= 0 , ∂ε
∂G

= 0
(A.3)

Coefficient of sensitivity matrices with respect to J:

∂α
∂J

= 0 , ∂β
∂J

= G , ∂γy
∂J

= 0

∂γz
∂J

= 0 , ∂κ
∂J

= 0 , ∂ε
∂J

= 1
A

(A.4)

Coefficient of sensitivity matrices with respect to Iy:

∂α
∂Iy

= 0 , ∂β
∂Iy

= 0 , ∂γy
∂Iy

= E

∂γz
∂Iy

= 0 , ∂κ
∂Iy

= 0 , ∂ε
∂Iy

= 0
(A.5)

Coefficient of sensitivity matrices with respect to Iz:

∂α
∂Iz

= 0 , ∂β
∂Iz

= 0 , ∂γy
∂Iz

= 0

∂γz
∂Iz

= E , ∂κ
∂Iz

= 0 , ∂α
∂Iz

= 0
(A.6)

Coefficient of sensitivity matrices with respect to ρ:

∂α
∂ρ

= 0 , ∂β
∂ρ

= 0 , ∂γy
∂ρ

= 0

∂γz
∂ρ

= 0 , ∂κ
∂ρ

= A` , ∂ε
∂ρ

= 0
(A.7)
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A.2 2D Plate Element

Updating parameters: h, ν, ρ and E

Coefficient of sensitivity matrices with respect to h:

∂κ
∂h

= κ
h

, ∂Co
∂h

= Co
h

, ∂F
∂h

= 2F
h

∂G
∂h

= 2G
h

, ∂H
∂h

= 2H
h

, ∂I
∂h

= 2 I
h

∂J
∂h

= 2 J
h

, ∂K
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= 2K
h

, ∂L
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h

∂M
∂h

= 2M
h

, ∂N
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= 2N
h

, ∂O
∂h

= 2O
h

∂P
∂h
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h

, ∂Q
∂h

= 2Q
h

, ∂R
∂h

= 2R
h

∂S
∂h

= 2S
h

, ∂T
∂h

= 2 T
h

, ∂U
∂h

= 2U
h

∂V
∂h

= 2 V
h

, ∂W
∂h

= 2W
h

, ∂X
∂h

= 2X
h

∂Y
∂h

= 2 Y
h

, ∂Z
∂h

= 2Z
h

(A.8)

Coefficient of sensitivity matrices with respect to ν:

∂κ
∂ν

= − 2 ν E h
180(1−ν2)2 , ∂Co

∂ν
= 0 , ∂F

∂ν
= −h2

a b

∂G
∂ν

= 12h2

β b
, ∂H

∂ν
= 12β h2

a
, ∂I

∂ν
= 12 h2

a b

∂J
∂ν

= 3 h2

β b
, ∂K

∂ν
= −12β h2

a
, ∂L

∂ν
= 12 h2

a b

∂M
∂ν

= 12h2

β b
, ∂N

∂ν
= −3 β h2

a
, ∂O

∂ν
= −12h2

a b

∂P
∂ν

= −3h2

βb
, ∂Q
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= 3β h2

a
, ∂R
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= −4h2

β

∂S
∂ν

= h2

β
, ∂T
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= 4 h2

β
, ∂U

∂ν
= −h2

β

∂V
∂ν

= −4β h2 , ∂W
∂ν

= 4β h62 , ∂X
∂ν

= β h2

∂Y
∂ν

= −β h2 , ∂Z
∂ν

= 15h2

(A.9)
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Coefficient of sensitivity matrices with respect to ρ:

∂κ
∂ρ

= 0 , ∂Co
∂ρ

= Co
ρ

, ∂F
∂ρ

= 0

∂G
∂ρ

= 0 , ∂H
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∂ρ

= 0
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(A.10)

Coefficient of sensitivity matrices with respect to E:

∂κ
∂E

= κ
E

, ∂Co
∂E

= 0 , ∂F
∂E

= 0

∂G
∂E
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∂E

= 0
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∂E

= 0 , ∂K
∂E

= 0 , ∂L
∂E

= 0

∂M
∂E

= 0 , ∂N
∂E

= 0 , ∂O
∂E

= 0

∂P
∂E

= 0 , ∂Q
∂E

= 0 , ∂R
∂E

= 0

∂S
∂E
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∂E

= 0

∂V
∂E

= 0 , ∂W
∂E

= 0 , ∂X
∂E

= 0

∂Y
∂E

= 0 , ∂Z
∂E

= 0

(A.11)
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A.3 Exact 3D Beam Element

Updating parameters: E, A, ρ, J , G, Iy, IZ

Let’s define a vector X as:

{X} = {E,A, ρ, J,G, Iy, IZ} (A.12)

The Derivatives of G1 with respect to xi:

∂ψ
∂E

= ψ
−2E

∂ψ
∂ρ

= ψ
2ρ

∂G1

∂ρ
= EA (cot(ψ`)− ψ`(1 + cot2(ψ`)) ∂ψ

∂ρ

∂G1
∂A

= Eψ cot(ψ`)

∂G1

∂E
= Aψ cot(ψ`) + EA (cot(ψ`) + ψ`(1 + cot2(ψ`))) ∂ψ

∂E

∂G1

∂J
= 0

∂G1

∂G
= 0

∂G1
∂Iy

= 0

∂G1

∂Iz
= 0

(A.13)

The Derivatives of G2 with respect to xi:

∂G2
∂ρ

= −EA
(
csc(ψ`)− ` cos(ψ`)

sin2(ψ`)

)
∂ψ
∂ρ

∂G2

∂A
= −Eψ csc(ψ`)

∂G2

∂E
= −Aψ csc(ψ`)−EA

(
csc(ψ`)− ψ` cos(ψ`)

sin2(ψ`)

)
∂ψ
∂E

∂G2
∂J

= 0

∂G2

∂G
= 0

∂G2

∂Iy
= 0

∂G2

∂Iz
= 0

(A.14)
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The Derivatives of G3 with respect to xi:

∂ν
∂G

= ν
−2G

∂ν
∂ρ

= ν
2ρ

∂G3

∂ρ
= GJ (cot(ν`)− ν`(1 + cot2(ν`)) ∂ν

∂ρ

∂G3

∂A
= 0

∂G3

∂E
= 0

∂G3
∂J

= Gν cot(ν`)

∂G3

∂G
= Jν cot(ν`) +GJ (cot(ν`) + ν`(1 + cot2(ν`))) ∂ν

∂G

∂G3

∂Iy
= 0

∂G3

∂Iz
= 0

(A.15)

The Derivatives of G4 with respect to xi:

∂G4

∂ρ
= −GJ

(
csc(ν`)− ` cos(ν`)

sin2(ν`)

)
∂ν
∂ρ

∂G4

∂A
= 0

∂G4
∂E

= 0

∂G4

∂J
= −Gν csc(ν`)

∂G4

∂G
= −Jν csc(ν`)−GJ

(
csc(ν`) − ν` cos(ν`)

sin2(ν`)

)
∂ν
∂G

∂G4
∂Iy

= 0

∂G4

∂Iz
= 0

(A.16)

Now, let’s define the following variables for the sake of simplicity:

T1 = ρω2A
EI

T2 = ρω2( 1
κG
− 1

E
)

T3 = ρω2( 1
κG

+ 1
E

)

T4 = ρω2A
κG

T5 = EI

(A.17)

Now, we are going to calculate the derivatives of T1, . . . , T5 with respect to the ele-
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ments of vector X.

The derivatives of T1, . . . , T5 with respect to E:

∂T1

∂E
= T1

E
, ∂T2

∂E
= ρω2

E2 , ∂T3

∂E
= −ρω2

E2

∂T4

∂E
= 0 , ∂T5

∂E
= I

(A.18)

The derivatives of T1, . . . , T5 with respect to A:

∂T1

∂A
= T1

A
, ∂T2

∂A
= 0 , ∂T3

∂A
= 0

∂T4

∂A
= 0 , ∂T5

∂A
= 0

(A.19)

The derivatives of T1, . . . , T5 with respect to ρ:

∂T1
∂ρ

= T1
ρ

, ∂T2
∂ρ

= T2
ρ

, ∂T3
∂ρ

= T3
ρ

∂T4

∂ρ
= T4

ρ
, ∂T5

∂ρ
= 0

(A.20)

The derivatives of T1, . . . , T5 with respect to J :

∂T1

∂J
= 0 , ∂T2

∂J
= 0 , ∂T3

∂J
= 0

∂T4
∂J

= 0 , ∂T5
∂J

= 0
(A.21)

The derivatives of T1, . . . , T5 with respect to G:

∂T1

∂G
= 0 , ∂T2

∂G
= − ρω2

κG2 , ∂T3

∂G
= − ρω2

κG2

∂T4

∂G
= − ρω2

κG2 , ∂T5

∂G
= 0 ,

(A.22)

The derivatives of T1, . . . , T5 with respect to Iy:

∂T1

∂Iy
= −T1

Iy
, ∂T2

∂Iy
= 0 , ∂T3

∂Iy
= 0

∂T4

∂Iy
= 0 , ∂T5

∂Iy
= E

(A.23)
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The derivatives of T1, . . . , T5 with respect to Iz:

∂T1

∂Iz
= −T1

Iz
, ∂T2

∂Iz
= 0 , ∂T3

∂Iz
= 0

∂T4

∂Iz
= 0 , ∂T5

∂Iz
= E

(A.24)

Then,

ε1 =
√
T 2

2 + 4T1

ε3 = T3

α =
√
ε1+ε3

2

β =
√
ε1−ε3

2

γ1 = α2 − T4

γ2 = β2 + T4

ε2 = γ1γ2

αβ

δ = 2ε2 (cos(α`) cosh(β`)− 1) +
(
γ2

1

α2 − γ2
2

β2

)
sin(α`) sinh(β`)

K = T5
δ

If we assumed that xi (i = 1, . . . , 7) is an element of vector X:

∂ε1
∂xi

= T2/ε1
∂T2

∂xi
+ 2/ε1

∂T1

∂xi

∂ε3
∂xi

= ∂T3

∂xi

∂α
∂xi

= 1
4α

( ∂ε1
∂xi

+ ∂ε3
∂xi

)

∂β
∂xi

= 1
4β

( ∂ε1
∂xi
− ∂ε3

∂xi
)

∂γ1

∂xi
= 2α ∂α

∂xi
− ∂T4

∂xi

∂γ2

∂xi
= 2β ∂β

∂xi
+ ∂T4

∂xi

∂ε2
∂xi

= 1/(αβ)
[
γ1

∂γ2

∂xi
+ γ2

∂γ1

∂xi
− (γ1γ2/β) ∂β

∂xi
− (γ1γ2/α) ∂α

∂xi

]
∂δ
∂xi

= 2∂ε2
∂xi

[cos(α`) cosh(β`)− 1] + 2ε2`
[
− ∂α
∂xi

sin(α`) cosh(β`) + ∂β
∂xi

cos(α`) sinh(β`)
]

+2
[
(γ1/α

2)∂γ1

∂xi
− (γ2

1/α
3) ∂α
∂xi
− (γ2/β

2)∂γ2

∂xi
+ (γ2

2/β
3) ∂β
∂xi

]
sin(α`) sinh(β`)

+`(γ2
1/α

2 − γ2
2/β

2)
[
cos(α`) sinh(β`) ∂α

∂xi
+ sin(α`) cosh(β`) ∂β

∂xi

]
∂K
∂xi

= (1/δ)∂T5

∂xi
− (T5/δ

2) ∂δ
∂xi
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The derivatives of f1 with respect to xi:

f1 = F1 (F2 + F3)

F1 = Kε1ε2

F2 = (γ1/α) sin(α`) cosh(β`)

F3 = (γ2/β) cos(α`) sinh(β`)

∂F1

∂xi
= ε1 ε2

∂K
∂xi

+Kε2
∂ε1
∂xi

+Kε1
∂ε2
∂xi

∂F2
∂xi

= 1
α

[
sin(α`) cosh(β`)∂γ1

∂xi
+ `γ1 cos(α`) cosh(β`) ∂α

∂xi
+ `γ1 sin(α`) sinh(β`) ∂β

∂xi

]
−(γ1/α

2) sin(α`) cosh(β`) ∂α
∂xi

∂F3

∂xi
= 1

β

[
cos(α`) sinh(β`)∂γ2

∂xi
− `γ2 sin(α`) sinh(β`) ∂α

∂xi
+ `γ2 cos(α`) cosh(β`) ∂β

∂xi

]
−(γ2/β

2) cos(α`) sinh(β`) ∂β
∂xi

∂f1

∂xi
= (F2 + F3)

∂F1

∂xi
+ F1

(
∂F2

∂xi
+ ∂F3

∂xi

)

The derivatives of f2 with respect to xi:

f2 = F4 (F5 F6 + F7 F8)

F4 = K γ1 γ2

F5 = γ1

α2 + γ2

β2

F6 = sin(α`) sinh(β`)

F7 = γ2−γ1

αβ

F8 = cos(α`) cosh(β`)− 1

∂F4

∂xi
= γ1γ2

∂K
∂xi

+Kγ2
∂γ1

∂xi
+Kγ1

∂γ2

∂xi

∂F5
∂xi

= (1/α2)∂γ1

∂xi
− 2(γ1/α

3) ∂α
∂xi

+ (1/β2)∂γ2

∂xi
− 2(γ2/β

3) ∂β
∂xi

∂F6

∂xi
= ` cos(α`) sinh(β`) ∂α

∂xi
+ ` sin(α`) cosh(β`) ∂β

∂xi

∂F7

∂xi
= 1

αβ
(∂γ2

∂xi
− ∂γ1

∂xi
)− γ2−γ1

α2β2 (β ∂α
∂xi
− α ∂β

∂xi
)

∂F8

∂xi
= −` sin(α`) cosh(β`) ∂α

∂xi
+ ` cos(α`) sinh(β`) ∂β

∂xi

∂f2

∂xi
= (F5F6 + F7F8)

∂F4
∂xi

+ F4

(
F6

∂F5
∂xi

+ F5
∂F6
∂xi
F8

∂F7
∂xi

+ F7
∂F8
∂xi

)
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The derivatives of f3 with respect to xi:

f3 = F1 (F9 + F10)

F9 = γ1

α
sin(α`)

F10 = γ2

β
sinh(α`)

∂F9

∂xi
= (1/α)

[
sin(α`)∂γ1

∂xi
+ `γ1 cos(α`) ∂α

∂xi

]
− (γ1/α

2) sin(α`) ∂α
∂xi

∂F10

∂xi
= (1/β)

[
sinh(β`)∂γ2

∂xi
+ `γ2 cosh(β`) ∂β

∂xi

]
− (γ2/β

2) sinh(β`) ∂β
∂xi

∂f3

∂xi
= (F9 + F10)

∂F3
∂xi

+ F1

(
∂F9
∂xi

+ ∂F10
∂xi

)

The derivatives of f4 with respect to xi:

f4 = F1 (cos(α`) − cosh(β`))

∂f4

∂xi
= (cos(α`) − cosh(β`)) ∂F1

∂xi
− `F1

(
sin(α`) ∂α

∂xi
+ sinh(β`) ∂β

∂xi

)

The derivatives of f5 with respect to xi:

f5 = F11 (F12F14 − F13F15)

F11 = K ε1

F12 = γ1

α

F13 = γ2

β

F14 = cos(α`) sinh(β`)

F15 = sin(α`) cosh(β`)

∂F11

∂xi
= ε1

∂K
∂xi

+K ∂ε1
∂xi

∂F12
∂xi

= (1/α) ∂γ1

∂xi
− (γ1/α

2) ∂α
∂xi

∂F13

∂xi
= (1/β) ∂γ2

∂xi
− (γ2/β

2) ∂β
∂xi

∂F14

∂xi
= `

[
− sin(α`) sinh(β`) ∂α

∂xi
+ cos(α`) cosh(β`) ∂β

∂xi

]
∂F15
∂xi

= `
[
cos(α`) cosh(β`) ∂α

∂xi
+ sin(α`) sinh(β`) ∂β

∂xi

]
∂f5

∂xi
= (F12F14 − F13F15)

∂F11

∂xi
+ F11

(
F14

∂F12

∂xi
+ F12

∂F14

∂xi
− F15

∂F13

∂xi
− F13

∂F15

∂xi

)
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The derivatives of f6 with respect to xi:

f6 = F11 (F13 sin(α`) − F12 sinh(β`))

∂f6

∂xi
= (F13 sin(α`) − F12 sinh(β`)) ∂F11

∂xi

+F11

(
sin(α`)∂F13

∂xi
+ `F13 cos(α`) ∂α

∂xi
− sinh(β`)∂F12

∂xi
− `F12 cosh(β`) ∂β

∂xi

)
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