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ABSTRACT

The work in this thesis is concerned with substructure coupling techniques which
incorporate data readily available from modal tests. Two coupling techniques are
investigated in detail, namely the Impedance and Modal Coupling techniques. In the
former, different procedures for reducing models are described and the effects of the
corresponding incompleteness - at this stage mainly relating to the coordinates - are
investigated in order to detect and understand the main sources of errors in the predicted
dynamic behaviour of different case studies. Additionally, alternative coupling algorithms
are proposed to overcome numerical errors arising due to redundancy in the set of
connection coordinates. In the second technique - Modal coupling - the investigation is
concentrated on the effects of truncating the number of modes. A refined approach is
presented for including residual flexibility equivalent to the omitted modes by

incorporating a dummy flexible system between two components.

A common problem in al the investigated coupling techniques is that their validity may be
reduced by using experimental data which can be measured rather than the data that
ought to be measured. One of the most critica areas here is the formulation of
meaningful constraint equations to express the actual physical connections between
components. Sometimes, the number of measured junction coordinates can be excessive,
thus provoking numerical difficulties during the coupling process. On other occasions,
there are extreme situations where a lack of information causes a meaningless
representation of the actual connection properties. Both situations are dealt with in the
present work. The former is investigated by making use of a well established
mathematical technigue - the Singular Vaue Decomposition - which permits a confident
inversion of ill-conditioned matrices and, additionally, detects the redundant coordinates
responsible for the coupling numerical failures, when combined with a QR factorization.

The latter aspect is related to the possibility of accurately measuring rotationa coordinate



responses. These are important ingredients in a coupling process whenever moments
must be transmitted through the connections. A new laser measurement technique is used
for sensing the responses in the vicinity of a connecting region of a vibrating structure,
which in this work is a simple straight beam. The rotational data are subsequently
compared with theoretical values and with those estimated from accelerometer
measurements made either with the transducers placed on one exciting block or closely-

spaced near the coordinate of interest.

In order to assess the validity of the mathematical and experimental tools developed in this
thesis, several case studies are presented. Some of them make use of theoretically-derived
models to simulate practical conditions and others are experimentally-derived models of
actual components which are used to predict the coupled structures responses, which in

turn are compared with measured results on the actual assemblies.
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- degree(s) of freedom

- frequency response function

- Singular Value Decomposition

- modal constant (mode r, FRF jk)

- vector of interconnecting forces acting on component A and
B, respectively

- general FRF and FRF matrix (Receptance, Mobility and
Accelerance)

- estimated and measured FRF matrices
- identity matrix
- gtiffness matrix

- stiffness matrix of the interconnecting system

- number of total, kept and eliminated modes

- mass matrix
- number of total coordinates

- number of primary (master) and secondary (daves)
coordinates, respectively

- number of connection and interior coordinates, respectively

- vector of principal coordinates referred to them, m_and m,
modes, respectively

- permutation matrix

- rank of a matrix

- high- and low-residua terms of FRF jk

- residua flexibility matrix referred to the connection
coordinates of subsystem A and B, respectively

- vector of displacementsreferred to the interior and
connection coordinates




(U], [V] - matrices formed of left and right singular vectors,

respectively

[Z((o)] - genera Impedance matrix (Dynamic Stiffness, Mechanical
Impedance and Apparent Mass)

) - threshold to define rank of a matrix

€ - machine precision

o; - singular valuei

w - circular frequency

w, - undamped natural frequency

A, - damped natural frequency

n, - damping factor for mode r

o (@), o)] - Receptance FRF, matrix

(g - mass-normalised modal matrix

[(Dm ],[cbk ],[‘I)e ] - mass-normalised modal matrices corresponding to the total,
kept and eliminated modes, respectively

¥ - non-normalised modal matrix
T -
[ l - transpose of a matrix
H ) .
[ ]_ - complex conjugate transpose of a matrix
4
[ l - pseudo-inverse of arectangular matrix
-1 . )
[ 1 - inverse of amatrix

T - norm of a matrix

| | - determinant of a matrix
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1 INTRODUCTION

1.1 PREAMBLE

It is generally acknowledged that the advent of the Finite Element Method (FEM)
congtituted a major step towards the analysis of more complicated static and dynamic
structural mechanics problems. Rather than trying to formulate the equilibrium equations
of a given problem, treating the structure as a whole continuously defined entity, a new
philosophy was then initiated which acted as a catalyst for severa researchers. A basic
principle inherent to this philosophy was the assumption of the whole structure being
composed of individual analytical elements such as beams, plates or shells which, at a

final stage, could be assembled to provide amodel of the complete system.

Nevertheless, the complexity inherent in an increasing number of engineering problems
still resulted in limitations of this type of ‘discretised’ structure when applied with the
available computational means, mainly due to the large order of the matrices involved in
the process. A more general approach was then necessary whereby a complex structure
could be regarded as being formed of different substructures (or components), each of
which could first be analysed individually and independently from the others. In this way,
before being assembled to form the complete structure, each analysis could be done by
whichever method was most convenient and eventually the substructure models could be
assembled together to obtain the equations related to the complete structure. This is the
idea underlying the nowadays well-known ‘substructuring’, ‘building block’ or

‘coupling’ approaches for solving static and dynamic problems.
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Originally, the idea was restricted to the use of purely theoretical models but, as it was
often found that certain substructure models could not be properly formulated due to their
complexity, the method was developed so as to incorporate models derived by an
experimental route also. This different route, can not only complement a subsystem
theoretical model - by verifying and updating - but also can provide a suitable and reliable
subsystem model for direct assembly in the coupling process. This route is nowadays
firmly established and an experimental counterpart to the FE modelling is becoming
widely used - the techniques being referred to as ‘Modal Testing’, ‘ Experimental Modal
Analysis or ‘System ldentification’. Recent advances in Modal Testing methods and in
digita processing have reduced the time required and increased the accuracy and
confidence associated with the experimental determination of modal parameters, which are

the essential ingredients to construct an experimental model.

Accordingly, an ideal substructure approach should be versatile in terms of being able to
incorporate data from either the sources - the FE method or Modal Testing. Such a

method should yet provide other important benefits which may be outlined as,

» considerable insight into a complex system’s dynamics can be obtained from the
component or subsystem analyses which precede the system assembly level studies. In
other words, each component can be treated by a more accurate and refined model. In
certain cases, it may happen that components are till too large to be analysed by
conventional experimental means, especialy if they have to be suspended to simulate
free-free support conditions. The substructure approach alows a further sub-division

into other subsystems which are easier to measure.

* there is the possibility of creating a library of standard subsystems for which a high
level of modelling has already been achieved. Such components can be input, as often

as needed, into several assembly processes,

* the location and time for each component analysis may be selected during the design

stage, since different organizations on different sites can perform the analysis for each

part;
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. each dynamic model may be obtained by theoretical analysis or by testing of the
individual subsystems - these are easier to handle than the total system. A mixture of
theoretical and experimental subsystem modelling is one of the main requirements for

using coupling techniques; and

. any structural modification which has to be applied at any time only involves a re-
analysis of the affected part. A design change in one part only implies new data for that
modified part which can then be coupled with the remaining unmodified components,

without requiring a reanalysis of the rest of the structure.

The possibility of attaining a more precise description of the component dynamic
properties at the subsystem level leads to a better exploitation of the computational and
experimental means available from an individual organization or team. However, it should
be borne in mind that not al the thus-obtained information is necessarily incorporated into
the system model, otherwise no gain would be obtained in terms of efficiently handling
the size of matrices required for the formulation of the coupled structure final equation of
motion. Thus, there is the necessity of reducing, in an optimum way, the size of the
matrices at the subsystem level, while retaining a precise description of the dynamic
properties. Any imprecise formulation of the reduced or condensed model will affect the

predicted dynamic behaviour for the whole system.

Generally, the main steps involved in a substructuring technique may be described as;

System level

Step 1 - Partitioning of the whole physical system model into a number of substructures
with a proper choice of connection and interior coordinates. At this stage, it must have
already been decided which components are going to be subjected to a modal test and
which ones are amenable to modelling by the finite element (or other analytical) method.
In some cases, it may happen that both experimental and theoretical routes are chosen for

the modelling phase of a given component.
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Subsystem |evel

Sep 2 - Derivation of the respective models, either by a theoretical or an experimental
approach, with selection of an adequate number of coordinates and/or modes to be
retained in the analysis and, whenever possible, with an evaluation of the effects of

neglecting certain coordinates or modes.

Sep 3 - Formulation of the subsystem equations of motion which are generally made by
using physical or modal coordinates and, if possible, without requiring the knowledge of
the dynamic properties of the remaining components forming the global structure. Such
independency is an important requirement, although the interconnecting conditions must

be commonly defined by some of the organizationsinvolved in the design.

Svs tern level

Step 4 - Construction of reduced-order equations for the global structure (the assembly)
by invoking interface displacement compatibility and force equilibrium conditions

established for the different component models.

One can note that, the reduction or condensation process - performed at the subsystem
stage - leads to a distinction between the different coupling techniques available which we
shall divide into two major categories. One the one hand, there are techniques in which
the order of the matrices involved in the final equation of motion is dictated by the number
of kept (primary) coordinates pertaining to each subsystem (reduced) model. On the other
hand, there is another category of techniques which aso benefit from a reduction
performed at the component level, but this time based on the number of modes included.
In this thesis we shall refer to the former approach as “Impedance coupling” and to the
latter one as “Modal coupling”. Before we proceed further to summarise the relevant
works in both categories of methods, some terminology is necessary to characterize the

subsystem models.
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1.2 SUBSYSTEM MODELS

Essential to the communication among different organizations and research groups is the
terminology and format used to describe the dynamic properties of a system or subsystem
model, be it theoretically- or experimentally-derived. To start with, we shall present the
different model formats using the same terminology as Ewins [1] and simultaneoudly,

when pertinent, other ssimilar designations will be referred to.

(i) Spatial Models

By discretising a given system, it is essential to assign to each of the N coordinates (or
degrees-of-freedom (DoF)) the values of the spatially distributed propertiesi.e., the mass,
stiffness and damping. The way to do so is by presenting each of those properties in a

matrix form as follows,

[M]N N - mass matrix which provides a means to define the inertia forces assigned

to each DoF when they experience an acceleration (the off-diagona terms contain

the inertia coupling information),

[K]N - Stiffness matrix providing a means to define the inherent restoring forces

due to the relative displacements at each DoF (similarly to the previous one, the off-

diagonal terms express the way the DoF are statically coupled)

[C]» (H] - viscous and hysteretic damping matrices, respectively. They are

not always used since damping is often neglected in theoretical modelling which
means that the dissipative forces are negligible when compared to the previousy

mentioned ones.

It is important to note that the above mentioned definitions have a clear physical meaning

in the case of lumped parameter systems whereby one can associate a DoF to a lumped

vamni~n (cinh An in carinAa mmane mAadAlA Thin e nAar tha AacA udhAan matriaas rac il frana A
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between the various finite elements connected at the so-called nodal points as described by

Zienkiewicz [2].

A complete Spatial model has inherent to it N coordinates and N modes. As shown in
chapter 3, Spatial models which are reduced or condensed to P primary or master
coordinates will have order P (<N) i.e., they will possess information on P coordinates

and P modes only.

Sometimes, Spatia models are referred to as Time Domain models, since equations of
motion formulated by using Spatial properties contain the response motions of a system

as functions of time.

(ii) Modal Models

There are situations where the dynamic properties are most conveniently described in
terms of natural frequencies and associated mode shapes. Such convenience may arise
from the need to compare data from different sources which use different routes to attain
the modal description as mentioned by Ewins[3], or as a simple reason if it is intended to

show an animated display of the structure at each corresponding natural frequency.

Mathematically, the mode shapes are represented as vectors in which each element
represents a deflection of one DoF relative to the other (N-1) DoF in the model. The
modal vectors (or eigenvectors) can be grouped together in the so-called Modal matrix
which is represented by [‘P]N - & Sduare or rectangular matrix containing information
on N coordinates and M modes. The eigenvalues, which are intimately related to the
system natural frequencies, can be grouped together forming the diagona terms of a
diagonal matrix represented as{‘llMxM. Generally, both are complex matrices whose
red and imaginary parts have distinct physicdl meanings. Let us consider the k'h
eigenvalue 7\12( and the corresponding mode shape{ \y}k as presented next for both

matrices;
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The k™ eigenvalue contains the information related simultaneously to the k™ natural
frequency (®,) and modal damping (m,) of the k™ mode {\y}k which in turn is
represented by a real part - the relative amplitude of motion at each DoF - and by an

imaginary part which expresses the phase.

Since the mode shapes represent relative amplitudes at the DoF, rather than absolute
deflections of the structure, the elements of each modal vector are scaled in some manner.
Generaly, they are scaled in such away the largest element is made equal 1 (for instance
for graphic visualisation purposes). On other occasions, when Modal models are obtained
from different sources, it is convenient to have a consistent scaling factor. This can be
achieved by making use of the concept of modal masses and modal stiffnesses. Due to the

orthogonality of the mode shapes relative to the mass and stiffness matrices, the following

relationships hold (if M<N):
. T
™ T M ¥
L T
[ :rli-MXM = [\P]MXN [K]NxN [lP]NxM

being the modal masses and modal stiffnesses interrelated as 7»3 =k /m = mf( [+i n,). If

modal masses are used to scale the mode shapes, a new orthonormal set is obtained,
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T
[(D]MxN Ml [(D]NxM = Myxm

a2

T
K =| A
[(D]MxN[ ]NxN [(D]NxM [ f~]MxM

which is here assumed to be the normalised format for the presentation of mode shapes.
In fact, these are the mode shapes obtained from modal constants which are extracted

from measured data by performing a Modal Anaysis process, as shown by Ewins[ 1].

(i) Response Models

According to the description in common use in the analysis of control systems and
electrical circuits, we shall assume a structure possessing inputs and outputs which can be
interrelated through a kind of ‘black box’ . The (input) forces {f(t)} applied to the system
can be related to the (output) responses {x(t)} whenever the dynamic characteristics are
known. Let us consider a linear system excited with harmonic forces for which the

input/output relationship can be written in the frequency domain as,
{x(} = [Hw] { F)}
o {Fw} = [zw] {x(}

where [H(w)] and [ Z@)] are frequency response transfer functions of the system related

as,

[z@)] = [Hw)]"

From an experimental standpoint, either of these matrices could be measured directly on
the structure. Depending on when displacement, velocity or acceleration is considered as
the response, the transfer function matrix [H(w)] is caled Receptance (or Admittance,
Dynamic Compliance, Dynamic Flexibility), Mobility or Inertance (or Accelerance)

respectively. In these matrices, each element is a complex ratio (response/force) which is
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Due to the wide use of accelerometers to sense responses on structures, the FRFs are
generally measured in terms of Inertance. The Response model is then expressed as a
matrix - the FRF matrix - whose elements are measured FRFs. The corresponding
inverses of the above mentioned matrices are called Dynamic Stiffness, M echanical
Impedance and Apparent Mass, respectively. Nevertheless, we shall refer to a

generalised | mpedance matrix as the inverse of whichever assumed FRF matrix.

It isimportant, however, to bear in mind that different practical constraints are associated
with the measurement of either [H(w)] or [ Z(@)]. If, for instance, element H;; is
considered in matrix [H(w)], in physical terms this represents the amplitude and relative
phase of a harmonic displacement at DoF i due to a harmonic force applied at DoF j (when
no external forces are applied to any DoF other than j). A different physical meaning has
Z; which represents the amplitude and relative phase of a harmonic force applied to or
constraining DoF i such as DoF j executes a unit displacement (when no other
displacement exists other than j). These two definitions explain two important

distinctions between the FRF matrix and its inverse, the Impedance matrix.

. Firstly, to measure directly the elements in the Impedance matrix requires the
displacements at numerous DoF to be held at zero. Conversely, direct measurement of the
elementsin the FRF matrix only requires an easy constraint to be satisfied in practical

terms - only one force should be applied each time an (FRF) element is measured.

. Secondly, ameasured FRF matrix at one stage of the design can be later expanded
by ssimply performing new measurements at additional coordinates to form new rows and
columns without modifying any existing e ements. Thisis not the case whenever an
Impedance matrix needs to be expanded, since all the existing elements have to be re-

measured after the new constraints have been imposed to the structure.

Accordingly, the Response models ar e described by a FRF matrix whose elements
(FRFs) can be either all measured or all analytically calculated or, sometimes, a mixture of

both.
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It is possible to derive a Response model theoretically by invoking the relationship
between Response and Spatial or Response and Modal models as presented by Ewins [1]

and outlined here for the Receptance matrix,

[a(@)], = [[KI] - ®’[M] ]leN

-1

[y =[] [~(xf-m2)\] [(D]LXN

MxM
where N and M are the numbers of coordinates and modes, respectively.

For smple components, however, a closed-form solution based on differential equations
of equilibrium, can be used to relate ‘exactly’ the responses and excitations, as presented

in textbooks by Bishop and Johnson [4] and Timoshenko [5].

All of the models previously mentioned may be interrelated as presented in fig. 1.1 for the
particular case of undamped systems. Although it is assumed in the presented
relationships that matrices have order N (number of coordinates = number of modes),
they are still valid for reduced models whose number of coordinates (N) is less than the
number of modes (M). Conversdly, if M > N and an inverse (or pseudoinverse) has to be
calculated to perform the necessary conversion, there is a numerical difficulty since the
matrix to be inverted is rank deficient. This subject is discussed in more detail in

chapter 3.
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1.3 SUMMARY OF PREVIOUS WORK

There have been numerous researchers addressing the substructuring method, especially
since the early 1960’s. A brief review is presented here, athough a more thorough
discussion is carried out in some later chapters when specific techniques are described or

referred to in more detail.

To start with, we shall address the coupling techniques which exploit, in terms of
computational efficiency, areduction performed on the coordinates at the subsystem level.
Depending on whether Spatial or Response component models are used directly as
input data into the coupling process, the assembling techniques are here designated as
Spatial or FRF Coupling techniques, respectively. The former isidea for the use of
FE methods whereas the latter comprises both theoretical and experimental fields of work.
The FRF coupling technique is generaly referred to as the “Impedance Coupling”
technique since, at the system level, it assembles mathematically the generalised
Impedance properties of each component although in practical terms, as mentioned in the
previous section, they are not the directly measured ones. In chapter 3 a detailed

discussion is devoted to the FRF Coupling method.

Early works were presented making an analogy between electrical circuits and vibrating
systems, one of them from Duncan [6]. The concepts of linear operators and the principle
of superposition were employed by Sykes [7] to develop linear multi-terminal network
theory for solving periodic steady-state and transient vibration problems of mechanical
systems synthesised from a number of small substructures. One of the most significant
analytical works in the development of the Mobility (Impedance) concept is that by
Bishop and Johnson [4]; from an ‘exact’ formulation of the Response model of a beam
component, the properties of multi-beam assemblies could be formulated. The application
of the conceptually-simple Impedance Coupling technique is straightforward when the

components are amenable to theoretical modelling, but practical complex systems have

Aemanded aiharadtem Imnedances tn he derivved from meaciired data rather than a niirelv
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models are necessarily an approximation of real structures, even if the solution of
differential equations of motion are ‘exact’, whereas measuring a structure permits a
description of its own equations of equilibrium and boundary conditions. Although
models obtained via this latter approach have the advantage of more closely reflecting the
‘true’ dynamic characteristics of a structure, they are contaminated with errors arising
during the acquisition and analysis of measure data. Consequently, the accuracy of the

assembled structure results will be affected.

The experimental approach to the Impedance Coupling problem was one of the main
reasons which motivated a breakthrough to the development of suitable techniques and
equipment to measure, assess and analyse data. A comprehensive work was presented by
Ewins [9] concerning ground rules, measurement techniques and interpretation and
application of measured data with an extensive selected bibliography. The Impedance
coupling technique was applied to many engineering problems, such those presented by
Klosterman [10], Sainsbury and Ewins [11], Ewins, Silva and Maeci [12], Hunter and
Otts [13] and Heer and Lutes [14], just to quote some of the earliest cases. The main
difficulties encountered in those applications were mainly related to the mathematical
inconsistency of the measured models and to the inadequacy of experimental means to
measure some terms in the FRF matrices of certain components. Mostly, those FRFs

were related to rotational response measurements.

The FRF matrix of a measured component tends to be ill-conditioned near each resonance
frequency, especialy when lightly-damped structures are dealt with. If any error in the
FRFs is present in the vicinity of those regions, which is most likely in measured models
causing the undesirable mathematical inconsistency, numerical failures will arise during
the coupling process and, as a consequence, meaningless predicted results obtained.
Lutes and Heer [ 15] addressed this problem by numerically ‘filtering out’ elementsin the
FRF matrix. Another approach was implemented in works by Ewins [16], Gleeson [ 17]
and Imregun, Robb and Ewins [18], where the inconsistency was removed by subjecting
raw data to moda anaysis and then from the modal data base thus-obtained smoothed

FRFs were regenerated to improve the predictions.
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Rotational responses are necessary to formulate proper constraints between connected
components. Success in the prediction of results for a coupled structure is dependent on
how the connection coordinates are measured and included in a coupling process, as
demonstrated in some practical applications undertaken by Ewins and Sainsbury [19],
Henderson [20] and Maleci and Y oung [21]. For instance, by ssmply assuming one point-
connected components, if they respond to excitations in al three planes, it is vital to
include the three rotations in addition to the three trandations in order to properly
formulate the constraint conditions. In terms of Response models, the FRFs related to
rotational response/excitations represent 75% (or 60% if symmetry properties are
assumed) of total elements in the corresponding FRF matrix. Although simple to calculate
those FRFs anayticaly, it is not an easy task to perform their measurement. This
difficulty motivated atrend in the research procuring practical techniques and transducers
to measure rotational quantities. Most of the reported works have tended to use
trandational transducers (coventional accelerometers) and from them the rotational
guantities were derived. An early work in this field was carried out by Smith [22] who
attempted to measure complete Mobility data from responses of two accelerometers and
by producing an exciting couple with the use of two linear shakers vibrating in anti-phase.
Later, a technique using a single shaker and an additional block attached to the structure
was used by Sainsbury [23] who made use of different block configurations to minimise
the errors, especialy related to the FRF rotation/moment which is the most prone to
errors. Further studies were carried out by Ewins and Gleeson [24] who developed an
alternative technique, especially suitable for lightly-damped structures, which takes into
account the specia relationship between elements of point FRF matrices. However, this
relationship could not be extended to the calculation of the residual flexibility associated
with the out-of-range modes. Additionally, Gleeson [ 17] showed that base strain effects
and cross-sensitivity of accelerometers are some of the causes of erroneous estimations of
those FRFs. An aternative technique for measuring rotational responses was attempted
by Licht {25] and Rorrer [26], who resorted to angular transducers instead of linear ones.
The benefits achieved such as, no need to process data from linear responses and to

cancel additional mass effects, were not compensatory if the ratio price/accuracy was
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compared to the conventional approach. Y et another estimation of rotational responses on
beam-type components is possible from the measurement of trandationa responses at
closely-spaced locations near a point of interest. This alternative was attempted by Chen
and Cherng [27] and Sattinger [28] by using first- and second-order approximations to
estimate the rotational FRFs. Identical conclusions were found about the poor accuracy
related to those FRFs, and the differentiation method was seen to accommodate
considerable variation in measurement location spacings. The selection of response
measurement and excitation location spacings must achieve a balance between resolution
and proper approximation of derivatives across the number of natural modes of vibration

to be encompassed in the frequency range of interest.

The other coupling method we shall be concerned with isthe Modal Coupling technique,
also referred to in the related literature as Time Domain or Component Mode Synthesis
methods. The basic philosophy is the same as the previous one i.e., it permits the use of
reduced component models in order to achieve a reduced order in the final equation of
motion matrices of the assembled structure. However, unlike the Impedance based
methods which take advantage on the reduction of the number of coordinates, these
methods use a reduction performed on the number of modes used to describe each
component model while still accounting for all the physical DoF. By using a Ritz-type
transformation, the reduced number of principal coordinates is related to the number of
modes that are taken into account for the moda estimation; generaly, the information
relating to the higher natural frequency modes is discarded. This feature in the method
reduces the computational effort required in the system anaysis and parallels the modal
information in area test, since it is only possible to measure some of the existing modes
in a structure. The objective is to maintain a specified level of accuracy in the dynamic
analysis, while using only the lower order modes for computational efficiency.
Essentially, there are two Modal coupling approaches which differ from each other
according to the dynamic displacement shapes used to form the truncated set of the natural

modes. In the first approach, the elastic modes pertaining to a fixed-interface component
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are retained, whereas in the second one, the modes are obtained by assuming the

component to be vibrating in a freely-supported condition at its attachment points.

The basic idea for the fixed-interface method relies on the philosophy of the static
substructuring technique proposed by Przemieniecki in 1963 [29]. It was mainly directed
towards the use of the finite element technique with the total displacement for each
component coordinate being calculated by a superposition of the displacements obtained
with fixed and relaxed interface conditions. In 1965, Hurty [30] proposed the Normal
mode or Component Mode Synthesis method, at this time focusing his work on dynamic
structural systems and taking into account both the component’s elastic and mass
properties. Later, Craig and Bampton [31] re-formulated Hurty’s method by simplifying

the choice of the groups of modes for the transformation matrix construction.

In the second adternative - the free-interface method - the necessary natural modes
incorporated in that matrix are those obtained from a subsystem vibrating either in its free-
interface or completely free support condition. This being the most readily simulated
condition during a experimental test, it constitutes an attractive technique for the use of

combined experimental /theoretical analysis of dynamic structural systems.

Some of the early works reporting use of free-interface modes were presented by
Gladwell [32] and Goldman [33]. The former was called the branch-mode analysis and
was limited to the study of subsystems connected in a staticaly determinate condition,
while the latter constituted the basis for more refined techniques. One of these was Hou's
work [34] which presents some similarities with Goldman’s method, but uses a less
complicated procedure for generating the system transformation matrix. In some survey
papers by Craig [35], Nelson [36], Goldenberg and Shapiro [37] and Hart, Hurty and
Collins[38,39] it has been commonly stated that in the free-interface methods like Hou's
and Goldman’s procedures, very poor accuracy may be obtained for the overall system
natural frequencies and mode shapes compared with the accuracy produced by the fixed-

interface methods. However, it was then recognised that the free-interface methods could
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the coupling process, which has led to an improvement of the existing methods by
developing a great variety of approaches. Some of these presented by MacNeal [40],
Kuhar and Stahle [41], Hintz [42], Benfield and Hruda[43] and Rubin [44] were
primarily based on a purely analytical description and determination of the component
characteristics in other words they are suitable for the theoretical route, while others tried
to explore the use of experimentally-derived moda properties as a basis for the
formulation of each subsystem’s equations of motion. In this latter approach, one
important early work is Klosterman’s thesis [45] which provides a comprehensive study
of the experimental determination of modal representations of components including the

use of these models in the substructure coupling.

The structural definition of components from modal tests has been accomplished and
successfully used by Klosterman and Lemon [ 10,461 for design purposes with relatively
stiff structures connected with flexible elements such as an automobile frame and body
connected by isolation mounts. For this situation, the subsystems can be tested with free
boundaries to obtain a free-free modal data base which is sufficient for use in system
synthesis. However, in the case where the components are rigidly connected, the use of a
set of truncated modes to establish the compatibility equations sometimes leads to
unacceptable errors in the system response predictions. In this case, a more accurate
definition is necessary either by using more modes or, if these represent an unreasonable
number, by providing some information about the effects of the neglected modes. The
lack of definition of the component properties may be overcome in two ways; on the one
hand, seeking to compensate for alack of flexibility due to truncation of the set of natural
modes by using an additional and important information concerning the flexibility effect
of the out-of-range modes. On the other hand, by using additional masses attached to the
connection points in an attempt to generate a more realistic condition for the component
when it is vibrating together with the remaining parts, the localised flexibility properties
near the connection area are better represented, since more modes are brought to the

frequency range of interest.
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The first dternative was presented by MacNeal [40] and Rubin [44] in order to improve
the truncated free-free modal representation of a component by including estimates of the
residual effects due to the modes higher in frequency than the frequency range of interest.
In generad, the residual effects are obtained by calculating the component flexibility due to
those modes to be retained and then subtracting this from the total flexibility of the
respective component. In Rubin's method [44] the first-order response based on
MacNeal's approach [40], is used further to estimate residual inertial and dissipative
effects of higher order modes. Craig and Chang [47,48] discussed the coupling of
substructures represented by Rubin component-modes model. All these works presented
a significative improvement to the classical free-interface method, but yet using purely

analytical representation of component properties.

Since the free-interface method constitutes the most straightforward approach when the
required data must be obtained from testing the components, some authors as
Martinez et al [49,50] and Coppolino [51] have directed their work in this direction.
Although Craig [52] has shown that the residual flexibility and fixed-interface method are
equivalent, Klahs and Townley [53] concluded that numerical difficulties may arise in the

use of residual flexibility approach.

The mass-loading technique may be classified as an intermediate technique between the
fixed-interface method and the free-interface method. As mentioned before, the classical
free-interface method is more sensitive to the truncation of the elastic modes used to
describe the displacement in the connection region, rather than the fixed-interface method.
In an attempt to bring the classical free-interface method (which is the most suitable for
experimental purposes but does not offer good accuracy) closer to the fixed-interface
method (which leads to better accuracy in the results but is not appropriate for the use of
modal testing), the mass-loading technique is an available compromise solution which has

been used in some specific fields of research, namely in the spacecraft industry [51].
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1.4 SCOPE AND ORGANIZATION OF THIS THESIS

The research project presented in this thesis is concerned with more effective use of
structural assembly analysis methods in practice and is mainly formed of four constituent

parts as described next.

(i) - Theoretical Basis of Coupling Procedures which is the subject of chapter 2.
In this chapter, the mathematical and physical principles inherent to the Impedance and
Modal coupling techniques are presented and examined, which are in fact two different
approaches to assemble reduced subsystem models. The former one takes advantage, in
computational terms, of the reduction performed on the Spatial or Response models of
each component whereas the second approach benefits, in the same terms, from the
assumption that the subsystem Modal models are reduced in terms of the number of
modes included. The limitations associated with the conventional methods to deal with
both types of incomplete models are presented at alast stage and are the main basis for the

research presented in the subsequent chapters.

(it) - Refined Impedance and Modal Coupling Methods are presented in
chapters 3 and 4, respectively. Chapter 3 is mainly devoted to the refinement of
Impedance coupling methods that are able to incorporate the data readily available from
measurements. Although a brief examination is carried out on the ways and effects of
using reduced theoretical models - Spatial models - attention is principally focused on the
use of experimentally-derived Response models which, by nature, are themselves
incomplete and prone to measurement errors. The interest in the use of this kind of model
isjustified by their attractive characteristic which is the valuable information they contain
about al the existing modes on the structure. Additionally, since they reflect the ‘true
response of the component, they can provide a means of quantifying and qualifying
damping and/or non-linear characteristics, which can not be assumed negligible asit isin
general. In light of these considerations, the FRF coupling technique is selected to be the
suitable mathematical tool which is mostly investigated. Refined algorithms are presented

to increase the efficiency of the conventional method presented in chapter 2. The

Wi e e e L T e
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improvement is achieved by decreasing the number of inversion operations and
simultaneously the order of the involved matrices. In doing so, it is aso shown that the
numerical difficulties arising from inversions carried out on components's ill-conditioned
FRF matrices are avoided under certain circumstances and a better prediction of the global
structure results can be attained. Central to this work are numerical studies which
investigate the sensitivity of the different alternatives under certain ssimulated practical
conditions. One of these undesirable conditions is the existence of linearly dependent
responses based on the coordinates located at the connection regions, causing the FRF
matrix to be rank-deficient. If it happens that both components possess this characteristic,
there is the need to make use of auxiliary mathematical tools which are presented in
chapter 5. The second group of techniques - Moda Coupling - is dealt with in chapter 4.
In this chapter, a modal coupling technique which also makes use of experimentally-
derived data is investigated. Generally designated as free-interface method, since its
formulation only requires the component modes to be obtained under a free supported
condition at the connection coordinates, it is assumed in this chapter that the necessary
modes are those derived from a commonly conducted modal test i.e., none of the
coordinates are constrained in any direction. A refined technique is presented whereby the
lack of flexibility due to the truncation of the number of modes in each subsystem (in fact,
a characteristic of measured data), is compensated by the addition of a ‘dummy’ flexible
system at the interface region. This auxiliary system possesses, in each component, the
information of the flexibility associated with its out-of-range unmeasured modes. What
the refined technique assumes in fact is a mathematical coupling of both components
through those series connected ‘dummy’ flexible systems which after all are considered as
a unique system between the components. The main structure of the computer program is
briefly described and the validity and facility of refinement are assessed using case

studies.

(i) - Mathematical and Experimental Tools Used in a Coupling Process
constitute the subject of chapters 5 and 6. It has already been stated that subsystem

models which are derived from measured data suffer from incompleteness in terms of
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coordinates. This may be due to difficulties in accurately measuring certain regions on the
structure or due to alack of ability of conventional transducers to measure certain required
coordinates, for instance the rotations. In trying to remedy such inadequacies, one may be
tempted to measure as many coordinates as possible, especially at the connection
region(s) where a continuous description of the response field is highly desirable in order
to attain a closer representation of the actual constraint conditions. However, as shown in
chapter 3, such a large number of measured coordinates may well cause some of their
responses to be linearly or aimost linearly dependent on each other at certain frequency
ranges. The result of using models with such a characteristic is a numerica ill-
conditioning, especialy if the FRF coupling technique is used. In seeking to remedy this
undesirable failure, two strategies are proposed in chapter 5. On the one hand, a powerful
mathematical technique - the Singular Vaue Decomposition (SVD) - can be confidently
used to invert any matrix even if it is rank-deficient. However, it is shown that this
technique should not be used as ‘black box’ algorithm, since the number of significant
singular values is dependent on a specified threshold which is related to the degree of
error on the measured data. The second proposed strategy also makes use of the SVD
technique, but not this time to be used as an inversion algorithm. It is, instead, used to
calculate the rank of a matrix or, in other words, the number of independent responses on
a given structure. In addition to this technique, an agorithm which makes use of a QR
factorisation is presented to locate those coordinates with dependent responses. If it
happens that both components have redundant responses at identical locations, this means
that those coordinates can be neglected during the formulation of the constraint equations.
This simplification leads to well-conditioned matrices which have a reduced order and

which can be inverted quickly using standard algorithms.

In chapter 6, the formulation of constraint conditions is approached from another
perspective. It isin fact, the other extreme situation where there is an insufficient number
of measurable connection coordinates, due to difficulties inherent to experimental means.
The available transducers are well established and are accurate to measure linear

responses. However, rotational responses are required in special situations to formulate
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proper constraint conditions - particularly when the interface region tends to be localised
and a moment is transmitted while the assembled structure is vibrating. A failure to
measure rotational responses accurately impairs a redistic formulation of the actual
constraint conditions and thus the predicted results have little to do with the actual
assembled structure. In this chapter, three techniques are described to estimate rotational
responses from measured trandational ones. Two of the techniques make use of
conventional accelerometers, one of them requiring an additional block attached to the test
structure and the other assuming the measurement of two or three closely spaced
translational coordinates. Both Response and Modal models are estimated at one end point
on each beam possessing one transverse and one rotational coordinate. In both models the
residual effect of the out-of-range modes can be included. The third technique makes use
of alaser unit which is able to sense the velocity at any point on a vibrating structure.
Only recently it has been used in Modal Analysis, particularly to compensate for the lack
of measured coordinates with conventional accelerometers. Taking advantage of the
ability of the laser system to scan a line or area on a structure, a quasi-continuous
definition of the response field can be quickly achieved with such an optical system. One
can say that this system allows the user to have an experimental model which can exceed
the theoretical one in terms of number of coordinates. Such a large number of measured
trandational coordinates permits a rigorous approximation with analytical functions and
these can subsequently be used to calculate the rotations at any encompassed point during
the measurement, since they are the corresponding derivative values. If one assumes that
the measurement is undertaken while the structure is vibrating at a natural frequency, the
result is the mode shape description in terms of both trandational and rotational

amplitudes.

(iv) - Experimental Case studies are presented in chapter 7. Central to this chapter,
are the results obtained on actual assembled structures. They represent the ultimate test of
the validity of the refinements introduced on the conventional coupling techniques and
reveal the usefulness of the auxiliary mathematical and experimental tools associated with

acoupling procedure.




2 STANDARD COUPLING TECHNIQUES

2.1 INTRODUCTION

This chapter provides an introduction to the generally established coupling techniques. As
mentioned in the previous chapter, the main aim of a coupling process is to obtain a model
for the assembled structure. The order of the matrices used to formulate the equations of
motion of the assembled structure depends on the order of the matrices used to describe
each subsystem model, which in turn should be as condensed as possible. How to
achieve the required reduction which is undertaken independently on each component, is
dependent on the selected format to describe their dynamic characteristics. In fact, the
three possible types of subsystem model (Spatial, Modal and Response) are interrelated as
shown in chapter 1, but it is important to note that those relations hold strictly for models
which are considered complete in terms of both coordinates and modes and so

approximations are incurred when incomplete models are used.

The order of the matrices used to formulate the equations of motion of the assembled
structure depends either on the number of coordinates (connection and interior) or on the
number of kept modes pertaining to each component model. One can say that two groups
of coupling techniques emerge from the large variety of methods which have been used in

different fields of research and industry and are classified as,



Standard Coupling Techniques 24

- Impedance coupling techniques which benefit from the reduction performed on the

subsystem models in terms of coor dinates and,

- Modal coupling techniques which are suitable for the use of reduced modelsin terms of

modes.

The former group deals primarily with the coupling of subsystems whose models are
described either by their Spatial or by the Response properties. The first of these types of
model is used extensively in the Finite Element method but is rarely used in cases which
involve experimental modelling. Although Response models can be obtained by

theoretical analysis, they mostly constitute the raw data available from modal tests.

The techniques forming the latter group are applied in those situations when the
component models are described by their modal properties - Modal models. This type of
model is easily generated from an eigensolution, if a theoretical tool such as the Finite
Element method is used, or they can be derived from an identification process carried out

on measured FRF data.

The following diagram elucidates the different possibilities of performing the coupling

using both experimentally- and theoretically-derived subsystem models.
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2.2 IMPEDANCE COUPLING TECHNIQUES
2.2.1 INTRODUCTION

The generaised Impedance methods for making vibration analysis of complex structura
assemblies are examined in the present section. The subsystems or component models are
described by using a Spatial or Response formulation giving rise to the so called Spatial

or FRF Coupling methods which are examined next.

2.2.2 SPATIAL COUPLING METHOD

This is the method mostly used in the Finite Element software packages since each
component’s properties are themselves derived from a suitable assembling of the
analytically-derived element’s stiffness and mass matrices, leading to a description of the
component’s model in terms of their spatially distributed properties. The dynamic
characteristics of the overall structure are subsequently obtained using the same
assembling technique as used at the component level, but this time the component’s
gpatial matrices playing the role of the matrices to be “added”. The straightforward results
of this assembling technique are the spatial matrices of the complete structure i.e., mass,
stiffness and sometimes damping matrices which, since they are known, can be input to
an eigen-solver to obtain the modal properties or they can be used to generate the

Response model.

Let us consider two undamped components A and B described by their spatia properties,

the corresponding mass and stiffness matrices being of orders N, and Ng respectively,
and each being partitioned according to the selected interior and connection coordinates.
The equations of equilibrium for each subsystem, acted on only by interconnecting forces

are,
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when: tthe index ¢ denotes the n¢ coordinates involved in the physical connection and i, j

the remaining coordinates for components A and B, respectively.

The compatibility of displacements and equilibrium of forces between the subsystems

undergoing free vibrations are expressed by the following equations:
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By invoking these equations, the overall system mass and stiffness matrices [cM]
and [cK]

NexNe
will be of order No= N,+ Np -n.and are given by,
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the operation sign @ meaning the following assembly of the above mentioned sub-
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Since the mass and stiffness matrices [CM]NC"NC and [cK ] v, @ known, a classical
eigensolution will give the natural frequencies and mode shape vectors for the global
system. This analysis is suitable for the use of theoretically-derived subsystems, but it is

not generally used in cases where the data available is obtained from amodal testing.

223 FRF COUPLING METHOD

In contrast, the FRF Coupling analysis method makes use of subsystem models
derived directly from FRF data (commonly available from experimental studies but
seldom from theoretica modelling). The dynamic properties of those models are
synthesised in terms of the FRF matrix and generally denoted as [H(0)] (such as
Receptance, Mobility or Inertance matrices).

As in the preceding analysis, the coordinates involved in the connection between
components A and B should be identified and represented by index ¢ (and similarly i and

] for the remaining ones) leading to the following partitioned FRF matrices:

[ AH; 1 26
H =| ceeees Teee e .
L (m)]NAXNA AH J_il @2
L i
[sH(®)] B (2.10)
[0 =] e .
B NpxNg _Bch . BHcc

By invoking the constraint equations (2.3) and (2.4) used in the previousy presented
Spatial coupling method, the FRF matrix of the coupled structure is provided [1] by a

similar “addition” as presented next :
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1 1 1
[cH(w)] NCxNC=[ [ AH(O))]NAXNA 6 [ BH(m)]NBxNB ] NoxN 211

Denoting by Z . the element k,| in the generalised Impedance matrix [Z(0)] = [H(co)]'1
kl ,

the operation sign @ means the following assembly of the corresponding partitioned

I mpedance matrices,

i 21
A AZic 0
[H@] v =| A% 1 aZet e | B2 (212)
e, -
0 Bch B Al

The FRF matrices of each substructure (available over a frequency range of interest,
which is the same for both structures) are “added” together frequency by frequency until
the whole FRF matrix is completely calculated. The equation (2.12) can be generalised to
include more than two subsystems without having to perform once again all the frequency
by frequency “addition”, provided the generalised |mpedance matrices of each component

are suitably assembled as shown in fig. 2.2 for the case of three components.

Interior coordinates not involved
in the constraint equations

Connection coordinates 1 = 2

Connection coordinates 2 < 3

ofio

e |
Fig. 2.2 - Assembly of Impedance matrices

As shown in equation (2.1 1), the whole system FRF matrix is obtained after three matrix
inversions, two of them carried out on the subsystem’s FRF matrices and another on the

assembled |mpedance matrix.
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A refined version of an algorithm, which reduces the number of inversions to be carried
out on matrices having a reduced order, and a detailed analysis of the numerica
difficulties which may arise in some particular situations, mainly due to the errors inherent
to the measured data and to the redundancy of the connection coordinates, constitutes the

ingredients of chapter 3.

2.3 MODAL COUPLING TECHNIQUES
2.3.1 INTRODUCTION

In this section we shall be concerned with the Modal Coupling techniques, also referred to
in the related literature as Time Domain or Component Mode Synthesis methods. The
basic philosophy is the same as for the previous group i.e., they permit the use of reduced
component models in order to achieve a reduced order in the final equation of motion
matrices of the assembled structure. However, unlike the Impedance based methods,
which take advantage on the reduction of the number of coordinates, these methods use
a reduction performed on the number of modes used to describe each component model
while still accounting for all the physical DoF. By using a Ritz-type transformation, the
reduced number of principal coordinatesis related to the number of modes that are taken
into account for the modal estimation; generally, the information relating to the higher
natural frequency modes is discarded. This feature in the method reduces the
computational effort required in the system analysis and parallels the modal information in
ared test, since it is only possible to measure some of the existing modes in a structure.
The objective is to maintain a specified level of accuracy in the dynamic analysis, while

using only the lower order modes for computational efficiency.

Amongst the different available methods, two groups emerge and may be classified as,
- the fixed-interface and

- the free-interface methods.
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Free-Interface
Methods

[

Mass-Loading Classical Approach Refined Approach
Techniques (without Residuals) (with Residuals)
Intermediate

Connecting-System

Connection

Redundancy

Coordinates

Compatibility
Equations

Direct
Assembly

Implicit
Coupling

Global Equation
of Moation

Fig. 2.3 - Modal coupling techniques
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In both the methods, the solution of the origina model is approximated by a summation
of assumed displacements or Ritz vectors, their amplitudes being the generalized
coordinates used to reduce the order of the original model. The Ritz vectors are selected in
a predetermined fashion based either on the dynamic characteristics only or on both the

dynamic and static characteristics of the individual subsystems.

Essentially, the methods differ from each other according to the dynamic displacement
shapes used to form the truncated set of the natural modes. In the first method, the elastic
modes pertaining to a fixed-interface component are retained, whereas in the second
method, the modes are obtained by assuming the component to be vibrating in a freely-

supported condition at its attachment points.

232 FIXED-INTERFACE METHODS
2.3.2.1 INTRODUCTION

The basic idea for the fixed-interface methods relies on the philosophy of the static
substructuring technique proposed by Przemieniecki in 1963 [29]. This was mainly
directed towards the use of the finite element technique with the total displacement for
each component coordinate being calculated by a superposition of the displacements

obtained with fixed and relaxed interface conditions.

In 1965, Hurty [30] proposed the Normal mode or Component Mode Synthesis method,
at this time focusing his work on dynamic structural systems and taking into account both

the component’ s elastic and mass properties.

Later, Craig and Bampton [31] re-formulated Hurty’s method by simplifying the choice
of the groups of modes for the transformation matrix construction. In the present work
we are assuming the standard fixed-interface method to be that re-formulated version,

which is summarised in the following section.
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2.3.2.2 THEORY

Let us assume at this stage that each component’s spatial properties are known. The
corresponding equation of motion, according to the selected connecting and interior

degrees of freedom (DoF), can be written in the following partitioned form,

M. M U, K. :K u, f

1 1c 1 11 1c 1 1
USSR P JUN G ISR B S O il (2.13)
M.:M |li K. :K ||u f

ci cc c cl1 cc c c

where

{“c} and {“i} - are the displacements at the n, connection (primary) and at the n;

interior (secondary) coordinates respectively:

{fc} and {fi} - are the forces at the n_, connection (primary) and at the n; interior

(secondary) coordinates respectively.

Assuming now that the n, connection coordinates are fixed ( {“c } ={ 0 }), and that no
external forces are acting at the interior DoF ({fi} ={ 0 }), the corresponding equation of

motion becomes:
M {8} + [X] {w) =10} (2.14)

The assumption of harmonic motion leads to an eigen-solution which consists of m = n;
.2

mass-normalized eigenvectors[‘bhl and the respective eigenvalues{ “’,_,L » Each

interior DoF displacement can now be approximated by a summation of the known

fixed-interface modes as,
{w)=[2,.]{P.)] (2.15)

The second kind of modes required to approximate the displacements at the interior
coordinates are the constraint or static modes which are calculated by relaxing each
connection coordinate, but now neglecting the mass properties of the interior DoF. Thisis

in fact aGuyan static reduction [54], as described by the following equations:
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K K u, 0
e ={ (2.16)
K. :K ||u f

C1 cC c

which gives the displacements { ; }intermsof {1, }:
{w}=-[Kal [K ] {u) (217)

or, assuming that the transformation matrix is [cb;] .—_-[Kii]'l[Kic]’ equation (2.17)

isre-written as:;

{w) nxl [‘D:c] .xn_ {u} nxl (2.18)

The static or constraint modes are thus the columns of the Guyan transformation
matri x[(D;l .
A Ritz-type transformation matrix can now be constructed in terms of both elastic (fixed-

interface) and static (constraint) modes, as presented next:

w) (o o [P, P,
O T £ e O, D (2.19)
u, 0 -1 J% u,

The main advantage of this subsystem description is that it is possible to truncate the
number of modes or modal coordinates (generally the higher natural frequency modes),
while still accounting for all the physical DoF. Assuming that only the first m, of the total

m modes are known, equation (2.19) can now be written as:

lli 1O T (D* pk P
{...}z[”}‘f:”}fH...}:[Tk] {k} (2.20)
u 0 :1 J% Y

Substituting equation (2.20) into (2.13) (only considering the interconnecting forces) and

pre-multiplying by [Tk] leads to:
T P,
[T ;T3

u
c

T P, T(O
Am] [Tk]{ } ml ff ean

u
c
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or in apartitioned form,

My M | ] B, Ko K [[P]  T(O
..... MR e + :.. ::.. . "'[Tk] 'f" (2.22)
i K :K ¢

u
c

where

i, =

1] - [, - [o,] 1[e]]. PAD

W] = [M.]+[o] ]T([Mii] [0 ]+ MD+M ][]
.Kkk_ — [\m‘.]

. T

.ch. - [ch] =[0]

_ch: = [KCC] + [Kci] [(D::] (2.23)

It is interesting to note that;

(i) the mass and stiffness matrices related only to the connection coordinates ( “c} are

the same as the reduced matrices obtained by applying a Guyan reduction to the initial
[M] and [K] matrices;

(i) in the cases when the boundary is statically determinate;

* the constraint mode partition[(D;l reduces to a geometric rigid body

transformation which is independent of the stiffness properties,

* the boundary mass partition [IVIC]_ is the rigid body mass matrix referenced to

boundary motions, and

¢ tha hniindary d’iffnt:cJ_K 1 vanichac
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(iii) in the case of an intermediate boundary, [(Dl is primarily a function of local
stiffness properties if the boundary is geometrically localised. However, when the
boundary is quite distributed,[@il is a function of the overal component

stiffness.

The next operation is at the system level when all the component matrices are assembled
together according to the compatibility and equilibrium equations necessary to describe the

physical connections.

Assuming for simplification that {A“c} and{ B“c} already represent displacements
referred to the origina global coordinate system u, the final equation for the coupled

structure is now given in a new coordinate system - say p - by;

AIkk: 0 : 4 ke (.
. . AP,
0: I Vi 4 s
. B B " +
kk ke Bpk
M .M M M il
_A ck:B ck - A cc+B cc - 7
- 2.
A® 0 0 ﬁ
............................ APl 0
i 2.
0 ipo i 0 gP 0 =9 0 (2.24)
............. u 0
~ ~ c
+
0101 Kok L

L2
The natural frequencie{ w,\] and mode shapes [‘P] for the overall system are obtained

by solving the eigenproblem associated with equation (2.24). The displacementsin the p

coordinates may be represented as a transformation of a new coordinate system { 13 } :
Apk
BPy ¢ =[¥] {¢} (2.25)

u
c
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Alternatively, the displacements referred to the original system u may be represented as.

AD, D 0 D00
AY; : :
B p=| 8% O 8® [[¥]{&)} (2.26)
ll ....................
¢ 0:0
A
or 1Bui =[r] {¢) (2.27)
(u_J

where[ '] is the matrix of eigenvectors, this time referred to the u coordinate system.

The fixed-interface method is widely applied in the cases when the component dynamic
properties are described by their mass and stiffness matrices. In genera, this method is
expected to be accurate when the final system allows the component of interest to have
little motion near the attachment points, or if a flexible component is rigidly linked to a
relatively stiff component. The mass associated with the connection DoF is often
neglected but in turn the local stiffness is accurately included. The accuracy of the results
predicted using the fixed-interface method can be still improved by expanding the
transformation matrix given by eg. (2.20) to include other type of ‘modes’, such as the

attatchment modes as presented by Craig and Chang [47].

This group of methods are easy to handle with theoretically defined mass and stiffness
component matrices. However, from an experimental point of view they are not

recommended, mainly due to two reasons;

- the imposition of a fixed-interface may be easy to implement when we are dealing with
theoretical subsystem matrices, but it is very difficult to simulate a perfectly fixed support

condition during a modal test,
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- some of the matrices necessary to calculate the constraint modes are very difficult and

tedious to obtain by static or dynamic testing.

2.3.3 FREE-INTERFACE METHODS
2.3.3.1 INTRODUCTION

This is a group of methods developed with the same basic idea as that outlined in the
previous section, but this time using another type of transformation matrix for reduction
purposes. In this case, the necessary natural modes incorporated in that matrix are those
obtained from a subsystem vibrating either in its free-interface or completely free support
condition. This being the most readily simulated condition during a experimental test, it
congtitutes an attractive technique for the use of combined experimental/theoretical

anaysis of dynamic structural systems.

One of the early works reporting use of free-interface modes was presented by Hou [34]
and possesses some similarities with Goldman’s method [33] but uses a less complicated
procedure for generating the system transformation matrix. In this thesis, Hou's method
will be referred as the classical approach (which assumes the components to be rigidly
connected). For convenience of presentation, the free-interface methods will be presented

as follows:

- first of all, the free-interface methods will be described according to the type of linkage
between subsystems i.e., it may be rigid or flexible. At this stage, interest is confined
to the type of existing physical connection, excluding the effects of the mode set

truncation;

- in the last part, a brief description of the mass-loading technique is made. This is an
aternative technique which in fact tries to bring the classical free-interface method closer

to the fixed-interface method.
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2.3.3.2 FREE-INTERFACE METHOD with Rigid Connection

Letus consider two undamped subsystems A and B which are described by their spatial

properties, the corresponding matrices being partitioned according to the selected interior

and connection DoF as represented in fig. 2.4.

Rigid Connection

Fig. 2.4 - Rigid connection of two subsystems

Asin equation (2.13), the equations of equilibrium for both subsystems acted on only by

interconnecting forces are;

[ AMii AMic ]
L AMci AMcc J
[ BMii BMic |
5 BMci BM

[

N

Aui

AU

>+

......

.....

.......

seee

(2.28)

(2.29)




Standard Coupling Techniques 40

For each component individually, the free-interface modes are obtained by setting

{f.}=1{0} and solving the resulting eigenvalue problem,

(-0*M] +[K]) {u} = {0} (2.30)

leading to the m natura frequencies and mode shapes, which in turn may be mass-

normalised as,

[d)m] T[M] [cbm] - (23 1)
[(I)m]T[K] [ ] =[‘0>i] (2.32)

For each component the physical displacements {u} can now be written as a series
expansion of the orthogonal mode shape matrix [CDIJ_ which contains up to six rigid
body modes (if the structure is completely unrestrained) plus the elastic free-interface

modes:

@
i {po}=[@.] {Pn) (2.33)
@

The vector {Pm} contains the generalised or modal coordinates as weighting factors of
the series expansion or, in other words, the amplitudes of each independent selected
pattern (or mode shape). This equation is exact only for the cases when all the modes are
represented. However, in practical cases only a truncated set of m, modes is considered
or measured, leading to an approximate description of the displacements for each

subsystem:

IR DA
{} I {aP) = [A(Dk] {aP.} (2.34)

BY, FBq)ik
{} ) {sP} = [BCDk] {5P,) (2.35)
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Al Ak APy
or 4 lo] . (2.36)
B” 0 g0 |lBP

Substituting these displacements into equations (2.28) and (2.29) results in a set of

uncoupled equations for the disconnected components,

AP, k ; AP, ck af,
(g ¢+l e IR R S B Teeeees (2.37)
.. 0 . \B(") Bp 0 Bq)T ch

BPy © BUrk : BTk

These are the equations which can be established either using the theoretical derivation

hitherto presented or using the modal data base available from experimental modal tests.

When both subsystems are connected, undergoing free vibrations together, the only
forces acting on them are the equal and opposite forces at the interfaces. This equilibrium

is expressed as,
{af.} =- {5} (2.38)
while the corresponding compatibility equation for the interface displacements is,
{an} = {5} (2.39)

This constraint condition may be reformulated taking into account the approximation
assumed in equation (2.36) and is written as,
Apk

[A<Dck : -BCDck] {----}=[S] {p}=1{0} (2.40)

Bpk

The matrix [S] may be partitioned as

p
[Sd LS. ] {--d.}= {0} (2.41)
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where [S4] is a non-singular square matrix and [S;] is the remaining part of [S1. This

requires that the total number of modes for both components (m, = m,, + m,,) be

greater than the number of connection coordinates n.. Making use of this partition we

have,
{p.} =- [S.]" [S:1{P;} (2.42)

Then, the following transformation matrix can be constructed,

aP) 1P| | -[SJTS,

{}= 2= [“][] {p, (2.43)
BP) IP; M

Apk

Bpk

To generate the matrix [T], aset of m; independent vectors [S;] must be obtained from
matrix [S ], while a set of m, dependent vectors [S4] is retained. This requirement may
be difficult to satisfy, especidly if some of the connection coordinate responses revea a
near dependency which will cause matrix [Sd] to be ill-conditioned or even singular. A
suitable process can be devised by applying the Singular Value Decomposition (SVD)
technique [55] to the matrix [S 1, keeping only the independent vectors that will constitute
a matrix of a defined rank which may differ from its order - the number n_ of the
attachment DoF. How to handle this numerical difficulty is one of the topics investigated

in chapter 5.

T
Substituting (2.44) into equation (2.37) and pre-multiplying by [T]  yields,

M1 {q} +[X] @ = {1} (2.45)
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where

M]=(11' [T]

- 2 .
Amrk\ : 0
[K]=(T1'| ... e |1
| 0 erk\
B T
T A(I)ck
{fq} =[T] | -eveeeer {fc
—mT
- Bq)ck

The second term of equation (2.45) vanishes, since no external forces are acting on the
coupled system. Thus, the solution of this equation gives the (m, -n_ ) natural
frequencies[\“ﬂ- and mode shapes [¥] for the overal system, but referred to the ¢
coordinates. The mode shapes are then transformed to the original coordinates u

according to:

[@] =] - ..... [T [¥] (2.46)

Finaly, for use with externally applied forces, equation (2.45) can be transformed into
the coupled system modal coordinatesé by letting,

(@) = [¥] (&) (247)

which leads to,

M {5} + (K (g} = (%) @48
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[M]=[¥] M'TI[Y] (2.49)
B 2
Amrk\ 1
K T :
[Ke]=[¥] [T1] ... feo [TI[¥] (2.50)
i 0 EBGS
- o
A%k
{fg} = [T]T [T]T ........ {fc] (251)
_ 5T
L B(I)ck

2.3.3.3 FREE-INTERFACE METHOD with Elastic Connection

Let us assume now that the previously mentioned subsystems A and B are to be coupled

through an intermediate flexible system C as shown in fig. 2.5.

Elastic Connection

Fig. 2.5 - Elastic connection of two subsystems
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In this case we assume that the Modal models for each component are aready known,
whatever method is used for their derivation. The equations of motion for both

disconnected components have aready been derived (vide eg. 2.37) and are given as,

Apk k Apk ck Afc
1IRER Y e N S O PO (2.52)

BP k Tk . ck

If the two components are now connected via an elastic system, the only constraint

eguation which expresses that conditionis,
{af} =- {5} (2.53)
since, in this case, smple compatibility of displacementsis not applicable, i.e.:
{au.} # {BY.} (2.54)

However, the elastic properties of the connecting system can be represented by means of
its stiffness matrix [chl] if the mass properties are neglected (although in the case of a
more refined approach, these can be assigned to the interface coordinates of each

component).

To illustrate the construction of the stiffness coupling matrix, let us assume a simple
system connected via two coordinates represented as u, and u,. The forces applied to

component A due to the relative motion of both components are given as,

(Alg

() ={Afc;}=- ASTIRST! K Ky ) Auc2
) A, Ko Kn Ko Ky Y,
Bl
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which for amulti-point connection will be written as,

X AY
(.} = [K K] {} (2.55)

BU,

and similarly for the forces acting on B:

{sf.}=- [ K K. ] {Auc} (2.56)

BY,
Thus,

Afc l- ch -ch Auc Auc
..t.‘. = - : cere =-[ch1] (257)
B¢ I_‘ch : K Buc BY

C.

but since we have assumed the transformation of coordinates (2.36), equation (2.52) can

now be written as,

- 2
A'[ik Awrk\ 0
IR Y I T +
.. 0 . 2
Bpk . ] Bwrk\
T :
A(I)ck
K
T
0 B(Dck

which is the equation of motion for the final coupled system. This equation differs
dightly from the equation derived by Martin and Ghlaim [56,57] since in equation (2.58)
the only rows involved in the calculation of the coupling terms are those related to the

connection coordinates.
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2.3.4 MASS-LOADING TECHNIQUE
2.3.41 INTRODUCTION

This may be classified as an intermediate technique between the fixed-interface and the
free-interface methods. As mentioned before, the classical free-interface method is more
sensitive to truncation of the elastic modes used to describe the displacement in the
connection region than is the fixed-interface method. In an attempt to bring the classical
free-interface method (which is the most suitable for experimental purposes but does not
offer good accuracy) closer to the fixed-interface method (which leads to better accuracy
in the results but is not appropriate for the use of moda testing), the mass-loading
technique is an available compromise solution which has been used in some specific fields

of research, namely in the spacecraft industry [51].

By adding some discrete masses at each of the component connection coordinates, the
deformation near the interface is increased and a better estimation for the local flexibility is
obtained, provided that the auxiliary masses are connected in such a way that does not
affect the local stiffness properties of the component. The appropriate size of the mass to
be added is dependent on the characteristics of the component to be tested, rather than on
those pertaining to the adjoining subsystem. This fulfills the independency requirement

for a substructuring procedure.

From an experimental standpoint this technique offers some advantages as stated by

Sekimoto [58] and Gwim [59];

- it is less time consuming to collect data as compared with the free-interface method

including residual effects,

- more modes are brought into the frequency range of interest, thus providing better

information about the component model,
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- if adequate mass blocks are used, a convenient means of measuring rotational responses
is provided (although this might be offset by a reduction in the amplitude of such

rotations).

2.3.4.2 THEORY

The procedure to couple the componentsis similar to that presented in Section 2.3.3.2 for
the case of the free-interface method with a rigid connection. The main steps involved are
the same, but in this case there are three additional steps which are carried out in order to
obtain a better description of each subsystem’s dynamic properties. All the mgjor steps are

presented briefly below:

Step 1 - Definition of the original disconnected substructures.

The equations of motion are the same as those presented in section 2.3.3.2.

2 - Modification of the components bv in me extram

The auxiliary masses are added to the connection coordinates {“c}. The equation of

motion for each substructure is now,
[(M] + [am]] (@} + [K]{u}={f) (2.59)

or  [Mpea] (@} + [K] {u} = {f} (2.60)

where [am] is the modification matrix. The modified mass matrix will be

Mii:Mic 0 : 0
a0

Cl cC

.2
The eigensolution will lead to the mass-loaded system eigenval ues[ (*)rm1 and
associated mass-normalised eigenvectors [I)m odl, constituting the necessary values to

define the Modal model for each modified subsystem. The values directly available from a
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test conducted on the mass-loaded component are the kept or measured modes [(kao d]

L2
and the respective natural frequencies[ ‘Drkm'o! .
e

The equation of motion referred to the modal coordinates is then,

(01 Mol [] {5} * [Pr] 180 [05,,] (7] = ©

(2.62)

.2
o m {5, ) +[ w,kmod\] (P} = (0) (269

3 - Mass cancellation

The effects of the additional masses now need to be removed before the coupling process

is performed. Thisis achieved by the following analytical process:

T T
[q)kmod] M] [(kaod] =I- [(kaod] [AM] [(kaod] (2.64)

and the equation for each component is given as,

[[I] -1 (kaod]T [AM] [ (kaod]:l { pk} +|:\m12km°d~:| {pk} = 1{0) (2.65)

Step 4- Coupling

The coupling process follows now the same procedure presented for the case of the free-

interface method with arigid connection (vidé section 2.3.3.2).

All the steps are now schematically presented in fig. 2.6.
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Step no. 1

Step no. 2

Step no. 4

Fig. 2.6 - Stepsinvolved in the mass-loading technique
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24LIMITATIONSON THE TECHNIQUES

The theoretical basis of the standard coupling techniques has been presented. Each hasits
own limitations in certain circumstances and these constitute the reasons for the following

discussion.

Imped Coupling Techni

As stated before, Spatial coupling is extensively used in applications of the Finite Element
method but is rarely used in cases which involve experimental modelling. Reduction
methods have been devel oped to condense Spatial models to primary (master) coordinates
- aprocess of coordinate reduction which inevitably will cause a mode reduction - in
order to decrease the computational needs to solve the global problem. However, the
selection of those coordinates must be properly made and some attempts to define a

criterion are carried out in chapter 3.

In contrast to Spatial coupling, there is the FRF coupling technique which is particularly
suitable for use with data measured on the components. It makes use of Response models
derived directly from experimental data (but seldom from theoretica modelling). The
collected data in terms of FRFs defined over a frequency range of interest are used to
assemble the FRF matrix which, for every frequency value, expresses the contribution of
the in- and out-of -range modes pertaining to each component. One can say that in physical
terms the FRF coupling technique is very attractive since it makes use of models whose
dynamic characteristics are fully quantified and thus they do not suffer from modal
incompleteness. However, there is a numerical aspect associated with this technique
which may cause the coupling procedure to fail. As shown in section 2, the required FRF
matrix of the coupled structure is obtained after three matrix inversions - two of these
carried out before and one after the FRF matrices are assembled. Should one of these
matrices be near singular, the results will reflect the numerical errors caused by the
inversion and will predict the dynamic behaviour of the overal structure erratically.
Unfortunately, when dealing with experimentally-derived FRF matrices, one is mostly

restricted to use models that are inaccurate due to the experimental or systematic errorsin
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the measurement stage, one of these being a dight variation in the resonance frequencies
when the model is said to suffer from inconsistency. The FRF matrix then tends to be ill-
conditioned, and the inverse is very senditive to a dlight change in one of the FRF matrix
elements in the vicinity of every resonance frequency since it will tend to have and order
equal to the measured coordinates and to have rank one due to the dominating effect of
one single mode (vide chapter 1, section 1.2). This local dominance is even stronger in
lightly-damped structures and additional peaks tend to appear on the assembled structure
FRFs at frequencies which may be misinterpreted as true resonances of the coupled

structure.

Another situation which may lead to near singular matrices is caused by local rigidities at
the measured coordinates. Over certain frequency ranges, the response in some
coordinates may tend to be nearly dependent and here again, the FRF matrix will tend to
be rank-deficient. The ways of tackling these numerical difficulties are addressed in

chapters 3 and 5.

Modal Coupling Technigues

Unlike the Impedance-based methods which take advantage on the reduction of the
number of coor dinates, the Modal coupling methods use a reduction performed on the
number of modes used to describe each component model while still accounting for all
the physica coordinates. In spite of the fact that fixed-interface methods give better
predictions than the free-interface methods, they are generally not suitable to handle data
which are available from modal tests - the Modal model whose mode shapes are obtained
from a component tested in its ssimulated free-free support condition. This is the main
reason for the development of better procedures to improve the accuracy of results
predicted using free-interface methods. One cause of the failure of these methods is the

poor description of each subsystem displacements in the interface region due to the

reciictinn nerfarmed on the niimher nf mndec Twin feadhla alternativec tn imnrove the
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previously presented mass-loading technique or by compensating for the lack of flexibility
due to the truncation on the number of modes. This latter approach is investigated in
chapter 4, where arefined technique is described to include into the coupling process the
information on the residual flexibility associated with the neglected or unmeasured modes
of each subsystem model, without having to carry all the steps required by the mass-

loading technique.




3 IMPEDANCE COUPLING TECHNIQUES

3.1 INTRODUCTION

The generalised Impedance-based methods for making vibration analysis of complex
structural assemblies are examined in the present chapter in order to evaluate their
applicability when incomplete subsystem models are used. The subsystems or component
models are described by using a Spatial or Response formulation, and specia attention is

given to the coor dinate incompleteness of these models.

However, it is assumed that whatever the performed reduction on the number of
coordinates in each subsystem model, it will not be extended to the originally defined set
of connecting coordinates which are explicitely required for the formulation of the
constraint equations between subsystem models. This has a completely different effect in
the coupling analysis since by ignoring a connection coordinate we are making the
subsystem unable to “pass’ some of its dynamic information to another one, when they
are acting together. For example, if a rotation coordinate is eliminated (or ignored) at the
junction between two components, these are presumed to have relative motion with
respect to that coordinate and would thus be pin-jointed. Thus, the set of the retained
coordinates - the primary or master coordinates - always contains the originally defined
interface one and in the most extreme situation the reduction process is assumed to

condense all the dynamic properties only to the connecting coordinates.
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Although a brief examination is carried out on the ways and effects of reducing the
theoretically-derived models - Spatial models - the attention is mainly focused on the ways
and effects of using experimentally-derived models - Response models - which by nature
are themselves incomplete in terms of coordinates and prone to errors even though they
contain information related to both the in- and out-of-range frequency of interest modes.
The attractive and conceptually-simple technique that offers the possibility of dealing
directly with measured data is the FRF coupling technique. The numerical difficulties
associated with the corresponding algorithm in some particular situations, especially in the
presence of measured data, has motivated the investigation of new approaches to tackle

this problem.

3.2 INCOMPLETE OR REDUCED SUBSYSTEM MODELS
3.21 SPATIAL MODEL INCOMPLETENESS

In many practical situations such those using the Finite Element method, the
computational limitations often require the order of the final coupled system to be reduced
as much as possible. Thisis achieved by reducing the order (N) of each subsystem model
- or in other words, by confining our interest only to a restricted set of coordinates on
each subsystem - say, np <N - and/or to only some of the modes (my < N). These

considerations lead to the formulation of condensed, reduced or incomplete models.

The number of DoF to be retained in the dynamic analysis (at least the DoF involved in
the connection with other components) is specified by the user. In the case of Spatia
models, a transformation matrix relating the remaining DoF (called secondary or dave
coordinates) to those retained (primary or master coordinates) is used to reduce the order
of the subsystem. The reduction process [60] is often performed upon a transformation
which neglects inertia or static contribuitions for the eliminated DoF, and is then used to

derive the spatial matrices of the condensed system, [MR]npxn and [KR]n .y
PP

p
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The equation of equilibrium for an undamped subsystem acted on only by forces on the

primary (master) coordinates can be written in the following partitioned form,

M : M u K :K u 0

ss sp s ss sp s
...... SPTORRI P P O I Terney P S ={} (3.1)
M :M il K :K u f

ps PP p ps PP P P

secondary DoF = {“s }n ol

Primary DoF o { “-} -

All the coordinates can be related to the primary coordinates by using the following

transformation matrix,
u [T]nsxnp
et = e, {u,} (3.2)
u

where the matrix [T] is given by,

[T]nsxnp =P [-[KSS]-I[KSP]] +B [-[MSS]-I[MSP]] (3-3)

being B a reduction coefficient whose limits are =0 for static reduction and =1 for

dynamic reduction.

The matrices describing the reduced Spatial model are given as,

M :' M
T - ss s [T]
[MR] =[rr] ; [I]:| ...... p} [ ..... ] (3.4)
p*p : M ' M (1]
npxN L ps PP INXN Nxnp,
T K : K
. ss s [T]
[KX] =[[T]T : [I]] ...... oy | m ] (3.5)
fpxfp : K :K J |-[I]
npxN L s PP INXN Nxny,

Whatever value is assumed for the coefficient B, the reduction in the DoF implies a
reduction in the available existing modes as well. The validity of the condensed model
generally depends on the mass and stiffness values assigned to the secondary

coordinates. Generaly, the use of frequency-dependent mass matrices improves the
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accuracy of the reduced model properties, as shown by Kuhar and Stahle [41] and
Imregum [61].

3.2.2 MODAL MODEL INCOMPLETENESS

The incompleteness in the Modal model is generally due to the inherent difficulty in
attempting to use experimental data to define afinite model for a continuous subsystem. It
is not redlistic to undertake measurements either in all the coordinates and/or over a
frequency range encompassing al natura frequencies. In the present analysis, however,
we shall assume that all the N natura frequencies are known in the frequency range of
interest, and the limitation is only concerned with the number of measured coordinates,

say np <N, selected for the FRF measurements.

Let us assume that a subsystem Modal model is described by its (incomplete) modal
properties:

[(I)‘ﬂ_ - rectangular modal matrix (mass-normalised eigenvectors n, < N )
anN p

{\0)1 - eigenvalues (diagona matrix)
NxN

It is important to note that a Guyan-reduced Spatial model leads to an incomplete Modal
model in terms of both coordinates and modes, in spite of the fact that in this case the

modal matrix is square.

Depending on the format assumed for the other subsystems dynamic properties

description, the Modal model may be converted as described next.
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3.2.2.1 MODAL Model - RESPONSE Model

In this case, it is assumed that the Modal model to be converted to Response one which is
required by the FRF Coupling method. Let us assume that the FRF matrix is the

Receptance, which is provided by the equation :

-1

T
[@F] (3.6)

.2 2
[a((o)R]n - = [(I)R] [ (ml’ - )\]
| St npr NxN anp

This FRF matrix, although limited to only ny points of interest on the substructure,
contains information on all the N modes and is thus accurate for those coordinates
retained. In order to study the effects of this reduction, while the models are described by
their modal properties, we shall consider an ideal Modal model which possesses the

complete information,

G Y

NxN
The deletion of one coordinate - say, the kth - corresponds to the elimination of the kth
row in the modal matrix so that we are ignoring the relative amplitude of that DoF in all
the modes. This does not mean that the real system no longer has that DoF; only that we
are not including information about its motion. In this way we are condensing the
information in previously selected coordinates, as sketched in the following figure,

1

[0} [o@®]  [2@F]  =[a@®]
N p*p DpXfip n

p*Mp

available information

Fig. 3.1 - Modal — Response reduction
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Inversion of the matrix [o(w)®]_ _ leads to the reduced Dynamic Stiffness matrix
p*Tp
[Z((o)R]n e In the limiting case when a zero frequency value ® is assumed, that
p*Tp
reduced matrix [ Z(O)R] _ _ corresponds to the well-known Guyan reduced stiffness
p*Tp

matrix [54].

3222 MODAL Model — SPATIAL Mod€

Since the reduced modal matrix [(I)R]n . |S rectangular, the use of a pseudoinverse is
Y
-1\R
required for the calculation of the matrix ( [a((o)] 1) . The Dynamic Stiffness matrix
Ilpxl'lp

[Z(m)R]npm may be calculated as shown by Ewins [1] as,
p

-1\R T ., 2 2
(2], ,, = ([a@] 1)npmp - [d)+]lpr[ (@, - )\] [] G

NxN anP
where
T T 171
o1 =[e4] [[o% [ | 69
Nxnp, Nxny, pxN Nxnp ngxnp
leading to the spatial properties
[Zw®] =D  -o?[E] (3.9)
npxnp l'lpxﬂp I'lpxl’lp
with
T L2
[D]  =[o*] {m,] [@*] (3.10)
NpXfp npxN *INxN Nxn,
T
E] = [o] [@*] (3.11)
fp*fip npxN Nxny,

The matrices [D] and [E] may be treated as (pseudo) stiffness and mass matrices for the

subsystem.
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It would be expected that the results obtained for the response of a coupled structure using

-1\R
those spatial properties i.e., by calculating ([a((o)] l)n should give us the same
p*p

Xn
results as when we use the inverse - [a(w)R];;xnp - of the reduced Response model
matrix [a(m)R]npmp. However, it should be noted that the matrices [D] and [E] do not
represent the true stiffness and mass matrices for the component. The deletion of a
coordinate, say k, may be done by eliminating the kth row in the modal matrix. As a
consequence, the respective kth row and column in the complete Dynamic Stiffness
matrix [Z(w)]npxnp al' € aso eliminated, but this has a rather different consequence to the

previous one. In this case, we are assuming that coordinate to be fixed (grounded),as

illustrated in the following figure,

R R _ -1\R
[ ]npr (2@ ]"p"“p—([a(w)] )"p"“p

.

available information

Fig. 3.2 - Modal — Spatial reduction

: : o -1\R
The available information in [ Z(co)R]npxnp= ([a(w)] )npxnp for the reduced
Pseudo-Spatial model has no natural connection with the actual component, since for

o = 0t corresponds to a partition of the complete subsystem static stiffness matrix.
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3.2.3PROCEDURES TO REDUCE MODELS

The different possibilities of performing a reduction on the origina models are now
grouped into four procedures which lead to the final format required to either the Spatial

or FRF coupling techniques.

ErocedurepA lsimg the §oatial M e t h o d

SPATIAL Model SPATIAL Model
K] [M] [ Guyan Reduction & [KR] [MR]
NxN NxN N XN, N XN
p*ip p*p
(Reduced Stiffness and Mass matrices)

Procedure B using the Pseudo Spatial Coupling Method
MODAL Model Pseudo SPATIAL Model

o] © [of] © "D o m (E
| ]NxN [ ]npr ([a(w)] )“P"“p Npxfp  MpXfp
(Reduced pseudo stiffness
and mass matrices)

In both previoudy-mentioned procedures all the subsystems are converted to a fina
reduced Spatial model. The result for the overall structure is then obtained in terms of

its mass and stiffness properties.

Procedure C using the FRF Coupling Method
MODAL Model RESPONSE Mode

[, & [of]

NXN

o [oc(co)R]n o> [a(o))R]- nl

PxN pXMp pXp

Procedure D using the FRF Coupling Method
MODAL M odel RESPONSE M odel

[@] o [c1>R]n (e [a((x))R]n o [oc(co)"]'1

NXN p*Np npxnp,

an
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In these two last procedures the final format for each component is a reduced

Response model, herein assumed as the Receptance mode!.

3.3 COUPLING USING REDUCED MODELS

A computer program available in the Modal Testing group was used to perform the
coupling process. One of the facilities offered in this program called MODALP [62] and
run in a HP microcomputer series 9000 is the dynamic analysis of assembled structures,
from either experimentally or theoretically-derived FRF matrices for each subsystem A
and B, and is based on the following equation (vidé chapter 2, section 2.2.3),

-1 -1

-1
[cH@] xNC=[ [ @]y, & [l (3.12)

In the case when experimental data are not available, they may be smulated from the

theoretically-derived FRF elements by polluting them with random errors.

3.3.1 NUMERICAL EXAMPLES

Three numerical examples are presented next to assess the validity of the procedures

presented in section 3.2.3.

3.3.1.1 SUBSYSTEM DESCRIPTION

Three subsystems are described theoretically in terms of their Spatial and Modal models.

They are the components of the different global structures analysed in the present work.
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SUBSYSTEM 1A 4 DoF _Undamped Spring-Mass System

; A
3
WL
KIK'\/‘\/‘KI\{XL

(K = 1000 N/m)

Fig. 3.3 @) - Subsystem 1A - 4 DoF undamped system

SPATIAL Model

050 0 0

150 0 -1000

[M]4x4= 0 0 200 K1 . =| -1000
4x4

o 0 o0 01 J 00

MODAL Model

0.397 -0.075 1.355 0.012
__| 0.517 -0.604 -0.185 0.003
[@-4X4_ 0.506 0.470 -0.121 -0.086
0.264 0.268 -0.091 3.138

l‘wl = Diag [ 8.366E2 2.437E3 6.452E3 2.027E4

4x4

3000 -1000
-1000 4000

-1000

]

r 3000 -1000 -1000 O

0

-1000
2000
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This subsystem has the same physical configuration of subsystem 1A, as shown in
Fig. 3.3 b). The only difference between them is the value assumed for the mass my,

which in thiscaseis equal to 10.

K

./v\/\.

(K = 1000 N/m)

Fig. 3.3 b) - Subsystem 1B-4 DoF undamped system

SPATIAL Model

r' 3000 -1000 -1000 O

M 0 1.50 0 1000 3000 -1000 0
4471 0 020 o [K]4x4_ 1000 -1000 4000 -1000
0 0 0 10 0 0 -1000 2000

MODAL Model

0.064 0.405 -0.025 -1.353
0.067 0.565 -0.557 0.182
[@], =

4x4 0.121 0.451 0.515 0.131

0.309 -0.057 -0.022 -0.002

[031 = Diag [ 1.614E29.889E2 2.586E3 6.464E3 ]
4x4
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SUBSYSTEM_2-2 DoF Undamped Free-free System

Thisis a smple 2 DoF undamped system which is connected with subsystem 1A and
subsystem 1B,

K
10AANM 2

(K = 1000 N/m)

Fig. 3.4 - Subsystem 2 - 2 DoF Free-free system

SPATIAL Model

M [0 0 ] K] _[ 1000 -1000
2x2 Lo 1 22 L -1000 1000].
MODAL Model
1 032E3 L2 0 0
I B B L e
2x2 -1 -0.32E04 . 0 1E10
2x2

3.3.1.2 RESULTS

Four different procedures, as described in 3.2.3 were used for the analyses of the three

following theoretical examples ;
EXAMPLE 1 -5DoF Undamped System

In this example, coordinate 1 of subsystem 1A was connected to coordinate 2 of
subsystem 2 as illustrated in fig. 3.5 and the predicted FRFs (point Receptances) are
presented in fig. 3.6 (only one coordinate neglected in subsystem 1A) and in fig. 3.7 (two

eliminated coordinates) both using the different procedures.
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EXAMPLE 2 -5DoF Undamped System

In this example the subsystem 1B was connected (coord. 1) to subsystem 2 (coord.
2) as illustrated in fig. 3.5 and the FRFs (point Receptances) are presented in fig. 3.8
(only one coordinate neglected in subsystem 1A) and in fig. 3.9 (two eliminated
coordinates) both using the different procedures. This example was used in order to

estimate the aptitude of the reduced model in each method when a mass modification my

was made in subsystem 1A.

TN
3
R

1] K KZI\/\/\-
K '\{(\/‘ K

W]
\ 2

2 K 3 WA
AN
/\/I\</\1

Fig. 3.5 - Subsystem 1A + Subsystem 2
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-13. 89
pmy x.l - (S)A+52) elim. coord. 4 (SIA)
©
- ~34.00 ]
=) : J
E
8 -s0.00 ]
g ]
a ]
@
S -82.00 T e
14 ———
‘ ]
-186.89 4
r Frequency (Hz) 1
-130.00 . —
.1 4.9 9.7 14.5 19.2 24.0

Complete Coupled System (5 DoF)
------ Procedure A (Guyan)

---------- Procedure B (Pseudo [K][M])
------ Procedure C (FRF Coupling)
------ Procedure D (FRF Couplingw/ square [®])

Fig. 3.6 - Subsystem 1A (M4=0.1, eliminated coord. 4) + Subsystem 2

!
w
s+

(s}

T T T T

Receptance (mod dB)

Frequency f{(Hzi

-120.00
i 4.9 9.7 145 19.2 24.0
Complete Coupled System (5 DoF)
------ Procedure A (Guyan)

.......... Procedure B (Pseudo [K] [M])
...... Procedure C (FRF Coupling)
------ Procedure D (FRF Coupling w/ square [&])

Fig. 3.7 - Subsystem 1A (M4=0.1, eliminated coords. 3 and 4) + Subsystem 2
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g.06 7 T v

Receptance (mod dB)
1
wn
n

~164.

Frequency {Hz}
-138.8 L 4 — 4

i 3. 6.1 9.1 12. 1 15.1

Complete Coupled System (5 DoF)
------ Procedure A (Guyan)

---------- Proceduwre B (Pseudo [K][M])
------ Procedure C (FRF Coupling)
------ Procedure D (FRF Coupling w/ square [®])

Fig. 38 - Subsystem 1B(M4=10, eliminated coord. 4) + Subsystem 2
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Complete Coupled System (5 DoF)
------ Procedure A (Guyan)

.......... Procedure B (Pseudo [K] [M])
...... Procedure C (FRF Coupling)
------ Procedure D (FRF Coupling w/square [®])

Fig.3.9- Subsystem 1B(M4=10, eliminated coords. 3 and 4) + Subsystem 2
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EXAMPLE 3 -6 DoF Undamped System

In this example the subsystem 1B is connected (using coordinates 1,2) to subsystem
1B (using coordinates 4,3) as illustrated in fig. 3.10. In this example the FRF coupling
technique was used by assuming that the FRF matrix components were polluted by 5%
error in order to simulate exprimental data. One of the predicted FRFs (a point

Receptance) is shown in fig. 3.11.

Fig. 3.10 - Subsystem 1B + Subsystem 1B
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-18.88
r
oo Ex.3 (S1B+51B) Procedute C {FRF Coupling; ]
-« :
- -32.08+ :
=) | i
E
& -54.00 ~
c
S -
& i i ft
c‘é -76.02- . \\
b~ l -
-98. 06
- Frequency (Hz1 A
~120.00 4

.1 3.1 6.1 9.1 1e.t 15. i

Complete Coupled System without errors (6 DoF)
---------- Procedure C (FRF Coupling) eliminated coords. 3, 4 (SIB w/ 5% error)

Fig. 3.11 - Subsystem 1B (M4=10, eliminated coords. 3 and 4, FRF polluted with 5%
error) + Subsystem 1B

3.3.1.3 DISCUSSION OF RESULTS

In this work, the subsystem models were chosen as simple spring-mass systems which
are not intended to represent the models for an actual structure. However, with these
simple systems we can understand how a selected procedure may be applied to areal
problem. Since we can know the complete dynamic information for those models, the
simulated incompleteness on the number of coordinates was achieved either by using a
Spatial model description or by using aModal one. In the former group (Procedure A) the
Guyan reduction was used - a classical static reduction was performed - while in the latter
group (Procedures B,C and D), the rows on the complete modal matrix were successively

“deleted”.
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The results obtained for the coupled structures differ essentially for two reasons;

i) the way the incompleteness was assumed,

ii) the method used for the coupling process.

The numerical examples show that:

- different results are predicted for the same assembly when procedures A and B are used
to reduce the subsystem models; both procedures resort to the same coupling method. In
this case the difference is explained by the reduction performed in subsystem 1 since,
when a Guyan reduction is applied, the dynamic properties for the complete system are
only preserved in the reduced model if the relative mass value of the eliminated coordinate
is neglegible [60]. In contrast, Procedure B is convenient when high relative mass values
are to be neglected. However, it is important to note that both procedures lead to the same
result if one assumes B=1 in the transformation matrix [T] (vide eq.(3.3), section 3.2.1)
which is used in procedure A. In this particular case both procedures are two equivalent

ways of performing a dynamic reduction.

- different results are predicted for the same assembly when procedures B and C are used

to reduce the subsystem models; both procedures resort to the same incomplete model.

The main reason for thisis explained in 3.2.2.1 and 3.2.2.2 and, as mentioned there, the
dynamic properties of the structure are preserved (over the frequency range encompassing
its natural frequencies) by using procedure C. In this case there is no difference in the
response characteristics of the reduced model, whichever coordinate is eliminated
(excluding those involved in the physical connection). The existence of some “extra’
peaks in the frequency response function of example 3 (see fig.3.11), when experimental
data are smulated, is not due to any incompleteness of the subsystem but due to an
inherent problem in the FRF coupling process, since at some subsytem resonances the

inversion of the polluted receptance matrix may encounter some numerical difficulties.
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3.3.2 CONCLUSIONS; USE OF DIFFERENT PROCEDURES

- The use of reduced Spatial models in procedure A (static reduction) leads to results
whose accuracy depends on the coordinates eliminated - it is a question of mass value
dependency, so the choice of the secondary coordinates should be done according to the
relative mass values (when a coordinate with a high relative mass value is eliminated the
dynamic information of the subsystem is altered and may affect the overal system
behaviour).

- In contrast, the reduced pseudo-Spatial model in Procedure B (dynamic reduction)
only ‘preserves the dynamic properties of the complete system if the eliminated
coordinates have high relative mass values. It was also found that this procedure is a
particular case of Procedure A (if one assumes B=1 in equation 3.3), despite of the

different ways of arriving at the final reduced subsystem models.

- The only procedure that is ‘insensitive’ to the degree of incompleteness in terms of
coordinates for the subsystem model is Procedure C, which gives accurate results in all

the tested cases.

- In Procedure D, which is a particular case of Procedure C, the results obtained are not
accurate in al the cases since the residua effects of the neglected modes were not

included.

3.4 THE NEED TO USE ALTERNATIVE FRF COUPLING METHODS

The results achieved with the previously presented coupling exercises showed that the
incompleteness in terms of coordinates in the component models does not play an
important rule in the prediction of the global structure results whenever the FRF coupling
method is used. It should be noticed, however, that the incompleteness which is referred

to is only related to the interior coordinates. At this stage it is therefore assumed that the



Impedance Coupling Techniques 73

the necessary and sufficient number of connecting coordinates which, unfortunately, is

not always obvious, as will be seen later, in chapter 5.

3.4.1 OCCURENCE OF ILL-CONDITIONED FRF MATRICES

The results achieved with the use of the FRF coupling method showed that when
experimental simulated data is used to represent each subsystem Response model, the
predicted final response possesses some undesired false peaks. The explanation of this
phenomenon can be found by regarding the interrelationship between the Response and
the Moda models (vide chapter 1). In the vicinity of each subsystem resonance frequency
the corresponding FRF matrix is largely dominated by one single term, or in other words,
the matrix will have order n (number of primary coordinates) but also tends to have rank 1
(the single dominating mode). This means that every FRF matrix tends to be rank-
deficient or nearly singular in the vicinity of each subsystem natural frequency, especially
in the case of lightly-damped structures where the local dominance of a single mode is
strongest. As far as a purely theoretical FRF matrix is of concern near a resonance
frequency, the inversion - although applied to a matrix having a high condition number -
leads to a correct dynamic stiffness matrix subsequently used in the assembling process.
However, when measured FRF matrices are dealt with, their elements are prone to errors
which will cause a pronounced deviation of the inverse matrix from the existing but
unknown ideal dynamic stiffness matrix. The result of these perturbed matrices on each
single component will show up in the predicted response mainly at the frequencies close
to each subsystem natural frequencies as discussed by Larsson [63]. A remedy suggested
by Ewins[16] to avoid the existence of these extra peaks is the smoothing of each FRF
before it is used to create the FRF matrix. In order to do so, the Response model is
converted to a Modal one which is subsequently used to regenerate the smoothed FRF
matrix which will behave better in numerical terms, therefore giving a more accurate

prediction of the global Response model. This approach, however, withdraws the main
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virtue of the FRF coupling technique which is the direct use of what is measured on the

actual components without the need of a complementary identification stage.

Besides the occurence of the ill-conditioned matrices near a resonance frequency,
presented above, there are other situations when the required coupling algorithms can
behave erraticaly, even for other frequencies in the range of interest. It is enough to have
any linear dependency or near-dependency among some of the rows (or columns) in a
given FRF matrix and the inversion may well fal. Unfortunately, this is a common
practical problem when dealing with the subsystem models, mainly due to the following

two reasons,

- the FRF matrix has been generated from a set of inadequate modal data. The procedure
C presented in 3.2.3 shows that in the case of a modal matrix containing more coordinates
(n) than modes (m), the generated FRF matrix will be of order n athough having rank of
m; in this case the matrix is singular since there exist (n-m) linearly dependent rows (or
columns) and it isimpossible to calculate the corresponding inverse even though it exists,
generally the subsystem dynamic stiffness matrix. To prevent this situation, more modes
should be included (up to the number of coordinates) and very likely the undesired
singularity will be removed. Should it be impracticable to apply this remedy, other
alternatives can be found such as those making use of more sophisticated algorithms
enabling the calculation of the closest inverse of arank-deficient matrix. Thisis one of the

topics considered in chapter 5;

- the FRF matrix has been measured on a structure in which some of the coordinates are
situated on locally rigid regions - either interior or interface ones - causing the responses
over acertain frequency range to be linearly dependent on each other. In this case the FRF
matrix tends to be or is rank deficient. Should at least one of the components behave in
this manner, the coupling will fail numerically. A way of circumventing this problemisto
detect the redundant coordinates prior to the coupling of the components and, if possible,
neglect them or, once again to make use of proper algorithms which are presented after

the following section.
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3.4.2 MODEL INCONSISTENCY

In chapter 1 it has been shown how a Response model can be fully created over a certain
frequency range by measuring either: (i) all the elements in the FRF matrix (or only the
upper or lower triangular matrix assuming a symmetric matrix) or (ii) one single row or
column of the corresponding matrix enabling the identification of the corresponding
Moda model. In the latter case the full set of FRFs can subsequently be generated over
the selected frequency range provided the effect of the out-of-range modes can be

neglected.

In practical terms the quality of the measured set of FRFs can be checked by comparing
the various estimates of the modal parameters with each other. It often happens that a
unique set of modal parameters cannot be extracted directly from the same set of FRFs

and then the model is said to suffer from self-inconsistency.

3.4.3 ALTERNATIVE FRF COUPLING TECHNIQUES

The FRF coupling technique discussed so far is suitable for cases where the reduced
Response models do not lead to numerical failures in the coupling process. Additionaly,
it was shown that aternative algorithms are necessary to deal with rank-defficient FRF
matrices, at least over certain frequency ranges where for instance the local rigidities cause
the rows to be dependent. This is an important aspect to be taken into account in the
previously presented FRF coupling technique, since the final FRF matrix is obtained after

carrying out three inversion processes.

3.4.3.1 FRF COUPLING ALGORITHM 2

A first approach to the numerical difficulties which arise in the coupling process will bein
terms of a possible improvement to handle the redundancy in some of the primary

coordinates and in someway trying to speed up the required calculation time. Let us
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assume that the generalised Impedance matrices of each component are expanded in the

following way,

A% ADii A% 0
I S S
[Z@] g 7| A% ¢ afetale + 0 (3.13)
0 0 : gDy
'A i O 0
* -
Z@]y = © 8ZAD_, 8Z; (3.14)
0 BZCI Bch-B ii

where the matrices [D] are arbitrary. In assuming this, the coupled system matrix

[CZ(co)]N N, € now be obtained as a simple addition of the same-order expanded
c*Nc

matrices U\Z(w)]NC xNg and [;;Z(OJ)]NC NG as,

[Z@ ]y = (2], * [52(@] an, (3.15)

The FRF matrix [ (H(@)] . isgivenas
e

-1
[CH(m)]NCxNC = [ [ AZ((D)]NCXNC + [ BZ(O‘))]NCXNC ]NCXNC (3.16)

. -1 . -1 -1
or [CH((D)]NCXNC = [[ AH(“))]NCXNC + [BH(O))]NCXNC :I NCXNC (317)

where [H(w)] and [jH(®)] are augmented FRF matrices which are derived in the next

paragraph. The main virtue of having this addition of same-order matrices is the
reformulation of the calculation of the final FRF matrix since in this way the three matrix

inversion operations can be replaced by only one inversion [64] as follows,

-1
[H@] = BH@][[H@] + [H@] ] [(H@] G.18)
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Calculation of the augmented FRF matrices [ *H(w)]

For convenience of simplicity in what follows next, the matrices [D] will be taken as

identity matrices [I]. Each generalised |mpedance matrix is then given as,

[Az(m)]chNC= .......... = .. (3.19)

and [;Z(O))] NCxNC= .......... | - e (3.20)

The necessary [*H(0)] matrices are then formulated as,

[ZH(m)]NCxNC [[AH(O))]+[I]][AH(CO)] (3.21)
- 0 o
F -] 0

[CH@, =] oo

B NcaNg NE [ [(H] - [ 1]] [sH()]

Although this approach requires after all three matrix inversions, the addition of the
identity matrix to the original FRF matrices before the inverse is calculated may very well

avoid the ill-conditioning problem.

3.4.3.2 FRF COUPLING ALGORITHM 3

In respect of numerical failures due to the redundancy of the primary coordinates, the
previous approach constitutes an improvement compared to the method presented in
chapter 2, section 2. However, a recent development of the FRF coupling technique by
Jetmundsen, Bidlawa and Flannelly [65] has reduced the number of required inversions at
each frequency from three to one and, additionaly, the size of the matrix for inversion is
dictated only by the number of connection coordinates. This refined method, apart from

speeding up the calculations, can yet behave better, in numerical terms, than the
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conventional one, since it minimises the crucia inversion operations on matrices which
have a smaller order. This may play an important role if subsystems possess dependent
coordinates. The agorithm can be derived taking into account the relationship between the
elements of the global FRF matrix and the elements in each subsystem FRF matrix. The
coordinates in the FRF matrix of the coupled structure can be partitioned according to

three regions corresponding to,

- the interior coordinates of component A (pi) denoted as a
- the interior coordinates of component B (gn.) denoted as b

- the common connection coordinates of component A and B (Anc =gh, = nc)

denoted as ¢

The whole FRF matrix can be partitioned as follows,

Haa : Hac : Hab
@] 7 Dot e 629
H :H H

Each partition of this FRF matrix can now be interrelated with the submatrices composing

the FRF matrices of the subsystems, as derived in Appendix I, leading to the following

equation,
Haa:Hac:Hab AHu Ach AH,C AHic T
........................................... e
Ho B M, ol A 0 [ ] | P
Hb Hbc be 0 0 BHu BHiC BHiC
(3.24)

As mentioned before, the main advantage of using this formulation over the two
previously presented methods is related to the crucial operation of inversion. Herein only
one inversion is required and, additionaly, it is applied only to the sum of the sub-

matrices which order depends only on the number of connection coordinates. More
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interior coordinates can then be included in the analysis without affecting significantly the
required computational time. The result of this will be a quicker calculation of the required
FRF matrix and, asin the latter approach, it will be able to deal with redundancies on the

interior coordinates whenever they are present in each component.

3.4.4 NUMERICAL EXAMPLES

In order to test the aptitude of all the three FRF coupling approaches to deal with
subsystems possessing simulated local rigidities therefore causing the responses at some
coordinates to be linear dependent from each other over a selected frequency range, two
subsystems are described next in terms of their Spatial and Modal models. The frequency
range of interest in assumed to be from 0 to 15 Hz and the corresponding Response
models were generated from the Spatial ones by truncating each element on the FRF
matrix up to the sixth significant digit therefore provoking singular FRF matrices for each

subsystem.
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34.4.1 SUBSYSTEM DESCRIPTION

SUBSYSTEM 3

This is a free-free undamped system with 5 DoF and possesses three rigid regions
smulated with relatively stiff springs (springs K, K; and K, in fig. 3.12)

K

W
3 4 5
2,\:‘2" W4 W

K1=1E3;K2=1E6;K3=1E7;K4=lES (N/m)
Ml=0.5;M2=1;M3=2;M4=1.5;M5=0.5(Kg)

Fig. 3.12 - Subsystem 3 -5 DoF Freefree system

SPATIAL Model

05 0 0 0 0
0 10 0 0
0 02 0 o0
[M]SXS =
0 0 0 15 0
R 0 05
0 1 E6 -1.E6 0 0
K = -1 E3 -1 E6 1.1001E7 -1 E7 0
[ ]5x5
0 0 -1 E7 101E7 -1E5
- 1E§ 0 -1 B g8 1g% !
MODAL Mode

4.2640E-1 1.3484E00 1.3176E-3 3.7169E-4 7.9258E-5
4.2640E-1 -1.3490E-1 -1.8399E-1 8.7422E-1 4.3243E-2
[Q)] = 4.2640E-1 -1.3461E-1 -1.4354E-1 -2.3555E-1 -4.7326E-1

3%3 4.2640E-1 -13467E-1 -1.3319E-1 -2.8675E-1 6.0560E-1
[- 4.2640E-1 -1.3616E-1 1.3404E00 5.3626E-2 -1.0313E-2
[(01 = diag( o, 2.1997E3, 2.1987ES, 1.2694E6, 1.1944E7)
5x5

Natural Frequencies 0. 7.464, 74.63, 179.3, 550 Hz
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SUBSYSTEM 4

This is a clamped-free undamped system with 5 DoF and possesses one rigid region
simulated with one relatively stiff spring (spring K, in Fig. 3.13)

K % % K Ks
W W W W

K1=3E3;K2=K5=1E3;K3=1E7;K4=2E3 (N/m)
Ml=1;M2=0.5;M3=2;M4=1.5;M5=0.5(Kg)

Fig. 3.13 - Subsystem 3 -5DoF Clamped-free system

SPATIAL Model

010000500 0 0
=l o o 2 0 o
[M]SXS
0 0 0 15 O
-0 0 0 0 05 =
4 E3 -1 E3 0 0 0
-1 E3 1.0001E7 -1 E7 0 0
K] = 0 -1 E7 1.0002E7 -2 E3 0
5x5
0 0 2E3 3E3 -1E3
0 0 0 -1E3 1| E3
MODAL M odel

1.1098E-1 -1.6218E-1 -2.6013E-1 9.4536E-1 -5.0601E-5
4.2720E-1 -4.0335E-1 -1.6605E-1 -1.6497E-1 1.2649E00
[(p] = 4.2723E-1 -4.0334E-1 -1.6601E-1 -1.6505E-1 -3.1622E-1

5%3 5.0486E-1 2.3891E-1 5.7865E-1 1.4094E-1 1.6865E-5
5.4600E-1 9.8119E-1 -8.4990E-1 -1.2963E-1 -1.3489E-9
[031 = diag( 1.507E2,1.513E3, 3.362E3, 4.175E3, 2.501E7 )
5X5

Natural Frequencies 1.954. 6.191, 9.228, 10.28, 7958 Hz
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3.44.2 RESULTS

The two subsystems are now assumed to be connected through three coordinates. The
connection coordinates are selected as 3,4 and 5 in example | and 2,3 and 4 in the second
example. The criteria of selection was established according to the possible redundancy
existing on each set of connecting coordinates. In the first example, only subsystem 1
possesses locdl rigidities in the interfacing region whereas the second example makes use

of subsystems both containing localised rigidities in the connecting region.

EXAMPLE |
Kl
1 AWM K, K,
SR e
R
K1 K2 I% K4 K5
WM 2 AWM s PN 4 PWN s
COUPLED | REM ¥ BSYSTEM
K
T
2 '\izf‘- 3 (AN ¢ WM s
s WA W’ K, K
K3 K4 K5
Fig. 3.14 - Subsystem 3 + subsystem 4 (3 connection coordinates)
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42.08

Inertance (mod dB)

Frequency (Hz) 1

0.0 3.0 6.0 0.9 11.9 14.9

Exact
- --- Predicted using equation (3.12)

Fig. 3.15 - Predicted FRF (Point Inertance2,2) using Algorithm 1

Inertance (mod dB)
i i i ) - A A - § N

Frequency (Hz) 4

0.0 3.0 6.0 8.9 11.9 14.9
Exact
- --- Predicted using equation (3.18)

Fig. 3.16 - Predicted FRF (Point Inertance?2,2) using Algorithm 2

20.0

S J
2 160 -
g -90 .
” -
-t

[N -
£ 320 1

-56.04

[ S VN DN B |

Frequency (Hz)
-90.0 *

0.0 3.0 6.0 9.9 11.9 14.9
Exact
- --- Predicted using equation (3.24)

Fig. 3.17 - predicted FRF (Point Inertance 2,2) using Algorithm 3
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EXAMPLE 11

Fig. 3.18 - Subsystem 3 + Subsystem 4 ( 3 connection coordinates)
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40.9
- 1
m -
o
- 16.8 -
g 4
~ -
S -8.8 1
5 / 4
L d
[N -
©
£ -32.8@ 4
-56.8 1
frequency (Hz)-
-BB.ﬁu' - 4 .
e.e 3.8 6.8 8.9 11.9 14.9

— Exact
---- Predicted using equation (3.12)

Fig. 3.19 - Predicted FRF (Point Inertance 2,2) using Algorithm 1

4.8 T T -~

Inertance (mod dB)

U T N T T W

Frequency (Hz) -

0.0 3.0 6.0 0.9 119 14.9
— Exact
- -Predicted using equation (3.18)

Fig. 3.20 - Predicted FRF (Point Inertance2,2) using Algorithm 2

8.8

; -
£ 60 1
g -9.0 4
- -
P

[ 5 -]
E 320 4

-56.0

Frequency (Hz) A
-90.0 4 - —L

0.0 3.0 6.0 9.9 11.9 14.9
— Exact
---- Predicted using equation (3.24)

Fig. 3.21 - Predicted FRF (Point Inertance 2,2) using Algorithm 3
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3.4.4.3 DISCUSSION OF RESULTS

The predicted response of the coupled system in both examples | and Il show that the
approach which makes use of the classica equation (3.12), herein designated as
algorithm 1, will experience numerical difficulties whenever any linear dependency exists
in aset of coordinates - either interior or connection ones. In example | it is assumed that
the dependent coordinate belongs to the interior region for one component and to both
interior and connecting regions for the other. The approch making use of algorithm 2
(vidé eg. (3.18)) can give accurate estimation of the fina coupled response, since it
perturbates the initial FRF matrix in a good sense towards the non-singularity. So aso
does the approach using algorithm 3 (vidé eqg. (3.24)) since by adding the two partitions
of the FRF matrices corresponding to the coordinates of the interface region the
singularity is also removed in spite of the fact that one of the FRF partitions was initially

singular.

In example |1 the local rigidities are assumed to be localised in the interior region in one
of the components and in the connecting region for both components. In this case both
approches 2 and 3 fail to give a completely successful prediction. They are till prone to

numerical errorsin theinversion of the matrices since they are singular.

3.5 CONCLUSIONS

The alternative agorithms making use of inversions carried out on either augmented FRF
matrices (algorithm 2 - eq. (3.18)) or partitioned FRF matrices (algorithm 3 - eq. (3.24))
can resolve many of the numerical difficulties encountered during the coupling process
using the classical algorithm (algorithm 1 - eq. (3.12)). Whenever localy-rigid regions
are confined to the interior coordinates of each component or to only one of the
subsystem’s connecting coordinates. In such a situation, the approach making use of

algorithm 3 presents a remarkable advantage over the other two, since the inversion



Ehnpedance Coupling Techniques 87

operation is only required once and even then is applied to a matrix whose order depends

only on the number of connecting coordinates.

For the other most extreme situation when the rigidities are localised in both interface
regions, other alternatives are required. For instance, if it is possible to know a priori the
number of redundant coordinates - or, in other words, the rank for each subsystem FRF
at each frequency in the range of interest - the analyst can make a judgement about the
possible exclusion of some of the connection coordinates without affecting the constraint
formulation of the actual physical connection. This topic will be discussed further in

chapter 5.



4| MODAL COUPLING TECHNIQUES

4.1 INTRODUCTION

In chapter 2 areview of the different standard coupling techniques was presented. Among
these there is one which makes use of the Modal models and which takes advantage of a
reduction of the number of modes or modal coordinates (generally, the higher
natural frequency modes), while still accounting for al the physica DoF in each
subsystem model before a coupling process is performed. It is interesting to note that this
approach to the coupling problem relies on a different philosophy for reducing the
subsystem order when compared with the Impedance coupling approach which is based

instead on a reduction of the number of coordinates.

It has been stated in some survey papers [35-39] that using the free-interface methods like
Hou's [34] and Goldman’s [33] procedures, very poor accuracy may be obtained for the
overal system natural frequencies and mode shapes as compared with that attained by the
fixed-interface methods. However, it has since been recognised that the free-interface
methods could take advantage of using the directly available data from substructure tests
as an input into the coupling process, and this has led to an improvement in the existing
methods by developing a great variety of approaches. Some of the improved methods
were primarily based on a purely analytical description and determination of the
component characteristics [40-44], in other words they are quite adequate if one chooses
the theoretical route, while others tried to explore the use of experimentally-derived modal

properties as a basis for the formulation of each subsystem’s equations of motion. In this
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latter approach, one important early work is Klosterman’s thesis [45] which provides a
comprehensive study of the experimental determination of modal representations of

components including the use of these models in the substructure coupling.

The structural definition of components from modal tests has been accomplished and
successfully used for design purposes with relatively stiff structures connected with
flexible elements such as an automobile frame and body connected by isolation mounts
[ 10,461. For this situation, the subsystems can be tested with free boundaries to obtain a
free-free modal data base which is sufficient for use in system synthesis. However, in the
case where the components are rigidly connected, the use of a set of truncated modes to
establish the compatibility equations sometimes leads to unacceptable errors in the
prediction of the assembled system responses. Thus, for rigidly connected subsystems a
more accurate definition is necessary either by including more modes or, if these represent
an unreasonable number, by providing some information about the effects of the
neglected modes. Two possible ways may be used to improve the structural definition of
each component; one, by using additional masses attached to the connection points in an
attempt to generate a more realistic condition for the component when it is vibrating
together with the remaining parts (the localised flexibility properties near the connection
area are better represented, since more modes are brought to the frequency range of
interest) or two, by seeking to compensate for the lack of flexibility due to the truncation
of the set of natural modes by using additional and important information concerning the

flexibility effects of the out-of-range modes.

In this chapter, interest is confined to the latter approach whereby a refined method
developed by the author [66,67] permits the inclusion of the residual flexibility effects of
the neglected or unmeasured modes. This refined approach is presented and compared

next with another similar alternative developed by Martinez et al [49].
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4.2 FREE-INTERFACE METHODS WITH RESIDUAL FLEXIBILITY
EFFECT

4.2.1 PREAMBLE

Early work reporting the use of free-interface methods was presented by MacNeal [40]
and Rubin [44] in order to improve the truncated free-free modal representation of a
component by including estimates of the residual effects due to the modes higher in
frequency than the frequency range of interest. In a theoretical standpoint, the residua
effects are generally obtained by calculating the component flexibility due to those modes
to be retained and then subtracting this from the total known flexibility of the respective
component as presented by Craig [68] and Hansteen [69]. All these works provided a
significant improvement to the classical free-interface method presented in chapter 2,

although using purely analytical representation of component properties.

The free-interface method congtitutes the most suitable approach for incorporating
experimentally-derived Modal models. Consequently, the author has directed his work
based on a free-interface methodology by developing a refined approach which can
include the residual flexibility effects of the unmeasured modes. This method is presented

next and compared with another one developed by Martinez et al [49].

422 A REFINED APPROACH

Returning to the classical free-interface method (Hou's approach [10]) presented in
chapter 2, our attention is now focussed on the thus-presented equation (2.34), which is

here re-written as,

W = [, ]{r] (4.1)

Equation (4.1) expresses an approximation for the representation of each coordinate

displacement in a component whose equation of motion is expressed as,
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M, M T(Y, Ko @ Koy 0
...... SR V68 O A I A U0 4.2)
M. M |l K. : K [lu] LF

This simplification is made in order to reduce the order of the final matrix equation.
However, this reduction results in a change of the description of each component stiffness
characteritics, since in doing so we are assuming that each component is too stiff. In
fact, there is a residua flexibility effect that is not taken into account. The exact

description of the displacements is expressed as:

w=[o 1{r.} (4.3)

where m is the total number of existing modes. These modes can be separated into two
groups; the kept or measured modes [dﬂ_ and the eliminated or unmeasured modes

[‘DQ , as represented in the partitioned form:

w =lo, J{r}+ @, {r.}=[2,: 2] {:-lf} (44)

b Dyt @ | [Py
or DT S HERETEN XX (45)
uc D : d _ pe

Substituting this equation into (4.2) results in two uncoupled equations in terms of the

principa coordinates (kept and eliminated modes) as follows,

m {3, } +[ @] (7} = [ou] (%) 45

and
(1] { ijJ + [‘“’i\] {r.}= [‘I’ce]T {f.}) 4.7)

2 2
By assuming that the out-of-range natural frequencies are ®_>>0,an approximation

can be made for the response of those modes i.e., we can say that they respond in a
quasi-static manner so that the inertial term can be ignored. Thus, equation (4.7) may be

simplified and written as:
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(o] r) = [0.] (%) (48)

By assuming at this stage that both components are still disconnected, the equilibrium

equations are;
® 0 o 0
AP, ATk {Apk} ATk {Af}
(14 coen | veeee o oenens NS % IERREITICREREE 4.9)
. 2 T
Bpk 0 Bm,k Bpk 0 l?'(Dck Ble
and
2 T :
w 0 d 0
A% e Ape A% ce Af
“““““““ 2‘ N T (4.10)
0 B BP, 0 §B¢w Bl

The constraint equations for both subsystems undergoing free vibrations, are formulated
by enforcing compatibility between displacements and equilibrium between forces in the

connecting region as follows;
{av.} = {4} (4.12)

{af} =-{sf.} = {f} (4.12)

or, according to the modal description, as:

Apk Ape
[a®0 5@ ] 1+ [a® @] o p = (0) (4.13)
BPy p

BFe

From equation (4.10) the values for the coordinates p_can be extracted and substituted in

equation (4.13) leading to,
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- .1
A“),Ze 0 T
) T A7 ce f
[A(Dce'-B(Dce], """ \ ..... 2 “““ T { c}={0} (4.14)
0 l Bt -B(Dce.
< 21941 T
o, making  [aR.] = [a@,] [ Awre\] [s2.] (4.15)
. 2-1 T
and [BRCC] = [Bq)ce] [Bwre\] [Bd)ce] (416)

both of these expressing the approximation for the residual flexibility of the eliminated

modes in component A and B respectively, the interconnecting force vector { fc } can

now be expressed as,

Apk‘

{fc} = -[Rcc*]'l[A(I)ck :-B(Dck] {p

BFy

(4.17)

where

* -1 -1
[RCc ] = [ARcc + BRcc] (4.18)

If equation (4.17) is substituted into (4.9), the final equation for the overall systemis,

2
A.ljk A(kas ;0
My e+l | coeeee s e +
.o P 2
Bpk 0 : erk‘
T :
A?, 0 AD, 0 o
: AFp
........... T [ cpl] {p}:{o} (4.19)

where the coupling matrix [K_ 5 formed from the residual flexibility properties of

both components as follows,
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[ENEEN]

=T [RST

It isinteresting to note that this equation is identical to that presented in chapter 2

[Kepi] = (4.20)

(eg. 2.58) for the case of two components coupled using a intermediate flexible system.

This similarity may be explained asfollows,

- the displacement in each connection coordinate is given as:

(u) =[] {p}+[e, ]{p.}

{ut=[@. ] (P} + R {f}={u'} + {an} @20

Where{ uc'} is the underestimated displacement in the boundary coordinates

(component is to stiff) and { Auc} is the displacement due to the “additional” spring

located in the boundary region to compensate for the lack of flexibility (associated with
the out-of-range modes). The compatibility of displacements between the two components

A and B requires that:
{A“c'} + {AA“C} = {B“c'} + {BAUC} (4.22)

which expresses the connection between the two subsystems through and intermediate

connecting flexible system, as visualised in figs. 4.1 and 4.2

Therefore, it is possible to use the same formulation given for the elastic coupling,
provided the stiffness matrix for the intermediate spring-system is constructed as shown
in equation (4.20).
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[Ach 1= [AR

cC

Fig. 4.1 - Auxiliary flexible systems used to represent the flexibility contribuition of
the out-of-range eliminated modes in each separated component

Fig. 4.2 - Two auxiliary flexible systems are connected in series to form the
“dummy” interconnecting system.
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423 COMPARISON WITH A PREVIOUS APPROACH

An dternative approach developed by Martinez et al [49], and which also takes into
account the residual flexibility effect of the out-of-range modes, is now briefly presented.

In this case the subsystem displacements are represented as,
P,

w =[] (p+ R {2} = [, R ] 423
C

where [Rc] is an appropriate partition of the (theoretical) residual flexibility matrix [R] as

shown below,

R.: R.

1 Cl .
“"3““}=[R1°Rc (4.24)
R. : R

IC cc

R'l
R]= [ﬁj (4.25)

Substituting equation (4.23) into the general equation of motion (4.2), the following
equation is obtained,

M {5} + <] o) = {F,} (4.26)
where
o r1kk20 o
= | ceeeenn 497
i 0 :HCC
-2 .
mrk\: 0
KL= ... 1. (4.28)
- 0 chc
- T
(Dck
[fp]= """ T [fc] (4.29)
R.. .
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with [He.] = [R]" M1 [R,] (4.3

In order to permit a simple and direct matrix assembly for the subsystem matrices it is
convenient to obtain an alternative formulation for the component equations. From

equation (4.23) we have,
(P} =[Re]" { () -[ @, ] (P} } @31

or, assuming a transformation of coordinates such as,

| . 0
Py Kk - P,
NS 1 R -1 """"" :._1 il.- (432)
pc '[Rcc] [(Dck] . [Rcc] ¢
P,
-+ =[T]
The new subsystem equation will be
M {¢ b+ Kel {2} = (%) 439
with
B T
Ikk+(D k Jcc (I)ck :- ck Jcc
[Mg] e RIS (4.34)
| -Jcc (Dck : cc
. T - : 1
mk\+® x R @y : @, Ry
[KC]= R Do e (4.35)
B -Rcc ck -RCC

wanflo] - [T T I3 - (1] R,

As noted by Craig and Chang [47] and by Martinez and Gregory [50] the MacNeal's

approach [40] leads to a different generalised mass matrix which is,
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(4.36)

From an experimental standpoint this matrix is more realistic, since the matrix presented

in (4.34) requires the calculation of [Jcc] and this is only possible by knowing the

component mass matrix. Then, assuming that the data are entirely obtained from test, the

fina equation for the coupled structure is obtained by adirect assembly procedure:

AIkk 0 0 oY
Apk
0 I 0 |4 . >
B +
kk Bpk
0 0 0 L u_J
.2 T -1 : S -1 APy
A mrk +Aq)ck ARcc ACI)ck:. 0 : -A(Dck ARcc
....................... : BPy ={0}
SL2 T -1 : T -1 Ye
0 B mrk\+B(Dck I?’Rcc Bq)ck:‘-B(Dck BRcc
T 1 T 1 1 1
| _A(Dck AT¢e Bq)ck BRcc AT +B cC
(4.37)
Di jon of h roach

In physical terms, Martinez et al [49] approach should give the same results as the
previously presented author’s approach, since the residual flexibility effects are taken into

account. Although Craig [52] has shown that the residual flexibility and fixed-interface
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method are equivaent, Klahs and Townley [53] concluded that “problems may arise in
the use of residua flexibility; the residual flexibility matrix for each component must be
invertible and the associated mass matrix i.e., the final mass matrix coefficients related to
the boundary points may be singular”. In fact, the requirement of the residual flexibility
matrix of each subsystem to be invertible is a drawback of Martinez et al [49] approach
when compared to the author’s refined one since this require instead the inversion of the
summation of both residual flexibility matrices which is less susceptible to be singular.
For instance, should aresidua flexibility matrix of a component be cal culated using more
connecting coordinates than eliminated modes, it will become rank-deficient. Thus, the

corresponding inverse isimpossible to calculate, although in physical termsit exists.

Moreover, the order of the final assembled equation of motion in Martinez et al [49]
approach is dependent on the number of connection coordinates, which in the refined one
are implicitly defined in the final equation of motion, therefore requiring a less time-
consuming eigensolution, especially in multi-point connected structures where the number
of connection coordinates may be much greater than the number of kept modes; in this
case, the main gain achieved with the reduction in terms of modes - which is the
underlying philosophy of Modal coupling techniques - is lost due to the necessary

inclusion of the interface coordinate displacements in the final equation of motion.

43 COMPUTER PROGRAM

A computer program has been written to implement the method detailed in section 4.22.
The component models can be either experimentally- or theoretically-derived and the
coupling procedure is performed each time for two components. The main structure of the
computer program is presented in figures 4.3 to 4.5. Preceding the coupling stage, and
depending on the type of modelling used for each component, there is a pre-processing
stage whereby the data is prepared so as to obtain a formatted modal model which is then
supplied to the coupling program. Thus, if the theoretical route is of interest, the main

steps to obtain the formatted modal model are shown in fig. 4.3. On the other hand, the
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alternative experimental route may be chosen for the subsystem modelling, and in this
case, the important steps are shown in fig. 4.4. Whichever route is used, the derived
modal model data related to the in- and out-of-range modes are stored in a suitable format

for subsequent use in the modal coupling process, as described in fig. 4.5.

Associated with this program, there are some extra subroutines for the necessary
manipulation and plotting of data. The type of properties used to describe the model can
be transformed according to different available options namely, Spatid — Modal
(Eigensolution), Spatial — Response, Modal — Spatial and Modal — Response. In order
to process data before the modal model is input into the coupling program, there is an
additional subroutine to read standard Modal models resulting either from modal testing or
an eigensolution. An option is available to read a partition of the corresponding modal
matrix containing only the selected connection coordinates and kept modes and
subsequently storing the model with a new format containing the information relative to

the selected in-range and out-of-range modes and the interior and connection coordinates.
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Theoretical Route

Input Matrices from
Spatial Mode

( Eigensolution )
|

Mass-normalised
M ode-shapes and
Natural Frequencies

Store
Moda model

Partition of the
Modal model
according to:
- Kept and neglected modes
- Connection and interior coordinates

Calculation of the
Residual Flexibility matrix
related only to the connection
coordinates

Store
Formatted
Moda model

Fig. 4.3- Pm-processing data in the theoretical route
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Experimental Route

Data Acquisition

System identification:

Extraction of Modal Paramete

. Daa Storage

mock information for

connection coordinate

Read in the necessary sets
of modal parameters related
to one column(row)
in the inertance matrix

Supply sign information
for each transducer pair
I

Excitation Coordinate No.?

Restrained Structures

Unrestrained Structures

Separation of
Rigid-Body modes

Mass-normalised

Rigid-Body Modes

Mass-normalised
elastic modes

Store
Moda model

Partition of the Modal matrix
according to the connection
and interior coordinates

- ldentification Stage

- Modelling Stage

Store
Formatted
Moda Model

Fig. 4.4 - Pre-processing data in the experimenta route
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Theoretlcaldylderlved
el

Read
Formatted
Modal model

Readmatrices

ehmmated modes

Inclusion of
Residuals

J
Construction of the
Stiffness matrix
of the connecting systam
Global Equation
of motion

( Eigensolution J

Transformation of
Modal to Original
coordinates

Store
Modal model for the
overall structure

Fig. 4.5 - Structure of the Modal coupling program
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The main program was written for the smple case of the coupling of two substructures.
However, it can be used to predict the response of a more general structure formed of

several components, providing they are connected as presented in fig. 4.6.

Fig. 4.6 - Assembling of globa system ABCD

The different database containing the information for each component’ s formatted modal
model should be created and linked according to the possibility of a subsequent structural
modification. For instance, if it is anticipated that component D may be subjected to
further modifications after the coupling stage, then it is suggested that the various
components be connected in the sequence shown in fig. 4.7, leading to a less time-

consuming reanalysis procedure each time the dynamic characteristics of component D

are changed.

ABCD

Fig. 4.7 - Assembling globa system ABCD (anticipating a modification in

comnonent D)
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44 THEORETICAL CASE STUDY

This case was used to check the working of the Modal Coupling computer program, since
it is possible to compare the predicted response with the exact response of the coupled
structure. Although in this example only theoretical data are available, it was assumed that
one of the subsystem residual flexibility matrices was obtained by following the steps that
would be employed in an experimenta study. The two subsystems consist of a straight
beam (A) and arigid block (B), the Spatial models of which congtitute the initial available
data. An eigensolution routine is used to derive both the complete substructure Modal
models. However, one of the components - the beam - is assumed to possess different
degrees of incompleteness in the number of modes used to describe its properties. The
effects of this incompleteness on the predicted dynamic properties of the coupled structure
are investigated using both the Modal coupling techniques - the classical free-interface
method and the refined approach which includes the residual flexibility effects of the

neglected modes.

4.4.1 DESCRIPTION OF COMPONENT A - FREE-FREE BEAM

Component A is a rectangular cross-section straight beam modelled by eight undamped
Timoshenko beam elements. The Spatial and Modal models for this component were
obtained by using the general-purpose computer program for the vibration analysis of
complex structures, COUPLE [70], and only one in-plane flexural response was
considered i.e., each node is supposed to have only one trandational and one rotational
degree of freedom.The connection coordinates are selected as the tip DoF numbers 1 and
2, being the interior coordinates formed of half of the remaining ones - number 3 to 10.

All the selected coordinates and the characteristics of the beam are shown in fig. 4.8.
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Component A- Free - Free Beam

Length = 1.508 m

Y
Mass = 6.061 Kg.  Second moment of area I,= 1.0923 x 108 m# I X
Area of cross section = .032 x.016 m2

Fig. 4.8 - Beam theoretical model (8 beam elements)

The mass-normalised modal matrix and the corresponding eigenvalues, together forming

the complete Modal model of the beam, are presented next:

.674
.030
674
284
674
.539
.674
793
.674

-.244

.786 -817 -818 -820 -824
-653 2.518 4.259 5.972 7.724
.540 .081 478 510 211
-653 2015 1.456 -1.423 -4.917
293 497 0.000 -.584 0.000
-653 0.000 -2.924 0.000 5.450
047 081 -478 510 -211
-653 -2.015 1456 1.423 -4.917
-199  -817 818 -.820 824
-653 -2.518 4.259 -5.972 7.724
Eigenvalues
1.92E-08
5.59E-08
5.51E+04
4,18E+05
1.61E+06
4.42E+06
9.93E+06
1.96E+07
3.43E+07

6.78E+07

.830

-9.544

236
6.099
-.592
0.000
.236
-6.099
.830
9.544

0.00
0.00
37.35
102.93
201.91
334.45
501.62
704.09
931.80
1310.41

-832  -765
11.397 12.186
-566  -.556
-2.836 3.503
0.000 -.619
-7.856 0.000
566  -.556
-2.836 -3.503
832 -765

11.397 -12.186

Natural Frequencies (Hz)

-.781
15.199
-.207
12.144
0.000
13.608
207
12.144
781
15.199
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The frequency range encompassing all the natural frequencies is assumed to be:
0 -1500 Hz 10 modes included - (all the available modes)

In order to study the effects of incompleteness in the number of modes in this component,

various aternative frequency ranges of interest were selected as:

0 - 600 Hz 7 modes included - (2 rigid-body + first 5 elastic modes)
0- 250 Hz 5 modes included - (2 rigid-body + first 3 elastic modes)
0- 50 Hz 3 modes included - (2 rigid-body + first elastic mode)

Since different sets of truncated modes are assumed, the residua flexibility matrix related
to the effect of the neglected modes - in this case referred only to the connection
coordinates - must be calculated afresh for each case. This can be done in two ways,
using either the theoretical or the experimental route, as presented in Appendix |1, both

having been used in the present work.

The different conditions of assumed incompleteness of the component A are summarised

in the following table 4.1:

Table4.1 - Incompleteness of component A

Component A : Fresfree Beam

I case | Modalmode] | No. kent modes | Residudl ||
1 Complete 10 __
2A Incomplete 7 No
2B Incomplete 7 Theoret. Complete [Re.] |
3A Incomplete 5 No
3B Incomplete 5 Theoret. Complete [R...]
3c Incomplete 5 Theoret. Diagonal [R..]
3D Incomplete 5 Experim. Complete[R ]
3E Incomplete 5 Experirn. Diagonal[Re.] |
4A Incomplete 3 No
4B Incomplete 3 Theoret. Complete R ]
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In cases 2B and 4B, the residual flexibility matrix [R..] referred to the connecting

coordinatesis calculated following the theor etical route.

- Frequenc - kept

[R.] _[ 6.148 E-g -9.318 E-7 ]: [K.]=[R ]-1_ [ 9.274 E8 6.011 E7:|
cel ™| _9.318 E-7 1.437 E-5 ce ce 6.011 E7 3.966 E6

- Er range 0 - 50 Hz ( 3 kept m

[R ] _[ 2.302 E-6 -1.454 E-5 ]: [K ] N [R ]-1_[ 4.164 E8 5.895ES ]

el 7| 1454E5 1.026 E-4 ced =L eel 7| 5895E5 9.342E4

In case 3, both of the possible routes have been tried. In order to create a smulated
experimental route, the response model of the beam was calculated, the FRFs (Inertance)

referred to connection coordinates (1,2) being presented in fig. 4.9 a) to 4.9 ¢).
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Inertance (Log dB.)
e

Data from FF10811
0.88 Frequency Hz. 1368.08

Generated %FRF at one end of the Beam

180
m
h -}
o
-]
|
\¥]
[ J
Q
| =
(]
P
[N
[ ]
c
-
-4 Data from FFiB12
2.28 Frequency Hz. 1368. 88
M

Fig. 4.9 b) - Generated 3 FRF at one end of the Beam

Inertance (Log dB.)

Data from FF1822
.08 Frequency Hz. 13608.82

Fig. 4.9 ¢) - Generated -:TFRF at one end of the Beam
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In the particular frequency range selected, O-250 Hz, the three curves were analysed by
using an appropriate modal anaysis program AUTOIDENT [71], which employs a
MDOF identification routine applicable for lightly damped structures. For each of the FRF
curves, two sets of modal parameters were extracted; the first group containing
information on the in-range modes and the second group referring to one or more
fictitious modes which are used to determine the residual flexibility matrix which
represents the effect of the out-of-range modes. Cases 3B to 3E differ from each other in
the kind of stiffness properties derived for the interconnecting system; they are
theoretically- or “experimentally’* -derived and for each, two types of stiffness matrix were
assumed; for one, the connecting matrices were diagonal and constructed only with the
connection point direct response residuals while for the other the full connecting matrix
was constructed with all the possible response residuals associated with the connection

DoF;

Case 3B - Frequency range 0 - 250 Hz ( 5 kept modes )

R 1_[ 2845 E7-3172 E6 ] K 1_IR -1_[ 7.521 E7 1
[Rec] _[ 3172 E6 3706 E5 J [Reel = [Ree] = 6.434 E6 65.433 ES5

Case 3C - Fr A S -250Hz kent m
2845 E-7 O -1 3.514 E6 0
- J- -8 |
[ °°] 0 3.706 E-5 =>[ °°] [ °°] [ 0 2.698 E4
In the following cases, 3D and 3E, the residua flexibility matrices are derived using an

experimental route. The identified extra modes are,

FRF 1i,j Frequency (Hz) Modal Constant
1,1 450 291
1,2 500 -37.93
2,2 500 404.30

and the matrices containing the approximated residual flexibility values are:
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Case 3D - Ereouency range 0 - 250 Hz (5 kept modes )

cl=| 3843E-64006E5 ] L el =L el T 571387 2.569 E6

3E - Freouencv range 0 - 250 Hz ( 5 kept modes
3.640 E-7 0 -1 2.747 E6 0
R 1 K 1-[R Tl ]
[ °°] [ 0 4.096 E-5 } = [ °°] [ °°] [ 0 2.441 E4

442 DESCRIPTION OF COMPONENT B - RIGID BLOCK

Component B is a rigid block with known mass properties. This component is used to
apply a structural modification to the beam, thereby seeking to attain a nearly-clamped
condition at one of its ends. The inertia properties of the block are referred to just one

plane (Oxy) as shown in fig. 4.10,

Component B - Rigid Block

Mass = 100 Kg. I Y
I,,= 200 Kg m?2 - X

Fig. 4.10 - Rigid block

The Modal modd is:
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443 RESULTS

Both substructures were then coupled as shown in fig. 4.11,

Coupled Structure : Free-Freee Beam + Rigid Block

Fig. 4.11 - Free-free beam + Rigid block

The coupling between two components was performed by each of the two different
approaches, the beam being assumed to be the only incomplete subsystem. The refined
approach which takes into account the residual flexibility effect of the out-of-range modes

(vidé section 4.2.2) was applied to the various cases previously described in table 4.1.

The predicted natural frequencies are shown in Table 4.2 for all the cases.

Table 4.2 - Natural Frequencies of the Coupled Structure

Case |R.Body Elastic Modes

1 |0 0 6.6245 | 40.76 114.09 | 224.49 373.93 | 565.74 805.69 1122.
2A ]O0. 0. 6.94 42.98 121.12 | 240.68 408.33 _ o

é 0. 0. 6.6245 40.77 114.2_25.34 379.& 642.75 244.7

3A J0. jo. }7.51 47.26 | 136.8 - - —
3B J0. {0. 6.6246 | 40.79 114.8 233.87 | 1541.1 -—- --- -
3C (0. |oO 6.497 | 37.75 99.29 { 184.93 536.73] --- e
3D 0. |O. 6.56 40.6 114.84 | 235.42 | 2894.1 --- --- ---m
3E |o. |oO 6.41 37.11 97.33 | 181.65 483.25] --- e

4A 0. |O. 9.8

4B 0. |O. 6.628 41.28 278.07 - - --- ———
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Therelative errors of the predicted natural frequencies are shown in graph of fig 4.12:

50 =
40
€ 30
. -
2
E Model
Mode2
Mode 3
Mode4
Mode5
—Ed
4A 4B

Fig. 4.12 - Natural frequency error (%) relative to the complete system

The predicted FRFs for the various cases of the coupled system are then compared with
the corresponding exact response calculated for the whole structure. Plots of the Inertance
calculated at the free end of the coupled structure i.e., using the trandational (9) and

rotational coordinates (10), are shown in the graphs of figures 4.13 to 4.17.

The first three groups of FRFs shown in figures - 4.13, 4.14 and 4.15 - illustrate the
difference between the two approaches used to predict the dynamic response of the whole
structure when truncated sets of 7, 5 and 3 modes respectively are used to describe the
beam connecting displacements in the coupling process. The next two groups of plots
represented in figures 4.16 and 4.17, show that the way the residua flexibility matrix is
calculated - theoretically or experimentally-simulated - does not have a significant

influence on the predicted response.
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Fig. 4.15 - Predicted FRFs (y/F) a the free end of the coupled structure
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Fig. 4.16 - Predicted FRFs (y/F) at the free end of the coupled structure
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Fig. 4.17 - Predicted FRFs (y/F) at thefree end of the coupled structure

4.4.4 DISCUSSION OF RESULTS

It is clear from this theoretical example that the classical free-interface method fails to give
accurate predictions of the dynamic properties of the coupled structure, whenever at |east
one of the component modal matrix is assumed to be incomplete in terms of the available
modes, it is also shown that the FRFs predicted under this condition reveal an
overestimation of the stiffness properties of the assembled structure which is more evident
for the higher natural frequencies of the combined system and as the number of neglected
modes is increased. Inclusion of the residual effects of the out-of-range modes by using
the refined approach compensates that overestimation, thus giving a more accurate

prediction of the final results.

Theresidual effect of the out-of-range modes in the particular case 3, which assumes only
5 kept modes for component A (beam), was calculated both theoretically, by using the

known flexibility matrix of the beam, and experimentally, by identifying one out-of-range




S SELECTION OF VALID CONNECTION

COORDINATES

5.1 INTRODUCTION

The work presented in this chapter was motivated by the numerical difficulties
encountered during the coupling algorithms presented so far, which at some stage require
the inversion of certain matrices. Those difficulties arise every time the inverse of a
singular or near-singular matrix is required which may cause the predicted dynamic
properties of the coupled structure to be meaningless. It has been shown that the crucial
set of coordinates which require a good formulation in the sense that they should not
contain redundancies is the set referred to the interface region. Most of the interface
regions are physically connected in a continuous way therefore it is expected that a natural
solution to the formulation of the mathematical constraints should involve as many
coordinates as it is possible to handle with the computational means available. However,
this may very well cause an undesired redundancy in terms of coordinate information,
especially for the lower frequency ranges, and which will be even more accentuated if
some localised rigid regions exist on the substructures. In fact, the degree of loca
stiffness will depend on the selected frequency range and it is natural to expect the

stiffness of those regions being more considerable for the lower frequencies.

In seeking to remedy the undesirable numerical failures one may attack the problem from

two different perspectives. On the one hand, an inspection may be made of the set of
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4.5 CONCLUSIONS

A refined Modal coupling technique using free-interface modes was presented in this
chapter. The main achievement by this refinement was the inclusion of the residual
flexibilty effects which compensate for the truncation in the number of kept or measured
modes in each component. The lack of flexibility associated with the description of each
component displacement in the connection region has caused the classical free-interface
methods to predict results with poor accuracy when compared to the fixed-interface
methods - in fact, the components were assumed to be stiffer than they were actually
supposed to be. With the inclusion of the residual flexibility information - in fact an
approximation when experimental derived models are dealt with - by using a “dummy”
interconnecting flexible system, the two main components are mathematically coupled
using the best available information provided by data measured over the frequency range
in each component. The results obtained in the theoretical case study permit the additional

conclusions;

- the refined approach improves the prediction of the dynamic response of the coupled
structure when compared with the classical free-interface method; the valid predicted

modes may be taken as the number of kept modes in the incompl ete subsystem plus one;

- the selected route for the calculation of the residual flexibility matrix does not affect the

predicted dynamic response of the overall structure.
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fictitious mode. The predicted FRFs using both the calculated residuals do not show any
clear difference. However, the flexibility matrix of the interconnecting system should be
as complete as possible i.e., the off-diagonal terms representing the cross-flexibilities
between the connection coordinates should be calculated whenever it is possible since
their excluson can affect the overall dynamic properties, as shown in the graph of

fig. 4.17.
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connection coordinates before the subsystems are coupled mathematically and a warning
about redundancy is very useful, especially if throughout that inspection the analyst can
know what coordinates are responsible for the dependent responses. Thus, a careful
analysis of the constraint problem may lead to the elimination of some of those
coordinates which, besides removing possibly the redundancy, will additionally decrease
the order of the matrices involved. Not surprisingly, this approach might not succeed
since only particular cases alow the elimination of some connection coordinates without
affecting the meaning of the actual physical connection and other aternatives to solve the
problem must be devised. To this end, a powerful numerical algorithm is required to
invert any matrix be it singular or not singular. One important mathematical tool which
has been used in the statistical and system control research world and which offers the
possibility of confident inversion of any matrix is the Singular Value Decomposition. In
thiswork it will be made use of not only to calculate the rank of a given matrix but also to

carry out itsinversion.

5.2 REDUNDANCY IN THE MODAL AND RESPONSE MODELS

Without loss of generality, the linear dependency herein will be assumed among the
coordinates pertaining to the connecting region of each subsystem, since as it was shown
in chapter 3 and 4 they form the corresponding sub-matrices involved in the inversion

stage of both the FRF and Modal coupling methods.

Let us assume that the Modal matrix has been derived for a given component which

includes the mode shape vectors corresponding to the m, modes existing in the measured

frequency range. The partitioned Moda matrix according to the interior and connection

coordinates is given as,

)| Py
{}= R (5.1)

u 0]

¢ ck
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It may happen that some of the rows in this matrix are nearly dependent on each other in
the measured frequency range. Let us assume that rows 1 to 3 of the submatrix [‘Dcl

exhibit some linear dependency.

N T 7
Y Q0,2 P 'plﬁ
%2 P12 Po3 Py P,
u (I) q) ¢ ...q)
3
{"c}= . S = 31732733 T3k 4P, L (5.2)
4 q>41 Dy Py Py :
u O D D D -
n.J 'n1"n2"n3"""n k]

They will tend to be even more dependent as the number of kept modes is decreased, for
instance to 3. Thus, it is necessary to have a mathematical tool that can detect this
characteristic before the matrix is utilised in the coupling algorithm. As was shown in
chapter 2 (section 2.3), the classical Modal coupling technique requires the inversion of
one partition of the corresponding modal matrix and it is crucial to have an indication of

its rank deficiency before this procedure is undertaken.

If the Response model is generated from a Moda model possessing the previousy
mentioned characteristics, it will exhibit the same ill-conditioning problem at each
frequency during a FRF coupling procedure. However, if the FRF matrix is entirely
measured instead of being generated from the above mentioned Moda model, the errors
on the data will generally serve to make the matrix invertible. Nonetheless, the proximity
of the FRF matrix to one of defective rank will often cause it to behave erratically when it

is subjected to numerical algorithms.
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5.3 THE RANK AND INVERSE OF A MATRIX

5.31 THE SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) is an interesting mathematical tool which has
proven to be very helpful in the control engineering world. Here that tool will be used to
provide quantitative information about the location of redundant coordinates and/or to
calculate the inverse of a rank-deficient matrix. It can be applied either to an existing
substructure or during the design phase to help detect the inadvertent use of connection

coordinates before the information is input to the coupling process.

A review of the SVD of a matrix was given in Golub and Kahan [72] which included a
bibliography dealing with applications and algorithms, and some work towards a new
algorithm. An improved version of the agorithm is given by Golub and Reinsch in
Wilkinson and Reinsch [73]. This algorithm is a special adaptation of the QR agorithn
due to Francis [74] for computing the eigenvalues and eigenvectors of a symmetric
matrix. As stated by Lawson and Hanson [75] one is most likely to apply Singular Vaue
analysis to matrices where m 2 n; however, the case m < n can be converted to this case
by adjoining n-m rows of zeros to the matrix [A] or by applying the analysis to the

transpose matrix [A]T.

The SVD is anumerical agorithm developed to minimise computational errors involving
large matrix operations. The SVD of a real matrix [A] results in three component matrices

as follows,

(Al =l [ [i]] v1' (5.3)

nxn
mxn
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with the component matrices described as,

[U] orthonormal real matrix formed of the left singular vectors
mxm
%
diagonal matrix of scalars called the
[‘}:l - G, , _
nxn . singular values which may be

O mOm  (ymised such that 6,20,2..20,20

V] orthonormal real matrix formed of the right singular vectors

nxn

Both [U] and [V] are ideally conditioned matrices where each column vector has unit
length and is orthogonal to al other vectors in the matrix set. In terms of matrix
operations, both [U] and [V] represent a simple coordinate rotation. They are interrelated

as,

U1'U1 = U)LY = m (5.4-3)

VI'[VI = [VIIVD = m (5.4-b)

The SVD of acomplex matrix [A] results also in three component matrices as follows,

(Al = [U]mm[[i‘]] v (55)

The component matrices[U] and [ V] ([V]H being the complex conjugate transpose of [V J)
are complex unitary matrices but the Singular Vaues are ill rea. In this case the

following interrelationship exists,

w1 = ol = m (5.6-8)

VI'EV] = VIVl = m (5.6-b)

The singular values of [A] are the positive square roots of the eigenvalues of [A]T[A] (or
[A]H[A]). The columns of [U]- the left singular vectors - are the orthonormal

eigenvectors of [A] [A]T (or [A] [A]H) while the columns of [V]- the right singular vectors
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- are the orthonormal eigenvectors of [A]T[A] (or [A]H[A]), also caled the principal

components.

The SVD is designed to determine the rank and the condition of a matrix and to map
geometrically the strengths and weaknesses of a set of equations. The computation of the
SVD of a matrix has been studied by numerica analysts for some time and can be
performed with great accuracy. It is discussed in many textbooks [76-80] and the
software is readily available through a number of standard numerical programs as shown
in Lawson and Hanson's book [75], Forsythe's book [79] and Glolub and Reinsch [81].
The attractive aspect of SVD in terms of coupling processes is that when applied to a
matrix which describes the transfer function characteristics of a given subsystem, the
singular vectors and the singular values al have a strong physical interpretation, as was
pointed out by Moore [82] in the control systems theory. Let us assume a substructure
FRF and Moda matrices which relate the responses at the coordinates with the forces and

modes respectively, as shown,

{x}mxl = [a]mxn {F}nxl (m=n) (5-7)

(% s =[], oy 5.8

By applying the SVD to either a FRF or a Moda matrix, the components [U] and [V]

have the following properties;

[U] - The left singular vectors provide the most appropriate coordinate system for
mxm

viewing the responses. This coordinate system is such that the first singular vector { u, }

indicates the easiest direction in which the system can be changed; the second one {uz}

is the next easiest directionand soon.. . .

[V] - The right singular vectors provide the most appropriate coordinate system for
nxn

viewing the forces (or modes). The first singular vector {V1} indicates the combination

of forces (or modes) which has the most effect on the system; the second one {v2} isthe

combination which has the next strongest effect and so on...
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5. 3.2 RANK DEGENERACY

The rank of a matrix is the number of linearly independent rows (and columns) in the
given matrix. It is generally acknowledged that the SVD is the only reliable method of
determining rank numerically. The usual mathematical notion of rank is not very useful
when the matrices in question are not known exactly. For example, suppose that [A]__
was origindly of rank r<n but whose elements have been perturbed by some small errors
(e.g. rounding or measurement errors); it is extremely unlikely that these errors will
conspire to keep rank of [A] exactly equa to r; indeed what is most likely is that the
perturbed matrix will have full rank n. Nonetheless, the nearness of [A] to a matrix of
defective rank will often cause it to behave erratically when it is subjected to numerical
algorithms. One way to circumventing the difficulties of the mathematical definition of
rank is to specify atolerance and say that [A] is numerically defective in rank if within that

tolerance it is near a defective matrix.

The mere observation of small singular values does not solve the ill-conditioned problem

for we must still decide upon a value for rank(A). One approach to this deficient problem

isto have a parameter >0 and a convention that A has numerical rank r if the o, satisfy

0,20,2..20> 62> G, 2..20, (5.9)

The key quantity in rank determination is obviously the value 6 . The parameter o should
be consistent with the machine precision g, eg. 8 =€ Il All__ . However, if the general
level of relative error in the datais larger than €, then 8 should be correspondingly bigger
eg. 6= 10211 A I, as suggested by Golub and Van Loan [80]. This criterion is useful
especially when there is no clear split of the singular values into a set of large values and

another set of small values.

If rank(A) = r then [A] hasr linearly independent rows and r linearly independent
columns. The rank indicates only how many are linearly independent and not where they

are located in the matrix. Some rank properties of a matrix are presented in Appendix I11.




Selection of Valid Connection Coordinates 126

5.3.3 CONDITION OF A MATRIX AND ITSINVERSE

The SVD is one of the most elegant algorithms for exposing quantitative information
about the structure of alinear system problem [A] (X) = (b) . One am is to examine how
perturbations in [A] and (b) can affect the solution {x). By applying the SVD to the

matrix [A] one obtains,
(Al =D 0,0 vT=[U] [[ ‘z]L VI (5.10)
mxn = mxm xn nxn

Then {x} = [A]H{ b} with

'z
ZNMEE NI [[ 0~]] [V]:mJ (5.11)
-1
u1; b

X = 2 v; (5.13)

n
=1 G

This expansion shows that small changes in [A] or (b) can induce relatively large
changes in {x}if o is small. The condition number k(A) of a matrix [A] with
mxn

singular vaues ¢,20,2 20, depends on the underlying norm. For the particular

case of the 2-norm, the condition number is given as,

KA)=1TAILITA- 11, = 0,(A) /0, (A) (5.14)
However, if 6, is chosen such that

6,20,2"20,20,,=0="=0 (5.15)

whereby the singular values ¢ . .0, are effectively considered to be zero, the

+1

condition number of matrix [A] with rank(A)=r is 6,/ G,. In this case, the matrix [A] can
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be approximated to a matrix [A,] with rank r and the best candidate solution to the linear
problemis {x) = [A,]*{b}.

The condition number of [A] quantifies the sensitivity of the [A] { x)=(b) problem, since
the relative error in {x} can be k(A) times the relative error in [A]. Additionally, it gives a
measure of the “nearness’ of [A] to singularity. If k(A) islarge, then [A] is said to be ill-
conditioned or conversely if it is smal it is said to be well-conditioned. It is natural to
consider how well a determinant size measures ill-conditioning. Unfortunately, there is
little correlation between det(A) and the condition number of [A] {x} ={b} . For example,

the matrices [B,] defined by,

m 1 -1
01-1.. -1

E1=| 001. 2 (5.16)
L0000 0 1

aways havelB | = 1 athough they tend to be rank-deficient as the order increases. On the
other hand, a very well-conditioned matrix can have a very small determinant. For

example,

[D,] = diag (a01,101,...,10) (5.17)

satisfies k(D ) = 1 athough ID_| = 10™ which illustrates the fact that the value of a

determinant is worthless as an indication of singularity.

By assuming that a certain value g, is chosen, the calculation of the pseudo-inverse [Ar]+
only requires the r significant singular values as well as the corresponding vectors of
matrices [U] and [VJ. Let us consider these matrices to be partitioned according to the r

significant columns such as,
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U | LY S L

mxm

[V] = [ [Vl]nxr [V2]nX(n-r) ]

\ [Z.] 10
[ Z\]nxn =I: IXr

(0] [0]

The approximated matrix [Ar] will be given as,

[Ar]m - [Un%;(Ir [\21.]”«[\’1] r:n

XN

and the corresponding pseudo-inverse [A:]+ is,

A =[] [=]7 007

Having calculated the pseudo-inverse it is interesting to note that,

(A [A]'] = [

mxm

A Al =T

- Al (ATT] [ [u]

- AT (Al - v

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

which correspond to four fundamental orthogonal projections of [Ar] as stated by Klema

and Golub [83].
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5.4 SELECTION OF INDEPENDENT COORDINATES

In mathematical terms we shall be concerned with the following problem: given a matrix
[A]_ (m=2n) which is near a matrix [A]r]mxn whose rank is less than n, is it possible to
find a set of linearly independent columns of [A] that span a good approximation to the
column space of [A&]?. The ideas underlying the approach are the use of singular values

of [A] to detect degeneracy and the singular vectors of [A] to rectify it.

Replacing [Al_,, by [Ar]mXn amounts to filtering out the small singular values and can
make a great deal of sense in those situations where [A] is derived from noisy data. In
other applications however, the rank deficiency implies redundancy among the columns
that compose the matrix. For example, if the problem at hand is to approximate a vector of
responses { b} , the procedure sketched above will express the approximation as a linear
combination of al the columns of [A], even though some of them are clearly redundant.
What is needed is a device for selecting a set of linearly independent columns of [A]. In
this case one should be interested on using only the independent columns to approximate

the observation vector b. How to pick these columns is the problem of subset selection.

The QR factorisation with column pivoting is one method of subset selection which was
purposed by Golub, Klema and Stewart [84]. The main steps involved in this selection

are,

a) - compute the SVD of [A] and useit to determinetherank r

b) - Partiti f matrix [V] int V11 V12 ® 5.27
- Partition of matrix into .
V21 V2 (n-1) ( )

C) - Use QR agorithm with column pivoting to compute
T T T
QY [ Vi, VIiuliPl = [ Ry Ry ] (5.28)

The permutation matrix [P] is finally used to re-sequence all the columns in

[AI[P] = [ B, B, ] (5.29)
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such as the columns of [ B, ] are sufficiently independent.

This method was applied to some numerical examples and the results were not aways

successful. For instance the matrix

WIWIR 71
is nearly rank-deficient. After applying the SVD, the rank value was assumed to be 3. The
QR factorisation was then undertaken on component V giving the pivot (which is used to
create the permutation matrix) ordered as - 4, 3, 1, 2 - suggesting the elimination of

column No. 2 which is not one of the dependent columns (3,4).

However, as suggested by Klema and Laub [83] the elements of the component matrix [V]
can be inspected to reveal dependencies or near dependencies among the columns of
matrix [A] whereas the columns of [U] can revea dependencies among the rows of [A].
If the agorithm is applied instead, to the projections [Ul][Ul]T and [vl][vl]T
presented in (5.23 and 5.24), a better result is found for the selection of the independent

rows and columns, respectively.

This aternative method was applied to the above presented matrix, either to detect
dependency on the rows or on the columns; the pivot is now ordered as- 2, 3, 4, 1- for
the rows which indicates the row 1 to be eliminated and for the columns the pivot was
ordered as - 1, 2, 4, 3 - which suggests the elimination of column 3. In fact, this
corresponds to the row and column which were introduced on purpose to be linearly
dependent. Another test was carried out on the same matrix but changing the order of its

columns and the same result was found.
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5.5 NUMERICAL EXAMPLES
5.5.1 INTRODUCTION

The mathematical tool we have been concerned with so far - the SVD - will now be used
in various coupling exercises. These are performed under conditions which are supposed
to smulate practical problems although the subsystems are purely theoretically-derived.
One of those practical problems the analyst can be faced with is related to the numerical
failures of certain algorithms due to the existence of redundant information or in other
terms due to the dependency or near-dependency of the coordinate responses over a

selected frequency range.

In respect of the FRF coupling technique it was found in chapter 3 that none of the
alternative techniques could numerically resolve the difficulty encountered when two
subsystems were connected through regions both possessing some linearly dependent
coordinates. This caused the corresponding partition of the FRF matrices, at some
frequency values, to be rank-deficient and thus impossible to calculate the inversion with

usual agorithms.

As suggested there, one possible way of avoiding the dependency is just by eliminating
the redundant coordinates and keeping only the set of coordinates which are independent.
What may happen however, is that the result of this analysis leads to two sets in which
the number of independent coordinates do not match together, either because the quantity
is different or the location is not the same; such an elimination would cause the constraints
to be altered, which is not the main objective. This solution would only work when the
selected independent coordinates for both subsystems match together in terms of quantity

and location.

A second aternative to cope with redundancy is by making use of the SVD technique at

every frequency where the necessary inversion has to be carried out on the corresponding

ranlk_.Aafiriant matriv Thic ic rarnmmaoandahla in citiiatinne whara tha nraviniicy
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mentioned alternative does not work, since the inversion using the SVD may be moretime

consuming than the usual inversion agorithms.

In respect of the Modal coupling techniques it is shown in chapter 2 that the classical
technique, which does not account for the effects of the out-of-range modes, may suffer
from numerical failures whenever the necessary inversion is carried out on a sguare
partition of the modal matrix related to the connecting coordinates. Since thisinversionis
only required once, the SVD agorithm is highly recommendable, without a previous

analysis to select the independent coordinates.

The numerical exampleswhich are presented in this section make use of the FRF coupling
techniques applied to four theoretical subsystems. These exhibit a dependency on some
coordinate responses due to the existence of localised rigid regions created by using
relatively stiff springs to connect some of the discrete masses and then truncating, up to
the first six significant digits, the elements in the generated FRF matrix. The frequency

range of interest was selected to be O-15 Hz for al four subsystems used.

The following figs. 5.1 to 5.4 represent the discrete masses and springs forming each
component and the corresponding Spatial and Modal models. In all of them, there are
some bold springs connecting discrete masses in order to highlight the localised rigid
regions on the structures. These rigidities are extended to the interior and connection

coordinates making the corresponding coordinates to be linearly dependent.
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5.5.2 SUBSYSTEM DESCRIPTION

[Subsystem 1 -5 DoF undamped Free-Free system

K

X X
* WA

2 W
1=1E3;K,=1E6;K;=1E7;K, =1ES (N/m)
=o.5;M2=1;M3:2;M4:1.5;M5:0.5 (Kg)

K

M,

Fig. 5.1 - Subsystem 1 -5 DoF Freefree system

SPATIAL Mod€
— Vi
001 0 0 0
0 0 0 15 0
Ml .=L o6 6 8 8 o5
. 1E3 0 -1E3 0 0
0 1 E6 -1.E6 0 0
[K]. = 1 E3 -1 E6 1.1001E7 -1 E7 0
5x5
0 0 -1E7 1.01 E7 -1 E5
0 0 0 -1E5 1 ES5
MODAL Moded

4.2640E-1 1.3484E00 1.3176E-3 3.7169E-4 7.9258E-5

4.2640E-1 -1.3490E-1 -1.8399E-1 8.7422E-1 4.3243E-2

[(p] =| 4.2640E-1-1.3461E-1 -1.4354E-11 -2.3555E-1-4.7326E-1
5%5 4.2640E-1 -1.3467E-1 -13319E-1 -2.8675E-1 6.0560E-1
4.2640E-1 -1.3616E-1 1.3404E00 5.3626E-2 -1.0313E-2

I

L2
[0) ] = | 0 2.1997E3 2.1987E5 1.2694E6 1.1944E7 ]
5x5

Natural Frequencies 0, 7.464, 74.63, 179.3,550  Hz
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[Subsystem 2 -5DoF undamped Clamped-Free system

K ) K K, K,
WA WA W WA

K1=3E3;K2=K5=1E3;K3=1E7;K4=2E3(N/m)
M1: 1; M2=0.5;M3=2;M4:1.5;M5:O.5 (Kg)

Fig. 5.2 - Subsystem 2 -5 DoF Clamped-free system

SPATIAL Model
1 0 0 0 O
005 0 0 O
=l o 020 o
[NI]SXS
0 0 015 0O
.0 0 0 o0 05
1 E3 1.0001E7 1 E7 0 0
K], = 0 -1 E7 1.0002E7 -2 E3 0
5x5
0 0 2E3 3 E3 -1E3
4 E3 153 8 18 18
MODAL Mode
" 1.1098E-1 -1.6218E-1 -2.6013E-1 9.4536E-1 -5.0601E-5
42720E-1 -4.0335E-1 -1.6605E-1 -1.6497E-1 1.2649E00
[@ =| 42723B1 -40334B1 -1.6601E-1 -1650SE-1 -3.1622E-1
55 5.0486E-1 2.3891E-1 5.7865E-1 1.4094E-1 1.6865E-5
- 5.4600E-1 9.8119E-1 -8.4990E-1 -1.2963E-1 -1.3489E-9
{601 = diag [ 1.507E2 1.513E3 3.362E3 4.175E3 2.501E7 ]
5x5

Natural Frequencies 1.954, 6.191, 9.228, 10.28. 7958 Hz
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[Subsystem 3 - 7 DoF undamped Clamped-Free system|

K, K, K K K K;
1W2|W-3A/\/\4W5W6A/\/\7

K, =K, =2E3;K, =K =1E3;K; =K =1E9;K;=3E3 (N/m)
=M =1;M3=O.5;M6=1.5;M7=2 (Kg)

4 5

Fig. 5.3 - Subsystem 3 - 7 DoF Clamped-free system

SPATIAL Model

[M]7x7:diag[ 1 1 0.5 1 1 1.5 2 |

[~  3E3 -1E3 0 0 0 0 0
-1E3  1.000001 E9 -1E9 0 0 0 0
0 -1E9 1.000002E9 -2E3 0 0 0
[K]7x7: 0 0 -2E3  1.000002E9 -1E9 0 0
0 0 0 -1IE9  1.000001E9  -1E3 0
0 0 0 0 -1E3 4E3 -3E3
— 0 0 0 0 0 -383 3E3 -
MODAL Modd
~ 8.733E-2 -1.940E-1 6.173E-1 7.373E-1  -1.732E-1 -4.031E-11  1.924E-7
2.563E-1 -4.671E-1 3.943E-1 -4.407E-1  1.819E-1 -4.715E-7 -5.773E-1
2.563E-1 -4.671E-1 3.943E-1 -4.407E-1  1.819E-1 -4.715E-7 1.155E00
[qj_ =| 3.282E-1 -3.962E-1 -4.155E-1 1.593E-1 -1.931E-1 7.071E-1 -3.849E-7
~i 3.282E-1 -3.962E-1 -4.155E-1 1.593E-1 -1.931E-1 7.071E-1 -3.849E-7
4.290E-1 2.148E-1 -7.310E-2 2.128E-1  6.212E-1 2.357E-7 1.218E-12
= 4.486E-1 3.549E-1 1.273E-1 -1.522E-1 -3.654E-1 -2.236E-11 -1.945E-12
L2
[(’)r =diag [ 6.55E1 5.92E2 2.36E3 3.60E3 4.05E3 2.00E9 3.00E9 ]

Natural Frequencies 1.28s,3.873, 7.734, 9.546, 10.13, 7118, 8717 Hz
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[Subsystem 4 - 7 DoF undamped Free-Free system|

LA 2 WAL PN« IMA[S WA s W

K1=3E3;K2=K3=1E3;K =K6=1E9;K5=2E3 (N/m)
M1=2;M2=M3=M5=M7=1;M4=M6=0.5 (Kg)

Fig. 5.4 - Subsystem 4 -7 DoF Freefree system

SPATIAL Model

M), _=diagl 2 1 1 05 1 05 1 ]

3E3 -3E3 0 0 0 0 0

-3E3  4E3 -1E3 0 0 0 0

0 -1E3 2E3 -1E3 0 0 0

[K]h7 = 0 0 -1E3 1.000001E9 -1E9 0 0
0 0 0 -1IE9  1.000002E9 -2E3 0

0 0 0 0 -2E3  1.000002E9 -1E9

0 0 0 0 0 -1IE9  1E9

MODAL Modd

" 3.780E-1 -4.345E-1 2.349E-1 9.865E-2  -3.219E-1 1.455E-14 9.152E-11
3.780E-1 -3.506E-1 -4.445E-2 -1.190E-1 8.475E-1 1.060E-13 7.384E-11
3.780E-1 2.928E-3 -8.033E-1 -3.781E-1  -2.625E-1 -3.849E-7 -2.721E-13

[q =] 3.780E-1 3.556E-1 -1.288E-1 6.142E-1 5.800E-2 1.155E00 -5.133E-7

> 3.780E-1 3.556E-1 -1.288E-1 6.142E-1  5.800E-2 -5.773E-1 -5.133E-7
3.780E-1 4.545E-1 3.808E-1 -4.143E-1 -1.879E-2 2.566E-7 1.155E00
* 3.780E-1 4.545E-1 3.808E-1 -4.143E-1 -1.879E-2 2.566E-7 -5.773E-1 —
L2
© = diag [ 0 2.902E2 1.784E3 3.31E3 5.45E3 3.0E9 3.0E9 ]
5x5

Natural Frequencies o, 2.711, 6.723, 9.156, 11.75, 8717, 8717 HZ



Selection of Valid Connection Coordinates 137

553 RESULTS
5.5.3.1 COORDINATE REDUNDANCY

The agorithm suggested in section 5.4 will be applied to each subsystem model. It can be
applied to either a FRF matrix or to a Modal matrix. The first matrix varies with the
frequency, thusit is not recommended to carry out the analysisin such a matrix for all the
frequencies of interest. It is preferable to analyse the Modal matrix instead, since this may
reveal any linear dependency on the coordinates. It may happen that, after inspecting the
Modal matrix and taking into account all the modes, the rows of this matrix are found to
be independent. However, this does not mean that the FRF matrix cannot exhibit any
linear dependency in a particular range. It is redlistic to assume that some of the coordinate
amplitudes have a similar value in the first three out of ten modes for instance, thus
provoking the FRF matrix to be singular or near-singular, mainly for the frequency range
encompassing those three modes where there is only a dlight contribution of the remaining

ones.

5.5.3.2 COUPLED SYSTEMS

The Singular Value Decomposition technique is presented in this chapter as a
mathematical tool to resolve the numerical difficulties related to the inversion of some
particular matrices during a coupling process. Here the interest in mainly focused on the
FRF coupling, since this technique is more sensitive to this numerical problems. The
subsystems are coupled using an ‘excessive’ number of connection coordinates, this
meaning that although in physical terms the subsystems can be coupled using whatever
the number of coordinates it is not true in numerical terms. The algorithms presented in
chapter 3 (vide section 3.4 equations (3.12) and (3.24)) are used in two different

perspectives;
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- firstly, the subsystems are coupled through the selected coordinates where nothing is
known about their possible dependency and making use of the approaches and algorithms
above mentioned; the computer built-in subroutine is used to invert matrices with a

warning about the determinant value,

- secondly, the coordinate dependency is inspected on each subsystem; whenever possible

the connection coordinates are reduced and the first step is carried out again.

- as alast dlternative, the SVD agorithm is used to carry out the necessary inversion at

each frequency.

In example | the two subsystems 1 and 2 are coupled using 4 coordinates as shown in
fig. 5.5, some of which are redundant and pertain to both interior and connection
coordinate sets. This is a similar problem used in chapter 3 (vide 3.4.4) in which the
alternative coupling techniques could not solve the problem due to the numerical failures
using the computer built-in routine to invert matrices. In this chapter, a further step is
taken by using the SVD technique to invert the matrices which are used according to the
most refined coupling algorithm presented in chapter 3 (algorithm 3 based on equation
(3.24)). This agorithm requires the inversion of a matrix which order is dictated only by

the number of connection coordinates.

In example Il the same subsystems 1 and 2 are coupled using at this time a reduced
set of 3 interface coordinates, as shown in fig. 5.9. The reduction on the number of these
coordinates was performed after a check on the possible redundancy among the
connection coordinates in both components. This was possible by making use of the SVD
and QR factorisation applied to the connecting partition of the Modal matrix and as a result
coordinates Nos. 2,3 and 4 were found to be redundant in subsystem 1 and coordinate
No. 2 was redundant in subsystem 2. By virtue of having coordinate No.2 as a redundant
coordinate in both components, it was possible to leave out this coordinate for connection
purposes without affecting the formulation of physical constraints between the two
components. Thus the normal built-in computer routine was used to invert a matrix

which, by the mentioned simplification, was reduced and converted to non-singular.




Selection of Valid Connection Coordinates 139

In example 111 the subsystems 3 and 4 are connected using a set of 6 connection
coordinates, as shown in fig. 5.12, and identically some of them are supposed to be

redundant. A coupling exercise, similar to the one used in example 1, is undertaken here.

In example 1V, subsystems 3 and 4 are connected via a reduced set of 5 coordinates, as
presented in fig. 5.18. An ingpection on redundancy carried out on the set of connecting
coordinates of subsystem 3 led to conclusion that coordinates Nos. 2 and 4 were the
dependent ones. An identical inspection on subsystem 4 found coordinates 4 and 7 to be
redundant. Similarly to example 1l, coordinate 4 was neglected in the formulation of the
constraint conditions and as a result a non-singular reduced matrix was used during the

coupling process, leading to an accurate prediction of the coupled system response.
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{EXAMPLE | - Subsystem 1 + Subsystem 2 (4 Connection Coordinates)

COUPLED ST

Kl
T

w2 WLk

Kz K3 K4

Fig. 5.5 - Subsystem 1 + Subsystem 2 (4 connection coordinates)
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mod dB)

Inertance

.

16.0
-9.0

-32.0

-56.0

YUY WY U SN SO S V. I VA VUR S W SR S |

Frequency (Hz)

B.o 3.0 6.0 8.9 11.9 14.9

— Exact
___ Predicted using eguation (3.12)

Fig. 5.6 - Predicted FRF (Point Inertance?2,2) using Algorithm 1

Inertance (mad dB)

48.88[ r T .

Frequency (Hz) -

0.0 3.0 6.0 8.9 11.9 14.9
— Exact
- --- Predicted using equation (3.24)

Fig. 5.7 - Predicted FRF (Point Inertance2,2) using Algorithm 3

48.8 v -
-~
[ L
o
- 15.88
g >
-
L
®
) -8.8%
€
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[EXAMPLE Il - Subsystem 1+ Subsystem 2 (3 Connection Coordinates)|

K
W
W.
6/VV\7W. K K

% X Ks

Fig. 5.9 - Subsystem 1 + Subsystem 2 (3 connection coordinates)
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Fig. 5.11 - Predicted FRF (Point Inertance 2,2) using SVD
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[EXAMPLE IIl - Subsystem 3 + Subsystem 4 (6 Connection Coordinates)|

K K, K, 4 5 ’
inW-ZW-3W\4WSW6/\/\/\7

Fig. 5.12 - Subsystem 3 + Subsystem 4 (6 connection coordinates)
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Fig. 5.16 - Predicted FRF (Point Inertance 5,5) using SVD
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Fig. 5.17 - Predicted FRF (Point Inertance 5,5) using SVD
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IEXAMPLE IV - Subsystem 3 + Subsystem 4 (5 Connection Coordinates)l

COUPLED STRUCTURE
K K K

1’\/\f" K, W\ZM K K,
8/\/\/\3W4/\N\9 5W6W7

X K Ky

Fig. 5.18 - Subsystem 3 + Subsystem 4 (5 connection coordinates)
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5.5.2 DISCUSSION OF RESULTS

The predicted FRFs of the coupled structures, used in examples | to IV, show that two
possible alternatives are available to resolve the numerical difficulties associated with the
inversion of singular or near-singular matrices caused by the existence of redundant
coordinates at the interface region. It is aso shown that the SVD technique must be used
with care in terms of selecting the threshold to define the rank of a matrix which in most
of the cases is associated with the error inherent to the data. In example I1l, a value of
10E-3 was initially assumed for u in terms of which 8 is calculated (the threshold
necessary to define the rank of a matrix as presented in equation (5.9)). The result was a
poor prediction for the FRF of the coupled structure in the vicinity of each resonace
frequency. When u was decreased to 10E-5, the accuracy of the predicted FRF was
notably improved and in good agreement with the known exact FRF of the assembled
structure. Similar results were obtained without using the SVD, provided the redundancy
was adequately eliminated in the set of interface coordinates as shown in example IV -

fig. 5.20.

5.6 CONCLUSIONS

The SVD technique proved to be a useful mathematical tool to be used during a coupling
process involving subsystems both of which possessing redundant information (in terms

of coordinates) at the interface region.

Additionaly, it is shown that common inversion algorithms can still be used provided the

redundancy in the connecting region is eliminated. For this purpose, a suitable algorithm
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was devised to detect how many and which coordinates are redundant. This may be
useful when alarge degree of redundancy is present in a multi-point connected system. In
such a case, the reduction operated in the initialy specified connection matrix may be
substantial. Hence, a less time-consuming coupling process is required, simultaneously

preserving the accuracy of the fina result.



6 EXPERIMENTAL DETERMINATION OF
ROTATIONAL RESPONSES

6.1 INTRODUCTION

The dynamic analysis of a complex structure using the substructuring technique, requires
knowledge of the dynamic characteristics of the constituent components. For some of
these it is not feasible to make a theoretical model, and so their dynamic properties are
often obtained using an experimental approach. Although in the case of theoretical
modelling it is a common practice to consider the six possible coordinates at each point of
interest on the model - three trandations and three rotations - the limitations imposed by
the currently available measurement techniques makes the consideration of all the six
coordinates a very difficult task in practical situations. One of these is concerned to the
measurement of the connection coordinates, since the inclusion or exclusion of one of
those coordinates in the subsystem model will usually lead to erroneous predictions of the
results for the assembled system. In the case of one or more component models being
experimentally-derived, the validity of the coupling technique can be distorted by

requiring the use of what can be measured, rather than what ought to be measured.

When the components are undergoing vibrations together in the assembly the
mathematically-imposed constraint equations, which make use of the interface
coordinates, should reflect as closely as possible the actual physical connections among

al the components forming the whole structure.
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Representation of the transmission of a moment between two components requires either
the use of a set of two-connection points with a trandational coordinate at each point or a
single-connection point with only a rotational coordinate. The use of either of these
coordinate sets depends mainly on the geometric and stiffness properties in the vicinity of

the connecting region.

In spite of the fact that techniques for measuring trandational responses are well
established with the use of reliable and accurate transducers such as linear accelerometers,
this is not the case for rotational responses. Although special angular transducers have
been developed to sense rotations, they are not as accessible in terms of price and as
accurate as the former ones. Additionally, in cases where the measurement of the FRF
matrix elements requires both force and moment excitations, another difficulty is
encountered since it is not easy to apply a pure moment excitation in practice. These
considerations make hard the task of judging whether it is worth making the effort
required for a precise measurement of rotational quantities, bearing in mind the errors
introduced when they are neglected. Severa investigators have faced the problem of
measuring or calculating rotationa responses and it is possible to say that two main

approaches have been made to obtain the necessary information either direct or indirectly.

Recent work by Licht [25] and Rorrer et al [26] present results directly measured on the
structures by making use of rotational transducers. The main drawbacks in this approach
are the cost and corresponding accuracy associated with these transducers. The cross-
sengitivity inherent to all piezoelectric transducers makes the rotational measurements
being as accurate as pure is the rotation at a certain point on a structure, since they are

sensitive to the simultaneous translational and rotational motions.

In the more classical approach, investigators have focused their attention on the estimation
of the rotational information by making use of the trandational data available from
conventiona accelerometers. Some of the related works by O'Callahan et a [85,86] and
Smiley and Brinkman [87] made use of both analytical and experimental models to derive

rotations by using expansion methods. However, in this thesis we shall assume that no
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theoretical model is available and only the data measured on the structure can be used to

determine the rotations. Following this route one main distinguish three main techniques.

- iting block

This is aso referred as mass additive technique and it is based on the measurement of
accel erometer responses properly placed on an additional block which is attached as close
as possible to the point (areq) of interest on the test structure; the block is assumed to
behave rigidly over the frequency range of interest (and, in the cases of quite heavy
structures, to have negligible inertia effects). The relevant works presented by
Smith [22], Sainsbury [23], Silva[88] and Ewins and Gleeson [24] have shown that it is
possible to estimate accurate rotational response/force parameters, which the more

susceptible functions to erroneous estimations are those related to moment excitations.

- h i - r r

This approach presents an advantage over the previous one, especialy in the cases of
dender or like beam components, since the mass and stiffness properties are not altered in
the measurement region. This technique has been used by Sattinger [28] and Chen and
Cherng [27] and suggests a practical alternative to the exciting block technique. It is based
on the estimation of the rotational properties from spatial derivatives of the trandational
data which in turn are gathered from accelerometers placed on the structure at convenient
distances from each other. By using a finite difference technique the necessary Response

and Modal models can be generated from linear accelerations and force excitations only.

i) - tf f lati L d f . . li
measurement,

With the advent of sophisticated scanning optical transducers, such those making use of
laser beams, it is nowadays possible to measure rapidly the velocity response at different
points along a line or over an area on the surface of a structure in a quasi-continuous way.
This quasi-continuous definition of the displacement field for each mode, near a point of

interest on the structure, permits a more precise calculation of the spatial derivatives, and
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thus a better estimation of the rotational responses necessary to construct the required

model to be used in a coupling process.

6.2 OBJECTIVE

The main objective in this chapter is the comparison of the rotational properties estimated
from all the three aforementioned experimental techniques with those derived from
theoretical models. Since two different coupling methods are of interest in this work - the
Impedance and the Modal Coupling techniques - the comparison is made in terms of the

corresponding subsystem model formats i.e., Response and Modal models.

In the first experimental case study they are al compared based on the derived or
measured mode shapes i.e., only in terms of their Modal models. This is due to the fact
that the laser measurement has been undertaken by exciting the structure (at the exciting
block) with a shaker at each resonance, thus measuring the mode shapes. In the second
experimental case study the sensitivity study is only focused on the techniques which
make use of accelerometer measurements. Thisis the most likely situation encountered in
industry and in the research laboratory, since sophisticated equipment such as the laser
unit are not widely available due to its high cost. The two techniques (i) and (ii) are used
in order to assess both Modal and Response models estimated from accelerometers
suitably placed on two structures with those derived from the corresponding theoretical
models. In these case-studies the gathered data are the FRFs related to the different

measuring and hammer excitation points.
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6.3 MEASUREMENT WITH ACCELEROMETERS

6.3.1 MEASUREMENT USING AN EXCITING BLOCK

The point Inertance matrix involving trandational and rotational responses can be
measured by attaching an exciting block equipped with two accelerometers. The exciting
block technique is based on the work undertaken by Sainsbury [23] who developed
different types of exciting blocks for both single and twin shaker excitations. Relying on
the main conclusions of the multi-directional measurements in Sainsbury’s work, the
single-shaker technique was selected in the present work which requires a simpler set-up
(when compared with the twin-shaker technique) yet gives fairly accurate results. The
main disadvantage is that the data must be processed in order to obtain al the required
point Inertances, but the same is true of the twin-shaker approach when the results are to
be fully corrected for the exciting block inertia and impure excitation. Further studies in
this area were undertaken by Gleeson [ 17] who used a single-shaker excitation technique,
investigating the effects of accelerometer cross-sensitivity and the errors arising from base
strain effects. The results predicted for a two-beam assembly showed that the errors in
6/Mg mobilities caused the process to be very sensitive and inaccurate in the vicinity of the
component resonance frequencies. Moreover, in the case of highly resonant beams,
Ewins and Gleeson [24] concluded that it is preferable to derive two of the elementsin the

4% order point mobility matrix from the measurement of the remaining two, which are

y/Fy and 6/Fy.

In the present work, vibration is confined to a single plane. Thus, only three of the six
coordinates at each point are of concern - two trandations and one rotation - and these, in
turn, can be further reduced to one trandation and one rotation if only flexural vibrations
are of concern. Thus, the FRF matrix to be estimated which relates the responses to the

excitations at point P, shown in figs. 6.1a-b, is

y Fy Hyy Hye
= [H]est with [H]est = (6.1)
0 Me Hgy Hee
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Let us consider the two independent excitations which are applied to the beam (in two

separate tests), as shown in figs. 6.1a and 6.1b,

| Excitation 1 | Y

F‘Y.xcitation 2 I

Figs. 6.1a,b - Independent excitations using an additional block

The kinematic relationships between the set of measured trandational coordinates and the

final set including a point translational and rotational coordinate are as follows,

iA=iAT+5iAR=iAT+S.é

XB = XBT + XBR = XBT - S &

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

yp=¥c (6.2)
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Since we are interested only in the transverse motion of the beam, the transformation

matrix relating the measured and estimated responses is given as,

. ye 1 0 0
yP . .
{6 } =[P] XA with [P] = 0 1 1 (6.3)
P . 2s -2s
XB

The force and moment transmitted to point P due to the both excitation cases, provided the

inertia properties of the block are neglected, is given as:

Fy Fc 10
{ }.—. [T] { A} with  [T] ={ ] (6.4)
My F 0e

Should the inertia properties of the exciting block be taken into account, the transmitted

forces are related to the applied forces as,

i
Fy Fc c m mxg
{ } =[T] { A} - [M] [P] 4 Xa with  [M] =[ } (6.5)
M F ) mig Ty
XB

where the matrix [M] reflects the inertia properties of the additional body.

The FRF matrix [HI,,,,, which is directly measured on the structure, possesses two

columns each being obtained for one excitation case;

Jc Yc
Fc Fa

_| Xa Xa
H,..=| & F (6.6)

X XB
_ Fc Fj -

The FRF matrix to be derived [H]_ is related to the measured FRF according to the

following relationship:

(H],,, = [P1[H],, [IT] - (M [P] (H],,,.] 6.7)

est
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The quantity Hgg is difficult to estimate accurately, not least because of the problem of
producing an input moment Mg at point P. In such a case it is often preferable to derive
the modal constants of that FRF (Hgg) from those of Hyy and Hgy, Which are amenable to
reasonably accurate measurement, as suggested by Ewins and Gleeson [24], athough
there is no possibility of including the residua flexibility effects of the out-of-range

modes.

6.3.2 MEASUREMENT WITHOUT AN EXCITING BLOCK

In this case, two or three accelerometers are placed on the structure, one being attached as

close as possible to the point P where the rotation is to be estimated, as shown in fig.6.2.

Fig. 6.2 - Set-up using three closely-spaced accelerometers

By measuring a set of trandational quantities at a limited number of points only, it is
possible to express approximately the rotationa responses in terms of those trandations,

as presented by Chen and Chemg [27] and Sattinger [28].

In the case where a FRF coupling technique is proposed, calculation of the rotational
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may result since differences between quantities are considered which are very much
smaller than the quantities themselves and the small relative errors in the measured data
may result in a large error in the estimated response. However, an aternative way is
presented in this work whereby the explicit calculation of the rotational FRFs is not
necessary, should a Modal coupling technique be used. In this case, the estimated Modal
model is calculated from the Modal model referred to the measured coordinates.The two
possible estimations - the first and second order - are presented next for both Response

and Modal models.

6.3.2.1 First Order Approximation - two-point measurement

a) The Response Moddl edtimation

The set of FRFs necessary to construct the measured Response model are;

B
Fg Fc Hps Hapc
[Hlpeas = . . = (6.8)
yc Yc Heg  Hee
Fg Fc
At the connection point P the responses and excitations are related as,
y Fy Hyy Hye
= [Hle with Hlese = [ (6.9)
) Mg Hgy Hge

The applied forces and measured responses should be equivalent to the set of forces and

Ml = [T] [Hlpees [TIT with [T] (6.10)

coordinates that is assumed to exist at point P, which O\plies that;
1
s

which gives the estimated FRFs necessary to construct the Response model as follows,

HYY = II{CC
Hye =5 (Hcc- Hep) (6.11)

1
Hey = 5-(Hcc - Hpe)
1
Hgg =S—2(HCC+HBB'HCB'HBC)
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b) The Modal Model estimation

As presented in the introduction chapter, the Response model is related to the Modal

model as follows,
m] = [@] [A]! [o]” (6.12)

The Modal modd referred to the measured coordinates can be derived from a row (or
column) of the measured FRF matrix over a selected frequency range encompassing my,
modes. The information related to the effects of the out-of-range modes can be
synthesised in a Residual matrix [Hgesiq.]- By assuming this, the measured Response

and Modal models are related by,

[H, o= [(Dk]meas [Ak].1 [(Dk]m:as + [HResid.]meas (6.13)

()
Pc

[I{BB] Resid [HBC]Res

with

[(Dﬂ_ meas

id
[HResia. | meas =

[Hesl Res [Hcc]Resi

d d |

The estimated Modal model and Residual Flexibility matrix can be related to the

corresponding measured Modal model and Residual Flexibility by using the

transformation matrix (6. 10),

a1 =[T1 [®],.cs 619
D

[Hyy]Resid [Hye]Resid
[HResid]esL = = [T] [HResid.]meas [T]T(616)
[Hey]Resid [Hee] Resid |

[(I)k]est. =
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6.3.2.2 Second Order Approximation - three-point measurement
a) The Response Model estimation

In this case three points are used and it is necessary to measure at least six FRFs (this
corresponding to the assumption that the measured matrix is symmetric), as presented

next:

sym sym
Fa Haa sym sym

[H]meas = % ‘I% sym = HBA HBB sym (617)
jo  §o e Heca Hep Hee
_ Fo Fp Fc 4

and the corresponding estimated matrix is,

Hyy Hye 0 0 1
Hoy  Hoo % -2s 28
The final values corresponding to the estimated FRFs are given as,
Hyy = Hcc
1
Hyg = Hoy= »-(3 Hcc-4 Hep+ Hea) (6.19)

1
Hoo= 7—7(9Hcc-24Hep+ 6 Hea - 16 Hpp - 8 Hpa+ Haa)

b) The Modal Model estimatioq

The Modal model referred to the trandlational and rotational coordinates at point P can be
estimated by using the same procedure presented for the first order approximation, but

this time requiring the second order transformation matrix [T] (vide eg. 6.18).
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6.4 MEASUREMENT USING A SCANNING LASER SYSTEM
6.4.1 INTRODUCTION

An optical technique is described for measuring the dynamic response of a structure
undergoing harmonic vibrations. It is essentially a laser Doppler velocimeter which is a
non-contacting optical sensing device for accurately measuring point velocities [89]. The
non-contact nature of the instrument makes it particularly attractive for the use on either
light-weight structures where the measurement interaction must be minimised and it is
possible to measure the extent to which the vibrating properties of a structure are affected
by the physical contact of the accelerometers, or whenever it isimpracticable to attach any
transducer to the structure, for instance in the case of hot surfaces. In addition to this
advantage over accelerometers, it is possible to measure a quasi-continuous line or areaon
the structure, thus reducing the degree of incompleteness in terms of coordinates, which
sometimes is a disadvantage of experimentally-derived models when compared with the

theoretical ones.

6.4.2 BASIC PRINCIPLES OF LASER DOPPLER VELOCIMETRY

The laser Doppler velocimeter is based on the measurement of the Doppler shift of the
frequency of alaser light beam reflected by a moving object. When a beam of light strikes
a moving surface, the reflected beam is frequency shifted with reference to the incident
one by an amount that is proportiona to the velocity of the reflective surface. This
frequency shift is caled the Doppler shift and depends on the wavelength of the the
incident light as well as the positioning of the laser source, the scattering surface and the
observer. The ratio of the Doppler shift to the incident light frequency is of the order of
the ratio of the velocity of the moving surface to the velocity of the light. Thus, for
velocities of the order of few meters per second, the change in frequency of the light is

only a few parts per billion. This change, which is the difference in frequency between
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the incident and scattered signals, can be measured by opticaly combining them to

produce an easily measured difference signal at the Doppler frequency.

The vibration imager shown schematicaly in fig. 6.3 was developed by Ometron Plc. and
is based on the Michelson interferometer [90]. The signa and reference beams are
recombined in such a way that they can constructively or destructively interfere with one
another depending upon the difference between their optical path lengths. The laser beam
reflected back along the same path re-enters the optical unit: if the test part moves at a
constant velocity, the intensity of the recombined beam oscillates at a uniform frequency,
one cycle corresponding to a surface movement of A/2, where A is 0.633 x 10-6 m,
equivalent to the wavelength of the laser. The relationship between the surface velocity v

along the line of sight and the frequency Fd of the oscillation is v = Fd A/2 = 0.3164 x

10-6 m/s.

8
7 6
l<—]
)

1 - Shaker 6 - Lock-in amplifier
2- Amplifier 7- A/D converter
3- FRET. Analyser 8 - Post-processing and computer display
4 - Scan + Optical unit 9 - Scan control - computer
5- Analogue processor 10- D/A converter

Fig. 6.3 - Experimental set-up for the laser measurement
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6.4.3 OPERATION

The velocity signa from the analog processor passes directly into the lock-in amplifier.
An éectronic reference signal is taken from the signal generator driving the vibrating
structure. This reference signal at the vibration frequency is correlated with the velocity
signal by a lock-in amplifier, resulting in information on the phase and amplitude of

vibration of interest.

The operator can select either a single-point or a scan measurement mode. In the former,
the operator can measure the velocity at different points on the structure; these are chosen
by moving via a mouse or handset the laser spot across the surface of interest by virtue of
computer controlled mirrors placed in the laser path. The vibration imager can therefore be
used as if it was a movable non-contact transducer and in this particular mode of
operation, the scattered signal can be intercepted prior to entering the lock-in amplifier and
input to an F.F.T. analyser permitting the measurement of a FRF over a certain frequency
range. In the second mode of operation - the scanning mode, which is carried out upon
the same frequency of the reference signa - the operator can choose to measure and
display any of the following outputs from the lock-in amplifier:
i) - the in-phase RM S vibration amplitude (X)
ii) - the quadrature RM S vibration amplitude (YY)
iii) - the absolute RMS magnitude R = v X2+Y2

iv) - the phase angle variations between the reference and velocity signals

Data are presented on a monitor in various formats, colour-filled grids, colour-filled
contours, isometric plots and line plots. An interrogating cursor moves over the screen
synchronously with the laser spot in order to identify locations on the structure of

interesting features on the display.
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6.4.4 DATA ANALYSIS

The data analysis technique is based on a curve-fitting algorithm, especially developed
during this work, which makes use of the instantaneous velocity measured at specific
points on the structure. By fitting the measured data with a polynomial function, the
rotational quantity is easily calculated by differentiating the corresponding function at any

measured point.

6.5 EXPERIMENTAL CASE STUDY |

6.51 STRUCTURE No. 1 - Long Beam + Exciting Block

The test structure used consists of a steel straight beam with an uniform rectangular cross-

section shown in fig. 6.4.

y L=1485m |
z e = 0.09 m
h b =0.019 m

b h =0.0254 m

Fig. 6.4 - Beam + exciting block + 3 closely-spaced accel.

The point rotational response of interest is at one end of the beam, which is supposed to
be subsequently connected to another component. An aluminium block is attached to the
end of the beam, thereby providing the means for measuring rotational responses using
accelerometers as well as for applying the necessary torque excitation. In order to make
possible a comparison of al the results obtained under the same conditions in al the
measuring techniques involved in this work, the test structure is assumed to be formed by
the beam and the exciting block together. The main reason for this assumption is due to

the fact that for the specific case of the laser measurement the structure was excited
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through the aluminium block, at the corresponding composite structure's resonance

frequencies.

6.5.2 MEASUREMENT - SHAKER TEST

The last 90 mm close to one of the ends of the beam was taken as the total length for the
scanning laser line measurement (as shown in fig. 6.4). A light-weight B&K
accelerometer type 4393 was placed at one of the line ends to provide a means of
normalising the measured velocities with the laser, thus enabling a correct comparison
between laser and accelerometer quantities.The structure was initially excited with a
shaker via the exciting block over a frequency range O-800 Hz using a pseudo-random
signal and the response signals were measured either with the accelerometer or with the
laser focused on it, being the FRF processed with a B&K 2034 analyser. The two curves
are plotted together in fig. 6.5 after a differentiation of the laser measured FRF to yield

I nertance

Inertance (mod dB)

-54.8

Frequency (Hz) A

-

e.e 168.0 320.0 480.0 640.0 11

Yc/Fa Measured with accelerometer

. Yc/Fo Measured with laser

Fig. 6.5 - Measured FRFs using accelerometer and |aser

This introductory test has provided a FRF from which five natural frequencies could be
identified. At each of these frequencies, a sinusoidal excitation was applied to the
structure, and the laser beam was scanned over the entire line. At a second stage, in order

to gather data with accelerometers, pseudo-random excitations were applied to the test
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component and for each of them the FRFs were measured for different positions of the

accelerometer.

6.5.3 ESTIMATION OF MODAL MODELS

The velocity pattern for each of the modes was measured directly with the laser
equipment. However, the use of three accelerometers equi-spaced over the entire line of
measurement allows the derivation of the modal model only referred to the three equi-
spaced coordinates. The mode shapes were also derived from the theoretical model,
shown in fig. 6.6, constructed by using 30 undamped Timoshenko beam elements and a
rigid mass simulating the inertia properties of the exciting block, this being one of the

facilities available in the computer program COUPLE [70].

1 23 26 29
| i |
A

Fig. 6.6 - Theoretical model (30 undamped beam el ements)

The pattern of each mode normalised to the maximum amplitude and obtained using the

three different procedures are presented in figs. 6.7 a-€).

Each of the line data measured with the laser system has to be subsequently fitted with a
polynomial function, the degree depending on the curvature of each mode shape. In the
first mode occurring at 57 Hz the measured curve presented some ‘drop-outs’ which
could hardly be avoided using different values for the sample time and time constant in the
lock-in amplifier (this seems to be an important limitation of the equipment in the low
frequency range). The corresponding bad measured points were then rejected during the
curve-fitting process, since those responses are not expected on a continuous vibrating

structure. Two of the fitted curves for mode nos. 1 and 5 are presented in fig. 6.8.
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Fig. 6.7 - Mode shapes (90mm at the end of beam) measured with accelerometer and
|aser and derived from the theoretical model
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Polynomisl Fit w/ 4 points
Fig. 6.8 - Curve-fitting of mode1 (degree 1 polyn.) and 5 (degree 3 polyn.)

In the procedures using accelerometer data (linear FRFs), the rotational FRFs need to be
explicitly calculated and the modesidentified in order to obtain the rotational amplitudes of

the mode shapes referred to the end coordinates. The rotational FRFs related to '1\% and eﬁ
are calculated using the block and three accelerometer approaches, as shown next in

fig. 6.9 and fig. 6.10, respectively.

The amplitudes of the rotations derived from all the procedures are presented in table 6.1

and the relative errorsin graph of fig. 6.11.
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Fig. 6.9 - -LY,TFRF using three accelerometers
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Fig. 6.10 a) - -I\LAFRF using exciting block
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Fig. 6.10b) - %FRF using exciting block
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Table 6.1 - Massnormalised rotational amplitudes of the first 5 flexural modes

Modes | Freq.(Hz) Theory Laser Trans. Block
1 57 2.529 2.451 2.550 2.409
2 156 4.267 4.303 4.297 4.380
3 304 5.983 6.387 6.028 6.052
4 500 7.775 8.486 7.556 8.122
5 741 9.621 10.808 9.159 10.060

12

10 -

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5

Rotations

OSERM

trans block
Procedures

Fig. 6.11- Mass normalised rotational amplitudes of mode shapes

6.6 EXPERIMENTAL CASE STUDY |1

6.6.1 STRUCTURES No. 2 and 3 - Long Beam (LB) and Short Beam (SB)

The test structures consist of two straight steel beams shown in fig. 6.12 with a uniform
rectangular cross-section. The point rotational response of interest for each beam is
selected to be at one of the ends, which is supposed to be subsequently connected to the
other one. An aluminium block has been attached at the end of each beam to provide one
of the means for measuring the rotational responses using accelerometers, as well as to

apply the necessary torque excitation.
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! . h;_.‘s? exciting
et - block
1

Short Beam

y Long Beam Short Beam
z h L=1.485m L=0.480m
$=0.07425 m s=0.024 m

h=0.0254 m h=0.0254 m

Fig. 6.12 - Long and short test beams

6.6.2 MEASUREMENT - HAMMER TEST

In this case study a hammer excitation was selected in an attempt to obtain as consistent a
model as possible, seeking to overcome the effects of moving the additional mass of the
force transducer. The possible inconsistency is only due to the different places where the
light-weight accelerometer is attached, mainly for the higher modes. Both techniques (i)
and (ii) previously described in 6.3.1 and 6.3.2 are of interest, and at this time the
exciting-block technique was applied with the subsequent cancellation of the added mass.

The frequency ranges for each beam were selected as,

Long Beam - (O-800 Hz) encompassing 5 in-plane flexural modes

Short Beam - (O-3200 Hz) encompassing 3 in-plane flexural modes
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In order to perform a sensitivity study (mainly for technique (ii)), the first and second
order approximations to estimate the rotational properties were applied by using the
trandationa data from the accelerometers placed apart from each other by a distance s,

which quantity was varied between 5% to 20% of the total length of the two beams.

A section corresponding to the end 20% of the total length of a free-free beam is presented
next in fig. 6.13, showing the corresponding segment of the first five ideal mode shapes
derived from an analytical solution presented by Bishop and Johnson [4],

+2.17E+88

B

Thaor f/Ymo

—i.45£+00

Dietance (mn)

Fig. 6.13 - First 5 flexural modes of a free-free beam (segment
corresponding to the end 20% of total length)

6.6.3 ESTIMATION OF MODAL AND RESPONSE MODELS

The first- and second-order estimations of the Response and Modal models were

undertaken according to five procedures named and summarised in the following table;

Table 6.2 - Procedures to estimate Response and Moda models

Procedure | Name |No. PointsPDistance (d)] d/L
1 3PS 3 S 0.05
2 3P2S 3 2s 0.1
3 2PS 2 S 0.05
4 2P2S 2 2s 0.1
5 pas | 2 | as | 0.2
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One can consider two main routes to achieve the desired model whose properties are
referred to the connecting coordinates. These two routes will lead either to a Response
model to be used in a FRF coupling technique, or to a Modal model which isthe required
format subsystem data for Modal coupling techniques. From the measurement viewpoint,

the possible routes are sketched in the following diagram,

LA Data Acquisition

ey Measurement IJCVC]
Measured Coordinates
Modal Identification Row (Column) At least half
l = of FRF of FRF
MODAL model Procedures 110 5
referred to the Y
measured coordinates A o 6
Procedures 1to 5 -
H | H
A A 4c;> 45 | ve o | RESPONSE
Hey Hoe 15, Heg Model
MODAL
Model Modal Identification Impedance
Coupling
Modal MODAL
Coupling Model
Modal
Coupling

Fig. 6.14 - Possible routes to estimate the Response and M odal models
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Estimation of R Models - the Imped I

As shown in sections 6.3.2.1 and 6.3.2.2, it is possible to estimate both Hyg and Heg
from the measured translational data (which includes Hyy). By using the block approach
and the procedures presented in table 6.2 the Response model of each beam has been

estimated, whose}(/I and %FRFs are shown in figs. 6.15 to 6.17.

+00.98 +1800.80

TNERTANCE
Log Heg.
(m u/0/N)
-
INERTRANCE
Log Mag.
(m/9/8/N}

RN

-40.90 -58.8R

s.00 : Frequency M. e2! .82 8.08 Fregquency Hx. s21.9Q

—— Theory
---- procedure2
"""" Block

Hyp L ong beam Hoe

+i29.80

INCRTANCE
Log Mug.
{m/ns0/N)

1 i N I
a.08 Fregquency Hx. 3204.00

Hyg Short Beam Heg

Fig. 6.15 - Theoretical versus estimated using procedure 2 and exciting block
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Having achieved the estimation of the Response model via the previousy-mentioned
procedures, the Impedance route is terminated. Each of the models is now ready for input
into an FRF coupling process. However, a further step was taken in this work whereby
the FRFs corresponding to Hye and Hy, were identified in order to obtain the amplitudes
of the mode shape rotationa coordinate. The justification for this step relies on the need to
compare al the models in terms of the same data format. Two approaches are of interest

as described next:

a) modal identification is carried out directly on the estimated Hg,. This approach
implies the measurement of at least half the FRF matrix and, additionally it provides the

way to calculate the residual flexibility effects of the out-of-range modes. Alternatively,

b) only one row (or column) of the FRF matrix is measured, thus giving the
estimation of Hye (or HBy)° This curve must be converted to moda form before that for
H,, can be derived. This approach is suggested by Gleeson [ 17] to prevent the calculation

and use of the most likely error contaminated FRF - the H

ogr Whenever lightly-damped

structures are dealt with. The impossibility of calculating the residual effects of the out-of-
range modes on Hy, is the main drawback for the subsequent use of the modal data

The error relative to the theoretically calculated rotations are presented in figs. 6.19 and
6.20 for the long beam and figs. 6.22 and 6.23 for the short beam.

imation of M M - the M rout

In this second route, the target is assumed to be the estimation of the Modal models
referred to the end coordinates of the beam. The set of FRFs that need to be measured and
converted to modal data are those pertaining to one row (or column) of the FRF matrix in
terms of the measuring trandlational coordinates. Since those are identified, it is possible
to construct the Modal model in terms of those coordinates. Procedures 1 to 5, which are

described in section 6.6.3, allow the estimation of the final Modal models referred to the
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connecting coordinates, as well as the corresponding residua flexibility matrices

corresponding to the FRFs Hyy, Hye and Hgy which are presented in fig. 6.18.

The Modal models are compared in terms of the errors of the rotational values for each
mode relative to the analytical ones, as it is presented in fig. 6.21 for the long beam and
fig. 6.24 for the short beam. The errors relative to the theoretical value of the rigid body
rotational amplitude are separately presented in graph of fig. 6.25; the estimated values
were derived from the trandational measured ones, shown in figs. 6.26 and 6.27, by

using the same previously mentioned procedures.
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D -
le5 Frsu— —ma— ~m—— o LongyM LJ
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~~ 1
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Fin. 6.18 - Estimated residual flexibilitv values for H.a and Haa
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6.7 DISCUSSION OF RESULTS

Case-Study |

Tests have been carried out using an additional block at one end of the beam. However,
the laser measurement does not require such a block in general since there is neither the
need to apply an exciting moment nor the need to estimate the rotations from translational
responses measured on an extra block. This alleviates the task of estimating the rotational
mode shapes when compared to the exciting block technique which requires the

cancellation of the extra mass effects.

The measured segment on the beam is about 6% of its total length and only the first five
flexural modes were measured. The associated curvature for each mode makes the
polynomial curve-fitting algorithm adequate to the corresponding segment even for the
higher frequency range. That would not be the case for a longer segment which would

require a more general curve-fitting algorithm.

The possibility of using an optical means to measure the FRFs has also been tested; this
has resulted in measured FRFs whose accuracy was of the same order as the ones using
accelerometers, nevertheless exhibiting a high sensitivity to any occurring responses as
shown in fig.6.5 (some spikes occurred at the natural frequencies corresponding to the
out-of-plane motion). The FRF measurement was achieved by using the laser spot fixed
at one particular location on the structure and then feeding the velocity signal to the
analyser prior to enter the lock-in amplifier. This particular measurement has required an
extreme care when focussing the laser spot on the structure which therefore was vibrating

with alow amplitude.
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Case-Study 11

The Response models have been derived only from the measurement of trandational
responses. By converting both Hye and Hyg to the modal form it is difficult to get
accurate modal parameters, especialy for the lower range modes. It is preferable to
identify Hye curve and then calculate the corresponding rotational parameters as has been
presented by Ewins and Gleeson [24] but this cannot be extended to the identification of
the out-of-range modes. The rotational mode shapes obtained by following the presented
modal route are of the same magnitude of error as for the previous approach yet providing
a way to derive the rotationa residua flexibility values pertaining to the out-of-range

modes.

A visud inspection of the estimated FRFs Hye and Hy, reveals some common features

for both beams;

-The Hye FRFs are less noisy than the FRFs for Hy,,

- The noise on both types of FRFs tends to decrease as the frequency increases i.e., for
the higher modes the FRFs are cleaner than for the lower frequency ranges,

- As the distance s decreases, the antiresonances in the high frequency region are closer to
the ideal values; conversely, those in the low frequency range are not well defined. These
become well defined as the distance s increases, but this has the effect of shifting up the
higher antiresonances.

- It appears that there exists an optimum solution for the pair - distance s and order of
approximation - which, in both of the free-free beams, is the distance s taken as 10% of
the total length and using a second order estimation. The main features of the quality of

the estimated FRFs are outlined in the following table,

Quality of estimated FRFs
L ow-frequency High-frequency
Distances t 1 d
¥ 4 t
Order L ¥ L
2 : 3 . 3
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6.8 CONCLUSIONS

Case-Study |

The laser measurement technique can estimate very easily the rotational mode shapes
when compared to the techniques using accelerometers. Additionally, since it is possible
to measure in a quasi-continuous way the mode shape patterns over a specified length or
area on a structure, it allows more accurate calculations of the spatial derivatives, mainly
for the higher modes. This constitutes the main drawback to the data measured with
closely-spaced accelerometers since it is impracticable to obtain a precise description of

the displacement field near the connection region.

Although the results are only concerned to a very ssimple case study, it is believed that in
more complex structures involving tridimensional measurements, the laser technique will

offer the best capability - if the cost of the equipment is affordable.

There are, however, some drawbacks associated with the measurements carried out with
the laser technique. On the one hand, by estimating the rotational responses from the
displacement pattern of each mode in the frequency range of interest, there is no
possibility of calculating the residual flexibility due to the out-of-range modes; generadly,
this knowledge is important whenever the modal models are used and therefore more
modes must be measured. On the other hand, the optically-based system may be unable to
reach some important areas or points on the structure; for instance, should a shaker be
placed near the region of interest it can obstruct the directed laser beam path, or in other

cases, the point of measurement can be located at an inaccessible interior surface.

Case-Study I

The use of two or three closely-spaced accelerometers near the point of interest constitutes
a practicable alternative to the exciting-block approach which in turn, is prone to errors
when the frequency increases and the canceled mass is large compared to the mass of the

structure. It constitutes an ideal technique in the cases where the Modal models have to be
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derived, since it requires the modal identification of the measured curves rather than the
estimated ones and additionaly it allows estimation of the residual effects of the out-of-
range modes. However, the first approach is very senstive to the measurement and
excitation locations as well as to the order of the interpolation and it appears that there is
no optimum balance between those parameters over all the frequency range.
Nevertheless, there are some ideal combinations of those parameters for the low and high

frequency ranges.




7 EXPERIMENTAL CASE STUDIES

7.1 INTRODUCTION

In this chapter, both the Impedance and Modal coupling techniques will be applied to a
number of case studies. Not only the coupling techniques themselves are of concern but
also the auxiliary mathematica and experimental tools which were discussed and

presented in chapter 5 and 6.

The first part of this chapter is devoted mainly to the application of the refined Modal
coupling technique presented in chapter 4, which enables the residual flexibility valuesto
be included in the coupling process, to an experimental case study. This first case study
deals with a real structure formed of two components and assesses the refined technique
in the presence of areal practical problem where measured data are used to derive both
subsystem models showing the significance and facility of the refinement. The
experimentally-derived derived models of each component also give evidence of the
critical problem of numerical failure caused by redundancy in terms of the connection
coordinates, mainly when the classical approach is used, demonstrating the usefulness of
the mathematical tools presented in chapter 5. Additionally, the mathematical formulation
of the constraint equations using the connection displacements (and rotations) and forces
(and moments) requires the measurement of rotational quantities in most cases. This
example shows that in some situations there is no need to calcul ate those values explicitly,

provided the interface region exhibits a reasonable stiffness over the frequency range of
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interest and at least two points can be chosen a considerable distance apart from each

other.

The need to calculate rotational responses in certain beam-like structures in order to fulfil
the proper constraint conditions at the connecting region, is revealed by the second case
study where an assembly of two straight beams is dealt with. These components have
already been investigated in chapter 6 where different procedures were used to estimate
the necessary rotational quantities. These rotational data are used in the present chapter in
order to construct a variety of Response and Modal models for both beam components
which are subsequently input either to a FRF or to aModal coupling procedure. The final
results for the assembled beam predicted by both coupling techniques are then compared

with each other.

7.2. EXPERIMENTAL CASE STUDY |

7.2.1 INTRODUCTION

A real structure was taken at this stage in order to test the ability of the refined approach
when only measured data are available to derive the Modal models for each component.
At the time each modal model is derived for a component, additional information is linked
to it - the residual flexibility of the out-of-range modes - and this is expressed as a matrix
whose elements are referred to the connection coordinates. The dynamic response of the
assembled structure is predicted using both of the two approaches: the classical free-
interface method and the refined approach which includes the residual information via an

interconnecting elastic system (chapter 4, vidé section 4.2.2).




peri mental Case Studies 189

7.2.2 TEST STRUCTURE

The complete structure for which dynamic properties are to be predicted is formed of the

two components shown in figures 7.1 and 7.2 - a curved frame and an |-section beam.

| Substructure A - Curved Frame

Fig. 7.1 - Curved frame

Substructure B - B e am

Fig. 7.2 - I-section beam
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Component A is a physical representation of a curved frame, to which an I-section beam -
designated here as component B - is attached to form the complete structure C represented

in fig. 7.3.

| Coupled Structure : Curved Frame + Beam

This structure C has aready been tested in an earlier investigation into the Receptance
coupling methods [90,91]. At that time, the assumed set of connection coordinates
between the two physical models was referred to just one point possessing three degrees
of freedom (only the in-plane of symmetry response was considered) - two linear
coordinates and a rotational coordinate. The Impedance Coupling method was used by

assembling the respective measured FRFs for each component [62,70].
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An aternative set of connection coordinates is used in the present work, constituting a
statically determinate set of linear coordinates - 2 coordinates at the lower connection
points (point 2 in component A and point 5 in component B) and 1 coordinate at the upper

connection points (point 1 in component A and point 4 in component B).

The particular geometry configuration in the connecting region for both components
necessarily led to the use of small aluminium cubes for measuring each point linear
response in the two perpendicular directions. These blocks were attached to the measuring
connecting points of both subsystems in such away that made both subsystem coordinate
systems coincide with each other and thus with the global coordinate system. This ssmple
assumption taken at this stage results in less time-consuming subsequent matrix

operations in the input data for the coupling process.

723 MEASUREMENT CONSIDERATIONS

Both substructures possess planes of symmetry which coincide when the two
components are linked together as intended. Thus, the whole structure still possesses a

plane of symmetry and its dynamic response may be classified as:

- in-plane vibrations excited by in-plane force excitation,

- out-of -plane vibrations for al other cases.

Some introductory tests were carried out on both freely-simulated supported substructures
in order to gain a general insight into their dynamic responses. As a consequence, two

main simplifications were made for the subsequent work:

(i) both substructures exhibit a dynamic behaviour which can be assumed to resulting
from linear and lightly-damped structures. The damping effect can then be neglected in the

identification and modelling stages,
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(i) only the in-plane dynamic response needs to be investigated. The modal density in the
frequency range of interest for each component is smaller than for the out-of-plane case
and the in-plane modes are well separated. The selected frequency ranges for each

component are:

Component A - Curved Frame 0- 800 Hz encompassing 9 in-plane modes
( 3 rigid-body modes + 6 flexural modes)

Component B - Beam 0- 1600 Hz encompassing 5 in-plane modes
( 3 rigid-body modes + 2 flexural modes)

7.24 EXPERIMENTAL SET-UP

The response (acceleration) at the selected points and directions of each component was
measured using B&K (type 4393) lightweight piezoelectric accelerometers which were
attached to the structure by using beeswax. According to the standard rules provided by
the manufacturer this type of accelerometer can be assumed as having a negligible mass-
loading effect on the structures and the method of attachment was reasonable for the

frequency range of interest of each component [92].
Each substructure was excited in two different ways:
(i) in the introductory tests, an impulse excitation was applied by using a hammer; and

(i1) in order to measure more accurate data for the identification stage of each subsystem, a
pseudo-random excitation was chosen to drive a shaker in each selected frequency range;
the shaker was connected via a push-rod to a B& K type 8200 force transducer attached to
the measuring point on the structure. The command signal was supplied by a B&K 2034

analyser which also performed the FFT to each measured ratio accel eration/force.




Experimental Case Studies 193

All the measured FRFs were stored using an HP series 900 microcomputer, this also
being used to run the identification program AUTOIDENT [71], which is a modal

parameter estimation algorithm appropriate for the responses of lightly-damped structures.

7.2.5 MEASUREMENT AND MODELLING

Both substructures have a plane of symmetry (Oxy), this being the only plane of

measurement for the responses and excitation forces.

7.2.5.1 RIGID-BODY PROPERTIES

Both components are supported in a simulated freely-supported condition. The necessary
rigid-body properties - namely, the mass and the principal moment of inertia l,, - were
first estimated before the modal test took place. The first estimation of the location of the
centre of gravity was made by supporting each subsystem twice from two different points
located on the plane of symmetry. The cross point between the two vertical lines passing

through each suspension point gives the location of the centre of gravity.

The compound pendulum technique was used to determine an approximate value for the
principal moment of inertia, |,. By hanging each structure in such away that only makes
possible the rigid-body rotational motion along its plane of symmetry, the measured
natural frequency of such a single DoF system is related to the value of its principal
moment of inertia. The geometric characteristics and the theoretical rigid-body modes
(calculated according to the theory presented in Appendix IV) are presented in tables 7.1

and 7.2 for the curved frame and in tables 7.3 and 7.4 for the |-section beam.
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Compopent A - Curved Frame

-

|

I Substructure A Curved Frame I

y
r 4

Fig. 7.4- Curved Frame loca coordinate

system

Table7.1 - Geometric and I nertia characteristics
of Curved Frame

Point Coord. X Coord. Y
1 0.086 0.380
2 0.125 0.289
C.G. 0.090 0.296
3 0 0
4 0 0.846
5 [ 0338 | 0

Mass = 38.41 Kg. I,= 3.46 Kg m?

Mass Normalised Rigid-Body Modes

Table 7.2 - Curved Frame Rigid-Body mode shapes

Coord. | Transl. x Transl. y | Rotation 6
1X 0.161 0 -0.04516
1Y 0 0.161 -0.00215
2X 0.161 0 0.00376
2Y 0 0.161 0.01892
3X 0.161 0 0.1591
3Y 0 0.161 -0.04838
4X 0.161 0 -0.2957
4Y 0 0.161 -0.04838
5X 0.161 0 0.1591
SY 0 0.161 0.1333
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Component B- | ion B

ISubstructure B- Beam I

Fig. 7.5 - I-Section Beam local coordinate system

Table 7.3 - Geometric and Inertia characteristics of Beam

Point Coord. X Coord. Y
1 0.685 -0.005
2 0.493 0
3 0.330 0
C.G. 0.323 -0.021
4 0 0
5 0.023 -0.09

| Mass = 2.2 Kg. I,=0.09Kg m?2 I

Table 7.4 - 1-section Beam Rigid-Body mode shapes

Coord. | Trand. x | Trand. x | Rotation 6
1x 0.674 0 -0.05
1Y 0 0.674 1.207
2X 0.674 0 -0.067
2Y 0 0.674 -0.577
3X 0.674 0 -0.067
3Y 0 0.674 -0.023
4X 0.674 0 -0.067
4Y 0 0.674 -1.077
5X 0.674 0 0.233
5Y 0 0.674 -1.000
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7.25.2 SUBSYSTEM MODELLING

Two groups of coordinates have been selected for each component: the first group
contains all the connection coordinates and the second group consists of the remaining or
interior ones. The size of this latter group depends on the definition required for the
system mode shapes, while the number of connection coordinates depends on the local

connecting area and the associated stiffness propertiesin each component.

For the modelling stage of each component i.e., the construction of the respective Modal
models, an excitation is generally applied at one of the coordinates while all the necessary
FRFs sharing the same excitation point are measured, in order to obtain one column in the
Inertance matrix [ 1]. In this particular case study, the substructure’s Modal models will be
further used in the coupling stage with different approaches, one of which requires
knowledge of the residua effects of the higher unmeasured modes. For this purpose, the
excitation also needs to be applied at al the connection coordinates in order to measure the
corresponding FRFs (in fact, the pairs of values referred to the connection coordinate
response / connection excitation) which, after an identification procedure, will give the
necessary residual information of the unmeasured modes. Since this extra excitation had
to be applied to each component, it was decided to take advantage of this by measuring
not only the FRFs related to connection coordinates, but also those related to the interior
ones. In doing so, extra Modal models could be derived (in fact other columns in
Inertance matrix are used) and there was a possibility of correlating different models in

order to check their consistency and validity.
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7.2.5.2.1 CURVED FRAME MODELLING

Fig. 7.6 shows the different cases for the pseudo-random excitation applied to the curved

frame and the respective measured responses at various stations with the associated sign

for each transducer and the related pair of response / excitation.

F
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2Y |+ | aY
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34 TXTFI2X
5 Y [+ [2X
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Fig. 7.6 - Curved frame excitation and measurement locations
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Figs. 7.7 ab,c) show some measured FRFs on the curved frame over the frequency
range O-800 Hz, which encompasses natura frequencies corresponding to the first six
elastic in-plane modes. The particular FRF presented in fig. 7.7 a) will be mentioned later
as the FRF of the unmodified curved frame when a comparison is made with the predicted

FRF of the curved frame with the beam attached to it.

The Modal model presented in table 7.5 is derived from the identified modal parameters
pertaining to the measured FRFs sharing a common excitation point (coordinate 5). As
mentioned earlier, the excitation has also been applied to the two connecting points (3
coordinates), thus measuring 5 FRFs which were subsequently subjected to a modal
identification stage with a suitable computer program [71], mainly to extract the modal
parameters related to the out-of-range modes. These five modal parameters were then
used, as presented in Appendix 1, to construct half the residual flexibility matrix which
simulates the dummy flexible system at the interface coordinates and is assumed to be

symmetric ;

Experimental Residuals - Curved Frame

2.7244E-09 4.0108E-10 2.3027E-10
[R"i =| 4.0108E-10 2.7858E-09 0 1

2.3027E-10 0 5.2771E-10

Stiffness matrix of the dummy connecting system - Curved frame

3.8969E08 -5.6105E07 -1.7005E08
-1
[ch]=[Rcc] =| -5.6105E07 3.6704E08 2.4482E07

-1.7005E08 2.4482E07 1.9692E09
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!

2

3

4

5

6

T 1T L E == HAXIX HAXTY HAX2X HAXZY HAXAX HeXAY HAXSX HAXSY Rig.Body Mode

§ =3

FILE Nawe--)) NDU_HULLAX:,700,t

Coord. = 8 Modes = 9

{ 2 3

+1,6135E-01 40, 00006 +00  +4,66B4E-02 +7.4957E-02

4

S [ 7 8

9

+6.6660E-02 -2, 5576E-01 +4.4189E-02 -3, 6B29E-02 -3, 04B1E~02

+0.0000E+00 +1.6133E-01 ~1. 4374E-02 ~6.IS47E-0F +8.2987E-03 -5.4069E-02 +2,5836E-02 -4.5021E-02 ~1.0441E-02

+1.6135E-01 +0.0000E400 -2,9422E-03 +6.5042E-02 +4.501BE-02 ~2.5380E-01 +2.426BE-02 -5, T457E-02 -3,9896E-02

+0,0000E+00 +1,6135E-01 -1.7085€-02

-2.3757E~03 +1.1042E-02 -4.5644E-02 +2,3B7TE-02 -4, 4445E-02 ~7,8362E-03

+1.6135E-01 +0,0000E+00 +2.8828E-01 +B.3555E-07 +1,0034E-01 +2,700BE-01 +3.5040E-02 +9.T129E-02 +9.0400E-02

+0.0000E400 +1,6135E-01 +7.9434E-02 +9.B318E-03 +2.8431E-02 +4.9377E-03 +3.9589E-02 -2, S145E-03 +2.91726-02

Eigenvalues

1.000£-08
1.000E-06
3.9486-07
2.107E+06
3. 2296405
4.351E406
1.13BE407
1.450E407
1. B74E+0T7

Natural Frequencies

1.5926-05 H2
1.592E-04 Kz
1 .000E-04 Hx
2.310E402 H z
2. BAOE+02 Hz
3.320E¢02 Hz
S.370E402 Hz
4.080E+02 H 2
6.890E402 Hz

T +1.6135E-01 +0.0000E+00 -1.479BE-01 +3.1666E-02 +2,B469E-07 +4,552BE-02 -3.31056-03 -5.3637E-03 -2.29B5£-(2

8 +0.0000E+0¢ +1,6132E-01 -1,2306E-0! -3.0876E-02 #35.6457E-01 +3.9231E-03 -6.1219E-02 +1,2892E-03 -4, 3673E-C1

Table 7.5 - Experimentally-derived Curved Frame Moda Model




peri mental Case Studies 201

7.2.5.2.2 BEAM MODELLING

In fig. 7.8, the different cases for the pseudo-random excitation applied to the beam are
shown together with the respective measured responses at various stations with the

associated sign for each transducer and the related pair of response / excitation.
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5Y{ - 11X - + 5Y|- J1Y | - +
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22X + §4X | + + 2X] + 4Y] - -
2Y| + J4X | + + 2Y) + 14Y] - -
AX| = aX = 4X} - 14Y] - +
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SX| =X )= 5X| - F5Y| + -
SY| - I5X] + - SY | =:FS5Y i+ Fa

Fig. 7.8 - Beam excitations and measurement locations
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Figs. 7.9 ab,c) show some of the measured FRFs on the beam over the frequency range
0-1600 Hz, which encompasses the natural frequencies corresponding to the fiit two in-
plane bending modes. The particular FRF presented in fig. 7.9 a@) will be mentioned later
as the FRF of the unmodified beam when a comparison is made with the predicted FRF

of the beam with the curved frame attached to it.

The Modal model presented in table 7.6 is derived from the identified modal parameters
pertaining to the measured FRFs sharing a same excitation point (coordinate 6).
Identically to the curved frame, the out-of-range modes were also identified in order to

construct the corresponding residual flexibility matrix presented next;

Experimental Residuals - Beam

4.4053E-9 0 0
[Rcc] =[ 0 5.8985E-9 0 1
0 0 1.0214E-8

Stiffness matrix of the dummy connecting system - Beam

r 2.2700E08 0 0
-1
[ch]= [Rw] = 0 1.6953E08 0

0 0 9.7903E07
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TITLE -->)BIYAX BIV4Y BIYSY BIYSY BIYIX BiYiY BIYIX BiY2Yy BIYIX BiYC6E
Rig.Body Nodes = 3

FILE Name -->)> NDU_BEAMIY:,700,1

Coord. = 10 Modes = §

t 2 3 4 5
1 +6.7420E-01 +0,0000E+00 -7.2334E-02 +1,0079E-01 -1.7597€-01
2 +0.0000E+00 +6.7420E-01 -1.0381E+00 +8.6B37E-01 -7.2826E-01
3 +6.7420E-01 40.0000E+00 +2.2565E-01 -3.7401E-01 +4,1095E-01
4 +0.0000E+00 +6.7420E~01 -9.9127E-01 +7.6243E-01 ~6. 1402E-01

+6.742CE-01 +0,0000E400 -7.3704E-02 ~1.6923E-03 ~4,9722E-02

(4,

+0.0000E+09 +5,7420E-01 +1.2019E+400 +1,5073E400 +1,312BE+00

[o2)

7 +6.7420E-01 +0.0000E400 -7.3701E-02 -1.6923E-03 -4.9722E-02
8 +0.0000E+00 +&,7420E-01 +4.1161E-01 -8.0720E-01 -5.3387E-01
9 +4.7420E-01 +0.0000E+00 -7.3701E-02 -1.6923E-03 -4.9722E-02

10 +0.0000E+00 +6.7420E-01 +2,4994E~03 -7.2036E-01 +6.5777E-01

Eigenvalues Natural Frequencies
{.000E-08 1.992€-05 Hz
§.000E-06 1.592E-04 H2
3.948E-07 [.000E-04 Hz
6.572E40¢6 4,080E+02 Hz
6.268E+407 1.260E403 Hz

Table 7.6 - Experimentally-derived Beam Modal Model
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7.26 RESULTS

The actual substructures are connected together to form the complete assembly. From an
experimental standpoint, the complete structure was tested following the same steps as
those utilized during the subsystem identification and modelling stages. The final result of
these tests is a description of the dynamic properties based on either aModa or Response
model. These dynamic properties will be taken as the reference values for the purposes of
comparison with the predicted dynamic behaviour resulting from the use of the classical

and the refined coupling approaches.

Both these approaches are applied in the present case study for each of two different
situations. First, a statically determinate set of connection coordinates is used to formulate
the constraint conditions in the interface region - 1 vertical and 2 horizontal coordinates as
described in section 7.2.2. Next, another vertical coordinate is added to the previous set
making the subsystems constrained in the X and Y direction at both connecting points
(areas). Some of the measured FRFs are compared with the predicted responses as shown
in figs. 7.11 ab) ab to 7.14 ab). The experimentally-derived modal model is shown in

table 7.14 and the corresponding mode shapes are sketched in figs. 7.10 a) and b).

The degree of importance of each subsystem’s residua flexibility effects on the dynamic
properties of the assembled structure may be seen in figs. 7.14 ab) to 7.16 ab). Starting
from the omission of the residua flexibility effect for both the components (in fact,
utilizing the classical free-interface method with rigid connections between the
substructures), the residual flexibility is then gradually taken into account up to the
maximum of 100%. This could be visudised as though the components had been
connected through a intermediate elastic system which at the begining was very stiff and
then was made progressively more compliant. For each percentage value for the residual,
the Modal model of the global structure is calculated and then the mode shapes may be
animated by using an appropriate computer program [94] and some of the corresponding
sketches are shown in figs. 7.18 to 7.21. These mode shapes are presented mainly to

show the evolution of the predicted natural frequencies and mode shapes of the assembled
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structure when the flexibility of the dummy interconnecting system varies from zero to the

full correct value.

The refined approach alows the inclusion of any percentage of residua effects. If this
value is too small, the predicted results ought to be similar to those obtained by using the
classica free-interface method. Tables 7.11 and 7.12 show the natural frequencies
predicted by the different approaches and making use of both sets of interface

coordinates.

7.27 DISCUSSION OF RESULTS

Two sets of connecting coordinates and two coupling approaches were used to predict the
dynamic behaviour of the assembled structure which is formed of two components
connected (glued with a hard adhesive) by a small area - the tip cross-section of the beam.
The first attempt to model this connecting area, which behaves almost rigidly over the
measured frequency range O-1600 Hz, was undertaken by assuming only two connecting
points, separated by a distance equal the height of the corresponding cross-section of the
beam. Two coordinates were selected at the top point and only one horizontal coordinate
was assumed for the lower point. This set was believed to express the transmission of
horizontal and vertical forces and a moment between the two components. In fact, as seen
in figs. 7.11 b) and 7.12 b), the predicted results using the refined approach are in good
agreement with the measured ones apart from a small discrepancy in the natural frequency
of the fifth flexural mode. A careful analysis of the mode shapes of the assembled
structure obtained from measured data, shown in figs. 7.10 a) and b), reveals that the first
and fifth flexural mode shapes correspond to two extra natural frequencies added to the
curved frame when the beam is attached to it, whereas the original natural frequencies are
virtually unchanged due to being 17.5 times heavier than the beam (see origina and
modified FRFs of curved frame in fig. 7.22). At these extra natural frequencies, the beam
behaves in a nearly-clamped condition: thus, they correspond closely to the first and

second bending modes and the curved frame is acting as if it was arigid body attached to




m Experimental Case Studies 207

the beam. Since the clamping conditions of a vibrating beam play an important role on its
dynamic properties, it was decided to improve the formulation of the connection
conditions between the curved frame and the beam. This was achieved by introducing an
extravertical constraint between the two lower connection points, thus using 4 connection
coordinates. Surprisingly, the classicad Moda coupling approach (vide chapter 2,
section 2.3.3.2) predicted unredlistic results, as shown in figs. 7.13 a) and 7.14 a), and
the refined approach (vide chapter 4, section 4.2.2) predicted similar results, as shown in
figs. 7.13 b) and 7.14 b), to those obtained by the previously used connecting conditions.
Naturally, there was a reason for that failure and afirst attempt to explain it was linked to
any numerical failure of the coupling algorithm, since in physical terms the constraint
conditions should have provided a closer representation of those existing in the assembled
structure. The mathematical tools presented in chapter 5 were used to detect any
redundancy in the interface region which could have caused a failure in the required
inversion of a square partition of the modal matrix for one of the components. The results
of this analysis are presented in table 7.7 and 7.8 and it is shown that there is a local
rigidity between the vertical coordinates in both components, especialy for the beam. In
such a case, the SV D technique (vide chapter 5) should be used to avoid numerical failure
of the inversion of the selected matrix or, aternatively, another partition containing most
of the higher mode shapes can be chosen since the dependency is less likely to happen.
However, upon the use of redundant connecting coordinates and as mentioned before, the
refined approach has not caused any numerical failure mainly due to the fact that the
inversion required at some stage is applied to a matrix obtained by adding in series the
two dummy flexible components containing the out-of-range information and thisis less

susceptible to be singular.
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7.2.8 CONCLUSIONS

The residua flexibility effects of the out-of-range modes associated with each component

play an important role in the prediction of the dynamic response of a coupled structure.

The results from the case study show that the degree of importance of each residua
flexibility effect is associated with the relative mass of each component - the lighter the

component the more important becomes its residual flexibility.

In the present case study, one of the components - the curved frame - possesses a mass
some 17.5 times greater the other (the beam). The natural frequencies of the coupled
structure in the selected frequency range (O-800 Hz) are mainly formed of those pertaining
to the origina curved frame but, additionaly, two other modes are seen. These two
modes are related to the dynamic behaviour of the beam as if it was assumed nearly
clamped at the connection end. One can say that the curved frame has drastically modified
the dynamic characteristics of the beam whereas this component only has dightly affected

the curved frame properties.

The use of a redundant set of connecting coordinates needs a careful analysis of the
possible numerical difficulties during the coupling process, especialy in the classical free-

interface method.
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Table 7.7 - SVD technique on partition of modal matrix of Curved Frame

1.614E-1 0.000E00 4.668E-2 7.496E-2 6.666E-2 -2.558E-1 4.419E-2 -5.683E-2 -3.048E-2
0.000E00 1.614E-1 -1.437E-2 -6.355E-3 8.299E-3 -5.407E-2 2.584E-2 -4.502E-2 -1.044E-2
1.614E-1 0.000E00 -2.942E-3 6.504E-2 4.502E-2 -2.538E-1 2.427E-2 -5.750E-2 -3.990E-2
0.000E00 1.614E-1 -1.706E-2 -2.376E-3 1.104E-2 -4.566E-2 2.388E-2 -4.444E-2 -7.836E-3

Matrices [U] and [V] from SVD on matrix [(D]T

-4.788E-1 1.991E-1 1.127E-1 -3.323E-1 "]
-1.015E-1 -9.411E-1 -7.224E-2 -1.036E-1
-5.635E-2 1.212E-1 -8.333E-1 2.789E-1
-2.052E-1 1.124E-1 -1.202E-1 -6.011E-1
[Ul =] -1.723E-1 1.362E-2 -3.385E-1 -4.374E-1
x4 7.876E-1 -2.370E-2 -1.218E-1 -4.156E-1
-1.178E-1 -1.017E-1 -3.307E-1 1411E-1
1.978E-1 1.904E-1 -3.141E-2 7.977E-2

— |.IOOE-1 1.035E-2 -1.829E-1-2.224E-1 =

™ -7.037E-1 1.583E-1 -6.926E-1 -5.969E-3
yi | ISMED 692E1 $7S0E3 7.051E-1
[ ]4x4 T|  6795E-1 1.344E-1 7.212E-1 -6.621E-3
L _1.400E-1 -6.911E-1 -9.606E-3 -7.090E-1 |

Singular values.................... 466E1, 2.372E-1, 4.100E-2, 6.113E-3
Condition Number.............. 76.244

Horizontal norm.................. 0.609

Vertical norm..................... 0797

Threshold ... 10E-2x Vertical norm = 0.00737

Rank ..o, 4

Check on dependency gives columns ordered as........ 3,1, 4,2



peri mental Case Studies 210

Table 7.8 - SVD techniqgue applied on partition of modal matrix of Beam

6.742E-1 0.000E00 -7.254E-2 1.008E-1 -1.760E-1
0.000E00 6.742E-1 -1.058E00 8.684E-1 -7.283E-1
[q§_4x5 “|  6.742E-1 0.000E00 2.257E-1 -3.740E-1 4.110E-1
0.000E00 6.742E-1 -9.913E-1 7.624E-1 -6.140E-1

Matrices [U] and [V] from SVD on matrix [(I)]T

[~ 4.923E-2 9.856E-1 -1.552E-1 4.382E-2
-3.926E-1 1.290E-1 6.170E-1 -4.061E-1

Uy = 6.216E-1 -7.853E-2 -2.918E-1 -1.391E-1
4
5 -5.156E-1 -5.268E-2 -2.788E-1 6.638E-1
- 4.372E-1 5.441E-2 6.576E-1 6.110E-1
I‘ -5.978E-2 6.834E-1 -7.145E-1 -1.372E-1
v -7.169E-1 8.835E-2 1.172E-2 6.915E-1
[ ]4X4_ 2.318E-1 7.184E-1 6.413E-1 1376E-1
-6.548E-1 9.518E-2 2.794E-1 -6.958E-1
Singular values............... . 2356, 9.589E-1, 3.181E-1, 7.082E-3
Condition Number............. .332.606
Horizontal norm.................. 2.347
Vertical norm.........cccceueeeee 3.329
Threshold ..o 10E-2 x Vertical norm = 0.03329
Rank ... 3

Check on dependency gives columns ordered as ....... .1,3,2,4
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Experimental Case Studies 213

o
el
el
o]
E
o
&)
[ = :
© o
+ i
o 7
c =
! !
-*
!
1
-
i
-
r Frequency (Hz) +
-70. 0@ ' : : '
0.0 160.0 320.0 480.0 640.0 800
-—-- Measured
— hedicted without Residuals
Fig. 7.11 @) - " Curved Frame + Beam” Direct Inertance (10-10)
(3 connection coordinates)
78. 82" T T T T )
=
© i
o 42.08-
O
E
5 14.80-
c 1]
©
-+
|
m .
5 —14.82;.,‘
[
t.
-42 BB}-’
| .
F Frequency (Hz)
-70. 00 . + . :
0.0 160.0 320.0 480.0 640.0 800
- - - - Measured

— predicted withResiduals

Fig.7.11b)- ~ Curved Frame + Beam™_ Direct Tnertance (10-1U)
(3 connection coordinates)




m Experimental Case Studies 214

40.08 : . ; . ,
L Jd
= i d
° ! !
o 18. 0@~ -
£ : J,
o -4.P0- .
c \
[} ‘\ -
+ X L e,
“ \ [ | U 1 N A R N A\ IS N SN Y B S ~
[:§] k*—‘\ \_\ .
S —26.08¢ ATAYA
i \ ) -
i
r i
-48.00- .
B Frequency (Hz) -
-70.e8 1 1 ) 1 i
8.0 162.9 328.02 480.8 640.0 gee
-~ -~ Measured
—— predicted without Residuals
Fig. 7.12a) -~ Curved Frame + Beam™ Direct [nertance (5-9)
(3 connection coordinates)
40, DG T !
L -
2} ';
- 18.008- -
[=} -
= |
2 \
c ) i
© S
- e, |
| & ‘~..-3
c 3
S |
|
i
- 1
- Frequency (Hz) 1
_79.e 1 d ] - | ‘
B.0 160.0 320.0 480.0 640.0 800
- = - - Measured

~——— Predicted with Residuals

Fig. 7.12b)- - Curved Frame + Beam’ DIrect Inertance (5-5)
(3 connection coordinates)




Experimental Case Studies 215

78.80
@
O
©
=]
E
Q
8]
j =
~
4+
[
V]
=
Frequency (Hz) -}
320.0 480.0 640.0 800
---- Measured
— Predicted without Residuals
Fig. 7.13 a) - "Curved Frame + Beam" Direct Inertance (10-10)
(4 connection coordinates)
@
©
©
o]
E
Q
&)
[
~
-~
1 98
(]
=

Frequency (Hz)

L

320.0 480.0 640.0 800.

- -~ - Measured
—— Predicted with Residuals

Fig. 7.13 b) - "Curved Frame + Beam” Direct Inertance (10- 10)
(4 connection coordinates)




Experimental Case Studies

216

48.00r T - - -
~ . -
S 3 i L
) 18.88" :'.' =
2 - i -
E 1 i ‘
5  -4.00- ' Wi ;
c R -, Y IS 4
© S I I N : " i g
-+ HQ ] ey, 4 H .
S 2‘\ H o p H .
Q ' P S
L -26.80 i 1
| 1
-48.80- -
Frequency (Hz) -
-70.00 . : — —
2.8 162.9 320.8 482.0 £40.0 820
---- Measured
—— predicted without Residuals
Fig. 7.14 @) - " Curved Frame + Beam™ Direct Inertance (5-5)
(4 connection coordinates)
4B.zzr T T 1 T 1
= L
© ;
- 18.80-
o .
E :
5 _4.08
c
~
-+
|
(Y] "‘
5 -26.00 A
<
i
1
-48.008- -
{
r 7
- . Freguency -
“78.@@‘ 11 1 1 ) b
> 2.0 160.0 320.8 480.8 640.0 BEO.
- - -~ Measured

—— Predicted with Residuals

Fig. /.14 b) - " Curved Frame + Beam™ Direct Inertance (9-5)
(4 connection  coordinates)




7 Experimental Case Studies 217

3 Connecting Coordinates

[— L L3 ] 4 | 5 1 & | A
Measured 149 231 286 313 512 537 603 688
Residual 100 % | 145.4 229.7 284.6 311.9 488.2 536.9 604.2 688.3
relative error -2.42 -0.56 -0.49 -0.35 -4.65 -0.02 0.2 0.04
Residual 1 % 177.35 | 229.8 284.7 312.5 8225 536 603.4 687.7
relative error 19.03 -0.52 -0.45 -0.16 60.64 -0.19 -0.07 -0.04
No Residuals 177.7 229.8 284.7 312.5 828.7 536 603.4 687.8
relative error 19.26 -0.52 -0.45 -0.16 61.85 -0.19 -0.07 -0.03

Table 7.9 - Natural frequencies predicted using 3 coordinates

4 Connecting Coordinates

Measured 149 231 286 313 512 537 603 688

Residual 100 % | 144.1 229.8 284.6 311.9 481.82 | 536.9 604.1 688.3

relative error -3.29 -0.52 -0.49 -0.35 --5.89 -0.02 0.18 0.04

Residual 1 % 177.3 236.8 289.7 334.9 828.2 536.9 603.4 690.

relative error 18.99 2.51 1.29 6.99 61.76 -0.02 0.07 0.29

No Residuals 146.89 | 177.7 249.9 294.5 761.46 | 526.9 602.2 645.4

relative error -1.42 ] --23.1 -12.62 -5.91 48.72 -1.88 -0.13 -6.19

Table 7.10 - Natural frequencies predicted using 4 coordinates
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Fig. 7.15 b) - Curved frame residua effect on modes56 7 8
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350 - Beam Residual Effect
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TITLE -=>CurvedFrame t | Besa(No Residuals)
FILE Name -->)NDU_HBI4NR: 702
Coord. = 14  NModes =1}

1 2 3 4 5 b 7 8 9 10 11

1 +1.57E-01 -4,27E-02 ¢5.57E-29 +4.86E-03 +B.14E-02 +9,31E-02 ~2.0BE-01 ¢3.47E-02 ~4.3bE-02 -2.27E-02 -7.45E-03
2 -A50E-20 +4,30E-03 ¢1.57E-0] -2.24E-02 -4.58E-07 ¢1,59E-0Z -4.88E-02 +2.53E-02 -4,06E-C2 -6.79E-03 +1.53E-02
3 +1,57E-01 +4.59E-03 -6.65E-30 -5.43E-03 +7.09E-02 47,20E-02 ~2,12E-01 +§,556-02 -4, 46E-02 -3, 1BE-02 +2.56E-04
4 -AATE-20 +b,87E-03 +1.57E-01 -2.36E-02 -9,94E-04 +1.72E-02 -4,02E-02 «2.37E-02 -4,03E-02 -4,J4E-03 +1.526-02
5 41.57E-01 -2,73E-01 43,62E-28 «5.62E-02 +6.97E-02 +5.226-02 +2,91E-01 +3,58E-02 +B.99E-02 +8.20E-02 -5.06E-C2
6 -7.02E-20 -B,52E-02 +1.57E-01 -2,25E-03 +9,74E-03 +2.6BE-02 +1.24E-02 +3,93E-02 -1, 26E-04 +2,99E-02 -9.20E-04

7 41.57E-01 +1.43E-01 -§.BTE-28 -4,20E-02 +2.41E-02 +1.53E-02 +5.92E-02 -3.19E-03 -3.95E-03 -2.13E-02 +1.34E-02

-

8 -1.3BE~20 +1.08E-0I +1.57€-01 -7,89E-02 -2.81E-02 +5.53E-01 +9,78E-02 -B.25E-02 -5.6BE-C3 -£.326-01 +4,53E-02
9 +1,57E-01-4,29E-02 +4,238-29 -4, 356~02 47, 56E-02 46.62E-02 -2. 12801  +3.06E-07 -A.56E-0Z -2.51E-C2 -6.BIE-04
10 45.37E-20 ¢3,556-01 «{.576-01 41 73E400 1 43E-01 ¢1,35E-01 +7,3BE~02 47,26E-07 ¢6.58E-C7 ¢9,44E-02  +1,53E+0C
11 ¢1.5TE-08 -4, 29E-02 +4,23E-29 -4,35E-02 +7.56E-07 +B.4ZE-02 -2.128-01 +3.08E-07 -4.56E-07 -Z.51E-07 -6.E1E-04
L2 ¢1,84E-20 +2,30E-01 +1.57E-01 ¢3,26E-01 -4.B4E-03 ~3,026-02 -2.86E~02 -5, 06E-02 -5,56E-02 -7, 498007 -*. 14E+O0
L3 41,57€-01 -4,29E-02 ¢4, 23E-29 -4.35E-02 +7.56E-02 +B.62E-02 -2.12E-03 +3.06E-0F -4, 56E-02 -2.54E-07  -&,BIE-CA

1 4 41,1ZE-22 +1,65E-01 1.57E-01 +1,54E-02 -2, 7BE-02 -4.42E-02 -4.63E~02 -4.09E-C2 -4.87E-0Z -4.60E-G2 ~3.11E-01

Eigenvalues Natural Frequencies
1. OOCE~08 1.592E-0% H:
4, 215807 1.046E-04 H:
1.000E-06 1.592€-04 H:
\6 1. 247E+06 | TITE02 Hi
— 5 2.085E+0b 2.298E402 H i
3. 200£+04 2.BATE(2 Hz
3. 854E+04 31256402 H 2
2 14 12 }P 1.134E407 5.360E402 H:
13 11 _9) 1.437€+07 $.034E402 H 2
‘ 1.867E+07 6.B78BE402 H i
2.711E+07 8.287E+02 H:
7

Table 7.11 - “ Curved Frame + Beam” Predicted Moda Matrix without Residuals
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TITLE =->>Curved Frase + I Beas{Experisental Residuals)
FILE Nase-->>MDU_HBI4RR: 702
Coord, = 14 MNodes = 14

1 2 3 4 5 b 7 8 9 10 i
1-L57TE-01 @  4.2BE-02 #1.126-05+9.79E-03 ¢B. 15E-02+9, 3TE-02-2. 06E-01-1, 37E-02+3. 68E-02-3. 96E-02-2, 06E-02
2 +1.826-06 -4, 31E-03 +1.5TE-01 -2.76E-02 ~4.23E-03 +1.60E-02 ~4,BEE-02 4213602 ¢2,27E-02 -4, 226-02 ~B. S1E-03
3 ~157E-01 ~A.506-03 +1.04E-05 ~2.73E-03 +7.126-02 +7.28E-02 ~2.10E-01 9. 18E-03 +1.676-02 -4, 18E-02 ~3. 0SE-02
4 +6.21E-0b ~5.87E-03 +1.57E-01 -2.87E-02 -6, 10E-04 +1,14E~02 ~4.00E-02 +2. 11E-02 ¢2.09E-02 ~4. 206-02 5. 09E-C3
5 ~1.5TE-01 42.73E-01 +1.50E-05 47, 126-02 +6.B7E-02 45, 06E-02 42.91E-01 -3, 136-02 +4.09E-02 +3. 46E-02 +B. 3E-07
b +6.39E-05 ¢6.526-02 ¢1,5TE-01 ~3,56E-03 ¢9. T1E-03 +2.66E-02 +1,26E-02 +1.426-07 +3. T6E-02 -4, 96E-08 +2.97E~02
7 -15TE-01 -1.A3E-01 ¢, 16E-06 -4.34E-02 42.50E-02 +1,51E-02 45.97E-0Z +8.30£-03 -4, T1E-03 5. 12E-03 -2.246-07
8 ~5.70E-05 -1,08E-01 +1.5TE-01 -7,556-02 ~2.31E-02 ¢5.53E-01 41.02E-01 ~1.7SE-02 -7.966-02 ~2.64E-03 -4, 34E-01
9 -1.57E-01 +4,30E-02 #1.126-05 -5.19E-02 +7.7BE-02 48.926-02 =2, 1BE-01 +3.25E-02 42.93E-07 5. 356-02 -3. 1202

I 0 -2.12E-04 -3.55E-01 +1.57E-01 ¢1.57€+00 +8.B5E-02 +1.05E-01 5,28E-07 +1. 256400 -1, 19E-0 -7, 94E-07 -2, 33E-02
11 -1.STE-01 +4,30E-02 +1,12€-05 -5.19E-02 +7.7BE-02 +8.92E-02 ~2, 1BE01 +3.75€-02 +2.536-C7 -5, 356-02 -3. 126-02
I 2 -133E-08 ~2,30E-01 +1,57E-01 +4,976-01 ~3.326-03 -2.31E-02 -2.17E-0Z -9.326-01 +9.406-02 +6,31E-02 +1.B9E-02
1 3 ~1.5TE-01 +4,30E~02 +1,12E-05 -5.19E-02 +7.7BE-02 +B.92E-02 -2, 16E-01 43.256-07 42, 93E-07 -5.35E-02 -3. 126-02

1 4 -9.26E-05 ~1.65E-01 ¢1,57€-01 42.67E-01 -1, 71E-02 -3.32E-02 ~3.75E-02 -B.4BE-01 ¢8.57E-07 +3.41E-07 +8.27E-03

Eigenvalues Natural Frequencies
1.137€-08 1.697E-05 Hz
4.308E-07 1.085E-04 Mz
.000E-06 1.592E-04 Hz
B.344E405 §.454E402 H
2.083E+06 22976402 Kz
31976406 28466402 Hz
6 3.B40E+05 1198402 Kz
5 9.410E 406 4.882E407 Mz
1.138E+07 5.349E¢02 Kz
1. 441E+07 5.082E402 Kz
2 14 12 10 1.874E407 6.B87E+402 H:
! 3 " 5.550E+407 1.1BSE+03 Kz
> > > 1.337E+08 1.B41E403 2
' 2.80BE+08 26876403 Hz
7

Table 7.12 - “ Curved Frame + Beam” predicted Modal Matrix with Residuals
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TITLE -~>)Measured Curved Frame t | Beaa - (HB10§~2 3-4 3-6 |0-11 B-9 1-C 1-B)
FILE Ware -->>#DU_HEI4XX: 702
Coord. = 14  Modes = {1

1 2 3 4 5 6 7 B

1 +1,57€-01 +0.00E+00 -1.7BE-01 +3.05E-03 +4,2BE-02 +4.07E-02 -B8,99E-02 ¢1.13E-02

9 10 1

-6, 536400 +3.56E400 +1.35E-02

2 +0.00E+00 ¢1.57€-01 -3.80E-04 ¢1.03E-02 -4, 13E-03 4. 45E-03 -2,51€-02 - 4. 12E-03 -3. 126400 +4,28E+00 +2,07€-03

3 +1.57E-01 +0,00E+00 -1,60E-01 -B.53E-03 ¢3.41E-02 +4,90E-02 -B.78BE-02 -§,73E-02
4 +0.00E+(00 +1.57E-01 +3,70E-03 ¢9,48E-07 -3.43E-03 ¢3.72E-03 -1,28E-02 -1, 17E-02
5 41.57E-01 0. 00E«00 -2,52E-01 -3.85€-02 +3.B7E-02 +1.71E-02 +1.23E-01 -1,24E-02
& ¢0,00E400 ¢1.57E-01 ~1,95E-07 +3.43E-07 +3,49E-C3 +1.51€-02 «1,576-03 +3.376-03
7 #§,57E-01 +0,00E+C0 ~1,12E-01 +1,95E-02 +}.24E-02 +B.45E-03 +3,42E-02 +1.00E-02
8 +0.00E+0) +1,57E-01 43,4BE-02 +2.87E-02 -1,84E-02 -1,45E-02 +B8.76E-02 ¢2.18E-02
9 #1,57E-01 ¢0.Q0E+QG -1, 7BE-01 +4,58E-02 +3.83E-02 +4.24E-02 -9,86E-02 +5.8bE-03
10 40, 00E+0% +1,5TE-01 ¢}, |CE-01 -B.20E-0 +4,05E-0Z +3.26E-02 -2.03€-02 +3.85E-01
11 +1.57E-01 0. 00E+00 -1, 7BE-01 +¢3,05E-03  +4,28E-02 +4,07E-02 -B.99E-02 +1.13E-02
1 2 +0.G0E¢00 ¢1.57E-01 ¢8.06E-42 -3,82E-01 +1.05E-02 -9.17E-04 -6.64E-03 -2.C3E-01
13 «1,576~01 40.00E400 -1,7BE-01 +3,05E-03 +4,2BE-02 +4.07E-02 -B.99E-02 +1.13E-02

14 ¢0,00E¢0¢ +1,57E-01 ¢5,43E-02 -1.82E-01 -3.80E-0 -2.38E-03 -4,79E-03 -2.96E-01

-3.5TE400 +3,20E400 ¢],b6E-02
-4,30E+00 ¢3.86E+00 +1.09E-03
-5.77€400 ~9.32E+00 ~3.81E-02
-2.88E+00 -8, 10E-02 -1,23E-02
-1,00E-05 -1.00E-05 +8,57E-03
~5.75E+00 9. 03E400 6, 76E-01
-4, 05E+G0 +5,83E400 ¢, b5E-02
+7.10E€01 1, 13640 €3.72€-03
-6, SIE400 +3,56E400 +1,35E-02
<1, ALE+0) -3, ZBE+0E -5, 85E-04
~6.53E+00 3, 36E400 +1.35€-02

-1 BSE+0) -4, 21E400 -1, 91E-C3

Eigenvalues Katural Frequencies
1.000E-08 1.592E-05 H:
1. 0G0E-06 1.5926-04 Kz
6 3.94RE-07 1.000E-04 Hi
—>5 B.7L5E405 1.490E407 Mz
2. 1CTE+GE 2.3106+402 H:
3.229E406 2,Bb0E4DZ Hi
2 14 20 3,868 0 “3.130E402 Hz
13 11 _% 1.035£+07 S.120E402 Hz
J 1. 138807 S.370E¢02 H:
1. 4356407 6.030E402 Kz
1.869E+07 6.880E¢02 H i
7

Table 7.13 - “ Curved Frame + Beam” Experimentally-derived Modal Matrix
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7.3 EXPERIMENTAL CASE STUDY ||
7.3.1 INTRODUCTION

In this case study, an assembled structure formed of two components is dealt with. These
components are the two beams which have already been considered in chapter 6, therein
seeking to determine experimentally the rotational responses at specified coordinates on
the beams. The reason for such an investigation was linked to the need to incorporate the
rotational coordinate information in the formulation of constraint equations between the
two vibrating subsystems forming a complete structure. In fact, this is not a generd rule
for al coupling cases, as shown in the previousy-presented case study whereby the
constraint conditions were formulated without the need of explicit calculation of the
rotational responses even with a moment to be transmitted in the interface region of the
two components. In that case, the consideration of two coordinates - through which two
forces equivalent to a moment can be transmitted - was possible since they were
sufficiently spaced from each other on the connecting region to allow, in practical terms,

the measurement of the response and the excitation forces.

However, such practical considerations are not possible in the present case study due to
the small connecting area between the two beams which, when connected, should
constitute a longer continuous beam. Thus, a rotational coordinate should be included at
the interface region in order to fullfil the compatibilty between displacements and rotations
and equilibrium between forces and moments. Otherwise, the error incurred in neglecting
such a coordinate can lead to failure in predictions for the actual response of the
assembled beam. The techniques presented in chapter 6 are believed to be suitable for
estimating the necessary rotational response in thiskind of beam-like elements. Therefore,
the results obtained in chapter 6 will be further used in the present case study to construct
the necessary Response and Modal models of each beam for subsequent input into the

FRF and Modal coupling procedures, respectively.
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7.3.2 DESCRIPTION OF THE SUBSYSTEMS

The test components consist of straight steel beams with a uniform rectangular cross-
section, as shown in fig. 7.23 . The connection coordinates for each beam are selected to

be at their ends which are subsequently connected to another one, forming alonger beam.

Long Beam

) L;___.‘? exciting
- blk
Short Beam /

I

y Long Beam Short Beam
z h L=1485m L=0480m
§ =0.07425m s=0024m

b

b=0.019 m b=0.019 m
h=0.0254 m h =0.0254 m
[ Fig. 7.23 - Long and Short beam components

7.3.3 SUBSYSTEM MODELLING

In chapter 6, the theoretically- and experimentally-derived rotational responses for each
beam have already been presented and constituted a topic of discussion in terms of the
aptitude of each procedure to estimate accurate rotational properties. In this chapter,
various Response and Moda models are constructed by incorporating those estimated

rotational responses. These models will differ from each other only by the response of the
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rotational coordinate since the transverse response is assumed to be the same for al of
them. The various models will be identified according the name given to the procedures
used to estimate the rotations in chapter 6, e.g. if one refers to Long beam 2 it will
mean that the corresponding rotational response in the model is estimated following

procedure 2. The table containing the information on all the procedures is presented next:

Table 7.14 - Procedures to estimate Response and M odal models

Procedure | Name |No. Points | Distance (d) d/L
1 3PS 3 S 0.05
2 3P2S 3 25 0.1
3 2PS 2 S 0.05
4 2P2S 2 28 0.1
5 2P4S 2 4S 0.2

and four locations for the accelerometers corresponding to the measured coordinates on
each beam are shown in fig. 7.24 (in each procedure, only two or three coordinates are

considered when estimating the rotations).

Fig. 7.24 - Beam with 4 accelerometers

7.3.3.1 RESPONSE MODELS

The frequency range of interest for the complete structure’s properties is taken to be
0 800 Hz. This requires the measurement of each FRF in both beams to be undertaken in

the same freguency range, if the FRF coupling technique is used. Only the rotationa
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shown in fig.7.25, since the corresponding data for the long beam have already been

presented in the previous chapter.

7.3.3.2 MODAL MODELS

The Moda models of both beams are derived by following the Modal route described in
chapter 6 (vidé section 6.6.3). This route assumes the measurement of FRFs at two or
three closely-spaced coordinates, necessary to construct one row (or column) in the FRF
matrix. Then amodal identification algorithm [71] is applied to convert the Response data
into Modal properties. It is important to note that in this case there are no restrictions
about the measured frequency ranges on each component since a Moda coupling

technique is supposed to be used subsequently.

The measured Modal models need to be converted into estimated ones, and this can be
done by using the first and second order approximations, whose formulation was
presented in chapter 6 (vide 6.3.2.1 and 6.3.2.2). It should be noted that this will express
each model’s dynamic properties in the measured frequency range only. Should the
residua flexibility effect ot the out-of-range modes be taken into account, it is necessary
to measure additional FRFs and to identify an extra mode in each of these in order to
estimate the residual matrix according to first and second order formulation above

mentioned.

The modal and residual flexibility matrices referred to the 4 measured coordinates on both
beams are presented next. From these, the corresponding matrices referred to the

trandational and rotational coordinate at point 4 are estimated, as follows;
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Modal and Residual Flexibility matrices referred to the measured (4) coordinates

Modal Matrix

4.211E-1 2.845E-1 8.817E-2 -2.838E-1 -4.720E-1 -4.517E-1 -2.866E-1

— 4.211E-1 3.734E-1 3.641E-1 1.488E-1 -5.902E-2 -2425E-1 -3.672E-1

[q‘ 4x7_ 4.211E-1 4.241E-1 5.640E-1 4.433E-1 3.053E-1 1.860E-1 3.723E-2
4.211E-1 5.001E-1 7.447E-1 7.270E-1 7.076E-1 6.965E-1 6.632E-1

Natural Frequencies 0,0,61. 167, 325. 535,794 Hz

|dentified Residua Matrix

4.036E-9 -4.772E-9 -1.661E-9 4.490E-9
[R 1 -4772E-9 9.374E-9 2.453E-9 -1.241E-8
“ax4=| _1661E-9 2453E-9 3.034E-9 5.060E-9

4.490E-9 -1.241E-8 5.060E-9 2.688E-8

7.387E-1 5.905E-1 5.066E-2 -6.084E-1 -8.629E-1
7.387E-1 8.186E-1 6.053E-1 1.407E-1 -2.726E-1
4x5 7.387E-1 9.344E-1 9.081E-1 6.447E-1 3.670E-1

7.387E-1 1.045E00 1.236E00 1.152E00 1.073E00

Natural Frequencies 0,0, 572, 1528, 2844 Hz

|dentified Residua Matrix

r 1.013E-09 2.056E-10
2.056E-10 7.109E-10
[ch_4 4_

X4 =]  _2.877E-10 2.247E-10

-3.868E-10 -8.998E-10

-2.877E-10
2.247E-10
2.206E-10
2.377E-10

-3.868E-10

-8.998E-10

2.377E-10
1.483E-09
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Estimated Modal and Residual Flexibility matrices
referred to the end (2) coordinates

{Procedure 1| - 3 points, distance=s (5% L)

[ 4.211E-1 5.001E-1 7.447E-1 7.270E-1 7.076E-1 6.965E-1 6.632E-11
[di2x7_ 0.000E00 1.192E00 2.304E00 3.750E00 5.672E00 7.428E00 9.922E00

[R 1 [ 2.688E-09 3.232E-07 1

° 2x2 = 3.232E-07 3.822E-06

[Procedure 2| - 3 points, distance=2s (10% L)

|: 4.211E-1 5.001E-1 7.447E-1 7.270E-1 7.076E-1 6.965E-1 6.632E-11
[(Ij'Zx?_ 0.000E00 9.788E-1 2.915E00 4.384E00 6.353E00 8.780E00 1.068EO01

[R"a- 2X2 = I:

2.688E-09 4.538E-07
4.538E-07 8.605E-06].

[Procedure 3| - 2 points, distance=s (5% L)

[ 4.211E-1 5.001E-1 7.447E-1 7.270E-1 7.076E-1 6.965E-1 6.632E-11
[(Ii2x7 - 0.000E00 1.022E00 2.433E00 3.822E00 5.417E00 6.875E00 8.430E00

[R [ 2.688E-09 2.939E-07
012)(2 = 2.939E-07 3.590E-06 ].

[Procedure 4| - 2 points, distance=2s (10% L)

[ 4.211E-1 5.001E-1 7.447E-1 7.270E-1 7.076E-1 6.965E-1 6.632E-1
[(Ii X7 - 0.000E00 8.522E-1 2.563E00 3.894E00 5.162E00 6.323E00 6.939E00 J
[Rca. 2X2 = [

2.688E-09 2.646E-07
2.646E-07 2.770E-06].

[Procedure 5| - 2 points, distance=4s (20% L)

4.211E-1 5.001E-1 7.447E-1 7.270E-1 7.076E-1 6.965E-1 6.632E-11

[di2x7= [
[R°3-2x2= |:

0.000E00 7.257E-1 2.210E00 3.403E00 3.972E00 3.866E00 3.198E00

2.688E-09 7.539E-08
7.539E-08 2.487E-07 ].
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Estimated Modal and Residual Flexibility matrices
referred to the end (2) coordinates

[Procedure 1| - 3 points, distance=s (5% L)

[ -7.387E-1 -1.045E00 -1.236E00 -1.152E00 -1.073E00
[dj'2x5_ 0.000E00 4.470E00 1.418E01 2.123E01 3.081E01].

[R°a- 2X2 = [

1.483E-09 -5.412E-08
-5.412E-08 2.033E-06].

[Procedure 2| - 3 points, distance=2s (10% L)

[o] -

2x5

[R°°]2x2 = [

[ -7.387E-1 -1.045E00 -1.236E00 -1.152E00 -1.073E00
0.000E00 4.683E00 1.393E01 2.381EO01 3.590E01].

1.483E-09 -7.980E-08
-7.980E-08 4.705E-06].

[Procedure 3| - 2 points, distance=s (5% L)

[ -7.387E-1 -1.045E00 -1.236E00 -1.152E00 -1.073E00
0.000E00 4.588E00 1.366E01 2.115E01 2.942E01].

[R°°]2x2 - [

1.483E-09 -5.188E-08
-5.188E-08 2.132E-06].

[Procedure 4| - 2 points, distance=2s (10% L)

[ -7.387E-1 -1.045E00 -1.236E00 -1.152E00 -1.073EQ0 1

4, -

2x5

[Rds- |

0.000E00 4.706E00 1.314E01 2.108E01 2.804E01

1.483E-09 -4.964E-08
-4.964E-08 1.733E-06].

[Procedure 5| - 2points, distance=4s (20% L)

l],, -

2x5

l: -7.387E-1 -1.045E00 -1.236E00 -1.152E00 -1.073E00
0.000E00 4.729E00 1.235E01 1.834E01 2.017E01].

1.483E-09 -1.947E-08 1

[R5 |

-1.947E-08 3.548E-07
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Fig. 7.25 - Short Beam estimated FRFs using closely-spaced accelerometers
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7.3.4 RESULTS FOR THE COUPLED STRUCTURE

Several combinations of models derived according to the previously-mentioned
procedures 1 to 5 have been explored in order to predict the coupled structure response.
The evaluation of those models, made in chapter 6 just in terms of their rotational
responses, gave a good insight into the possible performance of each during a coupling
process. For instance, it is expected to have bad results, over the higher frequencies,
whenever procedure 5 is utilized to model each beam whereas fairly good results are
obtained over the entire range when procedures 2 or 3 are employed. Only the actua

results produced by a coupling process can reveal the aptitude of each beam model.

7.3.4.1 DISCUSSION OF IMPEDANCE COUPLING RESULTS

As mentioned in the introduction of this chapter, it is vital to include the rotational
coordinate response if reliable results are to be predicted in an assembly of beam-like
components. Fig. 7.26 shows the predicted FRF of the assembled beam by considering
only the transverse coordinate in the coupling region. It is natural to expect lower
resonance frequencies than the true values, since under such a condition the junction is -

in effect - assumed to be behaving as pin-joint.

The Response models based on procedure 2 - one of best classified in chapter 6 - were
used as a first attempt to predict the coupled structure response. However, the results
shown in fig. 7.27 were discouraging since from the conclusions extracted from chapter 6
this procedure was expected to give a fairly accurate modelling of the rotation on the
beams. An explanation of the disagreement between the measured and predicted FRFs
shown in fig. 7.27, can be made by examining the estimated rotational FRFs of the short
beam shown in fig. 7.25, which are here considered over the frequency range O-800 Hz,
instead of the O-3200 Hz range assumed in chapter 6. The estimated Hyy FRFs are very
noisy for procedures 1 to 3 - there is a rigid-body like behaviour which is not very well

defined below the first resonance - and only from procedure 4 onwards does the FRF
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become better defined. The misunderstanding about the behaviour of a certain model
when drawing conclusions based on the Modal model, as happened in chapter 6, is
justified by the fact that only data around the resonance frequency is taken into account in
that case, whereas the FRF model datais used at every frequency value, thus being in
error over most of the range. Three aternative ways were attempted to improve the
prediction. On the one hand, the measured FRFs were identified and then regenerated
with the inclusion of residual flexibility effects for the out-of-range modesin order to
obtain smoothed FRFs for input to the estimation process of Hyg and Hgq. The resuilts
using the smoothed curves for both beams are shown in fig. 7.28, revealing a dight
improvement over the previously mentioned ones. On the other hand, the short beam
model using procedure 4 with raw data, which gives better estimations for Hyg and Hgg
was used and the results, shown in fig. 7.29, are similar to those achieved with procedure
2 and smoothed data. Lastly, the block approach making use of smoothed data was used
for modelling short beam and the results, shown in fig. 7.30, were in better agreement

than al the previously mentioned predictions.

4.0 T T T
1 s
@
o ’.‘
o 2.2
£
©
pey \
: bt ¢ A
5 -2D.8or
t v |
-48.0808- 7
l: . Frequency (Hz) A
-50.88 1 . - A
0.0 160.0 320.0 460.0 640.0 800

---- Measured
—— Predicted using Long + Short beams without Rotation

Fig. 7.26 - Predicted FRF of " Long beam + Short beam” using FRF Coupling
technique
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Fig. 7.27 - Predicted FRF of "Long beam + Short beam" using FRF Coupling
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Fig. 7.28 - Predicted FRF of "Long beam + Short beam" using FRF Coupling
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technique
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technique
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7.3.4.2 DISCUSSION OF MODAL COUPLING RESULTS

The Modal models of both beams are used to predict the assembled Modal model from
which an FRF at the connection point is generated for comparison with the measured one.
As mentioned before, the Modal models of each beam were derived following the Modal
route presented in chapter 6 (vidé section 6.6.3) and using different procedures to
estimate the rotational amplitude of the mode shapes. One of the procedures which was
found to estimate fairly accurate amplitudes of rotations in al the modes and in both
beams was procedure 2. Our attention is then focused on the thus-derived Modal models,

which include as well the corresponding residua flexibility matrices.

However, in order to compare results coming from a Modal coupling technique with
those obtained by using FRF coupling, it was decided that the measured data used to
develop the Response and Modal models initially should be obtained under identical
conditions. In other words, since the FRF coupling requires both components to be
measured over the same frequency range - which is O-800 Hz - the Modal coupling
technique will make use of short beam Modal models which contain only one flexural
mode - range O-800 Hz - in contrast to what was presented in chapter 6 where those
models contain information on three flexural modes (0-3200 Hz). Since the residual
flexibility information can be appended to those models, the final result will be similar for

either of the Modal models used for the short beam.

Figs. 7.31 and 7.32 show the predicted FRFs using either Modal models without and

with residuals, respectively.
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Fig. 7.31 - Predicted FRF of "Long beam + Short beam” using Modal Coupling
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7.3.5 COMPARISON OF FRF AND MODAL COUPLING RESULTS

Fig. 7.33 shows one measured and two predicted FRFs using the Response and the
Modal routes. For the former route, the Response model of both beams was constructed
from the smoothed FRFs. This requires the original Response model to be converted to a
Modal one, which isthen used to generate the new Response model (taking into account

the residual effects of the out-of-range modes).

In the Modal route, the Modal model derived from the measured FRFs (only trandations
included) was used to estimate a similar model but a this time possessing the explicit
rotational information; the algorithms presented in chapter 6, have shown that it is also
possible to calculate the residual flexibility information related to the rotational

coordinates.
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Fig. 7.33 - Predicted FRF of “ Long beam + Short beam” using FRF and M odal
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The Moda coupling technique predicted a better response than the FRF coupling
technigue, mainly due to the fact that former does not require any inversion process. This
is the main reason for explaining the errors which arise in the FRF coupling technique
which, besides the fact of using a smoothed Response model, is still sensitive to any
inherent model inconsistency. This inconsistency is caused by the need to use different
locations for the accelerometer to gather data during the measurement stage, and this

causes a dight variation of the natural frequencies amongst the measured FRFs.

7.3.6 CONCLUSIONS

In beam-like components it is essential to have a rotational coordinate in the connecting
region in order to fulfill the constraint conditions properly, if such a component is linked
to another structure. The techniques presented in chapter 6 form the mathematical and
experimental tools which permit estimation of the necessary rotational quantities to create
either the Response or Modal models for such components. Central to the Modal model,
there is also the possibility of estimating the residua flexibility effects related to the
rotational parameters (due to the unmeasured modes), which are important ingredients to

be used with the refined Modal Coupling technique (vidé chapter 4).

It was found in this work that the Modal route is preferable when predicting the response
of an assembled structure formed of two beams, especially when these behave as lightly-
damped components. However, it is important to remember at this stage that the Modal
coupling technique, which one is concerned with, is restricted to that type of component
whose damping can be neglected; should there be a considerable degree of damping, only
the FRF coupling technique is able to handle such components with alower probability of

numerical ill-conditioned matrices during the coupling process.



8 CLOSURE

8.1 GENERAL CONCLUSIONS

In this last chapter, the general conclusions of the research are presented following the
same general breakdown of topics as used in the main body of the thesis. One of these
sections is devoted entirely to the refinement of standard techniques - Impedance and
Modal coupling - which was possible either by reformulating the existing theory or by
making use of more efficient algorithms. Of these agorithms, one resolves the numerical
failures during matrix inversions and another is used to detect causes of ill-conditioned
matrices, specifically that due to redundant information in the coordinates of a system
model. As a consequence of these refinements, more accurate and reliable results can be
obtained for the prediction of assembled systems whose models are derived from
measured data. Another section in the thesis is dedicated to the experimental determination
of the rotational responses which play a vital role in some coupling exercises; the
technigues to gather the necessary experimental data and the subsequent mathematical

manipulation constitute some of the main topics for conclusions in this chapter.
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8.1.1 CONCLUSIONS ON IMPEDANCE COUPLING TECHNIQUES

The Spatial coupling method is used extensively in cases involving theoretical
modelling. Reduction methods are presented in chapter 3 to condense Spatial models to
the primary (master) coordinates - coordinate reduction which inevitably cause a
mode reduction - in order to decrease the computational needs to solve the global
problem. In this context it was found that the selection of those coordinates must be made
according to some criterion in order to preserve, as much as possible, the dynamic
characteristics of the original unreduced models. The accuracy of the results obtained via
the use of static or dynamic reduced subsystem Spatial model s depends on the coordinates
which are eliminated - it is a question of mass value dependency, so the choice of the
secondary coordinates should be made according to the relative mass values. Should a
static reduction be applied to a spatially described model, the secondary coordinates
must possess relatively small mass values. Conversdly, if a dynamic reduction is
applied to a model, the dynamic characteristics of the reduced model are better preserved

if relatively high mass values are assigned to the eliminated coordinates.

In contrast to the Spatia coupling method there is the FRF coupling technique which is
suitable for the use of FRF data measured on the components. It makes use of Response
models derived directly from experimental data (seldom from theoretical modelling).
Conceptually, one can say that the FRF coupling technique is very attractive since it
makes use of models whose dynamic characteristics are fully quantified and thus do not
suffer from incompleteness. Furthermore, a reduction performed on the interior
coordinates of a given subsystem still preserves the dynamic information necessary for a

subsequent use in a FRF coupling procedure.

However, there is a numerical aspect associated with this technique which may cause the
coupling procedure to fail. It was shown in chapter 2, that the required FRF matrix of the
coupled structure is obtained after three matrix inversions - two of them carried out before
and one after the FRF matrices are assembled. Should one of these matrices be near

singular, the results will reflect the numerical errors caused by inversion and will predict




m Closure 247

the dynamic behaviour of the overall structure erratically. Unfortunately, when dealing
with experimentally-derived FRF matrices, one is mostly restricted to use inconsistent
models that are inaccurate due to experimenta or systematic errors in the measurement
stage and this causes the FRF matrix to be ill-conditioned. Another situation which may
lead to near singular matrices is caused by local rigidities at the measured coordinates.
Over certain frequency ranges the response at some coordinates may tend to be nearly

dependent and then the FRF matrix will tend to be rank-deficient.

The aternative algorithms presented in chapter 3 can be used to resolve the numerical
difficulties encountered during the coupling process based on the classical algorithm
whenever the localised regions are referred to the interior regions of each component or
only to one of their connecting regions. In such a situation, the approach making use of
algorithm 3 presents a remarkable advantage over the other two, since the inversion is
only required once and even then it is applied to a matrix whose order depends only on

the number of connecting coordinates.

In the other most extreme situation, when the rigidities are localised in both interface
regions, other alternatives are required. For instance, if it is possible to know a priori the
number of redundant coordinates or, in other words, the rank for each subsystem FRF at
each frequency in the range of interest, the analyst can make a judgement about the
possible exclusion of some of the connected coordinates without affecting the constraint
formulation of the actual physical connection. It is in this context that the auxiliary
mathematical tools presented in chapter 5 should be employed. Of these, the SVD
technique proved to be a useful mathematical tool to be used during a coupling process
involving subsystems which both possess redundant information (in terms of
coordinates) at the interface region. Additionally, it is shown that the common inversion
algorithms can still be used provided the redundancy in the connecting region is
eliminated by using a suitable algorithm to detect how many and which coordinates are
redundant. This may be useful when a large degree of redundancy is present in a multi-

point connected system. In such a case, a substantial reduction may be applied to the
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initially specified connection matrix, thereby alowing a less time-consuming coupling

process while preserving the accuracy in the final result at the same time.

8.1.2 CONCLUSIONS ON MODAL COUPLING TECHNIQUES

Unlike the Impedance-based methods which take advantage on the reduction of the
number of coordinates, the Modal coupling methods use a reduction performed on the
number of modes used to describe each component model while still accounting for all
the physical coordinates. A refined Modal coupling technique using free-interface modes
was presented in chapter 4. The main achievement of this method was the inclusion of the
residua flexibilty effects which compensate for the truncation of the number of kept or
measured modes in each component. The lack of flexibility associated with the description
of each component displacement in the connection region (which results from this
truncation) has caused the classica free-interface methods to predict results with poor
accuracy when compared with the fixed-interface methods - in effect, the components are
assumed to be stiffer than actually is the case. With the inclusion of the residua flexibility
information - in fact, an approximation when experimentally-derived models are dealt
with - by using a“dummy” interconnecting flexible system, the two main components are
mathematically coupled using the best available information provided by data measured

over the frequency range of interest for each component.

The results obtained in the case studies show that the degree of importance of each
residual flexibility effect is associated with the relative mass of each component - the
lighter the component the more important becomes its residua flexibility. Furthermore,
the use of a redundant set of connecting coordinates has not presented any numerical
difficulty when using the refined approach, whereas in the classical method, a careful
analysis needs to be done, prior to the coupling process, on the dependency amongst the

coordinates included.
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8.1.3 CONCLUSIONS ON DETERMINATION AND USE OF
ROTATIONAL RESPONSES

The laser measurement technique described in chapter 6 can estimate very easily the
rotational displacements in the mode shapes when compared with techniques using
accelerometers. Additionally, sinceit is possible to measure in a quasi-continuous way the
mode shape patterns over a specified length or area on a structure, it is possible to obtain
more accurate estimates of the spatial derivatives, mainly for the higher modes. This
constitutes the main drawback to similar data measured with closely-spaced
accelerometers since it isimpracticable to obtain a precise description of the displacement
field near the connection region. Although the rotations obtained by using either technique
are only concerned with a very smple case study, it is believed that in more complex
structures involving tridimensiona measurements, the laser technique will offer the best

capability.

There are, however, some drawbacks associated with the measurements carried out with
the laser technique. On the one hand, by estimating the rotational responses from the
displacement pattern of each mode in the frequency range of interest, there is no
possibility of calculating the residual flexibility which represents the out-of-range modes;
generaly, this knowledge is important whenever Modal models are used and therefore
more modes must be measured. On the other hand, the optically-based system may be
unable to reach some important areas or points on the structure; for instance, should a
shaker be placed near the region of interest it can obstruct the directed laser beam path, or

in other cases, the point of measurement can be located at an inaccessible interior surface.

The use of two or three closely-spaced accelerometers near the point of interest constitutes
a practicable alternative to the exciting-block approach which in turn, is prone to errors
when the cancelled mass is large compared with the mass of the structure, specifically for
higher frequencies. In the cases where Modal models have to be derived for each
subsystem, the use of closely-spaced accel erometers constitutes an ideal aternative, since

it requires the modal identification of the measured curves rather than the estimated ones.




Closure 250

Additionally, it allows estimation of the residual effects of the out-of-range modes for the

derived rotational FRFs.

For beam-like components linked to other structures, it is essential to have a rotational
coordinate in the connecting region in order to fulfill properly the constraint conditions.
The techniques presented in chapter 6 constitute the mathematical and experimental tools
which lead to the estimation of the necessary rotational quantities to create either the
Response or Modal models of a beam-like component. Central to the Modal model, there
is also the possibility of estimating the residual flexibility effects related to the rotational
parameters (due to the unmeasured modes), which are important ingredients to be used

with the refined Modal Coupling technique presented in chapter 4.

It was found in this case study, that the Modal route is preferable when predicting the
response of an assembled structure formed of two beams, especially when these behave
as lightly-damped components. However, it is important to remember that the Modal
coupling technique, which one is concerned with, is restricted to that type of component
whose damping can be neglected; should there be a considerable degree of damping, only
the FRF coupling technique is able to handle such components with alower probability of

numerical ill-conditioned matrices during the coupling process.
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8.2 SUGESTIONS FOR FUTURE WORK

The study undertaken in this thesis revealed that some further developments may be of
interest in future work in the field of Dynamic Analysis of Coupled Structures. Some

general sugestions are outlined below.

» Therefined Moda Coupling approach can be investigated further in order to extend its
applicability to the prediction of the dynamic characteristics of structures in which

some of the components possess a non negligible damping.

» The necessity of the mentioned development is till reinforced in the cases of highly
dissipative joints between components. In this case, the ‘dummy’ flexible inter-
connecting system which is used to express the information of the residua flexibility
effect of the out-of-range modes can yet incorporate the joint charateristics such as

flexibility and generally hysteretic damping.

e In this field, a philosophy which may be adopted relies on the assumption of an
uncoupling techniques, these make use of the whole structure properties and the
component and joint properties can then be determined by uncoupling, step by step,

each of the assembled components.

« Further investigation is necessary on the experimental determination of rotationa
properties. The techniques used in the present work, namely those making use of
accelerometer and laser measurements, can be extended to the determination of

responses in more than one plane.

* Another interesting topic to be investigated relates to the determination of rotational
responses of structures possessing close modes; in this context the laser measurement

needs to be explored in more detail.

* In terms of structural modification, it is the author’s belief that the SVD has some
potential to be used in order to locate the coordinate (or mode) which change is most

effective to attain a specific modification on the structure.
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APPENDIX | [

REFORMULATED FRF MATRIX
OF IMPEDANCE COUPLING METHOD

Without loss of generdlity, the FRF matrix which is assumed herein is the Receptance
matrix (which can be interrelated with Mobility or Accelerance). It can be partitioned

according to the previously selected interior and connection coordinates in each subsystem

as follows:
a] [ aHy Al ] (aAf,
T S Ceeeeen (AL1)
Auc _AHci : AHcc- Afc
Y] | My i sH ] (af;
I S . (Al2)
BY, BHci: BHcc- ch

The coordinates in the FRF matrix of the coupled structure can be partitioned according to

three regions corresponding to,

- the interior coordinates of component A ( Ani) denoted as a

- the interior coordinates of component B (gn.) denoted as b
- the common connection coordinates of component A and B ( AR =gn = nc)
denoted as c

The whole system will possess an FRF matrix such as,

Ua Haa : Hac H b Fa
Uc = Hca ‘H cc :ch Fc (A1.3)
Ub Hba : Hbc : be Fb
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REFORMULATED FRF MATRIX
OF IMPEDANCE COUPLING METHOD

Without loss of generdlity, the FRF matrix which is assumed herein is the Receptance
matrix (which can be interrelated with Mobility or Accelerance). It can be partitioned

according to the previously selected interior and connection coordinates in each subsystem

as follows:
Al aHy 1 aH T (AR
v b= e (Al 1)
Allc AHCI: AHCC- Afc
s [ sH; 1 sH, ] (sf,
e O . (Al1.2)
BY, -BHci : BHcc- ch

The coordinates in the FRF matrix of the coupled structure can be partitioned according to

three regions corresponding to,

- theinterior coordinates of component A (,n.) denoted asa

- the interior coordinates of component B (gn.) denoted as b

- the common connection coordinates of component A and B ( AR =gn = nc)

denoted as c

The whole system will possess an FRF matrix such as,

Ua Haa H ac Hab Fa

Uc =l Hea @ R ch Fc (A1.3)
------ : 60000 ans oo F

U, Hy tH :Hbb b
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The compatibility of displacements and equilibrium of forces between the two subsystems

are expressed as
{Ua} = {an} (AL4)
{Up} = {aw} (ALS)
{Uc} = {au} = {5} (AL6)
{Fe} = {al}+ {6} - (0) (AL7)
{F.} = {afi} (AL8)
{Fo} = {1} (AL9)

Denoting the interconnecting force acting on each subsystem as,
{f.} = {af} = {5%.} (ALIO)

and by invoking equation (A1.6) a relationship between {fc ) and the acting forces { Fa}

and {Fb} is given as,

(L) =[]+ [sH0] (Ma] (Fy) - [AHG{F,}) ALID

If this equation is substituted into the following rel ationships,

(%) = ] (R) o [ 1) (A112

(o} = [H,] { Ko}~ [sH.] (1) (A119

(an} =[] {F) + B (1) (A114
whose displacements ought to be equal to the displacements,

(V)[R {F) + M) (F,) (A119

(U} =[Mo] {F.) * [Hye] {F) (A119

{Uc}=[Hca] {Fa} + [ch] {Fb} (ALL])
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respectively, thisleads to the required relationships between the sub-matrices of the whole

system FRF matrix and the sub-matrices of each component FRF matrix as presented

e,
E IR NAS LA SR ERIN AN
(i, ™ DMl ] (] [sH.]] [sH] AL19)
[Hcincwi = [aHg] - [aHe] [ [aHe] * | BH,;C]]'1 [4H,;] (A1.20)
M, I [ o, 1)
LRI L ATIA BTN e 2
M, = BRLE] « [ [ 129

or in a condensed expression as,

-Haa : Hac :Hab- fIAHii :AHic 2 0 AHic-

.....f.....f..... .......................... _1
HsHH || WHGaH 0 LG H P H 4 pH ]] | aB
H cH CH |_ 0 :0 pHj;. sH, .

(A 1.24)
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RESIDUAL FLEXIBILITY CALCULATION

1 THEORETICAL ROUTE
The equation of motion for an undamped system is represented as,
M] {ii} + [K] {u} = {F} (A2.1-3)

or, in partitioned form:

M. : M. i, K. :K u, 0

1 1c 1 i1 ic i
ceee teaes e p ] ceee taeen cee ={"'} (A2.1'b)
M. :M i K. :K u fc

c1 cc c c1 cc c

Assuming free harmonic motion, the eigensolution leads to the Moda model, formed of
L2
the m=N mass-normalised mode shape[ <D1 and the m natural frequenci&[ “’rm\]-

Each coordinate displacement can now be represented as,

w=[o_]{r,} (A22)

or, by grouping the mode shapes according to the kept modes [(Dk] and the eliminated or
neglected out-of-range mod{s & as

SERTHNSTHRA!. g

Substituting equation (A2.3) into (A2.1) yidlds,
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tk p T
- 5
= 2 ............. vesp = :
w? [I] + P { } [(Dk : <De] {F} (A2.4)
o

1.1 APPROXIMATE METHOD

Substituting equation (A2.3) into (A2.1-a) leads to,

[KI-w2MI][@ ] {P]} + [KI-02(M][@]{P.} = (F} (A25)

T
Pre-multiplying equation (A2.5) [ (De] and considering the orthogonality of the natural

modes, the following equation is obtained,
L2 T
(.(,)2 (1] + [ww\D {p.} = [(De] {F} (A2.6)
L2
which gives the modal coordinates associated with the higher modes[ @ ]

gl LT
{r.} =[-°)2 (1 + [“’m\] } [.] F) (A27)

or, for the respective displacements,

2

{ ue'} = [<I>e] [-oﬂ (1] + [‘qu] ]-1 [cbe]T (F) (A2.8)
Since we assume that (oi >> (of, this equation can be approximated to,
-1
{v.}=[2] [wrze} [q’e]T (F} (A2.9)

so that the residua flexibility matrix is given by:

-1
w-[o] 0] [o] w210
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1.2 IMPROVED METHOD

In this case a distinction must be made between constrained and unconstrained structures,

always assuming that the system is not constrained in its connection degrees of freedom.

1.2.1 CONSTRAINED STRUCTURES

The following procedure is based on Hansteen’s method [69] which permits the

calculation of a more accurate residual flexibility matrix.

Let us re-write the second term of equation (A2.4) as,

T f
[(Dk: ‘De] (F}= [} (A2.11)

e

Because of the mass-normalisation of the mode shapes, the following relationship is

valid:
m=[o, : cpe]T- [M][CDk:(De] (A2.12)

which, when substituted into equation (A2.11) gives,

f
{F) =M, : ] {-f-k-} (A2.13)
or
(Fy=m[o ] {f,} +tfe] {f.} (A2.14)
(F) ={ fk'} + { fe'} (A2.15)

This means that the force vector is composed of two parts; the first one is exciting the kept

modes and the second is used to excite the remaining modes. This latter contribuition is
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{r.} =Fy-m[e,] {f) (A2.16)

{fe'} =[[I] - M [d)k] [(Dk]T ]{F} (A2.17)
The displacement due to that force is then:

{u.) = [x1-020m] ' {1}

(v} =[K1-o2m]" - o [ 9] [ 0] [0) azg

In cases where the out-of-range natural frequencies are much greater than the frequencies

of interest, it is possible to approximate equation (A2.18) to:

-1 T
{“e} = [K] {[I] - [M] [ (Dk] [ (Dk] ]{F} (A2.19)
The residua flexibility matrix is given by:

T
[R] = [G] [[I] -Mmeo][o] ] (A2.20)
T
o =0 3 ][0

with [G] = K] bei ng the total flexibility matrix.

1.2.2 UNCONSTRAINED STRUCTURES

In the case of unconstrained structures, it is not possible to invert the stiffness matrix and

so another approach should be employed. Craig [68] suggests the following procedure;

Firstly, the modes are separated into rigid-body and flexible modes such that,

) = [o]{p.} +[o]{P} = [2,: (Df]{ ] (A2.21)

pr
pf
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In order TQ create an invertible stiffness matrix, the rigid body motion must be removed.

When equation (A2.21) is substituted into equation (A2.1-a) the uncoupled equations are

obtained,
T
[ {'p'r}= [2] (®) (A2.22)
- T
[I]{i,'f}+[°3rf‘ {p}=[2] F) (A2.23)

From equation (A2.22) it is seen that, as far as rigid-body motion is concerned, the
external forces are reacted by rigid-body inertia forces. Thus, if these forces are
subtracted from the applied force there will be no excitation of the rigid-body modes. The

ne| force producing flexible motion is thus given by:
T
(Fy=m+ (1) dmoonfo][o] |m a2z
{F} =[A1(F} (A2.25)

This force will produce a pseudo-static displacement, provided that some arbitrary
statically-determinate constraints are imposed. Let [R ] be the flexibility matrix relative to
the imposed constraints (which includes rows and columns or zeros at the constraint

DoF). Then the pseudo-static displacement is:

{u*} = [R*] {F}

{u*} = [R*][A]{F} (A2.26)
The equation giving the final displacement is then:

{u} =[G] {F} (A2.27)
with

[G] = (K] [A)T [R*] [A] (A2.28)
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being the total flexibility matrix which should be substituted into equation (A2.20) for the

calculation of the relevant residual flexibility matrix [R].

2. EXPERIMENTAL ROUTE

From the Response model of a given structure, a modal identification may be applied in
order to extract the modal parameters [ 1]. For each measured FRF (Frequency Response
Function), say the Receptance obtained by measuring the displacement at coordinate j by

exciting the structure at coordinate k, a set of modal parameters is extracted for each of the

existing modes,
Ay Modal Constant (Modulus + Phase)
o - natural frequency
£ - damping factor

The Receptance for a particular case of a lightly damped structure is theoretically given

by,
X. TAjk
TL= a'k(“’) = —— (A2.29)
kK o - o2
Ir
=1

Let us suppose that only m,_ modes have been measured in the frequency range of
interest, but that there are also other modes outside this range at lower frequencies and at

higher frequencies. Equation (A2.29) may now be written as,

m,+m,
a (co) — (A2.30)
co - 0)2 - 0)2
r-m +1 r—m +m

At lower frequencies, i.e. for o <<, the first term can be approximated as:
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m

1
}1‘5 _ Sjk
"ol m (A231)

r=I

corresponding to a residual mass which accounts for the out-of-range low frequency
terms (Sjkhas dimension I/mass and units I/kg ) Conversely, at higher frequencies we

have ®>> @ leading to the approximation for the third term,

A
— = Ry (A2.32)
(0))
T
K 1

r=m1+m +

which corresponds to a residual compliance or flexibility, accounting for the out-

of-range high frequency modes ( Rjk has dimensions 1/stiffness and units m/N ).

Assuming that the low frequency residual can be represented by a zero-frequency mode,

we may write for the point response Receptance;

m,
X A
=0 0)= ———+R; (A2.33)
i o - ®2

=1

The residual flexibility matrix is then constructed by measuring al the necessary Rjk
values, sometimes, and because transfer residual flexibility values are negligible when

compared with the point response residuals, only the diagonal e ements are considered.

The high-frequency residual can be visualised as a spring, attached to the system at
the corresponding coordinates. The high frequency residual is an approximation to the
combined effects of a number of modes which can be expressed in terms of a modal
constant of a fictitious mode at an assumed ressonance frequency. It isimportant to note

that there is N0 mode shape associated to the fictitious residual mode.
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MATRIX PROPERTIES

1 MATRIX NORMS

The most frequently-used matrix normsin numerical analysisis the F-norm (Frobenius

norm) given as,

N]—

IAIL=| 33 2

= l a;. |

F [i§1£1 H ]
1A II§=0§+G§+ . +cri((si are the singular values of [A] )

and the p-norms (especialy p=1,2,00)

a1 AX I
WAl = o TTxT— T

m
_ max
HAIL="%% 1 a1
i=l

N

1A ll, = [ max eigen of [A]T[A]] =0,

n
AN =" .
Il mml ‘2 la; |
=1

The Frobenius norms and the p-norms satisfy certain inequalities such as,
HAILSIAIL <0l All,

maxlaijISIIAIIZS\J mn maxlaijl
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2 RANK PROPERTIES

The rank of amatrix, r = rank([A] mxn)’ is the number of linearly independent rows (and

columns) in agiven matrix. Some of the rank properties of a matrix are presented next:
. risapositiveinteger

« rank(JA] _)<mand<n:therank of amatrix equals or is less than the smaller
mxn

of its number of rows or columns
. rank(JA] )< n:asquare matrix has rank not exceeding its order
nxn

« when 0 there is at least one square submatrix of [A] having order r that is non-

singular

. whenrank([A] ) =nthen[A] isnon-singular i.e.,, [A]"! exists and is said to
nxn

have full rank
. when rank([A] )=m<n [A] issaid to have full row rank
mxn

. When rank([Anlxn)=n<m [A] is said to have full column rank

3LINEAR COMBINATION OF VECTORS

Let us assume n vectors, al of them of the same order, which we call a set of n vectors

[A] =[{a}{a2}-{2.}] and the scalars x,,x,,....x.. The product [A]{x}= ixi{ai}
is caled alinear combination of the set of the n vectors. =

« [A] {X) isacolumn vector, alinear combination of the columns of [A]
e ( b}T[A] isarow vector, alinear combination of the rows of [A]

. [A][B] is matrix with its rows being alinear combination of the rows of [B] and

its columns being a linear combination of the columns of [A]
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Given a set of vectors, their dependence or independence can be ascertained by attempting
to solve [A]{ x} = {0]}. If asolution can be found other than {x) = {0} (which is dways
a solution), then it will be a non-null solution, and the vectors will be dependent.

Otherwise they are linearly independent.

A set of linearly independent vectors of order n can not contain more than n such vectors.
An important characteristic concerning the independence of rows and columns in a given
matrix is that the number of linearly independent rows is the same as the number of

linearly independent columns.

4 PERMUTATION MATRICES

An elementary permutation matrix denoted as[Ers] is obtained from an identity matrix by
interchanging its ™ and s rows. The pre-multiplication of [A] by [Ers] interchanges

rowsr and s so does post-multiplication interchange columns.

In genera , a permutation matrix is an identity matrix with its rows re-sequenced in some
order. Because such a matrix is aways a product of elementary matrices [E], it is not
necessarily symmetric but it is always orthogonal. One of the great uses of permutation
matrices is that they provide a mechanism for re-sequencing columnsin a matrix so that a
matrix having r linearly independent rows can be re-sequenced into one having its first r

rows and itsfirst r columns as linearly independent.
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RIGID BODY MOTION

1. DYNAMICS

The basic configuration of arigid-body is shown in fig. A4.1.

&Y

9

X,Y,Z - Principal axes of Inertia

Let us assume that the inertia characteristics - i.e., the mass m and the principal mass

moments of inertial, ./, and I,, - are known.

The dynamic equilibrium equation for an unrestrained body with respect to the principal

aXEeS IS,
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4 * - N
GFX m.. 7] XG
oF, m Vg
GF, m z
4 _ 4 °> (A4. 1-a)
M lyx OX
M Iw 6
y y
. A1 -
M, =z =\ _J
(Flg=| Mea (i), (A4. 1-b)

or in the inverse form

.. F )
Xg l/m . & x
Ve . Um afy
7 : I/m S GF, L
4.9 - (Ad.2-2)
0 _ S ¥/ . . |\/|X
X
Y/
gy yy My
. 1
0 M M J
z
N -1
{ﬁ}G=[MGG\] (Fl, (A4.2-b)

The point P has position coordinates (xp,yp,zp) in the principa reference system.

Assuming small axis rotations, the general displacement (acceleration) at point P is related

to the centroida displacements (accelerations) by the equation,
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€ ) (o)
X, ‘1 0 0 0 v, 71 %
z i z
S I B T S P I (Ad.3-2)
6 O 0 O 0 0 8,
9 0 0 O 0 9
y y
5 .0 0 0 o 1|4
YA VA
(i}, = [Tpo] (i (A4.3-b)

being the general force vector at point P related to the centroidal vector of general forces

by the equation
T
{F}G = [TPG] {F}P (A4.9)
For another point Q, a similar relationships exist,
(i}, = [To] i} (A4.5)
T
(Fl, = [Toal {F}Q (A4.6)
If the force is now acting at point Q, the resulting responses at point P will be given as,
-1
{ii}P = [MPQ] {F}Q (A4.7)
with

Pl = [Tl [Meo, ] [Tl (a8

Thisis the matrix of the “transferred” rigid-body Accelerance (Inertance) between points

Q and P.

It is interesting to note that the first three diagonal terms contain components
corresponding to the three rigid-body modes; one of the components is due to the

trandational motion whereas the other two are related to rotational motions.
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The full transferred Accelerance matrix elements are presented next,
-1
r L, %%, MY o o 0o & %
m i I I I I |
YY zz z Yy Yy @z
-_(lxpy 1_ + Z& + XPX ._J-Zpy -..E_ 0 X_P
I m I I I | I
1z XX y#A XX XX y#A
-X_ Z e AV / Y,y X X y -X
o o 1,2 7P 2 T
| I m I I I I
YY XX XX YY XX yy
-Z y
0 = - IL 0 0
XX XX XX
Z -X
I_Q 0 I_Q 0 1 0
Y Y yy
_y x
T T 0 O
p#A X zz =
(A4.9

The forces applied at point Q may be related to the resulting responses at point P by using

the “transferred” Inertia or Mass matrix

(F), = Mrg] (1,

being the [Mpg ] matrix elements presented as follows

"m 0 0 0
0 m 0 e,
0 0 m -my,

[Mro] =

0 mzQ -myQ Ixx+m(szQ+yPy Q)
- e 0 0 nx 0 “mypX,
, myQ -me 0 -mszQ

-mz,,
0

Mp

™Y,

Iyy+m(zpz Q+xPx Q)

mzy,

Izz+m(yPy Q+ X (?

(A4.10)

myp

7

-my .z Q

(A4.11)
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2. RIGID-BODY MODE-SHAPES

For a fredy-supported structure, the low-frequency response is dominated by the rigid-
body modes, which resonate at zero frequency. From Appendix Il, the low-frequency

residual receptance due to the six rigid-body modesis given by,

6

X 0.0, S,
i - E ik i
Fkl_ ajk((o) = -0)2 -(02 (A4.12)

r=1

or in terms of Accelerance,

6

fk = - ocjk(m) = Ijk(co) =_ -0)2 = Sjk (A4.13)

r=1

each termin f¢j corresponds to an element in vector . { (D}.

At zero frequency, the six rigid-body modes - three trandational and three rotational - may

resonate together; thus, depending on the geometrical properties and on the location of the
exciting force, the modal constant Sjk calculated for the zero frequency mode may contain

a combination of the different rigid-body modes. Then, this combined information must

be separated before the full matrix [®] can be evaluated. For each point, say P, six

possible displacements are considered,

X )

{¢}P=< e (A4.14)
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2.1 Translational RIGID-BODY MODE-SHAPES

In the rigid-body motion involving only trandational motions along the X, Y and Z axis
respectively, al the rotationa displacements are zero except the corresponding axial

displacements. The mode shape vector related to point P isthen,

Transl.[q)]P-_- :x{(D}P I y{(b}plz{q)}l)] (A4.15)
(1 0 0y ]
ol il e
Transl.[q)]P = Cx 0 Cy 0 Cz 0 (A4-16)
0 0 0
0 0 0

Cx, Cy and CZ being the scaling factors to be calculated according to normalisation

process.

2.2 Rotational RIGID-BODY MODE-SHAPES

Since we assume small rotations, the corresponding rotationa rigid-body mode-shapes

are,

ral®le= [0, (@} 1o, { @}, 16,{@},] (A4.17)
0 . ZP\ . _yP\ -
“pl o 0 : X,

— y : -X

ko [®p=| Co, 1P 1Co ) P( :Co, ) O (| (ad18)
0| - 1 0
0 . 0/ 1/

where Cex, Cey and CeZ are the rotational scaling factors.
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2.3 Normalised RIGID-BODY MODE-SHAPES

Let us consider the case of the response at point P due to the excitation at the same point.

The full non-normalised rigid-body mode shape matrix for point P is given by,

[(D]P=[Transl.[q)]P ‘Rot. [(D]P] (A4.19)

The scaling factors are calculated by imposing the orthogonalisation condition with
respect to the mass matrix [Mpp ], which is calculated by using equation (A4.11) for the

case of a point excitation (Q=P). Thus,
T
[@], [Mpp] [@],=10 (A4.20)

which gives for the scaling factors the following values,

= = =1—
CX—Cy Cz =
_ 1
Cex—ﬁ (A4.21)
1
Co, =——
y -\’Iyy
Co = ——
z \/g

The full mass-normalised rigid-body mode shape matrix is then represented as,
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