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ABSTRACT

The work in this thesis is concerned with substructure coupling techniques which

incorporate data readily available from modal tests. Two coupling techniques are

investigated in detail, namely the Impedance and Modal Coupling techniques. In the

former, different procedures for reducing models are described and the effects of the

corresponding incompleteness - at this stage mainly relating to the coordinates - are

investigated in order to detect and understand the main sources of errors in the predicted

dynamic behaviour of different case studies. Additionally, alternative coupling algorithms

are proposed to overcome numerical errors arising due to redundancy in the set of

connection coordinates. In the second technique - Modal coupling - the investigation is

concentrated on the effects of truncating the number of modes. A refined approach is

presented for including residual flexibility equivalent to the omitted modes by

incorporating a dummy flexible system between two components.

A common problem in all the investigated coupling techniques is that their validity may be

reduced by using experimental data which can be measured rather than the data that

ought to be measured. One of the most critical areas here is the formulation of

meaningful constraint equations to express the actual physical connections between

components. Sometimes, the number of measured junction coordinates can be excessive,

thus provoking numerical difficulties during the coupling process. On other occasions,

there are extreme situations where a lack of information causes a meaningless

representation of the actual connection properties. Both situations are dealt with in the

present work. The former is investigated by making use of a well established

mathematical technique - the Singular Value Decomposition - which permits a confident

inversion of ill-conditioned matrices and, additionally, detects the redundant coordinates

responsible for the coupling numerical failures, when combined with a QR factorization.

The latter aspect is related to the possibility of accurately measuring rotational coordinate
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responses. These are important ingredients in a coupling process whenever moments

must be transmitted through the connections. A new laser measurement technique is used

for sensing the responses in the vicinity of a connecting region of a vibrating structure,

which in this work is a simple straight beam. The rotational data are subsequently

compared with theoretical values and with those estimated from accelerometer

measurements made either with the transducers placed on one exciting block or closely-

spaced near the coordinate of interest.

In order to assess the validity of the mathematical and experimental tools developed in this

thesis, several case studies are presented. Some of them make use of theoretically-derived

models to simulate practical conditions and others are experimentally-derived models of

actual components which are used to predict the coupled structures responses, which in

turn are compared with measured results on the actual assemblies.
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- degree(s) of freedom

- frequency response function

- Singular Value Decomposition

- modal constant (mode r, FRF jk)

- vector of interconnecting forces acting on component A and
B, respectively

- general FRF and FRF matrix (Receptance, Mobility and
Accelerance)

- estimated and measured FRF matrices

- identity matrix

- stiffness matrix

- stiffness matrix of the interconnecting system

- number of total, kept and eliminated modes

- mass matrix

- number of total coordinates

- number of primary (master) and secondary (slaves)
coordinates, respectively

- number of connection and interior coordinates, respectively

- vector of principal coordinates referred to the m, mk and m,
modes, respectively

- permutation matrix

-rankofamatrix

- high- and low-residual terms of FRF jk

- residual flexibility matrix referred to the connection
coordinates of subsystem A and B, respectively

- vector of displacements referred to the interior and
connection coordinates



WI, PI - matrices formed of left and right singular vectors,
respectively

[zw] - general Impedance matrix (Dynamic Stiffness, Mechanical
Impedance and Apparent Mass)

6 - threshold to define rank of a matrix

E - machine precision

- singular value i

co - circular frequency

or - undamped natural frequency

4 - damped natural frequency

- damping factor for mode r

ajk(w)9  [ a(w>] - Receptance FRF, matrix

[ 1a - mass-normalised modal matrix

[% I”[% I& ] - mass-normalised modal matrices corresponding to the total,
kept and eliminated modes, respectively

[ 1Y - non-normal&d  modal matrix

E 1T - transpose of a matrix

[ 1 H
- complex conjugate transpose of a matrix

[ 1+
- pseudo-inverse of a rectangular matrix

1 1 -1
- inverse of a matrix

II II - norm of a matrix

I I - determinant of a matrix
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El INTRODUCTION

1.1 PREAMBLE

It is generally acknowledged that the advent of the Finite Element Method (FEM)

constituted a major step towards the analysis of more complicated static and dynamic

structural mechanics problems. Rather than trying to formulate the equilibrium equations

of a given problem, treating the structure as a whole continuously defined entity, a new

philosophy was then initiated which acted as a catalyst for several researchers. A basic

principle inherent to this philosophy was the assumption of the whole structure being

composed of individual analytical elements such as beams, plates or shells which, at a

final stage, could be assembled to provide a model of the complete system.

Nevertheless, the complexity inherent in an increasing number of engineering problems

still resulted in limitations of this type of ‘discretised’ structure when applied with the

available computational means, mainly due to the large order of the matrices involved in

the process. A more general approach was then necessary whereby a complex structure

could be regarded as being formed of different substructures (or components), each of

which could first be analysed individually and independently from the others. In this way,

before being assembled to form the complete structure, each analysis could be done by

whichever method was most convenient and eventually the substructure models could be

assembled together to obtain the equations related to the complete structure. This is the

idea underlying the nowadays well-known ‘substructuring’, ‘building block’ or

‘coupling’ approaches for solving static and dynamic problems.

. _ ~ . . , _ . ~ ~ - ~ . - -
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Originally, the idea was restricted to the use of purely theoretical models but, as it was

often found that certain substructure models could not be properly formulated due to their

complexity, the method was developed so as to incorporate models derived by an

experimental route also. This different route, can not only complement a subsystem

theoretical model - by verifying and updating - but also can provide a suitable and reliable

subsystem model for direct assembly in the coupling process. This route is nowadays

firmly established and an experimental counterpart to the FE modelling is becoming

widely used - the techniques being referred to as ‘Modal Testing’, ‘Experimental Modal

Analysis’ or ‘System Identification’. Recent advances in Modal Testing methods and in

digital processing have reduced the time required and increased the accuracy and

confidence associated with the experimental determination of modal parameters, which are

the essential ingredients to construct an experimental model.

Accordingly, an ideal substructure approach should be versatile in terms of being able to

incorporate data from either the sources - the FE method or Modal Testing. Such a

method should yet provide other important benefits which may be outlined as,

considerable insight into a complex system’s dynamics can be obtained from the

component or subsystem analyses which precede the system assembly level studies. In

other words, each component can be treated by a more accurate and refined model. In

certain cases, it may happen that components are still too large to be analysed by

conventional experimental means, especially if they have to be suspended to simulate

free-free support conditions. The substructure approach allows a further sub-division

into other subsystems which are easier to measure.

there is the possibility of creating a library of standard subsystems for which a high

level of modelling has already been achieved. Such components can be input, as often

as needed, into several assembly processes;

the location and time for each component analysis may be selected during the design

stage, since different organizations on different sites can perform the analysis for each

part;
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l each dynamic model may be obtained by theoretical analysis or by testing of the

individual subsystems - these are easier to handle than the total system. A mixture of

theoretical and experimental subsystem modelling is one of the main requirements for

using coupling techniques; and

l any structural modification which has to be applied at any time only involves a re-

analysis of the affected part. A design change in one part only implies new data for that

modified part which can then be coupled with the remaining unmodified components,

without requiring a reanalysis of the rest of the structure.

The possibility of attaining a more precise description of the component dynamic

properties at the subsystem level leads to a better exploitation of the computational and

experimental means available from an individual organization or team. However, it should

be borne in mind that not all the thus-obtained information is necessarily incorporated into

the system model, otherwise no gain would be obtained in terms of efficiently handling

the size of matrices required for the formulation of the coupled structure final equation of

motion. Thus, there is the necessity of reducing, in an optimum way, the size of the

matrices at the subsystem level, while retaining a precise description of the dynamic

properties. Any imprecise formulation of the reduced or condensed model will affect the

predicted dynamic behaviour for the whole system.

Generally, the main steps involved in a substructuring technique may be described as;

System  level

Step 1 - Partitioning of the whole physical system model into a number of substructures

with a proper choice of connection and interior coordinates. At this stage, it must have

already been decided which components are going to be subjected to a modal test and

which ones are amenable to modelling by the finite element (or other analytical) method.

In some cases, it may happen that both experimental and theoretical routes are chosen for

the modelling phase of a given component.

.



Subsystem level

Step 2 - Derivation of the respective models, either by a theoretical or an experimental

approach, with selection of an adequate number of coordinates and/or modes to be

retained in the analysis and, whenever possible, with an evaluation of the effects of

neglecting certain coordinates or modes.

Step 3 - Formulation of the subsystem equations of motion which are generally made by

using physical or modal coordinates and, if possible, without requiring the knowledge of

the dynamic properties of the remaining components forming the global structure. Such

independency is an important requirement, although the interconnecting conditions must

be commonly defined by some of the organizations involved in the design.

Svs tern level

Step 4 - Construction of reduced-order equations for the global structure (the assembly)

by invoking interface displacement compatibility and force equilibrium conditions

established for the different component models.

One can note that, the reduction or condensation process - performed at the subsystem

stage - leads to a distinction between the different coupling techniques available which we

shall divide into two major categories. One the one hand, there are techniques in which

the order of the matrices involved in the final equation of motion is dictated by the number

of kept (primary) coordinates pertaining to each subsystem (reduced) model. On the other

hand, there is another category of techniques which also benefit from a reduction

performed at the component level, but this time based on the number of modes included.

In this thesis we shall refer to the former approach as “Impedance coupling” and to the

latter one as “Modal coupling”. Before we proceed further to summarise the relevant

works in both categories of methods, some terminology is necessary to characterize the

subsystem models.



01 Introduction 5

1.2 SUBSYSTEM MODELS

Essential to the communication among different organizations and research groups is the

terminology and format used to describe the dynamic properties of a system or subsystem

model, be it theoretically- or experimentally-derived. To start with, we shall present the

different model formats using the same terminology as Ewins [l] and simultaneously,

when pertinent, other similar designations will be referred to.

(i) Spatial Models

By discretising a given system, it is essential to assign to each of the N coordinates (or

degrees-of-freedom (DoF)) the values of the spatially distributed properties i.e., the mass,

stiffness and damping. The way to do so is by presenting each of those properties in a

matrix form as follows,

lWNxN - mass matrix which provides a means to define the inertia forces assigned

to each DoF when they experience an acceleration (the off-diagonal terms contain

the inertia coupling information),

[KINti - stiffness matrix providing a means to define the inherent restoring forces

due to the relative displacements at each DoF (similarly to the previous one, the off-

diagonal terms express the way the DoF are statically coupled)

[ClNxN' [H3NxN - viscous and hysteretic damping matrices, respectively. They are

not always used since damping is often neglected in theoretical modelling which

means that the dissipative forces are negligible when compared to the previously

mentioned ones.

It is important to note that the above mentioned definitions have a clear physical meaning

in the case of lumped parameter systems whereby one can associate a DoF to a lumped

region (such as in spring-mass models). This is not the case when matrices result from a
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between the various finite elements connected at the so-called nodal points as described by

Zienkiewicz [2].

A complete Spatial model has inherent to it N coordinates and N modes. As shown in

chapter 3, Spatial models which are reduced or condensed to P primary or master

coordinates will have order P (<N) i.e., they will possess information on P coordinates

and P modes only.

Sometimes, Spatial models are referred to as Time Domain models, since equations of

motion formulated by using Spatial properties contain the response motions of a system

as functions of time.

(ii) Modal Models

There are situations where the dynamic properties are most conveniently described in

terms of natural frequencies and associated mode shapes. Such convenience may arise

from the need to compare data from different sources which use different routes to attain

the modal description as mentioned by Ewins [3], or as a simple reason if it is intended to

show an animated display of the structure at each corresponding natural frequency.

Mathematically, the mode shapes are represented as vectors in which each element

represents a deflection of one DoF relative to the other (N-l) DoF in the model. The

modal vectors (or eigenvectors) can be grouped together in the so-called Modal matrix

which is represented by [ylNxM - a square or rectangular matrix containing information

on N coordinates and M modes. The eigenvalues, which are intimately related to the

system natural frequencies, can be grouped together forming the diagonal terms of a

diagonal matrix represented as ‘At,
[ 1MxM. Generally, both are

real and imaginary parts have distinct physical meanings.

eigenvalue < and the corresponding mode shape ( w}, as

matrices;

complex matrices whose

Let us consider the kth

presented next for both
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[ 1Y NXM=
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The k* eigenvalue contains

frequency (CO,) and modal

.

.-

the information related simultaneously to the k* natural

damping (qJ of the kth mode ( w>, which in turn is

represented by a real part - the relative amplitude of motion at each DoF - and by an

imaginary part which expresses the phase.

Since the mode shapes represent relative amplitudes at the DoF, rather than absolute

deflections of the structure, the elements of each modal vector are scaled in some manner.

Generally, they are scaled in such a way the largest element is made equal 1 (for instance

for graphic visualisation purposes). On other occasions, when Modal models are obtained

from different sources, it is convenient to have a consistent scaling factor. This can be

achieved by making use of the concept of modal masses and modal stiffnesses. Due to the

orthogonality of the mode shapes relative to the mass and stiffness matrices, the following

relationships hold (if Mm):\
[ 1mr =’ MxM ditd [l%xN iYIN&l

[ 1‘kr. =MXM [$f, [K1Nfi [y]Nfi

being the modal masses and modal stiffnesses interrelated as ?L: = k, / mr = a:( l+i q,). If

modal masses are used to scale the mode shapes, a new orthonormal set is obtained,

^ I
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which is here assumed to be the normalised format for the presentation of mode shapes.

In fact, these are the mode shapes obtained from modal constants which are extracted

from measured data by performing a Modal Analysis process, as shown by Ewins [ 11.

(iii) Response Models

According to the description in common use in the analysis of control systems and

electrical circuits, we shall assume a structure possessing inputs and outputs which can be

interrelated through a kind of ‘black box’ . The (input) forces {f(t)} applied to the system

can be related to the (output) responses {x(t)} whenever the dynamic characteristics are

known. Let us consider a linear system excited with harmonic forces for which the

input/output relationship can be written in the frequency domain as,

or

(X(N) = [HW] ( F(o)

(W} = [ZW] (XW

where [H(U)] and [ Z( )]CO are frequency response transfer functions of the system related

as,

[WI] = [H(w)]-l

From an experimental standpoint, either of these matrices could be measured directly on

the structure. Depending on when displacement, velocity or acceleration is considered as

the response, the transfer function matrix [H(w)] is called Receptance (or Admittance,

Dynamic Compliance, Dynamic Flexibility), Mobility or Inertance (or Accelerance)

respectively. In these matrices, each element is a complex ratio (response/force) which is

(FRF).
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Due to the wide use of accelerometers to sense responses on structures, the FRFs are

generally measured in terms of Inertance. The Response model is then expressed as a

matrix - the FRF matrix - whose elements are measured FRFs. The corresponding

inverses of the above mentioned matrices are called Dynamic Stiffness, Mechanical

Impedance and Apparent Mass, respectively. Nevertheless, we shall refer to a

general&d Impedance matrix as the inverse of whichever assumed FRF matrix.

It is important, however, to bear in mind that different practical constraints are associated

with the measurement of either [H(U)] or [Z(U)]. If, for instance, element Hij is

considered in matrix [H(W)], in physical terms this represents the amplitude and relative

phase of a harmonic displacement at DoF i due to a harmonic force applied at DoF j (when

no external forces are applied to any DoF other than j). A different physical meaning has

Zij which represents the amplitude and relative phase of a harmonic force applied to or

constraining DoF i such as DoF j executes a unit displacement (when no other

displacement exists other than j). These two definitions explain two important

distinctions between the FRF matrix and its inverse, the Impedance matrix.

l Firstly, to measure directly the elements in the Impedance matrix requires the

displacements at numerous DoF to be held at zero. Conversely, direct measurement of the

elements in the FRF matrix only requires an easy constraint to be satisfied in practical

terms - only one force should be applied each time an (FRF) element is measured.

l Secondly, a measured FRF matrix at one stage of the design can be later expanded

by simply performing new measurements at additional coordinates to form new rows and

columns without modifying any existing elements. This is not the case whenever an

Impedance matrix needs to be expanded, since all the existing elements have to be re-

measured after the new constraints have been imposed to the structure.

Accordingly, the Response models are described by a FRF matrix whose elements

(FRFs) can be either all measured or all analytically calculated or, sometimes, a mixture of

both.
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It is possible to derive a Response model theoretically by invoking the relationship

between Response and Spatial or Response and Modal models as presented by Ewins [l]

and outlined here for the Receptance matrix,

[a(N]Nti = [ CKI - w2Wl ]zti
‘(hT_02) -1

1 11Q, T
- MXM MXN

where N and M are the numbers of coordinates and modes, respectively.

For simple components, however, a closed-form solution based on differential equations

of equilibrium, can be used to relate ‘exactly’ the responses and excitations, as presented

in textbooks by Bishop and Johnson [4] and Timoshenko [5].

All of the models previously mentioned may be interrelated as presented in fig. 1.1 for the

particular case of undamped systems. Although it is assumed in the presented

relationships that matrices have order N (number of coordinates = number of modes),

they are still valid for reduced models whose number of coordinates (N) is less than the

number of modes (M). Conversely, if M > N and an inverse (or pseudoinverse)

calculated to perform the necessary conversion, there is a numerical difficulty

matrix to be inverted is rank deficient. This subject is discussed in more

chapter 3.

has to be

since the

detail in

r.
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1.3 SUMMARY OF PREVIOUS WORK

There have been numerous researchers addressing the substructuring method, especially

since the early 1960’s. A brief review is presented here, although a more thorough

discussion is carried out in some later chapters when specific techniques are described or

referred to in more detail.

To start with, we shall address the coupling techniques which exploit, in terms of

computational efficiency, a reduction performed on the coordinates at the subsystem level.

Depending on whether Spatial or Response component models are used directly as

input data into the coupling process, the assembling techniques are here designated as

Spatial or FRF Coupling techniques, respectively. The former is ideal for the use of

FE methods whereas the latter comprises both theoretical and experimental fields of work.

The FRF coupling technique is generally referred to as the “Impedance Coupling”

technique since, at the system level, it assembles mathematically the generalised

Impedance properties of each component although in practical terms, as mentioned in the

previous section, they are not the directly measured ones. In chapter 3 a detailed

discussion is devoted to the FRF Coupling method.

Early works were presented making an analogy between electrical circuits and vibrating

systems, one of them from Duncan [6]. The concepts of linear operators and the principle

of superposition were employed by Sykes [7] to develop linear multi-terminal network

theory for solving periodic steady-state and transient vibration problems of mechanical

systems synthesised from a number of small substructures. One of the most significant

analytical works in the development of the Mobility (Impedance) concept is that by

Bishop and Johnson [4]; from an ‘exact’ formulation of the Response model of a beam

component, the properties of multi-beam assemblies could be formulated. The application

of the conceptually-simple Impedance Coupling technique is straightforward when the

components are amenable to theoretical modelling, but practical complex systems have

demanded subsystem Impedances to be derived from measured data rather than a purely
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models are necessarily an approximation of real structures, even if the solution of

differential equations of motion are ‘exact’, whereas measuring a structure permits a

description of its own equations of equilibrium and boundary conditions. Although

models obtained via this latter approach have the advantage of more closely reflecting the

‘true’ dynamic characteristics of a structure, they are contaminated with errors arising

during the acquisition and analysis of measure data. Consequently, the accuracy of the

assembled structure results will be affected.

The experimental approach to the Impedance Coupling problem was one of the main

reasons which motivated a breakthrough to the development of suitable techniques and

equipment to measure, assess and analyse data. A comprehensive work was presented by

Ewins [9] concerning ground rules, measurement techniques and interpretation and

application of measured data with an extensive selected bibliography. The Impedance

coupling technique was applied to many engineering problems, such those presented by

Klosterman [lo], Sainsbury and Ewins [ll], Ewins, Silva and Maleci [12], Hunter and

Otts [13] and Heer and Lutes [14], just to quote some of the earliest cases. The main

difficulties encountered in those applications were mainly related to the mathematical

inconsistency of the measured models and to the inadequacy of experimental means to

measure some terms in the FRF matrices of certain components. Mostly, those FRFs

were related to rotational response measurements.

The FRF matrix of a measured component tends to be ill-conditioned near each resonance

frequency, especially when lightly-damped structures are dealt with. If any error in the

FRFs is present in the vicinity of those regions, which is most likely in measured models

causing the undesirable mathematical inconsistency, numerical failures will arise during

the coupling process and, as a consequence, meaningless predicted results obtained.

Lutes and Heer [ 151 addressed this problem by numerically ‘filtering out’ elements in the

FRF matrix. Another approach was implemented in works by Ewins [ 161, Gleeson [ 171

and Imregun, Robb and Ewins [18], where the inconsistency was removed by subjecting

raw data to modal analysis and then from the modal data base thus-obtained smoothed

FRFs were regenerated to improve the predictions.
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Rotational responses are necessary to formulate proper constraints between connected

components. Success in the prediction of results for a coupled structure is dependent on

how the connection coordinates are measured and included in a coupling process, as

demonstrated in some practical applications undertaken by Ewins and Sainsbury [19],

Henderson [20] and Maleci and Young [21]. For instance, by simply assuming one point-

connected components, if they respond to excitations in all three planes, it is vital to

include the three rotations in addition to the three translations in order to properly

formulate the constraint conditions. In terms of Response models, the FRFs related to

rotational response/excitations represent 75% (or 60% if symmetry properties are

assumed) of total elements in the corresponding FRF matrix. Although simple to calculate

those FRFs analytically, it is not an easy task to perform their measurement. This

difficulty motivated a trend in the research procuring practical techniques and transducers

to measure rotational quantities. Most of the reported works have tended to use

translational transducers (coventional  accelerometers) and from them the rotational

quantities were derived. An early work in this field was carried out by Smith [22] who

attempted to measure complete Mobility data from responses of two accelerometers and

by producing an exciting couple with the use of two linear shakers vibrating in anti-phase.

Later, a technique using a single shaker and an additional block attached to the structure

was used by Sainsbury [23] who made use of different block configurations to minimise

the errors, especially related to the FRF rotation/moment which is the most prone to

errors. Further studies were carried out by Ewins and Gleeson [24] who developed an

alternative technique, especially suitable for lightly-damped structures, which takes into

account the special relationship between elements of point FRF matrices. However, this

relationship could not be extended to the calculation of the residual flexibility associated

with the out-of-range modes. Additionally, Gleeson [ 171 showed that base strain effects

and cross-sensitivity of accelerometers are some of the causes of erroneous estimations of

those FRFs. An alternative technique for measuring rotational responses was attempted

by Licht [25] and Rorrer [26], who resorted to angular transducers instead of linear ones.

The benefits achieved such as, no need to process data from linear responses and to

cancel additional mass effects, were not compensatory if the ratio price/accuracy was
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compared to the conventional approach. Yet another estimation of rotational responses on

beam-type components is possible from the measurement of translational responses at

closely-spaced locations near a point of interest. This alternative was attempted by Chen

and Cherng [27] and Sattinger [28] by using first- and second-order approximations to

estimate the rotational FRFs. Identical conclusions were found about the poor accuracy

related to those FRFs, and the differentiation method was seen to accommodate

considerable variation in measurement location spacings. The selection of response

measurement and excitation location spacings must achieve a balance between resolution

and proper approximation of derivatives across the number of natural modes of vibration

to be encompassed in the frequency range of interest.

The other coupling method we shall be concerned with is the Modal Coupling technique,

also referred to in the related literature as Time Domain or Component Mode Synthesis

methods. The basic philosophy is the same as the previous one i.e., it permits the use of

reduced component models in order to achieve a reduced order in the final equation of

motion matrices of the assembled structure. However, unlike the Impedance based

methods which take advantage on the reduction of the number of coordinates, these

methods use a reduction performed on the number of modes used to describe each

component model while still accounting for all the physical DoF. By using a Ritz-type

transformation, the reduced number of principal coordinates is related to the number of

modes that are taken into account for the modal estimation; generally, the information

relating to the higher natural frequency modes is discarded. This feature in the method

reduces the computational effort required in the system analysis and parallels the modal

information in a real test, since it is only possible to measure some of the existing modes

in a structure. The objective is to maintain a specified level of accuracy in the dynamic

analysis, while using only the lower order modes for computational efficiency.

Essentially, there are two Modal coupling approaches which differ from each other

according to the dynamic displacement shapes used to form the truncated set of the natural

modes. In the first approach, the elastic modes pertaining to a fixed-interface component
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are retained, whereas in the second one, the modes are obtained by assuming the

component to be vibrating in a freely-supported condition at its attachment points.

The basic idea for the fixed-interface method relies on the philosophy of the static

substructuring technique proposed by Przemieniecki in 1963 [29]. It was mainly directed

towards the use of the finite element technique with the total displacement for each

component coordinate being calculated by a superposition of the displacements obtained

with fixed and relaxed interface conditions. In 1965, Hurty [30] proposed the Normal

mode or Component Mode Synthesis method, at this time focusing his work on dynamic

structural systems and taking into account both the component’s elastic and mass

properties. Later, Craig and Bampton [31] re-formulated Hurty’s method by simplifying

the choice of the groups of modes for the transformation matrix construction.

In the second alternative - the free-interface method - the necessary natural modes

incorporated in that matrix are those obtained from a subsystem vibrating either in its free-

interface or completely free support condition. This being the most readily simulated

condition during a experimental test, it constitutes an attractive technique

combined experimental /theoretical analysis of dynamic structural systems.

for the use of

Some of the early works reporting use of free-interface modes were presented by

Gladwell [32] and Goldman [33]. The former was called the branch-mode analysis and

was limited to the study of subsystems connected in a statically determinate condition,

while the latter constituted the basis for more refined techniques. One of these was Hou’s

work [34] which presents some similarities with Goldman’s method, but uses a less

complicated procedure for generating the system transformation matrix. In some survey

papers by Craig [35], Nelson [36], Goldenberg and Shapiro [37] and Hart, Hurty and

Collins [38,39] it has been commonly stated that in the free-interface methods like Hou’s

and Goldman’s procedures, very poor accuracy may be obtained for the overall system

natural frequencies and mode shapes compared with the accuracy produced by the fixed-

interface methods. However, it was then recognised that the free-interface methods could
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the coupling process, which has led to an improvement of the existing methods by

developing a great variety of approaches. Some of these presented by MacNeal  [40],

Kuhar and Stahle [41], Hintz [42], Benfield  and Hruda[43]  and Rubin [44] were

primarily based on a purely analytical description and determination of the component

characteristics in other words they are suitable for the theoretical route, while others tried

to explore the use of experimentally-derived modal properties as a basis for the

formulation of each subsystem’s equations of motion. In this latter approach, one

important early work is Klosterman’s thesis [45] which provides a comprehensive study

of the experimental determination of modal representations of components including the

use of these models in the substructure coupling.

The structural definition of components from modal tests has been accomplished and

successfully used by Klosterman and Lemon [ 10,461 for design purposes with relatively

stiff structures connected with flexible elements such as an automobile frame and body

connected by isolation mounts. For this situation, the subsystems can be tested with free

boundaries to obtain a free-free modal data base which is sufficient for use in system

synthesis. However, in the case where the components are rigidly connected, the use of a

set of truncated modes to establish the compatibility equations sometimes leads to

unacceptable errors in the system response predictions. In this case, a more accurate

definition is necessary either by using more modes or, if these represent an unreasonable

number, by providing some information about the effects of the neglected modes. The

lack of definition of the component properties may be overcome in two ways; on the one

hand, seeking to compensate for a lack of flexibility due to truncation of the set of natural

modes by using an additional and important information concerning the flexibility effect

of the out-of-range modes. On the other hand, by using additional masses attached to the

connection points in an attempt to generate a more realistic condition for the component

when it is vibrating together with the remaining parts, the localised flexibility properties

near the connection area are better represented, since more modes are brought to the

frequency range of interest.

L ,
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The first alternative was presented by MacNeal[40] and Rubin [44] in order to improve

the truncated free-free modal representation of a component by including estimates of the

residual effects due to the modes higher in frequency than the frequency range of interest.

In general, the residual effects are obtained by calculating the component flexibility due to

those modes to be retained and then subtracting this from the total flexibility of the

respective component. In Rubin’s method [44] the first-order response based on

MacNeal’s approach [40], is used further to estimate residual inertial and dissipative

effects of higher order modes. Craig and Chang [47,48] discussed the coupling of

substructures represented by Rubin component-modes model. All these works presented

a significative improvement to the classical free-interface method, but yet using purely

analytical representation of component properties.

Since the free-interface method constitutes the most straightforward approach when the

required data must be obtained from testing the components, some authors as

Martinez ef al [49,50] and Coppolino [51] have directed their work in this direction.

Although Craig [52] has shown that the residual flexibility and fixed-interface method are

equivalent, Klahs and Townley [53] concluded that numerical difficulties may arise in the

use of residual flexibility approach.

The mass-loading technique may be classified as an intermediate technique between the

fixed-interface method and the free-interface method. As mentioned before, the classical

free-interface method is more sensitive to the truncation of the elastic modes used to

describe the displacement in the connection region, rather than the fixed-interface method.

In an attempt to bring the classical free-interface method (which is the most suitable for

experimental purposes but does not offer good accuracy) closer to the fixed-interface

method (which leads to better accuracy in the results but is not appropriate for the use of

modal testing), the mass-loading technique is an available compromise solution which has

been used in some specific fields of research, namely in the spacecraft industry [Sl].
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1.4 SCOPE AND ORGANIZATION OF THIS THESIS

The research project presented in this thesis is concerned with more effective use of

structural assembly analysis methods in practice and is mainly formed of four constituent

parts as described next.

(i) - Theoretical Basis of Coupling Procedures which is the subject of chapter 2.

In this chapter, the mathematical and physical principles inherent to the Impedance and

Modal coupling techniques are presented and examined, which are in fact two different

approaches to assemble reduced subsystem models. The former one takes advantage, in

computational terms, of the reduction performed on the Spatial or Response models of

each component whereas the second approach benefits, in the same terms, from the

assumption that the subsystem Modal models are reduced in terms of the number of

modes included. The limitations associated with the conventional methods to deal with

both types of incomplete models are presented at a last stage and are the main basis for the

research presented in the subsequent chapters.

(ii) - Refined Impedance and Modal Coupling Methods are presented in

chapters 3 and 4, respectively. Chapter 3 is mainly devoted to the refinement of

Impedance coupling methods that are able to incorporate the data readily available from

measurements. Although a brief examination is carried out on the ways and effects of

using reduced theoretical models - Spatial models - attention is principally focused on the

use of experimentally-derived Response models which, by nature, are themselves

incomplete and prone to measurement errors. The interest in the use of this kind of model

is justified by their attractive characteristic which is the valuable information they contain

about all the existing modes on the structure. Additionally, since they reflect the ‘true’

response of the component, they can provide a means of quantifying and qualifying

damping and/or non-linear characteristics, which can not be assumed negligible as it is in

general. In light of these considerations, the FRF coupling technique is selected to be the

suitable mathematical tool which is mostly investigated. Refined algorithms are presented

to increase the efficiency of the conventional method presented in chapter 2. The



improvement is achieved by decreasing the number of inversion operations and

simultaneously the order of the involved matrices. In doing so, it is also shown that the

numerical difficulties arising from inversions carried out on components’s ill-conditioned

FRF matrices are avoided under certain circumstances and a better prediction of the global

structure results can be attained. Central to this work are numerical studies which

investigate the sensitivity of the different alternatives under certain simulated practical

conditions. One of these undesirable conditions is the existence of linearly dependent

responses based on the coordinates located at the connection regions, causing the FRF

matrix to be rank-deficient. If it happens that both components possess this characteristic,

there is the need to make use of auxiliary mathematical tools which are presented in

chapter 5. The second group of techniques - Modal Coupling - is dealt with in chapter 4.

In this chapter, a modal coupling technique which also makes use of experimentally-

derived data is investigated. Generally designated as free-interface method, since its

formulation only requires the component modes to be obtained under a free supported

condition at the connection coordinates, it is assumed in this chapter that the necessary

modes are those derived from a commonly conducted modal test i.e., none of the

coordinates are constrained in any direction. A refined technique is presented whereby the

lack of flexibility due to the truncation of the number of modes in each subsystem (in fact,

a characteristic of measured data), is compensated by the addition of a ‘dummy’ flexible

system at the interface region. This auxiliary system possesses, in each component, the

information of the flexibility associated with its out-of-range unmeasured modes. What

the refined technique assumes in fact is a mathematical coupling of both components

through those series connected ‘dummy’ flexible systems which after all are considered as

a unique system between the components. The main structure of the computer program is

briefly described and the validity and facility of refinement are assessed using case

studies.

(iii) - Mathematical and Experimental Tools Used in a Coupling Process

constitute the subject of chapters 5 and 6. It has already been stated that subsystem

models which are derived from measured data suffer from incompleteness in terms of
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coordinates. This may be due to difficulties in accurately measuring certain regions on the

structure or due to a lack of ability of conventional transducers to measure certain required

coordinates, for instance the rotations. In trying to remedy such inadequacies, one may be

tempted to measure as many coordinates as possible, especially at the connection

region(s) where a continuous description of the response field is highly desirable in order

to attain a closer representation of the actual constraint conditions. However, as shown in

chapter 3, such a large number of measured coordinates may well cause some of their

responses to be linearly or almost linearly dependent on each other at certain frequency

ranges. The result of using models with such a characteristic is a numerical ill-

conditioning, especially if the FRF coupling technique is used. In seeking to remedy this

undesirable failure, two strategies are proposed in chapter 5. On the one hand, a powerful

mathematical technique - the Singular Value Decomposition (SVD) - can be confidently

used to invert any matrix even if it is rank-deficient. However, it is shown that this

technique should not be used as ‘black box’ algorithm, since the number of significant

singular values is dependent on a specified threshold which is related to the degree of

error on the measured data. The second proposed strategy also makes use of the SVD

technique, but not this time to be used as an inversion algorithm. It is, instead, used to

calculate the rank of a matrix or, in other words, the number of independent responses on

a given structure. In addition to this technique, an algorithm which makes use of a QR

factorisation  is presented to locate those coordinates with dependent responses. If it

happens that both components have redundant responses at identical locations, this means

that those coordinates can be neglected during the formulation of the constraint equations.

This simplification leads to well-conditioned matrices which have a reduced order and

which can be inverted quickly using standard algorithms.

In chapter 6, the formulation of constraint conditions is approached from another

perspective. It is in fact, the other extreme situation where there is an insufficient number

of measurable connection coordinates, due to difficulties inherent to experimental means.

The available transducers are well established and are accurate to measure linear

responses. However, rotational responses are required in special situations to formulate
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proper constraint conditions - particularly when the interface region tends to be localised

and a moment is transmitted while the assembled structure is vibrating. A failure to

measure rotational responses accurately impairs a realistic formulation of the actual

constraint conditions and thus the predicted results have little to do with the actual

assembled structure. In this chapter, three techniques are described to estimate rotational

responses from measured translational ones. Two of the techniques make use of

conventional accelerometers, one of them requiring an additional block attached to the test

structure and the other assuming the measurement of two or three closely spaced

translational coordinates. Both Response and Modal models are estimated at one end point

on each beam possessing one transverse and one rotational coordinate. In both models the

residual effect of the out-of-range modes can be included. The third technique makes use

of a laser unit which is able to sense the velocity at any point on a vibrating structure.

Only recently it has been used in Modal Analysis, particularly to compensate for the lack

of measured coordinates with conventional accelerometers. Taking advantage of the

ability of the laser system to scan a line or area on a structure, a quasi-continuous

definition of the response field can be quickly achieved with such an optical system. One

can say that this system allows the user to have an experimental model which can exceed

the theoretical one in terms of number of coordinates. Such a large number of measured

translational coordinates permits a rigorous approximation with analytical functions and

these can subsequently be used to calculate the rotations at any encompassed point during

the measurement, since they are the corresponding derivative values. If one assumes that

the measurement is undertaken while the structure is vibrating at a natural frequency, the

result is the mode shape description in terms of both translational and rotational

amplitudes.

(iv) - Experimental Case studies are presented in chapter 7. Central to this chapter,

are the results obtained on actual assembled structures. They represent the ultimate test of

the validity of the refinements introduced on the conventional coupling techniques and

reveal the usefulness of the auxiliary mathematical and experimental tools associated with

a coupling procedure.

” ,



STANDARD COUPLING TECHNIQUES

2.1 INTRODUCTION

This chapter provides an introduction to the generally established coupling techniques. As

mentioned in the previous chapter, the main aim of a coupling process is to obtain a model

for the assembled structure. The order of the matrices used to formulate the equations of

motion of the assembled structure depends on the order of the matrices used to describe

each subsystem model, which in turn should be as condensed as possible. How to

achieve the required reduction which is undertaken independently on each component, is

dependent on the selected format to describe their dynamic characteristics. In fact, the

three possible types of subsystem model (Spatial, Modal and Response) are interrelated as

shown in chapter 1, but it is important to note that those relations hold strictly for models

which are considered complete in terms of both coordinates and modes and so

approximations are incurred when incomplete models are used.

The order of the matrices used to formulate the equations of motion of the assembled

structure depends either on the number of coordinates (connection and interior) or on the

number of kept modes pertaining to each component model. One can say that two groups

of coupling techniques emerge from the large variety of methods which have been used in

different fields of research and industry and are classified as,
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- Impedance coupling techniques which benefit from the reduction performed on the

subsystem models in terms of coordinates and,

- Modal coupling techniques which are suitable for the use of reduced models in terms of

modes.

The former group deals primarily with the coupling of subsystems whose models are

described either by their Spatial or by the Response properties. The first of these types of

model is used extensively in the Finite Element method but is rarely used in cases which

involve experimental modelling. Although Response models can be obtained by

theoretical analysis, they mostly constitute the raw data available from modal tests.

The techniques forming the latter group are applied in those situations when the

component models are described by their modal properties - Modal models. This type of

model is easily generated from an eigensolution, if a theoretical tool such as the Finite

Element method is used, or they can be derived from an identification process carried out

on measured FRF data.

The following diagram elucidates the different possibilities of performing the coupling

using both experimentally- and theoretically-derived subsystem models.
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2.2 IMPEDANCE COUPLING TECHNIQUES

2.2.1 INTRODUCTION

The generalised Impedance methods for making vibration analysis of complex structural

assemblies are examined in the present section. The subsystems or component models are

described by using a Spatial or Response formulation giving rise to the so called Spatial

or FRF Coupling methods which are examined next.

2.2.2 SPATIAL COUPLING METHOD

This is the method mostly used in the Finite Element software packages since each

component’s properties are themselves derived from a suitable assembling of the

analytically-derived element’s stiffness and mass matrices, leading to a description of the

component’s model in terms of their spatially distributed properties. The dynamic

characteristics of the overall structure are subsequently obtained using the same

assembling technique as used at the component level, but this time the component’s

spatial matrices playing the role of the matrices to be “added”. The straightforward results

of this assembling technique are the spatial matrices of the complete structure i.e., mass,

stiffness and sometimes damping matrices which, since they are known, can be input to

an eigen-solver to obtain the modal properties or they can be used to generate the

Response model.

Let us consider two undamped components A and B described by their spatial properties,

the corresponding mass and stiffness matrices being of orders NA and NB respectively,

and each being partitioned according to the selected interior and connection coordinates.

The equations of equilibrium for each subsystem, acted on only by interconnecting forces

are,
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when:1the index c denotes the nc coordinates involved in the physical connection and i, j

*Mii : *M.1C
. . . . . . - . . . . . .
*Mci 1 *Mcc

BMii : BMjc
. . . . . . * . . . . . .
B"cj ’ BMW

*Kii : *Kit
. . . . . . * . . . . . ..
AK,i ’ AKw

=
'0
. . . .

A fC

(2.2)

(2-l)

the remaining coordinates for components A and B, respectively.

The compatibility of displacements and equilibrium of forces between the subsystems

undergoing free vibrations are expressed by the following equations:

{Aft) = - ( Bfc} = ( fc)

(A”c} - (But) = 10)

(2.3)

(2.4)

By invoking these equations, the overall system mass and stiffness matrices [@JNCxNC

and kK] NCflC will be of order NC= NA+ NB - nC and are given by,

c 1CM = A[ 1MNcac NAxNAe LBM]N xNB B

and

c 1CK = A[ 1KNC% NAxNA  ’ LBK]NBxNB

(2.5)

(2.6)

the operation sign (Ij meaning the following assembly of the above mentioned sub-

matrices,

[ 1,M =
Ncfic

_
AMii i AM. i o

. 1c .

(2.7)
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*K.. i11 * *Kic i 0 -. .. .. . . . . ...* . . . . . . . . . . . . a......... .
[ 1,K w% AK,i ~AK~+BK,,  i BKcj. .. .

L 0 i BKjc i BKjj
. .. .

(2.8)

Since the mass and stiffness matrices [$]NCaC and [CK]N a
c c

are known, a classical

eigensolution will give the natural frequencies and mode shape vectors for the global

system. This analysis is suitable for the use of theoretically-derived subsystems, but it is

not generally used in cases where the data available is obtained from a modal testing.

2.2.3 FRF COUPLING METHOD

In contrast, the FRF Coupling analysis method makes use of subsystem models

derived directly from FRF data (commonly available from experimental studies but

seldom from theoretical modelling). The dynamic properties of those models are

synthesised in terms of the FRF matrix and generally denoted as [H(o)] (such as

Receptance, Mobility or Inertance matrices).

As in the preceding analysis, the coordinates involved in the connection between

components A and B should be identified and represented by index c (and similarly i and

j for the remaining ones) leading to the following partitioned FRF matrices:

AH ii : AH.
[AH(@]NAtiA  =

[ 1. . . . . . : . . . .”
AH ci ’ AH cc

[BH(c,J)]~~~~ =
BH..  : BHjc
. ...” : . . . . . .

BHcj ’ BH,,

(2.9)

(2.10)

By invoking the constraint equations (2.3) and (2.4) used in the previously presented

Spatial coupling method, the FRF matrix of the coupled structure is provided [l] by a

similar “addition” as presented next :
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[cHcw)l  NC+ = [ [ ~H(w)l;Ax,A @ [ ,H(a)l;x,B ] Ii:,, (2-l ‘1
C

Denoting by Zkl the element k,l in the generahsed  Impedance matrix [Z(o)] = [H(o)]-‘,

the operation sign @

Impedance matrices,

The FRF matrices of each substructure (available over a frequency range of interest,

means the following assembly of the corresponding partitioned

_
*Z.. :

11 ’
Az

ic
; 0 -

. .. .
. . . . . . ..*..................-......... .

Az i
ci * AZ,,+ Bz. i BZcjcc .. .

. . . . . . ..*..................-......... .
() ; BZjc i B’jj

._ .. .

1

(2.12)

which is the same for both structures) are “added” together frequency by frequency until

the whole FRF matrix is completely calculated. The equation (2.12) can be generalised to

include more than two subsystems without having to perform once again all the frequency

by frequency “addition”, provided the general&d Impedance matrices of each component

are suitably assembled as shown in fig. 2.2 for the case of three components.

Intel& cc)or&nates  not hvolv&
in the constraint equations

Connection coordinates 1 W 2

Connection coordinates 2 ( 3

Fig. 2.2 - Assembly of Impedance matrices

As shown in equation (2.1 l), the whole system FRF matrix is obtained after three matrix

inversions, two of them carried out on the subsystem’s FRF matrices and another on the

assembled Impedance matrix.
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A refined version of an algorithm, which reduces the number of inversions to be carried

out on matrices having a reduced order, and a detailed analysis of the numerical

difficulties which may arise in some particular situations, mainly due to the errors inherent

to the measured data and to the redundancy of the connection coordinates, constitutes the

ingredients of chapter 3.

2.3 MODAL COUPLING TECHNIQUES

2.3.1 INTRODUCTION

In this section we shall be concerned with the Modal Coupling techniques, also referred to

in the related literature as Time Domain or Component Mode Synthesis methods. The

basic philosophy is the same as for the previous group i.e., they permit the use of reduced

component models in order to achieve a reduced order in the final equation of motion

matrices of the assembled structure. However, unlike the Impedance based methods,

which take advantage on the reduction of the number of coordinates, these methods use

a reduction performed on the number of modes used to describe each component model

while still accounting for all the physical DoF. By using a Ritz-type transformation, the

reduced number of principal coordinates is related to the number of modes that are taken

into account for the modal estimation; generally, the information relating to the higher

natural frequency modes is discarded. This feature in the method reduces the

computational effort required in the system analysis and parallels the modal information in

a real test, since it is only possible to measure some of the existing modes in a structure.

The objective is to maintain a specified level of accuracy in the dynamic analysis, while

using only the lower order modes for computational efficiency.

Amongst the different available methods, two groups emerge and may be classified as,

- the fixed-interface and

- the free-interface methods.
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\
Free-Interface

Methods

Intermediate
Connecting-System

Connection Coordinates
Redundancy

I
Compatibility

Equations

I I . I
Direct Implicit

Assembly Coupling

I I

Global Equation
of Motion

Fig. 2.3 - Modal coupling techniques
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In both the methods, the solution of the original model is approximated by a summation

of assumed displacements or Ritz vectors, their amplitudes being the generalized

coordinates used to reduce the order of the original model. The Ritz vectors are selected in

a predetermined fashion based either on the dynamic characteristics only or on both the

dynamic and static characteristics of the individual subsystems.

Essentially, the methods differ from each other according to the dynamic displacement

shapes used to form the truncated set of the natural modes. In the first method, the elastic

modes pertaining to a fixed-interface component are retained, whereas in the second

method, the modes are obtained by assuming the component to be vibrating in a freely-

supported condition at its attachment points.

2.3.2 FIXED-INTERFACE METHODS

2.3.2.1 INTRODUCTION

The basic idea for the fixed-interface methods relies on the philosophy of the static

substructuring technique proposed by Przemieniecki in 1963 [29]. This was mainly

directed towards the use of the finite element technique with the total displacement for

each component coordinate being calculated by a superposition of the displacements

obtained with fixed and relaxed interface conditions.

In 1965, Hurty [30] proposed the Normal mode or Component Mode Synthesis method,

at this time focusing his work on dynamic structural systems and taking into account both

the component’s elastic and mass properties.

Later, Craig and Bampton [31] re-formulated Hurty’s method by simplifying the choice

of the groups of modes for the transformation matrix construction. In the present work

we are assuming the standard fixed-interface method to be that re-formulated version,

which is summarised in the following section.
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2.3.2.2 THEORY

Let us assume at this stage that each component’s spatial properties are known. The

corresponding equation of motion, according to the selected connecting and interior

degrees of freedom @OF), can be written in the following partitioned form,

where

(“c) md (“i) - are the displacements at the n, connection (primary) and at the ni

interior (secondary) coordinates respectively:

(fc) lind (fi} - are the forces at the n, connection (primary) and at the ni interior

(secondary) coordinates respectively.

Assuming now that the nc connection coordinates are fixed ( ( UC} ={ 0 }), and that no

external forces are acting at the interior DoF ( ( fi } = { 0 } ), the corresponding equation of

motion becomes:

[“ii] (‘i) + [Kii] (“i) = toI (2.14)

The assumption of harmonic motion leads to an eigen-solution which consists of m = ni

mass-normalized eigenvectors a.[ 1im and the respective eigenvalues
[ 1Gnl . Each

.

interior DoF displacement can now be approximated by a summation of the known

fixed-interface modes as,

I”il=[o;J {‘m] (2.15)

The second kind of modes required to approximate the displacements at the interior

coordinates are the constraint or static modes which are calculated by relaxing each

connection coordinate, but now neglecting the mass properties of the interior DoF. This is

in fact a Guyan static reduction [54], as described by the following equations:
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which gives the displacements ( “i ) in terms of ( UC) :

(“i) =- [Kii] “[Kit] (‘J (2.17)

or, assuming that the transformation matrix is [ Q,L] = - [Kii] -‘[Kit], equation (2.17)

is re-written as:

I”‘LiXl = [~&xnc~"cLcxl (2.18)

The static or constraint modes are thus the columns of the Guyan transformation

matrix CD*[ 1ic ’

A Ritz-type transformation matrix can now be constructed in terms of both elastic (fixed-

interface) and static (constraint) modes, as presented next:

(2.19)

The main advantage of this subsystem description is that it is possible to truncate the

number of modes or modal coordinates (generally the higher natural frequency modes),

while still accounting for all the physical DoF. Assuming that only the first mkof the total

m modes are known, equation (2.19) can now be written as:

(2.20)

Substituting equation (2.20) into (2.13) (only considering the interconnecting forces) and

pre-multiplying by [T&l leads to:
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or in a partitioned form,

where

[ 1% = [II

[GiJ = [tickITE [@JT  ([“ii] [@J + L”icl)

[timI = [Mm]+[@:,lT([Mii]  [@i*,]+[“icl)+[MCil  [OL]

kkl = p:.]
[q] = [KcJT= VN

[“J = CKccl

It is interesting to note

+ LKci] [OIL]

that;

(2.23)

(i) the mass and stiffness matrices related only to the connection coordinates ( uC) are

the same as the reduced matrices obtained by applying a Guyan reduction to the initial

[M] and [K] matrices;

(ii) in the cases when the boundary is statically determinate;

the constraint mode partition <D*[ 1ic reduces to a geometric rigid body

transformation which is independent of the stiffness properties,

the boundary mass partition [ 1ficc is the rigid body mass matrix referenced to

boundary motions, and

the boundary stiffness g[ 1 vanishescc
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(iii) in the case of an intermediate boundary,
1 1<D*

ic
is primarily a function of local

stiffness properties if the boundary is geometrically localised. However, when the

boundary is quite distributed, dp*
[ 1ic is a function of the overall component

stiffness.

The next operation is at the system level when all the component matrices are assembled

together according to the compatibility and equilibrium equations necessary to describe the

physical connections.

Assuming for simplification that ( A”~) and ( ~"~1 already represent displacements

referred to the original global coordinate system u , the final equation for the coupled

structure is now given in a new coordinate system - say p - by;

.
A’& : 0; - -A”kC. ..

. . . . . . * . . . . . . * . . . . . . . . . . . . . .. .

0 j BIkk i -B”kC
. . . . . . * . . . . . . - . . . . . . . . . . . . . ..

. .
. . . . . . - . . . . . . s............... . 1 Apk. . . .

Bpk. . . .
U

c

.
. . . . . . * . . . . . . a............... .

0 i 0 i ~it,,+$
cc. .

I
. .

0. . .I{}= 0. . .
0

r. -2 I
The natural frequencies or

1 1. and mode shapes [Y] for the overall system are obtained

by solving the eigenproblem associated with equation (2.24). The displacements in the p

coordinates may be represented as a transformation of a new coordinate system ( 5) :

C

(2.24)

(2.25)
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Alternatively, the displacements referred to the original system u may be represented as:

A";. . . .
B"*1
. . . .

u
C

AUiI 1. . . .

.
Baa : 0 iBo*

ic. .. .
. . . . . . - . . . . . . * . . . . . .. .

0 ; 0 ; I
. .. .

Or ~B”i~=[r] (5). . . .

(2.26)

(2.27)

lucJ

where [r] is the matrix of eigenvectors, this time referred to the u coordinate system.

The fixed-interface method is widely applied in the cases when the component dynamic

properties are described by their mass and stiffness matrices. In general, this method is

expected to be accurate when the final system allows the component of interest to have

little motion near the attachment points, or if a flexible component is rigidly linked to a

relatively stiff component. The mass associated with the connection DoF is often

neglected but in turn the local stiffness is accurately included. The accuracy of the results

predicted using the fixed-interface method can be still improved by expanding the

transformation matrix given by eq. (2.20) to include other type of ‘modes’, such as the

attatchment modes as presented by Craig and Chang [47].

This group of methods are easy to handle with theoretically defined mass and stiffness

component matrices. However, from an experimental point of view they are not

recommended, mainly due to two reasons;

- the imposition of a fixed-interface may be easy to implement when we are dealing with

theoretical subsystem matrices, but it is very difficult to simulate a perfectly fixed support

condition during a modal test,
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- some of the matrices necessary to calculate the constraint modes are very difficult and

tedious to obtain by static or dynamic testing.

2.3.3 FREE-INTERFACE METHODS

2.3.3.1 INTRODUCTION

This is a group of methods developed with the same basic idea as that outlined in the

previous section, but this time using another type of transformation matrix for reduction

purposes. In this case, the necessary natural modes incorporated in that matrix are those

obtained from a subsystem vibrating either in its free-interface or completely free support

condition. This being the most readily simulated condition during a experimental test, it

constitutes an attractive technique for the use of combined experimental/theoretical

analysis of dynamic structural systems.

One of the early works reporting use of free-interface modes was presented by Hou [34]

and possesses some similarities with Goldman’s method [33] but uses a less complicated

procedure for generating the system transformation matrix. In this thesis, Hou’s method

will be referred as the classical approach (which assumes the components to be rigidly

connected). For convenience of presentation, the free-interface methods will be presented

as follows:

- first of all, the free-interface methods will be described according to the type of linkage

between subsystems i.e., it may be rigid orflexible.  At this stage, interest is confined

to the type of existing physical connection, excluding the effects of the mode set

truncation;

- in the last part, a brief description of the mass-loading technique is made. This is an

alternative technique which in fact tries to bring the classical free-interface method closer

to the fixed-interface method.
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2.3.3.2 FREE-INTERFACE METHOD with Rigid Connection

Let us consider two undamped subsystems A and B which are described by their spatial

properties, the corresponding matrices being partitioned according to the selected interior

and connection DoF as represented in fig. 2.4.

Rigid Connection

Fig. 2.4 - Rigid connection of two subsystems

As in equation (2.13), the equations of equilibrium for both subsystems acted on only by

interconnecting forces are;

(2.29)
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For each component individually, the free-interface modes are obtained by setting

( fC) = ( 0 1 and solving the resulting eigenvalue problem,

(-02M + WI) (~1 = (0) (2.30)

leading to the m natural frequencies and mode shapes, which in turn may be mass-

normalised as,

[QJTWI [@J = [II (2.3 1)

[Qm]TIKl [am] =pq (2.32)

For each component the physical displacements (u) can now be written as a series

expansion of the orthogonal mode shape matrix [ 1<Dm ’ which contains up to six rigid

body modes (if the structure is completely unrestrained) plus the elastic free-interface

modes:

1

“ i
..<

“c [

0 -im
= . . . . .

<D
cm 1 (‘m) = [Om] I’mI (2.33)

The vector ( Pm} contains the general&d  or modal coordinates as weighting factors of

the series expansion or, in other words, the amplitudes of each independent selected

pattern (or mode shape). This equation is exact only for the cases when all the modes are

represented. However, in practical cases only a truncated set of mk modes is considered

or measured, leading to an approximate description of the displacements for each

subsystem:

(BP,} = [Bak] (BP,)

(2.34)

(2.35)
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A"
or r 1. . . . z

B ”

: Apk
. . . .

Bpk

(2.36)

Substituting these displacements into equations (2.28) and (2.29) results in a set of

uncoupled equations for the disconnected components,

These are the equations which can be established either using the theoretical derivation

hitherto presented or using the modal data base available from experimental modal tests.

When both subsystems are connected, undergoing free vibrations together, the only

forces acting on them are the equal and opposite forces at the interfaces. This equilibrium

is expressed as,

while

(Aft} =- (Bfc) (2.38)

the corresponding compatibility equation for the interface displacements is,

{&) = {B”c} (2.39)

This constraint condition may be reformulated taking into account the approximation

assumed in equation (2.36) and is written as,

A@,~: -Back

The matrix [S] may be partitioned as

(2.40)

(2.41)

. / .
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where [SJ is a non-singular square matrix and [Si] is the remaining part of PI. This

requires that the total number of modes for both comnonents  (ml, = mkA + mkB ) be

greater than the number of connection coordinates n,. Making use of this partition we

have,

I’dI =- [‘d]-l [‘i] (pi)

Then, the following transformation matrix can be constructed,

= ‘d
. . .

‘i

= VI Id

(2.42)

(2.43)

(2.44)

To generate the matrix [Tl, a set of LPZ~  independent vectors [Si] must be obtained from

matrix [S I, while a set of md dependent vectors [‘d] is retained. This requirement may

be difficult to satisfy, especially if some of the connection coordinate responses reveal a

near dependency which will cause matrix [‘d] to be ill-conditioned or even singular. A

suitable process can be devised by applying the Singular Value Decomposition (SVD)

technique [55] to the matrix 1s 1, keeping only the independent vectors that will constitute

a matrix of a defined rank which may differ from its order - the number n, of the

attachment DoF. How to handle this numerical difficulty is one of the topics investigated

in chapter 5.

Substituting (2.44) into equation (2.37) and pre-multiplying by [TIT yields,

L”ql {ii} +[KcJ{q}=(fq) (2.45)

h
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where

[Ms] = [TIT P-1

[Kg] = [TIT [T]

The second term of equation (2.45) vanishes, since no external forces are acting on the

coupled system. Thus, the solution of this equation gives the (mk, -n, ) natural
2

frequencies ‘or
[ 1. and mode shapes [Y] for the overall system, but referred to the ~7

coordinates. The mode shapes are then transformed to the original coordinates u

according to:

.

(2.46)

Finally, for use with externally applied forces, equation (2.45) can be transformed into

the coupled system modal coordinates 5 by letting,

w = [y](5)

which leads to,

L”sl { ‘5’) + LKsl 15) = Ifd

(2.47)

(2.48)

I.
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[Ms] = [Y]~ [TITITl [Y]

2 :‘Aw,k : 0
[Ks] = [y,lT [TIT

[ 1- i ---i-. . . . . . [TI[Y]

0 : *: Bark. ..

(2.49)

(2.50)

(2.5 1)

2.3.3.3 FREE-INTERFACE METHOD with Elastic Connection

Let us assume now that the previously mentioned subsystems A and B are to be coupled

through an intermediate flexible system C as shown in fig. 2.5.

Elast ic  Connect ion

Fig. 2.5 - Elastic connection of two subsystems

.
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In this case we assume that the Modal models for each component are already known,

whatever method is used for their derivation. The equations of motion for both

disconnected components have already been derived (vide eq. 2.37) and are given as,

If the two components are now connected via an elastic system, the only constraint

equation which expresses that condition is,

{Aft} =- (Bfc) (2.53)

since, in this case, simple compatibility of displacements is not applicable, i.e.:

{A%) # {B”c> (2.54)

However, the elastic properties of the connecting system can be represented by means of

its stiffness matrix [Kcp,] if the mass properties are neglected (although in the case of a

more refined approach, these can be assigned to the interface coordinates of each

component).

To illustrate the construction of the stiffness coupling matrix, let us assume a simple

system connected via two coordinates represented as uCl and uC2. The forces applied to

component A due to the relative motion of both components are given as,

&I
A%2

. . . .

BUcl

BUc2
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which for a multi-point connection will be written as,

(*fJ =-[Kcc ! -Kcc $:. lr 1C

and similarly for the forces acting on B:

(&) =-[ -Kcc ; Kcc. Ii 1f:
C

Thus,

1AfC. . . .
BfC

K : -K
cc - cc

. . . . : . . . .

L -K ;K
cc cc

{;?}=-  [Kcpl] {c}

(2.55)

(2.56)

(2.57)

but since we have assumed the transformation of coordinates (2.36), equation (2.52) can

now be written as,

CDT: 0 .A ck.... . . . . . - . . . . . ..
0 i B@;..

_
. 2 :
d$k : 0

. ..
. . . . . . * . . . . . ..

0 : ’
2

: @,k.I . 1. +.
A@ck -: 0

..
CK 1

[ 11. . . . . .
CPl

* . . . . . ..
’ i B@,k..

’ APk
. . . . = Nu

.BPk

(2.58)

which is the equation of motion for the final coupled system. This equation differs

slightly from the equation derived by Martin and Ghlaim [56,57] since in equation (2.58)

the only rows involved in the calculation of the coupling terms are those related to the

connection coordinates.
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2.3.4 MASS-LOADING TECHNIQUE

2.3.4.1 INTRODUCTION

This may be classified as an intermediate technique between the fixed-interface and the

free-interface methods. As mentioned before, the classical free-interface method is more

sensitive to truncation of the elastic modes used to describe the displacement in the

connection region than is the fixed-interface method. In an attempt to bring the classical

free-interface method (which is the most suitable for experimental purposes but does not

offer good accuracy) closer to the fixed-interface method (which leads to better accuracy

in the results but is not appropriate for the use of modal testing), the mass-loading

technique is an available compromise solution which has been used in some specific fields

of research, namely in the spacecraft industry [5 11.

By adding some discrete masses at each of the component connection coordinates, the

deformation near the interface is increased and a better estimation for the local flexibility is

obtained, provided that the auxiliary masses are connected in such a way that does not

affect the local stiffness properties of the component. The appropriate size of the mass to

be added is dependent on the characteristics of the component to be tested, rather than on

those pertaining to the adjoining subsystem. This fulfills the independency requirement

for a substructuring procedure.

From an experimental standpoint this technique offers some advantages as stated by

Sekimoto [58] and Gwim [59];

- it is less time consuming to collect data as compared with the free-interface method

including residual effects,

- more modes are brought into the frequency range of interest, thus providing better

information about the component model,
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- if adequate mass blocks are used, a convenient means of measuring rotational responses

is provided (although this might be offset by a reduction in the amplitude of such

rotations).

2.3.4.2 THEORY

The procedure to couple the components is similar to that presented in Section 2.3.3.2 for

the case of the free-interface method with a rigid connection. The main steps involved are

the same, but in this case there are three additional steps which are carried out in order to

obtain a better description of each subsystem’s dynamic properties. All the major steps are

presented briefly below:

Step I - Definition of the original disconnected substructures.

The equations of motion are the same as those presented in section 2.3.3.2.

Step 2 - Modification of the comnonents  bv adding some extra masses.

The auxiliary masses are added to the connection coordinates (UC). The equation of

motion for each substructure is now,

[WI + [A M]] W + WI W = VI

or [Mmd] (ii) + WI 1~1~ (fl

(2.59)

(2.60)

where [AM] is the modification matrix. The modified mass matrix will be

(2.61)

2
The eigensolution will lead to the mass-loaded system eigenvalues ‘ormod

[ 1 and
\

associated mass-normalised eigenvectors Bmti ,[ 1 constituting the necessary values to

define the Modal model for each modified subsystem. The values directly available from a
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test conducted on the mass-loaded component are the kept or measured modes

[ 1
P%dl

and the respective natural frequencies -o,:,mod.  ’

The equation of motion referred to the modal coordinates is then,

[qrnodlT  I”md] [@kmod]  { ijk} + [‘4mod]TrK1 [akmodl ‘pkl = “I

(2.62)

or [II { jjk} +lU;d.] (pk) = toI (2.63)

Step 3 - Mass cancellation

The effects of the additional masses now need to be removed before the coupling process

is performed. This is achieved by the following analytical process:

(2.64)

and the equation for each component is given as,

[[II - [  akrnodlT  [AM] [  @kmod]]  { ijk} +[‘kmodj Ipk} = “) (2.65)

Ster, 4- Counling

The coupling process follows now the same procedure presented for the case of the free-

interface method with a rigid connection (vide section 2.3.3.2).

All the steps are now schematically presented in fig. 2.6.
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1 Step no. 1 1

1 Step no. 2

-additional masses

Step no. 4

Fig. 2.6 - Steps involved in the mass-loading technique

” ,.‘ .:. _.  -2 --
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2.4 LIMITATIONS ON THE TECHNIQUES

The theoretical basis of the standard coupling techniques has been presented. Each has its

own limitations in certain circumstances and these constitute the reasons for the following

discussion.

As stated before, Spatial coupling is extensively used in applications of the Finite Element

method but is rarely used in cases which involve experimental modelling. Reduction

methods have been developed to condense Spatial models to primary (master) coordinates

- a process of coordinate reduction

order to decrease the computational

selection of those coordinates must

criterion are carried out in chapter 3.

which inevitably will cause a mode reduction - in

needs to solve the global problem. However, the

be properly made and some attempts to define a

In contrast to Spatial coupling, there is the FRF coupling technique which is particularly

suitable for use with data measured on the components. It makes use of Response models

derived directly from experimental data (but seldom from theoretical modelling). The

collected data in terms of FRFs defined over a frequency range of interest are used to

assemble the FRF matrix which, for every frequency value, expresses the contribution of

the in- and out-of-range modes pertaining to each component. One can say that in physical

terms the FRF coupling technique is very attractive since it makes use of models whose

dynamic characteristics are fully quantified and thus they do not suffer from modal

incompleteness. However, there is a numerical aspect associated with this technique

which may cause the coupling procedure to fail. As shown in section 2, the required FRF

matrix of the coupled structure is obtained after three matrix inversions - two of these

carried out before and one after the FRF matrices are assembled. Should one of these

matrices be near singular, the results will reflect the numerical errors caused by the

inversion and will predict the dynamic behaviour of the overall structure erratically.

Unfortunately, when dealing with experimentally-derived FRF matrices, one is mostly

restricted to use models that are inaccurate due to the experimental or systematic errors in

. ,
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the measurement stage, one of these being a slight variation in the resonance frequencies

when the model is said to suffer from inconsistency. The FRF matrix then tends to be ill-

conditioned, and the inverse is very sensitive to a slight change in one of the FRF matrix

elements in the vicinity of every resonance frequency since it will tend to have and order

equal to the measured coordinates and to have rank one due to the dominating effect of

one single mode (vide chapter 1, section 1.2). This local dominance is even stronger in

lightly-damped structures and additional peaks tend to appear on the assembled structure

FRFs at frequencies which may be misinterpreted as true resonances of the coupled

structure.

Another situation which may lead to near singular matrices is caused by local rigidities at

the measured coordinates. Over certain frequency ranges, the response in some

coordinates may tend to be nearly dependent and here again, the FRF matrix will tend to

be rank-deficient. The ways of tackling these numerical difficulties are addressed in

chapters 3 and 5.

odal Couulinp Techniam

Unlike the Impedance-based methods which take advantage on the reduction of the

number of coordinates, the Modal coupling methods use a reduction performed on the

number of modes used to describe each component model while still accounting for all

the physical coordinates. In spite of the fact that fixed-interface methods give better

predictions than the free-interface methods, they are generally not suitable to handle data

which are available from modal tests - the Modal model whose mode shapes are obtained

from a component tested in its simulated free-free support condition. This is the main

reason for the development of better procedures to improve the accuracy of results

predicted using free-interface methods. One cause of the failure of these methods is the

poor description of each subsystem displacements in the interface region due to the

reduction performed on the number of modes. Two feasible alternatives to improve the
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previously presented mass-loading technique or by compensating for the lack of flexibility

due to the truncation on the number of modes. This latter approach is investigated in

chapter 4, where a refined technique is described to include into the coupling process the

information on the residual flexibility associated with the neglected or unmeasured modes

of each subsystem model, without having to carry all the steps required by the mass-

loading technique.

c



PI IMPEDANCE COUPLING TECHNIQUES

3.1 INTRODUCTION

The generalised Impedance-based methods for making vibration analysis of complex

structural assemblies are examined in the present chapter in order to evaluate their

applicability when incomplete subsystem models are used. The subsystems or component

models are described by using a Spatial or Response formulation, and special attention is

given to the coordinate incompleteness of these models.

However, it is assumed that whatever the performed reduction on the number of

coordinates in each subsystem model, it will not be extended to the originally defined set

of connecting coordinates which are explicitely  required for the formulation of the

constraint equations between subsystem models. This has a completely different effect in

the coupling analysis since by ignoring a connection coordinate we are making the

subsystem unable to “pass” some of its dynamic information to another one, when they

are acting together. For example, if a rotation coordinate is eliminated (or ignored) at the

junction between two components, these are presumed to have relative motion with

respect to that coordinate and would thus be pin-jointed. Thus, the set of the retained

coordinates - the primary or master coordinates - always contains the originally defined

interface one and in the most extreme situation the reduction process is assumed to

condense all the dynamic properties only to the connecting coordinates.
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Although a brief examination is carried out on the ways and effects of reducing the

theoretically-derived models - Spatial models - the attention is mainly focused on the ways

and effects of using experimentally-derived models - Response models - which by nature

are themselves incomplete in terms of coordinates and prone to errors even though they

contain information related to both the in- and out-of-range frequency of interest modes.

The attractive and conceptually-simple technique that offers the possibility of dealing

directly with measured data is the FRF coupling technique. The numerical difficulties

associated with the corresponding algorithm in some particular situations, especially in the

presence of measured data, has motivated the investigation of new approaches to tackle

this problem.

3.2 INCOMPLETE OR REDUCED SUBSYSTEM MODELS

3.2.1 SPATIAL MODEL INCOMPLETENESS

In many practical situations such those using the Finite Element method, the

computational limitations often require the order of the final coupled system to be reduced

as much as possible. This is achieved by reducing the order (N) of each subsystem model

- or in other words, by confining our interest only to a restricted set of coordinates on

each subsystem - say, np < N - and/or to only some of the modes (mk < N). These

considerations lead to the formulation of condensed, reduced or incomplete models.

The number of DoF to be retained in the dynamic analysis (at least the DoF involved in

the connection with other components) is specified by the user. In the case of Spatial

models, a transformation matrix relating the remaining DoF (called secondary or slave

coordinates) to those retained (primary or master coordinates) is used to reduce the order

of the subsystem. The reduction process [60] is often performed upon a transformation

which neglects inertia or static contribuitions for the eliminated DoF, and is then used to

derive the spatial matrices of the condensed system, [MRlnPnp  and [KRlnpxnp.
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The equation of equilibrium for an undamped subsystem acted on only by forces on the

primary (master) coordinates can be written in the following partitioned form,

secondary DoF I) 1 IUS n xl
s

Primary DoF l “p n X11 1
P

All the coordinates can be related to the primary coordinates by using the following

transformation matrix,

(3.2)

where the matrix [T] is given by,

ITI
nsxnp

being p a reduction coefficient whose limits are p=O for static reduction and p=l for

dynamic reduction.

The matrices describing the reduced Spatial model are given as,

KsP 1 p-11

Whatever value is assumed for the coefficient p, the reduction in the DoF implies a

reduction in the available existing modes as well. The validity of the condensed model

generally depends on the mass and stiffness values assigned to the secondary

coordinates. Generally, the use of frequency-dependent mass matrices improves the
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accuracy of the reduced model properties, as shown by Kuhar and Stahle [41] and

Imregum [6 11.

3.2.2 MODAL MODEL INCOMPLETENESS

The incompleteness in the Modal model is generally due to the inherent difficulty in

attempting to use experimental data to define a finite model for a continuous subsystem. It

is not realistic to undertake measurements either in all the coordinates and/or over a

frequency range encompassing all natural frequencies. In the present analysis, however,

we shall assume that &l the N natural frequencies are known in the frequency range of

interest, and the limitation is only concerned with the number of measured coordinates,

say n,, c N, selected for the FRF measurements.

Let us assume that a subsystem Modal model is described by its (incomplete) modal

properties:

[ 1OR n xN - rectangular modal matrix (mass-normalised eigenvectors np < N )
P

2

[ 1‘Y - eigenvalues (diagonal matrix)
* NxN

It is important to note that a Guyan-reduced  Spatial model leads to an incomplete Modal

model in terms of both coordinates and modes, in spite of the fact that in this case the

modal matrix is square.

Depending on the format assumed for the other subsystems dynamic properties

description, the Modal model may be converted as described next.
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3.2.2.1 MODAL Model -_) RESPONSE Model

In this case, it is assumed that the Modal model to be converted to Response one which is

required by the FRF Coupling method. Let us assume that the FRF matrix is the

Receptance, which is provided by the equation :

-(co; - w2)
1

-1
[OR] T (3.6)

’ NxN Nxnp

This FRF matrix, although limited to only np points of interest on the substructure,

contains information on &l the N modes and is thus accurate for those coordinates

retained. In order to study the effects of this reduction, while the models are described by

their modal properties, we shall consider an ideal Modal model which possesses the

complete information,

[ 1Q,
NxN

The deletion of one coordinate - say, the kth - corresponds to the elimination of the kth

row in the modal matrix so that we are ignoring the relative amplitude of that DoF in all

the modes. This does not mean that the real system no longer has that DoF; only that we

are not including information about its motion. In this way we are condensing the

information in previously selected coordinates, as sketched in the following figure,

[ 1cpR
npxN

av&lable  i&m-&on

Fig. 3.1 - Modal + Response reduction
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Inversion of the matrix [~~(cu)~],~x~~ leads to the reduced Dynamic Stiffness matrix

P@QRlnpmp. In the limiting case when a zero frequency value o is assumed, that

reduced matrix [ Z(0)R] npx”p corresponds to the well-known Guyan reduced stiffness

matrix [54].

3.2.2.2 MODAL Model + SPATIAL Model

Since the reduced modal matrix [aRlnpxN is rectangular, the use of a pseudoinverse is

required for the calculation of the matrix ( [a(o)]-‘)zpXnp. The Dynamic Stiffness matrix

[Z(0)Rlnpnp may be calculated as shown by Ewins [l] as,

rZ(~~Rlnp”“p = ( [a(w)l-l)fpxnp = [a’] .’ xN [(” - a2),] NxN [O+lNxn (3.7)
P P

where

[ 1a+ = PRIT
Nxnp Nxnp

[ PRln xN [mRfJn
P P P

leading to the spatial properties

[~(a)~] = CD1 - a2 [El
“PX”P “P”“P “Px”P

with

PI
nPxnP

[El
“PX”P

=  [@‘IT [CD’]
“PXN Nxnp

(3.8)

(3.9)

(3.10)

(3.11)

The matrices [D] and [E] may be treated as (pseudo) stiffness and mass matrices for the

subsystem.
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It would be expected that the results obtained for the response of a coupled structure using

those spatial properties i.e., by calculating ([a(o)]- ‘>5Xup should give us the same

results as when we use the inverse - [cx(~.))~];:~~~  - of the reduced Response model

matrix [wNRl,px”p. However, it should be noted that the matrices [D] and [E] do not

represent the true stiffness and mass matrices for the component. The deletion of a

coordinate, say k, may be done by eliminating the kth row in the modal matrix. As a

consequence, the respective kth row and column in the complete Dynamic Stiffness

mauix [z(~)lnpxnp are also eliminated, but this has a rather different consequence to the

previous one. In this case, we are assuming that coordinate to be fixed (grounded),as

illustrated in the following figure,

0 . . 0

/’

[ ...‘....“.’

::~~;:,~~~~~~~~~~~::...~::~:~:~~~~~~~::::::. . . . . . . . . . . . . . . . . . . . +:. . . . .,..  . . . Y
ehin&=d :,‘:::::::::::::::::::::::..:I:;;;;;~~~~~~~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~. ,.,.....,...,.,.,.j

TOW :::~:.:,:::::::::::::::::::::::I:.:,:,:,:,:,:,:.:,:.‘,‘,:,:,~:::.:::::,..,.  .,.,.,.+~~~~:v:’,,jjjjj,,~j\/  ,:::::i:iiiiiiiiiiii~~~:~::::::::::::.:::::  +.\. .i . . . ._. ,.,...........,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..\.: . . . ,.,., .:.:.)  ,.,\ .,.,...,.........,.,.,. :_:.._:...._:_:_:_:_:_:_:.:.:.:.:.:.::_:_::.:_:.:_:.,.,.,.  .,.,.  .,.,.,.,...,.,.,.,.,. ~.~:.........)~:.~:.:.~~~,.:.:  :..  :.:.

4

,ji i.i.i:l:~il:I:~~~~:::~‘::;:$;:~
available  information

:.:.:.:.:.:.  : .A.

Fig. 3.2 - Modal + Spatial reduction

The available information in [ z(o)~]~~~~~= ([c~,(co)]~')~~~~, for the reduced

Pseudo-Spatial model has no natural connection with the actual component, since for

o = 0 it corresponds to a partition of the complete subsystem static stiffness matrix.
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3.2.3 PROCEDURES TO REDUCE MODELS

The different possibilities of performing a reduction on the original models are now

grouped into four procedures which lead to the final format required to either the Spatial

or FRF coupling techniques.

Procedure 4 using the SpatialC o u p l i n g  M e t h o d

SPATIAL Model SPATIAL Model

[KINxN [“INxN 0 Guyan R e d u c t i o n  0 [K~] [&I~]
“PX”P nPxnP

(Reduced Stiffness and Mass matrices)

Procedure B using the Pseudo Spatial Coupling Method

MODAL Model Pseudo SPATIAL Model

PI
NXN

0 [oRI
nPxN

c3 ([a(o)le ‘)fpxnp o ‘D1npxnp [E1npxnp
(Reduced pseudo stiffness

and mass matrices)

In both previously-mentioned procedures all the subsystems are converted to a final

reduced Spatial model. The result for the overall structure is then obtained in terms of

its mass and stiffness properties.

Procedure C using the FRF Coupling Method

MODAL Model

[ 1<f>
NXN

0 PRl
n xNP

Procedure D using the FRF

MODAL Model

[ 1iD
NXN

Q PRl
nPxnP

RESPONSE Model

t-Y r
LJ p&OR] 0 [a(63)R]m ’

nPxnP nPxnP

Coupling Method

RESPONSE Model
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In these two last procedures the final format for each component is a reduced

Response model, herein assumed as the Receptance model.

3.3 COUPLING USING REDUCED MODELS

A computer program available in the Modal Testing group was used to perform the

coupling process. One of the facilities offered in this program called MODALP [62] and

run in a HP microcomputer series 9CKKI  is the dynamic analysis of assembled structures,

from either experimentally or theoretically-derived FRF matrices for each subsystem A

and B, and is based on the following equation (vide chapter 2, section 2.2.3),

[cH(w)]  NC+ = [ [ ~H(~~l&/, 8 [ .H(O)];_& ] ycxNC (3.12)

In the case when experimental data are not available, they may be simulated from the

theoretically-derived FRF elements by polluting them with random errors.

3.3.1 NUMERICAL EXAMPLES

Three numerical examples are presented next to assess the validity of the procedures

presented in section 3.2.3.

3.3.1.1 SUBSYSTEM DESCRIPTION

Three subsystems are described theoretically in terms of their Spatial and Modal models.

They are the components of the different global structures analysed in the present work.
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SUBSYSTEM 1A 4 DoF Unda ._ moed SmwwJ&s Svstea_

(K = 1000 N/m)

Fig. 3.3 a) - Subsystem 1A - 4 DoF undamped system

SPATIAL Model

0.5 0 0 0

0 0 0 0.1

r 3000 -1000 -1000 0

-1000 3000 -1000 0

[K14x4 = -1000 -1000 4000 -1000
J L 0 0 -1000 2000

MODAL Model

c 1Q, =4x4

0.397 -0.075 1.355 0.012

0.517 -0.604 -0.185 0.003

0.506 0.470 -0.121 -0.086

0.264 0.268 -0.091 3.138 1
2

[ 1‘Co r = Diag [  8.366E2  2.437E3  6.452E3  2.027E4  ]

’ 4x4
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SUBSYSTEM 1B 4  DoF U
._ ndamDed !hrmP m_ Svstem

This subsystem has the same physical configuration of subsystem 1A , as shown in

Fig. 3.3 b). The only difference between them is the value assumed for the mass m4,

which in this case is equal to 10.

(K = 1000 N/m)

Fig. 3.3 b) - Subsystem 1B - 4 DoF undamped system

SPATIAL Model

MODAL Model

0.5 0 0 0
1 r 3000 -1000 -1000 0

1
0 1 . 5 0 0 -1000 3000 -1000 0

=0 0 2.0 0 [K14x4 -1000 -1000 4000 -1000

0.064 0.405 -0.025 -1.353

0.067 0.565 -0.557 0.182

0.121 0.451 0.515 0.131

0.309 -0.057 -0.022 -0.002 1
2

[ 1‘co r =  D i a g  [  1.614E2 9.889E2  2.586E3  6.464E3 ]

’ 4x4



q3 Impedance Coupling Techniques 6 5

SUBSYSTEM  2 2 Do_ F UndamDed Free freeI Svstem

This is a simple 2 DoF undamped system which is connected with subsystem 1A and

subsystem lB,

l&F1

(K = 1000 N/m)

Fig. 3.4 - Subsystem 2 - 2 DoF Free-free system

SPATIAL Model

[rn2x2 = “, y[ 1

MODAL Model

-1 0.32E-3
=

- 1  -0.32EO4 1

[

1000 -1000
[K12x2  =

- 1 0 0 0  1 0 0 0 1

3.3.1.2 RESULTS

Four different procedures, as described in 3.2.3 were used for the analyses of the three

following theoretical examples ;

EXAMPLE 1 - 5 DoF Undamped System

In this example, coordinate 1 of subsystem 1A was connected to coordinate 2 of

subsystem 2 as illustrated in fig. 3.5 and the predicted FRFs (point Receptances) are

presented in fig. 3.6 (only one coordinate neglected in subsystem 1A) and in fig. 3.7 (two

eliminated coordinates) both using the different procedures.
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EXAMPLE 2 - 5 DoF Undamped System

In this example the subsystem 1B was connected (coord. 1) to subsystem 2 (coord.

2) as illustrated in fig. 3.5 and the FRFs (point Receptances) are presented in fig. 3.8

(only one coordinate neglected in subsystem 1A) and in fig. 3.9 (two eliminated

coordinates) both using the different procedures. This example was used in order to

estimate the aptitude of the reduced model in each method when a mass modification mq

was made in subsystem 1A.

Fig. 3.5 - Subsystem 1A + Subsystem 2

.
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F r e q u e n c y  (Hz I
- 1 3 0 . 0 0

. 1 4 . 9 9 . 7 14.5 19.2 24.8

- Complete Coupled System (5 DoF)
- - - - - -  FkocedureA(Guyan)
**********  ProcedureB (Pseudo [K] [Ml)
_._._. Procedure C (FRF  Coupling)
. . . . . . Procedure D (FRF  Coupling w/ square [@I)

Fig. 3.6 - Subsystem 1A (M4=0.1 , eliminated coord. 4) + Subsystem 2

F r e q u e n c y  (Hri -
-120.00L

.i 4 . 9 9 . 7 14.5 19.2 24.6

~ Complete Coupled System (5 DoF)
- - - - - -  RocedureA(Guyan)
*********.  ProcedureB (Pseudo [K] [Ml)
*._._. Fhcedure  C (FRF Coupling)
. . . . . . Procedure D (FRF  Coupling w/ square [a])

Fig. 3.7 - Subsystem 1A (M4=0.1 , eliminated words. 3 and 4) + Subsystem 2
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F r e q u e n c y  (Hz) -

. i 3. i 6 . 1 9 . 1 12. I 15.1

- Complete Coupled System (5 DoF)
- - - - - -  ProcedureA(Guyan)
----*----- ProcedureB  (Pseudo Ir<] [MI)
-.-.-. Procdure C (FRF Coupling)
. . . . . . Procedure D (FRF Coupling w/ square [@I)

Fig. 3.8 - Subsystem 1B  (M4=10 , eliminated word. 4) + Subsystem 2

F r e q u e n c y  (Hz i
- 1 6 8 . 0 0 ’

. 1 3. i 6. i 9 . 1 12.1 i 5 . 1

- Complete Coupled System (5 DoF)
___--- Procedure A (Guyan)
--.------*  ProcedureB  (Pseudo [K] [Ml)
_._._. Procedure C (FRF Coupling)
. . . . . . Procedure D (FRF Coupling w/square [a])

Fig. 3.9 - Subsystem 1B (M4=10 , eliminated coords. 3 and 4) + Subsystem 2

.
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EXAMPLE 3 - 6 DoF Undamped System

In this example the subsystem 1B is connected (using coordinates 1,2) to subsystem

1B (using coordinates 4,3) as illustrated in fig. 3.10. In this example the FRF coupling

technique was used by assuming that the FRF matrix components were polluted by 5%

error in order to simulate exprimental data. One of the predicted FRFs (a point

Receptance) is shown in fig. 3.11.

Fig. 3.10 - Subsystem 1B + Subsystem 1B

._ . .,. -4..
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e C (FRF C o u p l i n g ;

Frequency (Hz! -

. 1 3 . 1 6 . i 9 . 1 12.1 15. i

- Complete Coupled System without errors (6 DoF)
----*-*--* F’rocedure  C (FRF Coupling) eliminated coords. 3.4 (SIB w/ 5% error)

Fig. 3.11 - Subsystem 1B (M4=10 , eliminated coords. 3 and 4, FRF polluted with 5%
error) + Subsystem 1B

3.3.1.3 DISCUSSION OF RESULTS

In this work, the subsystem models were chosen as simple spring-mass systems which

are not intended to represent the models for an actual structure. However, with these

simple systems we can understand how a selected procedure may be applied to a real

problem. Since we can know the complete dynamic information for those models, the

simulated incompleteness on the number of coordinates was achieved either by using a

Spatial model description or by using a Modal one. In the former group (Procedure A) the

Guyan reduction was used - a classical static reduction was performed - while in the latter

group (Procedures B,C and D), the rows on the complete modal matrix were successively

“deleted”.

.
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The results obtained for the coupled structures differ essentially for two reasons;

i) the way the incompleteness was assumed,

ii) the method used for the coupling process.

The numerical examples show that:

- different results are predicted for the same assembly when procedures A and B are used

to reduce the subsystem models; both procedures resort to the same counling;  method. In

this case the difference is explained by the reduction performed in subsystem 1 since,

when a Guyan reduction is applied, the dynamic properties for the complete system are

only preserved in the reduced model if the relative mass value of the eliminated coordinate

is neglegible [60]. In contrast, Procedure B is convenient when high relative mass values

are to be neglected. However, it is important to note that both nrocedures lead to the same

result if one assumes p=l in the transformation matrix [T’j (vide eq.(3.3), section 3.2.1)

which is used in procedure A. In this particular case both procedures are two equivalent

ways of performing a dynamic reduction.

- different results are predicted for the same assembly when procedures B and C are used

to reduce the subsystem models; both procedures resort to the same incomplete model.

The main reason for this is explained in 3.2.2.1 and 3.2.2.2 and, as mentioned there, the

dynamic properties of the structure are preserved (over the frequency range encompassing

its natural frequencies) by using procedure C. In this case there is no difference in the

response characteristics of the reduced model, whichever coordinate is eliminated

(excluding those involved in the physical connection). The existence of some “extra”

peaks in the frequency response function of example 3 (see fig.3.1 l), when experimental

data are simulated, is not due to any incompleteness of the subsystem but due to an

inherent problem in the FRF coupling process, since at some subsytem resonances the

inversion of the polluted receptance matrix may encounter some numerical difficulties.
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3.3.2 CONCLUSIONS; USE OF DIFFERENT PROCEDURES

- The use of reduced Spatial models in procedure A (static reduction) leads to results

whose accuracy depends on the coordinates eliminated - it is a question of mass value

dependency, so the choice of the secondary coordinates should be done according to the

relative mass values (when a coordinate with a high relative mass value is eliminated the

dynamic information of the subsystem is altered and may affect the overall system

behaviour).

- In contrast, the reduced pseudo-Spatial model in Procedure B (dynamic reduction)

only ‘preserves’ the dynamic properties of the complete system if the eliminated

coordinates have high relative mass values. It was also found that this procedure is a

particular case of Procedure A (if one assumes p=l in equation 3.3), despite of the

different ways of arriving at the final reduced subsystem models.

- The only procedure that is ‘insensitive’ to the degree of incompleteness in terms of

coordinates for the subsystem model is Procedure C, which gives accurate results in all

the tested cases.

- In Procedure D, which is a particular case of Procedure C, the results obtained are not

accurate in all the cases since the residual effects of the neglected modes were not

included.

3.4 THE NEED TO USE ALTERNATIVE FRF COUPLING METHODS

The results achieved with the previously presented coupling exercises showed that the

incompleteness in terms of coordinates in the component models does not play an

important rule in the prediction of the global structure results whenever the FRF coupling

method is used. It should be noticed, however, that the incompleteness which is referred

to is only related to the interior coordinates. At this stage it is therefore assumed that the



03 Impedance Coupling Techniques 73

the necessary and sufficient number of connecting coordinates which, unfortunately, is

not always obvious, as will be seen later, in chapter 5.

3.4.1 OCCURENCE OF ILL-CONDITIONED FRF MATRICES

The results achieved with the use of the FRF coupling method showed that when

experimental simulated data is used to represent each subsystem Response model, the

predicted final response possesses some undesired false peaks. The explanation of this

phenomenon can be found by regarding the interrelationship between the Response and

the Modal models (vide chapter 1). In the vicinity of each subsystem resonance frequency

the corresponding FRF matrix is largely dominated by one single term, or in other words,

the matrix will have order n (number of primary coordinates) but also tends to have rank 1

(the single dominating mode). This means that every FRF matrix tends to be rank-

deficient or nearly singular in the vicinity of each subsystem natural frequency, especially

in the case of lightly-damped structures where the local dominance of a single mode is

strongest. As far as a purely theoretical FRF matrix is of concern near a resonance

frequency, the inversion - although applied to a matrix having a high condition number -

leads to a correct dynamic stiffness matrix subsequently used in the assembling process.

However, when measured FRF matrices are dealt with, their elements are prone to errors

which will cause a pronounced deviation of the inverse matrix from the existing but

unknown ideal dynamic stiffness matrix. The result of these perturbed matrices on each

single component will show up in the predicted response mainly at the frequencies close

to each subsystem natural frequencies as discussed by Larsson [63]. A remedy suggested

by Ewins [16] to avoid the existence of these extra peaks is the smoothing of each FRF

before it is used to create the FRF matrix. In order to do so, the Response model is

converted to a Modal one which is subsequently used to regenerate the smoothed FRF

matrix which will behave better in numerical terms, therefore giving a more accurate

prediction of the global Response model. This approach, however, withdraws the main
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virtue of the FRF coupling technique which is the direct use of what is measured on the

actual components without the need of a complementary identification stage.

Besides the occurence  of the ill-conditioned matrices near a resonance frequency,

presented above, there are other situations when the required coupling algorithms can

behave erraticaly,  even for other frequencies in the range of interest. It is enough to have

any linear dependency or near-dependency among some of the rows (or columns) in a

given FRF matrix and the inversion may well fail. Unfortunately, this is a common

practical problem when dealing with the subsystem models, mainly due to the following

two reasons,

- the FRF matrix has been generated from a set of inadequate modal data. The procedure

C presented in 3.2.3 shows that in the case of a modal matrix containing more coordinates

(n) than modes (m), the generated FRF matrix will be of order n although having rank of

m; in this case the matrix is singular since there exist (n-m) linearly dependent rows (or

columns) and it is impossible to calculate the corresponding inverse even though it exists,

generally the subsystem dynamic stiffness matrix. To prevent this situation, more modes

should be included (up to the number of coordinates) and very likely the undesired

singularity will be removed. Should it be impracticable to apply this remedy, other

alternatives can be found such as those making use of more sophisticated algorithms

enabling the calculation of the closest inverse of a rank-deficient matrix. This is one of the

topics considered in chapter 5;

- the FRF matrix has been measured on a structure in which some of the coordinates are

situated on locally rigid regions - either interior or interface ones - causing the responses

over a certain frequency range to be linearly dependent on each other. In this case the FRF

matrix tends to be or is rank deficient. Should at least one of the components behave in

this manner, the coupling will fail numerically. A way of circumventing this problem is to

detect the redundant coordinates prior to the coupling of the components and, if possible,

neglect them or, once again to make use of proper algorithms which are presented after

the following section.

_ I .,~, .I’..
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3.4.2 MODEL INCONSISTENCY

ln chapter 1 it has been shown how a Response model can be fully created over a certain

frequency range by measuring either: (i) all the elements in the FRF matrix (or only the

upper or lower triangular matrix assuming a symmetric matrix) or (ii) one single row or

column of the corresponding matrix enabling the identification of the corresponding

Modal model. ln the latter case the full set of FRFs can subsequently be generated over

the selected frequency range provided the effect of the out-of-range modes can be

neglected.

In practical terms the quality of the measured set of FRFs can be checked by comparing

the various estimates of the modal parameters with each other. It often happens that a

unique set of modal parameters cannot be extracted directly from the same set of FRFs

and then the model is said to suffer from self-inconsistency.

3.4.3 ALTERNATIVE FRF COUPLING TECHNIQUES

The FRF coupling technique discussed so far is suitable for cases where the reduced

Response models do not lead to numerical failures in the coupling process. Additionally,

it was shown that alternative algorithms are necessary to deal with rank-defficient FRF

matrices, at least over certain frequency ranges where for instance the local rigidities cause

the rows to be dependent. This is an important aspect to be taken into account in the

previously presented FRF coupling technique, since the final FRF matrix is obtained after

carrying out three inversion processes.

3.4.3.1 FRF COUPLING ALGORITHM 2

A fast approach to the numerical difficulties which arise in the coupling process will be in

terms of a possible improvement to handle the redundancy in some of the primary

coordinates and in someway  trying to speed up the required calculation time. Let us
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assume that the generalised Impedance matrices of each component are expanded in the

following way,

[;z(0)l Ncfic =

AZii+AD..  : AZ. : 0
11 1C

. . . . . . . . . . . . * . . . . . . . . . . . . * . . . . . . . .

*Zci ; *Z,+*D ; 0cc
. . . . . . . . . . . . * . . . . . . . . . . . . * . . . . . . . .

0 ; 0 ;,Dii

r D: 0 : 0-A ii 1
. . . . . . . . * . . . . . . . . . . . . * . . . . . . . . . . . .. .

0 : BZ -AD :
c c c c

$5
IC

. . . . . . . . - . . . . . . . . . . . . * . . . . . . . . . . . ..

(3.13)

(3.14)

L 0 : $ci : nZ,-nD..l
11

where the matrices [D] are arbitrary. In assuming this, the coupled system matrix

[cz(w)],,,, can now be obtained as a simple addition of the same-order expanded

[c’@)]  Ncfic = [;z(w)l NC.+ + [iz@)] NC+

The FRF matrix CCH(w)]  NcxNc is given as

(3.15)

-1

[cH(~)~NC~~ = [ [ ;Z(W)IN~~N~  + [ ;IZ(o)]NCXNC lNCxN (3.16)
C

Or [cH(w)l,,,,  = [ [ ~H(w)l;cx,c + [iH@&+ ] lcxN (3.17)
C

where [T\H(w>] and [iH(o)] are augmented FRF matrices which are derived in the next

paragraph. The main virtue of having this addition of same-order matrices is the

reformulation of the calculation of the final FRF matrix since in this way the three matrix

inversion operations can be replaced by only one inversion [64] as follows,

[cH(W)lNcfic = [;HW] [ [ ;HW] + [ ;WW] 1-l [;HW] (3.18)
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Calculation of the augmented FRF matrices [*H(U)]

For convenience of simplicity in what follows next, the matrices [D] will be taken as

identity matrices [Il. Each general&d Impedance matrix is then given as,

The necessary [*H(o)] matrices are then formulated as,

[iH(o)l Ncflc =

[[,H(w)]  + ['l]-l[AH(o)]  : 0 -
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . ..

0 : I?1 _

-[I] :
[;H(W)]Ncfic  = . . . . . . : . . . . . . . . . . . . . . . . . . 0 . . . . :; . . . . . . . . . . . .

0 : [ [&UN]  - [ II] [$W]

(3.19)

(3.20)

(3.21)

Although this approach requires after all three matrix inversions, the addition of the

identity matrix to the original FRF matrices before the inverse is calculated may very well

avoid the ill-conditioning problem.

3.4.3.2 FRF COUPLING ALGORITHM 3

In respect of numerical failures due to the redundancy of the primary coordinates, the

previous approach constitutes an improvement compared to the method presented in

chapter 2, section 2. However, a recent development of the FRF coupling technique by

Jetmundsen, Bielawa and Flannelly [65] has reduced the number of required inversions at

each frequency from three to one and, additionaly, the size of the matrix for inversion is

dictated only by the number of connection coordinates. This refined method, apart from

speeding up the calculations, can yet behave better, in numerical terms, than the
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conventional one, since it minimises the crucial inversion operations on matrices which

have a smaller order. This may play an important role if subsystems possess dependent

coordinates. The algorithm can be derived taking into account the relationship between the

elements of the global FRF matrix and the elements in each subsystem FRF matrix. The

coordinates in the FRF matrix of the coupled structure can be partitioned according to

three regions corresponding to,

- the interior coordinates of component A (pi) denoted as a

- the interior coordinates of component B (Bni) denoted as b

- the common connection coordinates of component A and B (*n, = Bn, = nc)

denoted as c

The whole FRF matrix can be partitioned as follows,

[cW@] =
Ncac

r H : H
aa ac : Hab

. . . . . . * . . . . . . * . . . . . ..

1 H
ca

: H : Hcb
cc

. . . . . . - . . . . . . * . . . . . .

Hba ; Hbc ; H,,

(3.23)

Each partition of this FRF matrix can now be interrelated with the submatrices composing

the FRF matrices of the subsystems, as derived in Appendix I, leading to the following

equation,

(3.24)

As mentioned before, the main advantage of using this formulation over the two

previously presented methods is related to the crucial operation of inversion. Herein only

one inversion is required and, additionally, it is applied only to the sum of the sub-

matrices which order depends only on the number of connection coordinates. More
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interior coordinates can then be included in the analysis without affecting significantly the

required computational time. The result of this will be a quicker calculation of the required

FRF matrix and, as in the latter approach, it will be able to deal with redundancies on the

interior coordinates whenever they are present in each component.

3.4.4 NUMERICAL EXAMPLES

In order to test the aptitude of all the three FRF coupling approaches to deal with

subsystems possessing simulated local rigidities therefore causing the responses at some

coordinates to be linear dependent from each other over a selected frequency range, two

subsystems are described next in terms of their Spatial and Modal models. The frequency

range of interest in assumed to be from 0 to 15 Hz and the corresponding Response

models were generated from the Spatial ones by truncating each element on the FRF

matrix up to the sixth significant digit therefore provoking singular FRF matrices for each

subsystem.
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3.4.4.1 SUBSYSTEM DESCRIPTION

SUBSYSTEM 3

This is a free-free undamped system with 5 DoF and possesses three rigid regions

simulated with relatively stiff springs (springs $ , $ and K4 in fig. 3.12)

1 Y 5
3 4

WKI
5

__
K2

Kl=1E3;K2=1E6;K3=1E7;K4=1E5  (N/m)

Ml=0.5;M2=1;M3=2;M4=1.5;M5=0.5(Kg)

Fig. 3.12 - Subsystem 3 - 5 DoF Free-free system

SPATIAL MO

[w5x5 =

[K15x5 =

MODAL Mode

[ 1-$.
5x5

= diag( 0, 2.1997E3, 2.1987E5, 1.2694E6,  1.1944E7)

Natural Frequencies 0. 7.464, 74.63, 179.3, 550 Hz

;I

.

0.5 0 0 0 0

0 10 0 0

0 02 0 0

0 0 0 1.5 0

’ 0 0 0 0 0.5 1
lE3 0 -1 E3 0

0 lE6 -1.E6 0 0

- 1  E 3  - 1  E 6  l.lOOlE7 -1 E7 0

0 0 -1 E7 1.01 E7 -1 E5

0 0 0 -1 E5 0 I1 E5

- 4.2640E-1 1.3484EOO  1.3176E-3  3.7169E-4 7.9258E-5

4.264OE-1 -1.3490E-1  -1.8399E-1  8.7422E-1  4.3243E-2

4.2640E-1 -1.3461E-1  -1.4354E-1  -2.3555E-1 -4.7326E-1

4.2640E-1 -1.3467E-1  -1.3319E-1  -2.8675E-1 6.0560E-1

- 4.2640E-1 -1.3616E-1 1.3404EOO 5.3626E-2 -l.O313E-2 1
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SUBSYSTEM 4

This is a clamped-free undamped system with 5 DoF and possesses one rigid region

simulated with one relatively stiff spring (spring $ in Fig. 3.13)

Kl=3E3;K2=K5 =1E3;K3=1E7;K4=2E3  (N/m)

Ml=1;M2=0.5;M3=2;M4=1.5;M5=0.5(Kg)

Fig. 3.13 - Subsystem 3 - 5 DoF Clamped-free system

SPATIAL Model

r 0 1000 0.5 0 0 o- 0

[lv&= 0 0 2 0 0

0 0 0 1.5 0

Lo 0 0 0 0.5 -

M5x5 =

MODAL Model

4 E3 -1 E3 0 0 0

-1 E3 l.OOOlE7 -1 E7 0 0

0 -1 E7 1.0002E7 -2 E3 0

0 0 -2 E3 3 E3 -1 E3

0 0 0 - 1 E 3 1 E3

l.l098E-1 -1.6218E-1  -2.6013E-1 9.4536E-1 -5.0601E-5

4.2720E-1 -4.0335E-1  -1.6605E-1  -1.6497E-1 1.2649EOO

4.2723E-1 -4.0334E-1  -1.6601E-1  -1.6505E-1 -3.1622E-1

5.0486E-1 2.3891E-1  5.7865E-1 1.4094E-1 1.6865E-5

5.4600E-1 9.8119E-1 -8.4990E-1 -1.2963E-1 -1.3489E-9

[ 1*co2
r = diag( 1.507E2,  1.513E3.  3.362E3, 4.175E3, 2.501E7 )
\

5x5

Natural Frequencies 1.954. 6.191, 9.228, 10.28, 795.8 H z
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3.4.4.2 RESULTS

The two subsystems are now assumed to be connected through three coordinates. The

connection coordinates are selected as 3,4 and 5 in example I and 2,3 and 4 in the second

example. The criteria of selection was established according to the possible redundancy

existing on each set of connecting coordinates. In the first example, only subsystem 1

possesses local rigidities in the interfacing region whereas the second example makes use

of subsystems both containing local&d rigidities in the connecting region.

MPLE I

Y Kz 53 K4 5

1
2 3 4

*El
5

COUPIJZD  STRUCTURES U B S Y S T E M  3  +  S U B S Y S T E M  4_

I Fig. 3.14 - Subsystem 3 + subsystem 4 (3 connection coordinates)

1 . , ‘I..
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Fig. 3.15 - Predicted FRF (Point Inertance 2,2) using Algorithm 1
d
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-Exact
- - - - Predicted using equation (3.18)

Fig. 3.16 - Predicted FRF (Point Inertance 2,2) using Algorithm 2
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-56.0

-90.0
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-Exact
- - - - Predicted using equation (3.24)

Fig. 3.17 - predicted FRF (Point Inertance 2,2) using Algorithm 3

. ,
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COUPLE;z> STRUCTURF,

Fig. 3.18 - Subsystem 3 + Subsystem 4 ( 3 connection coordinates)
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40.04 1

f r e q u e n c y  (Hz) -

0.0 3.0 6.0 8.9 11.9 14.9

-Exact
- - - - Predicted using equation (3.12)

Fig. 3.19 - Fbdicted FIG (Point Inertance 2,2) using Algorithm 1

0.0 3.0 6.0 0.9 11.9 14.9
- Exact
- Predicted using equation (3.18)- - -

Fig. 3.20 - Predicted FRF (Point Inertance 2,2) using Algorithm 2
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-90.0
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-Exact
- - - - Predicted using equation (3.24)

Fig. 3.21 - Predicted FRF (Point Inertance 2,2) using Algorithm 3
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3.4.4.3 DISCUSSION OF RESULTS

The predicted response of the coupled system in both examples I and II show that the

approach which makes use of the classical equation (3.12),  herein designated as

algorithm 1, will experience numerical difficulties whenever any linear dependency exists

in a set of coordinates - either interior or connection ones. In example I it is assumed that

the dependent coordinate belongs to the interior region for one component and to both

interior and connecting regions for the other. The approch making use of algorithm 2

(vide eq. (3.18)) can give accurate estimation of the final coupled response, since it

perturbates the initial FRF matrix in a good sense towards the non-singularity. So also

does the approach using algorithm 3 (vide eq. (3.24)) since by adding the two partitions

of the FRF matrices corresponding to the coordinates of the interface region the

singularity is also removed in spite of the fact that one of the FRF partitions was initially

singular.

In example II the local rigidities are assumed to be localised in the interior region in one

of the components and in the connecting region for both components. In this case both

approches 2 and 3 fail to give a completely successful prediction. They are still prone to

numerical errors in the inversion of the matrices since they are singular.

3.5 CONCLUSIONS

The alternative algorithms making use of inversions carried out on either augmented FRF

matrices (algorithm 2 - eq. (3.18)) or partitioned FRF matrices (algorithm 3 - eq. (3.24))

can resolve many of the numerical difficulties encountered during the coupling process

using the classical algorithm (algorithm 1 - eq. (3.12)). Whenever locally-rigid regions

are confined to the interior coordinates of each component or to only one of the

subsystem’s connecting coordinates. In such a situation, the approach making use of

algorithm 3 presents a remarkable advantage over the other two, since the inversion

.



03 Impedamx Coupling Techniques 87

operation is only required once and even then is applied to a matrix whose order depends

only on the number of connecting coordinates.

For the other most extreme situation when the rigidities are localised in both interface

regions, other alternatives are required. For instance, if it is possible to know a priori the

number of redundant coordinates - or, in other words, the rank for each subsystem FRF

at each frequency in the range of interest - the analyst can make a judgement about the

possible exclusion of some of the connection coordinates without affecting the constraint

formulation of the actual physical connection. This topic will be discussed further in

chapter 5.

. . . . . _ . - . ~ _ _ _



4 MODAL COUPLING TECHNIQUES

4.1 INTRODUCTION

In chapter 2 a review of the different standard coupling techniques was presented. Among

these there is one which makes use of the Modal models and which takes advantage of a

reduction of the number of modes or modal coordinates (generally, the higher

natural frequency modes), while still accounting for all the physical DoF in each

subsystem model before a coupling process is performed. It is interesting to note that this

approach to the coupling problem relies on a different philosophy for reducing the

subsystem order when compared with the Impedance coupling approach which is based

instead on a reduction of the number of coordinates.

It has been stated in some survey papers [35-391 that using the free-interface methods like

Hou’s [34] and Goldman’s [33] procedures, very poor accuracy may be obtained for the

overall system natural frequencies and mode shapes as compared with that attained by the

fixed-interface methods. However, it has since been recognised  that the free-interface

methods could take advantage of using the directly available data from substructure tests

as an input into the coupling process, and this has led to an improvement in the existing

methods by developing a great variety of approaches. Some of the improved methods

were primarily based on a purely analytical description and determination of the

component characteristics [40-441,  in other words they are quite adequate if one chooses

the theoretical route, while others tried to explore the use of experimentally-derived modal

properties as a basis for the formulation of each subsystem’s equations of motion. In this
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latter approach, one important early work is Klosterman’s thesis [45] which provides a

comprehensive study of the experimental determination of modal representations of

components including the use of these models in the substructure coupling.

The structural definition of components from modal tests has been accomplished and

successfully used for design purposes with relatively stiff structures connected with

flexible elements such as an automobile frame and body connected by isolation mounts

[ 10,461. For this situation, the subsystems can be tested with free boundaries to obtain a

free-free modal data base which is sufficient for use in system synthesis. However, in the

case where the components are rigidly connected, the use of a set of truncated modes to

establish the compatibility equations sometimes leads to unacceptable errors in the

prediction of the assembled system responses. Thus, for rigidly connected subsystems a

more accurate definition is necessary either by including more modes or, if these represent

an unreasonable number, by providing some information about the effects of the

neglected modes. Two possible ways may be used to improve the structural definition of

each component; one, by using additional masses attached to the connection points in an

attempt to generate a more realistic condition for the component when it is vibrating

together with the remaining parts (the localised flexibility properties near the connection

area are better represented, since more modes are brought to the frequency range of

interest) or two, by seeking to compensate for the lack of flexibility due to the truncation

of the set of natural modes by using additional and important information concerning the

flexibility effects of the out-of-range modes.

In this chapter, interest is confined to the latter approach whereby a refined method

developed by the author [66,67] permits the inclusion of the residual flexibility effects of

the neglected or unmeasured modes. This refined approach is presented and compared

next with another similar alternative developed by Martinez et al [49].
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4.2 FREE-INTERFACE METHODS WITH RESIDUAL FLEXIBILITY

EFFECT

4.2.1 PREAMBLE

Early work reporting the use of free-interface methods was presented by MacNeal[40]

and Rubin [44] in order to improve the truncated free-free modal representation of a

component by including estimates of the residual effects due to the modes higher in

frequency than the frequency range of interest. In a theoretical standpoint, the residual

effects are generally obtained by calculating the component flexibility due to those modes

to be retained and then subtracting this from the total known flexibility of the respective

component as presented by Craig [68] and Hansteen  [69]. All these works provided a

significant improvement to the classical free-interface method presented in chapter 2,

although using purely analytical representation of component properties.

The free-interface method constitutes the most suitable approach for incorporating

experimentally-derived Modal models. Consequently, the author has directed his work

based on a free-interface methodology by developing a refined approach which can

include the residual flexibility effects of the unmeasured modes. This method is presented

next and compared with another one developed by Martinez et al [49].

4.2.2 A REFINED APPROACH

Returning to the classical free-interface method (Hou’s approach [lo]) presented in

chapter 2, our attention is now focussed on the thus-presented equation (2.34), which is

here re-written as,

{“I= [Ok ] Pltl (4.1)

Equation (4.1) expresses an approximation for the representation of each coordinate

displacement in a component whose equation of motion is expressed as,
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[ .;. ; .$I{;;}+[ .;;. ; .:~.](li-{.;.} (4.2)

This simplification is made in order to reduce the order of the final matrix equation.

However, this reduction results in a change of the description of each component stiffness

characteristics, since in doing so we are assuming that each component is too stiff. In

fact, there is a residual flexibility effect that is not taken into account. The exact

description of the displacements is expressed as:

{“I= [% ] Pm] (4.3)

where m is the total number of existing modes. These modes can be separated into two

groups; the kept or measured modes [ 1ok and the eliminated or unmeasured modes

[ 1ae ’ as represented in the partitioned form:

{ul = [Ok ] (Pk} + pe ] ( Pe} = [Qk : ae] 11P.n (4.4)
‘e

or {:I}=[ .I:. : .i:i.]{i!Y} (4.5)

Substituting this equation into (4.2) results in two uncoupled equations in terms of the

principal coordinates (kept and eliminated modes) as follows,

[II {ii,) +[‘q (Pk} = pcJT Ifcl.
and

IN { 5 } +[‘“I (‘e} = [@f-elT IfCl
e \

(4.6)

(4.7)

By assuming that the out-of-range natural frequencies are COG: >> CO:, an approximation

can be made for the response of those modes i.e., we can say that they respond in a

quasi-static manner so that the inertial term can be ignored. Thus, equation (4.7) may be

simplified and written as:
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(4.8)

By assuming at this stage that both components are still disconnected, the equilibrium

equations are;

and

r ‘Aw’ i 0
re -. ..

1 . . . . . . - . . . . . ..
0 :- 2

:  Bmre. ..

ApeI{ 1. . . . =

B ‘e

A@;; 0
..

. . . . . . * . . . . . ..

0 iBQT
ce..

fACI{ 1. . . (4.10)
BfC

The constraint equations for both subsystems undergoing free vibrations, are formulated

by enforcing compatibility between displacements and equilibrium between forces in the

connecting region as follows;

(A%) = (B”c}

(Aft) =- (Bfc) = (fc)

(4.11)

(4.12)

or, according to the modal description, as:

AQck: -Bock A<f,
ce

: -BQ)
ce (4.13)

From equation (4.10) the values for the coordinates p, can be extracted and substituted in

equation (4.13) leading to,
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A@
ce

: ‘B<f,
ce1

-.
Aa2re.
. . . . . .

0
* . . . . . ..
: * 2
:  Bmre. . 1.
.
; 0
.. r A&

ce

1 . . . . . . . .
-BoTce .1 (fc}= WI ( 4 . 1 4 )

or, making [ARE] =  [A@=] [‘Aa:l -’ [AawlT

and

(4.15)

(4.16)

both of these expressing the approximation for the residual flexibility of the eliminated

modes in component A and B respectively, the interconnecting force vector ( f, } can

now be expressed as,

(fc} = - [R_*]‘~[~o~~  : -Back

where

[Rcc*]-l = [ARC,  + BRccjl

(4.17)

(4.18)

If equation (4.17) is substituted into (4.9), the final equation for the overall system is,

LII{;;}+[ p;i;LL.j +

.

[ :~~;?.],Kcp~l[  Tyc.?.j]  {;t?}=ioi (4.19)

.

where the coupling matrix [Kc,J * fIS ormed from the residual flexibility properties of

both components as follows;

. .
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[KcPll =
- [ R=*]-l -[ Ry
_-kc*l-l [ Rcf 1

(4.20)

It is interesting to note that this equation is identical to that presented in chapter 2

(eq. 2.58) for the case of two components coupled using a intermediate flexible system.

This similarity may be explained as follows;

- the displacement in each connection coordinate is given as:

PC1 = [% ] Plcl + [q (PC)
or

(“c} = [%I hc) + LRcc] tfc) = {“c’} + { Auc} (4.21)

w h e r e  uC’1 > is the underestimated displacement in the boundary coordinates

(component is to stiff) and is the displacement due to the “additional” spring

located in the boundary region to compensate for the lack of flexibility (associated with

the out-of-range modes). The compatibility of displacements between the two components

A and B requires that:

{Au;} + {f&} = {l&} + {13Auc} (4.22)

which expresses the connection between the two subsystems through and intermediate

connecting flexible system, as visualised in figs. 4.1 and 4.2

Therefore, it is possible to use the same formulation given for the elastic coupling,

provided the stiffness matrix for the intermediate spring-system is constructed as shown

in equation (4.20).
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[& I= [ARccl-1 [,K, I= [&J1

Fig. 4.1 - Auxiliary flexible systems used to represent the flexibility contribuition  of
the out-of-range eliminated modes in each separated component

D&l=  [[,&I +[&I I-’
Fig. 4.2 - Two auxiliary flexible systems are connected in series to form the

“dummy” interconnecting system.
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4.2.3 COMPARISON WITH A PREVIOUS APPROACH

An alternative approach developed by Martinez et al [49], and which also takes into

account the residual flexibility effect of the out-of-range modes, is now briefly presented.

In this case the subsystem displacements are represented as,

{u,=[ok]  (Pk}+[Rc]  (Pc)=[@,:Rc (4.23)

where [Rc] is an appropriate partition of the (theoretical) residual flexibility matrix [RI as

shown below,

[RI =
Rii : Rci
. . . . - . . . .
R ;R 1

= [Ri : Rc]

ic ccJ

r 1R.
1c

LRcl =1q
cc

(4.24)

(4.25)

Substituting equation (4.23) into the general equation of motion (4.2), the following

equation is obtained,

L”pl {p.} +[K,l{pJ=(fpl
where

I : 0
[ 1Mp = .” . . . . .

0 ;H cc

c 1Kp =

[ 1fp =

i

@CL
. . . . . . . .

RTcc .

(4.26)

(4.27)

(4.28)

(4.29)

.,.
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with [Hccl = LRclT [Ml [Rc] (4.30)

In order to permit a simple and direct matrix assembly for the subsystem matrices it is

convenient to obtain an alternative formulation for the component equations. From

equation (4.23) we have,

PC1 = LRcJ1 { 1°C) - [ Qck] {Pkl }

or, assuming a transformation of coordinates such as,

‘k

{I[

I io
kk .. ‘k

... = . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . .I{}...PC -[RCC]-l[ack] i [RCC]-’ “’
..

=[Tl (c}

The new subsystem equation will be

L”sl {iI +LKsl (cl = If61

-R
cc-’ %k

0 i
ck :

.
.I... *.

...

..

-QckT R
-1

cc
. . . . . . . . . . . . . .

_R -'cc 1

(4.3 1)

(4.32)

(4.33)

(4.34)

(4.35)

kfi [JJ = [T*]~[H~J [T*] where [T*] = [RJ [RJ'

As noted by Craig and Chang [47] and by Martinez and Gregory [50] the MacNeal’s

approach [40] leads to a different general&d mass matrix which is,
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I iokk :
.

[ 1 . . . . . . . . * . . . . . . . .MC= :
[ 10 ; 0

..

(4.36)

From an experimental standpoint this matrix is more realistic, since the matrix presented

in (4.34) requires the calculation of [Jcc] and th’is is only possible by knowing the

component mass matrix. Then, assuming that the data are entirely obtained from test, the

final equation for the coupled structure is obtained by a direct assembly procedure:

. .

A-w,:, +A@,Tk  AR cc
-l AcDck;

\ ..

. .
APk
. . .

. .
BPk
. . . I +

0
.
: -A@: ARcc-’..

0
..

i&)fk +B$ BRcc

.
-’ B@cki -#,Tk $tcc-l. . .. .

I . .. . . . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . : . . . . . . .. .
1

. .. .
-Ao; ARcc-l ; -B@L BRcc-l iARcc-l+BR  -’cc. .. .

(4.37)

Discussion of both anoroacheq

In physical terms, Martinez et al [49] approach should give the same results as the

previously presented author’s approach, since the residual flexibility effects are taken into

account. Although Craig [52] has shown that the residual flexibility and fixed-interface
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method are equivalent, Klahs and Townley [53] concluded that “problems may arise in

the use of residual flexibility; the residual flexibility matrix for each component must be

invertible and the associated mass matrix i.e., the final mass matrix coefficients related to

the boundary points may be singular”. In fact, the requirement of the residual flexibility

matrix of each subsystem to be invertible is a drawback of Martinez ef al [49] approach

when compared to the author’s refined one since this require instead the inversion of the

summation of both residual flexibility matrices which is less susceptible to be singular.

For instance, should a residual flexibility matrix of a component be calculated using more

connecting coordinates than eliminated modes, it will become rank-deficient. Thus, the

corresponding inverse is impossible to calculate, although in physical terms it exists.

Moreover, the order of the final assembled equation of motion in Martinez et al [49]

approach is dependent on the number of connection coordinates, which in the refined one

are implicitly defined in the final equation of motion, therefore requiring a less time-

consuming eigensolution, especially in multi-point connected structures where the number

of connection coordinates may be much greater than the number of kept modes; in this

case, the main gain achieved with the reduction in terms of modes - which is the

underlying philosophy of Modal coupling techniques - is lost due to the necessary

inclusion of the interface coordinate displacements in the final equation of motion.

4.3 COMPUTER PROGRAM

A computer program has been written to implement the method detailed in section 4.22.

The component models can be either experimentally- or theoretically-derived and the

coupling procedure is performed each time for two components. The main structure of the

computer program is presented in figures 4.3 to 4.5. Preceding the coupling stage, and

depending on the type of modelling used for each component, there is a pre-processing

stage whereby the data is prepared so as to obtain a formatted modal model which is then

supplied to the coupling program. Thus, if the theoretical route is of interest, the main

steps to obtain the formatted modal model are shown in fig. 4.3. On the other hand, the

* i’
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alternative experimental route may be chosen for the subsystem modelling, and in this

case, the important steps are shown in fig. 4.4. Whichever route is used, the derived

modal model data related to the in- and out-of-range modes are stored in a suitable format

for subsequent use in the modal coupling process, as described in fig. 4.5.

Associated with this program, there are some extra subroutines for the necessary

manipulation and plotting of data. The type of properties used to describe the model can

be transformed according to different available options namely, Spatial + Modal

(Eigensolution), Spatial + Response, Modal + Spatial and Modal + Response. In order

to process data before the modal model is input into the coupling program, there is an

additional subroutine to read standard Modal models resulting either from modal testing or

an eigensolution. An option is available to read a partition of the corresponding modal

matrix containing only the selected connection coordinates and kept modes and

subsequently storing the model with a new format containing the information relative to

the selected in-range and out-of-range modes and the interior and connection coordinates.
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Theoretical Route

Input Matrices from
Spatial Model

I
Eigensolution

I

Mass-normal&d
Mode-shapes and

Natural Frequencies

I
store

Modal model

I

Partition of the
Modal model
according to:

- Kept and neglected modes
- Connection and interior coordinates

I

Calculation of the
Residual Flexibility matrix

related only to the connection
coordinates

I
Store

Formatted
Modal model

Fig. 4.3- Pm-processing data in the theoretical route
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Ex_oerimental  Route

State
Modal Parameters

forthemeasuiedmodes.

StOR?
the out-of-range

mock information for
eachF’RFrelatedtoa
connection coordinate

Data Acquisition ----------q
I

I
System identification: the minimum inffxmation

Extraction of Modal (one row or one column]

I

DataStorage __________~

Read in the necessary sets
of modal parameters related

to one column(row)
in the inertance matrix

I
Supply sign information
for each transducer pair

I
Excitation Coordinate No.?

I
Restrained Structures

I
1

Unrestrained Structures
I

Separation of
Rigid-Body modes

I
Mass-normalised

Rigid-Body Modes

I
I

Mass-normal&d
elastic modes

I ,
store

Modal model

I

Partition of the Modal matrix
according to the connection

and interior coordinates

I
- Identification Stage Store

Formatted
- Modelling Stage Modal Model

Fig. 4.4 - Pre-processing data in the experimental route

c ,.. _. ,, -._
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Theoretically-derived
model

~1: : : : : : : : : : : : made?!  : : : : : : : : : : : : :

Readmatrices
relatedtothe

eliminated  modes

. . . . . . . . . . . . . . . . . . ..*........ . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .
iiiiiiiiii~i8i~iiiiiiiii
i ; ; ~~~~~d&~;lc~~]~~  i ; ;
. . . . . . . . . . . . . . .._............
:::::::::::mam::::::::::. . . . . . . . . . . . . . . . . . . . . . . . . . . .
:::::::::::@:::j::::::::::
:::::::::::::cc::::::::::::. . . . . . . . . . . . . . . ,............

Residual Flexibility

Construction of the
Stiffness matrix

of the connecting system

I
Eigensolution

I

Transformation of
Modal to Original

COOrdinates

Store
Modal model for the

overall structure

Fig. 4.5 - Structure of the Modal coupling program
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The main program was written for the simple case of the coupling of two substructures.

However, it can be used to predict the response of a more general structure formed of

several components, providing they are connected as presented in fig. 4.6.

Fig. 4.6 - Assembling of global system ABCD

The different database containing the information for each component’s formatted modal

model should be created and linked according to the possibility of a subsequent structural

modification. For instance, if it is anticipated that component D may be subjected to

further modifications after the coupling stage, then it is suggested that the various

components be connected in the sequence shown in fig. 4.7, leading to a less time-

consuming reanalysis procedure each time the dynamic characteristics of component D

are changed.

Fig. 4.7 - Assembling global system ABCD (anticipating a modification in
comnonent D)
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4.4 THEORETICAL CASE STUDY

This case was used to check the working of the Modal Coupling computer program, since

it is possible to compare the predicted response with the exact response of the coupled

structure. Although in this example only theoretical data are available, it was assumed that

one of the subsystem residual flexibility matrices was obtained by following the steps that

would be employed in an experimental study. The two subsystems consist of a straight

beam (A) and a rigid block (B), the Spatial models of which constitute the initial available

data. An eigensolution routine is used to derive both the complete substructure Modal

models. However, one of the components - the beam - is assumed to possess different

degrees of incompleteness in the number of modes used to describe its properties. The

effects of this incompleteness on the predicted dynamic properties of the coupled structure

are investigated using both the Modal coupling techniques - the classical free-interface

method and the refined approach which includes the residual flexibility effects of the

neglected modes.

4.4.1 DESCRIPTION OF COMPONENT A - FREE-FREE BEAM

Component A is a rectangular cross-section straight beam modelled by eight undamped

Timoshenko beam elements. The Spatial and Modal models for this component were

obtained by using the general-purpose computer program for the vibration analysis of

complex structures, COUPLE [70], and only one in-plane flexural response was

considered i.e., each node is supposed to have only one translational and one rotational

degree of freedom.The connection coordinates are selected as the tip DoF numbers 1 and

2, being the interior coordinates formed of half of the remaining ones - number 3 to 10.

All the selected coordinates and the characteristics of the beam are shown in fig. 4.8.
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Component A - Free - Free Beam

Y
Mass = 6.061 Kg. Second moment of area I,= 1.0923 x lo-* m4

tX
Length = 1.508 m Area of cross section = .032 x .016 m2

Fig. 4.8 - Beam theoretical model (8 beam elements)

The mass-normalised modal matrix and the corresponding eigenvalues, together forming

the complete Modal model of the beam, are presented next:

_
-.244

.674

.030

.674

.284

.674

.539

.674

.793

. .674

.786 -.817 -.818 -.820 -.824 .830 -.832 -.765 -.781

-.653 2.518 4.259 5.972 7.724 -9.544 11.397 12.186 15.199

.540 .081 .478 .510 .211 .236 -.566 -.556 -.207

-.653 2.015 1.456 -1.423 -4.917 6.099 -2.836 3.503 12.144

.293 .497 0 . 0 0 0 -.584 0 . 0 0 0 -.592 0.000 -.619 0.000

-.653 0.000 -2.924 0.000 5.450 0.000 -7.856 0.000 13.608

047 .081 -.478 .510 -.211 .236 .566 -.556 .207

-.653 -2.015 1.456 1.423 -4.917 -6.099 -2.836 -3.503 12.144

-.199 -.817 .818 -.820 .824 .830 .832 -.765 .781

-.653 -2.518 4.259 -5.972 7.724 9.544 11.397 -12.186 15.199

Eigenvalues Natural Frequencies (Hz)

1.92E-08 0.00

5.59E-08 0.00

5.51E+O4 37.35

4.18E+05 102.93

1.61E+O6 201.91

4.42E+O6 334.45

9.93E+O6 501.62

1.96E+07 704.09

3.43E+07 931.80

6.78E+07 1310.41
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The frequency range encompassing all the natural frequencies is assumed to be:

0 -1500 Hz 10 modes included - (all the available modes)

In order to study the effects of incompleteness in the number of modes in this component,

various alternative frequency ranges of interest were selected as:

0 - 600 Hz

0 - 250 Hz

O- 50 Hz

7 modes included - (2 rigid-body + first 5 elastic modes)

5 modes included - (2 rigid-body + first 3 elastic modes)

3 modes included - (2 rigid-body + first elastic mode)

Since different sets of truncated modes are assumed, the residual flexibility matrix related

to the effect of the neglected modes - in this case referred only to the connection

coordinates - must be calculated afresh for each case. This can be done in two ways,

using either the theoretical or the experimental route, as presented in Appendix II, both

having been used in the present work.

The different conditions of assumed incompleteness of the component A are summarised

in the following table 4.1:

Table 4.1- Incompleteness of component A

ComDonent A .. Free free Beam_

11 Case 1 Modalmodel 1 No. kent modes I Residual II
1 Complete 10 ____ I

24 Incomplete 7 No
2B Incomplete 7 Theoret.  Complete [R,]

3A Incomplete 5 No

3B Incomplete 5 Theoret. Comnlete lR,_,l
3c Incomplete 5
3D Incomplete 5
3E Incomplete 5

4A Incomplete 3
4B Incomplete 3

Theoret.  Diagonal k,]
Experim. Complete &I
Experirn. Diagonal [R,]

No 1
Theoret.  Complete [R,,]
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In cases 2B and 4B, the residual flexibility matrix [RCC] referred to the connecting

coordinates is calculated following the theoretical route.

e 2B - Freouencv range 0 - 600 Hz ( 7 kent modes )

6.148 E-g -9.318 E-7 ] =j [Kccj = [RcJl=  [ 1.;:‘: ;; ;.;;; ;; ]
-9.318 E-7 1.437 E-5

Case 4B - Freauencv range 0 - 50 Hz ( 3 kent modes )

2.302 E-6 -1.454 E-5
-1.454 E-5 1.026 E-4

In case 3, both of the possible routes have been tried. In order to create a simulated

experimental route, the response model of the beam was calculated, the FRFs (Inertance)

referred to connection coordinates (1,2) being presented in fig. 4.9 a) to 4.9 c).
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I

I

A
.e
::
t!
t
5
x
:w
-68

0 . 8 8 Froquoncy  Hx. 1368.88

Fig. 4.9 a) - Generated :FRF at one end of the Beam

180

Fig. 4.9 b) - Generated +FRF at one end of the Beam

Fraquancy  Hz.

Fig. 4.9 c) - Generated +FRF at one end of the Beam
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In the particular frequency range selected, O-250 Hz, the three curves were analysed by

using an appropriate modal analysis program AUTOIDENT [71], which employs a

MDOF identification routine applicable for lightly damped structures. For each of the FRF

curves, two sets of modal parameters were extracted; the first group containing

information on the in-range modes and the second group referring to one or more

fictitious modes which are used to determine the residual flexibility matrix which

represents the effect of the out-of-range modes. Cases 3B to 3E differ from each other in

the kind of stiffness properties derived for the interconnecting system; they are

theoretically- or “experimentally’‘-derived and for each, two types of stiffness matrix were

assumed; for one, the connecting matrices were diagonal and constructed only with the

connection point direct response residuals while for the other the full connecting matrix

was constructed with all the possible response residuals associated with the connection

DOF;

Case 3B - Frequencv ranpe 0 - 250 Hz ( 5 kept modes )

2.845 E-7 -3.172 E6

-3.172 E6 3.706 E-5

Case 3C - Freouencv range 0 - 250 Hz ( 5 kent modes )

2.845 E-7 0

0 3.706 E-5
] z, [Kcc] = [Rcc]-l= [ 3’5; E6

6.434 E65.773 E5 1

0
2.698 E4 1

In the following cases, 3D and 3E, the residual flexibility matrices are derived using an

experimental route. The identified extra modes are,

FRF ij

191
192
292

Frequency (Hz)
450
500
500

Modal Constant
2.91

-37.93
404.30

and the matrices containing the approximated residual flexibility values are:
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Case 3D - Freouencv range 0 - 2.50 Hz ( 5 kent modes )

3.640 E-7 -3.843 E-6
-3.843 E-6 4.096 E-5

3E - Freouencv range 0 - 250 Hz ( 5 kept modes )

09; E-5 ] * LKccl = [Red-‘= [ ‘*‘; E6 2.44; E4 ]

4.4.2 DESCRIPTION OF COMPONENT B - RIGID BLOCK

Component B is a rigid block with known mass properties. This component is used to

apply a structural modification to the beam, thereby seeking to attain a nearly-clamped

condition at one of its ends. The inertia properties of the block are referred to just one

plane (Oxy) as shown in fig. 4.10,

I Component B - Rigid Block

Fig. 4.10 - Rigid block

The Modal model is:

.
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4.4.3 RESULTS

Both substructures were then coupled as shown in fig. 4.11,

Coupled Structure : Free-Freee Beam + Rigid Block

Fig. 4.11 - Free-free beam + Rigid block

The coupling between two components was performed by each of the two different

approaches, the beam being assumed to be the only incomplete subsystem. The refined

approach which takes into account the residual flexibility effect of the out-of-range modes

(vide section 4.2.2) was applied to the various cases previously described in table 4.1.

The predicted natural frequencies are shown in Table 4.2 for all the cases.

Table 4.2 - Natural Frequencies of the Coupled Structure

Case  R.Body Elastic Modes

1 0 0 6.6245 40.76 114.09 224.49 373.93 565.74 805.69 1122.

2A 0. 0. 6.94 42.98 121.12 240.68 408.33 --- ___ _____

2B 0. 0. 6.6245 40.77 114.2 225.34 379.16 642.75 6244.7 ----,

4A 0. 0. 9.8 __ __ __ __ ___ ___ _____ I
4B 0. 0. 6.628 41.28 278.07 -- -- --- ___ ___-

b ,
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The relative errors of the predicted natural frequencies are shown in graph of fig 4.12:

50  ’ n
40

2A 2B 3A 3B 4A 4B
Cases

0 M o d e l
q  Mode2

Mode 3
q  Mode4
q  Mode5

Fig. 4.12 - Natural frequency error (%) relative to the complete system

The predicted FRFs for the various cases of the coupled system are then compared with

the corresponding exact response calculated for the whole structure. Plots of the Inertance

calculated at the free end of the coupled structure i.e., using the translational (9) and

rotational coordinates (lo), are shown in the graphs of figures 4.13 to 4.17.

The first three groups of FRFs shown in figures - 4.13, 4.14 and 4.15 - illustrate the

difference between the two approaches used to predict the dynamic response of the whole

structure when truncated sets of 7, 5 and 3 modes respectively are used to describe the

beam connecting displacements in the coupling process. The next two groups of plots

represented in figures 4.16 and 4.17, show that the way the residual flexibility matrix is

calculated - theoretically or experimentally-simulated - does not have a significant

influence on the predicted response.
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-46.0$

- 8 0 . 0 0 ’ I I
Frequency (Hz)

I I

. 1 99.9 199.7 299.5 399.3

- Case1 - Complete System
. . . . . . case2A - Predicted  without Residuals (7 kept modes)
. . . . . . . . . . &&JB - FWiicted with Theoret.  Residuals (7 kept modes)

499

Fig. 4.13 - Predicted FRFs (y/F) at the free end of the coupled structure

90.  ~&_______-_______..-- 1 ---I-- --l-- -1
t

5 2 . 0 0 ;
i
i

14.Em;
- I

-62:00;

i
t- Frequency (Hz) -

- ! 00.0&------ I 1 I , .---1

. 1 30.0 5 9 . 9 8 9 . 8 119.7 149- - -
-  Case1 - Complete System
. . . . . Case3A - Predicted without Residuals (5 kept modes)
****-----* Case 3B - Predicted with Thea% Residuals (5 kept modes)

Fig. 4.14 - Predicted FRFs (y/F) at the free end of the coupled structure
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-46.00-

F r e q u e n c y  (Hz) -
- 8 0 . 0 0 I I I I I

. 1 99.9 199.7 299.5 399.3 499
- Case1 - Complete System
. . . . . Case4A - Predicted without Residuals (3 kept modes)
. . . . . . . . . . -4B - Fbdicted with Theoret.  Residuals (3 kept modes)

Fig. 4.15 - Predicted FRFs (y/F) at the free end of the coupled structure
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Frequency (Hz) -
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- Case1 - Complete System
. . . . . Case3B - Predicted with Theoretical Residuals (5 kept modes)
***..***** Case 3D - Predicted with “Experimental” Residuals (5 kept modes)

Fig. 4.16 - Predicted FRFs (y/F) at the free end of the coupled structure
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-100 .00 I I
F r e q u e n c y  (Hz) -
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. 1 30.0 59.9 89.9 119.7 149
- Case1 - Complete System
. . . . . case  3c - Predicted with Theoret.  Diag. Residual matrix (5 kept modes)
. . . . . . . . . . &#..& 3E - Predicted with “Exper.” Diag. Residual matrix (5 kept modes)

Fig. 4.17 - Predicted FRFs (y/F) at the free end of the coupled structure

4.4.4 DISCUSSION OF RESULTS

It is clear from this theoretical example that the classical free-interface method fails to give

accurate predictions of the dynamic properties of the coupled structure, whenever at least

one of the component modal matrix is assumed to be incomplete in terms of the available

modes; it is also shown that the FFU?s predicted under this condition reveal an

overestimation of the stiffness properties of the assembled structure which is more evident

for the higher natural frequencies of the combined system and as the number of neglected

modes is increased. Inclusion of the residual effects of the out-of-range modes by using

the refined approach compensates that overestimation, thus giving a more accurate

prediction of the final results.

The residual effect of the out-of-range modes in the particular case 3, which assumes only

5 kept modes for component A (beam), was calculated both theoretically, by using the

known flexibility matrix of the beam, and experimentally, by identifying one out-of-range



5 SELECTION OF VALID CONNECTION

COORDINATES

5.1 INTRODUCTION

The work presented in this chapter was motivated by the numerical difficulties

encountered during the coupling algorithms presented so far, which at some stage require

the inversion of certain matrices. Those difficulties arise every time the inverse of a

singular or near-singular matrix is required which may cause the predicted dynamic

properties of the coupled structure to be meaningless. It has been shown that the crucial

set of coordinates which require a good formulation in the sense that they should not

contain redundancies is the set referred to the interface region. Most of the interface

regions are physically connected in a continuous way therefore it is expected that a natural

solution to the formulation of the mathematical constraints should involve as many

coordinates as it is possible to handle with the computational means available. However,

this may very well cause an undesired redundancy in terms of coordinate information,

especially for the lower frequency ranges, and which will be even more accentuated if

some localised  rigid regions exist on the substructures. In fact, the degree of local

stiffness will depend on the selected frequency range and it is natural to expect the

stiffness of those regions being more considerable for the lower frequencies.

In seeking to remedy the undesirable numerical failures one may attack the problem from

two different perspectives. On the one hand, an inspection may be made of the set of

. ,
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4.5 CONCLUSIONS

A refined Modal coupling technique using free-interface modes was presented in this

chapter. The main achievement by this refinement was the inclusion of the residual

flexibilty effects which compensate for the truncation in the number of kept or measured

modes in each component. The lack of flexibility associated with the description of each

component displacement in the connection region has caused the classical free-interface

methods to predict results with poor accuracy when compared to the fixed-interface

methods - in fact, the components were assumed to be stiffer than they were actually

supposed to be. With the inclusion of the residual flexibility information - in fact an

approximation when experimental derived models are dealt with - by using a “dummy”

interconnecting flexible system, the two main components are mathematically coupled

using the best available information provided by data measured over the frequency range

in each component. The results obtained in the theoretical case study permit the additional

conclusions:

- the refined approach improves the prediction of the dynamic response of the coupled

structure when compared with the classical free-interface method; the valid predicted

modes may be taken as the number of kept modes in the incomplete subsystem plus one;

- the selected route for the calculation of the residual flexibility matrix does not affect the

predicted dynamic response of the overall structure.
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fictitious mode. The predicted FRFs using both the calculated residuals do not show any

clear difference. However, the flexibility matrix of the interconnecting system should be

as complete as possible i.e., the off-diagonal terms representing the cross-flexibilities

between the connection coordinates should be calculated whenever it is possible since

their exclusion can affect the overall dynamic properties, as shown in the graph of

fig. 4.17.
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connection coordinates before the subsystems are coupled mathematically and a warning

about redundancy is very useful, especially if throughout that inspection the analyst can

know what coordinates are responsible for the dependent responses. Thus, a careful

analysis of the constraint problem may lead to the elimination of some of those

coordinates which, besides removing possibly the redundancy, will additionally decrease

the order of the matrices involved. Not surprisingly, this approach might not succeed

since only particular cases allow the elimination of some connection coordinates without

affecting the meaning of the actual physical connection and other alternatives to solve the

problem must be devised. To this end, a powerful numerical algorithm is required to

invert any matrix be it singular or not singular. One important mathematical tool which

has been used in the statistical and system control research world and which offers the

possibility of confident inversion of any matrix is the Singular Value Decomposition. In

this work it will be made use of not only to calculate the rank of a given matrix but also to

carry out its inversion.

5.2 REDUNDANCY IN THE MODAL AND RESPONSE MODELS

Without loss of generality, the linear dependency herein will be assumed among the

coordinates pertaining to the connecting region of each subsystem, since as it was shown

in chapter 3 and 4 they form the corresponding sub-matrices involved in the inversion

stage of both the FRF and Modal coupling methods.

Let us assume that the Modal matrix has been derived for a given component which

includes the mode shape vectors corresponding to the mk modes existing in the measured

frequency range. The partitioned Modal matrix according to the interior and connection

coordinates is given as,

1 I‘k (5.1)
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It may happen that some of the rows in this matrix are nearly dependent on each other in

the measured frequency range. Let us assume that rows 1 to 3 of the submatrix [ 1ack

exhibit some linear dependency.

1 1UC =

u1

u2

u3
=

u4
..
.

)unc

. . . . .. . . . .

. . . . .

...

‘k

(5.2)

They will tend to be even more dependent as the number of kept modes is decreased, for

instance to 3. Thus, it is necessary to have a mathematical tool that can detect this

characteristic before the matrix is utilised in the coupling algorithm. As was shown in

chapter 2 (section 2.3), the classical Modal coupling technique requires the inversion of

one partition of the corresponding modal matrix and it is crucial to have an indication of

its rank deficiency before this procedure is undertaken.

If the Response model is generated from a Modal model possessing the previously

mentioned characteristics, it will exhibit the same ill-conditioning problem at each

frequency during a FRF coupling procedure. However, if the FRF matrix is entirely

measured instead of being generated from the above mentioned Modal model, the errors

on the data will generally serve to make the matrix invertible. Nonetheless, the proximity

of the FRF matrix to one of defective rank will often cause it to behave erratically when it

is subjected to numerical algorithms.
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5.3 THE RANK AND INVERSE OF A MATRIX

5.3.1 THE SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) is an interesting mathematical tool which has

proven to be very helpful in the control engineering world. Here that tool will be used to

provide quantitative information about the location of redundant coordinates and/or to

calculate the inverse of a rank-deficient matrix. It can be applied either to an existing

substructure or during the design phase to help detect the inadvertent use of connection

coordinates before the information is input to the coupling process.

A review of the SVD of a matrix was given in Golub and Kahan [72] which included a

bibliography dealing with applications and algorithms, and some work towards a new

algorithm. An improved version of the algorithm is given by Golub and Reinsch in

Wilkinson and Reinsch [73]. This algorithm is a special adaptation of the QR algorithn

due to Francis [74] for computing the eigenvalues and eigenvectors of a symmetric

matrix. As stated by Lawson and Hanson [75] one is most likely to apply Singular Value

analysis to matrices where m 2 n; however, the case m I n can be converted to this case

by adjoining n-m rows of zeros to the matrix [A] or by applying the analysis to the

transpose matrix [AIT.

The SVD is a numerical algorithm developed to minimise computational errors involving

large matrix operations. The SVD of a real matrix [A] results in three component matrices

as follows,

WI
mxn

(5.3)
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with the component matrices described as,

Ivlmxm orthonormal real matrix formed of the left singular vectors

5 0
diagonal matrix of scalars called the

[ 1‘z = CT2\ nxn

[ 10 ‘0,
singular values which may be

organised such that or 2 o2 2 . . . 2 o,., 2 0

PI
nxn

orthonormal real matrix formed of the right singular vectors

Both w] and [VI are ideally conditioned matrices where each column vector has unit

length and is orthogonal to all other vectors in the matrix set. In terms of matrix

operations, both [U] and [VJ represent a simple coordinate rotation. They are interrelated

as,

wlTlvl = wIwlT = [‘lmxm (5.4-a)

rVITWl = WJWIT = mxn (5.4-b)

The SVD of a complex matrix [A] results also in three component matrices as follows,

WI (5.5)

The component matrices w] and [VJ ([VJH being the complex conjugate transpose of [VJ)

are complex unitary matrices but the Singular Values are still real. In this case the

following interrelationship exists,

WIHlvl = KJIWIH  = [Ilmxm

wlHwl = wlwlH = [Ilnx,

(5.6-a)

(5.6-b)

The singular values of [A] are the positive square roots of the eigenvalues of [AITIA] (or

[AIHIA]). The columns of [v] - the left singular vectors - are the orthonormal

eigenvectors of [A][AIT (or [A][AIH) while the columns of [v - the right singular vectors
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- are the orthonormal eigenvectors of [AITIA] (or [AIHIA]), also called the principal

components.

The SVD is designed to determine the rank and the condition of a matrix and to map

geometrically the strengths and weaknesses of a set of equations. The computation of the

SVD of a matrix has been studied by numerical analysts for some time and can be

performed with great accuracy. It is discussed in many textbooks [76-801  and the

software is readily available through a number of standard numerical programs as shown

in Lawson and Hanson’s book [75], Forsythe’s book [79] and Glolub and Reinsch [81].

The attractive aspect of SVD in terms of coupling processes is that when applied to a

matrix which describes the transfer function characteristics of a given subsystem, the

singular vectors and the singular values all have a strong physical interpretation, as was

pointed out by Moore [82] in the control systems theory. Let us assume a substructure

FRF and Modal matrices which relate the responses at the coordinates with the forces and

modes respectively, as shown,

{xLxl = [aImxn {Flnxl b=n>

(xLxl = [@I,,, wlxl

(5.7)

(5.8)

By applying the SVD to either a FRF or a Modal matrix, the components [u] and [Vj

have the following properties;

Iulmxm
- The left singular vectors provide the most appropriate coordinate system for

viewing the responses. This coordinate system is such that the first singular vector ( u1 )

indicates the easiest direction in which the system can be changed; the second one ( Iu2

is the next easiest direction and so on . . .

TlXIl - The right singular vectors provide the most appropriate coordinate system for

viewing the forces (or modes). The first singular vector ( vt ) indicates the combination

of forces (or modes) which has the most effect on the system; the second one ( Iv2 is the

combination which has the next strongest effect and so on...
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5.3.2 RANK DEGENERACY

The rank of a matrix is the number of linearly independent rows (and columns) in the

given matrix. It is generally acknowledged that the SVD is the only reliable method of

determining rank numerically. The usual mathematical notion of rank is not very useful

when the matrices in question are not known exactly. For example, suppose that [AlmXn

was originally of rank r<n but whose elements have been perturbed by some small errors

(e.g. rounding or measurement errors); it is extremely unlikely that these errors will

conspire to keep rank of [A] exactly equal to r; indeed what is most likely is that the

perturbed matrix will have full rank n. Nonetheless, the nearness of [A] to a matrix of

defective rank will often cause it to behave erratically when it is subjected to numerical

algorithms. One way to circumventing the difficulties of the mathematical definition of

rank is to specify a tolerance and say that [A] is numerically defective in rank if within that

tolerance it is near a defective matrix.

The mere observation of small singular values does not solve the ill-conditioned problem

for we must still decide upon a value for rank(A). One approach to this deficient problem

is to have a parameter 6>0 and a convention that A has numerical rank r if the oi satisfy

The key quantity in rank determination is obviously the value 9. The parameter 6 should

be consistent with the machine precision E, e.g. 6 = E II A Iloo . However, if the general

level of relative error in the data is larger than E, then 6 should be correspondingly bigger

e.g. 6 = 10m2  II A Iloo, as suggested by Golub and Van Loan [80]. This criterion is useful

especially when there is no clear split of the singular values into a set of large values and

another set of small values.

If rank(A) = r then [A] has r linearly independent rows and r linearly independent

columns. The rank indicates only how many are linearly independent and not where they

are located in the matrix. Some rank properties of a matrix are presented in Appendix III.

c .’
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5.3.3 CONDITION OF A MATRIX AND ITS INVERSE

The SVD is one of the most elegant algorithms for exposing quantitative information

about the structure of a linear system problem [A] (x) = (b) . One aim is to examine how

perturbations in [A] and (b) can affect the solution {x). By applying the SVD to the

matrix [A] one obtains,

n

[Al,, = c CTi Ui VT =[U]
i= l

mxm exn
xn

Then {x} = [A]+{ b} with

[Al+ =[ WI,,, [[‘f]],,, IV;x]l
or [Aln~m = wlxn [‘?] -l wl~xm

nxn

n Uic Tb
x = -v*

i=l <Ti
1

(5.10)

(5.11)

(5.12)

(5.13)

This expansion shows that small changes in [A] or (b) can induce relatively large

changes in [x) if on is small. The condition number k(A) of a matrix [A] with
mxn

singular values or 2 o2 2 _ 2 on depends on the underlying norm. For the particular

case of the 2-norm, the condition number is given as,

k&A) = II A II, II A-’ II, = o,(A) /o,(A) (5.14)

However, if or is chosen such that

whereby the singular values cr,+t , . . . ,cr, are effectively considered to be zero, the

condition number of matrix [A] with rank(A)= r is ot / or. In this case, the matrix [A] can

c
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be approximated to a matrix [Ar] with rank r and the best candidate solution to the linear

problemis {x) = [Ar]‘{b}.

The condition number of [A] quantifies the sensitivity of the [A] { x)=(b) problem, since

the relative error in (x) can be k(A) times the relative error in [A]. Additionally, it gives a

measure of the “nearness” of [A] to singularity. If k(A) is large, then [A] is said to be ill-

conditioned or conversely if it is small it is said to be well-conditioned. It is natural to

consider how well a determinant size measures ill-conditioning. Unfortunately, there is

little correlation between det(A) and the condition number of [A] {x} = {b} . For example,

the matrices [B,] defined by,

1 -1 -1 . . . -1-
0 1 -1 . . . -1

1 Bn 1 = 0 0 1 . . . -1
. . . . .

0 0 0 0 l-

(5.16)

always have IBJ = 1 although they tend to be rank-deficient as the order increases. On the

other hand, a very well-conditioned matrix can have a very small determinant. For

example,

[Dn] = diag (lo-‘,lO-‘,...,lO-‘) (5.17)

satisfies k(D,) = 1 although lDnl = lo-” which illustrates the fact that the value of a

determinant is worthless as an indication of singularity.

By assuming that a certain value or is chosen, the calculation of the pseudo-inverse [Ar]’

only requires the r significant singular values as well as the corresponding vectors of

matrices [U] and [VJ. Let us consider these matrices to be partitioned according to the r

significant columns such as,
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[ulmxm = [ [Ullmxr i c”21,,,,,] (5.18)

WI
nxn =  [ Pqxr i Cv4,x(n_,)] (5.19)

[‘z,]nxn  =[ ry*x* :;;I (5.20)

The approximated matrix [4] will be given as,

[4] = [Ul] [‘%.I [Vl] T
mxn mxr rxr rxn

and the corresponding pseudo-inverse [4]’ is,

(5.21)

l141,1m = IY’I,, [“l.] -’ P1lrx~
rxr

(5.22)

Having calculated the pseudo-inverse it is interesting to note that,

bl [ 41+1 = [Ul] [UllT
mxm

(5.23)

[PI+ PI1 = [VI] pqT (5.24)
nxn

[[a - [  41 [  41’1 =  [U2] [U21T (5.25)
mxm

[[fl - [  41’ [  411 =  [V2] [V21T (5.26)
nxn

which correspond to four fundamental orthogonal projections of [Ar] as stated by Klema

and Golub [83].
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5.4 SELECTION OF INDEPENDENT COORDINATES

In mathematical terms we shall be concerned with the following problem: given a matrix

[A]_ (r&n) which is near a matrix [41,x, whose rank is less than n, is it possible to

find a set of linearly independent columns of [A] that span a good approximation to the

column space of [Ar]?. The ideas underlying the approach are the use of singular values

of [A] to detect degeneracy and the singular vectors of [A] to rectify it.

Replacing CAlmxn bY [A&,,

make a great deal of sense in

amounts to filtering out the small singular values and can

those situations where [A] is derived from noisy data. In

other applications however, the rank deficiency implies redundancy among the columns

that compose the matrix. For example, if the problem at hand is to approximate a vector of

responses {b} , the procedure sketched above will express the approximation as a linear

combination of all the columns of [A], even though some of them are clearly redundant.

What is needed is a device for selecting a set of linearly independent columns of [A]. In

this case one should be interested on using only the independent columns to approximate

the observation vector b. How to pick these columns is the problem of subset selection.

The QR factorisation  with column pivoting is one method of subset selection which was

purposed by Golub, Klema and Stewart [84]. The main steps involved in this selection

are,

a) - compute the SVD of [A] and use it to determine the rank r

b) - Partition of matrix [V] into

c) - Use QR algorithm with column pivoting to compute

@IT [ VT11 VT21 ]Pl = [ R,, RI2 ]

(5.27)

(5.28)

The permutation matrix [P] is finally used to re-sequence all the columns in

CA1 [PI = [ B, B, ] (5.29)
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such as the columns of [Bt] are sufficiently independent.

This method was applied to some numerical examples and the results were not always

successful. For instance the matrix

[ 2-2 3 111 3 -3 2 -6 4 24 4 4 7.9 1
is nearly rank-deficient. After applying the SVD, the rank value was assumed to be 3. The

QR factorisation was then undertaken on component V giving the pivot (which is used to

create the permutation matrix) ordered as - 4, 3, 1, 2 - suggesting the elimination of

column No. 2 which is not one of the dependent columns (3,4).

However, as suggested by Klema and Laub [83] the elements of the component matrix [VI

can be inspected to reveal dependencies or near dependencies among the columns of

matrix [A] whereas the columns of [U] can reveal dependencies among the rows of [A].

If the algorithm is applied instead, to the projections [U1] [ I_J,lT and [VI] [ V1lT

presented in (5.23 and 5.24), a better result is found for the selection of the independent

rows and columns, respectively.

This alternative method was applied to the above presented matrix, either to detect

dependency on the rows or on the columns; the pivot is now ordered as - 2,3,4,1  - for

the rows which indicates the row 1 to be eliminated and for the columns the pivot was

ordered as - 1, 2, 4, 3 - which suggests the elimination of column 3. In fact, this

corresponds to the row and column which were introduced on purpose to be linearly

dependent. Another test was carried out on the same matrix but changing the order of its

columns and the same result was found.

* ,
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5.5 NUMERICAL EXAMPLES

5.5.1 INTRODUCTION

The mathematical tool we have been concerned with so far - the SVD - will now be used

in various coupling exercises. These are performed under conditions which are supposed

to simulate practical problems although the subsystems are purely theoretically-derived.

One of those practical problems the analyst can be faced with is related to the numerical

failures of certain algorithms due to the existence of redundant information or in other

terms due to the dependency or near-dependency of the coordinate responses over a

selected frequency range.

In respect of the FRF coupling technique it was found in chapter 3 that none of the

alternative techniques could numerically resolve the difficulty encountered when two

subsystems were connected through regions both possessing some linearly dependent

coordinates. This caused the corresponding partition of the FlW matrices, at some

frequency values, to be rank-deficient and thus impossible to calculate the inversion with

usual algorithms.

As suggested there, one possible way of avoiding the dependency is just by eliminating

the redundant coordinates and keeping only the set of coordinates which are independent.

What may happen however, is that the result of this analysis leads to two sets in which

the number of independent coordinates do not match together, either because the quantity

is different or the location is not the same; such an elimination would cause the constraints

to be altered, which is not the main objective. This solution would only work when the

selected independent coordinates for both subsystems match together in terms of quantity

and location.

A second alternative to cope with redundancy is by making use of the SVD technique at

every frequency where the necessary inversion has to be carried out on the corresponding

rank-deficient matrix. This is recommendable in situations where the previously
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mentioned alternative does not work, since the inversion using the SVD may be more time

consuming than the usual inversion algorithms.

In respect of the Modal coupling techniques it is shown in chapter 2 that the classical

technique, which does not account for the effects of the out-of-range modes, may suffer

from numerical failures whenever the necessary inversion is carried out on a square

partition of the modal matrix related to the connecting coordinates. Since this inversion is

only required once, the SVD algorithm is highly recommendable, without a previous

analysis to select the independent coordinates.

The numerical examples which are presented in this section make use of the FRF coupling

techniques applied to four theoretical subsystems. These exhibit a dependency on some

coordinate responses due to the existence of localised rigid regions created by using

relatively stiff springs to connect some of the discrete masses and then truncating, up to

the first six significant digits, the elements in the generated FRF matrix. The frequency

range of interest was selected to be O-15 Hz for all four subsystems used.

The following figs. 5.1 to 5.4 represent the discrete masses and springs forming each

component and the corresponding Spatial and Modal models. In all of them, there are

some bold springs connecting discrete masses in order to highlight the localised rigid

regions on the structures. These rigidities are extended to the interior and connection

coordinates making the corresponding coordinates to be linearly dependent.
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5.5.2 SUBSYSTEM DESCRIPTION

ISubsystem 1 - 5 DoF undamped Free-Free system

~~=1E3;K~=1E6;K~=1E7;K4=1E5  (N/m)

M1 = 0.5 ; M2 = 1 ; M3 = 2 ; M4 = 1.5 ; M5 = 0.5 (Kg)

Fig. 5.1 - Subsystem 1 - 5 DoF Free-free system

SPATIAL Model

[

0.5 0 0 0 0
0  1 0 0 0

[M15x5 = 0 0 2 0 0
0 0 0 1.5 0

0 0 0 0 0.5 1
M5x5 =

MODAL Model

I 1 E3 0 -1 E3 0 0

0 1 E6 -1.E6 0 0

-1 E3 -1 E6 l.lOOlE7 -1 E7 0

0 0 -1 E7 1.01 E7 -1 E5

. 0 0 0 -1 E5 1 E5

4.2640E-1  1.3484EOO  1.3176E-3  3.7169E-4  7.9258E-5

4.2640E-1  -1.3490E-1  -1.8399E-1  8.7422E-1  4.3243E-2

4.2640E-1  -1.3461E-1  - 1 . 4 3 5 4 E - l 1  -2.3555E-1  -4.7326E-1

4.2640E-1  -1.3467E-1  -1.3319E-1  -2.8675E-1 6.0560E-1

4.2640E-1  -1.3616E-1  1.3404EOO  5.3626E-2  -l.O313E-2

=  [ 0  2.1997E3 2.1987E5 1.2694E6 1.1944E7 ]

Natural Frequencies 0, 7.464, 74.63, 179.3, 550 Hz
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ISubsystem 2 - 5 DoF undamped Clamped-Free system

~1=3E3;~=K5=1E3;K~=lE7;K~=2E3  (N/m)

M1 = 1; M2 =0.5;M3=2;M4 = 1.5 ; M5 = 0.5 (Kg)

Fig. 5.2 - Subsystem 2 - 5 DoF Clamped-free system

SPATIAL Model

000  0

0.5 0 0 0
0 2 0  0
0 0 1.5 0

0 0 0 0.5 1
[W5x5 =

MODAL Mode

[ 1a =
5x5

. 4 E3 -1 E3 0 0 0

-1 E3 l.OOOlE7 -1 E7 0 0

0 -1 E7 1.0002E7 -2 E3 0

0 0 -2 E3 3 E3 -1 E3

. 0 0 0 -1 E3 1 E3 1
- l.l098E-1 -1.6218E-1 -2.6013E-1 9.4536E-1 -5.0601E-5

4.2720E-1 -4.0335E-1  -1.6605E-1  -1.6497E-1 1.2649EOO

4.2723E-1 -4.0334E-1  -1.6601E-1  -1.6505E-1 -3.1622E-1

5.0486E-1 2.3891E-1  5.7865E-1 1.4094E-1 1.6865E-5

- 5.4600E-1  9.8119E-1  -8.4990E-1  -1.2963E-1 -1.3489E-9 1
[ 1k12

r = diag [ 1.507E2 1.513E3  3.362E3  4.175E3 2.501E7 ]
.

5x5

Natural Frequencies 1.954, 6.191, 9.228, 10.28. 795.8 H z
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ISubsystem 3 - 7 DoF undamped Clamped-Free system1

K1=K4=2E3;~=Kg=1E3;K3=K5=1E9;K,=3E3  (N/m)

M1 =M2=M4=M5=1;M3=0.5;Mg=1.5;M,=2  ( K g )

Fig. 5.3

SPATIAL Model

[l%lTx, = diag [ 1

[

3E3

-1E3

0

[K17x7 = 0
0

0

0

MODAL Model

E 1cp =
7x7

- Subsystem 3 - 7 DoF Clamped-free system

1 0.5 1 1

-1E3 0 0 0 0 o-
1 .OOOOOl  E9 -1E9 0 0 0 0

-1E9 1.000002E9 -2E3 0 0 0

0 -2E3 1.000002E9 -1E9 0 0

0 0 -1E9 1 .OOOOOl  E9 -1E3 0

0 0 0 -1E3 4E3 -3E3

0 0 0 0 -3E3 3E3 -

1.5 2 1

- 8.733E-2  -1.940E-1  6.173E-1  7.373E-1 -1.732E-1  -4.031E-11 1.924E-7

2.563E-1  -4.671E-1  3.943E-1  -4.407E-1 1.819E-1  -4.715E-7  -5.773E-1

2.563E-1  -4.671E-1  3.943E-1  -4.407E-1 1.819E-1  -4.715E-7  1.155EOO

3.282E-1  -3.962E-1  -4.155E-1  1.593E-1 -1.931E-1 7.071E-1  -3.849E-7

3.282E-1  -3.962E-1  -4.155E-1  1.593E-1 -1.931E-1 7.071E-1  -3.849E-7

4.290E-1  2.148E-1  -7.310E-2  2.128E-1 6.212E-1  2.357E-7  1.218E-12

- 4.486E-1  3.549E-1  1.273E-1  -1.522E-1 -3.654E-1  -2.236E-11  -1.945E-12

=&ag  [  6.55El 5.92E2  2.36E3 3.60E3 4.05E3  2.00E9  3.00E9  ]

5x5

Natural Frequencies 1.288, 3.873, 7.734, 9.546, 10.13, 7118, 8717 Hz

1
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ISubsystem 4 - 7 DoF undamped Free-Free system1

K1=3E3;K2=K3=1E3;K4=Kg=1E9;K5=2E3  (N/m)

M1=2;M2=M3=M5=M7=1;M4=M@.5  ( K g )

Fig. 5.4 - Subsystem 4 - 7 DoF Free-free system

SPATIAL Model

WI,,,, = diag 1 2 1 1 0.5 1 0.5 1 ]

[K17x7 =

.
3E3 -3E3 0 0 0 0 0

-3E3 4E3 -1E3 0 0 0 0

0 -1E3 2E3 -1E3 0 0 0

0 0 -1E3 l.OOOOOlE9 -1E9 0 0

0 0 0 -1E9 1.000002E9 -2E3 0

0 0 0 0 -2E3 1.000002E9 -1E9

. 0 0 0 0 0 -1E9 lE9

MODAL Model

[ 1cp =
7x7

’ 3.780E-1  -4.345E-1  2.349E-1  9.865E-2 -3.219E-1  1.455E-14  9.152E-11

3.780E-1  -3.506E-1  -4.445E-2  -l.l90E-1 8.475E-1  l.O60E-13  7.384E-11

3.780E-1  2.928E-3  -8.033E-1

3.780E-1  3.556E-1  -1.288E-1

3.780E-1  3.556E-1  -1.288E-1

3.780E-1  4.545E-1  3.808E-1

- 3.780E-1  4.545E-1  3.808E-1

-3.781E-1 -2.625E-1  -3.849E-7  -2.721E-13

6.142E-1 5.800E-2  1.155EOO  -5.133E-7

6.142E-1 5.800E-2  -5.773E-1  -5.133E-7

-4.143E-1 -1.879E-2  2.566E-7  1.155EOO

-4.143E-1 -1.879E-2  2.566E-7  -5.773E-1

= diag  [  0  2.902E2  1.784E3  3.31E3 5.45E3 3.OE9  3.OE9  ]

Natural Frequencies 0, 2.711, 6.723, 9.156, 11.75, 8717, 8717 Hz

-I
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5.5.3 RESULTS

5.5.3.1 COORDINATE REDUNDANCY

The algorithm suggested in section 5.4 will be applied to each subsystem model. It can be

applied to either a FRF matrix or to a Modal matrix. The first matrix varies with the

frequency, thus it is not recommended to carry out the analysis in such a matrix for all the

frequencies of interest. It is preferable to analyse the Modal matrix instead, since this may

reveal any linear dependency on the coordinates. It may happen that, after inspecting the

Modal matrix and taking into account all the modes, the rows of this matrix are found to

be independent. However, this does not mean that the FRF matrix cannot exhibit any

linear dependency in a particular range. It is realistic to assume that some of the coordinate

amplitudes have a similar value in the first three out of ten modes for instance, thus

provoking the FRF matrix to be singular or near-singular, mainly for the frequency range

encompassing those three modes where there is only a slight contribution of the remaining

ones.

5.5.3.2 COUPLED SYSTEMS

The Singular Value Decomposition technique is presented in this chapter as a

mathematical tool to resolve the numerical difficulties related to the inversion of some

particular matrices during a coupling process. Here the interest in mainly focused on the

FRF coupling, since this technique is more sensitive to this numerical problems. The

subsystems are coupled using an ‘excessive’ number of connection coordinates, this

meaning that although in physical terms the subsystems can be coupled using whatever

the number of coordinates it is not true in numerical terms. The algorithms presented in

chapter 3 (vide section 3.4 equations (3.12) and (3.24)) are used in two different

perspectives;
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- firstly, the subsystems are coupled through the selected coordinates where nothing is

known about their possible dependency and making use of the approaches and algorithms

above mentioned; the computer built-in subroutine is used to invert matrices with a

warning about the determinant value,

- secondly, the coordinate dependency is inspected on each subsystem; whenever possible

the connection coordinates are reduced and the first step is carried out again.

- as a last alternative, the SVD algorithm is used to carry out the necessary inversion at

each frequency.

In example I the two subsystems 1 and 2 are coupled using 4 coordinates as shown in

fig. 5.5, some of which are redundant and pertain to both interior and connection

coordinate sets. This is a similar problem used in chapter 3 (vide 3.4.4) in which the

alternative coupling techniques could not solve the problem due to the numerical failures

using the computer built-in routine to invert matrices. In this chapter, a further step is

taken by using the SVD technique to invert the matrices which are used according to the

most refined coupling algorithm presented in chapter 3 (algorithm 3 based on equation

(3.24)). This algorithm requires the inversion of a matrix which order is dictated only by

the number of connection coordinates.

In example II the same subsystems 1 and 2 are coupled using at this time a reduced

set of 3 interface coordinates, as shown in fig. 5.9. The reduction on the number of these

coordinates was performed after a check on the possible redundancy among the

connection coordinates in both components. This was possible by making use of the SVD

and QR factor&&on applied to the connecting partition of the Modal matrix and as a result

coordinates Nos. 2,3 and 4 were found to be redundant in subsystem 1 and coordinate

No. 2 was redundant in subsystem 2. By virtue of having coordinate No.2 as a redundant

coordinate in both components, it was possible to leave out this coordinate for connection

purposes without affecting the formulation of physical constraints between the two

components. Thus the normal built-in computer routine was used to invert a matrix

which, by the mentioned simplification, was reduced and converted to non-singular.
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In example III the subsystems 3 and 4 are connected using a set of 6 connection

coordinates, as shown in fig. 5.12, and identically some of them are supposed to be

redundant. A coupling exercise, similar to the one used in example I, is undertaken here.

In example IV, subsystems 3 and 4 are connected via a reduced set of 5 coordinates, as

presented in fig. 5.18. An inspection on redundancy carried out on the set of connecting

coordinates of subsystem 3 led to conclusion that coordinates Nos. 2 and 4 were the

dependent ones. An identical inspection on subsystem 4 found coordinates 4 and 7 to be

redundant. Similarly to example II, coordinate 4 was neglected in the formulation of the

constraint conditions and as a result a non-singular reduced matrix was used during the

coupling process, leading to an accurate prediction of the coupled system response.
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EXAMPLE I - Subsystem 1 + Subsystem 2 (4 Connection Coordinates)

3

0 ll ll
% Ks

COUPLED STRUCTURQ

I
Fig. 5.5 - Subsystem 1 + Subsystem 2 (4 connection coordinates)
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iii
‘p
-8 16.0
E”

; -9 .0
5Y
:
5 -32.0

-56.0

0.0

Frequency (Hz) 1

3.0 6 . 0 8.9 11.9 14.9

- Exact
____ Predicted using equation (3.12)

Fig. 5.6 - Predicted FRF (Point Inertance 2,2) using Algorithm 1

40*0*
16.0 a

,

Frrquoncy (Hz) -
-90.0ep ,

0.0 3.0 6.0 8.9 11.9 14.9
-Exact
- - - - Predicted using equation (3.24)

Fig. 5.7 - Predicted FRF (Point Inertance 2,2) using Algorithm 3

Frequency (Hz) -
-00.0d

0.0 3.0 6 . 0 8.9 11.9 14.9
-Exact
____ Predicted using equation (3.24) and SVD

Fig. 5.8 - Predicted FRF (Point Inertance 2,2) using SVD
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EXAMPLE II  - Subsystem 1 + Subsystem 2 (3 Connection Coordinates)

1 2 3 4
WI

5

COUPLED STRUCTURF

2 3 4 Cl 5

6 7 % K7
*

Y Ks

Fig. 5.9 - Subsystem 1 + Subsystem 2 (3 connection coordinates)
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frequency (Hz) -

8 .8 3 .0 6 .0 8.9 11.9 14.9
- Exact
- - - - predicted using equation (3.24)

Fig. 5.10 - Predicted FRF (Point Inertance 2.2) using Algorithm 3

- 56 .0

Frrqurncy Ok) -
-80.6

0.9 3 .0 6.0 8.9 11.9 14.9
-Exact
- - - - Predicted using equation (3.24) and SVD

Fig. 5.11 - Predicted FRF (Point Inertance 2,2) using SVD

I ,
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EXAMPLE III - Subsystem 3 + Subsystem 4 (6 Connection Coordinates)

COUPLED STRUCTURQ

I K. K_
K4 _ Ks -

4 5

K6_y7 _

6 7

-

Fig. 5.12 - Subsystem 3 + Subsystem 4 (6 connection coordinates) 1
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I Frequency (Hz I
-00.0

0.0 9.0 6 . 0 9.9 11.9 14.9
-Exact
____ Predicted using equation (3.12)

I Fig. 5.13 - predicted FRF (Point Inertance 5,5) using Algorithm 1 I
40.08

16.00.

Ftoqurncy (Hz)

0.0 3.0 6.0 9.9 11.9 14.9
-Exact
- - - - Predicted using equation (3.24)

Fie. 5.14 - Predicted FRF Point Inertance 5.5) using Alprorithm 3

‘,.
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40.0

ii

E

16.0

b - a . 0
fY
:
6 -32.0

-56.0

-90.0
0.0 3.0 6.0 8.9 11.9 14.9
- Exact
- - - - Redicted using equation (3.24) and SVD with thres.= lE-3

Fig. 5.15 - Predicted FRF (Point Inertance 5,5) using SVD

- Exact
____ Predicted using equation (3.24) and SVD with tltres.= lE4

Fig. 5.16 - Predicted FFW (Point Inertance 5,5) using SVD

0 . 0 3 . 0 6 . 0 e.9 11.9 14.9
- Exact
____ Predicted using equation (3.24) and SVD with thres.= lE-5

Fig. 5.17 - Predicted FRF (Point Inertance 5,5) using SVD
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IEXAMPLE IV - Subsystem 3 + Subsystem 4 (5 Connection Coordinates)1

COUPLED STRUCTURE

K6 -K7--w w6 7

I-J l-l
K* % K1o

Fig. 5.18 - Subsystem 3 + Subsystem 4 (5 connection coordinates)
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L

Frequency Uiz 1 -

3.0 6.0 8.9 11.9 14.9
-Exact
- - - - predicted using equation (3.12)

Fig. 5.19 - Predicted FRF (Point Inertance 2,2) using Algorithm 1

40.0

e
E 16.0

0: -9.0
:
k
5 -32.0

-56.0

0.0 3.0 6.0 8.9 11.9 14.9
-Exact
__-- h.dicted  using equation (3.24)

Fig. 5.20 - Predicted FRF (Point Inertance 2,2) using Algorithm 3

40.08 1

16.

-32.

-56.

I Frequency (Hz)
-B0.0

0.0 3.0 6.0 8.9 11.9 14.9
- Exact
____ predicted  using equation (3.24) and SVD with thres.=  lE-5

Fig. 5.21 - Predicted FRF (Point Inertance 2,2) using SVD (SE-5)

.
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5.5.2 DISCUSSION OF RESULTS

The predicted FRFs of the coupled structures, used in examples I to IV, show that two

possible alternatives are available to resolve the numerical difficulties associated with the

inversion of singular or near-singular matrices caused by the existence of redundant

coordinates at the interface region. It is also shown that the SVD technique must be used

with care in terms of selecting the threshold to define the rank of a matrix which in most

of the cases is associated with the error inherent to the data. In example III, a value of

lOE-3 was initially assumed for u in terms of which 6 is calculated (the threshold

necessary to define the rank of a matrix as presented in equation (5.9)). The result was a

poor prediction for the FRF of the coupled structure in the vicinity of each resonate

frequency. When u was decreased to lOE-5, the accuracy of the predicted FRF was

notably improved and in good agreement with the known exact FRF of the assembled

structure. Similar results were obtained without using the SVD, provided the redundancy

was adequately eliminated in the set of interface coordinates as shown in example IV -

fig. 5.20.

5.6 CONCLUSIONS

The SVD technique proved to be a useful mathematical tool to be used during a coupling

process involving subsystems both of which possessing redundant information (in terms

of coordinates) at the interface region.

Additionally, it is shown that common inversion algorithms can still be used provided the

redundancy in the connecting region is eliminated. For this purpose, a suitable algorithm
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was devised to detect how many and which coordinates are redundant. This may be

useful when a large degree of redundancy is present in a multi-point connected system. In

such a case, the reduction operated in the initially specified connection matrix may be

substantial. Hence, a less time-consuming coupling process is required, simultaneously

preserving the accuracy of the final result.



~
EXPERIMENTAL DETERMINATION OF

6.1 INTRODUCTION

The dynamic analysis of a complex structure using the substructuring technique, requires

ROTATIONAL RESPONSES

knowledge of the dynamic characteristics of the constituent components. For some of

these it is not feasible to make a theoretical model, and so their dynamic properties are

often obtained using an experimental approach. Although in the case of theoretical

modelling it is a common practice to consider the six possible coordinates at each point of

interest on the model - three translations and three rotations - the limitations imposed by

the currently available measurement techniques makes the consideration of all the six

coordinates a very difficult task in practical situations. One of these is concerned to the

measurement of the connection coordinates, since the inclusion or exclusion of one of

those coordinates in the subsystem model will usually lead to erroneous predictions of the

results for the assembled system. In the case of one or more component models being

experimentally-derived, the validity of the coupling technique can be distorted by

requiring the use of what can be measured, rather than what ought to be measured.

When the components are undergoing vibrations together in the assembly the

mathematically-imposed constraint equations, which make use of the interface

coordinates, should reflect as closely as possible the actual physical connections among

all the components forming the whole structure.
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Representation of the transmission of a moment between two components requires either

the use of a set of two-connection points with a translational coordinate at each point or a

single-connection point with only a rotational coordinate. The use of either of these

coordinate sets depends mainly on the geometric and stiffness properties in the vicinity of

the connecting region.

In spite of the fact that techniques for measuring translational responses are well

established with the use of reliable and accurate transducers such as linear accelerometers,

this is not the case for rotational responses. Although special angular transducers have

been developed to sense rotations, they are not as accessible in terms of price and as

accurate as the former ones. Additionally, in cases where the measurement of the FRF

matrix elements requires both force and moment excitations, another difficulty is

encountered since it is not easy to apply a pure moment excitation in practice. These

considerations make hard the task of judging whether it is worth making the effort

required for a precise measurement of rotational quantities, bearing in mind the errors

introduced when they are neglected. Several investigators have faced the problem of

measuring or calculating rotational responses and it is possible to say that two main

approaches have been made to obtain the necessary information either direct or indirectly.

Recent work by Licht [25] and Rorrer et al [26] present results directly measured on the

structures by making use of rotational transducers. The main drawbacks in this approach

are the cost and corresponding accuracy associated with these transducers. The cross-

sensitivity inherent to all piezoelectric transducers makes the rotational measurements

being as accurate as pure is the rotation at a certain point on a structure, since they are

sensitive to the simultaneous translational and rotational motions.

In the more classical approach, investigators have focused their attention on the estimation

of the rotational information by making use of the translational data available from

conventional accelerometers. Some of the related works by O’Callahan et al [85,86] and

Smiley and Brinkman [87] made use of both analytical and experimental models to derive

rotations by using expansion methods. However, in this thesis we shall assume that no

a.
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theoretical model is available and only the data measured on the structure can be used to

determine the rotations. Following this route one main distinguish three main techniques.

. . . ._ xc&w block technzaue .

This is also referred as mass additive technique and it is based on the measurement of

accelerometer responses properly placed on an additional block which is attached as close

as possible to the point (area) of interest on the test structure; the block is assumed to

behave rigidly over the frequency range of interest (and, in the cases of quite heavy

structures, to have negligible inertia effects). The relevant works presented by

Smith [22], Sainsbury [23], Silva [SS] and Ewins and Gleeson [24] have shown that it is

possible to estimate accurate rotational response/force parameters, which the more

susceptible functions to erroneous estimations are those related to moment excitations.

. . _ e use of translational data from closelv spaced accele_ rometers,

This approach presents an advantage over the previous one, especially in the cases of

slender or like beam components, since the mass and stiffness properties are not altered in

the measurement region. This technique has been used by Sattinger [28] and Chen and

Cherng [27] and suggests a practical alternative to the exciting block technique. It is based

on the estimation of the rotational properties from spatial derivatives of the translational

data which in turn are gathered from accelerometers placed on the structure at convenient

distances from each other. By using a finite difference technique the necessary Response

and Modal models can be generated from linear accelerations and force excitations only.

. . .uz) - the use of translational data from a quasi-continuous line

measurement,

With the advent of sophisticated scanning optical transducers, such those making use of

laser beams, it is nowadays possible to measure rapidly the velocity response at different

points along a line or over an area on the surface of a structure in a quasi-continuous way.

This quasi-continuous definition of the displacement field for each mode, near a point of

interest on the structure, permits a more precise calculation of the spatial derivatives, and
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thus a better estimation of the rotational responses necessary to construct the required

model to be used in a coupling process.

6.2 OBJECTIVE

The main objective in this chapter is the comparison of the rotational properties estimated

from all the three aforementioned experimental techniques with those derived from

theoretical models. Since two different coupling methods are of interest in this work - the

Impedance and the Modal Coupling techniques - the comparison is made in terms of the

corresponding subsystem model formats i.e., Response and Modal models.

In the first experimental case study they are all compared based on the derived or

measured mode shapes i.e., only in terms of their Modal models. This is due to the fact

that the laser measurement has been undertaken by exciting the structure (at the exciting

block) with a shaker at each resonance, thus measuring the mode shapes. In the second

experimental case study the sensitivity study is only focused on the techniques which

make use of accelerometer measurements. This is the most likely situation encountered in

industry and in the research laboratory, since sophisticated equipment such as the laser

unit are not widely available due to its high cost. The two techniques (i) and (ii) are used

in order to assess both Modal and Response models estimated from accelerometers

suitably placed on two structures with those derived from the corresponding theoretical

models. In these case-studies the gathered data are the FRFs related to the different

measuring and hammer excitation points.
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6.3 MEASUREMENT WITH ACCELEROMETERS

6.3.1 MEASUREMENT USING AN EXCITING BLOCK

The point Inertance matrix involving translational and rotational responses can be

measured by attaching an exciting block equipped with two accelerometers. The exciting

block technique is based on the work undertaken by Sainsbury [23] who developed

different types of exciting blocks for both single and twin shaker excitations. Relying on

the main conclusions of the multi-directional measurements in Sainsbury’s work, the

single-shaker technique was selected in the present work which requires a simpler set-up

(when compared with the twin-shaker technique) yet gives fairly accurate results. The

main disadvantage is that the data must be processed in order to obtain all the required

point Inertances, but the same is true of the twin-shaker approach when the results are to

be fully corrected for the exciting block inertia and impure excitation. Further studies in

this area were undertaken by Gleeson  [ 171  who used a single-shaker excitation technique,

investigating the effects of accelerometer cross-sensitivity and the errors arising from base

strain effects. The results predicted for a two-beam assembly showed that the errors in

O/Me mobilities caused the process to be very sensitive and inaccurate in the vicinity of the

component resonance frequencies. Moreover, in the case of highly resonant beams,

Ewins and Gleeson [24] concluded that it is preferable to derive two of the elements in the

4th order point mobility matrix from the measurement of the remaining two, which are

y/F, and e/F,.

In the present work, vibration is confined to a single plane. Thus, only three of the six

coordinates at each point are of concern - two translations and one rotation - and these, in

turn, can be further reduced to one translation and one rotation if only flexural vibrations

are of concern. Thus, the FRF matrix to be estimated which relates the responses to the

excitations at point P, shown in figs. 6.la-b, is

1 (6.1)

. . .



06 Experimental Determination of Rotational Responses 156

Let us consider the two independent excitations which are applied to the beam (in two

separate tests), as shown in figs. 6.la and 6.lb,

1 Excitation 1 1

F

F
X

1 Excitation 2 1,Y

F

F
X

Figs. 6.la,b - Independent excitations using an additional block

The kinematic relationships between the set of measured translational coordinates and the

final set including a point translational and rotational coordinate are as follows,

j;,=%*T+jZ*R=x*T+SG

j;,=;;,,+;;,,=zBT-SZj

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y, = ji, (6.2)
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Since we are interested only in the transverse motion of the beam, the transformation

matrix relating the measured and estimated responses is given as,

1 0

with PI = 1
O 2s

0

1 1 (6.3)
- 2 s

The force and moment transmitted to point P due to the both excitation cases, provided the

inertia properties of the block are neglected, is given as:

E}= ]~l {FJ with ]I=[ lO Oe ] (6.4)

Should the inertia properties of the exciting block be taken into account, the transmitted

forces are related to the applied forces as,

where the matrix [w reflects the inertia properties of the additional body.

The FRF matrix [HI,,,,, which is directly measured on the structure, possesses two

columns each being obtained for one excitation case;

[H] =
meas (6.6)

The FRF matrix to be derived mlest  is related to the measured FRF according to the

following relationship:

WI,,,  = PI [HI,,,, [ml - Ml PI IHI,,,,]  -l (6.7)
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The quantity I&u is difficult to estimate accurately, not least because of the problem of

producing an input moment Ms at point P. In such a case it is often preferable to derive

the modal constants of that FRF (II& from those of H,,,, and I-&, which are amenable to

reasonably accurate measurement, as suggested by Ewins and Gleeson [24], although

there is no possibility of including the residual flexibility effects of the out-of-range

modes.

6.3.2 MEASUREMENT WITHOUT AN EXCITING BLOCK

In this case, two or three accelerometers are placed on the structure, one being attached as

close as possible to the point P where the rotation is to be estimated, as shown in fig.6.2.

Fig. 6.2 - Set-up using three closely-spaced accelerometers

By measuring a set of translational quantities at a limited number of points only, it is

possible to express approximately the rotational responses in terms of those translations,

as presented by Chen and Chemg [27] and Sattinger [28].

In the case where a FRF coupling technique is proposed, calculation of the rotational
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may result since differences between quantities are considered which are very much

smaller than the quantities themselves and the small relative errors in the measured data

may result in a large error in the estimated response. However, an alternative way is

presented in this work whereby the explicit calculation of the rotational FRFs is not

necessary, should a Modal coupling technique be used. In this case, the estimated Modal

model is calculated from the Modal model referred to the measured coordinates.The two

possible estimations - the first and second order - are presented next for both Response

and Modal models.

6.3.2.1 First Order Approximation - two-point measurement

a) The Resnonse Model estimation

The set of FRFs necessary to construct the measured Response model are;

CHI meas = (6.8)

At the connection point P the responses and excitations are related as,

{I} = ml,,, E} with wlest = [ 111 El: ] (6.9)

The applied forces and measured responses should be equivalent to the set of forces and

coordinates that is assumed to exist at point P, which implies that;0 1

mlest = El [HIme,  ITIT with ITI = 1 1
[ 1 (6.10)
‘SS

which gives the estimated FRFs necessary to construct the Response model as follows,

HYY =&C

HYe =+CC-&B) (6.11)

HQY =+CC-HBC)

1
&M=$&c+HBB-&B-HBC)
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b) The Modal Model estimation

As presented in the introduction chapter, the Response model is related to the Modal

model as follows,

[HI = [a] [Al-l [aIT (6.12)

The Modal model referred to the measured coordinates can be derived from a row (or

column) of the measured FRF matrix over a selected frequency range encompassing mk

modes. The information related to the effects of the out-of-range modes can be

synthesised in a Residual matrix [HResid.]. By assuming this, the measured Response

and Modal models are related by,

[HI meaS  = [ad,, [Akld1 [@klmTas  + CHResid.lmeas (6.13)

with

@Bk

[ 1Q,k meas =
[ 1 and

@Ck

[HBBIResid  IHBCIResid

[HResid-lmeaa  = [HCBI
Resid lHCCIResid I

The estimated Modal model and Residual Flexibility matrix can be related to the

corresponding measured Modal model and Residual Flexibility by using the

transformation matrix (6. lo),

QY[ 1@k est. =
[ 1 = PJ [%Imeas@tl

(6.15)

LHyelResid

CHee]
I

= CTI [HResid.],,,  ITIT(6-lt5)

Resid
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6.3.2.2 Second Order Approximation - three-point measurement

. .a) The ResDonse Model estlmatlou

In this case three points are used and it is necessary to measure at least six FRFs (this

corresponding to the assumption that the measured matrix is symmetric), as presented

next:

[HImeas  =

and the corresponding estimated matrix is,

HAA sym sym

= HBA HBB sym

fkA HCB &c

[

HYY HYO

Hey &Xl 1 = D’I [HI,, [‘IJT with [‘IJ =

0 0 1

1 4 3
2s - 2 s  2s

The final values corresponding to the estimated FRFs are given as,

HYY = Hcc

(6.17)

1 (6.18)

(6.19)

Hee = ~(~H~c-~~H~B+~H~A-~~HBB-~HBA+HAA)

b) The Modal Model estimatioq

The Modal model referred to the translational and rotational coordinates at point P can be

estimated by using the same procedure presented for the first order approximation, but

this time requiring the second order transformation matrix [‘IJ (vide eq. 6.18).
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6.4 MEASUREMENT USING A SCANNING LASER SYSTEM

6.4.1 INTRODUCTION

An optical technique is described for measuring the dynamic response of a structure

undergoing harmonic vibrations. It is essentially a laser Doppler velocimeter which is a

non-contacting optical sensing device for accurately measuring point velocities [89]. The

non-contact nature of the instrument makes it particularly attractive for the use on either

light-weight structures where the measurement interaction must be minimised and it is

possible to measure the extent to which the vibrating properties of a structure are affected

by the physical contact of the accelerometers, or whenever it is impracticable to attach any

transducer to the structure, for instance in the case of hot surfaces. In addition to this

advantage over accelerometers, it is possible to measure a quasi-continuous line or area on

the structure, thus reducing the degree of incompleteness in terms of coordinates, which

sometimes is a disadvantage of experimentally-derived models when compared with the

theoretical ones.

6.4.2 BASIC PRINCIPLES OF LASER DOPPLER VELOCIMETRY

The laser Doppler velocimeter is based on the measurement of the Doppler shift of the

frequency of a laser light beam reflected by a moving object. When a beam of light strikes

a moving surface, the reflected beam is frequency shifted with reference to the incident

one by an amount that is proportional to the velocity of the reflective surface. This

frequency shift is called the Doppler shift and depends on the wavelength of the the

incident light as well as the positioning of the laser source, the scattering surface and the

observer. The ratio of the Doppler shift to the incident light frequency is of the order of

the ratio of the velocity of the moving surface to the velocity of the light. Thus, for

velocities of the order of few meters per second, the change in frequency of the light is

only a few parts per billion. This change, which is the difference in frequency between
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the incident and scattered signals, can be measured by optically combining them to

produce an easily measured difference signal at the Doppler frequency.

The vibration imager shown schematically in fig. 6.3 was developed by Ometron Plc. and

is based on the Michelson interferometer [90]. The signal and reference beams are

recombined in such a way that they can constructively or destructively interfere with one

another depending upon the difference between their optical path lengths. The laser beam

reflected back along the same path re-enters the optical unit: if the test part moves at a

constant velocity, the intensity of the recombined beam oscillates at a uniform frequency,

one cycle corresponding to a surface movement of h/2, where h is 0.633 x 10-6 m,

equivalent to the wavelength of the laser. The relationship between the surface velocity v

along the line of sight and the frequency Fd of the oscillation is v = Fd h/2 = 0.3164 x

10-6 m/s.

1 - Shaker 6 - Lock-in amplifier
2 - Amplifier 7 - A/D converter
3 - F.F.T. Analyser 8 - Post-processing and computer display
4 - Scan + Optical unit 9 - Scan control - computer
5 - Analogue processor 10 - D/A converter

Fig. 6.3 - Experimental set-up for the laser measurement
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6.4.3 OPERATION

The velocity signal from the analog processor passes directly into the lock-in amplifier.

An electronic reference signal is taken from the signal generator driving the vibrating

structure. This reference signal at the vibration frequency is correlated with the velocity

signal by a lock-in amplifier, resulting in information on the phase and amplitude of

vibration of interest.

The operator can select either a single-point or a scan measurement mode. In the former,

the operator can measure the velocity at different points on the structure; these are chosen

by moving via a mouse or handset the laser spot across the surface of interest by virtue of

computer controlled mirrors placed in the laser path. The vibration imager can therefore be

used as if it was a movable non-contact transducer and in this particular mode of

operation, the scattered signal can be intercepted prior to entering the lock-in amplifier and

input to an F.F.T. analyser permitting the measurement of a FRF over a certain frequency

range. In the second mode of operation - the scanning mode, which is carried out upon

the same frequency of the reference signal - the operator can choose to measure and

display any of the following outputs from the lock-in amplifier:

i) - the in-phase RMS vibration amplitude (X)

ii) - the quadrature RMS vibration amplitude (Y)

iii) - the absolute RMS magnitude R = dm

iv) - the phase angle variations

Data are presented on a monitor

contours, isometric plots and line

between the reference and velocity signals

in various formats; colour-filled grids, colour-filled

plots. An interrogating cursor moves over the screen

synchronously with the laser spot in order to identify locations on the structure of

interesting features on the display.
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6.4.4 DATA ANALYSIS

The data analysis technique is based on a curve-fitting algorithm,

during this work, which makes use of the instantaneous velocity

especially developed

measured at specific

points on the structure. By fitting the measured data with a polynomial function, the

rotational quantity is easily calculated by differentiating the corresponding function at any

measured point.

6.5 EXPERIMENTAL CASE STUDY I

6.51 STRUCTURE No. 1 - Long Beam + Exciting Block

The test structure used consists of a steel straight beam with an uniform rectangular cross-

section shown in fig. 6.4.

L = 1.485 m
e = 0.090 m
b = 0.019 m
h = 0.0254 m

Fig. 6.4 - Beam + exciting block + 3 closely-spaced accel.

The point rotational response of interest is at one end of the beam, which is supposed to

be subsequently connected to another component. An aluminium block is attached to the

end of the beam, thereby providing the means for measuring rotational responses using

accelerometers as well as for applying the necessary torque excitation. In order to make

possible a comparison of all the results obtained under the same conditions in all the

measuring techniques involved in this work, the test structure is assumed to be formed by

the beam and the exciting block together. The main reason for this assumption is due to

the fact that for the specific case of the laser measurement the structure was excited
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through the aluminium block, at the corresponding composite structure’s resonance

frequencies.

6.5.2 MEASUREMENT - SHAKER TEST

The last 90 mm close to one of the ends of the beam was taken as the total length for the

scanning laser line measurement (as shown in fig. 6.4). A light-weight B&K

accelerometer type 4393 was placed at one of the line ends to provide a means of

normalising the measured velocities with the laser, thus enabling a correct comparison

between laser and accelerometer quantities.The structure was initially excited with a

shaker via the exciting block over a frequency range O-800 Hz using a pseudo-random

signal and the response signals were measured either with the accelerometer or with the

laser focused on it, being the FRF processed with a B&K 2034 analyser. The two curves

are plotted together in fig. 6.5 after a differentiation of the laser measured FRF to yield

Inertance

50.08, 1

0.0 160.0 320.0 480.0 640.0 000

- -  j;C/FA Measured with accelerometer

- - - -  kFA Measured with laser

Fig. 6.5 - Measured FRFs using accelerometer and laser

This introductory test has provided a FRF from which five natural frequencies could be

identified. At each of these frequencies, a sinusoidal excitation was applied to the

structure, and the laser beam was scanned over the entire line. At a second stage, in order

to gather data with accelerometers, pseudo-random excitations were applied to the test
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component and for each of them the FRFs were measured for different positions of the

accelerometer.

6.5.3 ESTIMATION OF MODAL MODELS

The velocity pattern for each of the modes was measured directly with the laser

equipment. However, the use of three accelerometers equi-spaced over the entire line of

measurement allows the derivation of the modal model only referred to the three equi-

spaced coordinates. The mode shapes were also derived from the theoretical model,

shown in fig. 6.6, constructed by using 30 undamped Timoshenko beam elements and a

rigid mass simulating the inertia properties of the exciting block, this being one of the

facilities available in the computer program COUPLE [70].

Fig. 6.6 - Theoretical model (30 undamped beam elements)

The pattern of each mode normalised to the maximum amplitude and obtained using the

three different procedures are presented in figs. 6.7 a-e).

Each of the line data measured with the laser system has to be subsequently fitted with a

polynomial function, the degree depending on the curvature of each mode shape. In the

first mode occurring at 57 Hz the measured curve presented some ‘drop-outs’ which

could hardly be avoided using different values for the sample time and time constant in the

lock-in amplifier (this seems to be an important limitation of the equipment in the low

frequency range). The corresponding bad measured points were then rejected during the

curve-fitting process, since those responses are not expected on a continuous vibrating

structure. Two of the fitted curves for mode nos. 1 and 5 are presented in fig. 6.8.

. .



FlExwrimental Determination of Rotational Responses 168

Medm  no. 3

D~otmco  (II) SS.SW .ss0 Dcatmce  C-1 SS.SSS

- Theoretical
******* Accelerometer
---- Laser

Fig. 6.7 - Mode shapes (9Omm at the end of beam) measured with accelerometer and
laser and derived from the theoretical model



06 Experimental Determination of Rotational Responses 169

+3.2QE-81 0~*1.2526 03 7 2E- ( + . 114c- 2) Po3nt  95
Y - +3.45saf-04 .

O/Y - +3.C327E+BB  radh

I)2
a. 1 fix-m

WY - +3.5BSbE+BI

-5.83E-03
- Regenerated____0 Dcatmc. mm se.00 Measured

Polynomcal Fit I/ 4 potntm

Fig. 6.8 - Curve-fitting of mode 1 (degree 1 polyn.) and 5 (degree 3 polyn.)

In the procedures using accelerometer data (linear FRFs), the rotational FRFs need to be

explicitly calculated and the modes identified  in order to obtain the rotational amplitudes of

the mode shapes referred to the end coordinates. The rotational FRFs related to ft and a

are calculated using the block and three accelerometer approaches, as shown next in

fig. 6.9 and fig. 6.10, respectively.

The amplitudes of the rotations derived from all the procedures are presented in table 6.1

and the relative errors in graph of fig. 6.11.
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P.
Fig. 6.9 - &FRF using three accelerometers

8 . 0 0

Data f r o m  INER8 Ii
Froquancy H z . 8 0 0 . 0 0

Fig. 6.10 a) - &FRF using exciting block

I
8 . 0 0

Deta f r o m  INERB 22
Froquoncy  Hz . 800.80

Fig. 6.10 b) - ;FRF using exciting block

1
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Table 6.1 - Mass normal&d rotational amplitudes of the first 5 flexural modes

theor. trans block laser
Procedures

Fig. 6.11- Mass normal&d rotational amplitudes of mode shapes

6.6 EXPERIMENTAL CASE STUDY II

6.6.1 STRUCTURES No. 2 and 3 - Long Beam (LB) and Short Beam (SB)

The test structures consist of two straight steel beams shown in fig. 6.12 with a uniform

rectangular cross-section. The point rotational response of interest for each beam is

selected to be at one of the ends, which is supposed to be subsequently connected to the

other one. An aluminium block has been attached at the end of each beam to provide one

of the means for measuring the rotational responses using accelerometers, as well as to

apply the necessary torque excitation.
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6.6.2

h

b

Short Beam

Long Beam
I I

Short Beam

L = 1.485 m L = 0.480 m
s = 0.07425 m s =0.024 m
b =0.019 m b = 0.019 m
h = 0.0254 m h = 0.0254 m

Fig. 6.12 - Long and short test beams

MEASUREMENT - HAMMER TEST

In this case study a hammer excitation was selected in an attempt to obtain as consistent a

model as possible, seeking to overcome the effects of moving the additional mass of the

force transducer. The possible inconsistency is only due to the different places where the

light-weight accelerometer is attached, mainly for the higher modes. Both techniques (i)

and (ii) previously described in 6.3.1 and 6.3.2 are of interest, and at this time the

exciting-block technique was applied with the subsequent cancellation of the added mass.

The frequency ranges for each beam were selected as,

Long Beam - (O-800 Hz) encompassing 5 in-plane flexural modes

Short Beam - (O-3200 Hz) encompassing 3 in-plane flexural modes
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In order to perform a sensitivity study (mainly for technique (ii)), the first and second

order approximations to estimate the rotational properties were applied by using the

translational data from the accelerometers placed apart from each other by a distance s,

which quantity was varied between 5% to 20% of the total length of the two beams.

A section corresponding to the end 20% of the total length of a free-free beam is presented

next in fig. 6.13, showing the corresponding segment of the fmt five ideal mode shapes

derived from an analytical solution presented by Bishop and Johnson [4],
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Fig. 6.13 - First 5 flexural  modes of a free-free beam (segment
corresponding to the end 20% of total length)

6.6.3 ESTIMATION OF MODAL AND RESPONSE MODELS

The first- and second-order estimations of the Response and Modal models were

undertaken according to five procedures named and summarised in the following table;

Table 6.2 - Procedures to estimate Response and Modal models

Procedure Name No. Points Distance (d) d/L
1 3PS 3 S 0.05
2 3P2S 3 2s 0.1
3 2PS 2 S 0.05
4 2P2S 2 2s 0.1

151 2P4S 1 2 1 4s 1 0.2
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One can consider two main routes to achieve the desired model whose properties are

referred to the connecting coordinates. These two routes will lead either to a Response

model to be used in a FRF coupling technique, or to a Modal model which is the required

format subsystem data for Modal coupling techniques. From the measurement viewpoint,

the possible routes are sketched in the following diagram,

MODAL model
referred to the

measured coordinates

Modal
Coupling

Hyy :H  :
.YBElH

BY
:Hee

MODALElModel

Fig. 6.14 - Possible routes to estimate the Response and Modal models I

. .
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As shown in sections 6.3.2.1 and 6.3.2.2, it is possible to estimate both H,,e and H,,

from the measured translational data (which includes Hyy). By using the block approach

and the procedures presented in table 6.2 the Response model of each beam has been

Yestimated, whose M and MBFFtFs are shown in figs. 6.15 to 6.17.

$43

- Theory
____ procedure2
. . . . . . . Block

Long beam &El

- Theory
----  Fkcedun32
. . . . . . . Block

.

H,O Short Beam %El

Fig. 6.15 - Theoretical versus estimated using procedure 2 and exciting block

. i
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Fig. 6.16 - Long Beam estimated FRFs using closely-spaced accelerometers
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Fig. 6.17 - Short Beam estimated FRFs using closely-spaced accelerometers
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Having achieved the estimation of the Response model via the previously-mentioned

procedures, the Impedance route is terminated. Each of the models is now ready for input

into an FRF coupling process. However, a further step was taken in this work whereby

the FRFs corresponding to HYe and Hee were identified in order to obtain the amplitudes

of the mode shape rotational coordinate. The justification for this step relies on the need to

compare all the models in terms of the same data format. Two approaches are of interest

as described next:

a) modal identification is carried out directly on the estimated Hoe. This approach

implies the measurement of at least half the FRF matrix and, additionally it provides the

way to calculate the residual flexibility effects of the out-of-range modes. Alternatively,

b) only one row (or column) of the FRF matrix is measured, thus giving the

estimation of HYe (or Hey). This curve must be converted to modal form before that for

Ha0 can be derived. This approach is suggested by Gleeson [ 171  to prevent the calculation

and use of the most likely error contaminated FRF - the Hea, whenever lightly-damped

structures are dealt with. The impossibility of calculating the residual effects of the out-of-

range modes on H, is the main drawback for the subsequent use of the modal data.

The error relative to the theoretically calculated rotations are presented in figs. 6.19 and

6.20 for the long beam and figs. 6.22 and 6.23 for the short beam.

Fstimation  of Modal Models - the Modal route

In this second route, the target is assumed to be the estimation of the Modal models

referred to the end coordinates of the beam. The set of FRFs that need to be measured and

converted to modal data are those pertaining to one row (or column) of the FRF matrix in

terms of the measuring translational coordinates. Since those are identified, it is possible

to construct the Modal model in terms of those coordinates. Procedures 1 to 5, which are

described in section 6.6.3, allow the estimation of the final Modal models referred to the
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connecting coordinates, as well as the corresponding residual flexibility matrices

corresponding to the FRFs HW, Hye and Ha, which are presented in fig. 6.18.

The Modal models are compared in terms of the errors of the rotational values for each

mode relative to the analytical ones, as it is presented in fig. 6.21 for the long bean-r and

fig. 6.24 for the short beam. The errors relative to the theoretical value of the rigid body

rotational amplitude are separately presented in graph of fig. 6.25; the estimated values

were derived from the translational measured ones, shown in figs. 6.26 and 6.27, by

using the same previously mentioned procedures.

2e-5 . I I I I I I

q
le-5  q hgY/M ,:

0 Longo/M :
le-5 d Short y/M ,:

0 A Short O/h4 :

7e-6 = .

5e-6 1 A
q 0

2e-6 m A

-2e-6 * I I I I I I
Theor. 3PS 3P2S 2PS 2P2S 2P4S

Procedures

Fin. 6.18 - Estimated residual flexibilitv values for H”FI and HFIFI

6.
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Long Beam-22
20

-60

-80
l a 2 a 3 a 4 a 5 a

Procedures

Fig. 6.19 - Rotations extracted from Hm - Impedance route

Long Beam -12

0

-60

-80
l b 2 b 3 b 4 b 5 b

Procedures

Fig. 6.20 - Rotations derived from Hye - Impedance route

Long Beam - Modal route

0

-60

-80
3PS 3~2s 2PS 2p2s 2~4s

Procedures

Fig. 6.21 - Rotations derived from modal models - Modal route
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Short Beam -22

$ 40

-60

-80
l a 2 a 3 a 4 a 5 a

Procedures

Fig. 6.22 - Rotations extracted from Hm - Impedance route

Short Beam-12

d -40 

: H M o d e l
-60-m M o d e 2  

Mode 3

-uv

l b 2 b 3 b 4 b 5 b
Procedures

Fig. 6.23 - Rotations derived from Hye - Impedance route

Short Beam - Modal route

H n Model
,

-60 •lg3 Mode2 
Mode 3 -I

3PS 3~2s 2PS 2p2s 2~4s
Procedures

Fig. 6.24 - Rotations derived from modal models - Modal route

. ‘
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Fig. 6.25 - Errors relative to the theoretical rotational rigid body
amplitude (1 / fiz)
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6.7 DISCUSSION OF RESULTS

Case-Study I

Tests have been carried out using an additional block at one end of the beam. However,

the laser measurement does not require such a block in general since there is neither the

need to apply an exciting moment nor the need to estimate the rotations from translational

responses measured on an extra block. This alleviates the task of estimating the rotational

mode shapes when compared to the exciting block technique which requires the

cancellation of the extra mass effects.

The measured segment on the beam is about 6% of its total length and only the first five

flexural modes were measured. The associated curvature for each mode makes the

polynomial curve-fitting algorithm adequate to the corresponding segment even for the

higher frequency range. That would not be the case for a longer segment which would

require a more general curve-fitting algorithm.

The possibility of using an optical means to measure the FRFs  has also been tested; this

has resulted in measured FRFs whose accuracy was of the same order as the ones using

accelerometers, nevertheless exhibiting a high sensitivity to any occurring responses as

shown in fig.6.5 (some spikes occurred at the natural frequencies corresponding to the

out-of-plane motion). The FRF measurement was achieved by using the laser spot fixed

at one particular location on the structure and then feeding the velocity signal to the

analyser prior to enter the lock-in amplifier. This particular measurement has required an

extreme care when focussing the laser spot on the structure which therefore was vibrating

with a low amplitude.
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Case-Study II

The Response models have been derived only from the measurement of translational

responses. By converting both Hya and Ha, to the modal form it is difficult to get

accurate modal parameters, especially for the lower range modes. It is preferable to

identify HYe curve and then calculate the corresponding rotational parameters as has been

presented by Ewins and Gleeson [24] but this cannot be extended to the identification of

the out-of-range modes. The rotational mode shapes obtained by following the presented

modal route are of the same magnitude of error as for the previous approach yet providing

a way to derive the rotational residual flexibility values pertaining to the out-of-range

modes.

A visual inspection of the estimated FRFs HYe and Hea reveals some common features

for both beams;

- The HyB FRFs are less noisy than the FRFs for He0 ,

- The noise on both types of FRFs tends to decrease as the frequency increases i.e., for

the higher modes the FRFs are cleaner than for the lower frequency ranges,

- As the distance s decreases, the antiresonances in the high frequency region are closer to

the ideal values; conversely, those in the low frequency range are not well defined. These

become well defined as the distance s increases, but this has the effect of shifting up the

higher antiresonances.

- It appears that there exists an optimum solution for the pair - distance s and order of

approximation - which, in both of the free-free beams, is the distance s taken as 10% of

the total length and using a second order estimation. The main features of the quality of

the estimated FRFs are outlined in the following table,

Distances t

Quality of estimated FRFs

Low-frequency High-frequency

t 4

I 4 4 I t
Order t * t

+ t 4
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6.8 CONCLUSIONS

Case-Study I

The laser measurement technique can estimate very easily the rotational mode shapes

when compared to the techniques using accelerometers. Additionally, since it is possible

to measure in a quasi-continuous way the mode shape patterns over a specified length or

area on a structure, it allows more accurate calculations of the spatial derivatives, mainly

for the higher modes. This constitutes the main drawback to the data measured with

closely-spaced accelerometers since it is impracticable to obtain a precise description of

the displacement field near the connection region.

Although the results are only concerned to a very simple case study, it is believed that in

more complex structures involving tridimensional measurements, the laser technique will

offer the best capability - if the cost of the equipment is affordable.

There are, however, some drawbacks associated with the measurements carried out with

the laser technique. On the one hand, by estimating the rotational responses from the

displacement pattern of each mode in the frequency range of interest, there is no

possibility of calculating the residual flexibility due to the out-of-range modes; generally,

this knowledge is important whenever the modal models are used and therefore more

modes must be measured. On the other hand, the optically-based system may be unable to

reach some important areas or points on the structure; for instance, should a shaker be

placed near the region of interest it can obstruct the directed laser beam path, or in other

cases, the point of measurement can be located at an inaccessible interior surface.

Case-Study II

The use of two or three closely-spaced accelerometers near the point of interest constitutes

a practicable alternative to the exciting-block approach which in turn, is prone to errors

when the frequency increases and the canceled mass is large compared to the mass of the

structure. It constitutes an ideal technique in the cases where the Modal models have to be
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derived, since it requires the modal identification of the measured curves rather than the

estimated ones and additionally it allows estimation of the residual effects of the out-of-

range modes. However, the first approach is very sensitive to the measurement and

excitation locations as well as to the order of the interpolation and it appears that there is

no optimum balance between those parameters over all the frequency range.

Nevertheless, there are some ideal combinations of those parameters for the low and high

frequency ranges.

* ,



7 EXPERIMENTAL CASE STUDIES

7.1 INTRODUCTION

In this chapter, both the Impedance and Modal coupling techniques will be applied to a

number of case studies. Not only the coupling techniques themselves are of concern but

also the auxiliary mathematical and experimental tools which were discussed and

presented in chapter 5 and 6.

The first part of this chapter is devoted mainly to the application of the refined Modal

coupling technique presented in chapter 4, which enables the residual flexibility values to

be included in the coupling process, to an experimental case study. This first case study

deals with a real structure formed of two components and assesses the refined technique

in the presence of a real practical problem where measured data are used to derive both

subsystem models showing the significance and facility of the refinement. The

experimentally-derived derived models of each component also give evidence of the

critical problem of numerical failure caused by redundancy in terms of the connection

coordinates, mainly when the classical approach is used, demonstrating the usefulness of

the mathematical tools presented in chapter 5. Additionally, the mathematical formulation

of the constraint equations using the connection displacements (and rotations) and forces

(and moments) requires the measurement of rotational quantities in most cases. This

example shows that in some situations there is no need to calculate those values explicitly,

provided the interface region exhibits a reasonable stiffness over the frequency range of
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interest and at least two points can be chosen a considerable distance apart from each

other.

The need to calculate rotational responses in certain beam-like structures in order to fulfil

the proper constraint conditions at the connecting region, is revealed by the second case

study where an assembly of two straight beams is dealt with. These components have

already been investigated in chapter 6 where different procedures were used to estimate

the necessary rotational quantities. These rotational data are used in the present chapter in

order to construct a variety of Response and Modal models for both beam components

which are subsequently input either to a FRF or to a Modal coupling procedure. The final

results for the assembled beam predicted by both coupling techniques are then compared

with each other.

7.2. EXPERIMENTAL CASE STUDY I

7.2.1 INTRODUCTION

A real structure was taken at this stage in order to test the ability of the refined approach

when only measured data are available to derive the Modal models for each component.

At the time each modal model is derived for a component, additional information is linked

to it - the residual flexibility of the out-of-range modes - and this is expressed as a matrix

whose elements are referred to the connection coordinates. The dynamic response of the

assembled structure is predicted using both of the two approaches: the classical free-

interface method and the refined approach which includes the residual information via an

interconnecting elastic system (chapter 4, vide section 4.2.2).
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7.2.2 TEST STRUCTURE

The complete structure for which dynamic properties are to be predicted is formed of the

two components shown in figures 7.1 and 7.2 - a curved frame and an I-section beam.

Fig. 7.1 - Curved frame

Substructure B - B e am

Fig. 7.2 - I-section beam
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Component A is a physical representation of a curved frame, to which an I-section beam -

designated here as component B - is attached to form the complete structure C represented

in fig. 7.3.

Fig. 7.3 - Coupled structure

This structure C has already been tested in an earlier investigation into the Receptance

coupling methods [90,91]. At that time, the assumed set of connection coordinates

between the two physical models was referred to just one point possessing three degrees

of freedom (only the in-plane of symmetry response was considered) - two linear

coordinates and a rotational coordinate. The Impedance Coupling method was used by

assembling the respective measured FRFs for each component [62,70].
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An alternative set of connection coordinates is used in the present work, constituting a

statically determinate set of linear coordinates - 2 coordinates at the lower connection

points (point 2 in component A and point 5 in component B) and 1 coordinate at the upper

connection points (point 1 in component A and point 4 in component B).

The particular geometry configuration in the connecting region for both components

necessarily led to the use of small aluminium cubes for measuring each point linear

response in the two perpendicular directions. These blocks were attached to the measuring

connecting points of both subsystems in such a way that made both subsystem coordinate

systems coincide with each other and thus with the global coordinate system. This simple

assumption taken at this stage results in less time-consuming subsequent matrix

operations in the input data for the coupling process.

7.2.3 MEASUREMENT CONSIDERATIONS

Both substructures possess planes of symmetry which coincide when the two

components are linked together as intended. Thus, the whole structure still possesses a

plane of symmetry and its dynamic response may be classified as:

- in-plane vibrations excited by in-plane force excitation;

- out-of-plane vibrations for all other cases.

Some introductory tests were carried out on both freely-simulated supported substructures

in order to gain a general insight into their dynamic responses. As a consequence, two

main simplifications were made for the subsequent work:

(i) both substructures exhibit a dynamic behaviour which can be assumed to resulting

from linear and lightly-damped structures. The damping effect can then be neglected in the

identification and modelling stages;
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(ii) only the in-plane dynamic response needs to be investigated. The modal density in the

frequency range of interest for each component is smaller than for the out-of-plane case

and the in-plane modes are well separated. The selected frequency ranges for each

component are:

Comuonent A - Curved Frame 0- 800 Hz encompassing 9 in-plane modes

( 3 rigid-body modes + 6 flexural modes )

Component B - Beam 0- 1600 Hz encompassing 5 in-plane modes

( 3 rigid-body modes + 2 flexural modes )

7.2.4 EXPERIMENTAL SET-UP

The response (acceleration) at the selected points and directions of each component was

measured using B&K (type 4393) lightweight piezoelectric accelerometers which were

attached to the structure by using beeswax. According to the standard rules provided by

the manufacturer this type of accelerometer can be assumed as having a negligible mass-

loading effect on the structures and the method of attachment was reasonable for the

frequency range of interest of each component [92].

Each substructure was excited in two different ways:

(i) in the introductory tests, an impulse excitation was applied by using a hammer; and

(ii) in order to measure more accurate data for the identification stage of each subsystem, a

pseudo-random excitation was chosen to drive a shaker in each selected frequency range;

the shaker was connected via a push-rod to a B&K type 8200 force transducer attached to

the measuring point on the structure. The command signal was supplied by a B&K 2034

analyser which also performed the FFI’ to each measured ratio acceleration/force.

h
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All the measured FRFs were stored using an HP series 900 microcomputer, this also

being used to run the identification program AUTOlDENT [71], which is a modal

parameter estimation algorithm appropriate for the responses of lightly-damped structures.

7.2.5 MEASUREMENT AND MODELLING

Both substructures have a plane of symmetry (Oxy), this being the only plane of

measurement for the responses and excitation forces.

7.2.5.1 RIGID-BODY PROPERTIES

Both components are supported in a simulated freely-supported condition. The necessary

rigid-body properties - namely, the mass and the principal moment of inertia I,, - were

first estimated before the modal test took place. The first estimation of the location of the

centre of gravity was made by supporting each subsystem twice from two different points

located on the plane of symmetry. The cross point between the two vertical lines passing

through each suspension point gives the location of the centre of gravity.

The compound pendulum technique was used to determine an approximate value for the

principal moment of inertia, I,. By hanging each structure in such a way that only makes

possible the rigid-body rotational motion along its plane of symmetry, the measured

natural frequency of such a single DoF system is related to the value of its principal

moment of inertia. The geometric characteristics and the theoretical rigid-body modes

(calculated according to the theory presented in Appendix Iv) are presented in tables 7.1

and 7.2 for the curved frame and in tables 7.3 and 7.4 for the I-section beam.
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Fig. ’

_ Curved Frame

Table 7.1- Geometric and Inertia characteristics
of Curved Frame

5 1 0.;38 I 0

Mass = 38.41 Kg. Izz= 3.46 Kg m2

C - Curved Frame local coordinate
system

Table 7.2 - Curved Frame Rigid-Body mode shapes
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.ComDonent B  I  Sectron_ Beam

Substructure B -

Fig. 7.5 - I-Section Beam local coordinate system

Table 7.3 - Geometric and Inertia characteristics of Beam

Mass = 2.2 Kg. Izz= 0.09 Kg m2

Table 7.4 - I-section Beam Rigid-Body mode shapes

Coord. 1 Transl. x Transl. x Rotation 8

1x 0.674 0 -0.05

I 1Y 0 0.674 I 1.207 I

. . . ..- . . . . . , ,. ._..
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7.2.5.2 SUBSYSTEM MODELLING

Two groups of coordinates have been selected for each component: the first group

contains all the connection coordinates and the second group consists of the remaining or

interior ones. The size of this latter group depends on the definition required for the

system mode shapes, while the number of connection coordinates depends on the local

connecting area and the associated stiffness properties in each component.

For the modelling stage of each component i.e., the construction of the respective Modal

models, an excitation is generally applied at one of the coordinates while all the necessary

FRFs sharing the same excitation point are measured, in order to obtain one column in the

Inertance matrix [ 11. In this particular case study, the substructure’s Modal models will be

further used in the coupling stage with different approaches, one of which requires

knowledge of the residual effects of the higher unmeasured modes. For this purpose, the

excitation also needs to be applied at all the connection coordinates in order to measure the

corresponding FRFs (in fact, the pairs of values referred to the connection coordinate

response / connection excitation) which, after an identification procedure, will give the

necessary residual information of the unmeasured modes. Since this extra excitation had

to be applied to each component, it was decided to take advantage of this by measuring

not only the FRFs related to connection coordinates, but also those related to the interior

ones. In doing so, extra Modal models could be derived (in fact other columns in

Inertance matrix are used) and there was a possibility of correlating different models in

order to check their consistency and validity.

. . L”
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7.2.5.2.1 CURVED FRAME MODELLING

Fig. 7.6 shows the different cases for the pseudo-random excitation applied to the curved

frame and the respective measured responses at various stations with the associated sign

for each transducer and the related pair of response / excitation.

4

L1

2
3 5

4

I!+2
3 5

4

1lb+2
3 5

4

~

1

2
3 5

I I

4IL23 5

Fig. 7.6 - Curved frame excitation and measurement locations
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Figs. 7.7 a,b,c) show some measured FRFs on the curved frame over the frequency

range O-800 Hz, which encompasses natural frequencies corresponding to the first six

elastic in-plane modes. The particular FRF presented in fig. 7.7 a) will be mentioned later

as the FRF of the unmodified curved frame when a comparison is made with the predicted

FRF of the curved frame with the beam attached to it.

The Modal model presented in table 7.5 is derived from the identified modal parameters

pertaining to the measured FRFs sharing a common excitation point (coordinate 5). As

mentioned earlier, the excitation has also been applied to the two connecting points (3

coordinates), thus measuring 5 FRFs which were subsequently subjected to a modal

identification stage with a suitable computer program [71], mainly to extract the modal

parameters related to the out-of-range modes. These five modal parameters were then

used, as presented in Appendix II, to construct half the residual flexibility matrix which

simulates the dummy flexible system at the interface coordinates and is assumed to be

symmetric ;

Experimental Residuals - Curved Frame

2.7244E-09 4.0108E-10 2.3027E-10

[ 1Rcc = 4.0108E-10 2.7858E-09 0

2.3027E-10 0 5.2771E-10 1
Stiffness matrix of the dummy connecting system - Curved frame

3.8969E08  -5.6105E07  -1.7005E08

= -5.6105E07  3.6704E08  2.4482E07

-1.7005E08  2.4482E07  1.9692E09 1
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Fig. 7.7 a) - Measured Inertance on the Curved Frame
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Fig. 7.7 b) - Measured Inertance on the Curved Frame
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Fig. 7.7 c) - Measured Inertance on the Curved Frame
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T I T L E  --1) H4XlX  HJXlY MXZX  H4XZY MXIX H4X4Y  MX5X  H4X5Y Rig.Rody  Hode
s=3
F I L E  Nare  --)) RDU_HULL4X:  ,?OG,l
C o o r d .  = E Modes  = 9

1 2 3 4 5 4 7 a 9

I *1.6135E-O1  t0.0000Et00  +4.6684E-02  t?.495?E-02 +b.bbbGE-02  -2.55?bE-01  t4.4189E-02  -5,bR?PE-02  -j.OIBlE-02

2  tG.OOGGEtOO  tl.b135E-01  -1.43?4E-02  -6.3547E-03  t8.2987E-a3  -5.4069E-02  t2.583bE-02  -4,5021E-02  -l.O44lE-02

3  *1.6135E-01  tO.OGGMtOO  -2.9422E-03  tb.S042E-02  t4.501EE-02  -2.53ROE-01  tZ.IZbEE-02  -5,?49?E-02  -3.9896E-02

4  t0.0000Et00  tl.b135E-01  -l.?065E-0 2  -?.3757E-03  t1.1042E-02  -4.5664E-02  t2.3R??E-02  -4.4445E-02  -?.8362E-03

5  +1.6135E-01 +0.0000E+00  tZ.EE?RE-01  tR.3555E-02  tl.O034E-01  tZ.?OORE-01  t3.5040E-62  t9.?129E-02  t9.04OOE-02

6 +O.OOOOE+OO  +1.6135i-01 t?.9434E-02  tP.RjlRE-G3  t?.R631E-02  t4.93??E-03  t3.95RPE-02  -2.5145E-03  t2.91?2E-02

7 t1.6135E-01 tO.GGGGEtGG  -1.4798E-Gl  tj.lbbbE-02  t2.R469E-Gi  t4,5528E-02  -3.3105E-03  -5.363?E-03 -2.2985E-02

8 tG.OOG3EtGi~  t1.6135E-01 -1.23Gbi-G! -3.0876’-02  t5.6457E-01  t3.9231E-43  -R.l219E-02  t1.2EP?E-03  -6.j6?ji-O1

7

Eigerdurs

l.OGOE-GE
l.OOOE-06
3.94gE-07
2.107Et06
3.229Et66
4.351E*06
1.13EEtG7
1.450Et07
1.  E!4Et07

N a t u r a l  F r e q u e n c i e s

1.592E-05  Hz
1.592E-04  Hz
1  .OOOE-04  Hz
2.310Et02  H z
2 .  RbOEtO2  Hz
3.320EtG2  H z
5.370Et02  Hz
6.060Et02  H z
6.890Et02  H z

Table 7.5 - Ex~erimentally-derived Curved Frame Modal Model
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7.2.5.2.2 BEAM MODELLING

201

In fig. 7.8, the different cases for the pseudo-random excitation applied to the beam are

shown together with the respective measured responses at various stations with the

associated sign for each transducer and the related pair of response / excitation.

Fig. 7.8 - Beam excitations and measurement locations
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Figs. 7.9 a,b,c) show some of the measured FRFs on the beam over the frequency range

O-1600 Hz, which encompasses the natural frequencies corresponding to the fiit two in-

plane bending modes. The particular FRF presented in fig. 7.9 a) will be mentioned later

as the FRF of the unmodified beam when a comparison is made with the predicted FRF

of the beam with the curved frame attached to it.

The Modal model presented in table 7.6 is derived from the identified modal parameters

pertaining to the measured FRFs sharing a same excitation point (coordinate 6).

Identically to the curved frame, the out-of-range modes were also identified in order to

construct the corresponding residual flexibility matrix presented next;

Experimental Residuals - Beam

0 0

5.8985E-9  0

0 l.O214E-8 1
Stiffness matrix of the dummy connecting system - Beam

r 2.2700E08 0 0 1

[Kc,] = [%jl = 1 O 1.6953E08 0

0 0 9.7903E07
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w I
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0 . 0 0
D a t a  f r o m  B!)”- -

F r e q u e n c y  H z . 1 6 0 0 . 0 0

Fig. 7.9 a) - Measured Inertance on the Beam

FI-ti
0.00 F r e q u e n c y  H z . 1 6 E Z . 0 0

Fig. 7.9 b) - Measured Inertance on the Beam

6 0 1
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- 5 0  ’

0 . 0 0
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D a t a  f r o m  B5YSYI

F r e q u e n c y H z . 1 6 0 0 . 0 0

Fig. 7.9 c) - Measured Inertance on the Beam
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TITLE --)) BlY4X  BlY4Y BlY5X  BlYSY  BlYlX BlYlY BlYlX BlY2Y BlYlX BlYCG
Rig.Body nodes  = 3

F I L E  Nale --)) IIDU_BEIWY: ,700,l
Coord. = 10 Nodes = 5

l.OOOE-08
l ,OO@E-06
3.948E-07
6.572EW
6.268EtO7

1 l 592E-05 Hz
1.5?2E-04 Hz
l . O O O E - 0 4  H z
4,OEOE+O2 H z
1.260Et03  H z

Table 7.6 - Experimentally-derived Beam Modal Model

1 2 3 4 5

1  +6.7420E-01  tO.OOOOEtOO  -7.2536E-02  tl.O079E-01  -1.7597E-01

2  +O.OOOOE+OO  +6.7420E-01  -l.OSBlE+OO  +8.6837E-01  -7.2BZbE-01

3  +6.7420E-01  +O.OOOOE+O@  +2.2565E-01  -3,7401E-01  *4,1095E-01

4  tQ.OOOOE+OO  +6.7420E-01  -9.9127E-01  +7.6243E-01  -6.1402E-01

5 +6.7420E-01  +O,OOOOEt60  -7.3?01E-02 -1.6923E-@3 -4,9722E-02

6  tO.O03@E+013  +6.7420E-01  t1.2019EtOO +1.5073!+00 t1.312EEtOO

7  +6.742GE-01  +O.OOOOEW  -7,37O!E-02  -1.6923E-03  -4.9722E-02

8 tO.OOOOE+OO  +6.7420E-01  +4.1161E-01  -B.O720E-01  -5.3387E-01

9  t6.742OE-01  +O.OOOOEtOO  -7.3701E-02  -1.6923E-03  -4.9722E-02

1 0  +O.OOOOE+00  +6.742OE-01  +?.4991E-03 -7.2056E-01  +6.5777E-01

EiqenvaluEr Natural  Frequencies
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7.2.6 RESULTS

The actual substructures are connected together to form the complete assembly. From an

experimental standpoint, the complete structure was tested following the same steps as

those utilized during the subsystem identification and modelling stages. The final result of

these tests is a description of the dynamic properties based on either a Modal or Response

model. These dynamic properties will be taken as the reference values for the purposes of

comparison with the predicted dynamic behaviour resulting from the use of the classical

and the refined coupling approaches.

Both these approaches are applied in the present case study for each of two different

situations. First, a statically determinate set of connection coordinates is used to formulate

the constraint conditions in the interface region - 1 vertical and 2 horizontal coordinates as

described in section 7.2.2. Next, another vertical coordinate is added to the previous set

making the subsystems constrained in the X and Y direction at both connecting points

(areas). Some of the measured FRFs are compared with the predicted responses as shown

in figs. 7.11 ab) ab to 7.14 ab). The experimentally-derived modal model is shown in

table 7.14 and the corresponding mode shapes are sketched in figs. 7.10 a) and b).

The degree of importance of each subsystem’s residual flexibility effects on the dynamic

properties of the assembled structure may be seen in figs. 7.14 ab) to 7.16 ab). Starting

from the omission of the residual flexibility effect for both the components (in fact,

utilizing the classical free-interface method with rigid connections between the

substructures), the residual flexibility is then gradually taken into account up to the

maximum of 100%. This could be visualised as though the components had been

connected through a intermediate elastic system which at the begining was very stiff and

then was made progressively more compliant. For each percentage value for the residual,

the Modal model of the global structure is calculated and then the mode shapes may be

animated by using an appropriate computer program [94] and some of the corresponding

sketches are shown in figs. 7.18 to 7.21. These mode shapes are presented mainly to

show the evolution of the predicted natural frequencies and mode shapes of the assembled
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structure when the flexibility of the dummy interconnecting system varies from zero to the

full correct value.

The refined approach allows the inclusion of any percentage of residual effects. If this

value is too small, the predicted results ought to be similar to those obtained by using the

classical free-interface method. Tables 7.11 and 7.12 show the natural frequencies

predicted by the different approaches and making use of both sets of interface

coordinates.

7.2.7 DISCUSSION OF RESULTS

Two sets of connecting coordinates and two coupling approaches were used to predict the

dynamic behaviour of the assembled structure which is formed of two components

connected (glued with a hard adhesive) by a small area - the tip cross-section of the beam.

The first attempt to model this connecting area, which behaves almost rigidly over the

measured frequency range O-1600 Hz, was undertaken by assuming only two connecting

points, separated by a distance equal the height of the corresponding cross-section of the

beam. Two coordinates were selected at the top point and only one horizontal coordinate

was assumed for the lower point. This set was believed to express the transmission of

horizontal and vertical forces and a moment between the two components. In fact, as seen

in figs. 7.11 b) and 7.12 b), the predicted results using the refined approach are in good

agreement with the measured ones apart from a small discrepancy in the natural frequency

of the fifth flexural mode. A careful analysis of the mode shapes of the assembled

structure obtained from measured data, shown in figs. 7.10 a) and b), reveals that the first

and fifth flexural mode shapes correspond to two extra natural frequencies added to the

curved frame when the beam is attached to it, whereas the original natural frequencies are

virtually unchanged due to being 17.5 times heavier than the beam (see original and

modified FRFs of curved frame in fig. 7.22). At these extra natural frequencies, the beam

behaves in a nearly-clamped condition: thus, they correspond closely to the first and

second bending modes and the curved frame is acting as if it was a rigid body attached to
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the beam. Since the clamping conditions of a vibrating beam play an important role on its

dynamic properties, it was decided to improve the formulation of the connection

conditions between the curved frame and the beam. This was achieved by introducing an

extra vertical constraint between the two lower connection points, thus using 4 connection

coordinates. Surprisingly, the classical Modal coupling approach (vide chapter 2,

section 2.3.3.2) predicted unrealistic results, as shown in figs. 7.13 a) and 7.14 a), and

the refined approach (vide chapter 4, section 4.2.2) predicted similar results, as shown in

figs. 7.13 b) and 7.14 b), to those obtained by the previously used connecting conditions.

Naturally, there was a reason for that failure and a first attempt to explain it was linked to

any numerical failure of the coupling algorithm, since in physical terms the constraint

conditions should have provided a closer representation of those existing in the assembled

structure. The mathematical tools presented in chapter 5 were used to detect any

redundancy in the interface region which could have caused a failure in the required

inversion of a square partition of the modal matrix for one of the components. The results

of this analysis are presented in table 7.7 and 7.8 and it is shown that there is a local

rigidity between the vertical coordinates in both components, especially for the beam. In

such a case, the SVD technique (vide chapter 5) should be used to avoid numerical failure

of the inversion of the selected matrix or, alternatively, another partition containing most

of the higher mode shapes can be chosen since the dependency is less likely to happen.

However, upon the use of redundant connecting coordinates and as mentioned before, the

refined approach has not caused any numerical failure mainly due to the fact that the

inversion required at some stage is applied to a matrix obtained by adding in series the

two dummy flexible components containing the out-of-range information and this is less

susceptible to be singular.
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the beam. Since the clamping conditions of a vibrating beam play an important role on its

dynamic properties, it was decided to improve the formulation of the connection
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any numerical failure of the coupling algorithm, since in physical terms the constraint

conditions should have provided a closer representation of those existing in the assembled

structure. The mathematical tools presented in chapter 5 were used to detect any

redundancy in the interface region which could have caused a failure in the required

inversion of a square partition of the modal matrix for one of the components. The results

of this analysis are presented in table 7.7 and 7.8 and it is shown that there is a local

rigidity between the vertical coordinates in both components, especially for the beam. In

such a case, the SVD technique (vide chapter 5) should be used to avoid numerical failure

of the inversion of the selected matrix or, alternatively, another partition containing most

of the higher mode shapes can be chosen since the dependency is less likely to happen.

However, upon the use of redundant connecting coordinates and as mentioned before, the

refined approach has not caused any numerical failure mainly due to the fact that the

inversion required at some stage is applied to a matrix obtained by adding in series the

two dummy flexible components containing the out-of-range information and this is less

susceptible to be singular.
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7.2.8 CONCLUSIONS

The residual flexibility effects of the out-of-range modes associated with each component

play an important role in the prediction of the dynamic response of a coupled structure.

The results from the case study show that the degree of importance of each residual

flexibility effect is associated with the relative mass of each component - the lighter the

component the more important becomes its residual flexibility.

In the present case study, one of the components - the curved frame - possesses a mass

some 17.5 times greater the other (the beam). The natural frequencies of the coupled

structure in the selected frequency range (O-800 Hz) are mainly formed of those pertaining

to the original curved frame but, additionally, two other modes are seen. These two

modes are related to the dynamic behaviour of the beam as if it was assumed nearly

clamped at the connection end. One can say that the curved frame has drastically modified

the dynamic characteristics of the beam whereas this component only has slightly affected

the curved frame properties.

The use of a redundant set of connecting coordinates needs a careful analysis of the

possible numerical difficulties during the coupling process, especially in the classical free-

interface method.
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Table 7.7 - SVD technique on partition of modal matrix of Curved Frame

[ 10 =
4x9

[

1.614E-1  O.OOOEOO  4.668E-2  7.496E-2  6.666E-2  -2.558E-1  4.419E-2  -5.683E-2  -3.048E-2

O.OOOEOO  1.614E-1  -1.437E-2  -6.355E-3  8.299E-3  -5.407E-2  2.584E-2  -4.502E-2  -l.O44E-2

1.614E-1  O.OOOEOO  -2.942E-3  6.504E-2  4.502E-2  -2.538E-1  2.427E-2  -5.750E-2  -3.990E-2

O.OOOEOO  1.614E-1  -1.706E-2  -2.376E-3  l.l04E-2  -4.566E-2  2.388E-2  -4.444E-2  -7.836E-3

Matrices [UJ and [V] from SVD on matrix [aIT

- -4.788E-1  1.991E-1  l.l27E-1  -3.323E-1  -

-l.O15E-1  -9.411E-1  -7.224E-2  -l.O36E-1

-5.635E-2  1.212E-1  -8.333E-1  2.789E-1

-2.052E-1  l.l24E-1  -1.202E-1  -6.OllE-1

mx4 = -1.723E-1  1.362E-2  -3.385E-1  -4.374E-1

7.876E-1  -2.370E-2  -1.218E-1  -4.156E-1

-l.l78E-1  -l.O17E-1  -3.307E-1  1.411E-1

1.978E-1  1.904E-1  -3.141E-2  7.977E-2

- l . l O O E - 1  l.O35E-2  -1.829E-1  -2.224E-1  -

[v14x4 =

:[

-7.037E-1  1.583E-1  -6.926E-1  -5.969E-3

-1.531E-1  -6.923E-1  -8.750E-3  7.051E-1

-6.795E-1  1.344E-1  7.212E-1  -6.621E-3

-1.400E-1  -6.911E-1  -9.606E-3  -7.090E-1 I

Singular values . . . . . . . . . . . . . . . . . . . . 4.661E-1, 2.372E-1, 4.1OOE-2, 6.113E-3

Condition Number . . . . . . . . . . . . . . 76.244

Horizontal norm . . . . . . . . . . . . . . . . . . 0.609

Vertical norm . . . . . . . . . . . . . . . . . . . . . . . 0.737

Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lOE-2 x Vertical norm = 0.00737

Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Check on dependency gives columns ordered as . . . . . . . .3, 1.4,~
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Table 7.8 - SVD techniaue aDDlied on txrtition  of modal matrix of Beam

6.742E-1  O.OOOEOO -7.254E-2 l.O08E-1  -1.760E-1

[ 1 O.OOOEOO 6.742E-1  -1.058EOO  8.684E-1  -7.283E-1
Q, =

4x5 6.742E-1  O.OOOEOO 2.257E-1  -3.740E-1  4.110E-1

O.OOOEOO 6.742E-1  -9.913E-1  7.624E-1  -6.140E-1

Matrices N and [V] from SVD on matrix [o]~

[

4.923E-2 9.856E-1  -1.552E-1  4.382E-2

-3.926E-1 1.290E-1  6.170E-1  -4.061E-1

nJ15,4  = 6.216E-1  -7.853E-2 -2.918E-1  -1.391E-1

-5.156E-1  -5.268E-2 -2.788E-1  6.638E-1

4.372E-1  5.441E-2 6.576E-1  6.110E-1 1
r -5.978E-2 6.834E-1  -7.145E-1  -1.372E-1 1

-7.169E-1  8.835E-2 l.l72E-2 6.915E-1
[v14x4  =

2.318E-1  7.184E-1  6.413E-1  1.376E-1

L -6.548E-1  9.518E-2 2.794E-1  -6.958E-1 1

Singular values ................... .2.356, 9.589E-1, 3.181E-1, 7.082E-3

Condition Number.. ........... .332x%6

Horizontal norm.. ............... .2.347

Vertical norm.. .................... .3.329

Threshold .............................. lOE-2 x Verticd  norm = 0.03329

Rank ...................................... .3

Check on dependency gives columns ordered as ....... .I. 3,2,4
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Fig. 7.10 a) - “Curved Frame + Beam” - Rigid-Body and fiit 2 Elastic
Mode Shams
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Fig. 7.11 a) - “Curved Frame + Beam” Direct Inertance (10-10)
(3 connection coordinates)
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_-mm Mm
- predicted withResiduals

Fig. 7.11 b) - “Curved Frame + Beam” Direct Inertance (10-10)
(3 connection coordinates)
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4 0 . 0 I I

F r e q u e n c y (I-k11  7
1 I

----  Measured
- predicted without Residuals

c 1
Fig. 7.12 a) - “Curved Frame + Beam” Direct Inertance (5-5)

(3 connection coordinates)

----  Measured
- Predicted with Residuals

Fig. 7.12 b) - “Curved Frame + Beam” Direct Inertance (5-5)
(3 connection coordinates)
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320.0 480.0 640.0

---- Measltred
- Predicted without Residuals

Frame + Beam” Direct Inertance (10-10)
(4 connection coordinates)
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320.0 480.0 640.0 800.

- Predicted with Residuals

Frame + Beam” Direct Inertance (lo- 10)
(4 connection coordinates)
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40.00r --I 1 - - - -

---- Measured
- predicted without Residuals

Fig. 7.14 a) - “Curved Frame + Beam” Direct Inertance (5-5)
(4 connection coordinates)

----  Memned
- Predicted with Residuals

Fig. 7.14 b) - “Curved Frame + Beam” Direct Inertance (5-5)
(4 connection coordinates)

3



3 Connecting Coordinates

1 1 I 2 I 3 1 4 I 5 I 6 I 7 I 8 I

MKi.WKd llcI9 231 286 313 sllz 537 603 688

Residual 100 % 145.4 229.7 284.6 311.9 488.2 536.9 604.2 688.3

relative error - 2 . 4 2 - 0 . 5 6 - 0 . 4 9 - 0 . 3 5 - 4 . 6 5 - 0 . 0 2 0 . 2 0 . 0 4

Residual 1 % 177.35 229.8 284.7 312.5 822.5 536 603.4 687.7

relative error 1 9 . 0 3 - 0 . 5 2 - 0 . 4 5 - 0 . 1 6 6 0 . 6 4 - 0 . 1 9 - 0 . 0 7 - 0 . 0 4

No Residuals 177.7 229.8 284.7 312.5 828.7 536 603.4 687.8

relative error 1 9 . 2 6 - 0 . 5 2 - 0 . 4 5 - 0 . 1 6 6 1 . 8 5 - 0 . 1 9 - 0 . 0 7 - 0 . 0 3

Table 7.9 - Natural frequencies predicted using 3 coordinates

MtXLWKd lld9 231 286 313 snz 537 603

Residual 100 % 144.1 229.8 284.6 311.9 481.82 536.9 604.1

relative error - 3 . 2 9 - 0 . 5 2 - 0 . 4 9 - 0 . 3 5 - - 5 . 8 9 - 0 . 0 2 0 . 1 8

Residual 1 % 177.3 236.8 289.7 334.9 828.2 536.9 603.4

relative error 1 8 . 9 9 2 . 5 1 1 . 2 9 6 . 9 9 6 1 . 7 6 - 0 . 0 2 0 . 0 7

No Residuals 146.89 177.7 249.9 294.5 761.46 526.9 602.2

relative error - 1 . 4 2 --23.1 -12.62 -5.91 4 8 . 7 2 -I .88 -0.13

0 7 Experimental Case Studies 217

4 Connecting Coordinates

1 1 1 2 I 3 I 4 I 5 I 6 I 7 1 8 I

~ 688

688.3

0 . 0 4

690.

0 . 2 9

645.4

- 6 . 1 9

Table 7.10 - Natural frequencies predicted using 4 coordinates
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350 - Curved Frame Residual EfSect
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Fig. 7.15 a) - Curved frame residual effect on modes 1 2 3 4
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Fig. 7.15 b) - Curved frame residual effect on modes 5 6 7 8
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350 - Beam Residual EfSect

o~“‘~C=‘=‘=o
300-.

b-*------4’==

g 250-g

P
0 c c = = = = = = = = = 0

B 2 0 0 - p
&

Q Mode 1
+ Mode2
* Mode3

100 . , I , . , I , . , . , I , . , . , I , . , . , . , d + Mode4

0 1 10 20 30 40 50 60 70 80 90 lOOTest

% Residual

Fig. 7.16 a) - Beam residual effect on modes 1 2 3 4
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Ficr. 7.16 b) - Beam residual effect on modes 5 6 7 8
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“Curved Frame + Beam” Residual Efect
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Fig. 7.17 a) - “Curved frame + Beam” residual effect on modes 1 2 3 4
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Fig. 7.17 b) - “Curved frame + Beam” residual effect on modes 5 6 7 8
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Fig. 7.18 - “Curved Frame + Beam” - Predicted First elastic mode shape
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Fig. 7.19 - “Curved Frame + Beam” - Predicted Fourth elastic mode shape
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Fig. 7.21 - “Curved Frame + Beam” - Predicted Sixth elastic mode shape
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Fig. 7.22 - Original and modified Curved Frame FRFs - Direct Inertance (5-5)
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T I T L E  -->Xurvcd  Frrre  t I  bean  (No  R e s i d u a l s )
F I L E  Nae --?) HDU_HBI4NR:  , 7 0 2
C o o r d .  = 14 Modes  = 11

1 2 3 4 5 b 7 B 9 1 0 1 1

f tl.S7E-01  -4.27E-02  tS.S7E-29  t4.8bE-03  +B.l4E-02  t9,31E-02  -2.OBE-01  t3.47E-02  -4.36E-02  -2.27E-02  -7.65E-03

2  -4.!iOE-20  t4.3OE-03  t1.57E-01  -2.24E-02  -4.58E-03  tl.S9E-02  -4.88E-02 t2.55E-02 -4.06E-02  -6.7?E-03  tl.S3E-02

3  tl.SIE-01  t4,5PE-03  -6.65E-30 -5,43E-03  t7,09E-02  t7,2OE-02  -2,12E-01  tl,55E-02  -4.46E-02  -3,lBE-02  t2.5bE-04

4  -4.43E-20  tb.87E-03  t1.57E-01  -2.36E-02  -9,96E-04  t1.72E-02  -4,02E-02  t2.37E-02 -4.03E-02  -4.UE-03 t1.52E-02

5  t1.57E-01 -2.73E-01  t3.62E-29  *5.62E-02  t6.97E-02  t5.22E-02  t2,91E-01  t3.56E-02 t8.99E-02  tB.?OE-02  -5.06E-0:

6  -7.02E-20  -8.52E-02  t1.57E-01 -2.25E-03  t9.74E-03  t?.68E-02  t1.24E-02  t:.93E-02  -1.26E-04  t2,99E-02  -9,2OE-04

7  +1.57E-01  t1.43E-01  -1.87E-2B  -4.2OE-02  t2.41E-02  t1,53E-02  tS.92E-02  -3.19E-03  -3.95E-63  -2,13E-02 +1.34E-02

8 -!.5BE-20 +l.OEE-01 t1’.57E-01  -7.89E-02  -2.61E-02  t:.S3E-01  t9,7EE-02 -8.25E-02  -5.68E-03  -6.32E-01 t4.5SE-02

9  +l.S7i-01 -4.29E-02  t4.?3E-29 -4.35E-02  t7.56E-Q2  t6.62E-02 -2.12E-01  +3.06E-02  -4.5bE-0': -2.51E-02  -6.81E-04

1 0  t:.37E-20 t3.SSE-01  t1.57E-51  t1.73EtOO  t1.4SE-01  t1.35E-01 t!.38E-02 t7.26E-02 tb.SlE-C?  t9.44E-02  +1,53E*00

11 tl.57E-01  -4.29E-02  t4.23E-29 -4,3SE-02  t7.5bE-02  tB.62E-G2 -2.12i-01  t3.06E-02 -4.56E-02  -2.SlE-$2  -t.BlE-04

1 2  tl.84E-?il  t2.3OE-01  tl.S;E-01  t’i.ZbE-0:  -4.84E-03 -3.O?E-02  -Z.BbE-C2 -5.56E-02  -S.S6E-33  -!.69E-\a,  .  .np.  _( l4Etai’

1 3  t1.57E-91  -I.?PE-62  t4.23E-29 -4.35E-62  t7.56E-02  tE.62E-02 -2.12E-01  t3.06E-02 -4.56E-02 -2.51E-02 -b.blE-C4

1 4  tl.lZE-22  t1,65E-Cl tl.S?E-01  t1.54E-02  -2.7BE-02  -4.42E-02 -4.63E-0:  -4,09E-C2  -4.87E-02 -4.COE-CI  -3.llE-01

Eigenvrlues N a t u r a l  F r e q u e n c i e s

1.  OOOE-OS 1.592E-OS  H:
4.319E-07 I.O46E-04  H;
l *OOOE-06 ls592E-04  Hi

r6 1.247E+66 I  .777EtO?  H i
+5 2.08SEt56 2.29BEto2  H i
I 3.206itO5 2.B47EtO2  H z

3.854EtOb
1.134Et67
I .437EtO?
1.867Et07
2.711Et07

3.125EtO2  H z
5.3bOEtO2  H:
6.034Et02  H z
6. B7BEt02  H i
8.287Et02  Hz

I

Table 7.11 - “Curved Frame + Beam” Predicted Modal Matrix without Residuals

r
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T I T L E  -->Xurved  Frrre  + I Beam  ltperimental R e s i d u a l s )
F I L E  Hare  -->>  IW_HBI4RR:  , 7 0 2
Coord.  = 14 Ldes = 14

I 2 3 4 5 b 7 e 9 IO 11

1 -1.57E-01 l 4 . 2 B E - 0 2  +l.UE-05 +9.79E-03  +B.lsE-02  +9.37E-02  -2.ObE-01  -1.37E-02  t3.b8E-02  -3.9bE-02  -2.ObE-02

2  +7.82E-06 -4.3lE-03  +1.57E-01  -2.76E-02  -4.23E-03  +l.bOE-02  -4.8bE-02  42.13E-02  t2.27E-02  -4.22E-02  -B.5lE-03

3  -1.57E-01 -4.5OE-03  tI.04E-05  -2.73E-03  +7.12E-02  +7.2bE-02  -2.IOE-01  -9.18E-03  +l.b’IE-02  -4.1BE-02  -3.OSE-02

4  +6.21E-Ob  -b.BIE-03  +1.57E-01  -2.87E-02  -b.lOE-04  t1.74E-02  -4.OOE-02  +i.llE-02  tl.OPE-02  -4.?OE-02  -b.OPE-03

5  -l.S7E-01  +2.73E-01  +1.5OE-05  47.12E-02  +b.B7E-02  45,06E-02  +2.91E-01  -3.13E-02  +4.09E-02  *9.4bE-02  +B.tPE-02

b  +b.39E-05  +B.S2E-02  +1.57E-01  -3.5bE-03  +9.71E-03  +2.6bE-02 *1.26E-02  +1.42E-02  +:.7bE-O?  -4.9bE-04  t2.97E-02

7  -1.57E-01  -1.43E-01  +B.lbE-06  -4.34E-02  +2.50E-02 +1,5lE-02  *5.97E-02  tB.3OE-63  -4,71E-03 -5,12E-03  -2.24E-02

B -5.7lE-05 -l.OBE-01  +1.57E-01  -7.55E-02  -2.3lE-02 t5.53E-01  +l.OZE-01  -1.75E-02 -7.9bE-02  -2.64E-03  -b.S4E-01

9  -1.57E-01  +4.3OE-02  *1.12E-05  -:.19E+2  +7.7BE-02  +8.92E-02  -2.lBE-01  t3.25E-02  42.93E-02  -5.35E-02  -3.12E-02

1 0  -2.12E-04  -3.55E-01 +1.57E-01  +1.57E+OO  tB.BSE-02  tl.O5E-01  t5.2BE-02 tl.?jE+OO  -1.l9E-Oj  -7.94E-02  -2.33E-02

1 1  -1.57E-01  +4.3OE-02  +l.l2E-05 -5.191-02  +7.7BE-02  +B.92E-02  -2.lBE-01  +3.25E-02 +2.93E-0:  -5.35E-02  -3.12E-02

1 2  -1.33E-04  -2.3OE-01  tl.SIE-01  +4.97E-01  -3.32E-03 -2.31E-02  -2.17E-02  -9.32E-61 +9.bOE-C2  *6.31E-C?  +I.BPE-02

1 3  -1.57E-01 +4.30E-02  41.12E-05  -5.19E-02  +7.7BE-02  tB.92E-02  -2.lBE-01 +3.2X-C;  4:.93E-02  -5.35~~02  -3.12E-02

1 4  -9.?bE-05  -1.65E-01  41.57E-01  +2.07E-01  -l.IlE-02  -3.32E-02  -3.75E-02  -B.(BE-01  t8.57E-02  t:.6lE-02  tB.27E-03

Eipenvalues Iaturil  Frequrncres

Table 7.12 - “Curved Frame + Beam” predicted Modal Matrix with Residuals

6

+5

l.l37E-08
4.3OBE-07
l . O O O E - 0 6
B.Z4bE+05
2.OB3Et06
3.197EtOb
3.84OE+Ob
9.41OEtOb
1.13&+07
1.44lEN7
l.B7lE+Oi
5.550Et07
1.337E+OB
Z.BOBEtOB

1.697E-05  Hi
l.O45E-04  Hi
1.592E-04  Hz
1.454E+O2  H :
2.297EN2  Hi
2.846E*O2  Hi
S.l19E*02  H;
4.882EtOi  H:
5.3b9Et02  H:
b.O42E+Ol  Ii:
b.BB3Et02 H:
lalBbEtO3 Hi
1.841E403  Hz
2.bb7E403 H:
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T I T L E  --)Measured C u r v e d  Frrre t I Beae  - MB10 1-Z 3 - 4  5-6 I O - 1 1  B - 9  1 - C  1-B)
FILE Ware --j) HDU_Hbl4XX: ,702
Coord. = 14 nodes = 11

1 2 3 4 5 b 7 B 9 10 1 1

1 *1.57E-01 tC.COEtOO -1.7BE-01 t3.05E-03 t4.28E-02 t4,07E-02 -B,99E-02 tl.l3E-02 -6.53EtOO t3.56EtOO t1.35E-02

2  tO.OOEtOO tl.57E-01 -3.86E-04 tl.O3E-02 -4.18-03 tb.45E-03 -2.SlE-02 - 4 .  IZE-03 -3,12EtOC t4.28EtOC t?.07E-03

3  t1.57E-01 tO.OOEtOO -l.bOE-01 -8.53E-03 t3.61E-02 t4.90E-02 -B.7BE-02 -).73E-02 -3.57EtOO t3.20EtCO t1.66E-O?

4  tO.OCE+OC t1.57E-01 t3.70E-03 t9.4BE-03 -3.43E-03 t3.72E-03 -1.28E-02 -1.17E-C2 -4.30EtOO t5.8bEtOO tl.OPE-03

5  t1.57E-Cl tO.OOEtCC -2,52E-01 -3.65E-62 t3.87E-62 t1.71E-62 t1.23E-Cl -I.24E-62 -5.77EtCC -9.32EtCC -3.8lE-0:

6 tO.OCEtCC tl.:iE-01 -1.95E-02 t3.43E-03 t3.69E-C3 t1.5lE-02 t1.57E-03 t3.37E-63 -2.88EtCC -8,ICE-02 -l.?3E-02

7  t1.57E-Cl tO.COEtCC -l.lZE-Cl t1.95E-02 tt.24E-62 tb.65E-63 t3.42E-02 tl.OCE-02  -l.CCE-05 -l.OCE-05 tS.57E-03

8  tC.CCE*C0  t1.57E-01 t3.48E-02 t?.B7E:O?  -1,84E-02 -l.b5E-0:  tB.76E-62 t2.18E-0: -5.?5EtOC t9.03Et3C tb.76E-03

9  tl.57E-Cl  tO.COEtC(: -1.7Bi-01 t4.5bE-02 t3.B3E-C2 t4.24E-62 -9.6bE-02  t5.6bE-63 -4.05EtC3 t5.bSEtCC tl.b5E-02

10 tO.CCEtCC tl.YE-CI tl.  I C E - 0 1  -8.26E-01 t4.05E-62 t3.26E-02 -2.05E-02 tS.B5E-01 t:.lCEt’Jl tl.13EtCl t3.72E-0:

1 1  tl.57E-Cl  tC.CCEtCO -1.?BE-Cl t3.C5E-03 +4.2Bi-02  t4.07E-02 -B.99E-02 tl.ISE-02 -6.53EtCC t3.56E’CC t1.35E-0;

1 2  tO.OCEtCC tl.57E-Cl  tB.OhE-02 -3.b2E-Cl  tl.O5E-02 -9.17E-04 -6.66E-63 -2.03E-Cl -1.41EtCl -3.IIOEtCC -6.55E-C4

1 3  t1,57E-Cl tC.OCEtCC -1.7bE-Cl t3.C5E-63 t4,2BE-C: t4.C7E-02 -8.99E-0’ tl.l3E-02 -6.53EtCO t3.56EtCC t1.35E-CZ

14 tO.CCEtCC tl.VE-Cl t6.43E-62 -!.82E-Cl -3.6CE-03 -?.35E-03 -4.79E-63 -2.96E-01 -l.BSE+Cl -4.2lEtCC -1.9lE-C3

E~qenvalues lrtural Frequencies

l.OCCE-09 1.592E-05 H :
l.CCOE-66 1.592E-94 Hi

6 3.94BE-07 l.CCCE-04  H i
+5 B.7t5Et05 1.490EtC2 Hi

2.lC7EtC6 2.31CEto2 Ii:
3.229EtCt 2.86OEt02 H i
3.86BEtOb ‘3.13CEt02 Hz
1.635EtC7 5.120EtC2  H z
1.130Et07 5.37OEto2 ii:
1.435Et07 6.030Et02 H;
l.Bb9EtC7 6.88OEt62 H i

Table 7.13 - “Curved Frame + Beam” Experimentally-derived Modal Matrix
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7.3 EXPERIMENTAL CASE STUDY II

7.3.1 INTRODUCTION

In this case study, an assembled structure formed of two components is dealt with. These

components are the two beams which have already been considered in chapter 6, therein

seeking to determine experimentally the rotational responses at specified coordinates on

the beams. The reason for such an investigation was linked to the need to incorporate the

rotational coordinate information in the formulation of constraint equations between the

two vibrating subsystems forming a complete structure. In fact, this is not a general rule

for all coupling cases, as shown in the previously-presented case study whereby the

constraint conditions were formulated without the need of explicit calculation of the

rotational responses even with a moment to be transmitted in the interface region of the

two components. In that case, the consideration of two coordinates - through which two

forces equivalent to a moment can be transmitted - was possible since they were

sufficiently spaced from each other on the connecting region to allow, in practical terms,

the measurement of the response and the excitation forces.

However, such practical considerations are not possible in the present case study due to

the small connecting area between the two beams which, when connected, should

constitute a longer continuous beam. Thus, a rotational coordinate should be included at

the interface region in order to fullfil the compatibilty  between displacements and rotations

and equilibrium between forces and moments. Otherwise, the error incurred in neglecting

such a coordinate can lead to failure in predictions for the actual response of the

assembled beam. The techniques presented in chapter 6 are believed to be suitable for

estimating the necessary rotational response in this kind of beam-like elements. Therefore,

the results obtained in chapter 6 will be further used in the present case study to construct

the necessary Response and Modal models of each beam for subsequent input into the

FRF and Modal coupling procedures, respectively.

. I .
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7.3.2 DESCRIPTION OF THE SUBSYSTEMS

The test components consist of straight steel beams with a uniform rectangular cross-

section, as shown in fig. 7.23 . The connection coordinates for each beam are selected to

be at their ends which are subsequently connected to another one, forming a longer beam.

Long Beam

Short Beam /

Long Beam Short Beam

b

L = 1.485 m
s = 0.07425 m
b =0.019 m
h = 0.0254 m

L = 0.480 m
s = 0.024 m
b =0.019  m
h =0.0254  m

I I

I
I Fig. 7.23 - Long and Short beam components

7.3.3 SUBSYSTEM MODELLING

In chapter 6, the theoretically- and experimentally-derived rotational responses for each

beam have already been presented and constituted a topic of discussion in terms of the

aptitude of each procedure to estimate accurate rotational properties. In this chapter,

various Response and Modal models are constructed by incorporating those estimated

rotational responses. These models will differ from each other only by the response of the
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rotational coordinate since the transverse response is assumed to be the same for all of

them. The various models will be identified according the name given to the procedures

used to estimate the rotations in chapter 6, e.g. if one refers to Long beam 2 it will

mean that the corresponding rotational response in the model is estimated following

procedure 2. The table containing the information on all the procedures is presented next:

Table 7.14 - Procedures to estimate Response and Modal models

and four locations for the accelerometers corresponding to the measured coordinates on

each beam are shown in fig. 7.24 (in each procedure, only two or three coordinates are

considered when estimating the rotations).

Fig. 7.24 - Beam with 4 accelerometers

7.3.3.1 RESPONSE MODELS

The frequency range of interest for the complete structure’s properties is taken to be

0 800 Hz. This requires the measurement of each FRF in both beams to be undertaken in

the same frequency range, if the FRF coupling technique is used. Only the rotational
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shown in fig.7.25, since the corresponding data for the long beam have already been

presented in the previous chapter.

7.3.3.2 MODAL MODELS

The Modal models of both beams are derived by following the Modal route described in

chapter 6 (vide section 6.6.3). This route assumes the measurement of FRFs at two or

three closely-spaced coordinates, necessary to construct one row (or column) in the FRF

matrix. Then a modal identification algorithm [7 l] is applied to convert the Response data

into Modal properties. It is important to note that in this case there are no restrictions

about the measured frequency ranges on each component since a Modal coupling

technique is supposed to be used subsequently.

The measured Modal models need to be converted into estimated ones, and this can be

done by using the first and second order approximations, whose formulation was

presented in chapter 6 (vide 6.3.2.1 and 6.3.2.2). It should be noted that this will express

each model’s dynamic properties in the measured frequency range only. Should the

residual flexibility effect ot the out-of-range modes be taken into account, it is necessary

to measure additional FRFs and to identify an extra mode in each of these in order to

estimate the residual matrix according to first and second order formulation above

mentioned.

The modal and residual flexibility matrices referred to the 4 measured coordinates on both

beams are presented next. From these, the corresponding matrices referred to the

translational and rotational coordinate at point 4 are estimated, as follows;



Exmimental Case Studies 233

Modal and Residual Flexibility matrices referred to the measured (4) coordinates

Modal Matrix

c 1a, =
4x7

4.211E-1  2.845E-1  8.817E-2  -2.838E-1  -4.720E-1  -4.517E-1  -2.866E-1

4.211E-1  3.734E-1  3.641E-1  1.488E-1  -5.902E-2  -2.425E-1  -3.672E-1

4.211E-1  4.241E-1  5.640E-1  4.433E-1  3.053E-1  1.860E-1  3.723E-2

4.211E-1  5.001E-1  7.447E-1  7.270E-1  7.076E-1  6.965E-1  6.632E-1

Natural Frequencies

Identified Residual Matrix

0, 0, 61. 167, 325. 535, 794 H z

4.036E-9  -4.772E-9  -1.661E-9  4.490E-9

[ 1R -4.772E-9  9.374E-9  2.453E-9  -1.241E-8

cc 4x4 = -1.661E-9  2.453E-9  3.034E-9  5.060E-9

4.490E-9  -1.241E-8  5.060E-9  2.688E-8 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Short beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Modal Matrix

c 1Q, =
4x5

7.387E-1  5.905E-1  5.066E-2  -6.084E-1  -8.629E-1

7.387E-1  8.186E-1  6.053E-1  1.407E-1  -2.726E-1

7.387E-1  9.344E-1  9.081E-1  6.447E-1  3.670E-1

7.387E-1  1.045EOO  1.236EOO  1.152EOO  1.073EOO 1
Natural Frequencies 0, 0, 572, 1528, 2844 Hz

Identified Residual Matrix

r l.O13E-09  2.056E-10  -2.877E-10  -3.868E-10 1
[ 1Rcc 4x4 =

2.056E-10  7.109E-10  2.247E-10  -8.998E-10

-2.877E-10  2.247E-10  2.206E-10  2.377E-10

L -3.868E-10  -8.998E-10  2.377E-10  1.483E-09 _/
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Estimated Modal and Residual Flexibility matrices
referred to the end (2) coordinates

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IpTizGGq - 3 points, distance=s (5% L)

[ 1 4.211E-1 5.001E-1  7.447E-1  7.270E-1  7.076E-1  6.965E-1  6.632E-1
0 =

2x1 O.OOOEOO 1.192EOO  2.304EOO  3.750EOO  5.672EOO  7.428EOO  9.922EOO 1
1 R 1 2.688E-09 3.232E-07

cc 2x2 = 3.232E-07 3.822E-06 1
IProcedure  21 - 3 points, distance=2s (10% L)

[ 1CD =
2x7

c 1Rcc 2x2 =

IProcedure  31

4.211E-1  5.001E-1  7.447E-1  7.270E-1  7.076E-1 6.965E-1  6.632E-1

O.OOOEOO 9.788E-1 2.915EOO  4.384EOO  6.353EOO  8.780EOO  1.068EOl 1
[ 2.688E-09 4.538E-07

4.538E-07 8.605E-06 1
- 2 points, distance=s (5% L)

[ 1 4.211E-1 5.001E-1  7.447E-1
cp =

2x7 O.OOOEOO 1.022EOO  2.433EOO

[ 1R
cc 2x2 =

pFGczGq

r

2.688E-09 2.939E-07

2.939E-07 3.590E-06 1

7.270E-1  7.076E-1  6.965E-1 6.632E-1

3.822EOO  5.417EOO  6.875EOO  8.430EOO 1

- 2 points, distance=2s (10% L)

[ 1a, =
2x7 1 O.OOOEOO 8.522E-1  2.563EOO  3.894EOO  5.162EOO  6.323EOO  6.939EOO J

4.211E-1  5.001E-1  7.447E-1  7.270E-1  7.076E-1 6.965E-1  6.632E-1 1

c 1R
cc 2x2 =

IProcedure  51

c 1a =
2x7

[ 1R
cc 2x2 =

2.688E-09 2.646E-07

2.646E-07 2.770E-06 1
- 2 points, distance=4s (20% L)

4.211E-1  5.001E-1  7.447E-1  7.270E-1  7.076E-1 6.965E-1  6.632E-1

O.OOOEOO 7.257E-1  2.210EOO  3.403EOO  3.972EOO  3.866EOO  3.198EOO 1
2.688E-09 7.539E-08

7.539E-08 2.487E-07 1
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Estimated Modal and Residual Flexibility matrices
referred to the end (2) coordinates

[ 1Q, =
2x5

- 3 points, distance=s (5% L)

-7.387E-1 -1.045EOO  -1.236EOO  -1.152EOO  -1.073EOO

O.OOOEOO 4.470EOO  1.418EOl  2.123EOl 3.081EOl 1
[ 1R

C
1.483E-09 -5.412E-08

cc 2x2 = -5.412E-08 2.033E-06 1
p5GGzq - 3 points, distance=2s (10% L)

[I -7.387E-1  -1.045EOO  -1.236EOO  -1.152EOO  -1.073EOO
Q, =

2x5 O.OOOEOO 4.683EOO  1.393EOl  2.381EOl 3.590EOl 1
1.483E-09 -7.980E-08

-7.980E-08 4.705E-06 1
- 2 points, distance=s (5% L)

[ 1 -7.387E-1 -1.045EOO  -1.236EOO  -1.152EOO  -1.073EOO
<f, =

2x5 O.OOOEOO 4.588EOO  1.366EOl  2.115EOl 2.942EOl 1
1.483E-09 -5.188E-08

-5.188E-08 2.132E-06 1
- 2 points, distance=2s (10% L)

[ 1 -7.387E-1  -1.045EOO  -1.236EOO  -1.152EOO  -1.073EOO
cp =

2x5 O.OOOEOO 4.706EOO  1.314EOl  2.108EOl 2.804EOl 1
E 1R 1.483E-09  -4.964E-08

cc 2x2 = -4.964E-08 1.733E-06 1
IProcedure 51 - 2 Doints.  distance=4s (20% L)
I 1 _

[ 1
-7.387E-1 -1.045EOO  -1.236EOO

<p =
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Fig. 7.25 - Short Beam estimated FRFs using closely-spaced accelerometers
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7.3.4 RESULTS FOR THE COUPLED STRUCTURE

Several combinations of models derived according to the previously-mentioned

procedures 1 to 5 have been explored in order to predict the coupled structure response.

The evaluation of those models, made in chapter 6 just in terms of their rotational

responses, gave a good insight into the possible performance of each during a coupling

process. For instance, it is expected to have bad results, over the higher frequencies,

whenever procedure 5 is utilized to model each beam whereas fairly good results are

obtained over the entire range when procedures 2 or 3 are employed. Only the actual

results produced by a coupling process can reveal the aptitude of each beam model.

7.3.4.1 DISCUSSION OF IMPEDANCE COUPLING RESULTS

As mentioned in the introduction of this chapter, it is vital to include the rotational

coordinate response if reliable results are to be predicted in an assembly of beam-like

components. Fig. 7.26 shows the predicted FRF of the assembled beam by considering

only the transverse coordinate in the coupling region. It is natural to expect lower

resonance frequencies than the true values, since under such a condition the junction is -

in effect - assumed to be behaving as pin-joint.

The Response models based on procedure 2 - one of best classified in chapter 6 - were

used as a first attempt to predict the coupled structure response. However, the results

shown in fig. 7.27 were discouraging since from the conclusions extracted from chapter 6

this procedure was expected to give a fairly accurate modelling of the rotation on the

beams. An explanation of the disagreement between the measured and predicted FRFs

shown in fig. 7.27, can be made by examining the estimated rotational FRFs of the short

beam shown in fig. 7.25, which are here considered over the frequency range O-800 Hz,

instead of the O-3200 Hz range assumed in chapter 6. The estimated He0 FRFs are very

noisy for procedures 1 to 3 - there is a rigid-body like behaviour which is not very well

defined below the first resonance - and only from procedure 4 onwards does the FRF
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become better defined. The misunderstanding about the behaviour of a certain model

when drawing conclusions based on the Modal model, as happened in chapter 6, is

justified by the fact that only data around the resonance frequency is taken into account in

that case, whereas the FRF model data is used at every frequency value, thus being in

error over most of the range. Three alternative ways were attempted to improve the

prediction. On the one hand, the measured FRFs were identified and then regenerated

with the inclusion of residual flexibility effects for the out-of-range modes in order to

obtain smoothed FRFs for input to the estimation process of PI,+ and I-&,-The results

using the smoothed curves for both beams are shown in fig. 7.28, revealing a slight

improvement over the previously mentioned ones. On the other hand, the short beam

model using procedure 4 with raw data, which gives better estimations for H,,a and I&

was used and the results, shown in fig. 7.29, are similar to those achieved with procedure

2 and smoothed data. Lastly, the block approach making use of smoothed data was used

for modelling short beam and the results, shown in fig. 7.30, were in better agreement

than all the previously mentioned predictions.

Frequency (Hz) -

0 . 0 160.0 320.0 460.0 640.0 800

____ Measured

- predicted  using Long + Short beams without Rotation

Fig. 7.26 - Predicted FE2F of “Long beam + Short beam” using FRF Coupling
technique
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7.3.4.2 DISCUSSION OF MODAL COUPLING RESULTS

The Modal models of both beams are used to predict the assembled Modal model from

which an FRF at the connection point is generated for comparison with the measured one.

As mentioned before, the Modal models of each beam were derived following the Modal

route presented in chapter 6 (vide section 6.6.3) and using different procedures to

estimate the rotational amplitude of the mode shapes. One of the procedures which was

found to estimate fairly accurate amplitudes of rotations in all the modes and in both

beams was procedure 2. Our attention is then focused on the thus-derived Modal models,

which include as well the corresponding residual flexibility matrices.

However, in order to compare results coming from a Modal coupling technique with

those obtained by using FRF coupling, it was decided that the measured data used to

develop the Response and Modal models initially should be obtained under identical

conditions. In other words, since the FRF coupling requires both components to be

measured over the same frequency range - which is O-800 Hz - the Modal coupling

technique will make use of short beam Modal models which contain only one flexural

mode - range O-800 Hz - in contrast to what was presented in chapter 6 where those

models contain information on three flexural  modes (o-3200 Hz). Since the residual

flexibility information can be appended to those models, the final result will be similar for

either of the Modal models used for the short beam.

Figs. 7.31 and 7.32 show the predicted FRFs using either Modal models without and

with residuals, respectively.
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7.3.5 COMPARISON OF FRF AND MODAL COUPLING RESULTS

Fig. 7.33 shows one measured and two predicted FRFs using the Response and the

Modal routes. For the former route, the Response model of both beams was constructed

from the smoothed FRFs. This requires the original Response model to be converted to a

Modal one, which is then used to generate the new Response model (taking into account

the residual effects of the out-of-range modes).

In the Modal route, the Modal model derived from the measured FRFs (only translations

included) was used to estimate a similar model but a this time possessing the explicit

rotational information; the algorithms presented in chapter 6, have shown that it is also

possible to calculate the residual flexibility information related to the rotational

coordinates.

,I_.  d__--

0.0 160.0 320.0 460.0 640.0 800
____ MeaSured
. . . . FRF Coupling using Long 12_smoothl  + Short Il_smoothl

- MODAL Coupling with Residuals - Long q  + Short q  w/  1 Kept mode

Fig. 7.33 - Predicted FRF of “Long beam + Short beam” using FRF and Modal
Coupling techniques
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The Modal coupling technique predicted a better response than the FRF coupling

technique, mainly due to the fact that former does not require any inversion process. This

is the main reason for explaining the errors which arise in the FRF coupling technique

which, besides the fact of using a smoothed Response model, is still sensitive to any

inherent model inconsistency. This inconsistency is caused by the need to use different

locations for the accelerometer to gather data during the measurement stage, and this

causes a slight variation of the natural frequencies amongst the measured FRFs.

7.3.6 CONCLUSIONS

In beam-like components it is essential to have a rotational coordinate in the connecting

region in order to fulfill the constraint conditions properly, if such a component is linked

to another structure. The techniques presented in chapter 6 form the mathematical and

experimental tools which permit estimation of the necessary rotational quantities to create

either the Response or Modal models for such components. Central to the Modal model,

there is also the possibility of estimating the residual flexibility effects related to the

rotational parameters (due to the unmeasured modes), which are important ingredients to

be used with the refined Modal Coupling technique (vide chapter 4).

It was found in this work that the Modal route is preferable when predicting the response

of an assembled structure formed of two beams, especially when these behave as lightly-

damped components. However, it is important to remember at this stage that the Modal

coupling technique, which one is concerned with, is restricted to that type of component

whose damping can be neglected; should there be a considerable degree of damping, only

the FRF coupling technique is able to handle such components with a lower probability of

numerical ill-conditioned matrices during the coupling process.



8
CLOSURE

8.1 GENERAL CONCLUSIONS

In this last chapter, the general conclusions of the research are presented following the

same general breakdown of topics as used in the main body of the thesis. One of these

sections is devoted entirely to the refinement of standard techniques - Impedance and

Modal coupling - which was possible either by reformulating the existing theory or by

making use of more efficient algorithms. Of these algorithms, one resolves the numerical

failures during matrix inversions and another is used to detect causes of ill-conditioned

matrices, specifically that due to redundant information in the coordinates of a system

model. As a consequence of these refinements, more accurate and reliable results can be

obtained for the prediction of assembled systems whose models are derived from

measured data. Another section in the thesis is dedicated to the experimental determination

of the rotational responses which play a vital role in some coupling exercises; the

techniques to gather the necessary experimental data and the subsequent mathematical

manipulation constitute some of the main topics for conclusions in this chapter.
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8.1.1 CONCLUSIONS ON IMPEDANCE COUPLING TECHNIQUES

The Spatial coupling method is used extensively in cases involving theoretical

modelling. Reduction methods are presented in chapter 3 to condense Spatial models to

the primary (master) coordinates - coordinate reduction which inevitably cause a

mode reduction - in order to decrease the computational needs to solve the global

problem. In this context it was found that the selection of those coordinates must be made

according to some criterion in order to preserve, as much as possible, the dynamic

characteristics of the original unreduced models. The accuracy of the results obtained via

the use of static or dynamic reduced subsystem Spatial models depends on the coordinates

which are eliminated - it is a question of mass value dependency, so the choice of the

secondary coordinates should be made according to the relative mass values. Should a

static reduction be applied to a spatially described model, the secondary coordinates

must possess relatively small mass values. Conversely, if a dynamic reduction is

applied to a model, the dynamic characteristics of the reduced model are better preserved

if relatively high mass values are assigned to the eliminated coordinates.

In contrast to the Spatial coupling method there is the FRF coupling technique which is

suitable for the use of FRF data measured on the components. It makes use of Response

models derived directly from experimental data (seldom from theoretical modelling).

Conceptually, one can say that the FRF coupling technique is very attractive since it

makes use of models whose dynamic characteristics are fully quantified and thus do not

suffer from incompleteness. Furthermore, a reduction performed on the interior

coordinates of a given subsystem still preserves the dynamic information necessary for a

subsequent use in a FRF coupling procedure.

However, there is a numerical aspect associated with this technique which may cause the

coupling procedure to fail. It was shown in chapter 2, that the required FRF matrix of the

coupled structure is obtained after three matrix inversions - two of them carried out before

and one after the FRF matrices are assembled. Should one of these matrices be near

singular, the results will reflect the numerical errors caused by inversion and will predict
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the dynamic behaviour of the overall structure erratically. Unfortunately, when dealing

with experimentally-derived FRF matrices, one is mostly restricted to use inconsistent

models that are inaccurate due to experimental or systematic errors in the measurement

stage and this causes the FRF matrix to be ill-conditioned. Another situation which may

lead to near singular matrices is caused by local rigidities at the measured coordinates.

Over certain frequency ranges the response at some coordinates may tend to be nearly

dependent and then the FRF matrix will tend to be rank-deficient.

The alternative algorithms presented in chapter 3 can

difficulties encountered during the coupling process

be used to resolve the numerical

based on the classical algorithm

whenever the localised regions are referred to the interior regions of each component or

only to one of their connecting regions. In such a situation, the approach making use of

algorithm 3 presents a remarkable advantage over the other two, since the inversion is

only required once and even then it is applied to a matrix whose order depends only on

the number of connecting coordinates.

In the other most extreme situation, when the rigidities are local&d in both interface

regions, other alternatives are required. For instance, if it is possible to know a priori the

number of redundant coordinates or, in other words, the rank for each subsystem FRF at

each frequency in the range of interest, the analyst can make a judgement about the

possible exclusion of some of the connected coordinates without affecting the constraint

formulation of the actual physical connection. It is in this context that the auxiliary

mathematical tools presented in chapter 5 should be employed. Of these, the SVD

technique proved to be a useful mathematical tool to be used during a coupling process

involving subsystems which both possess redundant information (in terms of

coordinates) at the interface region. Additionally, it is shown that the common inversion

algorithms can still be used provided the redundancy in the connecting region is

eliminated by using a suitable algorithm to detect how many and which coordinates are

redundant. This may be useful when a large degree of redundancy is present in a multi-

point connected system. In such a case, a substantial reduction may be applied to the
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initially specified connection matrix, thereby allowing a less time-consuming coupling

process while preserving the accuracy in the final result at the same time.

8.1.2 CONCLUSIONS ON MODAL COUPLING TECHNIQUES

Unlike the Impedance-based methods which take advantage on the reduction of the

number of coordinates, the Modal coupling methods use a reduction performed on the

number of modes used to describe each component model while still accounting for all

the physical coordinates. A refined Modal coupling technique using free-interface modes

was presented in chapter 4. The main achievement of this method was the inclusion of the

residual flexibilty effects which compensate for the truncation of the number of kept or

measured modes in each component. The lack of flexibility associated with the description

of each component displacement in the connection region (which results from this

truncation) has caused the classical free-interface methods to predict results with poor

accuracy when compared with the fixed-interface methods - in effect, the components are

assumed to be stiffer than actually is the case. With the inclusion of the residual flexibility

information - in fact, an approximation when experimentally-derived models are dealt

with - by using a “dummy” interconnecting flexible system, the two main components are

mathematically coupled using the best available information provided by data measured

over the frequency range of interest for each component.

The results obtained in the case studies show that the degree of importance of each

residual flexibility effect is associated with the relative mass of each component - the

lighter the component the more important becomes its residual flexibility. Furthermore,

the use of a redundant set of connecting coordinates has not presented any numerical

difficulty when using the refined approach, whereas in the classical method, a careful

analysis needs to be done, prior to the coupling process, on the dependency amongst the

coordinates included.

. .
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8.1.3 CONCLUSIONS ON DETERMINATION AND USE OF

ROTATIONAL RESPONSES

The laser measurement technique described in chapter 6 can estimate very easily the

rotational displacements in the mode shapes when compared with techniques using

accelerometers. Additionally, since it is possible to measure in a quasi-continuous way the

mode shape patterns over a specified length or area on a structure, it is possible to obtain

more accurate estimates of the spatial derivatives, mainly for the higher modes. This

constitutes the main drawback to similar data measured with closely-spaced

accelerometers since it is impracticable to obtain a precise description of the displacement

field near the connection region. Although the rotations obtained by using either technique

are only concerned with a very simple case study, it is believed that in more complex

structures involving tridimensional measurements, the laser technique will offer the best

capability.

There are, however, some drawbacks associated with the measurements carried out with

the laser technique. On the one hand, by estimating the rotational responses from the

displacement pattern of each mode in the frequency range of interest, there is no

possibility of calculating the residual flexibility which represents the out-of-range modes;

generally, this knowledge is important whenever Modal models are used and therefore

more modes must be measured. On the other hand, the optically-based system may be

unable to reach some important areas or points on the structure; for instance, should a

shaker be placed near the region of interest it can obstruct the directed laser beam path, or

in other cases, the point of measurement can be located at an inaccessible interior surface.

The use of two or three closely-spaced accelerometers near the point of interest constitutes

a practicable alternative to the exciting-block approach which in turn, is prone to errors

when the cancelled mass is large compared with the mass of the structure, specifically for

higher frequencies. In the cases where Modal models have to be derived for each

subsystem, the use of closely-spaced accelerometers constitutes an ideal alternative, since

it requires the modal identification of the measured curves rather than the estimated ones.
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Additionally, it allows estimation of the residual effects of the out-of-range modes for the

derived rotational FRFs.

For beam-like components linked to other structures, it is essential to have a rotational

coordinate in the connecting region in order to fulfill properly the constraint conditions.

The techniques presented in chapter 6 constitute the mathematical and experimental tools

which lead to the estimation of the necessary rotational quantities to create either the

Response or Modal models of a beam-like component. Central to the Modal model, there

is also the possibility of estimating the residual flexibility effects related to the rotational

parameters (due to the unmeasured modes), which are important ingredients to be used

with the refined Modal Coupling technique presented in chapter 4.

It was found in this case study, that the Modal route is preferable when predicting the

response of an assembled structure formed of two beams, especially when these behave

as lightly-damped components. However, it is important to remember that the Modal

coupling technique, which one is concerned with, is restricted to that type of component

whose damping can be neglected; should there be a considerable degree of damping, only

the FRF coupling technique is able to handle such components with a lower probability of

numerical ill-conditioned matrices during the coupling process.
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8.2 SUGESTIONS FOR FUTURE WORK

The study undertaken in this thesis revealed that some further developments may be of

interest in future work in the field of Dynamic Analysis of Coupled Structures. Some

general sugestions are outlined below.

The refined Modal Coupling approach can be investigated further in order to extend its

applicability to the prediction of the dynamic characteristics of structures in which

some of the components possess a non negligible damping.

The necessity of the mentioned development is still reinforced in the cases of highly

dissipative joints between components. In this case, the ‘dummy’ flexible inter-

connecting system which is used to express the information of the residual flexibility

effect of the out-of-range modes can yet incorporate the joint charateristics  such as

flexibility and generally hysteretic damping.

In this field, a philosophy which may be adopted relies on the assumption of an

uncoupling techniques; these make use of the whole structure properties and the

component and joint properties can then be determined by uncoupling, step by step,

each of the assembled components.

Further investigation is necessary on the experimental determination of rotational

properties. The techniques used in the present work, namely those making use of

accelerometer and laser measurements, can be extended to the determination of

responses in more than one plane.

Another interesting topic to be investigated relates to the determination of rotational

responses of structures possessing close modes; in this context the laser measurement

needs to be explored in more detail.

In terms of structural modification, it is the author’s belief that the SVD has some

potential to be used in order to locate the coordinate (or mode) which change is most

effective to attain a specific modification on the structure.
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APPENDIX 1

REFORMULATED FRF MATRIX

OF IMPEDANCE COUPLING METHOD

Without loss of generality, the FRF matrix which is assumed herein is the Receptance

matrix (which can be interrelated with Mobility or Accelerance). It can be partitioned

according to the previously selected interior and connection coordinates in each subsystem

as follows:

B".111. . . . =

B"C

. . . . . . * . . . . . .

BH ; BH
(A1.2)

ci cc

The coordinates in the FRF matrix of the coupled structure can be partitioned according to

three regions corresponding to,

- the interior coordinates of component A Qi) denoted as a

- the interior coordinates of component B (Bni) denoted as b

- the common connection coordinates of component A and B (*n, = Bnc = nc)

denoted as c

U
a

. . . .1)UC =

. . . .
ub

r H
aa

: H  :Hab
ac

1 . . . . . . : . . . . . . . . . . . . .: H1 ca
: H : Hcb

cc
. . . . . . * . . . . . . * . . . . . .

Hba ; Hbc ; H,,

The whole system will possess an FRF matrix such as,

(A1.3)
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REFORMULATED FRF MATRIX

OF IMPEDANCE COUPLING METHOD

Without loss of generality, the FRF matrix which is assumed herein is the Receptance

matrix (which can be interrelated with Mobility or Accelerance). It can be partitioned

according to the previously selected interior and connection coordinates in each subsystem

as follows:

= AH ii : AH.1c. . . . . . * . . . . . .
AH I AHci cc

(Al. 1)

The coordinates in the FRF matrix of the coupled structure can be partitioned according to

three regions corresponding to,

- the interior coordinates of component A (Ani) denoted as a

- the interior coordinates of component B Qi) denoted as b

- the common connection coordinates of component A and B (Anc = Bnc = nc)

denoted as c

U
a

. . . .11UC =

. . . .
ub

The whole system will possess an FRF matrix such as,

rH :H :H.aa ac ab
. . . . . . - . . . . . . . . . . . . .
H ; H ; Hcbca cc

. . . . . . * . . . . . . * . . . . . .
H ba ; Hbc  ; H b b

(A1.3)
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The compatibility of displacements and equilibrium of forces between the two subsystems

are expressed as,

(‘a} = (A”i} (A1.4)

(‘b) = (n”i) (A1.5)

{‘c} = {&> = {B”c) (A1.6)

(Fc) = (Aft) + (Bfc) = (0) (A1.7)

IFa) = {Afi} (A1.8)

(F~) = (Bfi> (A1.9)

Denoting the interconnecting force acting on each subsystem as,

tfc} = {Aft) =- (Rfc} (A1.lO)

and by invoking equation (A1.6) a relationship between ( fC ) and the acting forces ( Fa)

and ( Fb) is given as,

If this equation is substituted into the following relationships,

{A”i] = [AHJ IFa) •t [AHic] tfc)

{RUi] = [RHiJ { F~} - [RHic] { f~ )

{~“c] =[AHicI {Fa] +[~~ccl {‘El
whose displacements ought to be equal to the displacements,

Pa) = LHaal IFal + LHabl IFIJ
{%I =CHd IFal +LHIJIJl IFbl
PC1 = CHcal IFal + LHcbl tFIJl

(A1.12)

(A1.13)

(A1.14)

(A1.15)

(A1.16)

(A1.17)
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respectively, this leads to the required relationships between the sub-matrices of the whole

system FRF matrix and the sub-matrices of each component FRF matrix as presented

next,

[ 1Haa
AmAy

1

[ 1Hbb
Bn.x n

= [BHii]-[BHiJ  [[A~=] + [B~M]]‘~ [BHcJ (A1*19)
,Bi

[ 1Hca n x n = [AHci] - [~~cc] [ [~~cc] + [ ~~ccI1-l [AHci] (*‘e2’)
cA i

[ 1H
cb = [AHcc] I [~~cc] + [ ~~cczll~~ [BHcJ (A1.21)

ncxBn.
1

[ 1H
ab = [AHic] [ [~~cc] + [ ~~cc]I~~ [BHciI (Al .22)

An.x n.,B I

[ 1Hcc = [BHcc] [ [AHcc]  + [ BHcc]] -’ [IAHcc] (A1.23)
AniXBn.

1

or in a condensed expression as,

-Haa:Hac:Hab’
. . . . . * . . . . . * . . . . .
Hca ; Hcc ; Hcb
. . . . . * . . . . . * . . . . .

_H,, i Hbc i H,,.

r AHii:AH. : 0 '
1c

1 . . . . . . : . . . . . . . . . . . . .

= I AH .:,H : 0
Cl cc

L . . . . . . - . . . . . . * . . . . . .
0 I 0 IBHii ’

AH. -1C
. . . . . .
AHcc
. . . . . .
BH.1C‘

AH. T

[ [AHcc] + [ BHcc]jl ;‘:I 1
1 . . . . . . 1

LBHic'

(A 1.24)
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u

RESIDUAL FLEXIBILITY CALCULATION

1 THEORETICAL ROUTE

The equation of motion for an undamped system is represented as,

WI {W + WI (~1 = (F) (A2.1 -a)

or, in partitioned form:

Assuming free harmonic motion, the eigensolution leads to the Modal model, formed of

the m=N mass-normalised mode shapes am and the m natural frequencies[ 1 .
Each coordinate displacement can now be represented as,

(A2.2)

or, by grouping the mode shapes according to the kept modes [QJ and the eliminated or

neglected out-of-range modes <f, , as:[ 1e

Iu)=[y_] (Pk}+[Oe] [Pe]=[@k:@e (A2.3)

Substituting equation (A2.3) into (A2.1) yields,
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1.1 APPROXIMATE METHOD

Substituting equation (A2.3) into (A2.1-a) leads to,

[iK] - m2 [m] [Ok] (pk} + [[Kl - a2 [m] [ae] ( Pe} = IF) (A2.5)

Pre-multiplying  equation (A2.5) [ ~~1’and considering the orthogonality of the natural

modes, the following equation is obtained,

(A2.6)

which gives the modal coordinates associated with the higher modes
1 1
‘ari ,

\

or, for the respective displacements,

{ ue’} = [oe] [-co2 [II + rmr;-] j-l [QelT  {Fj

(A2.7)

Since we assume that 2 >> a:, this equation can be approximated to,

(A2.8)

so that the residual flexibility matrix is given by:

(A2.9)

(A2.10)
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1.2 IMPROVED METHOD

In this case a distinction must be made between constrained and unconstrained structures,

always assuming that the system is not constrained in its connection degrees of freedom.

1.2.1 CONSTRAINED STRUCTURES

The following procedure is based on Hansteen’s method [69] which permits the

calculation of a more accurate residual flexibility matrix.

Let us re-write the second term of equation (A2.4) as,

[Qk : aelT IF) = [I] :’
tie

Because of the mass-normalisation

valid:

T
1

[II = [ok : Oe] - [M][Q,  : OeJ

(A2.11)

of the mode shapes, the following relationship is

(A2.12)

which, when substituted into equation (A2.11) gives,

{F) = [M& : Oe]

or

VI = { fk’} + { fe’} (A2.15)

(A2.13)

(A2.14)

This means that the force vector is composed of two parts; the first one is exciting the kept

modes and the second is used to excite the remaining modes. This latter contribuition is
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(A2.16)

(A2.17)

The displacement due to that force is then:

( Ue} = [WI -mWljl { fe’}

( Ue) = [IN -~Wtljl [ I?1 - [Ml [ Qk] [ akIT ]O (A2.18)

ln cases where the out-of-range natural frequencies are much greater than the frequencies

of interest, it is possible to approximate equation (A2.18) to:

{“e} = [K]-l [[II - [m [ ak] [ akIT ] (F)

The residual flexibility matrix is given by:

[RI = Gl [II1 - WI [ Qk] [ akIT ]

or [RI = WI - [QJ [‘o&j-’ [orIT

(A2.19)

(A2.20)

with WI = WI -1
being the total flexibility matrix.

1.2.2 UNCONSTRAINED STRUCTURES

In the case of unconstrained structures, it is not possible to invert the stiffness matrix and

so another approach should be employed. Craig [68] suggests the following procedure;

Firstly, the modes are separated into rigid-body and flexible modes such that,

{u} = [i] (Pr) + [QJ ( Pf> = [ar : @f

4 I

.9:

Pf
(A2.21)
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being the total flexibility matrix which should be substituted into equation (A2.20) for the

calculation of the relevant residual flexibility matrix [RI.

2. EXPERIMENTAL ROUTE

From the Response model of a given structure, a modal identification may be applied in

order to extract the modal parameters [ 11. For each measured FRF (Frequency Response

Function), say the Receptance obtained by measuring the displacement at coordinate j by

exciting the structure at coordinate k, a set of modal parameters is extracted for each of the

existing modes,

,A --
jk

0 --

; --

Modal Constant (Modulus + Phase)

natural frequency

damping factor

The Receptance for a particular case of a lightly damped structure is theoretically given

;i= ajk(w)  =
k

c
l=l

(A2.29)

Let us suppose that only mk modes have been measured in the frequency range of

interest, but that there are also other modes outside this range at lower frequencies and at

higher frequencies. Equation (A2.29) may now be written as,

r=l r=ml+l r=ml+mk+i

At lower frequencies, i.e. for or << o, the first term can be approximated as:
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mlc ,A S9 _ jk
_ ,2 _ 02

r=l

(A2.3 1)

corresponding to a residual mass which accounts for the out-of-range low frequency

terms (S. has dimension I/muss and units l/kg ) Conversely, at higher frequencies we
Jk

have or>> o leading to the approximation for the third term,

c rA.Jk _--

4
R

jk (A2.32)

which corresponds to a residual compliance or flexibility, accounting for the out-

of-range high frequency modes ( Rjk has dimensions Ilstifsness  and units m/N ).

Assuming that the low frequency residual can be represented by a zero-frequency mode,

we may write for the point response Receptance;

;= CL(w) =
r A j jc2 +RU

j or - co2
(A2.33)

I=1

The residual flexibility matrix is then constructed by measuring all the necessary Rjk

values; sometimes, and because transfer residual flexibility values are negligible when

compared with the point response residuals, only the diagonal elements are considered.

The high-frequency residual can be visualised as a spring, attached to the system at

the corresponding coordinates. The high frequency residual is an approximation to the

combined effects of a number of modes which can be expressed in terms of a modal

constant of a fictitious mode at an assumed ressonance frequency. It is important to note

that there is no mode shape associated to the fictitious residual mode.
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MATRIX PROPERTIES

1 MATRIX NORMS

The most frequently-used matrix norms in numerical analysis is the F-norm (Frobenius

norm) given as,

1

1

z
IIAII,= F F I aij I 2

i=l i=l

II A II i = CJ~ + 0’2 + . . . + 0: ( oi are the singular values of [A] )

and the p-norms (especially p= 1,2,=)

sup II Ax lip
ll A lip =X#O II x I$

II A I$ = y 2 I aij I
i=l

1

II A II, = [ max eigen of [AjTIA]lZ= CJ]

II A II_ = y i I aij I
j=l

The Frobenius norms and the p-norms satisfy certain inequalities such as,

II A II, 5 II A II, I fi II A II2

max I aij I I II A II2 I dzax I a;j I
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2 RANK PROPERTIES

The rank of a matrix, r = rank([A] ), is the number of linearly independent rows (and
mxn

columns) in a given matrix. Some of the rank properties of a matrix are presented next:

l r is a positive integer

l rank([A] ) I m and 5 n : the rank of a matrix equals or is less than the smaller
mxn

of its number of rows or columns

l rank([A] ) < n : a square matrix has rank not exceeding its order
nxn

l when r#O there is at least one square submatrix of [A] having order r that is non-

singular

l when rank([A] ) = n then [A] is non-singular i.e., [Al-l exists and is said to
nxn

have full rank

l when rank([A] )=m<n
mxn

l when rank([A] )=n<m
mxn

[A] is said to have full row rank

[A] is said to have full column rank

3 LINEAR COMBINATION OF VECTORS

Let us assume n vectors, all of them of the same order, which we call a set of n vectors

[A] E [ (al} (a2)..‘( a,)] and the scalars x1,x2,...,x,. The product [A](x) = i xi ( ai)
i = l

is called a linear combination of the set of the n vectors.

l [A] {x) is a column vector, a linear combination of the columns of [A]

l ( b)T[A] is a row vector, a linear combination of the rows of [A]

l [A][B] is matrix with its rows being a linear combination of the rows of [B] and

its columns being a linear combination of the columns of [A]
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Given a set of vectors, their dependence or independence can be ascertained by attempting

to solve [A]{ x} = { 0). If a solution can be found other than {x) = (0) (which is always

a solution), then it will be a non-null solution, and the vectors will be dependent.

Otherwise they are linearly independent.

A set of linearly independent vectors of order n can not contain more than n such vectors.

An important characteristic concerning the independence of rows and columns in a given

matrix is that the number of linearly independent rows is the same as the number of

linearly independent columns.

4 PERMUTATION MATRICES

An elementary permutation matrix denoted as [Ers] is obtained from an identity matrix by

interchanging its r* and s* rows. The pre-multiplication of [A] by [Ers] interchanges

rows r and s so does post-multiplication interchange columns.

In general , a permutation matrix is an identity matrix with its rows re-sequenced in some

order. Because such a matrix is always a product of elementary matrices [El, it is not

necessarily symmetric but it is always orthogonal. One of the great uses of permutation

matrices is that they provide a mechanism for re-sequencing columns in a matrix so that a

matrix having r linearly independent rows can be re-sequenced into one having its first r

rows and its first r columns as linearly independent.



APPENDIX (IVI

RIGID BODY MOTION

1. DYNAMICS

The basic configuration of a rigid-body is shown in fig. A4.1.

X,YZ - Principal axes of Inertia

Let us assume that the inertia characteristics - i.e., the mass m and the principal mass

moments of inertia Ixx, Iyu and Izz - are known.

The dynamic equilibrium equation for an unrestrained body with respect to the principal

axes is,
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=

m.. . . .

. m.. . .

. . m . . .

. . . Ixx - *

. . . . IYY *

. . . . . . L

or in the inverse form

=

l/m . . . . .

. l/m . . . .

. l/m . . .

. . l/I,, * -

. . . . lflYY  -

. . . . . . ‘42

. .
8

X
. .

eY

ii 1Z

> (A4. l-a)

GFX

$Y

$Z1
M

X

MY

M
Z J

(A4. l-b)

> (A4.2-a)

(A4.2-b)

The point P has position coordinates (xp,yp,zp) in the principal reference system.

Assuming small axis rotations, the general displacement (acceleration) at point P is related

to the centroidal displacements (accelerations) by the equation,
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(A4.3-a)

(A4.3-b)

being the general force vector at point P related to the centroidal vector of general forces

by the equation

T

For another point Q, a similar relationships exist,

(ii), = [-q-J (ii),

(FIG = [Tw]T {WQ

(A4.4)

(A4.5)

(A4.6)

If the force is now acting at point Q, the resulting responses at point P will be given as,

PG$ = [TPCI [‘” j1 [TPOI~

(A4.7)

(A4.8)

This is the matrix of the “transferred” rigid-body Accelerance (Inertance) between points

QandP.

It is interesting to note that the first three diagonal terms contain components

corresponding to the three rigid-body modes; one of the components is due to the

translational motion whereas the other two are related to rotational motions.

L ,
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The full transferred Accelerance matrix elements are presented next,
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2x -

(A4.9)

The forces applied at point Q may be related to the resulting responses at point P by using

the “transferred” Inertia or Mass matrix

WQ = [s] W,

being the [s] matrix elements presented as follows

‘m 0 0 0 -m5

0 m 0 mzP 0

0 0 m -my, mxP

0  mzQ -myQ Ixx+m(zpzQ+YpYQ) -m”pyQ

(A4.10)

“YP

-mxP

0

_“p”Q

-mzQ 0 mxQ -“Yp”Q Iyy+m(zpzQ+xpxQ) -mYpZQ

.  myQ-mxQ  0 -mzpxQ

(A4.11)
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2. RIGID-BODY MODE-SHAPES

For a freely-supported structure, the low-frequency response is dominated by the rigid-

body modes, which resonate at zero frequency. From Appendix II, the low-frequency

residual receptance due to the six rigid-body modes is given by,

6

l=l

or in terms of Accelerance,

6
. .

;= -CO* cxjk(W) = Ijk(W) = -Cc*
c

,~j r9k
-= S

k -o* jk

(A4.12)

(A4.13)

I=1

each term in rQj corresponds to an element in vector r ( CD) .

At zero frequency, the six rigid-body modes - three translational and three rotational - may

resonate together; thus, depending on the geometrical properties and on the location of the

exciting force, the modal constant S.
&

calculated for the zero frequency mode may contain

a combination of the different rigid-body modes. Then, this combined information must

be separated before the full matrix [a] can be evaluated. For each point, say P, six

possible displacements are considered,

(A4.14)
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2.1 Translational RIGID-BODY MODE-SHAPES

In the rigid-body motion involving only translational motions along the X, Y and Z axis

respectively, all the rotational displacements are zero except the corresponding axial

displacements. The mode shape vector related to point P is then,

(A4.15)

(A4.16)

CX, CY and CZ being the scaling factors to be calculated according to normalisation

process.

2.2 Rotational RIGID-BODY MODE-SHAPES

Since we assume small rotations, the corresponding rotational rigid-body mode-shapes

are,

(A4.17)

where Co,, Q+ and Q, are the rotational scaling factors.
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2.3 Normalised RIGID-BODY MODE-SHAPES

Let us consider the case of the response at point P due to the excitation at the same point.

The

The

full non-normalised rigid-body mode shape matrix for point P is given by,

[@lP = [ TransJ@lP : Rot. WP] (A4.19)

scaling factors are calculated by imposing the orthogonalisation condition with

respect to the mass matrix [Mpp], which is calculated by using equation (A4.11) for the

case of a point excitation (Q=P). Thus,

[@lpT [%I [alp= [II

which gives for the scaling factors the following values,

(A4.20)

(A4.21)

The full mass-normalised rigid-body mode shape matrix is then represented as,
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