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ABSTRACT
The use of experimental modal analysis techniques together with Fourier
transform methods is considered for their application to the transient response
analysis of structures. The limitations and validity of this approach are
examined for linear structures, and a relationship derived that describes the
errors involved due to time aliasing within the inverse discrete Fourier
transform. The method is demonstrated with a simple beam using several

experimental modal analysis procedures.

The applicability of the same analysis and prediction techniques to non-linear
structures is explored. The use of constant-force stepped-sine excitation and
subsequent circle-fit modal analysis procedures for identifying non-linearities
is reviewed. Also, the reciprocal-of-receptance analysis is extended for

classifying and quantifying the non-linearity present.

Results from non-linear systems subjected to impulse excitation are examined
using various analyses. It is found that clear trends are evident-for different

non-linearities, but they do not correspond to those from a constant-force

stepped-sine test.

Techniques for predicting the transient response for non-linear systems using
data from experimental tests are examined, with the result that several
different approaches are recommended depending on the non-linearity, the
initial conditions and the type and accuracy required of the results. These
prediction methods include using a specific linear model and developing

non-linear models that accurately describe the transient response.

Multi-degree-of-freedom systems with one non-linear element are also
examined, as in many practical structures the non-linearity tends to be
concentrated in a single component. The trends exhibited in the individual
non-linear elements subjected to experimental modal analysis are found to
correspond to those trends found in the resonances of the
multi-degree-of-freedom systems. Similarly, the recommended techniques for
transient response prediction of a non-linear structure correspond to those for

non-linear elements under the same conditions.
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1 INTRODUCTION

1.1 Background and overview

Shock loading of a submarine may cause damage to important on-board systems.
This damage ranges in severity depending on the level of shock but in extreme
cases may render the submarine unserviceable, or unable to return safely to
base. Shock protection of critical on-board systems is therefore essential, and
it is necessary to be able to predict the transient response of these systems to

the expected shock loading in order to determine the shock protection

requirements.

One obvious approach to this requirement is shock testing of the systems of
interest to a standard specified by relevant interested parties. There are
several problems in the shock testing of structures, including the expense and
availability of full-size models and the logistics of running such a test. Using
scale models is an alternative, but there are still problems in scaling the
required parameters and in extrapolating the results to the required shock
standard on a full-size system. Also, it is usual to have only a few of the full
size components to test, with scale models of some of the other systems and
analytical models of the remaining components, and the subsequent
mathematical models all require combining in some form to provide a complete

description of the total structure.

Several techniques exist for the transient response prediction of structures,
but all the methods require a mathematical description of the structure. In
situations where mathematical models do not exist there is a requirement to
construct such a model from experimental tests. Experimental modal analysis
methods are an alternative route for evaluating mathematical models.
Experimental modal analysis covers the testing of. the structure - eg by
stepped-sine excitation, random excitation or impact testing - and the
subsequent analysis of the data - in either the frequency or the time domain - to
obtain a frequency response model of a structure. As some of the
sub-structures of a submarine are too complex to be modelled theoretically, and

models for these will need to be obtained from experimental data, the use of
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transient response prediction methods with experimental data is an important

topic.

All systems are to some degree non-linear; therefore, the use of transient
response prediction methods for non-linear structures with mathematical
models derived by modal analysis techniques is an important area for
investigation as it is reasonable to assume that most of the on-board systems of

a submarine are non-linear.

1.2 Objectives

As experimental modal analysis methods can be used to determine mathematical
models of structures far more easily, and at less expense, than by calculating a
model from shock tests, a primary objective of this research is to explore the
potential for using experimental modal analysis data to evaluate suitable
parameters for the prediction of the response of the structure to a shock input.
An essential component of this study is to determine the limitations and
restrictions placed on the experimental analysis techniques and the transient
response prediction methods used, and the subsequent accuracy of the results.
In particular, the special problems in predicting the transient response of
structures with non-linear components using models derived from

experimental modal analysis are to be addressed as these conditions represent

the closest to real-life applications.

1.3 Contents of the thesis

Initially, methods available for transient response prediction are reviewed. All
the techniques, whether working in the time or in the frequency domains,
require a mathematical model of the structure. The Fourier transform
approach uses a frequency response model of the structure, and as such is
perhaps the most appropriate method for use with experimental data.
Frequency response models are often determined using modal analysis methods,
and experimental modal analysis techniques are reviewed in chapter 3,

including both the testing and the data analysis procedures. Also included in that
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chapter is a section on the process of coupling together frequency response
measurements on separate components in order to evaluate the response

characteristics of the complete structure formed by their assembly.

The Fourier transform method is considered in detail in chapter 4, with a brief
review of Fourier theory followed by an examination of the requirements of the
frequency response data for accurate transient response predictions. These
requirements have implications for the experimental and analytical procedures
used to obtain the frequency response data as it is found that errors in the modal
parameters can result in large deviations of the predicted transient response
from the true response. In terms of the data used in the transform, the usual
criterion of a sample rate of twice the maximum frequency content avoid
frequency aliasing is mentioned, and also a maximum frequency spacing for any
given system to avoid time aliasing when transforming from the frequency to
the time domain has been developed. Both forms of aliasing are considered. This
technique for transient response prediction is suitable for linear systems
provided that certain constraints are observed in the quality of data, and in the

digitisation of the frequency response for the transform.

Attention is then turned to the problems associated with non-linear structures.
In chapter 5 the application of modal analysis techniques to non-linear
structures is examined in terms of the ability of the techniques to identify and
quantify a non-linearity. Of particular interest is the reciprocal-of-
receptance method which is found to be a powerful tool in distinguishing
between damping and stiffness type non-linearities, and the method is easily

adapted for some non-linearities to enable specific non-linear parameters to be

evaluated.

Examination of the results in the frequency response data from transient
excitation again shows distinct trends for each non-linearity considered, but
these are not generally the same as the trends seen in frequency response data
for the same non-linearity but measured via a constant-force sine test. As the
results of the frequency response data vary considerably, the impulse response
functions from the two excitation techniques are compared, and again there is

found to be very little agreement.
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Predictions for the impulse response functions of non-linear elements are
examined in chapter 6. Two approaches are considered; using the frequency
response functions from modal analysis, or developing a non-linear model from
experimental data specifically for use in transient response predictions. The

linear approach is suitable for several applications, but generally using a

specific set of modal parameters (several different sets of modal parameters
can be evaluated from a single measurement of a non-linear structure). The
modal parameters recommended so as to ensure acceptable results are derived
for various non-linearities. The limitations on the validity and accuracy of any
prediction is examined and it is found that for some non-linearities the linear
approach generates good predictions, whilst for others a non-linear model must
be developed if accurate predictions are required. However, non-linear models
can be very complex: a separate model needs to be developed for each type of
non-linearity, and the resulting non-linear model will only be valid for
transient response predictions and would generate large errors if used for
steady-state response predictions. Therefore, non-linear models should only be

used where necessary, and not as standard practice.

In chapter 7 the extension of these techniques for application {o
multi-degree-of-freedom systems is considered. The trends for identifying the
presence and type of non-linearity remain unchanged from the corresponding
single-degree-of-freedom element. The transient response predictions using
the linear parameters evaluated as recommended from the

single-degree-of-freedom elements are also examined.

Finally, the results of the work are summarised in the form of
recommendations of how to use experimental modal analysis in transient
response predictions, for both linear and non-linear structures. For linear
structures, future developments in modal analysis techniques may enable
parameters to be evaluated that are a closer approximation to those of the real
structure and hence result in a better transient response prediction. However,
further research is envisaged into many aspects of the transient response

prediction of non-linear structures using experimental data.
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2 A REVIEW OF TRANSIENT RESPONSE ANALYSIS

METHODS

2.0 Introduction

The requirements for a transient structural response analysis vary from one
application to another. For some analyses a single-degree-of-freedom (SDOF)
model is sufficient, whilst in other cases a more detailed
multi-degree-of-freedom (MDOF) model is necessary. Further, the need for an
approach to non-linearities in the system ranges from ignoring them altogether
to attempting to model the non-linearity in detail. To satisfy this range of
requirements, many different transient response analysis methods have been
developed, working in both the time and the frequency domains. The
presentation of results also differs with the analysis and application from
showing only the maximum response to displaying the full time history. The
aim of this chapter is to review the methods available for transient response
analysis of theoretical and real structures. In considering the various
alternatives, the primary concern is the applicability of each method for the
prediction of transient responses of complex structures using experimental data

as a means of describing their properties.

The first part of the chapter is concerned with time domain methods, including
time-marching solutions, Duhamel’s integral method and graphical techniques.
Frequency domain methods are then examined. Shock spectra are used when
only the maximum values of response are of interest, and the Fourier transform

approach is examined in detail for use with frequency response data.

Many engineering structures that are subjected to transient loading are often
too complex to be theoretically modelled in full. For these structures, some or
all of the components may need to be described by experimental data. In these
situations the experimental description of the structure is usually in the
frequency domain as frequency response functions or modal data, in which case
the most appropriate technique for transient response analysis is to use a

Fourier transform-based approach.
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2.1 Time domain methods

This section reviews the techniques available for transient response analysis in
the time domain. The first group of methods considered solve the equations of
motion of the structure numerically. These types of analysis are suitable for
SDOF or MDOF components, and can also be adapted for non-linear systems.
Duhamel’s integral method is considered next: this is based on the principle of
convolution and is’ primarily applicable to linear models whose impulse
response functions can be expressed analytically. Finally in this section,
graphical approaches are mentioned: these analyses are performed on SDOF
elements or individual modes of vibration of a structure and, when the

non-linearity in a system is known, graphical analysis can easily be adapted to

include the effect.

All of the methods in this section require a knowledge of the properties of the
system. This makes the time domain techniques better suited to the transient
response analysis of structures that can easily be modelled theoretically than
those that need to be described by experimental data. Duhamel’s integral and
graphical approaches are developed for SDOF systems: these techniques can be
applied to MDOF systems but the accuracy of the solution is less than for the
SDOF example. Numerical solutions are attractive for real structures as the
solutions are for MDOF systems and several of the methods can be adapted for
non-linear components - the problem being that in our case not all the
structures are analytic and therefore the form of any non-linearity is not

known. This means that the equations of motion can not be formulated

theoretically.

2.1.1 Numerical methods

Many different algorithms exist for the step-by-step solution of differential
equations. The choice of method for use in a particular case depends on many
factors including, the form and type of the equations, the known boundary
conditions and the speed or accuracy required. Chan and Newmark [1] assess

many of them, and methods are well documented by other authors (eg [2] to
[7]). The Newmark-B method (refs [8] to [11]) is a general numerical
procedure that has been developed for transient structural response analysis.
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The choice of B in the equation determines the variation of acceleration within

the time step, so that stability and convergence of the calculation is dependent on

the value of B. Use of the Newmark-f- or any numerical solution - requires a
knowledge of the system parameters (ie mass and stiffness). If the structure is
too complex to be modelled theoretically a description of the component can be
obtained by using experimental modal analysis. There are also other types of
numerical solution for MDOF systems which provide an approximate response
using only a few of the modes (eg mode superposition method [12]). These
methods are more efficient when - as is often the case in shock response - the

first few modes contribute the majority of the response.

The Newmark-3 method has been extended to include non-linear elements and,
once the non-linear parameters have been obtained, solves the equations

without linearisation. A finite difference method [13] has been developed that

is similar to the Newmark- method but is in a form that will accept any form

of non-linerity. Also, Lyons et al [14] suggested using a two stage solution for
non-linear systems. The first stage is to solve the equations of motion directly
using a numerical method to calculate an equivalent non-linear force. This
calculation is performed using only the non-linear components and a small
number of low frequency linear modes - as the response of non-linear elements
is primarily affected by those linear modes of vibration. In the second stage,
this equivalent non-linear force is substituted into the equations of motion for
the non-linear terms and the equations for the full system are solved using the

more efficient transform analysis.

2.1.2 Duhamel’'s Integral

Duhamel’s Integral method and the Superposition Integral are two names that
are used to describe the convolution integral when it is applied to structural
dynamics. Convolution is an important operation in linear systems theory, and
the theory of convolution and its applications are well covered in the many text

books available that examine linear systems (eg [15] to [25]).
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The convolution integral as applied to transient vibration analysis is an exact
solution for the linear system. The integral treats the input (f(t)) as a series
of impulses of various magnitudes, and assumes that the response (Xx(t)) is

given by the Sum of responses to all the impulses. The response can be written

as:
X(t) =4 J H(t)h(t-)a
where h(t) is the impulse response function of the system.

To perform Duhamel's integral, the impulse response function of the system

needs to be determined. This can be calculated by several different methods:

() for a simple system whose equation of motion is known, the equation can be
solved using the initial conditions of an impulse (x{(0)=0,

x(0)=impulse/mass) to give the impulse response function.

(i) the impulse response function can also be found by taking the inverse
Laplace transform of the system transfer function (H(s)).
h=L"" (H(s))

In practice, the impulse response function can be obtained by:

(i) applying a step forcing function to the system, and differentiating the

consequent response to obtain the impulse response function;

* (iv) applying a high-level pulse whose duration is short compared with the
upper cut-off frequency of the system so as to simulate an impulse. The

response is taken as h(t);

(v) a random noise input, whose spectral density is flat, is applied to the

system and the cross correlation function between the input and the output is

computed. This is H(w), the system frequency response function, and h(t) is

obtained by inverse Fourier transforming H(o).
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Often, the response is required to transient inputs applied simultaneously at
several different sites on the structure. To extend this method for multi-site
excitation requires a knowledge of how the point of interest responds to an
impulse at each point of excitation. The total response at point i is then given by

a summation of the integrals at the response point of interest with the M

excitation points.

M
xity =X 11 j(Oh{t-t)de
j=1

The integrals can become complicated for MDOF systems resulting in the need
for numerical integration. The major advantage of a closed-form solution is

then lost and the restrictions on accuracy are now similar to those for other

numerical techniques.

2.1.3 Graphical methods

Graphical methods are time-consuming as a complete construction is needed at
every frequency of interest. Sometimes, the particular quantity required (eg
maximum displacement) can be recognised from a graphical construction more
quickly than it can be calculated. The most useful graphical technique is the
Phase-Plane method (ref [23]to [28]) which can be developed for non-linear
equations and is then often referred to as the Phase-Plane-Delta method. The
Phase-Plane techniques are basically intended for SDOF systems, or for
analysing isolated modes that are expressed analytically as SDOF systems, but
these approaches can be applied to MDOF systems using superposition if the

relationship between the individual modes is known.

These techniques are basically graphical approachs to a numerical solution - a
time-stepping method that relies on previous time data and an estimate as to
how one of the parameters varies over the time step. Graphical methods have an
advantage over numerical analysis in that the response is seen at each time step
and the process can be stopped when enough of the solution has been calculated,

and the technique may also be quicker in obtaining the maximum response.
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2.2 Frequency domain methods

In this section the methods available for transient response analysis in the
frequency domain are reviewed. Shock response spectra are examined followed
by the Fourier transform method. Both approaches assume that the system is
linear, shock spectra being for SDOF systems whilst the Fourier transform
method can be applied to any system. As in SDOF time domain methods, results
from any shock response spectrum can be superimposed for MDOF systems if
the relationship between the modes is known or can be approximated. There is
also a difference in the presentation of results from these analyses, shock
response spectra present only the maximum response of SDOF systems to a

pulse, whilst the Fourier transform provides the full response for the system.

2.2.1 Shock response spectra

The concept of the shock response spectrum was originally developed in order to
examine the effects of earthquakes on structures when, since it was the
maximum responses that was causing most of the damage, it was decided that the
full response time-history was not required. These maximum responses tend to

occur during, or shortly after, the initial response from the earthquake.

Shock response spectra present the maximum response of several SDOF systems
to a pulse, the axes of the plot being the natural frequency of the SDOF system
along the x-axis and maximum response in the y-direction. Often, shock spectra
have non-dimensionalised axes: the response axis is non-dimensionalised to
maximum static displacement, and the frequency axis non-dimensionalised by
the pulse duration. Shock response spectra for undamped SDOF systems are
well covered by several authors (eg [29] to [36]). Spectra for damped SDOF
systems are also discussed by a few (eg [24] and [37] to [39]), but the
variation in the maximum response with damping is small and undamped

spectra, which are considered conservative estimates for the damped systems,

are generally used for any system.
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There are three types of shock response spectrum: maximax, residual and
initial. The maximax response spectrum is the maximum response of the
system to the pulse, the residual response spectrum is the maximum
response of the system after the pulse has finished, and the initial response
spectrum is the maximum response of the system during the pulse. Examples

of the spectra for a half sine pulse are shown overleaf in fig (2.1).

When designing against malfunction or fracture, the maximax spectrum is of
particular interest. If fatigue is the likely mode of failure then the residual
spectrum is of interest. Any of the three types of spectrum may be the absolute
response of the mass or the relative response of the mass to another point on the
structure. Damage may occur to the structure, for instance, if a critical
relative displacement is exceeded - a maximum stress level may be reached, or

the system may collide with another damage-prone element.

Several methods are available for generating shock response spectra. The
original method used a reed gauge where the reeds are tuned to prescribed
frequencies. This can also be synthesised by using a series of filters. If the
equation of motion is known analytically then it can be solved for a range of
natural frequencies and the maximum values obtained. Shock response spectra
can be constructed from experimental data, using the maximum response of the
system from different duration pulses (rather than changing the natural
frequency of the system). There are also methods available for maximax

estimation eg ref [30] which may be quicker than exact evaluation.

One restriction on the use of shock response spectra is that they relate to SDOF
systems only, whereas very few real structures can be represented by SDOF
models. This problem has been examined in several references, including [34]
where the general trends of shock response spectra are also examined, [35]
where estimating, rather than calculating, maximax response for discrete

MDOF systems is considered, and [36] where it is developed in the field of

earthquakes.
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The need for non-linear analysis has been mentioned by several authors (eg
{32] and [36]) including the problems of using superposition with non-linear
systems. Ref [36] also notes that in some cases the response of the non-linear
system can be greater than the corresponding linear system; hence, using

estimates from linear shock response spectra might not be conservative.

Nevertheless, shock response spectra have their uses in predicting the
maximum response of a system to a transient input. In order to be able to
combine the predicted maximum response for MDOF systems, the relative
contribution of each mode needs to be known. This information can be obtained
by experimental modal analysis if the system cannot be modelled theoretically.
Using shock response spectra does not enable a time history of the response to
be calculated, and is therefore only useful when the criterion under under

consideration is that of maximum response.

2.2.2 Fourier transform methods

The Fourier transform is a method of analysis that is used on linear systems to
recast a problem in a format that can be solved more readily than is possible in
the original format. For the application of transient response prediction of
structures, the Fourier transform is widely used. More specifically, a version
known as the discrete Fourier transform (DFT) is often used, as this can very
readily be implemented by using an efficient set of algorithms on computers,
known as the ‘fast Fourier transform’ (FFT). Information on Fourier
transform methods and the application to transient response prediction of

structures is available in the literature on the subject which includes refs [40]

to [45].

The basic principle for transient response prediction in structural dynamics
using the FFT is to apply the Fourier transform to the convolution integral.
This recasts the time domain integration expression into a frequency domain
multiplication. Fourier transforms are useful tools for predicting the transient
response of a linear, or linearised system. Performing multiplications in the

frequency domain is more efficient than integration in the time domain.
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In practical situations, a time domain transient input can be transformed into
the frequency domain. This is then multiplied by the frequency response

function of the system under analysis, and the result transformed back into the

time domain to obtain the time history of the response.

In experimental modal analysis, the information most readily available about
the structure is a set of frequency responses. These frequency response data are
in the form required for convolution in the frequency domain with the input
signal. No analysis needs to be done to available experimental data - such as
extracting the modal parameters - before using these data for transient
response prediction. However, if modal parameters are available, either from
experimental data or from a theoretical model, the frequency response functions
can then be regenerated up to the required frequency of interest. This can then

be treated as the- experimentally-obtained frequency response functions.

The limitations and approximations are in the DFT process, both in
transforming the input signal to the frequency domain, and transforming the
results back to the time domain. Most of the limitations, Such as frequency
aliasing, are well documented. Some limitations specific to structural
dynamics, such as incomplete or badly-defined frequency response data, need

careful consideration and will be examined in more detail later in this thesis.
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2.3 Discussion

For structural transient response analysis the frequency domain methods can be
applied equally well using both theoretical data and with experimental data. The
time domain approaches, however, are better suited to theoretical systems

where the equations of motion are known.

The Fourier transform and the time-marching methods are more suited to MDOF
systems than are the other methods, although formation of the equations for the
time-marching algorithms becomes harder with increasing numbers of degrees
of freedom. Duhamel’s integral method, graphical techniques and shock spectra
apply primarily to SDOF systems but can be adapted for MDOF systems with

some approximations to the contribution of each mode to the total response.

Methods that take account of non-linearity in systems include the

time-marching solutions - notably, Newmark-B- and graphical methods. In
the latter case the responses from several modes are combined using
superposition and normal mode contributions, thereby assuming linearity. The
time-marching solutions require the non-linearity to be defined
mathematically and this is often only a rough approximation. None of the
methods mentioned provides exact transient response solutions using

non-linear experimental data.

The Fourier transform method is more efficient than direct solution of the
equations of motion and, if the structure cannot be modelled and has to be
measured experimentally, the digitised frequency response functions can easily

be multiplied by any forcing function to provide a transient response

prediction.

For these reasons this thesis concentrates on the use of Fourier transforms for
transient response analysis from experimental data. These data can take the
form of raw frequency response measurements, (such as are measured in
typical modal test procedures) or the modal parameters obtained from
experimental data. One of the methods of evaluating the required parameters of

the system from the experimental data is by using modal analysis.
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3 A REVIEW OF FREQUENCY RESPONSE METHODS FOR
STRUCTURAL MODELLING

3.0 Introduction

The technique known as modal analysis is often used to create a frequency
domain model of structures of interest. In this instance, experimental modal
analysis covers the experimental testing of structures and the subsequent
analysis of the measured data to extract the modal parameters (natural
frequencies, mode shapes, and damping) that form the frequency domain model.
The information obtained from these tests and analyses can be used in several
applications - one of which is response prediction to any input force condition
including transient excitation. The aim of this chapter is to review current
testing procedures for measuring the frequency response function (FRF)
properties of structures, and the analysis methods for evaluating the modal
parameters from these FRF data. In the review of analysis methods attention is
focused on techniques that will be used in later sections. Some applications of

these FRF data and modal parameters will also be considered.

The present chapter starts by briefly examining the essential theory of modal
analysis necessary for the subsequent analysis of experimental data. Some of the
methods for experimentally measuring the frequency response of the structure
will then be discussed and various methods for analysing the data will be
examined. The advantages and limitations of the experimental techniques and
analysis methods will also be considered. In the last part of the chapter some of
the applications of data obtained from experimental modal tests - either raw
FRF data or modal parameters - are reviewed. The topics discussed in this
chapter are extensively covered in the available literature on modal analysis.

The work by Ewins (ref [46]) on modal testing includes information on most of

the subjects.
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3.1 Summary of essential modal theory

The theoretical route to vibration analysis generally starts with a spatial
model, which is a description of the physical properties - ie mass, stiffness and
damping - of the system. Next, the spatial model equations are solved for a
modal description of the system consisting of a set of natural frequencies, mode
shape vectors and modal damping of the system, together known as the modal
model. Finally, in the theoretical analysis, a response model can be generated to
describe how the structure responds under given force excitation conditions.
The theoretical development from spatial to modal to response model is reviewed

in Appendix 1.

One convenient form of response model for a structure can be expressed as a set
of frequency response functions (FRFs) for the points of interest on the
structure. Each FRF in this case is the ratio of the response to a unit amplitude
sinusoidal force applied at a single point over the frequency range of interest.

The general form of the for displacement FRF (receptance) is:-

. d
fkei(l)t

2 2
®° -0 +|Dr

ol

where ajk(co) is the receptance FRF at point (jk)

X; is the response at point |

f i is the input force at point k

N is the number of modes of vibration.

Cr is the r'" modal constant - which is the product of the

mode shape vectors from the excitation and response point. C,

may or may not be frequency dependent and can be either real

or complex depending on the damping model used.

@, is the r'? natural frequency.

. th . .
D, is the "' damping term - which may or may not be

frequency dependent and can be either real or complex

depending on the damping model used.
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The FRFs for velocity (mobility) or acceleration (accelerance) responses are

related to receptance by (io) or (-0)2) respectively. The reciprocal
relationships of force per unit response are also used. These relationships are
more often associated with other fields of application - eg sound propagation -
but, if the inverse FRFs are applied to structural dynamics, then it is important
that their significance be fully understood, as considerable errors occur when

they are incorrectly applied to multi-degree-of-freedom (MDOF) systems.

It is worth mentioning here the two common models of linear damping (refs

[47]) & [48]). These are:-
(i) viscous damping, where the damping force is proportional to velocity.

(i) hysteretic (or structural) damping, which is defined for sinusoidal
excitation, is where the damping force is proportional to displacement but takes

the sign of velocity.

The theoretical development of the FRFs of a system with viscous damping is
rigerous - the differential equations of motion are first solved for a
complementary solution, then for the particular integral for sinusoidal
excitation. Inspection of the FRFs for these systems reveals that the effect of
the damper is dependent upon frequency. In practical structures, damping is
usually found to be relatively independent of frequency so, to take this into
account, the hysteretic (or structural) damping model is used. Hysteretic
damping is defined as a dissipation mechanism whose damping coefficient is
inversely proportional to frequency, and this results in frequency-independent
damping terms in the FRF. However, the analysis with hysteretic damping is

not strictly valid for free vibration, as the damping model is only defined for

forced sinusoidal excitation and does not apply for @w=0. Even so, hysteretic
damping is an acceptable model of damping for forced harmonic vibration. Also,
as it is always possible to express an FRF as a series of simpler terms, each of
which may be identified with one of the ‘modes’ of a system so the individual
terms may be considered genuine characteristics of the system.
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When examining systems with hysteretic damping models the damping quantity

is usually expressed as a ‘loss factor’ (1), which is the ratio of the energy lost

per cycle (AE) to the maximum potential energy stored in the system during
that cycle (\7)0 This can be expressed as:-
n=1 AE
2n V

In systems with viscous damping, the ‘damping ratio’ (€) is often referred to,

which is the ratio of the actual viscous damping in the system to the critical

damping (c,) of the system (critical damping is when there is just no

oscillations).
C=clc,

Using energy considerations, the expression for the damping loss factor can be
used to calculate equivalent damping loss factors for other damping mechanisms.

In the case of viscous damping this leads to:-

Ny =26 @/ )

This means that atresonance mM=2C. This relationship will be used later in the

thesis when the damping ratio is required from calculated damping loss factors.

Presentation of results

The FRF data are complex, hence there are three quantities - two parts to the
complex FRF, and the frequency - that need to be displayed. To present all these
data requires two plots, as a standard plot can only show two of the three
guantities. There are several different forms of presentation used depending on
the requirements from the measured data. Two of the more common forms of
presentation for structural analysis are mentioned here, one of which is only

suitable for damped systems.
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The first form of presentation is the Bode type. This consists of two plots -
modulus (of the FRF) vs frequency and phase vs frequency. To encompass the
wide range of values associated with FRFs, the plots often make use of

logarithmic axes for the frequency and modulus scales. An example of this type

of display is shown in fig (3.1)-

The Nyquist (or Argand plane) plot is the second type of presentation in
widespread use. This is a single plot of the real part of the FRF against the
imaginary part. The frequency information is not readily available from this
type of display, but can be marked on the plot as shown in the example in fig

(3.2). The Nyquist plot is particularly suitable for focusing attention to the

detail around the resonance region.

Both the Bode and the Nyquist plots contain interesting geometric properties
that are related to the modal parameters. This is particularly useful in the
experimental approach to modal analysis as given the frequency response data

the modal parameters can generally be calculated from detailed analysis of the

actual plotted curves.

-Figures are at the end of the chapter.
36




3.2 Experimental testing for frequency response of

structures

The experimental testing procedure starts where the theoretical route finishes
- the frequency response data. In this approach, the FRF is measured
experimentally from the structure, modal parameters evaluated from the FRF
and finally a spatial model may be reconstructed from the modal model. In this

section the measurement techniques used for obtaining the frequency response

will be summarised.

The type of structural measurement required for experimental modal analysis
needs both the input and the response to be measured simultaneously. The
amplitude ratio and the phase relationship of the two signals then needs to be
evaluated in the frequency domain to obtain the FRF. If care and attention are
paid to the details of preparing a structure for test then the measured data
should be an accurate frequency response description of the structure.
However, large errors can be introduced if, for instance, the mass of the
measuring transducers is significant compared with the effective mass of the

structure, or resonances can be added to the system through the suspension of

the structure.

There are several experimental testing methods available that are in common
usage. These can broadly be split into two types:-
(i) Single-point excitation, as the name suggests, has only one point of

excitation at a time and corresponds closely to the theoretical derivation for

frequency response functions; and
(i) Multi-point excitation, where several sites are chosen to be excited

simultaneously (eg refs [49]to [52]).

For a linear structure, where the relationship between input and response is
constant at any given frequency, the excitation method makes no difference to
the measured frequency response and can consist of sinusoidal, random, periodic
or transient inputs. The single-point excitation techniques, which are the
methods more commonly used for experimental modal analysis, are now

examined in more detail.
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Sine excitation
Stepped-sine testing is the classical excitation method involving a discrete

sinusoid with fixed amplitude and frequency as the input excitation signal. The
frequency is stepped from one frequency to another to provide the range of data
required. At each frequency it is necessary to ensure that the response is steady
- ie that all the transients have decayed away - to obtain a true steady state
measurement. This method is quite slow to measure the full frequency
response, but has the advantage that the frequency points can be chosen where
required, closely-spaced around the rapidly changing region of resonance and
more widely spaced where the change is less rapid. Also, for many structures
there are less problems associated with the measurement of the more widely
spaced data, and these data are less likely to be required with as great an
accuracy for later analysis than the data in the critical regions. It follows from
this that the time spent in measuring can be optimised. Typical FRF data from a

sine test are shown in fig (3.3).

As an extension to stepped-sine testing is the slow-sine sweep method where the
excitation frequency is slowly varied through the range of interest. It is
necessary to ensure that the sweep rate is not too fast, otherwise distortions
will occur in the FRF plot. There are guidelines as to the maximum sweep rate
through resonance in the ISO standard for ‘Methods for the experimental

determination of Mechanical Mobility’ (ref [53]).

38

L g




Random excitation
This technique uses statistical relationships between the input and output

signals. The theory for this type of response measurement can be found in
literature on signal processing as well as on modal testing (eg refs [44] & [54]
to [58]). A random signal is used to excite the system, and the relationship
between the cross spectrum of the input and response and the auto spectrum of
the input is usually used to estimate the FRF. There are other estimations of the
FRF which are occasionally used and which should theoretically produce the
same results, but there are several reasons why they may differ including noise
on one or both the signals, secondary input to the structure and poor frequency
resolution. It is therefore important to use the most appropriate estimation for
the FRF in any situation. The advantage of random excitation is the speed with
which the FRF can be produced. However, to obtain data as good as that obtained
using stepped-sine excitation may involve many averages, and zoom
measurements around resonances, making the total time to obtain analysable

data much the same as for stepped-sine testing. An example of FRF from random

data is shown in fig (3.4).

Periodic excitation
A group of excitation techniques, refered to as periodic excitation, use similar

analysis to. random with periodic input force signals consisting of many
frequencies. These techniques include; periodic excitation - frequencies of
known amplitude and phase relationship; pseudo-random - frequencies with a
random mixture of amplitudes and phases; periodic-random - using a
pseudo:random sequence for one response measurement then changing the
pseudo sequence for the next measurement and the process repeated until
sufficient averages have been obtained; and burst signals, either random or sine
(eg ref [59])- where the time length of the input signal is short, but not
impulsive-like, and there is sufficient time between bursts for the response to
have decayed away. The FRF can be calculated from the ratio of the Fourier
transforms of both the input and output signal as well as using cross and auto
spectra. In these four methods, problems such as leakage do not occur as the
signals are periodic in the analyser bandwith. Periodic random, in particular,

increases the measurement time over true random due to the amount of data not

used.
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Transient excitation

There are two major types of transient excitation: impact testing (ref [SO])
and rapid sweep (refs [61]to [63]). Both forms can be analysed either using
the ratio of the Fourier series description of the input and output, or in the
same manner as random signals. Often, in both sets of tests, the results are
averaged over several transient inputs. Impact testing, from a hammer blow
for instance, has the frequency content limited by the length of the impact: the
shorter the pulse the higher the frequency range. Rapid sweep testing has
control over the frequency and amplitudes present in the signal. The advantage
of impact testing over all the other methods mentioned is that it does not require
an exciter or power amplifier, and so the problems of attaching the source of
excitation to the structure do not exist. Also, the excitation site can be rapidly

moved around the structure.
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3.3 Extracting modal properties from experimental

frequency response data

Having obtained raw frequency response data, the next step in the processing is
to derive the parameters of the modal model. The task is to find the coefficients
in the theoretical expressions for FRF which are the best approximation to the
experimental data. These coefficients correspond closely to the modal

properties of the system. This section examines some of the procedures that are

available for this ‘modal analysis’ part of the test.

There are two main types of analysis of the FRF - the first involves analysing
individual modes of vibration while the second type analyses all of the modes in
one stage. There is an extension to the second type that is used; that of
simultaneously fitting several FRF curves from the same structure. This
procedure uses the fact that for linear structures the natural frequencies and
modal dampings are global parameters - ie for a given mode of vibration those
parameters are independent of excitation or response sites. There are also a few
procedures available which calculate the modal parameters from response data
in the time domain. These methods either fit all the modes from one time
history or solve for several curves simultaneously. Most of the frequency and
the time domain methods are referred to in ref [64] and further specific

references available from the surveys and bibliographies available (eg refs

[65], [66] & [137])).

3.3.1 Single-degree-of-freedom (SDOF) analysis

The SDOF methods assume that in the vicinity of resonance the total response is
dominated by the contribution of the local mode. Some of the methods allow for
the contribution of other modes by approximating their effect on the resonance
region of interest to a constant. There are several types of analysis in this
category (refs [67]to [72]) but the two that are outlined here are the more
common methods in use and are the ones that will be used in future analysis in

this thesis. The theoretical background to these two methods is provided in

Appendix 2.
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Nyquist or circle-fit method

This method uses the geometric properties of the Nyquist circle to calculate the
modal parameters. The natural frequency is located first by identifying the
point of maximum sweep rate. From this, several damping estimates can be
calculated using different combinations of points above and below resonance.
Ideally, all these estimates should be identical, but by presenting the values on
an isometric (or 3-D) damping plot, rather than giving a single averaged value,
information can be gained about the source of the discrepancy - incorrect
location of the natural frequency, ‘noisy’ data or non-linear data. The final
parameter to be calculated is the modal constant and this is obtained from the
diameter of the circle. The approximate effects of the other modes can be
evaluated from the offset of the circle. As a final check on the parameters, a
theoretical curve can be regenerated and compared with the experimental data.
An example of this type of analysis is shown in fig (3.5). Further information

can be obtained from the general literature on modal analysis and ref [69].

Reciprocal-of-receptance
This method also uses data around resonance, but uses the plots of the inverse of

the FRF. This usually results in two plots, the real part and the imaginary part
- in both plots the x-axis is frequency squared. From the real part, the
resonance frequency and the modal constant can be evaluated. The damping value
can then be read from the imaginary plot. An example of this type of analysis is

shown in fig (3.6). This inverse method is mentioned in a few of the general

references and also in refs [71] & [72].

This method assumes that the modes are real and is best used with well
separated modes. The advantages over the Nyquist method are that the
least-squares fitting routine is based on a straight line rather than a circle, and
that the points close to resonance - which are more likely to be in error - are
not weighted more than the other points used in the analysis. It may also be
possible to use this method to estimate parameters when there are insufficient
data between the half power points for a Nyquist analysis. Dobson [67] has
developed this technique to account for the complexity of the modes whilst still

retaining the straight line curve fits.
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3.3.2 Multi-degree-of-freedom (MDOF) analysis

There are several methods of MDOF analysis depending on the application. For
lightly-damped structures, where there is insufficient measured data around
resonance, an appropriate MDOF analysis has been developed, whilst the MDOF
techniques that are extensions of the SDOF analysis methods are suitable for
refining modal data from FRFs with strong coupling effects between the modes.
There are several numerical algorithms available for fitting data points to the
theoretical FRF and then calculating all the modal properties of the system. The
global methods of simultaneously fitting several FRF curves include the widely
used rational fraction method (refs [73] & [74]) and the simultaneous
frequency domain technique (refs [75] & [76]). However, in this section two
of the simpler MDOF analyses - for lightly damped structures, and iterations on

the SDOF analysis methods - will be discussed.

Extension to SDOF analysis
The first MDOF method is a simple extension to the SDOF analysis. In this

analysis the contribution from the other modes is evaluated at each frequency
point and results in an iterative procedure between the modes until satisfactory
modal parameters have been obtained. This type of approach is necessary on
closely-coupled modes, but even on weakly coupled modes the improvement may

be noticeable. An example using Nyquist analysis with and without iterations is

shown in fig (3.7).
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A method for lightly-damped structures

This second technique is suited to lightly damped structures where the light
damping does not allow sufficient data of acceptable quality to be collected
around resonance. This method is also often used for frequency response data
that have been collected using random excitation where the frequency spacing
around resonance is too great for a Nyquist analysis. For this MDOF method the
analysis is performed using an undamped FRF model, picking the peak values as
resonance points and a selection of off-resonance points to solve the undamped
frequency response equations. Damping is then estimated from the measured
peak values at resonance. This full procedure is often referred to as the 'IDENT
technique. The values of natural frequency and modal constant evaluated from
this method are generally good when the system is such that the resonance
frequency is a close approximation to the natural frequency, but the damping
values are usually overestimated as the measured peak value is usually below
the true maximum value. The general theory behind this approach is shown in

Appendix 3 and is found in the general literature on modal analysis and ref

(77].

Residuals
In this section it is also worth mentioning the problem of residuals. These are

the effects of the modes that are out of the range of measurement, both
high-frequency and low-frequency, but which influence the measured data
points. All the low-frequency modes can be approximated by a single term
similar to those in the FRF series. This term is mass-like in its effect on the
regenerated FRF and is sometimes refered to as the 'mass residual’. The
high-frequency modes can also be represented by a single term whose effect is
stiffness-like on the regenerated FRF, hence is known as the ‘stiffness residual’.
The effect of the residuals varies significantly from structure to structure, and
indeed with different FRFs from the same structure. The effect is usually most
noticable on the point measurements (response and excitation at the same site)
of the structure. This effect cannot be calculated for FRFs that have not been
measured (ref [78]) and is often a major source of error in predicted
responses as shown in fig (3.8). This figure shows a complete FRF of a
theoretical system, and compares the central portion when regenerated with and

without residuals.
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3.3.3 Time domain analysis

There exist several analysis techniques for extracting modal parameters from
time domain data (refs [79] to [90]). Most of the methods for single curve
analysis are derived from the complex exponential technique where sampled
impulse response data are used to set up an eigenvalue problem whose solution,
via the Prony method (eg ref [79]), leads to the damping ratios and the natural
frequencies. To obtain good estimates of the resonance modes in noisy data,
many more resonances than exist have to be estimated to allow ‘computational
modes’ to be evaluated separately so as not to contaminate the true modes. These
computational modes are easily distinguishable, with low modal constants and
high damping ratios. From the measured data, an initial guess to the number of
modes has to be made and usually at least one other attempt made to verify that
enough resonances were chosen. The damping estimates are often in error (ref
[79]) as they are evaluated from the data points at the start of the exponential

curve where the slope and the rate of change of slope is often large.

Many of these time domain techniques have been developed for global parameter
estimation, in which case the solution is often calculated in two parts. The first
is to evaluate the damping and natural frequencies in the time domain and the
second part is to evaluate the mode shapes. This second part of the analysis is
performed on individual curves, and it is recommended (ref [83]) that the
frequency domain is used to estimate the modal constants where allowance can be
made for the ‘out-of-range’ modes. The analysis of data in the frequency domain
is limited by the need to transform measured time data to the frequency domain
and the subsequent frequency spacing which is dictated by the time length of the

sample. As in most time domain analysis methods, the damping estimates tend to

be poor.
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3.4 Application of frequency response data and modal

parameters

There are many applications for the measured experimental data and the
calculated modal parameters (eg refs [91] to [94]). The application of the data
will often dictate the type of test performed and the analysis used. If using data
to compare with a theoretical model, only the resonance frequencies and
approximate mode shapes are required, whilst if the model will be used to
couple the structure into a larger system, accurate resonance frequencies mode
shapes and damping are required in rotation as well as in translation. Apart
from the applications mentioned in this section, others include force
determination, correlation of experimental and theoretical data, structural

modification and non-destructive testing.

3.4.1 From modal model to spatial model
Unfortunately, the transformation from modal model to spatial model is not as
easy as it first appears. From the definition of the mass-normalised mode

shapes, the spatial mass and stiffness matrices would be:-
M = (o) Tior!
K = [or" 2001
where [¢] are the mass-normalised eigenvectors

and [\sz\] are the complex eigenvalues

However, the inverting of matrices is only possible if they are square - ie in
this case if there are as many modes as coordinates - and, even then, the results
are only valid if all the modes have been measured. ‘Pseudo’ flexibility and
inverse-mass matrices (eg ref [95]) can be constructed with rectangular
eigenvector and eigen value matrices. These ‘pseudo’ inverse matrices can be
useful in correcting theoretical models so long as the spatial mass and stiffness
matrices from the theoretical model are restricted to the same coordinates as

those used in the modal test.
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3.4.2 Response prediction in the frequency domain
Having obtained accurate modal models, these can now be used to predict the

response of the structure to more complicated excitation conditions than can be

simulated in laboratory tests.

The procedure uses the standard response-force equation:-
{x}el®! = [a(w)){f}e’®!
where [at{m)] is the receptance matrix - the elements of which have been

derived from the modal test.

The force excitation matrix may have more than one non-zero value, and the
amplitude and phase relationship may change at each frequency. Apart from the
quality of the models, a constraint on the accuracy of this method is the number
of measured coordinates. In practice, this method is capable of producing good
results provided that the modal model used to generate the FRF contains

sufficient modes.

3.4.3 Frequency response coupling for structural assemblies

There are many cases when a complex structure is best described as an
assembly of simpler components. These components can be individually
analysed for their modal model, or FRF, using the most appropriate method -
either analytical or experimental. These sub-system models then require to be

combined to provide the frequency response or modal model of the complete

structure.

There are several different methods of approaching the problem of
sub-structure coupling, but the method of interest is the impedance coupling
method or the ‘stiffness’ method, which provides the frequency response of the
coupled structure and uses the FRF data of each of its individual components.
The method requires that the FRF properties of each sub-structure are known,
either from model or test, at the points of coupling. The basic theory is shown
in Appendix 4. There are several references on the subject of impedance
coupling (eg [96]to [98]) and the problems that are involved. One problem
area that particularly effect the results from coupled structure analysis is that
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of rotational coordinates - they are difficult to measure but their omission can
cause large errors on the resulting FRF. Also, with impedance coupling the
incompleteness of a model from experimental data may make modal models from
different origins (eg from measured data and from finite element models)
incompatible, and hence restrict the applications. A coupling method using FRF
data has been examined (ref [99]) to overcome this problem of incomplete
models as FRFs are compatible irrespective of origin. However, this technique
of coupling FRF data only ensures that data used are comptible, and other
possible sources of error, such as measurement of rotational coordinates, exist

in both types of coupling techniques.
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3.5 Discussion

There are many excitation and analysis techniques available for experimental
modal analysis - none of which provide the ‘best’ solution in all situations. The
choice of excitation technique will depend on the structure, the application and
quality required of measured data and any future analysis on the data. The
choice of analysis method will depend on the use and the accuracy required of the

modal parameters and also the quality and quantity of measured data.

Once good measured data have been obtained, the main differences in the analysis
methods are in the complexity of the solution and in the quality of the damping
estimate. All the methods can provide good natural frequency estimates and
modal constants, but only a limited number of frequency domain analyses allow
for complex modes. From the mentioned analyses, the best damping estimate can
be obtained using Nyquist analysis ensuring that there are sufficient measured

data points between the half power points.

Having evaluated modal parameters, the response to a transient excitation can
be calculated in the frequency. domain using response prediction, with the
transient input expressed in the frequency domain. The response to a transient
is usually required in the time domain as a time-history. To change working
domains from the time to the frequency for the input, and from frequency to
time domain for the predicted response, Fourier analysis methods are usually

used in structural dynamics.
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4 REQUIREMENTS FOR TRANSIENT RESPONSE ANALYSIS
USING FREQUENCY RESPONSE

4.0 Introduction

The primary objective of this research is to develop a suitable method for
transient response prediction of structures using models based on experimental
data. As the physical description of a structure cannot be satisfactorily
reconstructed from experimental data to enable most of the transient response
prediction methods to be used, the frequency response prediction method,
discussed in chapter 3, appears to provide the only route for use with
experimental data. This method allows for the response to any force input -

including transients - to be evaluated in the frequency domain using data from

experimental modal tests.

A transient input signal for response prediction is usually specified in the time
domain whilst the frequency response method requires the input to be expressed
in the frequency domain. There are several techniques available for
transforming the working domain, but the most common method used for
transfer between the frequency and time domains is the Fourier transform, and
it is this technique that will be used to transform the input signal to the
frequency domain. The consequent response prediction will be in the frequency
domain, and as the transient response of a structure is usually required in a
time domain format, to complete the analysis the predicted response is
transformed to the time domain using the inverse Fourier transform. This

complete procedure will be referred to as the ‘Fourier transform method'.

The Fourier transform is strictly defined for continuous bounded signals of
infinite length. In experimental analysis measured data are usually discrete and
of finite length. Such a signal is accommodated in Fourier transform theory by
a version that is known as the discrete Fourier transform (DFT) which uses
discrete data, and imposes a periodicity on the signal, defined by the length of
the measured sample. This imposed periodicity results in restrictions in the
digitisation of measured data to ensure that the transformed data are an accurate

description of the original signal. There are several efficient algorithms
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available for solving DFTs, the more common of which is known as the fast
Fourier transform (FFT). These algorithms reduce the number of
computational operations - and therefore the rounding errors - thus providing
a more accurate solution than the direct solution of the DFT. As with all
numerical techniques, the accuracy of the result from the ‘Fourier transform
method’ depends on the quality of the input data - which in this case includes the
experimental modal analysis data. The aim of this chapter is to review the
theoretical development of the Fourier transform, to examine the effects that
the limitations in the DFT have on the predicted response, and the sensitivity of

transient response predictions to the quality of the experimental data used.
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4.1 Fourier transform - from theory to practice

This section provides a brief overview of the theory of Fourier analysis,
starting with the Fourier series moving through the Fourier integral leading on
to the DFT. The theory of Fourier analysis is well covered in extensive
literature on the subject, (eg [40] to [45] & [100] to [1 OS]). These
references also cover the limitations of Fourier analysis and related theorems,

but most of these are of little interest in the application to structural dynamics.

Fourier Series

The basic concept of Fourier analysis is that any periodic function can be broken
down into its harmonic components, and conversely, any periodic function can
be synthesised by adding together an infinite series of harmonic components.

This principle can be written in compact mathematical notation as:

o0

x(t)= a, + Z(ak cos2nkt by sinamg> Fourier series 4.1)
T + T

k=0
where T is the period of the signal
and a,, ak and by are constant Fourier coefficients given by:-

T/2

a, =l/ x(1) dt
T

-T72

T2

a =2 f x(t)cos2mkt dt P 4.2)
T T

-T/2

T/2
by =2 / x(t)sin2mkt dt

3 T
T2 -
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There are limitations on the convergence of the Fourier series, including

_wJ'°°|x(t)|dt< o (ie the area under the time signal is finite), but almost

every practical vibration problem satisfies these conditions. The main effect
worth noting for structural dynamic problems is that the summation of the
series at a discontinuity in a signal will give the average x(t) of the two values
of response at the discontinuity. This is important in the representation of

impulsive excitations in transient response analysis.

The frequency spacing of the harmonic components is 2r/T. As T becomes large

the frequency spacing decreases and in the limit, when the signal is effectively

no longer periodic (T =), the summation can be represented by an integral.

Fourier Integral
Subject to certain conditions the Fourier series (4.1) becomes the Fourier

integral (4.3) when the signal is no longer periodic. Also, the individual
frequency components of the Fourier series have merged together and the
Fourier coefficients (4.2) turn into continuous functions of frequency (4.4)
called the Fourier transform (FT). The Fourier integral is also known as the
Inverse Fourier transform (IFT). The signals in both domains are now
continuous to infinity. This representation of Fourier theory can be written in

complex notation as a Fourier transform pair:-

o0

X(t) = f X(w)e'®! de Fourier integral or IFT (4.3)
X(@)= 1 [ x(t)eiot dt FT (4.4)
2r

In most practical applications data are sampled, thus providing discrete, not
continuous, data. Thus to deal with real data, the requirement is for a
transformation using discrete data in both working domains and this is provided

by the DFT.
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Discrete Fourier Transform (DFT)

The DFT satisfies this requirement by replacing the integrals for the Fourier
coefficients in (4.2) by summations. This then provides an approximate
formula for calculating the coefficients of the Fourier series. The inverse DFT
(IDFT) is similar to the Fourier series but there are now a finite number of

frequency components (N) in the series. Using complex notation where X, is
the approximate coefficient of the kth component, and x, is the rth component of

the discrete time series the DFT and IDFT can be written as:-

N-i
X =1 Z x, @712 DFT (4.5)
N r=0
N-| _
X, =Zxk gi2rki/N IDFT (4.6)
k=0

Fast Fourier transform
The fast Fourier transform (FFT) is a computer algorithm for calculating the

DFT and there is much literature available on this application of the DFT
including refs [107]to [109]). The FFT works by partitioning the full sequence

{x,} into a number of shorter sequences, and the DFTs of the shorter sequences
are then calculated. The FFT then combines the results from the shorter
sequences together to form the full DFT of {x,}. This full calculation requires
less operations than evaluating the transform directly and this means that there

are fewer rounding errors in the computation. Overall, this results in a

quicker, and more accurate procedure which is widely used in practice.
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4.2 Limitations of using the ‘Fourier transform

method’ within the DFT

There are two main sources of error when using the DFT that are discussed in
this section: those of frequency aliasing and those of time aliasing. To eliminate
frequency aliasing a minimum sample rate - known as the Nyquist frequency -
must be applied to the signal. To avoid time aliasing when transforming from
the time to the frequency domain, a window can be applied, but it must be noted
that this effectively adds damping to the system. Also, when transforming to the
time domain, guidelines to the maximum frequency spacing for a given error in
a system have been developed to assist in identifying when time aliasing may be

a problem.

4.2.1 Frequency aliasing and windowing

Use of the DFT imposes a periodicity on the signal in both the -time and the
frequency domains which, in turn, limits the maximum frequency that can be
identified in any signal to one half the sample rate of the signal. This is called
the Nyquist, or ‘folding’, frequency. If frequencies above this Nyquist frequency
are present in the original signal then the coefficients calculated by the DFT for
lower frequencies will be distorted. This problem of errors being introduced
when the sample rate is less than twice the maximum frequency component in
the signal, is known as frequency aliasing and is a common occurence with
digitising experimental data. The usual solution is to use a low-pass filter on

the signal to remove signal component above the Nyquist frequency.

Windowing is a method of truncating time data, such that the signal is reduced to
zero outside a specified range. There are several types of window function,
their main differences being seen in the frequency domain where the width of
the main lobe (ideally a delta function for perfect resolution) is traded against
the magnitude of the side lobes. Examples of the more common windows in use,
along with their frequency components, are shown in fig (4.1). Frequency
components of a signal falling outside the main lobe of the chosen window may
also contaminate distant frequencies if the side lobes are large. This
phenomenon is called leakage. For good estimates of the frequency components of

an experimental signal, a high resolution and low leakage window is required.

61

e




This demand on the window - for a narrow main lobe and small amplitude side
lobes - has conflicting requirements and, for a given data length, the

parameters have to be compromised.

These limitations on the accuracy of the DFT as a result of aliasing are
applicable in this study of transient response prediction mainly to transforming
the input transient signal to the frequency domain. The nature of a transient
input signal is such that it will contain high frequencies but will decay rapidly,
which means that the application of a window will not be necessary to reduce the
signal to zero, but frequency aliasing may be a problem. The maximum
frequency component required from the input signal will probably be dictated
by the maximum frequency of the FRF. The transient input should therefore be
low-pass filtered at this maximum frequency of the FRF to remove higher

components, then sampled at twice this frequency.

4.2.2 Errors due to time aliasing

Transforming from the time to the frequency domain it is easy to establish if the
time signal has not decayed away within the time length of interest and, if
necessary, to apply a window so as to avoid frequency aliasing. Transforming in
the other direction - from frequency to time - it is harder to predict if the time
signal has decayed away, but a time aliasing effect will result if the time signal
has not decayed to zero (ref [110]). For transformation in both directions, a
simple relationship between the error in maximum amplitude, the system
parameters, and the DFT parameters has been developed for SDOF systems (ref
[111]) and also applied to individual modes in MDOF structures. The maximum
error in the peak amplitude of the first cycle of a single mode when

transforming from frequency to time domain is given by:-

Error(E ) =1 4.7
m exp(nd)-1 (4.7)
where Em is the largest possible error due to mode m.

b is the logarithmic decrement (ref [20]) of mode m.
and n is the number of cycles in the calculated response at the

natural frequency of mode m.
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In terms of frequency spacing (AF) and natural frequency (f,) this can be

written as:

AF = b
f,  In((1+E)/E )

This is the maximum ratio of frequency spacing to natural frequency for a given

error.

Time aliasing and the condition that _oof“]x(t)ldkoo (which is applicable to

most decaying systems) have implications for the suspension of a test structure
for transient response prediction, and also the type of input signal. Starting
with the test conditions of the structure, if the structure is suspended free-free
then the displacement time-history will theoretically have a static component
that will result in a continually increasing response, and the velocity will
finish with a constant value - not necessarily zero. In both these cases the
transformed result will not be correct as the convergence criterion is not
satisfied. Ideally the structure should be ‘grounded’ (coupling the structure to
ground at specific coordinates) before transforming. If the modal analysis tests
are performed on a free-free structure then the rigid body modes should be
analysed and included in the modal model to enable the model to be subsequently

‘grounded’ for transient response prediction.

There are two main types of input signal that may cause problems - those of a
step input and step relaxation. Nicolson (ref {112]) has examined the problem
of a step input, and replaces the step with a ramp which provides the correct
frequency components in the response but not the correct time-history. An
alternative approach is to use a long pulse, where the length of the pulse
corresponds to the time length of interest in the step response plus a length of
time with zero force input that is sufficient to ensure the response has decayed
to zero. The predicted response during the time of the pulse is an accurate
description of the step response over the same time. The main disadvantage of
this method is large extended time period, hence number of samples, required
for what may be a short period of interest. Step relaxation, whilst correctly
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described as an initial displacement on a structure, could be treated as a step
input with the structure starting at zero displacement. The response from the
start time to the time when the input returns to zero will represent the
response due to step relaxation, but with the displacement origin shifted by the
amount of the initial displacement. With careful presentation of the force
inputs and interpretation of results, the responses to most transient inputs can

be determined using the ‘Fourier transform method'.
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4.3 Limitations of wusing the ‘Fourier transform

method’ resulting from errors in experimental data

In generating experimental data for use in the ‘Fourier transform method’ there
are several areas which could cause inaccuracies in the predicted results. These
include the choice of linear damping model - viscous or hysteretic - errors in
the measured data or calculated modal parameters and also the effect of the

out-of-range modes on the predicted response. These topics will now be

discussed in detail.

4.3.1 Consequences of linear damping model

In general, the measurement of damping is not a precise procedure, and indeed
the mechanism of damping is not fully understood. To permit the analysis of
structures in a linear fashion, two main types of damping are used - viscous or
hysteretic (structural) - the latter being defined from the former. In many
cases the structural damping model is a much better approximation to the actual
dissipation mechanism than is the viscous damping model, and for forced

vibration and MDOF systems the algebra is much simpler.

In the time domain the responses are calculated using the impulse response
function (IRF). In linear theory the IRF is simply the inverse Fourier
transform of the frequency response function (FRF). For systems using a

viscous damping model the IRF obtained by transforming the FRF is a sine wave

at the damped natural frequency ((od), multiplied by a decaying exponential.

x() = _1_e$%sin(w 1)

mcod

Milne [113] transformed the FRF with hysteretic damping and quantified a
resulting non-causal component in the IRF. This predicted movement before the
structure sees the pulse is the only difference between the two types of damping
for lightly damped structures, but as the damping increases the pre-cursor
movement also affects the response after the pulse. Figs (4.2) & (4.3) show
examples of the differences in the IRFs when calculated by transforming the

FRFs with the two different linear damping models.
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For a system to be physically realisable it must have an IRF which is zero for
t<0. This implies that the system with a hysteretic damping model, whilst a
better description than the viscous damping model in many cases, is not strictly
a realisable system. Whilst the differences in the IRF are only minimal for
light damping, it is nevertheless recommended that modal models derived for
transient response prediction should use the viscous damping model to ensure a
linear model for the time domain response. However, as was seen in chapter 3
and Appendix 2, it is usual for the hysteretic damping loss factor to be
calculated from modal analysis methods, as this type of damping implies

frequency independent modal constants. The relationship between the damping

loss factor and the damping ratio (discussed in chapter 3) n=2¢ (valid only at
resonance) should be used to determine the equivalent viscous damping term for
each mode in the modal model that is to be used for transient response

prediction. It is shown in Appendix 5 that for light damping the relationship

Nn=2{ is also applicable for the free decay rate of a system.

4.3.2 Accuracy of experimental data

There are two major sources of error in experimental data - errors in the raw
measured data and errors in the modal parameters extracted from the
measurements. If experimental data are to be transformed for transient
prediction, the measurement errors will effect the prediction. A signal
contaminated by random errors (with normal distribution) will result in the
transformed signal plus the transform of the errors, which will still be\ have

gaussian distribution (ref [114]).

When using modal parameters, the three variables - natural frequency,
(complex) modal constant and damping factor - affect the result in different
ways. Errors in the natural frequency affect the timing of events, but not the
overall shape of the response of an SDOF element. In MDOF systems, errors in
natural frequency will produce largest errors when the contribution from one
of the modes shifts a half cycle relative to the others. To demonstrate the errors
in this and the next section, a theoretical 12 mode structure is used, the modal
parameters of which are given in table (4.1). Fig (4.4) compares the correct
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solution to those from a system with 10% error in the location of the first
natural frequency, and from a prediction with 10% error in the second natural
frequency. All modal analysis techniques are capable of accurately locating
natural frequencies from measured data, and errors in this parameter are more
likely to be due to the experimental test procedure physically altering the
system (eg transducer mass causing a reduction in the natural frequencies).
Errors in the modal constant may be of two types: magnitude and phase error.
Deviation in the magnitude produces a linear scaling in the time-histories of
SDOF elements, but in MDOF systems there may also be an effect on the shape of
the response. This is shown in fig (4.5) which is the theoretical structure with
10% error in the magnitude of the modal constants of modes 1 and 3. Incorrect

phase alters the ‘starting’ position of the signal - for instance, if a signal with

zero phase starts with maximum velocity, then one with a phase of &, starts

with minimum velocity. In most of the analysis methods a phase of 0 or &, is

assumed, which is a reasonable approximation for lightly damped structures
with uncoupled modes. For structures with very complex modes, errors in the
time response can be significant if the phase is not properly accounted for. In
this application Nyquist analysis is the method to use for extracting modal
parameters as complex modes can be evaluated, but care must be exercised to
ensure that the complexity of the mode under examination is not the result of
the effects of the other modes. The effect of varying the phase is shown in fig

(4.6), where a phase of 10° has been added to modes 1 and 3.

Variation in the damping estimate affects the predicted result more than
deviations in either the natural frequency or the modal constant and influences
the overall shape of the response. Errors in damping terms evaluated by using
the relationship of the half power points or the peak response can be large, but
the calculated loss factors are always greater than the true value (ref [115])
and this results in the predicted response showing a quicker decay than applies
in the actual system. In some MDOF systems the prediction can be altered quite
markedly from the correct solution by erroneous damping factors. This is
particularly unfortunate as the damping term is often the least accurate
parameter that is calculated from any of the modal analysis methods, frequently

being more than a factor of ten greater than the true value. This is
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demonstrated in fig (4.7) where the damping is increased by a factor of ten for
modes 1 and 3. The most accurate estimate of damping from analysis of FRF data
will be obtained by using the Nyquist analysis with sufficient points between the
half power points to calculate accurate modal parameters. The damping
estimates from the inverse of receptance are usually quite acceptable, but the
calculation relies on a line fit between the two damping values above and below

resonance, and if either of these are in error then the damping estimate could

also have a large error.

4.3.3 Effect of the out-of-range modes

Modes that are outside the frequency range of measured data need to be
considered in two separate groups - those below the frequencies of the measured
data (low-frequency residuals), and those above (high-frequency residuals).
The effect of these residuals on predicted time-histories also depend on the

required response - displacement, velocity or acceleration.

The low-frequency modes of a system determine the overall shape of the
transient response. Replacing the first few modes, if they were out of the
measured frequency range, by a single low frequency residual would not help to
correct the response. It is recommended that the experimental testing starts at
as low a frequency as practically possible in order to include all the low
frequency modes. Figs (4.8) to (4.10) show the displacement, velocity and
acceleration predictions of the theoretical 12 mode system, and compares the
responses from the complete system to the response with the first three modes
omitted, and then to the response with a low-frequency residual included to
represent the three low frequency-modes. None of the ‘predictions’ are an
accurate description of the ‘true' response, but the acceleration time-histories
are a closer representation than either velocity or displacement. When the test
structure is suspended ‘free-free’, then the rigid body modes can be represented
as a zero frequency mass residual. However, if the model is to be used for
transient response prediction then this zero frequency should be included as a
‘mode’ to enable the system to be theoretically grounded before attempting to use

the ‘Fourier transform method'.

68




With the high-frequency out-of-range modes, the effect on the predicted
time-histories is dependent on the type of response. For displacement
responses the high-frequency content is very small, and the transient response
can often be predicted quite accurately from the first few modes with no
residual term included. This is demonstrated with the theoretical structure by
first using the lowest six modes, then only the four lowest modes to predict the
transient response, and the results are shown in fig (4.11). The effect of the
high-frequency modes is more noticable in the velocity time-histories (fig
(4.12)), but for the test system the first six modes still predicts a good
representation of the exact response. For acceleration response prediction, the
contribution of the high-frequency modes can be almost as significant as the low
modes. Omission of these modes can lead to a significantly different shape of
response as well as incorrect levels of response as shown in fig (4.13). For an

accurate acceleration prediction many modes need to be included in the model.

For all three types of response the first few modes of the structure are very
important and need to be well defined. It is suggested that above the
low-frequency modes, the FRF in the response parameter of interest is
examined, and all modes analysed and included in the model whose response is
greater than or within a certain value of the low frequency modes. This model,
when used in conjunction with the ‘Fourier transform method’, should then

provide a good estimate to the true transient response of the structure.
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4.4 Case study - Transient response analysis of a

beam
The ‘Fourier transform method’ combines modal analysis of the steady state

response of a structure and Fourier theory to predict the transient response of
the structure from experimental data. There are many routes available in
modal analysis - all of which should theoretically result in the same set of
modal parameters for a linear system. These modal parameters can be
substituted in FRFs and the ‘Fourier transform method’ used to calculate a
transient response of the structure for each set of modal parameters, all of
which should correspond to the exact transient response. There is, however, a
preferred route using sine excitation and Nyquist analysis to minimise any
error possibilities. These routes are summarised in fig (4.14) with the

preferred route for linear systems identified.

Several of these techniques have been employed in a study of an aluminium bar
to obtain transient response predictions. The experimental setups for the
various excitation techniques used are shown in fig (4.15). These experimental
testing setups included the measuring of an ‘exact’ transient response as an
acceleration time-history (fig(4.15a)) and the input force signal to be
subsequently used in the prediction of the time-histories. The three excitation
techniques used were stepped-sine (fig (4.15b)), random excitation
(fig(4.15¢)) and impulse excitation (fig (4.15d)). In all cases, three
accelerometers were in place all the time to avoid any alteration in the
structure due to varying the mass distribution which results from the resiting

of a single transducer from one point to the next.

Nyquist circle-fit and reciprocal-of-receptance analyses were used on FRF data
from the stepped-sine test. Also a technique for lightly damped systems
('IDENT' ref [77]) was used on the same FRF data, and all the evaluated
parameters for pt(1,1) (response point, force input point) and pt(3,1) are
presented in table (4.2). FRF data from random excitation (up to 2000 Hz)

were analysed using reciprocal-of-receptance and 'IDENT' type analyses, and

the

70




two sets of modal parameters for pt(1,1) and pt(3,1) are shown in table
(4.3). Impulse excitation resulted in poor quality data, and was only

analysable, using an 'IDENT' type technique up to 1000 Hz. The results are also

shown in table (4.3).

The measured force signal (fig (4.16)) was then low-pass filtered to ensure
that it did not contain frequencies above 2000 Hz. The sample rate chosen for
the ‘Fourier transform method’ was 5000 Hz which would enable a maximum
frequency of 2500 Hz to be calculated from the force signal. Examining the first
few resonances from the different excitations and analyses indicated that a
frequency spacing of 0.2 Hz would result in a maximum of 10% error in the
maximum amplitude when transforming to the time domain - this frequency
spacing was used, requiring a 25000 point transform. As the beam was
suspended free-free an acceleration time-history was predicted for the first
0.04 seconds of the response, with the associated problems of many modes
affecting the transient response. The measured acceleration time-history from
pt(3,1) (response data the opposite end of the beam to the input) is shown in
fig (4.17). where it is immediately clear that high-frequency components are

present in the response.

The acceleration time-history was then predicted for pt(3,1) using the six sets
of modal parameters in tables (4.2) & (4.3) and the resulting predictions are
presented in fig (4.18). In all cases, the predicted time-history generally
overestimated the magnitude of the response. In the predictions, there is a
response following the input signal, but the measured response indicates only a
small response initially followed by a larger response when the input pulse has
travelled the length of the structure. This first large acceleration peak in the
measured time-history corresponds to the third positive peak in the predicted
results (second peak from the impact test). Some of the higher magnitude peaks
are identified on the measured time-history (fig (4.17)),and the
corresponding peaks located in the predictions (fig (4.18)). The prediction
from the impulse test (fig (4.18f)) shows little resemblance to the measured
result, but this is to be expected with a predicted acceleration time-history
from an FRF lacking in the high-frequency modes. The other five predictions all

show some similarity with the measured response despite the large variation in
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the calculated modal parameters. Examining the modal parameters from the
different modal tests the largest range is seen in the damping estimates, with
the modal constants also showing large variations in some cases. Least variation
is seen in the damping estimates from the three analyses of data from
stepped-sine excitation, where there is sufficient measured data around
resonance for an accurate estimate to be made independent of the analysis
technique. The variation in the time-histories that these differences in the
damping loss factor will cause are more noticable at longer times, but in this
example and for the time length of interest none of the predictions from
stepped-sine or random excitation are obviously ‘better' than the others despite

the large variation in modal parameters.

To make comparison between the different predictions easier to visualise, a
shorter time sample was taken and pairs of predictions overlaid. For sufficient
data in this expanded region it was necessary to increase the damping on all
modes by a factor of 10, or the transform would require upto 250000 points
for sufficient data resolution, and to avoid time aliasing. This vast number of
points can be a serious problem when attempting to predict the transient
response from structures that are so lightly damped, but most engineering
structures have greater damping than this single aluminium beam. The
comparisons are shown in fig (4.19), where the results from different
analyses of the same FRF data and predictions using data analysed with the same
technique are compared. From the stepped-sine tests the first major peak is
similar from all the analyses (figs (4.19a,b&c)), but the initial response
shows a large variation. Fig (4.19d) compares the results from the random
tests, and again the two are similar. Comparing the results from the same
analysis, clearly the results from the impulse test (fig (4.19g&h)) do not
agree with the predictions from the other excitations analysed using an 'IDENT
type analysis, but the results from stepped-sine and random analysed using an
'IDENT' type technique (fig (4.19f)) agree better than when analysed using
reciprocal-of-receptance (fig (4.1 9e)). In theory this aluminium beam
should have provided the same result independent of modal test. This has not
been shown to be the case for this particular example, where the results are not

only dependent on the excitation technique, but also on the analysis method.
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4.5 Discussion

In using the discrete Fourier transform (DFT) the main problems are due to
aliasing - either frequency or time - which is caused by the periodicity that is
imposed on the signal by the DFT in both domains. This problem can be
overcome by ensuring that the signal is negligible at either end of the sample
(ie that it has decayed away) in the time domain; that the sample rate is at least
twice the maximum frequency component in the signal; and that the ratio of
frequency spacing to natural frequency gives acceptable errors.  With
commercially-available FFT routines, there is often a maximum number of
points that can be used and this requires a compromise of the other parameters.
Another alternative is to apply a window to the function, but the effect of
windowing the data introduces other errors as the resulting effect in the
frequency domain is to increase the apparent damping - which in turn reduces

the amplitude - so causing errors in the maximum amplitude.

If the system data used are not accurate, errors will occur in the predicted
transient response. With the hysteretic damping model errors will be
generated with high levels of damping due to the non-causal component. It is
concluded that for transient response the preferred linear damping model to use
is viscous damping, which can be evaluated from the damping loss factor
determined from experimental modal analysis. Also in the analysis stage, the
preferred method - when the data is to be use for transient response - is the
Nyquist circle-fit as this method can estimate reliable damping values and also
take account of the phase components. Out-of-range modes also create
problems. All the low-frequency modes are required for accurate predictions,
and for acceleration responses, many high frequency modes must also be
analysed. In displacement, the response can usually be described accurately by

using just the first few modes.

Time-aliasing, and the requirement for a response to return to zero places
limitations on the support of a structure for transient response prediction, and
also on the type of input signal that can be used. Ideally, the structure should be
grounded before a transient response analysis is attempted, as a ‘free-free’
structure will have a large static component and the response will not return to
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zero, hence the convergence criterion of Fourier theory will not be satisfied. If
the modal model is of a free-free structure, then this model can be theoretically
‘grounded’ if the rigid body modes of the structure have been included and there
is a measurement point at the grounding position. If the input is a step or step
relaxation, the DFT will still impose periodicity on the signal with the results
being valid for the periodic signals, and not necessarily for the single step. This
can be overcome by applying an offset to the step relaxation (so the input
appears like a step input) and the input in both situations returned to zero after

the time length of interest in the response, with sufficient time at zero for the

response to effectively have decayed away.

Using the ‘Fourier transform method’ with FRF data is an effective method of
predicting the transient response of linear structures from experimental data.
However, there are several possible sources of error all of which which can be

minimised if care is taken over the transformation procedure and the collection

and analysis of experimental data.
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Mode Natural Damping Modal

Frequency ratio constani
1 11.8 g.8853a8 g.1804
2 15.6 0.00680 0.0854
3 15.7 0.00660 0.0845
4 21.9 0.01032 0.0626
S 23.1 0.00689 0.0512
6 25.0 0.00423 0.0998
7 36.2 0.00890 0.0753
8 47.3 0.01010 0.0465
9 62.4 0.00717 g.a886
10 72.8 0.00500 0.1130
11 81.0 0.01230 0.0958
12 92.2 0.00852 0.0658

Table 4.1 Modal parameters

12 mode

structure
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STEPPED-SINE EXCITRTION:

NYQUIST BNRLYSIS

Mode Natural Damping Mode shape pt(ll)| Mode shape pt(3,1)

frequency ratio Vector phase Vector ph ate
1 56.300 1.383€£-3 2.8843 + 5.2 3.1580 + 4.7
2 161.397 3.988E-4 2.212s + 2.9 2.7357 -175.3
3 312.130 8.788E-4 1.5873 - 2.2 2.3355 - 2.3
4 514.000 8.70BE-4 1.391s - 0.1 2.3904 -160.0
3 750.850 1.365E-3 0.9193 - 9.3 2.3512 - 8.0
<] 18138.550@ 9.825E-4 0.2594 - 0.3 3.1605 +178.3
7 1304.225 1.415E-3 0.5183 - 3.6 1.5487 +177.2
8 1626.412 1.581E-3 1.0127 - 11 1.6017 + 8.5

STEPPED-SINE EXCITRTION: RECIPROCAL- OF- RECEPTAHANCE

[Mode Natural Damping Mode shape pt(l,1)] Mode shape pt(3,1)

frequency ratio Vector phase Vector phase

1 58.5@5 1.312e-3 2.9918 0.0 3.3179 8.8

2 161.427 4.810€-4 2.2118 0.0 2.6473 160.8
. o 55ac—s w.diod 312,142 8.75pE-4 | _1.5305 f{ 0.0 2.3129 8.8 | ...
1.381E-3 1.0119 0.0 1.6013 0.0 I 8 1626.:
SINE EXCITARTION: “IDENT’ TYPE ANALYSIS STEPPE
Damping Mode shape pt(l,1)] Mode shape pt(3,1) Mode Natur
ratio vVector phase Vector phase freque
1.415E-3 | 2.43964 8.0 2.7007 g.g ! 58.5
4. 11PE-4 1.9894 0.2 2.8515 188.0 2 161.4
9.700E~-4 1.6845 8.8 2.6337 0.0 3 312.1
8.7085€E~-4 1.3439 8.0 2.4978 180.0 4 514.0
1.375€E-3 0.8971 g.92 2.5092 0.0 S 750.6
9.855E-4 0.2522 2.0 2.6478 180.0 6 1019.7
1.428&-3 0.3958 8.0 1.7041 180.0 7 1304.2
1.458E-3 0.9951 8.9 1.6112 0.0 8 1626.5
dal parameters from FRF data obtained Table 4.2 |

ing stepped-sine excitation
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RANDOOM EXCITRTION: RECIPROCRL- OF-RECEPTRNCE

Mode Natural Damping Mode shape pt(1,1) | Mode shape pt (3,1
frequency ratio vector phase vector phase
1 56.422 1.385E-3 2.4721 g.d 2.3318 g.8
2 161.269 1.685E-3 1.7145 8.a 2.7987 180.0
3 309.887 1.828E-3 1.4919 8.8 2.4921 0.0
4 509.769 2.0855€e-3 1.6305 8.9 1.7027 188.9
S 741.195 1.185E-3 0.6824 8.9 2.0077 0.0
6 1284.880 2.855E-3 0.6860 8.9 1.4784 180.0
7 1617.531 2.860E-3 8.9909 8.8 1.7492 0.0

RANDOM EXCITATION: “IDENT” TYPE ANALYSIS

Mode Natural Damping Mode shapept(l.1)] Mode sha s pt(3,1)
frequency ratio Vector phase Vector ph ass
i :1%] 2.672E-2 2.3091 0.0 3.4110 0.0
2 160 2.280E-3 1.9810 0.0 2.9239 180.0
3 310 1.448E-3 1.5734 0.0 2.9321 0.0
4 518 3.868E-3 1.1964 0.0 2.9578 180.0
S 740 1.338E-3 0.6628 0.0 2.7063 0.0
5 1290 1.848E-3 0.4403 0.0 2.5668 180.0
? 1615 2.545E-3 0.8797 0.0 2.1198 0.0

IMPULSE EXCITARTION:"IDENT” TYPE ANALYSIS

Mode Natural Damping Mode shape pt(l,1)| 1Mode shape pt (3,1)
f requancy ratio Vector | phase Vector | phase
1 60 3.518E-2 2.3765 0.0 3.3663 0.0
2 160 1.248€-2 1.9645 0.0 3.3016 180.0
3 31s 1.257e-2 1.6347 0.0 3.0771 0.0
4 s25 4. 56BE-3 1.2868 0.0 3.4318 180.0
S 770 4.480E-3] 1.0531 a.e 12.4818 0.0

Table 4.3 Modal parameters from FRF data obtained
using random and impulse excitations
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5 RESPONSE CHARACTERISTICS OF NON-LINEAR
ELEMENTS USING MODAL TESTING TECHNIQUES

5.0 Introduction

All structures are non-linear to some degree, and most non-linearities tend to
be concentrated in single elements or components of a structural assembly.
Methods discussed previously in this thesis are intended for application to
linear structures and this provides a satisfactory approximation for the
structures under test for most purposes. However, some structures are
sufficiently non-linear that the difference between the measured response and
the linear approximation is large. The application of linear modal analysis
techniques to such non-linear components needs to be undertaken carefully and
the resulting data evaluated in terms of its usefulness in describing some
aspects of a non-linear structure. The aim of this chapter is to examine the
characteristics of non-linear elements using modal testing methods. The data
from two excitation techniques - sine and impulse - are compared in both the

frequency and the time domains, and the observed trends are used for classifying

the non-linearity.

Generally, a non-linear system does not obey superposition, and for such
systems the choice and level of excitation will also determine the response
characteristics obtained. The ‘modal’ parameters obtained by using linear modal
analysis methods are no longer a unique description of the system - several
different sets of modal parameters may be calculated from the same frequency
response function (FRF) using different analysis techniques and criteria to
decide which are the ‘correct’ values. For most non-linearities the results
from one test cannot be used with confidence to predict the response to a
different excitation, either for a different force level or type of excitation
signal, and often the modal-parameters do not regenerate a close match to the

FRF from which they were calculated.
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This chapter starts with a brief examination of some non-linearities found in
practice, followed by a discussion of the measurement of FRFs of non-linear
elements. The different non-linearities are then subjected to a simulated
constant-force sine excitation, and the results and trends that emerge in data
presentation are examined. Next, the non-linearities are analysed using a
simulated impulse: first, characteristics in the time-histories are discussed
followed by transforming data to the frequency domain where trends in the data
are again documented. Transforming measured data from an impulse excitation
is the usual procedure for modal analysis, and for linear structures the
transformed impulse response function (IRF) is the same as the measured FRF.
However, this is not the case for non-linear structures, and the trends in the
frequency data obtained by using the two types of excitation - constant-force
sine and impulse excitation - are compared. Finally, to complete the cycle, the
FRF data are transformed to the time domain (for a linear system the
transformed FRF corresponds to the IRF) and the time-histories of the various

non-linearities compared from the two excitation methods.
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5.1 Some examples of non-linear elements found in

practice

Non-linearities in structural dynamics can be broadly split into two types;
those that effect the stiffness of the system and those that effect the damping.
This can be a useful division in the analysis of non-linear elements, although in

practice it is unusual to find only one non-linearity present in a system.

One of the methods of describing identified non-linearities is to use equivalent
linearised equations of motion (ref [116] to [118]), these equations being
derived assuming a sinusoidal excitation. To form a single linear equation of
motion from the non-linear equations, an equivalent natural frequency and
damping ratio are calculated. These parameters may be amplitude-dependent
but they can be used with the linear FRFs when the input force (or the
amplitude of response) is known. There follows in this section a brief
description of some non-linear elements, where they are likely to be

encountered in structures and, where applicable, the linearised equation of

motion is quoted.

5.1 .1 Stiffness type non-linearities
There are many types of stiffness non-linearity of which three will be
mentioned here. The schematic representation of the non-linearities and the

corresponding relationship between spring force and displacement are shown in

fig (5.1) along with the notation definition.

Cubic stiffness
Cubic stiffness (fig (5.1a)) is probably the most researched non-linearity (eg
ref [28] & {119] to [121]) and occurs where the stress/strain relationship of

the material has a cubic term in addition to the linear term. The equation of

motion is the classical Duffing equation:-

% + 200 % + @ 2(x + Px°) = f,
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e,

Where B can be positive or negative for hardening or softening cubic stiffness

respectively, and f, = (F,/m)sinwt. The equivalent linearised equation of

motion for forced harmonic vibration is:-

%+ 20w % + o X1+ 3Pa%4a)x = f,

where a is the amplitude of response.

Examining the linearised equation of motion shows that the damping is not
affected by the non-linearity, but that the equivalent natural frequency does

change with amplitude of response. The additional term in the equivalent
natural frequency is 3Ba2/4 where a is a positive displacement and B is the

non-linearity. If B is positive, ie a hardening cubic stiffness, then the natural

frequency will tend to increase in value in comparison with the linear system

when the non-linearity or the response level is increased. If B is negative,
representing a softening cubic stiffness, then the natural frequency will
decrease for the same conditions. This type of non-linearity is one specific
example from a family of power laws on displacement (Bx"), each of which

have their own characteristics.

Backlash
This non-linearity (fig (5.1 b)) is often found at loose-fitting joints where

there is a small gap between contacts in positive and negative displacements.

The equations of motion are:-
X + 20 % + o %(x-x,) = ft X > X,

X =f, x| < x,

Other versions of this type of non-linearity have a secondary spring in the gap
which is much softer than the main spring. Also, the equilibrium position may

be displaced from the centre of the gap either by pre-loading or self weight.
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Bi-linear stiffness
Bi-linear stiffness (fig (5.1¢))- is often found in bolted joints where the

stiffness of the bolt in tension is different to that when the bolt is in
compression. For this case, bi-linear stiffness is defined as a spring whose
stiffness takes one of two different values depending upon whether the

displacement is positive or negative. The equations of motion are:-

%+ 2(Co )%+ 0 %x = fy x<0

%+ 2(Co )x + @, = f, x>0

and the equivalent linearised equation of motion is:-

% +2(Co )x +<k1 + k2>x =f,

2m

Whilst this is a non-linear element, the equivalent linearised equation shows
the equivalent damping and natural frequency to be independent of amplitude or
force. This implies that a given system with bi-linear stiffness would exhibit
superposition and appear to be linear for any excitation level in the frequency
domain, but clearly any time-history will be dominated by the two different

stiffnesses and as such this non-linearity is important.

5.1.2 Damping type non-linearities
There are many types of damping non-linearity of which two will be mentioned
here. The schematic diagrams and the relationship between the damping force

and the response are shown in fig (5.2) with the notation definition.

Friction
Friction (fig (5.2a)) is the more familiar of the damping type non-linearities

and has a force characteristic that is positive if the velocity is negative, and
negative if the velocity is positive. Friction usually occurs when two moving
surfaces are in contact, eg the surfaces at joints and is also known as coulomb

damping. The equation of motion for friction is:-

e . 2 . _
x+2(;coox+o)0x+Rx_-f,
Ix|
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and the equivalent linearised equation of motion is:-

X +<2§m0 + 4R )x ro X =

naw
o

Inspection of the linearised equation of motion indicates that the natural

frequency will not change with the introduction of this type of non-linearity.
The damping, however, will be increased by 4R/maw  showing that for

decreasing response amplitudes or increasing friction force the effective
damping is increased. These equations all assume that the friction force
remains constant: in reality, a slipping friction force is less than the
corresponding sticking friction force, neither of which is necessarily a constant
value. No attempt has been made here to simulate that more complex condition

due, largely, to an absence of reliable data.

Quadratic viscous damping
This form of non-linearity (fig (5.2b)) is & one from the family of power laws

on velocity to provide a non-linear damping term of the form (dx"). In this

case the equation of motion is:-

I . -3 2 _
X -»-2C,a)0x+qx_+0)0x_ft

Ix|
and the equivalent linearised equation of motion is:-

% +<2C(o0 + q Sa(oo>)'< + o 2 =,
3n

From this equation it is clear that there is no change in the resonance frequency
of the system with varying amplitude, but that the effective damping increases
with non-linearity or response level. Quadratic viscous damping often arises

from the displacement of fluids, eg air flow over a panel.
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5.2 Frequency response measurement of non-linear

elements

Unlike the linear case, where the FRF is independent of the excitation technique,
non-linear elements respond in a different manner to different types of
excitation and to various levels of a given excitation type. This section examines
the response of some non-linear elements to some of the ‘standard’ excitation
methods available (see chapter 3) and the techniques that can be used either to
linearise the response or to enhance the non-linearity so as to assist in the

identification of non-linear behaviour in a structure.

Sine excitation
Using the stepped-sine excitation technique (ref [122]), where the output

voltage from the generator is kept constant, the input force to the structure is
allowed to vary and this results in a rapid decrease in the force to the structure
around resonance. The resulting FRFs from non-linear structures may appear
to be linear, double peaked, or simply very noisy. As can be seen from the
equivalent linearised equations, the response of a non-linear element is usually
amplitude-dependent. If the response of the structure is kept constant over the
frequency range of interest, then the structural behaviour has effectively been
linearised and this is one technique of dealing with non-linear systems. To
enhance the effect of a non-linearity in the FRF a wide range of amplitudes is
required and this can be obtained by providing a constant-force input to the
structure which will ensure a large range of response amplitudes around
resonance. If non-linearity is suspected, a suitable test is sinusoidal excitation
using force control on the input to the structure. If the results from two tests
at different force levels show a change in the characteristics of the response
then, assuming that the excitation equipment - generator, amplifiers and
shaker - has not been driven into a non-linear regime, the structure is
behaving in a non-linear fashion and care must be exercised when analysing
that region of data. Examples of different FRFs obtained by using two different
force levels are shown in fig (5.3). These results were calculated from the

linearised equations of motion of two non-linearities with the input force

amplitude kept constant for each FRF.
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Random excitation
Because of the nature of the various random excitation methods, these

procedures tend to ‘average’ out any non-linearities - resulting in an optimum
linearised model for the given excitation (ref [123]). By using several levels
of random excitation, different FRFs can be obtained indicating the presence of
non-linearities, but analysis of any one of the FRF plots would suggest the
system to be linear. The parameters that are obtained from this type of test can
be used in vibration analysis, but are not generally suitable for transient
response analysis. There is one other parameter that provides an indication
that the system is non-linear - the coherence. The coherence for measurements
on a non-linear system is less than for a corresponding linear system with the
same quality signals. There may also be coherence drops at harmonic

frequencies (ref [124]) which could be used to assist in identifying a system as

being non-linear.

Impulse excitation
Very little work has been performed on impact testing with non-linearities

(ref [120] to [123]), probably for several reasons. The main reason is that
impact testing usually requires many averages to obtain a noise-free result
and, unless the impacts are monitored and are identical for non-linear systems,
the results are then of no use as the non-linearities are ‘averaged’ out, in the
same manner as for random excitation. The results from an impact test depend
on the free decay of the system which means that the range of response
amplitudes is large, so there js potential for non-linear classification using
impact testing. In non-linear systems the relationship between the IRF and the
FRF is no longer through the Fourier transform, thus bringing into question the
validity of using impact testing to find the FRF. However, the interest in this
thesis is in predicting the transient response so the relationship between the

FRFs from sine testing and impact testing needs to be examined further.
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5.3 Frequency response characteristics from sine

tests

Having discussed the various non-linearities and the application of excitation
techniques, the frequency domain results - Bode, Nyquist, 3-D damping and
reciprocal-of-receptance plots - from constant-force sine excitation of the
non-linearities are now examined for identifiable trends. Also in this section
the term ‘effective non-linearity’ is introduced, which has meaning only when
discussing altering the non-linear effect in a system. The term, apart from the
value of the non-linearity, includes the effect of changing the amplitude of the

input force: increasing the force may have the same effect as either increasing

or decreasing the non-linearity.

Non-linear frequency domain characteristics are clear from measurements
using constant-force stepped-sine excitation, and many of the characteristics
are well documented (eg [117] & [125]) and are summarised below. Using
constant-response amplitude sine tests produces a linear FRF therefore there
are no trends in the individual plots with which to identify non-linearities
other than the fact that different response amplitudes result in different
(linear) characteristics. This type of test can be used for producing a linear
model, and a change in response level will generate a different linear model.
Conventional sine tests, where the input force level is allowed to vary, have the
same amplitude-dependent characteristics as the constant-force sine tests, but
any trends are not as immediately evident. A new method has been developed

[126] to extract the characteristics from these tests.

The following results for constant-force sine tests were produced in three

ways:-
(i) using an analogue computer to simulate the non-linearity;

(i) computing the response characteristics by using the equivalent linearised

equations of motion; and
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(iii) direct time-marching solution of the non-linear equations of motion for
sinusoidal forcing functions over a specified range of frequencies. The
magnitude of the response at the forcing frequency is then calculated along with
the phase relationship between the input and response. This technique is
similar to that used by frequency response analysers (FRA) and will be

referred to as the ‘simulated FRA’ method.

5.3.1 Characteristics of the measured Bode plot

A frequency response plot from a linear structure is expected to be a smooth and
continuous curve. If the plot is not continuous, or the resonance appears to lean
uncharacteristically, then there is a strong possibility of non-linearities being
effective in that region. It has been shown (eg refs [119],[120],[127] &
[128]) that the type of distortion in the Bode diagram, or the trend with
changing force level (or changing non-linearity), can be used to classify the

type of non-linearity. These trends for individual non-linearities are now

reviewed.

Cubic stiffness

The main characteristic of cubic stiffness is a change in the frequency of the
peak response with varying force level or non-linearity and also sweep
direction. Mayman and Richfield [121] explored the use of the frequency and
magnitude at maximum amplitude to calculate the non-linearity in the system.
Results for cubic stiffness were generated during this study from the analogue
computer and from the equivalent linearised equation of motion. The Bode plot
characteristics for hardening cubic stiffness are shown in fig (5.4), displaying
a distortion around resonance that increases with increasing non-linearity. For

softening cubic stiffness the trends are just the opposite. For these systems,

increasing non-linear effect is increasing the P parameter or increasing the

input force level.
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Backlash

The Bode plots for a system with backlash lean forward, with the resonance
frequency decreasing with increasing gap or decreasing force. The FRF before
resonance is increased relative to the linear system, and decreased after
resonance. Data for this non-linearity were calculated using the ‘simulated
FRA' method and the trends in these FRFs are shown in fig (5.5). For a system
with backlash, increasing the non-linear effect is achieved by increasing the

gap or by decreasing the input force level.

Bi-linear stiffness

According to the equivalent linearised equation of motion, the FRF for a system
with bi-linear stiffness should appear linear with a resonance frequency
related to the average of the stiffnesses. Using the ‘simulated FRA’ solution
route, the results did appear linear, but the main resonance is not at the
predicted frequency. Also, there are several other ‘resonances’ that occur at
frequencies which are multiples of the main resonance frequency, none of which
distort or alter in the Bode plot with changing force level (fig (5.6)). With
this non-linearity, changing the force level did not alter the FRF, as seen in fig

(5.6a).

Friction

The equivalent linearised equation of motion is used to generate data for this
example and examining the equation indicates that the resonance frequency is
not altered by the non-linearity; only the effective damping levels vary.
. Examples of Bode plots for this type of non-linearity are shown in fig (5.7),
where it can be seen that as the level of friction in the system increases the
inertance FRF decreases. Decreasing the input force has the same effect as

increasing friction and is increasing the effective non-linearity.
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Quadratic viscous damping
These solutions were obtained from the equivalent linearised equation of motion

and, as in the case of friction, the resonance frequency is found not to change;
only the effective damping alters with changing non-linearity or response level.
The inertance decreases with increasing quadratic viscous damping or
increasing force, which is also increasing the effective non-linearity. Details

of the variation in the resonance region of the Bode plot for quadratic viscous

damping are shown in fig (5.8).

5.3.2 Modal parameters obtained from SDOF modal analysis

Examination of the two frequency domain modal analysis methods - Nyquist
analysis and the inverse of receptance (discussed in chapter three) - yields that
there are several forms of data presentation which can provide indications of
the type of non-linearity. The Nyquist locus is fairly sensitive to the presence
of non-linearities as is the associated 3-D damping plot. It was found that plots
of the inverse of receptance can also be used to classify the non-linearity and to
differentiate between stiffness and damping type non-linearities. There is an
increasing amount of literature on the subject of trends in data caused by
non-linearities (eg refs [69],[116],[119],[120] &[128]) and the

characteristics shown from these plots and from the Bode plots are summarised

in table (5.1).

Cubic stiffness

For a system with hardening cubic stiffness, the Nyquist plot loses its
symmetry - as shown in fig (5.9a)- the amount of distortion increasing with
effective non-linearity. For systems with small effective non-linearity the
loss factor increases as the upper frequency point is raised, and decreases as the
lower frequency point moves down (fig (5.9b1}). Locating the ‘natural’
frequency using the position of greatest sweep rate for systems with large
effective non-linearity will result in similar 3-D damping plots as obtained
above, but if the criterion used for locating the resonance frequency is that of
least damping variation, then the loss factor - for both hardening and softening
cubic stiffness - increases as either frequency point used in the calculation is
further from the ‘natural’ frequency (fig (5.9b2)). Using Nyquist analysis,
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different parameters are obtained depending on the criterion used - eg

maximum sweep rate, least variation on the 3-D damping plot or closest ta zero

phase.

With reciprocal-of-receptance, the real part shows a decrease in the slope
approaching the resonance frequency, after which it returns to the original
slope (fig (5.9¢)). The slope of the real part away from resonance corresponds
to the linear system; this is important as it enables the parameters of the
underlying linear system to be determined - not just a set of linearised
parameters. The imaginary part of the reciprocal-of-receptance is not affected
by this non-linearity, so the correct damping value can be taken from this plot.
Table (5.2) provides some idea to the range of parameters that can be calculated

from a single FRF of a system with hardening cubic stiffness.

Backlash
The Nyquist plot for a system with backlash shows a similar distortion as for

the hardening cubic stiffness case (fig (5.10a)), and with large non-linear
effects the jump phenomenon. The loss factor increases as the higher frequency
point is increased, and decreases as the lower frequency point moves down, as
shown in the 3-D damping plot in fig (5.10b). The real part of the inverse of
receptance plot (fig (5.10c¢)) has a smaller slope than a linear system before
resonance and greater slope after resonance, but plots for different levels of
effective non-linearity all cross the axis at about the same point. The change in
slope near the resonance frequency in the real part is also reflected in the
imaginary part. This change in the imaginary part is to be expected as the
model used assumes no damping over the centre section so the effective damping
will alter with the change in relative time spent in the free zone to time in
contact with the spring. A summary of some results from a single measurement

of a system with backlash is given in table (5.3).
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Bi-linear stiffness
With bi-linearity there is no indication from either of the analysis methods of

the presence of a non-linearity. Examples of plots from the fundamental
resonance and from the first harmonic are shown in figs (5.11) & (5.12)
where the Nyquist plots are circular, 3-D damping plots are flat and level, and
the plots of the reciprocal-of-receptance appear ‘linear. The imaginary part
for both plots is not quite as flat or as smooth as might be expected from a linear
system, but there is insufficient deviation from a linear system to enable this to

be used to identify and to categorise bi-linear stiffness.

Friction
For a system with coulomb friction damping subjected to constant-force

stepped-sine excitation, the Nyquist plot is almost circular when the effective
non-linearity is low. However, the distortion of the plot increases with
increasing effective non-linearity and at high levels of non-linearity the
Nyquist plot becomes egg-shaped (fig (5.13a)). The 3-D damping plot
decreases away from the resonance point both above and below (fig (5.13b)).
Using reciprocal-of-receptance the real part is not affected, but the imaginary
part shows a marked deviation from its usual straight line, with a turning point
coinciding with the frequency at which the real part crosses the axis (fig
(5.13c)). The values of coulomb damping and viscous damping can be calculated
separately using the imaginary part of the reciprocal-of-receptance and is

shown in Appendix 6. The results from using different analyses on these data

are shown in table (5.4).

Quadratic viscous damping
For this case, the Nyquist plot takes on the opposite shape to friction - a

squashed circle (fig (5.14a)). The 3-D damping plot is flat for most cases, and
no particular trends were observed (fig (5.14b})). There is no change in the
real part of reciprocal-of-receptance, whilst the imaginary part deviates from
the usual straight line as shown in fig (5.14~). It is possible to calculate the
values of viscous and quadratic viscous damping from the imaginary part of
reciprocal-of-receptance in a similar manner to that described for friction.

Table (5.5) shows the range of values obtained from different analyses.
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5.3.3 Hilbert transform
The application of the Hilbert transform in non-linear structural vibrations is

a fairly recent development. The theory of the Hilbert transform has been
developed for the identification of non-linearities refs [118],[123], & [129]
to [134]. If a system is linear, the Hilbert transforms of any form of its FRF
data (eg magnitude and phase, real and imaginary, or Nyquist) will overlay the
original data. However, if the Hilbert transforms do not overlay, it may
because’of errors in the transform, eg truncation errors, or due to the presence
of non-linearities. This method has the potential of showing the presence and
the type of non-linearity by comparison of the transform with the original data
from a single measurement. In general, the trends in the Hilbert transformed
data are opposite to the trends in the measured data, and any of the displays -
Bode, reciprocal-of-receptance, Nyquist or real and imaginary - can be used to
compare results. Hilbert transform describers have also been defined in the
form of energy ratios. The way that these describers change with applied force

and their relative magnitudes can be used to classify different types of

non-linearity (refs [I 18] &[123])

5.3.4 Characteristics using ‘standard’ sine excitation

Using ‘standard’ sine excitation - where there is no control on the input force to
the structure or on the response amplitude - the trends that have been seen in
the constant-force tests can still be identified if the amplitudes of response or
the input force levels to the system are known at each frequency measurement
point. It is the variation in response amplitude that causes the trends in the
results from non-linear structures, and so long as the response amplitude is
not constant (in which case a linearised response is measured) then these
effects are present and can be used to classify the type of non-linearity. He
[126] has developed a technique to enhance and exploit these trends in data from

‘standard’ sine excitation with some success in quantifying the non-linearity.
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5.4 Response characteristics from impulse tests

Trends that exist in data from non-linear elements, when excited using
constant-force sine input, have been assessed for their suitability in
classifying and quantifying the non-linearity for the five types listed at the
beginning of the chapter. Attention is now focused on testing non-linearities
with impulse excitation and the subsequent information that is available from
the measured data. The measured time-histories are first compared with a
‘reference’ linear time-history; then the impulse responses are transformed to
the frequency domain and the presentations - Bode, Nyquist, 3-D damping and

reciprocal-of-receptance - are examined for identifiable trends.

Using impulse testing the primary information sought and obtained is the
impulse response function (IRF). This IRF is often immediately transformed to
the frequency domain in commercially-available analysers to provide an FRF
and the initial measurement of the IRF is generally not displayed. Non-linear
systems can produce IRFs that are distinctly different from the exponentially
decaying sine waves of a linear system. If these non-linear IRFs are then
transformed to the frequency domain the characteristics are often quite
dissimilar to those obtained from FRFs measured directly using sine excitation.
Both measured and transformed IRFs are now examined and the trends discussed.
In the examples below, the IRFs were generated by direct solution of the
equations of motion with the initial conditions set up with an initial velocity to
simulate an impulse. The displacement, velocity and acceleration

time-histories from the reference linear system are shown in fig (5.15).
5.4.1 Characteristics of the time-histories

Cubic stiffness
With this non-linearity there is little variation from the linear case; only a

slight shift in the major frequency component which slowly returns to the
linear period as the response amplitude decreases. Examples of IRFs from
systems with hardening cubic stiffness are shown in fig (5.16). The most
significant difference is seen in the acceleration trace (fig (5.16d)) where, as
well as a frequency shift, the response level is higher than for the linear

example but by less than 10%.
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Backlash
For a system with backlash the acceleration trace indicates the presence of

non-linearity more clearly than do the velocity or displacement traces. As there
is no spring in the centre of the element (fig (5.1b)) there is no force on the
mass whilst it is in this region. This implies that, so long as there is no
external force on the mass, the acceleration in the middle is zero - and
therefore constant velocity and linearly increasing displacement. The
acceleration trace is shown in fig (5.17d) where the zero acceleration is clear.
The corresponding velocity plot has flat-topped sine waves (fig (5.17¢c)),
while the displacement plot - although not clearly non-linear from the enlarged
view (fig (5.17b))- does not decay as fast as the linear case when a longer

time period is examined (fig (5.17a)). Also the response period varies

throughout the decay.

Bi-linear stiffness
The IRF generated for the bi-linear stiffness element is as expected - a

different period whilst the displacement is positive to that whilst the
displacement is negative. An example is shown in figs (5.18a and b). The
velocity trace is a leaning sine wave (fig (5.18¢)), and the acceleration
time-history in this example has a shorter period and larger magnitude when
the acceleration is positive (corresponding to the time when the displacement is

negative) than when the acceleration is negative (fig (5.18d})).

Friction
The IRF of a system with friction as the only form of damping is the classical

linearly-decaying ‘sine’ wave (fig (5.19a)). With viscous damping also
present in the system, there is still the ‘dead zone’ and the decay rate is a
combination of a linear decay due to friction and the exponential decay from the
viscous damping (fig (5.19b)). Returning to the system with only coulomb
damping, the velocity trace appears similar to the displacement trace (fig

(5.19¢)), and the discontinuities in the acceleration at the extremes of motion

are evident in the corresponding plot (fig (5.19d)).
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Quadratic viscous damping

The IRF for a system with quadratic viscous damping has the opposite
characteristics to the IRF for a system with friction. The initial decay in this
case is more rapid than for the linear system fig (5.20b})), but the response
continues at a small amplitude for a long time (fig (5.20a)). The
corresponding velocity and acceleration traces are shown in fig (5.20¢ & d))
where the feature of interest in this example is the high initial acceleration
response and the apparent discontinuity where the displacement reaches its

first maximum; for low effective non-linearities the acceleration time-history

does not exhibit this high initial response.
5.4.2 Data trends in the frequency domain from impulse excitation

After deriving the IRF, data are then transformed to the frequency domain in
order to obtain an FRF for modal analysis. This transformation has been
performed for the non-linearities under consideration and the frequency domain

presentations are examined for trends. These results are summarised in table

(5.6) and are discussed below.

Cubic stiffness
The Bode plot of the FRF obtained by Fourier transforming the IRF (which will

be referred to as the impulse response FRF - or IRFRF) from a system with
hardening cubic stiffness subjected to impulse excitation still exhibits the
‘jump’ phenomenon with large non-linear effects, but now the ‘jump’ is on the
low frequency side of resonance (fig (5.21a)) and, in addition, ‘harmonic
resonances’ (apparent modes at frequencies that are multiples of the
fundamental resonance) also become evident. The frequency of maximum
response increases with effective non-linearity. There is a corresponding shift
clockwise in the distortion of the Nyquist plot as shown in fig (5.21 b), and the
3-D damping plot now decreases away from resonance in both directions (fig
(5.21~)). The plot of real part of the reciprocal-of-receptance (fig (5.21d)
has a similar slope to the linear system, but lies parallel and crosses the axis
at a higher frequency with increasing effective non-linearity. There is also a
slight distortion just before resonance where there is a ‘dip’ in the line. The

imaginary part is also affected in this case with a drop in the value just before
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resonance and tending to a greater value after the dip for systems with higher
non-linear effects (fig (5.21d)). The results obtained from different analyses
of the same impulse data are shown in table (5.7). The ‘harmonic resonances’
(starting with the second harmonic frequency) that begin to show in the Bode
plot with increasing effective non-linearity possess similar trends to the

fundamental resonance when analysed, but the Nyquist plot is translated from

the origin (fig (5.22)).

Backlash

The IRFRF for this type non-linearity appears to be very ‘noisy’ (fig (5.23a))
with the noise content increasing with the effective non-linearity. A ‘harmonic
resonance’ also begins to show through the noise within the frequency range of
the FRF. Around resonance there is a ‘jump’ on the low frequency side of
resonance for higher levels of non-linearity and, as the non-linear effect
increases, the frequency of maximum response decreases. The points on the
Nyquist plot are distorted clockwise, and there is a bulge out of the circle on the
low frequency side of resonance as shown in fig (5.23b). The 3-D damping
plots are not smooth, nor are the perturbations of a random nature, but clear
trends are not easily identified (fig (5.23~)). The reciprocal-of-receptance
plot (fig (5.23d)) shows a large variation below resonance in both parts, but
above resonance the real part becomes parallel lines crossing the axis at lower
frequency with increasing non-linearity while the imaginary part converges to
the linear line. Results from some analyses are shown in table (5.8) and a plot

from analysis of the harmonic resonance is shown in fig (5.24).

Bilinear stiffness

For a single grounded element, the IRFRF plots appeared to come from a multi-
mode system (fig (5.25)). Data analysed around any of the ‘modes’ appear
linear (although from a MDOF system), with evenly-spaced highly complex
Nyquist circles, and flat 3-D damping plots. The reciprocal-of-receptance plots
are also as expected from a linear MDOF system: however, in the development of
the analysis method based on this form of presentation all modes are assumed to
be real and so the approach is not really valid for such highly complex ‘modes’.
The analysis plots for the ‘modes’ shown in the Bode plot are presented in fig

(5.26), and the results from analysing the ‘modes’ are in table (5.9).
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Friction
The IRFRF plot for a system with just coulomb damping appears initially to

have many heavily damped ‘modes’ and harmonic resonances that are
distinguishable (fig (5.27a)). As the ratio of viscous damping to coulomb
damping increases, these perturbations near resonance in the IRFRF smooth out
into the familiar Bode plot plus an harmonic resonance showing through. The
amplitude of the fundamental resonance decreases with increasing non-linearity
and is displayed in fig (5.27a). The Nyquist plot maps these extra ‘modes’ (fig
(5.27b)) and the trend is for the ‘circle’ to become squashed with increasing
non-linear effect. The 3-D damping plots decrease away from resonance in
either direction (fig (5.27~)). The reciprocal-of-receptance shows a
distinctive characteristic in the imaginary part (ref [135]) as shown in fig
(5.27d). There are large variations in this plot which can be enveloped with the
lower limit relating to the amount of viscous damping in the system and the
angle between the upper and lower envelopes to the amount of coulomb damping
present. The real part averages to a straight line of the same slope as the linear
system and the plots all cross the axis at the natural frequency. Fig (5.28)
present the reciprocal-of-receptance displays for increasing viscous damping
or increasing coulomb damping, and the results from various analyses of a

single FRF measurement are presented in table (5.10).

Quadratic viscous damping

In this case, each individual IRFRF plot appears to be linear with only a small
distortion evident around the second harmonic frequency, but the magnitude of
the response at resonance decreases with increasing non-linear effect (fig
(5.29a)). The Nyquist plots are smaller than the linear system and become
elongated along the imaginary axis (fig (5.29b})) whilst the 3-D damping plots
increase away from resonance in both directions (fig (5.29c¢})). Plots of
reciprocal-of-receptance are shown in fig (5.29d) where the real part is
displaced in slope around resonance but always crosses at the same frequency,
and the imaginary part is also distorted. Results from analyses on different

non-linearities are given in table (5.11).
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5.5 Comparison of response characteristics in the

time domain

Distinct response characteristics, that depend not only on the non-linearity but
also on the excitation technique used, have emerged for non-linear systems.
These differences have been discussed in the previous section for frequency
domain presentations, and in this section the focus is on the variations in the
time domain presentation. To examine the differences in the time domain
responses, frequency response data from constant-force sine tests were
transformed to the time domain using the inverse discrete Fourier transform
(which will be referred to as the frequency response IRF- or FRIRF) and
compared with the IRF. One effect to note is that in this transformed data there
is an apparently non-causal component from some of the non-linear
components. As this non-causal component is due to the non-linearities in the
system, removal of this part of the response would bring the total response
closer to the linear ideal. A method for calculating this ‘linearised’ response
involves averaging the non-causal time function and the time domain
representation of its Hilbert transform (refs [118],[123],{130] & [131]).
The result is a causal response, which is a partially linearised function
representing the original system. Using data from any analysis to regenerate
curves would produce an exponentially decaying sine wave (which is not
shown), but the linear example in fig (5.30) can be used to identify differences
between the exact time-histories from the non-linearities and a linear

response. The differences between the IRF & FRIRF are now briefly discussed

for each non-linearity.

Cubic stiffness
The comments made here are for hardening cubic stiffness elements: trends are

opposite for the softening cubic stiffness cases. In the time-history (fig
(5.31)) the results from an impulse are similar to the linear example (fig
(5.30)) with a slight change in period at the start. The transformed
constant-force sine test data, however, decay away rapidly at the start and the
large non-causal component effects the end of the data and also the magnitude at

the begining of the record. The IRF & FRIRF results for cubic stiffness are very

dissimilar in appearance.
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Backlash
The time-histories for backlash non-linearity can be very different due to the

varying time that the mass spends in the gap and for the example shown in fig
(5.32) the IRF decay is very similar to the linear system until the
displacement is less than the gap when there is no more decay. The FRIRF has a
large non-causal component which will affect the magnitude at the begining, but
the general trend is a rapid initial decay which becomes less than the linear

example after a short time.

Bi-linear stiffness

For bi-linear stiffnes the IRF and the FRIRF, unlike the FRF and the IRFRF, can
be very different (fig (5.33)) if there is much variation between the two
spring stiffnesses when the ratio of the two periods spent in positive or negative
displacement is large. Also, the amplitude of response is different for positive
or negative displacements. This is because in this example the damper is

assumed to be the same for both springs, which means that the damping ratio

(C=cr2vkm), hence the maximum amplitude and decay rate, differs for each
spring stiffness. These variations in the IRF and FRIRF are important when

predicting the transient response for this non-linear element.

Friction

The FRIRF of a system with friction (fig (5.34)) appears similar to a linear
system, but with a little more damping. There is an indication of the
non-linearity by the small non-causal component at the end. The IRF however,
decays to within the dead zone of the friction element well within the decay time
of the FRIRF and so the actual decay rate is much greater than the FRIRF would

indicate.

Quadratic viscous damping
In the time-histories of a system with quadratic viscous damping (fig (5.35))

the FRIRF has a small non-causal component the amplitude at the start is larger
than in the IRF, and the response finishes in less time than the response from
the impulse test. In both cases (IRF and FRIRF) the response is less than the
linear example which is to be expected as the quadratic viscous damping

increases the total damping of the system.
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5.6 Discussion

In this chapter conventional modal analysis techniques have been applied to
non-linear elements to establish characteristics that can be used in classifying
and quantifying non-linearities. Of the excitation techniques used to measure
the frequency response function (FRF), random excitation and
constant-response amplitude sine tests produce linearised models that
represent the non-linear element for that particular excitation condition and
have not been considered in detail. FRFs from constant-force sine tests and
from impulse tests exhibit distinct trends, and furthermore, the FRFs from
these two types of excitation do not usually agree for non-linear elements.
Trends exist in data from sine tests where the input force is allowed to vary,
but manipulation is required on the data to enable the trends to be high-lighted.
Of particular importance to this research are the characteristics of the
response from impulse tests, as these need to be fully understood in order to be

able to predict accurately the impulse response function (IRF) of a non-linear

element from modal tests.

Trends of plots from constant-force sine tests in the Bode, Nyquist and 3-D.
damping formats are well documented (eg refs [69],{116],[119],[120]
[128] and section 5.3 of this thesis), and it is also shown that the reciprocal-of
-receptance plots can be used to identify and quantify some aspects of
non-linearity. Similar displays are also examined for data from impulse tests
where the trends are not usually the same for a given non-linearity as from a
constant-force sine test, but may correspond to a different non-linearity
subjected to a constant-force sine test. It is therefore important to know what
excitation technique was used to measure an FRF so that trends in the data can be

attributed to the correct non-linearity.

The different trends exhibited for the same non-linearity subjected to an
impulse or constant-force stepped-sine test, are mainly due to the mechanism
of excitation and the amplitude dependence of non-linearities. The
constant-force stepped-sine test will result in a steady-state response - not
necessarily a sine-wave, but the amplitude of the input frequency component of
the response will be constant. Varying the amplitude of the input will change
the level of the response, and hence the system characteristics. The impulse
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test however, relies on an average value of response from the initial pulse down
to zero response. Stiffness-type non-iinearities generally cause the the
natural frequency of a system to change with response amplitude, and so the
alteration may be visible in the IRF as the amplitude decays: the IRFRF will
therefore have a resonance that is an average as the response decays to zero.
However, any change in the natural frequency of the IRFRF from that of the
linear system will still be in the same direction as for the FRF. Using friction
as an example of damping-type non-linearity, the non-linear effect decreases
with increasing amplitude. For the constant-force test, the response around
resonance is largest and so the system is most linear at that point. This is seen
in the Nyquist plot where the points close to resonance are closer to the linear
system than the points away from resonance. With the impulse test however,
the response decays away much more quickly than for a linear system, hence the
average amplitude around resonance is low and the IRFRF is most non-linear
around resonance. This is again seen in the Nyquist plot where the points close
to resonance are now furthest away from those of the linear plot. The opposite
is the case for quadratic viscous damping, where small response amplitudes
imply a more linear response. In general, if the non-linear effect is reduced
with decreasing response amplitude, then the response from an impulse test
will probably appear more linear than the response from a constant-force

stepped-sine test, as the response at resonance from the latter test will be large

even with small input amplitudes.

As a first attempt at predicting the IRF of a non-linear element, the FRF data
measured from a constant-force sine test were transformed to the time domain.
For most of the non-linearities this is clearly an unacceptable prediction, and
therefore different approaches need to be examined for predicting the IRF of

non-linear systems using data from experimental modal analysis.
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FRI CTI ON - RECIPROCAL-
OF- RECEPTANCE

13.77

NYQUIST

20 pte. cloeeet to
real mode, and
least damping
variation

13.77

Fastest sweep rate

13.77

Using only 6 pta
around resonance

13.77

Table 5.4 Various parameters evalue

(Response of system shown
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Table 5.5 Various parameters evaluated
viscous damping

from & single constant-force stepped-sine test of asystemwithquadratic

(Response of system shown at the top)

HERL t ve.> Real Part Imaginary Part,
v e

. x x

> X x

x * x

g x x B

(]

2" x

r

(] x x

g x x 1

| % x

13.30 14.3 13.30 t4.
Data from QVIFS v Fraq. ~ 2 Freq. ~ 2

Frequency Hz. 20.00
System and Natural Radius (Error) Modal Damping Loss Phase
Criterion used Frequency (Hz) m/H (%) Constant Factor (Variation %) (Deg)
LINEAR 13.77 6.398€-3(0.0) 1.0000 0.01044(0.7) 0.0
QUADRATIC VISCOUS
DAMPING
Recipracal-of.
Receptance 13.77 1.0000 0.02836 0.0
NYQUIST
All 20 pta 13.77 2,6179E-3(3.2) 1.15921 0.02958(.7) 0.6
bpts around
resonance ~ gredtest
sweep rate and 13.71 2,7849E-1(.4) 1.3872 0.03322(.6) 0.1
least damping
variat ion
Closest to real mode 13.77 2,7889E-3(,4) 1.3881 0.03323(.7) -0.6




oct

Display
on-
nearity

Bode

Nyquist

3-D Damping

Reciprocal-of-
Receptance - Real

Receiprocal-of-
Receptance ~ Imaginary

Hardening)
UBIC
TIFFNESS

Jump on low
frequency side

of resonance.
Harmonics present,
Resonance frequency
increases with
effective non-
linearity

Distortion on low
frequency side
and plot centre
also pulled round
o low frequency
side.

Decreases in both
directions moving
from resonance.

ISlope remains the same, but
crosses axis higher with
increasing non-linearity.
Distortion around resonance.

Drops away sharply around
resonance.

JACKLASH

Increasing non-
linearity decreases
magnitude and
frequency of reso-
nance, Appears
“‘noisy” Harmonics
present.

Distortion on low
frequency side.
Noise modes'
dhowing through
on plot.

No identifying
trends not iced.

After resonance all take
parallel straight lines -
decreasing crossing point
with increasing non-linearity.

After resonance all converge
to same line.

BI-LINEAR

Many harmonics
including zero
HEe for grounded
structure.

but highly
complex.

All appear linear,

All appear linear

Appear to come from multimode
system, with change of slope
just before resonance.

Appear to come from multi-
mode system. (Not a
suitable analysis for
complex modes).

FRICTION

Appears stepped
in construction
- decreasing as
viscous content
increases.
Harmonics present.

Becomes squashed
but steps in Bode
plot are evident
in Nyquist as
small circles
near origin.

Decreases in both
directions moving
away from resonance.

The stepped response shows
here as a wavy 1 ine about
the linear equivalent.
Straight just as it crosses
axis, always at same point.

Can be enveloped by a bottom
line indicating amount of
viscous damping and angle
between that and the top line
depicts amount of coulomb
damping.

QUADRATIC
VISCOUS
DAMPING

Flattened peak =
distortion at
harmonic. Ampli-
tude decreases
with increasing
non-linearity.

Elongated.

Increases moving
away from resonance
in both directions.

'\' shaped, becoming more
pronounced with increasing
non-linearity. Always crosses
axis at same point.

'Vv' shaped, moving sway from
origin with increasing
non-linearity.

Table 5.6 Trends in frequency domain displays from non-linear

systems

subjected to impulses.
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JEARL, + ve.>
e x

Real Part

Reciprocal-of-Receptance.

Imaginary Part.

o x
x
14
(I x
~ Z x
3 —
(&)
T x k
T
-
L
>
|
o l 1e.00 14.00 12.00 14.80
eq. ~ .
0 frequency Hz. 49.09 | Freq 2 Freq
Systen 0 wd Retural Radive (Error) Modal Damping Loss Phase
Criterion weed Prequency (Rs) a/n (X) Constant Pactor (Variation X) (Deg)
-
LINEAR 13.77 6.3984(0.0) 2.,0000 0.02088(1,0) 0.0
CUBIC - NYQUIST
Fastest sweep rate 13.84 6.0526E-3(12,1) |. 5685 0.01714(64.4) 51.99
Least damping
variation 13.64 6.0526E-3(12.1) 1.9582 0.02131(9.3) 36.4
Closest t0 real mode 13.93 6.0526E-3(12.1) 1.9202 0.02072(68.6) .9
RECIPROCAL-OF-
RECEPTANCE
?te above 14.013 2,5333 0.03760 0.0
Pte below 14,255 1.9932 0.03461 0.0
Pt. juet below 13,77 0.06127 0.00164 0.0
Pts crossing 13.99 2.9923 0.03636 0.0
Harmonic using
Nyquiset 41.93 7.05312-6(1.9) 0.0271 0.02762 -132.9

Table 3.7 Veriousparameters

rglu,ted fro. . singleimpulse test of a system with cubic stiffoess
{Response Of system shown at the top)
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Data from BASVPIR ! 12.68 14.6 12.60@ 14.68
™ Frequency Hz. 49.89 e Freq.~ 2 Freq.~ 2

Sys_ten_ and Natural Radius (Error) Modal Damping Loss Phase
Criterion used Frequency (Hz) m/N (%) Constant Factor (Variation X) (Deg)
LINEAR 13.77 3.1992E-4(0.) 0.10000 0.02088(1.0) 0.0
BACKLASH = NYQUIST
Greatest sweep rate 13.58 3.3495E-4(2.5) 0.10513 0.02157(31.3) 47.5
Closest to real mode 13.66 3.3495E-4(2.5) 0.14018 0.02840(21.6) .9
Least damping
variation 13.62 3.3495E-4(2.5) 0.13079 0.02665(9.1) 22.5
RECIPROCAL -OF -
RECEPTANCE 13.71 0.10335 0.02543 0.0
Harmonic - Nyquist 40.83 2.1045E-7(2.9) 1.7881E-4 0.00646(28.4) -79.1

Table 5.8 Various parameters evaluated from a system withbacklash

subjected

to an impulse.

(Response of system shown at the top).
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|1EHL + ve.? Real Part Imaginary Part.
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. x
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@

A 4 x

o
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1 x

r

-

X
] x "y
? |
. 14.70
Data from FPASVPIR N 12.78 14.70 12.70 ¢
Freq. ~ 2 Freq. ~ 2
2.1@ fFraquency Hz. 49.89

System and Natural Radiue (Error) Hodal Damping Loss . Phase
Criterion used Frequency (Hz) m/N (1) Constant Factor (Variation X) (Deg) .
LINEAR 13.71 3.1992E-4(0,0) 0.1000 0.02088(1.0) 0.0
FRICTION
RECIPROCAL -OF-
RECEPTANCE 13.77 0.1020 0.04027 0.0
NYQUIST -~ ALL PTS
Past sweeprate
and least damping 13.77 1.8726E-4(7.1) 0.1222 0.0436(10.1) .99
variation
Closestto real mode 13.77 1.8726E-4(7.1) 0.1215 0.04331(10.2) -.54
WQUIST - PTS AROUND
RESONANCE
Fastest sweep rate
and least damping 13.76 2.0129E-4(1.,2) 0.1727 0.05737(5.2) 2.16
variation
Closest to real mode 13.77 2.0129€-4(1,2) 0.1678 0.05566(10.4) -.51
Harmonic 41.24 1.9237E-7(2.0) 3.284E-4 0.0 2n 0. -58.68

Table 5.10 Various parameters evaluated from & system with friction
subjected co an impulve (Response of system shown st the top)
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Data from Q28QAVIR x 12.80 14.80 12. 14.60
e v fFreq.~ 2 Fraq.
49.89
Watugal Radius (Erruc) Modal Damping loss Thase
Frequency (Ms) alt (D) Factor (Vecistion 1) (Deg)
LINEAR 13" 3. 1992E-3(0.0) [T 0.0z2088(1.0) 0.V
QUADMATILC VISCOUS
DAMPING
NYQUIST - ALL POINTS
Createat sweep cate 13.77 6.5 /6E-4(5.4) 0. 46293 U.U4724(0.8) (I8 1
Leant damping
variation and closeat
to ceal mode 1n 6.6 70E-4(%.4) U.40280 0.04220(8.7) -.42
NYQUIST - PTS CLOSE
TO RESUNANCE
Cizatwut pwerp rate nwn b.LUYIE-411.4) V.28525 0.03122(4.9) 2.2y
Luast damping
variation and closwst
to ceal wule 1.n 6.0U81E-4(1.4) 0.28428 V.0159(4.3) -5y
REC1PRUCALOF -
RECEPTANCE
Piv above cesonance 13.58 - 0. 90080 0.uBY20 0.
Pts balow resuvnance 13.9) - 0.8l 0. U284 v.u
Ptu crossing exis Ln 0.41810 0. 04008 v.u
Al) pow shown on plut n.n - 0. 20000 V.0%9% u.u
Pte shown va Nyquist
plot 1.n - 0.2 0,0307) u.0

Table 3.11 Various parsmviers evalusisd frum

viscous dampiog wubjected tu an twpetee.  (Rceponse uf

4 aysicm with quadialic

aystem shown at the tup)
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Fig 5.2 Damping-tvype non-linearities
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b). Quadratic viscous damping
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6 TRANSIENT, RESPONSE PREDICTION OF NON-LINEAR
ELEMENTS USING DATA FROM MODAL TESTS

6.0 Introduction

The previous chapter explored the application of modal testing procedures to
non-linear structural elements. It was found that the results in both the time
and frequency domains depend on the type of test performed and the excitation
level of the test, and many of the graphical presentations exhibit characteristic
trends with changes in the non-linear effect. The application of transient
response prediction methods for non-linear elements, using experimental data

that are obtained from modal tests and modal analysis, is now examined.

There are three main types of input where the transient response of a system
(linear or non-linear) may be required as a time-history: the response
between two different steady-siate conditions; the response to an impulse-like
excitation, and the response to a non-steady forcing function. Often, this latter
type of excitation is found in working machinery and the level and form of
excitation can be measured - the tests in these cases can also be performed in
situ with the correct excitation. The transient response is short between
steady-state conditions, unless the system is very lightly damped. In these
short transients the effect of the non-linearity is likely to be small, so a linear
model can be used if this response is required. The response to an impulse-like
excitation is mainly free decay and it is this response - the impulse response -
that is now examined in more detail with the intention of calculating a

satisfactory approximation to the impulse response function (IRF).

There are several approaches to impulse response prediction, all of which will
provide an answer. In the case of a linear system, all such answers must be the
same, but in the non-linear situation the results from different methods can
show marked differences. It is the aim of this chapter to examine the
alternative solutions for various non-linear elements and to establish the
feasibility and accuracy of the results in providing transient response

prediction for non-linear elements. The different solution routes are shown on

fig (6.1), and are summarised below.
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6.1 Summary of routes for transient response

prediction

The first route (A) shown in fig (6.1) is by direct solution of the equations of
motion. This requires the system to be described analytically which, as
explained previously, is not usually possible in practical cases. However,
solutions for theoretical systems with well defined non-linear elements were
calculated using this procedure with the computer program ‘NONLIN’' ref [136]

and the results are used as the basis for comparison of the accuracy of the other

prediction methods.

The initial step in experimental modal analysis is to measure the frequency
response function (FRF) properties. Depending on the choice of excitation
method and the level of excitation, this can result in one of several alternative
FRFs for each non-linear system. These data can be transformed to the time
domain to provide corresponding transient response predictions. As was seen in
figs (5.31) to (5.35), when comparing these results with the impulse
response functions (IRFs) this technique does not always generate
time-histories that resemble the exact solution, and also often have a

non-causal component.

The alternative FRFs can all be analysed using available modal analysis routines
and, combined with criteria used for selecting the data points for analysis,
several sets of modal parameters can be calculated from the same experimental
data. These sets of modal parameters from all the FRFs of the same
non-linearity can be used in the (linear) formulae to regenerate FRFs which
can then be inverse Fourier transformed to provide corresponding estimates for
the transient response prediction of the non-linear element. For some
non-linearities in limited applications, one of these solutions may provide an

acceptable approximation to the IRF.

Alternatively, models could be developed to account for the non-linearities in a
system. These ‘non-linear models’ may be described in either the frequency or
the time domain, but whether the predicted transient response is transformed

from a non-linear frequency domain model, or generated using a time-domain
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model, the resulting prediction will be a closer approximation to the true
time-history than a linear approximation. Non-linear models have to be
developed individually for each non-linearity and the information required
from modal analysis may include the underlying linear system parameters and
the non-linear parameters of the system. For some non-linearities, these
parameters are relatively straightforward to evaluate, but others need
examining in more detail to determine how to separate the linear parameters
from the non-linearities, and how to calculate the non-linear parameters. The
non-linear model will usually be dependent on the initial conditions of the free

. be .
decay, so these will also need to calculated for the impulse or at the start of the

free decay of a system.
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6.2 Transient response prediction for a cubic

stiffness element

With cubic stiffness, the presence of non-linearity is evident from all displays
from either constant-force sine test or impulse tests. It is least obvious from
the exact IRF where the only indications are found in cases with high effective
non-linearity when phase shifts may be observed in the initial part of the
response. From examination of the exact IRF of an element with cubic stiffness
(either theoretically generated or from an analogue computer) it is clear that
the response of a cubic stiffness element in free decay resembles the response of
the underlying linear system closer than the large distortions in the FRFs

obtained from the constant-force sine tests would imply.

For this type of non-linearity it is found that using the underlying linear
parameters will provide an adequate impulse response prediction and, once
these parameters have been obtained, the implication is that a linear model can
be used in any future analysis where the primary interest is in the transient
response. Clearly, this model would not provide good FRF predictions if the
requirement was the steady state response of the structure as the large

resonance frequency changes due to the increasing response amplitudes at

resonance would not be exhibited.

Linear models can be obtained from analysis of the data produced by any of the
excitation methods, but the most reliable model is evaluated from a
constant-force sine test. Here, included in the range of modal parameters that
can be calculated from a single FRF, is a set that are very close to the
underlying linear parameters. This set can be calculated using
reciprocal-of-receptance analysis on data points above resonance (or below
resonance for softening cubic stiffness). There is very little variation in this

parameter set with excitation force level.

Random testing conveniently, in this case, produces a linear model from which a
set of linear parameters can be estimated. The variation in response with
different force levels is not as great as in sine testing techniques and the

calculated modal parameters can be used as a first approximation to the linear
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system. These parameters would probably be slightly different if the test was
performed with a second random signal, but will generate adequate transient
response predictions - provided the conditions on random testing for transient

response prediction are satisfied; that is, there must be sufficient data points

around resonance to determine the damping accurately.

Once cubic stiffness is identified in the system, the recommended procedure is
to calculate the underlying linear parameters using reciprocal-of-receptance
analysis on data from a sine test. The parameters thus produced can then be

used in a linear model for transient response prediction using the ‘Fourier
transform method’ (as discussed in chapter 4). This corresponds to route B in

fig (6.1), with the reciprocal-of-receptance analysis method used so that the

underlying linear parameters can be evaluated.

Examples of transient response prediction for a system with hardening cubic

stiffness using the recommended procedure are shown in figs (6.2) & (6.3).

The system has the following properties:-

W, = 13.77 Hz
B = 200 1/m?
£ = 0.00522

Modal constant = 1.0 I/Kg
From reciprocal-of-receptance analysis on data from a sine test, using data
points above resonance, the calculated parameters are (from table (5.2)):-

®, = 13.79 Hz

{ = 0.005025
Modal constant = 0.965 I/Kg

These parameters are then used in a linear FRF model and transformed to the

time domain to provide a prediction of the IRF, calculated for four initial

conditions:-
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i) x(0) =1.0 m/s
1) x(0) = 2.0 m/s
iii) x(0) =5.0 m/s
iv) x(0) = 10.0 m/s

In the first example (fig (6.2a)) no difference is evident between the exact and
the predicted response from the full comparison, but the expanded view (fig
(6.2b)) high-lights the slight change in the period of oscillation that is
present. The results were similar for %(0)=2.0 m/s. For x(0)=5.0 m/s and
x(0)=10.0 m/s cases the discrepancies between the exact and the predicted
responses increase, with the initial predicted amplitude now being larger than
the exact (fig (6.3)). However, the decay rate of the ‘exact’ solution is not
constant, and the response amplitudes converge as the damping in the ‘exact’
response converges with the underlying linear damping parameter. This
apparently non-linear damping effect in the IRF was indicated in the imaginary

part of the reciprocal-of-receptance plots of a system subjected to an impulse

(fig (5.21)).

In a system with softening cubic stiffness, and with large initial displacement,
the true transient response will be greater than the predicted response using a
linear model. Although the decay rate will initially be greater than exponential,
the two amplitudes will converge at about the same stage as for the hardening
cubic stiffness. This means that for most of the response the predicted

amplitude would be lower than the exact response.

Using the recommended route (B from fig (6.1)) the predictions are quite good
for low effective non-linearities with variations between exact and predicted
responses increasing with non-linear effect. Initially, it is just the frequency
that changes as the amplitude decreases, but with the higher responses, the
amplitudes differ also. For this example the predicted response is greater than
the exact response, but for a system with softening cubic stiffness the predicted
response may be less than the exact response and the initial conditions should be

examined to ensure a valid prediction.
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6.3 Transient response prediction for a system with

backlash

With a backlash characteristic, the presence of a stiffness-type non-linearity
is evident from both impulse tests and from constant force sine tests, viewed in
the frequency domain plots or the time domain plots. Some of the characteristics
from both tests are similar to those from a system with cubic stiffness but
there are sufficient differences to be able to differentiate the two types of
non-linearity if not from a single plot then from the trends exhibited from

comparing tests with different force conditions.

There are three categories of the transient response:-

(i) where the response is similar to the system without a gap (fig (6.4)).

(i) where the response is greater than the linear system (fig (6.5a)).

(i) a region between the two where part of the response approximates to the

linear system and the tail end of the response is greater than that for the linear

system (fig (6.6)).

The actual category of the response is determined by the ratio of the initial
displacement amplitude to the gap dimension and for any response parameter -
displacement velocity or acceleration - the traces fall into the same category. If
the gap is less than about 1% of the maximum displacement, then using the
linear parameters from the system would provide a good approximation to the
transient response. If the gap is greater than about 10% of the maximum

displacement, then using the linear parameters would grossly underestimate the

response.

The problem with this type of non-linearity is in evaluating the linear
parameters. As the non-linear effect is reduced at high amplitudes, using a sine
test with as high a force level as possible could approximate to the linear
system, and if data points close to resonance are used for the analysis then good
approximations will be obtained to the linear parameters. It is interesting to
note that from a constant-force sine test the average modal constant and damping
loss factor from two separate reciprocal-of-receptance analyses are very close

to the linear system as shown in table (6.1). These parameters are evaluated
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by first using data points above resonance, then data points below. The two sets
of modal parameters produced are then averaged, and this has been performed

using varying force levels and systems with different gap dimensions.

Transient response predictions using the average values from this table were
calculated and compared with the exact solution when the initial response is
over one hundred times the gap dimension. In all cases the prediction was good
for the maximum amplitudes, and for the first few cycles the responses
overlayed. As the response level decreases, there is a slight change in the

period of oscillation. Fig (6.4) shows an example of these transient response

predictions using route B from fig (6.1) with the following properties
calculated from the average of the two reciprocal-of-receptance analyses

(system 1 from table (6.1)).

®,= 13.7595 Hz

g

Modal constant

0.01047
0.10013 I/Kg

For gap dimensions greater than about 10% of the maximum displacement, the
true responses are larger than those predicted by the linear system throughout
the full time-history, as shown in fig (6.5a). This is for system 1 from table
(6.1) with an initial displacement of about 10 times the gap dimension. In this
case, the linear model does not provide a good estimation and a non-linear model
(route (BDE2) from fig (6.1)) must be recommended. The reason for the high
response of this system is because of the zero damping in the gap, so the
effective damping of the system is reduced as the ratio of time spent in the gap to
time spent in contact with the spring increases. One possible approach to
developing a model (M) to provide a reasonable approximation to the transient
response of a system with backlash is to find a relationship between an apparent
damping of the system and the system parameters and excitation conditions.
This could then be used in a linear model for a transient reponse prediction. The
example in fig (6.5a) is calculated a second time using an apparent viscous
damping factor of 0.007 and the result is shown in fig (6.5b). Whilst the
maximum responses are still not predicted accurately, the general response
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prediction is better than using the linear system parameters. The alternative is
to develop a full non-linear model (M2) that includes a type of ‘dead zone’
where the mass continues to oscillate but with an increasing period. Either of
these models (Ml or M2) require knowledge of the system parameters
including the gap size which can be calculated using known offsets on the system.
It is interesting to note that it is the resulting damping non-linearity in this
particular backlash element (no damping within the gap) that causes most of the

errors in the transient response prediction.

Response predictions when the displacement-to-gap ratio is greater than 1%

and less than 10% could take either route - using the underlying linear system

parameters (route B from fig (6.1)) or a non-linear model (route (BDE2)) -

depending on the requirements of the results. In general, for responses in this
category, the maximum amplitude of the first peak is estimated quite well using
the linear parameters obtained from averaging the results from two reciprocal
-of-receptance analyses. Examples using system 1 from table (6.1) are shown
in fig (6.6) where the gap dimension is about 5% of the initial displacement. In
this example the prediction is good for the first four cycles. The larger the
initial response of the system, the more cycles of oscillation are predicted
accurately using the linear model: if only the peak response is of interest the
the linear model will provide a good estimation. However, depending on the time
length of interest in the signal, a non-linear model may have to be used. In all
cases the extended vibration in the gap will be of interest if it is significant in

comparison with the maximum amplitudes and fatigue is of interest.

For this backlash non-linearity two different routes are recommended,
depending on the application and the amplitude of response. In all cases, the
non-linearity first needs to be identified and a suitable test performed to
classify it as backlash. When the response is large in comparison with the gap,

or initial values only are of interest, then, if the linear system parameters can

be evaluated, a linear model can be used with those parameters (route 3 from
fig (6.1)). In the other cases all the system parameters need to be calculated
including the gap, and a non-linear model developed (route (BDEZ2)) that will

also be dependent on the initial amplitude of response.
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6.4 Transient reponse prediction for a system with

bi-linear stiffness

This non-linearity is most distinct in the exact IRF where the two different
frequencies and amplitudes are clearly evident (fig (6.7)). However, from the
frequency domain displays there are no indications of non-linearity present in
the system as all displays and analyses indicate the system to be linear. There
is a suggestion of bi-linear stiffness in the FRFs as all of the ‘modes’ are found
at harmonics of the fundamental frequency, and if the FRF from a sine test is
transformed, then the resulting IRF will have a small non-causal component
(fig (5.33)). Applying an offset to the system and repeating the modal test will
alter the resonance frequencies and, if the offset is known, the change in
frequencies can be used to identify the ratio of the stiffnesses. Observing the
response signal from a sine test would indicate the presence of this type of
non-linearity as the response will be different above and below the equilibrium
position. It may be necessary to identify the origin before the start of the test
as the response may resemble a displaced sine wave. The ratio of the two
stiffnesses can also be evaluated from inspection of the IRF, but such an
identification of the two stiffness parameters by examining the time response -
either the time history or the reponse signal - may not be possible for a
multi-degree-of-freedom system as the response could be too complex to

identify any asymmetry about the time axis.

If the two stiffnesses are known, it is fairly easy to set up the time domain
model to predict the transient response of the bi-linear system as shown in fig
(6.7). However, a frequency domain model that predicts a non-symmetric
time-history is not available, and the transformed IRF would need to be

examined in detail to determine if this non-linear model can be developed.

This type of non-linearity is quite common, and although the steady-state model
is effectively linear in behaviour, the impulse response is dominated by the
difference in the two spring stiffnesses. It is recommended that in this case the
non-linearity should first be identified (which may be the hardest part), then

the ratio of the two springs evaluated by inspecting the free decay from the
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element or the response signal from a sine test. A non-linear time domain
model should then be used, although the model consists of a pair of linear
equations for this particular element. If it is not possible to identify the spring
ratio, a conservative solution would be provided by using the value of the softer

spring, since that produces the largest response in a linear model.
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6.5 Transient response prediction for a system with

friction

The damping-type non-linearity provided by coulomb friction is easily
identified from almost all the displays of either impulse tests or sine tests. The
Bode plot from a sine test is the hardest to interpret correctly, as a single plot
may be classified as a heavily damped linear mode. From constant-force sine
tests it is possible to evaluate the values of viscous and coulomb damping using
reciprocal-of-receptance analysis by recording two values of the imaginary
part and using a simple relationship derived from the linearised equation of
motion. The FRF response derived from an impulse testalso appears to have
potential to predict the two values of damping, again from the reciprocal-of-
receptance plot. There are clear trends in the imaginary part of the reciprocal

-of-receptance that depend on the amount of viscous and coulomb damping

present in the system.

When the force level in a constant-force sine test is high in comparison with
the friction force, the results may indicate a linear behaviour, and analysis can
be performed on the data to obtain a set of linear parameters with a single
damping value. In this case, the linear parameters thus determined would have
a damping value that is higher than the underlying system but which combines
the effect of the coulomb damping with the linear viscous damping. Also,
reciprocal-of-receptance analysis on data from a sine test will yield
parameters close to those of the linear system, with a single damping factor
combining the viscous damping and the effective coulomb damping for that test.

If the initial velocity of the transient is’of the same order as the velocity around

resonance of the sine test, then this linear model (route & from fig (6.1)) can

be used with the ‘Fourier transform method’ and a result obtained in this way is
shown in fig (6.8). This calculation relates to the system in table (5.4) using
the parameters from the reciprocal-of-receptance analysis. However, if the
initial velocity of the transient is much higher than the response velocity in the
vicinity of resonance in the sine test, then the effective damping is
correspondingly lower so that the predicted curve decays away too quickly, as is
shown in fig (6.9a) where the initial velocity is twice that in fig (6.8). If the

initial velocity is less than the velocity around resonance in the sine test, then
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the opposite occurs as shown in fig (6.9b) but in this case the prediction is a
conservative estimate. In the extreme, using only the viscous damping in the

system for the model would always provide a conservative estimate to the

transient response.

The alternative approach is to develop a non-linear model that takes account of
both the viscous and the coulomb damping elemenfs and the initial conditions. A
non-linear model has been developed for friction (assuming a constant slipping
friction force) by examining the time histories of several systems under
different impulse conditions (ref [135]), and the results are summarised in
Appendix 7. This non-linear model model requires the modal constant, the
resonant frequency (which does not change with friction), the viscous damping
component and the coulomb damping component of the system, all of which can
be calculated using an adapted version of the reciprocal-of-receptance analysis
on constant-force sine test data (Appendix 6). Also required is the response
level at the start of the free decay, and this whole procedure corresponds to

route ¥ in fig (6.1). This non-linear frequency domain model does not

represent the steady-state solution, and is only suited for transforming to the
time-domain for transient response prediction. Examples using the non-linear
model are shown in fig (6.10) and correspond to the same initial conditions as
in fig (6.9). The predictions are clearly an improvement over those using the

linear parameters evaluated with standard analysis techniques.

For this non-linearity it is recommended that after identifying friction in the
system, the amount of viscous and coulomb damping present then be calculated

using reciprocal-of-receptance FRF plots. Then, the non-linear model (route

Y) needs to be used for transient reponse prediction as the limitations on the

validity of using a linear model are such that it eliminates most applications for
the simpler prediction method (route (BD2E1)), although a conservative

prediction can always be obtained by using the underlying linear system

parameters with the ‘Fourier transform method’ (route B).
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6.6 Transient response prediction for an element

with quadratic viscous damping

For most displays in the frequency domain or the time domain from either the
constant-force sine test or an impulse test, the trends for quadratic viscous
damping are opposite to those for friction: the difference being that the
non-linearity increases with increasing force for systems with quadratic
viscous damping. It is possible to distinguish between the viscous damping and
the quadratic viscous damping terms using a similar technique to that used for

friction on the reciprocal-of- receptance data.

For this non-linearity the initial free decay is more rapid than for the linear
system, and so using a linear model with only the viscous damping in the system
will always overestimate the maximum response in the displacement

time-history as shown in fig (6.11). The system for this example is:-

w,=13.77 Hz
g =1001/m
= 0.00522

Modal constant = 1 .0 I/Kg

using initial velocities of:-

) x(0)=1.00 m/s
i) x(0)= 0.10 m/s

The acceleration response may initially be greater than for the linear system,
as shown in fig (6.12), and so if this response was of major interest, using the
linear model might not be appropriate. When the response is required as
acceleration, or a more accurate response is required, then a non-linear model
would be recommended (route (BDEZ2) from fig (6.1)). It is envisaged that this
would be developed in the same fashion as the model for transient response of a
system with friction, accounting for the two types of damping and the initial

conditions before free decay.
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If quadratic viscous damping has been identified in a system, it is recommended
that the linear system parameters should be evaluated when predicting
displacement and velocity time-histories: the linear model using those system
parameters will generate conservative estimates of the response under all
initial conditions. It is only necessary to use a non-linear model when a more

accurate description of the system is required or when acceleration is the

response parameter of interest.
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6.7 Discussion

It is clear that when non-linearities are present in a system the prediction of
the transient response requires careful consideration, as using the first set of
parameters to be evaluated from a model test in a linear model with the ‘Fourier
transform method’ will not necessarily generate a suitable response prediction.
The first step will always be to identify the type of non-linearity as this
determines the approach to further analysis for transient response. In some
cases a linear model may be used for that particular transient response
analysis. This is the simplest approach and is easily adapted for further use -
eg coupling with other structures. However, the types of non-linearity that
this approach can be used on with confidence are limited; the conditions of use in
each case, and which set of experimentally determined linear parameters should

be used in the model, place severe restrictions on this approach.

The use of a non-linear model is found to be necessary in most cases and
applications. These models may vary from an accurate description of the system
to specific linearised models which provide conservative estimates suitable for
some requirements. It is found that the parameters that are required for
non-linear model are generally available from measured FRF data using
specifically-adapted reciprocal-of-receptance analysis methods (the variation
on the reciprocal-of-receptance technique depends on the non-linearity
involved). The solution routes are summarised in fig (6.13) starting with an
unknown system from which a transient response prediction is required. The
complex non-linear models, whilst providing good approximations to, the
transient response, are best used only where absolutely necessary as they

increase the calculation times and can be difficult to manipulate.

A non-linear model has been developed for a friction element, but each such
type of non-linearity needs individual treatment and this has not been
undertaken for other cases. Also, the development of analysis routines to
evaluate non-linear parameters once the non-linearity has been identified (for

systems other than those with friction or quadratic viscous damping) needs to

be addressed.
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7 RESPONSE ANALYSIS OF MDOF SYSTEMS WITH A

NON-LINEAR ELEMENT

7.0 Introduction

The response of a single-degree-of-freedom (SDOF) system with a non-linear
element has been shown to depend on the type and level of excitation. When
different analysis techniques are applied to the frequency response functions
(FRFs) measured in different ways, a wide range of modal parameters are
obtained. The variation in the displays (in either the frequency or the time
domain) can be used to identify, and sometimes to quantify, the non-linearity in
the system. The approach for transient response prediction of the non-linear
element has also been discussed in chapter 6 and different prediction routes
recommended for specific non-linearities, depending on the eventual application
of the results. It is the aim of this chapter to consider the applicability of the
techniques for identifying and quantifying non-linearity in a SDOF element to
identifying and quantifying non-linearity in a multi-degree-of-freedom
(MDOF) system, and also for predicting the transient response of that type of

system.

A linear model with a single non-linear element ‘added’ on is used in this
chapter to examine the effect of non-linear elements on an MDOF system. This
non-linear system is then excited using constant-force sine tests and the
Nyquist and reciprocal-of-receptance analyses performed to study the extent of
the effect of different non-linear elements on the remaining linear system. The
responses are also inspected to determine if the trends that that have been
identified in SDOF non-linear elements are also applicable to MDOF systems.
The transient responses of the systems are then compared with the linear
response for various initial conditions to examine the effect of the non-linear

element on the time-history of an MDOF system.

The chapter begins with a description of the system used for the illustrations
followed by a brief summary of existing methods for the transient response
prediction of non-linear MDOF structures. The basic system is then analysed in
the frequency domain with various non-linear elements in place and finally the

transient responses are examined.
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7.1 System definition

In many practical systems the non-linearity is often limited to one part of the
structure, such as a joint, and is therefore concentrated in one element of the
spatial model. The non-linearity will, however, affect the response of all the
structure, thereby classifying the whole structure as non-linear. It is found in
practice that the effect of a non-linearity is usually most noticeable in the

low-frequency resonances where the response amplitude is generally largest.

As non-linearities tend to be concentrated in one element of the real structure,
the system that is to be used for theoretical analysis in this chapter is, in terms

of the spatial model, an MDOF linear system with one non-linear element. This

is shown below where either knl or C,; can be non-linear

This non-linear system will be used to initiate study into the effect of a single
non-linear element coupled to a linear system and will explore ways of
analysing the resulting non-linear system, with particular attention on the use
of the evaluated parameters for the transient response prediction of such a
system. For the specific examples in this chapter, the linear system consists of

two masses connected by a single linear spring and damper as shown below.

Linear system

k+kn| k2
VWAAA
m m
1 2
-
C+Cn] 2
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7.2 Application of prediction techniques for transient

response of MDOF non-linear systems

The techniques that exist and are adapted for non-linear transient response
prediction all require knowledge of the basic system parameters - including the
non-linearity - in either spatial or modal form. The methods are all mentioned
in chapter 2 and are briefly recalled in this section. The solution route that
will be used as the reference transient response for comparison later in this
chapter is the direct solution of the equations of motion. This requires the
spatial model of the system which, as stated previously, is often difficult to
derive from experimental data even for a simple linear component, and when
non-linear elements are included this solution route is totally inappropriate.
However, for our examples the spatial model is known and provides a suitable

reference solution as the number of degrees-of-freedom are small.

The Newmark-B method (eg ref [9]) has received attention and is adapted for
use with non-linear systems. This is a method of solving the equations of
motion, but one in. which the modal parameters of the system can be used in
place of the spatial properties. Again, the non-linearity needs to be quantified -
which is possible for damping type non-linearities, but difficult for stiffness
type non-linearities - and for large numbers of degrees of freedom the

equations become difficult to manipulate.

The hybrid method by Lyons et al [14] combines the necessity for a
time-marching solution for the non-linear systems with the more efficient
linear transform technique for transient response prediction. This hybrid
technique has been tested to find where the non-linearities are most evident and
concludes that they are only noticeable around the low frequency modes. Other
work (eg ref [12]) also suggests that only the first few modes affect the
displacement response to a transient - in many cases only the first three modes
- in which case the second stage of this hybrid method is unnecessary,
particularly as the recommendation is that the first ten modes are used to
ensure that all the non-linear effects are accounted for. If the response
required is displacement, and the non-linear effects can be quantified, then it is

possible to use any of the methods that have beed adapted for non-linear systems
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representing the structure by the first few modes only. With velocity or
acceleration response, the number of modes required to describe the system
adequately for a transient excitation increases, thereby making the numbers of
equations large and any manipulation or solution inefficient and time-

consuming.

In summary, there are a limited number of techniques available for the
transient response prediction of non-linear systems. Each method requires
information on the system parameters, which necessitates the ability to
evaluate these parameters from a non-linear component. The assumption that
these parameters are available using any of the linear analysis methods on a

non-linear structure is not necessarily valid.
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7.3 Modal analysis, of non-linear systems

The MDOF system described in section 7.1 has been analysed for the five
different types of non-linearity previously discussed, and for various forcing
levels. The physical description of each system is given in table (7.1), and the
results of analyses of data from simulated constant-force sine tests are
presented in tables (7.2) to (7.9). When the non-linearity is evident, the
trends that emerge in all systems are the same as for the equivalent SDOF
non-linear element discussed in chapter 6. In most examples, the second mode
is found to be linear, and only at high effective non-linearities does this mode
begin to appear non-linear. Often, the system is more non-linear when the
excitation is applied to mass 2, and reciprocity does not hold for the non-linear
examples - ie FRF (2,1) is not the same as FRF (1,2). Examples of the Bode
plot sets are shown in figs (7.1) to (7.6), including the linear system and one

example from each non-linear element.

For the example with cubic stiffness (fig (7.2), the second mode has not been
affected by the non-linearity at the chosen forcing levels, but the first
resonance could be identified as a SDOF cubic stiffness element. The reciprocal-
of-receptance analysis is performed using data above that resonance but, while
the results show less variation than those from a Nyquist analysis, some of the
parameters are not as close to the linear system as was obtained for the SDOF

elements - a difference mainly confined to those cases with very high

non-linear effects.

With the backlash examples the non-linearity is evident in both resonances (fig
(7.3)). The trends are the same in the two resonances as seen in the SDOF
non-linear element study. For the reciprocal-of-receptance analysis, the
average parameters from the above and below resonance regions have been
calculated for both resonances when non-linearity is apparent. The modal
parameters obtained using this method are more consistently close to the linear
system than are those from Nyquist analysis, but the resonance frequency

estimated from the average is usually low.
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The results for the bi-linear stiffness in these examples are particularly
interesting (fig (7.4)). There are, as expected, two modes with frequencies
slightly shifted from those of the original linear system (26.95Hz and 66.78Hz
as compared with the linear system natural frequencies of 24.45Hz and
63.41Hz), but there is also a ‘harmonic’ natural frequency showing through
near 54Hz. For FRFs(1,1)(2,1) and (1,2), this is ony a single point
disturbance in the Bode plot, and would probably be ignored in analysis.
However, for FRF (2,2), the corresponding response is quite large and a modal
analysis performed on the full data generated the results shown in table (7.10).
A small disturbance of this nature is often seen in Bode plots from
measurements and it is recommended to check if the ‘resonant’ frequency is a
harmonic component of any of the more dominant modes to consider the

possibility that the system has a bi-linear stiffness characteristic.

For the friction (fig (7.5)) and quadratic viscous damping (fig (7.6))
examples, only the first resonance appears to be affected by the non-linearity.
With both types of non-linearity, the trends in the Nyquist circle, 3-D damping
plots and the reciprocal-of-receptance displays are very similar to those from

the corresponding SDOF non-linear elements.

For the examples presented in this section, the effect of the single non-linear
element is usually only obvious in the first resonance of the system, unless the
effective non-linearity is high when the effect can also be seen in the second
resonance. This is essentially as expected due to the larger displacements of the
lower frequency resonances. The results from the second mode when there is no
indication of non-linearity present are similar to those from the linear system,
indicating that analysing that resonance as a linear mode for that particular
excitation condition is valid. This will aid system modelling if the FRF can
sensibly be analysed as linear with ‘non-linear modes’ rather than having to
undertake an analysis of the full response as a non-linear system. One problem
that emerged, and was particularly noticeable in FRF (2,2), is when the modes
that are effectively linear are noticeably influenced by the ‘non-linear’ modes.
For the linear FRF (2,2), analysis by iterations on the circle-fit method is
necessary in order to remove the effects of mode 1 from the resonance of mode

2. In the non-linear examples it is assumed that, as the Nyquist plot for mode 2
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is similar to that plot from the linear system, the interaction of ‘non-linear’
mode 1 on mode 2 is ‘linear’. However, a problem now exists in that clearly
mode 2 cannot be sensibly analysed without the effects of ‘non-linear’ mode 1
being first removed, but this requires the interaction to be identified. This

aspect of modal analysis of non-linear systems is an area of work that requires

further attention.

In addition to the identification of non-linearities in MDOF non-linear systems,
the location of non-linear elements within a structure using experimental
modal analysis is an area that also requires exploring. There are several
possibilities, but as an individual linear element cannot necessarily be
guantified from modal analysis - and only modal parameters are available - the
concept of ‘modal non-linearity’ needs exploring. Returning to the non-linear
systems analysed in this section, the effect of the non-linear element is more
noticeable in the first resonance than in the second, so in these examples the

‘modal non-linearity’ would be greater for the lower frequency resonance than

for the higher resonance.

If a component that is to be coupled to others to form a complete system model
has been identified as non-linear, there will be concern about the validity of
continuing with a linear coupling technique. This is one application area of
modal data in which the effect that non-linear components have on the results
has to be examined in detail. There is the possibility of using an iterative
technique for including the non-linearity which effectively uses non-linear
amplitude dependent frequency or time domain models. For this application, the
non-linearity needs to be quantified and the response dependence of the
non-linearity determined, and this returns to the problem of accurately

analysing non-linear data for the required parameters.
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7.4 Transient response of non-linear systems via the

frequency domain

Once the problems of modal analysis of a MDOF non-linear system have been
addressed, and a set of modal parameters obtained, the transient response
prediction via the frequency domain of the same system can be considered. In
this section the validity of using a linear model for transient response
prediction of a non-linear system is assessed. As for the SDOF elements
discussed in chapter 6, a non-linear model is still required for some
applications and those non-linear models need developing such that they now

also account for the influence of the other elements in the system.

For cubic stiffness (figs (7.7) to (7.9)) the linear model clearly provides a
good prediction for the smaller initial velocity (fig (7.7)) with the
discrepancies in amplitude increasing with increasing non-linear effects as
seen in figs (7.8) & (7.9) where the non-linear effects are increased in the
higher figure numbers. For most of the trace, the linear prediction provides a
conservative estimate. However, as can be seen in the expanded view of fig
(7.9), the prediction does on two occasions underestimate the response of minor
maxima and minima. It is also anticipated that for softening cubic stiffness the

linear prediction will underestimate the response.

Backlash (fig (7.10) to (7.12)) shows a satisfactory prediction using the
linear system for up to 2% gap-to-initial-displacement ratio. The response
for a ratio value of 3.5% is shown in fig (7.13a) and demonstrates an irregular
response when the mass remains almost totally within the gap, although the
trend of an ever-increasing period is similar to that from the SDOF backlash
element. The transient response prediction for the initial response of this

example is shown in fig (7.13b).

The response for a system with the bi-linear stiffness element is shown in fig
(7.14). The linear responses using the softer spring, the stiffer spring, and
the average spring stiffness are shown in figs (7.15) to (7.17) and should be
compared with the exact response shown in fig (7.14). To ensure that the

maximum values are not underestimated the softer spring should be used, but
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the final decay is better represented be the stiffer linear system. The response
from the average spring stiffness is approximately the response that would be
estimatedb-llsing parameters evaluated from a modal test on a system with

bi-linear stiffness.

In both of the damping type non-linearities the linear system overestimates the
response and thus provides a conservative estimate, but not necessarily a good
prediction.  For friction (figs (7.18) to (7.20)), the difference between the
predicted and the exact responses is more noticeable later in the response, and
in the examples shown the initial responses are very similar. With quadratic
viscous damping, figs (7.21) & (7.22), the overestimation in the first part of
the response is significant, and the amplitudes of the two time-histories
converge at later times. As damping type non-linearities increase the overall
damping in a system, the use of the underlying linear parameters to estimate a

transient response prediction will produce a conservative estimate for any

damping type non-linearity.
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7.5 Discussion

Existing techniques for transient response prediction of non-linear systems
require information on the system parameters. This involves evaluating the
parameters from experimental tests when details of the structure are not
available as a theoretical model. From the examples discussed in this chapter
and other undocumented experimental modal analysis on non-linear structures,
the initial indications are that trends in the data from a MDOF non-linear
system correspond to the SDOF non-linear element, facilitating non-linear
identification in MDOF systems. Also, any modes that appear to be linear can be
analysed as such, but it must be remembered that as the whole structure is
non-linear and if the effective non-linearity is increased then the non-linear
effect may also be apparent those modes, thereby invalidating the initial
analysis. When a non-linearity - eg friction - is quantified from the analysis,
just as the viscous damping term evaluated is a modal quantity, then the
non-linearity is not necessarily represented as a spatial quantity and will
generally be the modal contribution of that non-linearity. This aspect of ‘modal

non-linearity’ is a topic that requires further research.

One other area of modal analysis for MDOF non-linear systems that requires
further attention is the influence of one mode on another. If a structure has two
coupled modes, and the dominant mode appears to be linear, then its effects can
be removed from the ‘non-linear mode’. However, it is not necessarily valid to
assume that the effect of the linear mode on the ‘non-linear mode is a linear
relationship - the resulting change in response amplitude of the ‘non-linear
mode’ due to the effect of ‘linear modes’ will result in a change in the effective
non-linearity. When the situation is reversed, and the ‘non-linear mode’ is
dominant, it appears that the effects of the ‘non-linear mode’ on the linear mode
have a ‘linear’ relationship - or distortions would occur making both modes
appear non-linear - but the influence of different types of ‘non-linear modes’
on the linear mode has yet to be determined. This problem will be extended
when the coupling becomes stronger as the modes move closer together in
frequency. In these cases, a situation is easily envisaged when both modes are
clearly non-linear, and the effect of one mode on the other may also now be

non-linear. The problem of decoupling two ‘non-linear modes’ to be able to
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analyse each one separately with SDOF non-linear identification techniques,
needs to be examined. It may be that this linear approach of separating the
resonances is not applicable, and where there are two strongly coupled

‘non-linear modes’ the approach may be to analyse that section of the FRF as a

whole.

Using the linear parameters of the system for transient response prediction of a
non-linear system via the frequency domain has been examined for accuracy and
applicability. For systems with only damping-type non-linearities, the
underlying linear system always overestimates the response and provides an
easy-to-use conservative estimate. This is particularly useful for friction and
guadratic viscous damping where the viscous damping term can be isolated from
the damping non-linearity by using a reciprocal-of-receptance type analysis
on measured FRF data. Stiffness-type non-linearities affect the natural
frequency, and hence the phase relationship in MDOF systems. In these cases, it
is possible that the time-history at a specific point in time has two modes in
phase with each other, whilst the linear prediction for the same point in time
has the modes out of phase; this would result in a gross underestimation of the
response from the linear model. In the examples shown, the linear predictions
for cubic stiffness and backlash are reasonable, and it is envisaged that serious
underestimation of maximum responses will only occur with large
displacements or large non-linear elements in a system. For the response not
to be underestimated in a system with bi-linear stiffness, the softer of the two
springs should be used in the linear model. Any non-linear model - in either
the frequency or the time domain - needs developing for MDOF systems with
possibly an iterative process to account for the effects of the other elements in
the system. It may be necessary to develop a non-linear model when a

conservative estimate is not sufficient and a good transient response prediction

is required.
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Non-linearity Analysis Natural Frequency | Modal Constant Damping Loss | Phase
(Non-linearity and Factor
forcing anplitude
see table 7.1)
Linear Nyquist 24,459 0.26852 002466 +1 .01
Reciprocal-of-| o, 442 0.26781 0.02458 0.00
Receptance
Cubic 50 Nyquist 24.450 0,26888 0.02486 +1.11
Reciprocal-of-| 5, 447 0.26783 0.02477 0.00
Receptance
Cubic 75 Nyquist 26.150 0,25631 0,02679 -61.61
Reciprocal-of-| 5, ;g3 0.21305 0.02143 0.00
Receptance
(pts above)
Cubic 100 Nyquist 26.750 0.254636 0.02290 -63.23
Reciprocal-of-f », g4 0.20145 0.02236 0.00
Receptance
(pts above)
Backlash 1 Nyquist 26.395 0.25191 0.02273 -25.68
Reciprocal-of-
Receptance
above 24.425 0.16021 0.01472 0.00
below 24.389 0.37161 0.03385 0.00
average 24.407 0,26591 0,02428 0.00
Backlash 5 Nyquist 24,335 0.21395 0.01895 =51.72
Reciprocal-of-
Receptance
above 24.403 0.05936 0.00538 0.00
below 24.315 0.45697 0.04151 0.00
average 24.359 0,25816 0.02344 0.00
Bi-linear 1 Nyquist 26.955 0,20797 0.02678 +1.31
Reciprocal-of-
Receptance 26.950 0.20729 0.02665 0.00
Bi-linear 2 Nyquist 26.955 0.20791 0,02678 +1.29
Reciprocal-of-
Receptance 26.950 0.20728 0.02664 0.00
Friction 1 Nyquist 24.450 0.24863 0.02765 +0.74
Reciprocal-of-
Receptance 24443 0.27011 0.02888 0.00
Friction 2 Nyquist 24.450 0.25938 0.02638 +1.23
Reciprocal-of-
Receptance 24,443 0.26977 0.02700 0.00
Friction 5 Nyquist 24.450 0.26484 0.02562 +1.46
Reeiprocal-of*] 24.443 0.26794 0.02569 0.00
eceptance
Quadratic Nyquist 24.450 0.30009 0.03994 =0.36
Viscous 100 Reciprocal-of-
Receptance 24.444 0.2637 0.03827 0.00
Quadratic Nyquist 24,435 0.31792 0.05031 +1.26
Vi'scous 200 Reciprocal-of-|
Receptance 24,442 0.26809 0.04681 0.00

Table 7.2 Paranmeters from Mdde 1 point

1,1
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Modal Constant

Damping Loss

Phase

Non-linearity Analysis Natural Frequency
Factor
Linear Nyquist 63.415 0,72369 0,06516 +0.5
Reciprocal-of-
Receptance 63.387 0.73411 0.06579 0.00
Cubic 50 Nyquist 63.475 0.72745 0,06550 =1.56
Reciprocal-of-
Receptance 63.418 0.73519 0.06602 0.00
Cubic 75 Nyquist 63,500 0.72951 0.06524 -0.83
Reciprocal-of-
Receptance 63.459 0.73462 0.06559 0.00
(pts above)
Cubic 100 Nyquist 63,690 0,727226 0,.06502 ~71 .84
Reciprocal-of-
Receptance 63.514 0.73306 0.06556 0.00
(pts above)
Backlash 1 Nyquist 62,995 0.69554 0.06242 -24 29
Reciprocal-of-
Receptance 62.515 0.69774 0.6373 0.00
above
below
average
Backlash 5 Nyquist 62,620 0,58588 0.05235 -31.9
Reciprocal-of-| ¢\ ;58 0.62401 0.05781 0.00
Receptance
above
below
average
Bi-linear 1 Nyquist 66,185 0.78516 0.06199 -0.27
Reciprocal-of-
Receptance 66.765 0.79110 0.06235 0.00
Bi-linear 2 Nyquist 66,185 0,78575 0.06199 -0.27
Reciprocal-of-
Receprance 66.765 0.79110 0.06235 0.00
Friction ! Nyquist 63,410 0.63597 0.07021 +1.0%
Reciprocal-of-
Receptance 63.393 0.73629 0.07584 0.00
Friction 2 Nyquist 63,445 0.68271 0.06769 -1.02
Reciprocal-of- ,
Receptance 63.396 0.73644 0.07061 0.00
Friction 5 Nyquist 63.415 0.71337 0.06660 +0.39
Reciprocal-of-
Receptance 63.396 0.73642 0.06791 0.00
Quadratic Nyquist 63.320 0.79413 0.07685 +4. 44
Viscous 100 Reci al-of-
eciproca - 63.391 0.73635 0.07419 0.00
Receptance
Quadratic Nyquist 63.495 0.81298 0.08446 -2.91
Viscous 200 Reci l-of-
eciprocat=ol={ g3 393 0.73724 0.08065 0.00

Receptance

Tabl e

7.3 Paranmeters from Mde 2 point 1.1
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Non-linearity Anal ysi s Nat ur al Danmpi ng Loss Phase
Fact or
Li near Nyquist 24.450 0.02476 +1.00
Reciprocal-of-| 34 453 0.02475 0.00
Receptance
Cubic 50 Nyquist 26.700 0.02623 -7073
Reciprocal-of-| 5, ,¢4 0.03039 0.00
Receptance
Cubic 75 Nyquist 27.750 0.02868 -67.39
Reciprocal-of-§ ,, 54 0.03787 0.00
Receptance
(pts above)
Cubic 100 Nyquist -
Reci procal - of -
Receptance 24.173 0. 04602 0.00
(pts above)
Backlash 1 Nyquist 24,395 0.02430 -10.99
Reciprocal-of-
Receptance
above 24.397 0.02014 0.00
below 24.393 0.02916 0.00
average 24,395 0.02465 0.00
Backlash 5 Nyquist 24.375 0.02239 ~28 16
Reciprocal-of-
Receptance
above 24,386 0.01414 0.00
below 24,340 0.03337 0.00
average 24,363 0.02375_ Q.00
Bi-linear 1 Nyquist 26,955 0.02674 +1 .17
Reci procal - of -
Recept ance 26. 961 0.02677 0.00
Bi-linear 2 Nyqui st
Reciprocal-of-?l)Not measured - the $ame as Bi~lineaf| 1)
Recept ance
friction | Nyqui st 24. 450 0. 02664 +1 18
Reci procal - of -
Receptance 24,453 0.02722 0.00
Friction 2 Nyquist 24.450 0.02582 +1.45
Reci l-o0f-
Receptance | 24.454 0.02612 0.00
Friction 5 Nyquist
Reciprocal-of- (Not measured - as
Receptance
Quadratic Nyquist 24,440 0.04687 +1.62
Viscous 100 Reciprocal-of-| 24,452 0.04423 0.00
Receptance
Quadratic 1 Nyqui st 24. 415 0. 06133 +3.66
Viscous 200 .
BS -of -
&L 2kak 2 446 0. 05574 0. 00

Table 7.4 Paranmeters from Modet Poi nt




Non-linearity Analysis Natural Frequency | Modal Constant | Damping Loss | Phase
Factor
Li near Nyquist 63.390 0.44686 0.06572 -178.30
Reciprocal-of-| 63,414 0.45463 0.06604 +180,00
Receptance
Cubi c 50 Nyquist 63.340 0.45289 0.06612 -175,04
Reciprocal-of-| ¢4 ¢49 0.45191 0.06712 +180.00
Receptance
Cubic 75 Nyquist 63.400 0.45341 0,06600 -177,93
Reci procal -of - [ g3 g2 ¢l . 45187 0. 06708 +180.00
Recept ance
(pts _above)
Cubi ¢ 100 Nyqui st 63. 495 0. 45146 0. 06564 +178.94
cipragal-of- | a3 640 0. 45088 0. 06685 +180.00
(pts above)
Backl ash 1 Nyqui st 62.590 0. 42005 0. 05639 +153.49
Reciprocal-of-
Receptance
above 62.579 0. 23007 0. 03285 +180.00
bel ow 62. 593 0.61787 0. 08819 +180.00
average 62. 586 0. 42397 0. 06052 +180,00
Backl ash § Nyqui st 62. 100 0.23707 0.03010 +84.48
Reci procal - of -
Recept ance
above (Too nuch distortiorn
bel ow 61. 499 0.65712 0. 09159 +180.00
aver age
Bi-linear 1 Nyqui st 66. 790 0. 40941 0.06234 L 178. 40
Reci procal -of - | 66 996 0.41383 0.06319 1+180.00
Recept ance
Bi-linear 2 Nyqui st ) ]
. ) |[(Not rmeasured - as Hi-linear 1)
Rec1orocal-ofj
Recept ance
Friction 1 Nyqui st 63. 430 0.36188 0. 07427 +176.55
Eggégtrgﬁgle- of- 1 63 663 0. 45723 0. 08616 +180.00
Friction 2 Nyqui st 63. 400 0. 40733 0. 06994 +179.62
Reci procal - of -
Recegt ance 63 633 0. 45632 0.07598 +180.00
Friction § Nyqui st )
Reciprocal-of-{ (Not measured - as inear)
Recept ance )
Quadratic Nyqui st 63. 440 0.48012 0. 07340 +178 92
viscous 100 :
Reci procal - of -
Recept ance 63 619 0. 45545 0.07316 +180.00
Quadratic Nyqui st 63. 400 0.50135 0. 07943 179.51
Vi scous 200 ;
Receptanak-of - | o ¢4y 0. 45585 0. 07760 4180.00
| -

Table 7.5 Paraneters from Mde 2 point 1,2
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Non-linearity Analysis Natural Frequency | Nodal Constant | Damping Loss | Phase
Factor
Li near Nyquist 24.450 0.44283 0.02467 +0.99
Reciprocal-of=| 24, 453 0.44408 0.02472 0.00
Receptance
Cubic s0 Nyquist 24,450 0.44344 0.02487 +1.08
Reciprocal-of-| 5, 453 0.44412 0.02491 0.00
Receptance
Cubic 75 Nyquist 26.150 0.43047 0.02496 ~62,43
Reciprocal-of-| ,, g7 0.45327 0.02780 0.00
Receptance
(pts above)
Cubic 100 Nyquist 26.750 0.42330 0.02562 -64.15
Reciprocal-of-| 5, ,¢¢ 0.46676 0.03099 0.00
Receptance
(pts above)
Backl ash 1 | Nvqui st 24.395 0.40797 0. 02252 25 77
Reci procal - of -
Recept ance
above 24. 404 0.20074 0. 01556 0.00
bel ow 24.370 0. 57506 0. 03196 0.00
aver age 24.387 0. 42790 0. 02376 0.00
Backl ash § Nyqui st 24. 340 0.32739 0.01787 54. 27
Reci procal - of -
Recept ance
above 24.391 0.10276 0. 00560 0.00
bel ow 24.274 0. 68529 0. 03787 0.00
average 24.332 0.39402 0.02173 0,00
Bi -linear 1 Nyquist 26.955 0.39848 0.02679 +1.23
Reciprocal -of -+ »¢ gg 0.39933 0.02683 0.00
Receptance
Bi -linear 2 Nyquist 26.955 0.39839 0.02679 1,20
Reciprocal-of-| 54 g, 0.39931 0.02683 0.00
Receptance -
Friction 1 Nyquist 24,450 0,41027 0.02768 kO 79
Reciprocal-of-
Receptance 24 .452 0.44385 0.02878 0.00
Friction 2 Nyquist 24.450 0,42820 0.02640 41,21
Reciprocal-of-
Receptance 24.453 0.44252 0.02687 0.60
Friction 5 Nyquist 24,450 0.43678 0.02563 b1.43
Reciprocal-of~
Receptance 24,454 0.44417 0.02583 0.00
uadratic Nyquist 24,450 0,49512 0.03996 b0 .26
fiscous 100 Reciprocal-of -~
Receptance 24 .453 0.44485 0.03849 0.00
adratic Nyquist 24 .440 Q0.52502 0.05034 k1 33
fiscous 200 Reciprocal-of-
P 24,6449 0.44439 0.04707 0.00

Receptance

Table 7.6 Parameters from Mode 1 point 2,1
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Non-linearity Analysis Natural Frequency | Modal Constant | Damping Loss Phase
Factor
Linear Nyquist 63.400 0.464249 0.06538 -179.4
Reciprocal-of- -
Receptance 63.413 0.45016 0.06565 +180.00
Cubic 50 Nyquist 63.475 V.45293 0.06615 +178.5
Reciprocal-of-
Receptance 63.628 0.45268 0.06744 +180.00
Cubic 75 Nyquist 63.500 0.45860 0.06639 +179.26
Reciprocal-of-| (3 g4q 0.454744 0.06729 +180.00
Receptance
(pts above)
Cubic 100 Nyquist 63.540 0.45525 0.06639 -179.49
Reciprocal-of-| ¢q 75, 0.45230 0.06744 +180.00
Receptance
(pts above)
Backlash 1 Nyquist 62.600 0.47892 0.06652 +178.15
Reciprocal-of- 5 559 0.46426 0.06722 +180.00
Receptance
above
below
average
Backlash 5 _Jﬂvauist 62.400 0.44476 0.05770 +144,50
Reciprocal-of -
ReceBtance
above 62.029 0.33624 0.04751 +180.00
below 62.102 0.60125 0.06556 +180.00
average 62.065 0.46874 0.06653 +180.00
Bi-linear 1 _Nyquist 66.785 0.40412 0.06190 -179.59
Reciprocal- of = &g 975 0.41616 0.06367 +180.00
| Receptance
Bi-linear 2 | Nyauis t 66.785 0.40413 0.06190 -179.59
Reciprocal-of- 0.41616
Receptance 66.975 0.06375 +180.00
Eriction 1 Nyquist 63.420 0.39885 0.07105 +179.77
Reciprocal-of- | 63 636 0.45249 0.07712 +180.00
Receptance
Eriction 2 Jyquist 63.455 0.42522 0.06827 +178.14
= - =2
Reciprocal-of- ¢4 ¢y, 0.45232 0.07183 +180.00
Receptance
Friction 5 Nyquist 63.415 0.44325 0.06713 ~179.68
Reciprocal-of-| ¢3 ¢y 0.45239 0.06916 +180.00
Receptaunce
uadratic Nyquist 63.320 0.49950 0.07790 -176.19
Jiscous 100 Reci l-of-
eclproca 63.631 0.45471 0.07592 +180.00
Receptance
uadratic Nvquist 63.400 0.51869 0.08632 +179.14
Viscous 200 Reci 1-of-
eclprocal-o 63.657 0.46004 0.08324 +180.00
Teceptance

Table 7.7 Parameters from Mode 2, point2,1
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Modal Constant’

Damping Loss

Phase

Aeceptance

Non-li i Analysis Natural Fr equenc
on-linearity naly q y Factor
Li near Nyquist 24,450 0.73121 0.02472 +0.98
Reciprocal-of~-
Receptance 24,454 0.73317 0.02477 0.00
Qubic 50 Nyqui st 26.700 0.76101 0. 02418 -71.65
Reci procal - of - 0. 02424
Recept ance 24.641 0. 68375 ' 0.00
Qubic 75 Nyqui st 27.750 0. 78562 0. 02559 -68.39
Reci procal - of - 0. 68170 0
Recept ance 24.695 02626 0.00
| (pts_above)
Qubic 100 Nyqui st 28. 665 0. 75195 0.02491 -75.43
Reci procal - of - 24.796 0.67152 0. 02787 0.00
Receptance
(pts above)
Backlash ! | yqui st 24.395 0.71221 0. 02416 -11.03
Reci procal - of -
Recepcance
bpve . 0.56235 0.01916 0.00
ge ow ﬁ %&; 0. 86769 0. 02945 0.00
avera e 24. 407 0. 71502 0. 02430 0.00
Backl ash 5 Myqui st 24.375 0. 67067 0. 02262 -28.22
Reci procal - of -
Receptance
above 24.418 0.37979 0.01290 0.00
below 24,367 1.02081 0.03464 0.00
average 24.392 0.70030 0.02377 0.00
Bi-linear 1 INyquist 26,955 0,76208 0.02674 +1.08
Reciprocal-of-| 26,957 0.76424 0.02672 0.00
Receptance
Bi-linear 2 Nyquist N
]Reciprocal-of) (Not measured — as Bi-linear 1)
Receptance
Friction 1 |Kyquist 24.450 0.69898 0.02664 +1.36
Reciprocal-of=| 24 450 0.73068 0.02718 0.00
Receptance
Friction 2 INyquist 24.450 0.71667 0.02582 +1.43
Reci procal - of - 0. 73165 0
Recept ance i 02608 0.00
Friction 5 | Nyquist, )
%fd rocal-of4| (Not measured - as|linear)
eceptance )
quadratic Yyquist 24.445 0. 84949 0. 04687 .51
Vi scous 100 i
Reciprocal -of-.| 94 455 0.73150 0. 04413 0.00
Recept ance
adratic Jrquist 24.425 0.91387 0.06137 +3.49
"iscous 200 Reciprocal-of -
ecipr 24. 458 0.73426 0. 05560 0.00

Table 7.8 Paraneters from Mde 1, point 2.2
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Modal Constant

Damping Loss

Phase

Non-linearity Analysis Natural Frequency
Factor
Linear Nyquist 63.390 0.26879 0.06542 +1.80Q
Reciprocal-of-| g3 ;43 0.25738 0.06457 0.00
Receptance
Cubic 50 Nyquist 63.350 0.26823 0.06541 +4.54
Reciprocal-of-1 g3 433 0.25830 0.06466 0.00
Receptance
Cubic 75 Nyquist 63.440 0.26663 0.06516 +0.40
Reciprocal-of-} 3 442 0.25524 0.06414 0.00
Receptance
(pts above)
Cubic 100 Nyquist 63.495 0.26863 0.06535 ~-0.99
Reciprocal-of = ¢3 467 0.25615 0.06419 0.00
Receptance
(pts above)
Backlash 1 Nyquist 62.880 0.26960 0.05593 -42.26
Reciprocal-of-
Receptance
above 62.690 0.15175 0.03164 0.00
below 62.408 0.40663 0.08577 0.00
average 62.549 0.27919 0.05870 0.00
Backlash 5 Nyquist 62.090 0.20841 0.038354 -90.01
Reciprocal-of-
Receptance
above (Too much distortiop)
below 61.695 0.58502 0.10949 0.00
average
Bi-linear 1 Nyquist 66.780 0.20786 0,06187 +2 87
Reciprocal-of-
Receptance 66.822 0.19789 0.06112 0,00
Bi-linear 2 Nyquist )
Reciprocal-of°) (Not measured - as Bi-linear 1)
Receptance
Friction 1 Nyquist 63,450 0.22843 0.07613 -6,2.
Reciprocal-of-
Receptance 63.312 0.20730 0.07284 0.00
Friction 2 Nyquist 63.455 0.24938 0,07054 =3.7Q
Reciprocal-of-] . -
Recepcance 63.378 0.23325 0.06865 0.00
Friction 5 Nyquist )
. )| (Not measured - as |linear)
Reciprocal-of
Receptance
Quadratic Hyquist 63,390 0.28027 007234 +1.07
Viscous 100 ;
Reciprocal-of -
Receptance 63.401 0.26610 0.07120 0.00
Quadratic Nyquist 63.390 0.20824 0.07792 +0.38
Viscous 200 Reci l-of
eciprocal-of - . 0.271 .
Recegtance 63.388 27 0.07633 0.00
Table 7.9 Parameters from Mode 2, point 2,2
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Mbdal .
Mbde i %gugncy Const ant ?gzz(; E?)rgg anactox
z (1/kg)
1 27 0.7839 0 0.02764
2 54 0.0142 0 0.00898
3 67 0.23078 0 0.06348

Table 7.10 Results from using 'Ident' type analysis of
Point (2,2) of the 2 degree-of-freedom system

with bi-linear stiffness (fig 7.3d)
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8 CONCLUDING DISCUSSION

8.0 Introduction

The aim of this research work has been to explore the use of experimental modal
analysis techniques for application to the transient response prediction of
structures.  Particular attention has been paid to the accuracy required of the
modal analysis methods. In addition to examining techniques for transient
response of linear structures, the implications of using these techniques on
non-linear systems has aiso been considered in some detail since most practical
structures are to some degree non-linear and transient responses do tend to
cover a wide range of amplitudes, thereby exposing amplitude-dependent

effects.

The conclusions and discussions on the limitations and accuracy of experimental
modal analysis and Fourier transform methods are summarised first in this
chapter. This is followed by recommendations of how to used experimental
modal analysis in transient response predictions, and conclusions about the
limitations within the procedure. Finally, there are suggestions for further

research.

8.1 Discussion

Various techniques that are available for transient response prediction have
been examined in this thesis with the focus on their applicability to physical
structures rather than to mathematical models of systems. It is found that most
of the methods require a mathematical description of the structure - usually in
terms of its mass, stiffness and damping elements. Such formulations are
difficult to obtain by experimental description and the method that exhibits
most potential for use with experimental data is that referred to as the ‘Fourier
transform method’ - which takes the frequency response of the structure and
the input force spectrum and then transforms the product to the time domain
using the discrete Fourier transform. In practice, whilst many structures can
now be modelled theoretically, there are still some systems that, due to their
complexity, can only realistically be determined via experimental procedures.

It is concluded that this ‘Fourier transform method’ is the most appropriate
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technique to be used for a transient response prediction of those structures that

may not be modelled analytically with sufficient reliability or confidence.

The methods available for experimentally determining the properties of a
structure in the frequency domain are generally known as ‘experimental modal
analysis’ and have been reviewed in chapter three. There are several excitation
technigues and analysis procedures that can be used in undertaking an
experimental modal analysis, all of which will generate accurate results
provided that care is taken in the measuring of the data and that the most
suitable analysis method for the available data is used. The structural
properties evaluated using experimental modal analysis techniques are
frequently in the form of ‘modal parameters’ from which the physical system
parameters most often required by transient prediction techniques cannot
usually be evaluated because of the incompleteness of the measured data. This
enforces the need to develop the ‘Fourier transform method’, which uses the

frequency response of the structure available through experimental modal

analysis.

The relevant forms of Fourier transform theory have been examined in order to
determine the limitations that the discrete Fourier transform places on the
quality of modal data used and on the accuracy of the resulting response
time-histories. The Fourier transform technique uses measured frequency
response data, or frequency response data regenerated using parameters
evaluated from modal analysis of the measured data. There is much literature
available on the subject of Fourier transforms, and the minimum sample rate
required in digitising signals to avoid frequency aliasing. Corresponding to this
minimum sample rate to avoid frequency aliasing, a maximum frequency
spacing relationship has been derived to avoid time-aliasing. This frequency
spacing is related to the largest possible error in the maximum amplitude of the

transformed signal, and is expressed in terms of the natural frequency and the

damping in the mode.

Most practical structures are non-linear to some degree, and for that reason the
application of the aforementioned techniques has also been examined in relation

to a number of the more commonly occuring non-linearities. The application of
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‘standard’ experimental modal analysis to individual non-linear elements was
considered first, where it was shown how trends in measured data (either from
constant-force sine tests or from impulse excitation) can identify clearly the
type of non-linearity. It has also been shown that for damping-type
non-linearities, it is possible to separate non-linear damping terms from the
linear viscous damping in the system using reciprocal-of-receptance type
analysis. Comparison in both the frequency and time domains is then made
between the measured and transformed responses from impulse excitation and
from constant-force sine tests. It was found that for any given non-linearity
the plots and trends are often dissimilar from the two types of excitation, and
may in fact agree with the trends of another non-linearity excited using the
other technique. Transforming frequency response data measured using a
constant-force stepped-sine test does not generally result in an acceptable
prediction of the impulse response function, and it is concluded that different
approaches need to be considered for predicting the impulse response function of
non-linear systems using data from experimental modal analysis. The different
frequency response functions (FRFs) for a system with a given non-linearity,
obtained using various force levels or types of excitation, can all be used with
any of the analysis techniques to evaluate modal parameters. The resulting sets
of ‘modal’ parameters do not necessarily agree. By careful choice of the data to
be analysed and the method used, it was found that consistent parameters - close
to the underlying linear system - could be determined from some of the

non-linear elements. These included:

i) cubic stiffness - using data away from resonance with reciprocal-of-

receptance analysis produced a good estimate to the underlying linear system;

ii) backlash - using two reciprocal-of-receptance analyses on data above

resonance then data below resonance. The average of the two sets of parameters

are close to the underlying linear system; and

iii) friction and quadratic viscous damping - with an adapted version of

reciprocal-of-receptance analysis, the linear parameters can be evaluated and

also the non-linear damping term.
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Consideration is given to the application of the techniques of the single-degree-
of-freedom (SDOF) non-linear system to multi-degree-of-freedom (MDOF)
systems. For the example used in chapter 7 of a linear system plus a
non-linear element, the non-linearity appears to affect the resonances of MDOF
systems in much the same way as in those of the SDOF elements. In these cases,
any trends in a MDOF system can be related to the corresponding SDOF element
and hence the type of non-linearity identified. For small non-linear effects in
the symmetric non-linearities considered in this study, only the first
resonance is noticeably different to a linear response, but as the effective non-
linearity increases - by changing the force level or the non-linear component -
the second resonance sometimes becomes affected. However, there is no reason
to believe that the parameters chosen for the examples USed in this study
emphasise a particular characteristic, and the results from undocumented
experimental modal analysis on non-linear structures have also appeared to
exhibit one ‘non-linear mode’ with the other modes behaving in a linear
manner. The ‘non-linear modes’ in these cases also possess the same
characteristics of known non-linear elements. The first resonance of a system
will generally be vibrating at the largest displacement amplitude (hence a
variation in amplitude through resonance), and as many of the non-linearities
are amplitude-dependent, it is felt that this causes the first resonance to be
more pronouncedly non-linear. When subsequent resonances are excited to the

same level and with the same range of displacements, then it is assumed that

they too will exhibit similar non-linear characteristics to the initial resonance.

Bi-linear stiffness appeared almost linear in the example used (the ‘extra’
resonance would not be identified as ‘extra’ from a structure of unknown degrees
of freedom), and the response was not amplitude-dependent. As this non-
linearity is not amplitude-dependent, it does not follow in this case that the
first mode is where the non-linearity is most evident. The effect - most
noticeable in the time domain - will affect all the modes that the particular
spring element is active in. However, as the time-history of a MDOF system
with bi-linear stiffness may be too complex to identify any discrepancies in the
positive and negative responses, it may no longer be feasible to use it as a
method of identifying and quantifying this non-linearity. Bi-linear stiffness

appears to be harder to detect in MDOF systems than SDOF systems.
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8.2 Recommendations for transient response

predictions

For practical structures that are modelled using experimental techniques, and
that may be treated as linear, the most suitable approach to transient response
prediction is found to be using frequency response data from experimental
modal analysis together with the Fourier transform, as all other transient
response prediction methods require the mass, stiffness and damping properties
of the structure explicitly. To satisfy the accuracy required of modal
parameters when they are to be used in transient response prediction, the
structure should be tested with sufficient data around resonance so that an
accurate value of damping can be estimated. Also, the limitations of the process
of discrete Fourier transforming data are such that a minimum sample rate and
a maximum frequency spacing are stipulated for a given structure to avoid both
frequency and time aliasing. Provided that these conditions are met both in the
modal analysis stage and in the transformation of the data, the predictions will
provide an accurate description of the transient respohse of the structure.
However, large deviations from the true response can be introduced in the
prediction if any of the modal parameters are in error, or if time aliasing
occurs in the transform to the time-history. In summary, experimentally-
derived structural models can be used for transient response analysis provided

the following conditions are observed:

i) data must be measured as accurately as possible to enable good estimates of
the modal parameters to be evaluated. Particular care is required over the
damping loss factor and in determining the phase of a modal constant, implying

the need to use Nyquist circle-fit type modal analysis; and
i) the measured or regenerated frequency response functions should have

sufficient points around resonance to avoid time aliasing, and the force input

should be sampled rapidly enough to avoid frequency alising.
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The choice of linear damping model is a topic of discussion. For frequency
response functions, hysteretic damping is a better representation than viscous
damping in most cases of the dissipation mechanism in structures - but neither
is an accurate model of the damping. In terms of the mathematics, viscous
damping provides a rigorous solution, but the equations for hysteretic damping
are often easier to manipulate and can be related by engineering interpretation
to the solutions for free vibration even though hysteretic damping is only
strictly defined for forced vibrations. Most modal analysis routines calculate
the damping loss factor at resonance, and this can be changed to an equivalent
viscous damping ratio using the relationship derived from energy
considerations at resonance. It was shown that this relationship also holds with
light damping for the decay rate of the time-history. If a hysteretic damping
model is used in an FRF which is then subjected to a Fourier transform, a non-
causal response - Which is usually associated with non-linear systems - will
result. It is recommended therefore, that a viscous damping model is used for
transient response prediction to avoid this apparent non-linearity in the

system, which will hinder the detection of any non-linear elements present.

It was noted in the previous section that for any given non-linearity the trends
in the response depend on the type of excitation. These differences in trends for
the same non-linearity have a two-fold significance. The first is that exciting a
non-linear structure using an impulsive or other transient excitation will not
necessarily generate the FRF for the required excitation level (the FRF
represents the response frequency by frequency for steady-state excitation),
and as such, a constant-force sine test should be used to measure the FRF.
However, the second point is that using the modal parameters evaluated from
FRFs measured using constant-force sine tests for predicting the transient
response of a non-linear model may vyield incorrect results. Clearly, in this
second case, what is required is a frequency response model that closely matches
the transformed impulse response, and not the measured FRF. Such a
non-linear model, using parameters evaluated from data measured using a
constant-force sine test, has been developed for friction non-linearity. The
model was very complex, and led to the conclusion that it should only be used if
an alternative solution using a linear frequency response model could not be

derived.
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For a specific non-linear system, several different sets of modal parameters
can be calculated and, thus, several different impulse response predictions can
be estimated for the same system using the ‘Fourier transform method’. By
examination of the resulting time-histories it has been shown which answers
are acceptable, and under what conditions, and therefore which experimentally
derived modal parameters should be used. However, for some applications, the
use of a non-linear model rather than a linear model is still recommended. It is
obviously a much easier approach if a linear model can be used, both in terms of
computational time and in the determination of the required parameters. Thus,

wherever possible it is recommended that a linear model is used.

For damping-type non-linearities the linear approximations to the transient
response of MDOF systems are valid for the same situations as the SDOF
elements; using the underlying linear system parameters will always provide
an overestimation of the response. In situations where a non-linear model is
recommended for good approximations in the SDOF elements, the model would
now have to account for the influence of other modes on the amplitude of
response. For the symmetric stiffness-type non-linearities, the techniques for
evaluating the underlying system parameters are still valid, but not always as
accurately as from the SDOF element. Also, the linear model does not
over-predict the response at all times due to the now continually changing phase

relationship of the modes caused by the natural frequency changing with

amplitude.

The main difficulties are with detecting non-symmetric stiffness
non-linearities, where the force due to positive response does not equal the
magnitude of the force due to negative displacements. For the example used -
bi-linear stiffness - it is difficult to detect the non-linearity in the frequency
domain from any type of excitation, but the effect is very noticable in the
transient response time-history. For an accurate time-history prediction,
time domain models need to be developed which require the identification of the
different spring stiffnesses. However, a linear model using the softer of the two
springs can be used for transient response analysis which will generate an

overestimation of the result.
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In general, the conditions for steady-state response prediction and transient
response prediction vary considerably with non-linearities, and one response
cannot necessarily be predicted from the measurement of the other. A few of the
many alternative linear models that can be calculated using modal analysis
techniques on non-linear structures can be used in some applications of
transient response prediction when conservative estimates of the response is
the requirement. However, where accurate predictions are required,
non-linear models will have to be developed, but as these models will increase
the work involved in obtaining a transient response prediction, their use should

be restricted to cases for which they are absolutely necessary.
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8.3 Suggestions for further research
While many of the questions raised at the outset of this research have now been
answered, this study has highlighted a number of problems that require further

research. These topics are all related to the analysis and treatment of

non-linear systems.

In using modal analysis techniques on non-linear structures, the main problem
at present lies in identifying and quantifying a non-symmetric non-linearity
from frequency domain data. If the presence of this non-linearity is detected,
then there are methods of quantifying the different non-linear parameters for
SDOF elements but corresponding methods for quantifying the parameters need
to be examined for MDOF systems as the effect of applying an off-set to the
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requirement for accurate predictions balanced against the extra time and effort
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APPENDIX 1 Summary of essential modal theory
The theory presented in this appendix is a brief summary of the development of
modal analysis, and is found in literature on the subject. This section has been

included to support the sections in the thesis where these methods have been

used.

Deacri ption Vi bretion Response
of structure » modes > level3

SPATIAL MODFi ™\ MODAL MODEL RESPONSE MODEL

Mass, damping, Natural frequencies Frequency responses
stiffness Mode shapes Impulse responses

Fig (Al .1) Theoretical route to vibration analysis

Fig (ALl) sets out the steps in theoretical modal analysis. This procedure will
now be followed for a single-degree-of-freedom (SDOF) undamped model, with

extensions for the damped models and multi-degree-of-freedom (MDOF)

systems.

SDOF undamped spatial model

7/ é;
3

Fig (A1.2) SDOF undamped spatial model
First consider the system with no external forcing
mx + kx = 0

SDOF undamped modal model

The solution x(t)=xe®! leads to the requirement that (k -(ozm) = 0. The

modal model for this system consists of a single mode of vibration with a natural

frequency @, given by (k/m)!1/2,
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SDOF undamped response model

Consider now the forced system where f(t)=fei‘°t:
mx + kx = feiet

and a solution of the form x(t)=xe"°t, where x and f are complex to accommodate

both phase and amplitude information.

(k R mzm)xeim! = fei(ot

The frequency response function (FRF) is the response model and takes the

form:-
1

k- @2m

X
- =
= a(0) the system receptance FRF

Damped SDOF models
Hrcd
There are two linear damping models can be used in vibration analysis. These

are viscous and hysteretic (or structural) damping

Viscous Hysteretic
Spatial model 3 k k(1+ih)
— m
N I
: u
oo o )
m¥ + cx + kx = f(t) mi +k@+ih)x = f(t)
viodal model setting f(t)=0 leads to
X = e-gmoeico,,t
where W= (x)o\H—C2
(oo=,Kk/m)
€ = c/(2 Vkm)
lesponse using f(t) = fe'® leads to using f(t) = fel®t leads to
10del a(w) = —m aw = 1
(k-0m)+i(ex) (k-c0®m)+i(h)
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MDOF systems
The solutions for MDOF systems are similar in appearance to a SDOF system,

but the elements are replaced by matrices.

Spatial model

k
2
Ky —VWWWWA— —VWWW
it it
- ml C2 + see
E L AMAM—m, AW
: ks -

MIX()} + [CHx(D} + [KI{x(D)} = {f(t)}

Modal model
To obtain the modal model (f(t)) is set to zero. The solution takes the form

x@®} = {x}el®! and for the undamped system ([C]=0) this leads to the

condition

det |[K]- ®%[M]| = 0

For an N DOF system, N values of w? are obtained and also N sets of relative

values for {x) can be calculated. These can be usually written as two matrices

[‘corz\] Natural frequency squared (eigenvalues)) Modal

[~y~] Mode shapes (eigenvectors) | model
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Response models

Using the function {f(t)} = {f}ei‘"t and assuming a solution of the form

{x(t)} = {x}ei"’t, for the undamped case the equations are:-
(Kl - @?MD{x} = {f}
or  {x}= (Kl - @*(MD)! {f}

Now ([K] - m2[M]T|can be written as [a(0)] and is known as the response
model. By matrix manipulation the individual parameters of the response model

can be expressed as:-

N
Oty () = E Aik
2 .2
r=1 o -

where rAjk is the rth modal constant and is the product of the M mode shape

vectors from coordinates j and k.

If proportional damping is introduced (ie [damping] = B[K] + Y[M]) then the

general FRF expressions are:-

N
ajk(co)= Z rAjk Viscous damping
1 (k-w’m)+i(oc,)
N

ajk(co) = Z A Hysteretic damping
(k-00°m,)+i(h,)

r=1
where the denominator is now complex ie complex eigenvalues, but the mode

shapes are the same as the undamped model.

/
For general damping the expressions are similar, but in both cases the

numerator is complex, and for viscous damping the modal constant is also a

function of frequency.
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Different forms of the FRF

The three main forms of FRF use displacement, velocity or acceleration.

Displacement = Receptance = [a (0)]

Force

Velocity = Mobility =i o[a(0)]= [Y(0)]

Force

Acceleration = Accelerance =i ® [Y(0)] = -0)2[0(((0)] = [A(®)]

Force
In all three cases the definition for a single element also states that all other

forces to the system must be zero, ie

> (3)
fk f=0, m=1, N; 2k
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APPENDIX 2 Summary of SDOF modal analysis methods
This appendix covers the theoretical development of two SDOF modal analysis
methods. These are the Nyquist circle fit method, and the reciprocal-of-
receptance analysis. The Nyquist method is covered in much of the literature on
modal analysis (eg ref [64] to [66] & [69]) and is included for imformation.
The techniques behind the reciprocal-of-receptance method are exploited in some

of the applications to non-linear analysis.

Nyquist circle fit
The Nyquist circle for two particular cases - mobility for the viscously damped

system and receptance for a hysteretically damped system - trace out exact

circles for SDOF systems.

For the hysteretically damped case:-
Im(c)

Re(a) a(o) = 1 = k-w’m-ih
k-w?m+ih (k->2m)2+h2
i Re(a) = k-e?m Jim{o) = -h
(k-@°m)2+h2 (k-@?m)2+h?
=>(Re(o))2+(Im(ct)+1/2h)? = (1/2h)>

Hence plots of Re{o) against Im(a) will trace out a circle of radius 1/2h and

centre (0,-1/2h). Similar analysis can be made for the system with viscous

damping using the mobility FRF data and results in a circle of radius (1/2¢)

and centre (1/2c,0).
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Natural frequency estimation

For the system with hysteretic damping:-

Im(ar)
Re(a) a(o) = 1 (The modal constant
. mr2((1-((o/cor)2)+mr) scales the circle, and
tany = m, rotates it if complex)
1-(wo )

tan (30-y) = tan (e/2) = (1 (/)2 /' n,
o*= 2 (1-, tan (6/2))

ad  do?= -0, (1+(1-(@)? )
® 2

The reciprocal of this quantity - which is a measure of the rate at which the
locus sweeps around the arc - may be shown to reach a maximum value
(maximum sweep rate) when =, The natural frequency of the system. This

is shown by further differentiation, this time with respect to frequency:-

d =0 when (a)rz-(oz) =0
do(dw?/de)

This property can be used to estimate the natural frequency by examining the
relative spacing of linearly spaced data points around resonance. A similar

analysis can be made for viscous damping on the mobility plot.
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Damping estimates
Once the natural frequency has been located at the position of maximum sweep

rate, the damping can be estimated. Working through with hysteretic damping

and using the receptance plot:-

fim(a) Rega) O/(®) = 1
k-co2m+ikn
8,12 8,/2 Now tan(8,/2) = k-(, )’m
__-\(0,-1/2h) kn
-\ and ~tan(8,/2) = k-(e,’m
8,16, kn
mz' which leads to
o n =((c02')2-(col')2 1
o, (@) tan(8,/2)+tan(6,/2)

As can be seen different combinations of frequency points above and below
resonance can be used to provide a damping estimate. For a linear system these
values will all be the same, but by examining the 3-D damping plot, any errors
are easily classified as random (for instance due to noise on the signals) or
systematic (for example due to incorrect location of the natural frequency or
non-linearities in the system). The values obtained for the damping ratios can
be averaged to find a single value or, after examining the 3-D damping plot, a

weighted average can be used.

Summary of Nyquist analysis procedure

Locate. the natural frequency: (o o= (k/m)m)
Calculate damping ratio: (M= h/k)
Find the Nyquist circle radius: (diameter= I/h)

Hence all values can be determined. In the case of the SDOF system these m, k and h
relate to the physical model, but in the MDOF systems they relate to the modal

model, and usually the modal constant is calculated from the Nyquist diameter which

can also be expressed as:-
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A/®

This procedure can also be followed for systems with viscous damping. In this case

the damping expression in terms of frequency points above and below resonance is:-

{ = (0,)? - (@,)? ( ! )
2w, o, tan(61/2) + 0, tan(62/2)
and the mobility Nyquist circle radius is:-

A2e G

MDOF systems
Applying this SDOF technique to MDOF systems the assumption is made that in
the vicinity of resonance the response is dominated by that single mode. For the

'Y mode this means that-

oy, () = Ak + By (inthe vicinity of the ' mode)
(@ 2-0%)+n o2
The contribution of other modes in this region is approximated by a single term
which has the effect of displacing the Nyquist circle for the M mode. This is
shown in pictorial form.

Nm 4lm
Re Re

.
(mrz-m2)+ir]rmr2

Re , Ak + Bik

2 02y 4 2
(cor W )+mrcor
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Reciprocal-of-receptance analysis

Using the receptance FRF;

a(o) = A
(0, 2-0")+2ion
| = (cooz-coz)+2i0)(ooc
o) A

2

2) Which on a plot of Re(1/a()) against @

Re(1/a(w))= (0 2

A has a slope of -I/A and crosses the axis at

Re(1/ca()) m°2/A
,\\‘ \ o2

, 0)02/A\7

Im(1/0(w))= 2(00)0C In the vicinity of resonance this

A approximates to a straight line when
plotted against (02, and at =0, the value

Im{ 1 /a(0)) 4 is 20)02C/A @y and A being calculated
'Y from the Re(1/a(w))plot hence n can be
X ,0)2 evaluated.
For hysteretic damping
Im(1/o(w))= 0)021'1 Which is a straight line, and knowing 0302
A and A from the Re(1/0{w)) plot, 1 can be
Im(1 /a(0))4 calculated.
A
! o
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APPENDIX 3 MDOF curve fitting for lightly damped

structures
This appendix describes the theory behind an MDOF curve fitting routine for
lightly damped structures (ref [77]), that is often referred to as '‘ldent’

analysis.

Starting with an undamped model:-

N
a’u(m) = Z Pij
2.2
r=1 (Dr -

The receptance can be recorded at specific frequency values from the FRF curve,

and the resonance frequencies can also be located. The receptance can then be

written as:-

~
O I O (R R I—— | EAU.

. _/
Once the resonances have been located, N other FRF measurements are chosen

where N is the nurl\ber of resonances plus 2 (to account for the residuals).

- .-

~ ) ) _ _
04(22)) 02Q9!  (2Q%HT .. 1A
04(2,) I o201 (©@2QH T A

2 24-1 2 2y-1 )
®, 'QN ) (0, 'QN Ry ¢ NA

289




Now all of the o(€2) values are known and the corresponding frequency also, the

resonance frequencies are known. This leads to :-

[Ajj] = [RI"'[a;(Q)]
from which the modal constants can be calculated.

Returning to the damped model - using a generalised damping term:

at resonance assume that the response is due to that mode only

oG(@) = A
2 832,
©5-0, +|Dr
which is:-
a’lj(o)r) = ﬁ
iD,

rAij has been calculated, and aij(mr) has been recorded from the

FRF curve, so the damping term can now be calculated.
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APPENDIX 4 Basic impedance coupling theory
The theory behind impedance coupling is briefly summarised in this appendix to
provide a reminder to the parameters required when using this technique to

form a single response model from several models from different components.

Xec

The excitations and responses are related by:-

XA = FA(XA
XB = FB“B

When A and B are connected

XA=XB=XC
and
FA + FB = FC

which leads to

This can be extended to MDOF systems for coupling, and this now becomes:-

[ac]! =[o,] ! + [ag] 7!
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APPENDIX 5 Free decay for systems with viscous or

hysteretic damping
This section is included to show how the two different forms of linear damping

have the same relationship for free decay as they do at resonance for steady state

response.

Starting with the equation of motion for viscous damping:
X+20m X + mozx = (forcing function)

assume a solution of the form {x) = {X}eSt

which leads to the familiar solution
s = -Lo_ +io V1-{?
or

0 = Xre 5% (cos (O)O\H-Cz)t + i sin (mo‘“—'zz)t)

The same procedure can be followed for hysteretic damping even though the

solution evaluated is for free vibration and hysteretic damping is only defined

for forced harmonic vibration.

Starting with the equation of motion for hysteretic damping:
X + (002( 1+iM)x = (forcing function)
assume a solution of the form {x} = {X}eM

where A is complex.

This leads to

A%+ Y(1+in) = 0
or

A=zi coo\ﬁ_:i?]
Now let A = a + ib
*A?=a%-b? + 2iab
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Also

A% =0 2(1+in)
s at-b?= -(002
and  2ab=-_ 1
from which
= -0 n/2a
~ 42+ 4’0 2-0 =0

=a=-0, Viim2-1\12

2

Expanding this equation leads to

_ 3
a=-0nNR2+0 N6 - s

The estimated value of damping in most structures is such that the second term

is negligible. This leads to:-
a=-0.n /2 (0.125% error with | = 0.1)
and
b=  from above (0.125% error with 1 = 0.1)
Substituting the values for a and b in the solution leads to
i3 = {Xle (VD%¥cos @ t + i sin @ 1)
Comparing this with the solution for viscous damping shows that for the decay
term Lo, = -n/2)o
o c= Tl/2

This is the same relationship as is derived for the two forms of damping using

energy considerations for systems subjected to steady state vibration and at

resonance frequency.
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APPENDIX 6 Determination of friction damping from

reciprocal-of-receptance analysis
This section is included to demonstrate how different forms of damping can be
determined from a single frequency response measurement, when the input

force level is known, using an adaption of the reciprocal-of-receptance analysis

method.

Starting with the receptance equation for a system with friction from the

equivalent linearised equation of motion:-

AUD) = e A—,n
22,01 :
o 2-0"+2i{on +4Rio/To,
Examining the inverse of this equation and splitting into real and imaginary
parts leads to:
Re(1/ct) = (0)02-(:)2)/ A (as in linear case)

Im(1/a) = 200§ + 4R0

A ATT® X!

Now ‘a’, the amplitude, can be written as &F (where F is the input force level).

If two values of Im(1/a) are taken from a single plot from a constant input

force stepped-sine excitation then R can be calculated as follows:

Im(1/ex), = 2colmo§ + 4R, (a6.1)
A A1t(!)0('x.1 F
similarly
Im(1/a), = 20,0 8 + 4Rw, (a6.2)
A AnmoazF

Multiply 1 by o, and 2 by ®, then subtract to give:-
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@, Im(1/a); - @y Im(1/a), =4Re, @, (1 -1 )
Ato F \a, a,

where F is the constant excitation force amplitude

and 1/(Jc1 and /o,  are the reciprocals of the magnitude of receptance (not just

the real or the imaginary part).

This information is available from one receptance curve. Having calculated R
using the equation above, this value can then be used to calculate the viscous
damping in the system from either (a6.1) or (a6.2). A similar analysis can be
performed for systems with quadratic viscous damping which again enables the

two forms of damping in a system to be evaluated separately.
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APPENDIX 7 Development of non-linear model for the
transient response prediction of a friction element

(ref [135])
This is a brief summary of the results developed in ref [135] for the transient

response prediction of a friction element.

The results were obtained by observation of the time-histories of a system with
friction and viscous damping subjected to an impulse, and an equation derived
that uses the system parameters that can be calculated (modal constant, natural
frequency, viscous damping, friction and the initial conditions). This equation
was then analytically transformed to the frequency domain to provide the
non-linear frequency response function for use in the transient response

prediction of a system with friction. The equation is:-

afw)= 1 [ Aw + Aelio8T( (ie-Lew ) Sin @, T -0, cos w,T)
—c;d (0,2 w%+2iom .0 (0,2 0P+2iow .5

. BTe('im'C“’o)T((-ia)-Ccoo) sin @yT - @y cos wyT) +  Bay(-ie-{o o)

2(w % w?+2ioo ) (0,2 o?+2ion §)*

+ Bel1o-8aT ((g 2. 2 + 2i0m §-2 0% sin @ T - 2(-ia-{w, ) o, cos @ T)

2 o )
2(w 2 0*+2iow )

- B (1-2nf) 2ivw, - B (1-218) Te T (i sin @,T - w4 cos &,T)
2 (02 o)? 2 (0,2 o)
- :B_(1 -2ng) el@T( ((od2+ ®?) sin 04T - 2iww, cos v T)

2 (02 &%)
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where a(o) isthe response divided by the input force
() is the undamped natural frequency

€ is the damping ratio

Wy is the damped natural frequency (md=m°\/ 1- Cz)

A is the modal constant multiplied by the initial velocity
A is friction force/stiffness (m); the ‘dead zone’
B IS 20)02A/1c multiplied by the modal constant

and T satisfies 2Ae%®T - BTe$@:T . BT + 2nB{T = 0
Using the ‘Fourier transform method’ with this non-linear frequency response

function generates good predictions, and examples are shown in chapter 6 in fig

(6.10).
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