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ABSTRACT

The use of experimental modal analysis techniques together with Fourier

transform methods is considered for their application to the transient response

analysis of structures. The limitations and validity of this approach are

examined for linear structures, and a relationship derived that describes the

errors involved due to time aliasing within the inverse discrete Fourier

transform. The method is demonstrated with a simple beam using several

experimental modal analysis procedures.

The applicability of the same analysis and prediction techniques to non-linear

structures is explored. The use of constant-force stepped-sine excitation and

subsequent circle-fit modal analysis procedures for identifying non-linearities

is reviewed. Also, the reciprocal-of-receptance analysis is extended for

classifying and quantifying the non-linearity present.

Results from non-linear systems subjected to impulse excitation are examined

using various analyses. It is found that clear trends are evident.for  different

non-linearities, but they do not correspond to those from a constant-force

stepped-sine test.

Techniques for predicting the transient response for non-linear systems using

data from experimental tests are examined, with the result that several

different approaches are recommended depending on the non-linearity, the

initial conditions and the type and accuracy required of the results. These

prediction methods include using a specific linear model and developing

non-linear models that accurately describe the transient response.

Multi-degree-of-freedom systems with one non-linear element are also

examined, as in many practical structures the non-linearity tends to be

concentrated in a single component. The trends exhibited in the individual

non-linear elements subjected to experimental modal analysis are found to

correspond to  those t rends found in the resonances of  the

multi-degree-of-freedom systems. Similarly, the recommended techniques for

transient response prediction of a non-linear structure correspond to those for

non-linear elements under the same conditions.
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1 INTRODUCTION

1.1 Background and overview
Shock loading of a submarine may cause damage to important on-board systems.

This damage ranges in severity depending on the level of shock but in extreme

cases may render the submarine unserviceable, or unable to return safely to

base. Shock protection of critical on-board systems is therefore essential, and

it is necessary to be able to predict the transient response of these systems to

the expected shock loading in order to determine the shock protection

requirements.

One obvious approach to this requirement is shock testing of the systems of

interest to a standard specified by relevant interested parties. There are

several problems in the shock testing of structures, including the expense and

availability of full-size models and the logistics of running such a test. Using

scale models is an alternative, but there are still problems in scaling the

required parameters and in extrapolating the results to the required shock

standard on a full-size system. Also, it is usual to have only a few of the full

size components to test, with scale models of some of the other systems and

analytical models of the remaining components, and the subsequent

mathematical models all require combining in some form to provide a complete

description of the total structure.

Several techniques exist for the transient response prediction of structures,

but all the methods require a mathematical description of the structure. In

situations where mathematical models do not exist there is a requirement to

construct such a model from experimental tests. Experimental modal analysis

methods are an alternative route for evaluating mathematical models.

Experimental modal analysis covers the testing of. the structure - eg by

stepped-sine excitation, random excitation or impact testing - and the

subsequent analysis of the data - in either the frequency or the time domain - to

obtain a frequency response model of a structure. As some of the

sub-structures of a submarine are too complex to be modelled theoretically, and

models for these will need to be obtained from experimental data, the use of

17



transient response prediction methods with experimental data is an important

topic.

All systems are to some degree non-linear; therefore, the use of transient

response prediction methods for non-linear structures with mathematical

models derived by modal analysis techniques is an important area for

investigation as it is reasonable to assume that most of the on-board systems of

a submarine are non-linear.

1.2 Object ives
As experimental modal analysis methods can be used to determine mathematical

models of structures far more easily, and at less expense, than by calculating a

model from shock tests, a primary objective of this research is to explore the

potential for using experimental modal analysis data to evaluate suitable

parameters for the prediction of the response of the structure to a shock input.

An essential component of this study is to determine the limitations and

restrictions placed on the experimental analysis techniques and the transient

response prediction methods used, and the subsequent accuracy of the results.

In particular, the special problems in predicting the transient response of

structures with non-linear components using models derived from

experimental modal analysis are to be addressed as these conditions represent

the closest to real-life applications.

1.3 Contents of the thesis
Initially, methods available for transient response prediction are reviewed. All

the techniques, whether working in the time or in the frequency domains,

require a mathematical model of the structure. The Fourier transform

approach uses a frequency response model of the structure, and as such is

perhaps the most appropriate method for use with experimental data.

Frequency response models are often determined using modal analysis methods,

and experimental modal analysis techniques are reviewed in chapter 3,

including both the testing and the data analysis procedures. Also included in that

18

. I . _,. , ‘Yb , . ,.



chapter is a section on the process of coupling together frequency response

measurements on separate components in order to evaluate the response

characteristics of the complete structure formed by their assembly.

The Fourier transform method is considered in detail in chapter 4, with a brief

review of Fourier theory followed by an examination of the requirements of the

frequency response data for accurate transient response predictions. These

requirements have implications for the experimental and analytical procedures

used to obtain the frequency response data as it is found that errors in the modal

parameters can result in large deviations of the predicted transient response

from the true response. In terms of the data used in the transform, the usual

criterion of a sample rate of twice the maximum frequency content avoid

frequency aliasing is mentioned, and also a maximum frequency spacing for any

given system to avoid time aliasing when transforming from the frequency to

the time domain has been developed. Both forms of aliasing are considered. This

technique for transient response prediction is suitable for linear systems

provided that certain constraints are observed in the quality of data, and in the

digitisation of the frequency response for the transform.

Attention is then turned to the problems associated with non-linear structures.

In chapter 5 the application of modal analysis techniques to non-linear

structures is examined in terms of the ability of the techniques to identify and

quantify a non-linearity. Of particular interest is the reciprocal-of-

receptance method which is found to be a powerful tool in distinguishing

between damping and stiffness type non-linearities, and the method is easily

adapted for some non-linearities to enable specific non-linear parameters to be

evaluated.

Examination of the results in the frequency response data from transient

excitation again shows distinct trends for each non-linearity considered, but

these are not generally the same as the trends seen in frequency response data

for the same non-linearity but measured via a constant-force sine test. As the

results of the frequency response data vary considerably, the impulse response

functions from the two excitation techniques are compared, and again there is

found to be very little agreement.
19



Predictions for the impulse response functions of non-linear elements are

examined in chapter 6. Two approaches are considered; using the frequency

response functions from modal analysis, or developing a non-linear model from

experimental data specifically for use in transient response predictions. The

linear approach is suitable for several applications, but generally using a

specific set of modal parameters (several different sets of modal parameters

can be evaluated from a single measurement of a non-linear structure). The

modal parameters recommended so as to ensure acceptable results are derived

for various non-linearities. The limitations on the validity and accuracy of any

prediction is examined and it is found that for some non-linearities the linear

approach generates good predictions, whilst for others a non-linear model must

be developed if accurate predictions are required. However, non-linear models

can be very complex: a separate model needs to be developed for each type of

non-linearity, and the resulting non-linear model will only be valid for

transient response predictions and would generate large errors if used for

steady-state response predictions. Therefore, non-linear models should only be

used where necessary, and not as standard practice.

In chapter 7 the extension of these techniques for application to

multi-degree-of-freedom systems is considered. The trends for identifying the

presence and type of non-linearity remain unchanged from the corresponding

single-degree-of-freedom element. The transient response predictions using

the  l i nea r  pa ramete rs  eva lua ted  as  recommended  f rom the

single-degree-of-freedom elements are also examined.

Finally, the results of the work are summarised in the form of

recommendations of how to use experimental modal analysis in transient

response predictions, for both linear and non-linear structures. For linear

structures, future developments in modal analysis techniques may enable

parameters to be evaluated that are a closer approximation to those of the real

structure and hence result in a better transient response prediction. However,

further research is envisaged into many aspects of the transient response

prediction of non-linear structures using experimental data.

20
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2  A  R E V I E W  O F  T R A N S I E N T  R E S P O N S E  A N A L Y S I S

METHODS

2.0  In t roduct ion

The requirements for a transient structural response analysis vary from one

application to another. For some analyses a single-degree-of-freedom (SDOF)

model  is  suf f ic ient , whi ls t  in o the r  cases  a more detai led

multi-degree-of-freedom (MDOF) model is necessary. Further, the need for an

approach to non-linearities in the system ranges from ignoring them altogether

to attempting to model the non-linearity in detail. To satisfy this range of

requirements, many different transient response analysis methods have been

developed, working in both the time and the frequency domains. The

presentation of results also differs with the analysis and application from

showing only the maximum response to displaying the full time history. The

aim of this chapter is to review the methods available for transient response

analysis of theoretical and real structures. In considering the various

alternatives, the primary concern is the applicability of each method for the

prediction of transient responses of complex structures using experimental data

as a means of describing their properties.

The first part of the chapter is concerned with time domain methods, including

time-marching solutions, Duhamel’s integral method and graphical techniques.

Frequency domain methods are then examined. Shock spectra are used when

only the maximum values of response are of interest, and the Fourier transform,
approach is examined in detail for use with frequency response data.

Many engineering structures that are subjected to transient loading are often

too complex to be theoretically modelled in full. For these structures, some or

all of the components may need to be described by experimental data. In these

situations the experimental description of the structure is usually in the

frequency domain as frequency response functions or modal data, in which case

the most appropriate technique for

Fourier transform-based approach.

transient response analysis is to use a
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2.1 Time domain methods
This section reviews the techniques available for transient response analysis in

the time domain. The first group of methods considered solve the equations of

motion of the structure numerically. These types of analysis are suitable for

SDOF or MDOF components, and can also be adapted for non-linear systems.

Duhamel’s integral method is considered next: this is based on the principle of

convolution and is’ primarily applicable to linear models whose impulse

response functions can be expressed analytically. Finally in this section,

graphical approaches are mentioned: these analyses are performed on SDOF

elements or individual modes of vibration of a structure and, when the

non-linearity in a system is known, graphical analysis can easily be adapted to

include the effect.

All of the methods in this section require a knowledge of the properties of the

system. This makes the time domain techniques better suited to the transient

response analysis of structures that can easily be modelled theoretically than

those that need to be described by experimental data. Duhamel’s integral and

graphical approaches are developed for SDOF systems: these techniques can be

applied to MDOF systems but the accuracy of the solution is less than for the

SDOF example. Numerical solutions are attractive for real structures as the

solutions are for MDOF systems and several of the methods can be adapted for

non-linear components - the problem being that in our case not all the

structures are analytic and therefore the form of any non-linearity is not

known. This means that the equations of motion can not be formulated

theoretically.

2.1.1 Numerical methods

Many different algorithms exist for the step-by-step solution of differential

equations. The choice of method for use in a particular case depends on many

factors including, the form and type of the equations, the known boundary

conditions and the speed or accuracy required. Chan and Newmark [l] assess

many of them, and methods are well documented by other authors (eg [2] to

171). The Newmark-P method (refs [8] to [ll]) is a general numerical

procedure that has been developed for transient structural response analysis.
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The choice of p in the equation determines the variation of acceleration within

the time step, so that stability and convergence of the calculation is dependent on

the value of p_ Use of the Newmark-P  - or any numerical solution - requires a

knowledge of the system parameters (ie mass and stiffness). If the structure is

too complex to be modelled theoretically a description of the component can be

obtained by using experimental modal analysis. There are also other types of

numerical solution for MDOF systems which provide an approximate response

using only a few of the modes (eg mode superposition method [12]). These

methods are more efficient when - as is often the case in shock response - the

first few modes contribute the majority of the response.

The Newmark-P method has been extended to include non-linear elements and,

once the non-linear parameters have been obtained, solves the equations

without linearisation. A finite difference method [13] has been developed that

is similar to the Newmark-/ method but is in a form that will accept any form

of non-linerity. Also, Lyons et al [14] suggested using a two stage solution for

non-linear systems. The first stage is to solve the equations of motion directly

using a numerical method to calculate an equivalent non-linear force. This

calculation is performed using only the non-linear components and a small

number of low frequency linear modes - as the response of non-linear elements

is primarily affected by those linear modes of vibration. In the second stage,

this equivalent non-linear force is substituted into the equations of motion for

the non-linear terms and the equations for the full system are solved using the

more efficient transform analysis.

2.1.2 Duhamel’s Integral

Duhamel’s Integral method and the Superposition Integral are two names that

are used to describe the convolution integral when it is applied to structural

dynamics. Convolution is an important operation in linear systems theory, and

the theory of convolution and its applications are well covered in the many text

books available that examine linear systems (eg [15] to [25]).
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The convolution integral as applied to transient vibration analysis is an exact

solution for the linear system. The integral treats the input (f(t)) as a series

of impulses of various magnitudes, and assumes that the response (x(t)) is

given by the sum of responses to all the impulses. The response can be written

as:

x(t) =0 j * f(t’)h(t-t’)dt’

where h(t) is the impulse response function of the system.

To perform Buhamel’s  integral, the impulse response function of the system

needs to be determined. This can be calculated by several different methods:

(i) for a simple system whose equation of motion is known, the equation can be

solved using the initial conditions of an i m p u l s e  (x(0)=0,

ic(O)=impulse/mass)  to give the impulse response function.

(ii) the impulse response function can also be found by taking the inverse

Laplace transform of the system transfer function (H(s)).

h(t)=L-’ (H(s))

In practice, the impulse response function can be obtained by:

(iii) applying a step forcing function to the system, and differentiating the

consequent response to obtain the impulse response function;

* (iv) applying a high-level pulse whose duration is short compared with the

upper cut-off frequency of the system so as to simulate an impulse. The

response is taken as h(t);

(v) a random noise input, whose spectral density is flat, is applied to the

system and the cross correlation function between the input and the output is

computed. This is H(w), the system frequency response function, and h(t) is

obtained by inverse Fourier transforming H(o).
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Often, the response is required to transient inputs applied simultaneously at

several different sites on the structure. To extend this method for multi-site

excitation requires a knowledge of how the point of interest responds to an

impulse at each point of excitation. The total response at point i is then given by

a summation of the integrals at the response point of interest with the M

excitation points.

M

I

xi(t) = C 0 I t f j(t’)hj(t-t’)dt’
j=l

The integrals can become complicated for MDOF systems resulting in the need

for numerical integration. The major advantage of a closed-form solution is

then lost and the restrictions on accuracy are now similar to those for other

numerical techniques.

2.1.3 Graphical methods

Graphical methods are time-consuming as a complete construction is needed at

every frequency of interest. Sometimes, the particular quantity required (eg

maximum displacement) can be recognised from a graphical construction more

quickly than it can be calculated. The most useful graphical technique is the

Phase-Plane method (ref [23] to [28]) which can be developed for non-linear

equations and is then often referred to as the Phase-Plane-Delta method. The

Phase-Plane techniques are basically intended for SDOF systems, or for

analysing isolated modes that are expressed analytically as SDOF systems, but

these approaches can be applied to MDOF systems using superposition if the

relationship between the individual modes is known.

These techniques are basically graphical approachs to a numerical solution - a

time-stepping method that relies on previous time data and an estimate as to

how one of the parameters varies over the time step. Graphical methods have an

advantage over numerical analysis in that the response is seen at each time step

and the process can be stopped when enough of the solution has been calculated,

and the technique may also be quicker in obtaining the maximum response.
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2.2 Frequency domain methods
In this section the methods available for transient response analysis in the

frequency domain are reviewed. Shock response spectra are examined followed

by the Fourier transform method. Both approaches assume that the system is

linear, shock spectra being for SDOF systems whilst the Fourier transform

method can be applied to any system. As in SDOF time domain methods, results

from any shock response spectrum can be superimposed for MDOF systems if

the relationship between the modes is known or can be approximated. There is

also a difference in the presentation of results from these analyses, shock

response spectra present only the maximum response of SDOF systems to a

pulse, whilst the Fourier transform provides the full response for the system.

2.2.1 Shock response spectra

The concept of the shock response spectrum was originally developed in order to

examine the effects of earthquakes on structures when, since it was the

maximum responses that was causing most of the damage, it was decided that the

full response time-history was not required. These maximum responses

occur during, or shortly after, the initial response from the earthquake.

tend to

Shock response spectra present the maximum response of several SDOF systems

to a pulse, the axes of the plot being the natural frequency of.the SDOF system

along the x-axis and maximum response in the y-direction. Often, shock spectra

have non-dimensionalised axes: the response axis is non-dimensionalised to

maximum static displacement, and the frequency axis non-dimensionalised by

the pulse duration. Shock response spectra for undamped SDOF systems are

well covered by several authors (eg [29] to [36]). Spectra for damped SDOF

systems are also discussed by a few (eg [24] and [37] to [39]),  but the

variation in the maximum response with damping is small and undamped

spectra, which are considered conservative estimates for the damped systems,

are generally used for any system.
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There are three types of shock response spectrum: maximax, residual and

initial. The maximax response spectrum is the maximum response of the

system to the pulse, the residual response spectrum is the maximum

response of the system after the pulse has finished, and the initial response

spectrum is the maximum response of the system during the pulse. Examples

of the spectra for a half sine pulse are shown overleaf in fig (2.1).

When designing against malfunction or fracture, the maximax spectrum is of

particular interest. If fatigue is the likely mode of failure then the residual

spectrum is of interest. Any of the three types of spectrum may be the absolute

response of the mass or the relative response of the mass to another point on the

structure. Damage may occur to the structure, for instance, if a critical

relative displacement is exceeded - a maximum stress level may be reached, or

the system may collide with another damage-prone element.

Several methods are available for generating shock response spectra. The

original method used a reed gauge where the reeds are tuned to prescribed

frequencies. This can also be synthesised by using a series of filters. If the

equation of motion is known analytically then it can be solved for a range of

natural frequencies and the maximum values obtained. Shock response spectra

can be constructed from experimental data, using the maximum response of the

system from different duration pulses (rather than changing the natural

frequency of the system). There are also methods available for maximax

estimation eg ref [30] which may be quicker than exact evaluation.

One restriction on the use of shock response spectra is that they relate to SDOF

systems only, whereas very few real structures can be represented by SDOF

models. This problem has been examined in several references, including [34]

where the general trends of shock response spectra are also examined, 1351

where estimating, rather than calculating, maximax response for discrete

MDOF systems is considered, and [36] where it is developed in the field of

earthquakes.
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The need for non-linear analysis has been mentioned by several authors (eg

[32] and (361) including the problems of using superposition with non-linear

systems. Ref [36] also notes that in some cases the response of the non-linear

system can be greater than the corresponding linear system; hence, using

estimates from linear shock response spectra might not be conservative.

Nevertheless, shock response spectra have their uses in predicting the

maximum response of a system to a transient input. In order to be able to

combine the predicted maximum response for MDOF systems, the relative

contribution of each mode needs to be known. This information can be obtained

by experimental modal analysis if the system cannot be modelled theoretically.

Using shock response spectra does not enable a time history of the response to

be calculated, and is therefore only useful when the criterion under under

consideration is that of maximum response.

2.2.2 Fourier transform methods

The Fourier transform is a method of analysis that is used on linear systems to

recast a problem in a format that can be solved more readily than is possible in

the original format. For the application of transient response prediction of

structures, the Fourier transform is widely used. More specifically, a version

known as the discrete Fourier transform (DFT) is often used, as this can very

readily be implemented by using an efficient set of algorithms on computers,

known as the ‘fast Fourier transform’ (FFT). Information on Fourier

transform methods and the application to transient response prediction of

structures is available in the literature on the subject which includes refs [4O]

to [45].

The basic principle for transient response prediction in structural dynamics

using the FFT is to apply the Fourier transform to the convolution integral.

This recasts the time domain integration expression into a frequency domain

multiplication. Fourier transforms are useful tools for predicting the transient

response of a linear, or linearised system. Performing multiplications in the

frequency domain is more efficient than integration in the time domain.
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In practical situations, a time domain transient input can be transformed into

the frequency domain. This is then multiplied by the frequency response

function of the system under analysis, and the result transformed back into the

time domain to obtain the time history of the response.

In experimental modal analysis, the information most readily available about

the structure is a set of frequency responses. These frequency response data are

in the form required for convolution in the frequency domain with the input

signal. No analysis needs to be done to available experimental data - such as

extracting the modal parameters - before using these data for transient

response prediction. However, if modal parameters are available, either from

experimental data or from a theoretical model, the frequency response functions

can then be regenerated up to the required frequency of interest. This can then

be treated as the- experimentally-obtained frequency response functions.

The limitations and approximations are in the DFT process, both in

transforming the input signal to the frequency domain, and transforming the

results back to the time domain. Most of the limitations, such as frequency

aliasing, are well documented. Some limitations specific to structural

dynamics, such as incomplete or badly-defined frequency response data, need

careful consideration and will be examined in more detail later in this thesis.
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2.3 Discussion
For structural transient response analysis the frequency domain methods can be

applied equally well using both theoretical data and with experimental data. The

time domain approaches, however, are better suited to theoretical systems

where the equations of motion are known.

The Fourier transform and the time-marching methods are more suited to MDOF

systems than are the other methods, although formation of the equations for the

time-marching algorithms becomes harder with increasing numbers of degrees

of freedom. Duhamel’s integral method, graphical techniques and shock spectra

apply primarily to SDOF systems but can be adapted for MDOF systems with

some approximations to the contribution of each mode to the total response.

Methods that take account of non-linearity in systems include the

time-marching solutions - notably, Newmark-P - and graphical methods. In

the latter case the responses from several modes are combined using

superposition and normal mode contributions, thereby assuming linearity. The

time-marching solutions requi re the non- l inear i ty  to  be def ined

mathematically and this is often only a rough approximation. None of the

methods mentioned provides

non-linear experimental data.

exact transient response solutions using

The Fourier transform method is more efficient than direct solution of the

equations of motion and, if the structure cannot be modelled and has to be

measured experimentally, the digitised frequency response functions can easily

be multiplied by any forcing function to provide a transient response

prediction.

For these reasons this thesis concentrates on the use of Fourier transforms for

transient response analysis from experimental data. These data can take the

form of raw frequency response measurements, (such as are measured in

typical modal test procedures) or the modal parameters obtained from

experimental data. One of the methods of evaluating the required parameters of

the system from the experimental data is by using modal analysis.
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3 A REVIEW

STRUCTURAL

OF FREQUENCY RESPONSE METHODS FOR

MODELLING

3.0 Introduction
The technique known as modal analysis is often used to create a frequency

domain model of structures of interest. In this instance, experimental modal

analysis covers the experimental testing of structures and the subsequent

analysis of the measured data to extract the modal parameters (natural

frequencies, mode shapes, and damping) that form the frequency domain model.

The information obtained from these tests and analyses can be used in several

applications - one of which is response prediction to any input force condition

including transient excitation. The aim of this chapter is to review current

testing procedures for measuring the frequency response function (FRF)

properties of structures, and the analysis methods for evaluating the modal

parameters from these FRF data. In the review of analysis methods attention is

focused on techniques that will be used in later sections. Some applications of

these FRF data and modal parameters will also be considered.

The present chapter starts by briefly examining the essential theory of modal

analysis necessary for the subsequent analysis of experimental data. Some of the

methods for experimentally measuring the frequency response of the structure

will then be discussed and various methods for analysing the data will be

examined. The advantages and limitations of the experimental techniques and

analysis methods will also be considered. In the last part of the chapter some of

the applications of data obtained from experimental modal tests - either raw

FRF data or modal parameters - are reviewed. The topics discussed in this

chapter are extensively covered in the available literature on modal analysis.

The work by Ewins (ref [46]) on modal testing includes information on most of

the subjects.
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3.1 Summary of essential modal theory
The theoretical route to vibration analysis generally starts with a spatial

model, which is a description of the physical properties - ie mass, stiffness and

damping - of the system. Next, the spatial model equations are solved for a

modal description of the system consisting of a set of natural frequencies, mode

shape vectors and modal damping of the system, together known as the modal

model. Finally, in the theoretical analysis, a response model can be generated to

describe how the structure responds under given force excitation conditions.

The theoretical development from spatial to modal to response model is reviewed

in Appendix 1.

One convenient form of response model for a structure can be expressed as a set

of frequency response functions (FRFs) for the points of interest on the

structure. Each FRF in this case is the ratio of the response to a unit amplitude

sinusoidal force applied at a single point over the frequency range of interest.

The general form of the for displacement FRF (receptance) is:-

Iv

tXjk(CO) = XjP = 7
fkeiot ,gl

cr
co,* - a2 + iD,

where ajk( o) is the receptance FRF at point (jk)

‘j is the response at point j

fk is the input force at point k

N is the number of modes of vibration.

Cr is the rth modal constant - which is the product of the

mode shape vectors from the excitation and response point. C,

may or may not be frequency dependent and can be either real

or complex depending on the damping model used.

Or is the rth natural frequency.

Dr is the rth damping term - which may or may not be

frequency dependent and can be either real or complex

depending on the damping model used.
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The FRFs for velocity (mobility) or acceleration (accelerance) responses are

related to receptance by (io) or (-02) respectively. The reciprocal

relationships of force per unit response are also used. These relationships are

more often associated with other fields of application - eg sound propagation -

but, if the inverse FRFs are applied to structural dynamics, then it is important

that their significance be fully understood, as considerable errors occur when

they are incorrectly applied to multi-degree-of-freedom (MDOF) systems.

It is worth mentioning here the two common models of linear damping (refs

[47] & [48]). These are:-

(i) viscous damping, where the damping force is proportional to velocity.

(ii) hysteretic (or structural) damping, which is defined for sinusoidal

excitation, is where the damping force is proportional to displacement but takes

the sign of velocity.

The theoretical development of the FRFs of a system with viscous damping is

rigerous - the differential equations of motion are first solved for a

complementary solution, then for the particular integral for sinusoidal

excitation. Inspection of the FRFs for these systems reveals that the effect of

the damper is dependent upon frequency. In practical structures, damping is

usually found to be relatively independent of frequency so, to take this into

account, the hysteretic (or structural) damping model is used. Hysteretic

damping is defined as a dissipation mechanism whose damping coefficient is

inversely proportional to frequency, and this results in frequency-independent

damping terms in the FRF. However, the analysis with hysteretic damping is

not strictly valid for free vibration, as the damping model is only defined for

forced sinusoidal excitation and does not apply for 0=0. Even so, hysteretic

damping is an acceptable model of damping for forced harmonic vibration. Also,

as it is always possible to express an FRF as a series of simpler terms, each of

which may be identified with one of the ‘modes’ of a system so the individual

terms may be considered genuine characteristics of the system.
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When examining systems with hysteretic damping models the damping quantity

is usually expressed as a ‘loss factor’ (IT), which is the ratio of the energy lost

per cycle (AE) to the maximum potential energy stored in the system during

that cycle (@_ This can be expressed as:-

I In systems with viscous damping, the ‘damping ratio’ (6) is often

which is the ratio of the actual viscous damping in the system to

damping (c,) of the system (critical damping is when there

oscillations).

referred to,

the critical

is just no

Using energy considerations, the expression for the damping loss factor can be

used to calculate equivalent damping loss factors for other damping mechanisms.

In the case of viscous damping this leads to:-

This means that ti rem q = 2c. This relationship will be used later in the

thesis when the damping ratio is required from calculated damping loss factors.

Presentation of results

The FRF data are complex, hence there are three quantities - two parts to the

complex FRF, and the frequency - that need to be displayed. To present all these

data requires two plots, as a standard plot can only show two of the three

quantities. There are several different forms of presentation used depending on

the requirements from the measured data. Two of the more common forms of

presentation for structural analysis are mentioned here, one of which is only

suitable for damped systems.
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The first form of presentation is the Bode type. This consists of two plots -

modulus (of the FRF) vs frequency and phase vs frequency. To encompass the

wide range of values associated with FRFs, the plots often make use of

logarithmic axes for the frequency and modulus scales. An example of this type

of display is shown in fig (3.1)‘.

The Nyquist (or Argand plane) plot is the second type of presentation in

widespread use. This is a single plot of the real part of the FRF against the

imaginary part. The frequency information is not readily available from this

type of display, but can be marked on the plot as shown in the example in fig

(3.2). The Nyquist plot is particularly suitable for focusing attention to the

detail around the resonance region.

Both the Bode and the Nyquist plots contain interesting geometric properties

that are related to the modal parameters. This is particularly useful in the

experimental approach to modal analysis as given the frequency response data

the modal parameters can generally be calculated from detailed analysis of the

actual plotted curves.

-Figures are at the end of the chapter.
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3.2 Experimental testing for frequency response of

structures
The experimental testing procedure starts where the theoretical route finishes

- the frequency response data. In this approach, the FRF is measured

experimentally from the structure, modal parameters evaluated from the FRF

and finally a spatial model may be reconstructed from the modal model. In this

section the measurement techniques used for obtaining the frequency response

will be summarised.

The type of structural measurement required for experimental modal analysis

needs both the input and the response to be measured simultaneously. The

amplitude ratio and the phase relationship of the two signals then needs to be

evaluated in the frequency domain to obtain the FRF. If care and attention are

paid to the details of preparing a structure for test then the measured data

should be an accurate frequency response description of the structure.

However, large errors can be introduced if, for instance, the mass of the

measuring transducers is significant compared with the effective mass of the

structure, or resonances can be added to the system through the suspension of

the structure.

There are several experimental testing methods available that are in common

usage. These can broadly be split into two types:-

(i) Single-point excitation, as the name suggests, has only one point of

excitation at a time and corresponds closely to the theoretical derivation for

frequency response functions; and

(ii) Multi-point excitation, where several sites are chosen to be excited

simultaneously (eg refs [49] to (521).

For a linear structure, where the relationship between input and response is

constant at any given frequency, the excitation method makes no difference to

the measured frequency response and can consist of sinusoidal, random, periodic

or transient inputs. The single-point excitation techniques, which are the

methods more commonly used for experimental modal analysis, are now

examined in more detail.

37



Sine excitation

Stepped-sine testing is the classical excitation method involving a discrete

sinusoid with fixed amplitude and frequency as the input excitation signal. The

frequency is stepped from one frequency to another to provide the range of data

required. At each frequency it is necessary to ensure that the response is steady

- ie that all the transients have decayed away - to obtain a true steady state

measurement. This method is quite slow to measure the full frequency

response, but has the advantage that the frequency points can be chosen where

required, closely-spaced around the rapidly changing region of resonance and

more widely spaced where the change is less rapid. Also, for many structures

there are less problems associated with the measurement of the more widely

spaced data, and these data are less likely to be required with as great an

accuracy for later analysis than the data in the critical regions. It follows from

this that the time spent in measuring can be optimised. Typical FRF data from a

sine test are shown in fig (3.3).

As an extension to stepped-sine testing is the slow-sine sweep method where the

excitation frequency is slowly varied through the range of interest. It is

necessary to ensure that the sweep rate is not too fast, otherwise distortions

will occur in the FRF plot. There are guidelines as to the maximum sweep rate

through resonance in the IS0 standard for ‘Methods for the experimental

determination of Mechanical Mobility’ (ref [53]).
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Random excitation

This technique uses statistical relationships between the input and output

signals. The theory for this type of response measurement can be found in

literature on signal processing as well as on modal testing (eg refs [44] & [54]

to [58] ). A random signal is used to excite the system, and the relationship

between the cross spectrum of the input and response and the auto spectrum of

the input is usually used to estimate the FRF. There are other estimations of the

FRF which are occasionally used and which should theoretically produce the

same results, but there are several reasons why they may differ including noise

on one or both the signals, secondary input to the structure and poor frequency

resolution. It is therefore important to use the most appropriate estimation for

the FRF in any situation. The advantage of random excitation is the speed with

which the FRF can be produced. However, to obtain data as good as that obtained

using stepped-sine excitation may involve many averages, and zoom

measurements around resonances, making the total time to obtain analysable

data much the same as for stepped-sine testing. An example of FRF from random

data is shown in fig (3.4).

Periodic excitat ion

A group of excitation techniques, refered to as periodic excitation, use similar

analysis to. random with periodic input force signals consisting of many

frequencies. These techniques include; periodic excitation - frequencies of

known amplitude and phase relationship; pseudo-random - frequencies with a

random mixture of amplitudes and phases; periodic-random - using a

pseudo:random sequence for one response measurement then changing the

pseudo sequence for the next measurement and the process repeated until

sufficient averages have been obtained; and burst signals, either random or sine

(eg ref (591) - where the time length of the input signal is short, but not

impulsive-like, and there is sufficient time between bursts for the response to

have decayed away. The FRF can be calculated from the ratio of the Fourier

transforms of both the input and output signal as well as using cross and auto

spectra. In these four methods, problems such as leakage do not occur as the

signals are periodic in the analyser bandwith. Periodic random, in particular,

increases the measurement time over true random due to the amount of data not

used.
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Transient excitation

There are two major types of transient excitation: impact testing (ref [SO])

and rapid sweep (refs [61] to (631).  Both forms can be analysed either using

the ratio of the Fourier series description of the input and output, or in the

same manner as random signals. Often, in both sets of tests, the results are

averaged over several transient inputs. Impact testing, from a hammer blow

for instance, has the frequency content limited by the length of the impact: the

shorter the pulse the higher the frequency range. Rapid sweep testing has

control over the frequency and amplitudes present in the signal. The advantage

of impact testing over all the other methods mentioned is that it does not require

an exciter or power amplifier, and so the problems of attaching the source of

excitation to the structure do not exist. Also, the excitation site can be rapidly

moved around the structure.
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3.3 Extracting modal properties from experimental

frequency response data
Having obtained raw frequency response data, the next step in the processing is

to derive the parameters of the modal model. The task is to find the coefficients

in the theoretical expressions for FRF which are the best approximation to the

experimental data. These coefficients correspond closely to the modal

properties of the system. This section examines some of the procedures that are

available for this ‘modal analysis’ part of the test.

There are two main types of analysis of the FRF - the first involves analysing

individual modes of vibration while the second type analyses all of the modes in

one stage. There is an extension to the second type that is used; that of

simultaneously fitting several FRF curves from the same structure. This

procedure uses the fact that for linear structures the natural frequencies and

modal dampings are global parameters - ie for a given mode of vibration those

parameters are independent of excitation or response sites. There are also a few

procedures available which calculate the modal parameters from response data

in the time domain. These methods either fit all the modes from one time

history or solve for several curves simultaneously. Most of the frequency and

the time domain methods are referred to in ref [64] and further specific

references available from the surveys and bibliographies available (eg refs

[=I, I661 t. [137]).

3.3.1 Single-degree-of-freedom (SDOF) analysis

The SDOF methods assume that in the vicinity of resonance the total response is

dominated by the contribution of the local mode. Some of the methods allow for

the contribution of other modes by approximating their effect on the resonance

region of interest to a constant. There are several types of analysis in this

category (refs [67] to (721) but the two that are outlined here are the more

common methods in use and are the ones that will be used in future analysis in

this thesis. The theoretical background to these two methods is provided in

Appendix 2.
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Nyquist or circle-fit method

This method uses the geometric properties of the Nyquist circle to calculate the

modal parameters. The natural frequency is located first by identifying the

point of maximum sweep rate. From this, several damping estimates can be

calculated using different combinations of points above and below resonance.

Ideally, all these estimates should be identical, but by presenting the values on

an isometric (or 3-D) damping plot, rather than giving a single averaged value,

information can be gained about the source of the discrepancy - incorrect

location of the natural frequency, ‘noisy’ data or non-linear data. The final

parameter to be calculated is the modal constant and this is obtained from the

diameter of the circle. The approximate effects of the other modes can be

evaluated from the offset of the circle. As a final check on the parameters, a

theoretical curve can be regenerated and compared with the experimental data.

An example of this type of analysis is shown in fig (3.5). Further information

can be obtained from the general literature on modal analysis and ref (69).

Reciprocal-of-receptance

This method also uses data around resonance, but uses the plots of the inverse of

the FRF. This usually results in two plots, the real part and the imaginary part

- in both plots the x-axis is frequency squared. From the real part, the

resonance frequency and the modal constant can be evaluated. The damping value

can then be read from the imaginary plot. An example of this type of analysis is

shown in fig (3.6). This inverse method is mentioned in a few of the general

references and also in refs [71] & [72].

This method assumes that the modes are real and is best used with well

separated modes. The advantages over the Nyquist method are that the

least-squares fitting routine is based on a straight line rather than a circle, and

that the points close to resonance - which are more likely to be in error - are

not weighted more than the other points used in the analysis. It may also be

possible to use this method to estimate parameters when there are insufficient

data between the half power points for a Nyquist analysis. Dobson [67] has

developed this technique to account for the complexity of the modes whilst still

retaining the straight line curve fits.
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3.3.2 Mult i-degree-of-freedom (MDOF) analysis

There are several methods of MDOF analysis depending on the application. For

i

lightly-damped structures, where there is insufficient measured data around

resonance, an appropriate MDOF analysis has been developed, whilst the MDOF

techniques that are extensions of the SDOF analysis methods are suitable for

refining modal data from FRFs with strong coupling effects between the modes.

There are several numerical algorithms available for fitting data points to the

theoretical FRF and then calculating all the modal properties of the system. The

global methods of simultaneously fitting several FRF curves include the widely

used rational fraction method (refs [73] & [74]) and the simultaneous

frequency domain technique (refs [75] & (761).  However, in this section two

of the simpler MDOF analyses - for lightly damped structures, and iterations on

the SDOF analysis methods - will be discussed.

Extension to SDOF analysis

The first MDOF method is a simple extension to the SDOF analysis. In this

analysis the contribution from the other modes is evaluated at each frequency

point and results in an iterative procedure between the modes until satisfactory

modal parameters have been obtained. This type of approach is necessary on

closely-coupled modes, but even on weakly coupled modes the improvement may

be noticeable. An example using Nyquist analysis with and without iterations is

shown in fig (3.7).
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A method for lightly-damped structures

This second technique is suited to lightly damped structures where the light

damping does not allow sufficient data of acceptable quality to be collected

around resonance. This method is also often used for frequency response data

that have been collected using random excitation where the frequency spacing

around resonance is too great for a Nyquist analysis. For this MDOF method the

analysis is performed using an undamped FRF model, picking the peak values as

resonance points and a selection of off-resonance points to solve the undamped

frequency response equations. Damping is then estimated from the measured

peak values at resonance. This full procedure is often referred to as the ‘IDENT

technique. The values of natural frequency and modal constant evaluated from

this method are generally good when the system is such that the resonance

frequency is a close approximation to the natural frequency, but the damping

values are usually overestimated as the measured peak value is usually below

the true maximum value. The general theory behind this approach is shown in

Appendix 3 and is

v71.

Residuals

In this section it is

the effects of the

found in the general literature on modal analysis and ref

also worth mentioning the problem of residuals. These are

modes that are out of the range of measurement, both

high-frequency and low-frequency, but which influence the measured data

points. All the low-frequency modes can be approximated by a single term

similar to those in the FRF series. This term is mass-like in its effect on the

regenerated FRF and is sometimes refered  to as the ‘m,ass residual’. The

high-frequency modes can also be represented by a single term whose effect is

stiffness-like on the regenerated FRF, hence is known as the ‘stiffness residual’.

The effect of the residuals varies significantly from structure to structure, and

indeed with different FRFs from the same structure. The effect is usually most

noticable on the point measurements (response and excitation at the same site)

of the structure. This effect cannot be calculated for FRFs that have not been

measured (ref [78]) and is often a major source of error in predicted

responses as shown in fig (3.8). This figure shows a complete FRF of a

theoretical system, and compares the central portion when regenerated with and

without residuals.
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3.3.3 Time domain analysis

There exist several analysis techniques for extracting modal parameters from

time domain data (refs [79] to [go]). Most of the methods for single curve

analysis are derived from the complex exponential technique where sampled

impulse response data are used to set up an eigenvalue problem whose solution,

via the Prony method (eg ref [79]),  leads to the damping ratios and the natural

frequencies. To obtain good estimates of the resonance modes in noisy data,

many more resonances than exist have to be estimated to allow ‘computational

modes’ to be evaluated separately so as not to contaminate the true modes. These

computational modes are easily distinguishable, with low modal constants and

high damping ratios. From the measured data, an initial guess to the number of

modes has to be made and usually at least one other attempt made to verify that

enough resonances were chosen. The damping estimates are often in error (ref

[79]) as they are evaluated from the data points at the start of the exponential

cuwe where the slope and the rate of change of slope is often large.

Many of these time domain techniques have been developed for global parameter

estimation, in which case the solution is often calculated in two parts. The first

is to evaluate the damping and natural frequencies in the time domain and the

second part is to evaluate the mode shapes. This second part of the analysis is

performed on individual curves, and it is recommended (ref [83]) that the

frequency domain is used to estimate the modal constants where allowance can be

made for the ‘out-of-range’ modes. The analysis of data in the frequency domain

is limited by the need to transform measured time data to the frequency domain

and the subsequent frequency spacing which is dictated by the time length of the

sample. As in most time domain analysis methods, the damping estimates tend to

be poor.
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3.4 Application of frequency response data and modal

parameters
There are many applications for the measured experimental data and the

calculated modal parameters (eg refs [91] to [94]).  The application of the data

will often dictate the type of test performed and the analysis used. If using data

to compare with a theoretical model, only the resonance frequencies and

approximate mode shapes are required, whilst if the model will be used to

couple the structure into a larger system, accurate resonance frequencies mode

shapes and damping are required in rotation as well as in translation. Apart

from the applications mentioned in this section, others include force

determination, correlation of experimental and theoretical data, structural

modification and non-destructive testing.

3.4.1 From modal model to spatial model

Unfortunately, the transformation from modal model to

easy as it first appears. From the definition of the

spatial model is not as

mass-normalised mode

shapes, the spatial mass and stiffness matrices would be:-

VI =  M-TNT’

WI =  [4d-T~‘h,2,1[W’

where [$I are the mass-normalised eigenvectors

and [‘hr?_] are the complex eigenvalues

However, the inverting of matrices is only possible if they are square - ie in

this case if there are as many modes as coordinates - and, even then, the results

are only valid if all the modes have been measured. ‘Pseudo’ flexibility and

inverse-mass matrices (eg ref (951) can be constructed with rectangular

eigenvector and eigen value matrices. These ‘pseudo’ inverse matrices can be

useful in correcting theoretical models so long as the spatial mass and stiffness

matrices from the theoretical model are restricted to the same coordinates as

those used in the modal test.
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3.4.2 Response prediction in the frequency domain

Having obtained accurate modal models, these can now be used to predict the

response of the structure to more complicated excitation conditions than can be

simulated in laboratory tests.

The procedure uses the standard response-force equation:-

He iot = [cc(o)]{f}eio*

where [a(o)] is the receptance matrix - the elements of which have been

derived from the modal test.

The force excitation matrix may have more than one non-zero value, and the

amplitude and phase relationship may change at each frequency. Apart from the

quality of the models, a constraint on the accuracy of this method is the number

of measured coordinates. In practice, this method is capable of producing good

results provided that the modal model used to generate the FRF contains

sufficient modes.

3.4.3 Frequency response coupling for structural assemblies

There are many cases when a complex structure is best described as an

assembly of simpler components. These components can be individually

analysed for their modal model, or FRF, using the most appropriate method -

either analytical or experimental. These sub-system models then require to be

combined to provide the frequency response or modal model of the complete

structure.

There are several different methods of approaching the problem of

sub-structure coupling, but the method of interest is the impedance coupling

method or the ‘stiffness’ method, which provides the frequency response of the

coupled structure and uses the FRF data of each of its individual components.

The method requires that the FRF properties of each sub-structure are known,

either from model or test, at the points of coupling. The basic theory is shown

in Appendix 4. There are several references on the subject of impedance

coupling (eg [96] to [98]) and the problems that are involved. One problem

area that particularly effect the results from coupled structure analysis is that
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of rotational coordinates - they are difficult to measure but their omission can

cause large errors on the resulting FRF. Also, with impedance coupling the

incompleteness of a model from experimental data may make modal models from

different origins (eg from measured data and from finite element models)

incompatible, and hence restrict the applications. A coupling method using FRF

data has been examined (ref [99]) to overcome this problem of incomplete

models as FRFs are compatible irrespective of origin. However, this technique

of coupling FRF data only ensures that data used are comptible,  and other

possible sources of error, such as measurement of rotational coordinates, exist

in both types of coupling techniques.
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3.5 Discussion
There are many excitation and analysis techniques available for experimental

modal analysis - none of which provide the ‘best’ solution in all situations. The

choice of excitation technique will depend on the structure, the application and

quality required of measured data and any future analysis on the data. The

choice of analysis method will depend on the use and the accuracy required of the

modal parameters and also the quality and quantity of measured data.

Once good measured data have been obtained, the main differences in the analysis

methods are in the complexity of the solution and in the quality of the damping

estimate. All the methods can provide good natural frequency estimates and

modal constants, but only a limited number of frequency domain analyses allow

for complex modes. From the mentioned analyses,

be obtained using Nyquist analysis ensuring that

data points between the half power points.

the best damping estimate can

there are sufficient measured

Having evaluated modal parameters, the response to a transient excitation can

be calculated in the frequency. domain using response prediction, with the

transient input expressed in the frequency domain. The response to a transient

is usually required in the time domain as a time-history. To change working

domains from the time to the frequency for the input, and from frequency to

time domain for the predicted response, Fourier analysis methods are usually

used in structural dynamics.
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Frequency Hz.
20.00

Mode

N o .

Frequency Modal const Phase Damping loss

(Hz) (l/Kg) (deg) factor

1 13.763 9.6692E-01 +13.4 0.01060

2 14.015 8.0749E-01 -22.1 0.01198

I 1

Frequency Hz.

Mode

No.

Frequency Modal const Phase Damping loss

(Hz) (l/Kg) (deg) factor

1 13.770 -9.9732E-01 +0.s 0.01043

2 14.000 8.9879E-01 I +1.0 0 . 0 1 1 9 9

Fig 3.7 Effect of MDOF extension to SDOF analysis
a SDOF analysis of close modes
b Analysis of close modes using MDOF

extension to SDOF methods
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4 REQUIREMENTS FOR TRANSIENT RESPONSE ANALYSIS

USING FREQUENCY RESPONSE

4.0 Introduct ion

The primary objective of this research is to develop a suitable method for

transient response prediction of structures using models based on experimental

data. As the physical description of a structure cannot be satisfactorily

reconstructed from experimental data to enable most of the transient response

prediction methods to be used, the frequency response prediction method,

discussed in chapter 3, appears to provide the only route for use with

experimental data. This method allows for the response to any force input -

including transients - to be evaluated in the frequency domain using data from

experimental modal tests.

A transient input signal for response prediction is usually specified in the time

domain whilst the frequency response method requires the input to be expressed

in the frequency domain. There are several techniques available for

transforming the working domain, but the most common method used for

transfer between the frequency and time domains is the Fourier transform, and

it is this technique that will be used to transform the input signal to the

frequency domain. The consequent response prediction will be in the frequency

domain, and as the transient response of a structure is usually required in a

time domain format, to complete the analysis the predicted response is

transformed to the time domain using the inverse Fourier transform. This

complete procedure will be referred to as the ‘Fourier transform method’.

The Fourier transform is strictly defined for continuous bounded signals of

infinite length. In experimental analysis measured data are usually discrete and

of finite length. Such a signal is accommodated in Fourier transform theory by

a version that is known as the discrete Fourier transform (DFT) which uses

discrete data, and imposes a periodicity on the signal, defined by the length of

the measured sample. This imposed periodicity results in restrictions in the

digitisation of measured data to ensure that the transformed data are an accurate

description of the original signal. There are several efficient algorithms
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available for solving DFTs, the more common of which is known as the fast

Fourier transform (FFT). These algorithms reduce the number of

computational operations - and therefore the rounding errors - thus providing

a more accurate solution than the direct solution of the DFT. As with all

numerical techniques, the accuracy of the result from the ‘Fourier transform

method’ depends on the quality of the input data - which in this case includes the

experimental modal analysis data. The aim of this chapter is to review the

theoretical development of the Fourier transform, to examine the effects that

the limitations in the DFT have on the predicted response, and the sensitivity of

transient response predictions to the quality of the experimental data used.
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4.1 Fourier transform - from theory to practice
This section provides a brief overview of the theory of Fourier analysis,

starting with the Fourier series moving through the Fourier integral leading on

to the DFT. The theory of Fourier analysis is well covered in extensive

literature on the subject, (eg [40] to [45] & [loo] to [l OS]) . These

references also cover the limitations of Fourier analysis and related theorems,

but most of these are of little interest in the application to structural dynamics.

Fourier Series

The basic concept of Fourier analysis is that any periodic function can be broken

down into its harmonic components, and conversely, any periodic function can

be synthesised by adding together an infinite series of harmonic components.

This principle can be written in compact mathematical notation as:

0

x(t)= a, +
UakcosY + bk sin*

Fourier series
T >

(4-l)

k=O

where T is the period of the signal

and a,, ak and b, are constant Fourier coefficients given by:-

T/2
ak=z

J-
x(t)cos2xkt  dt

T T
-T/2

b, = 2
/

x(t)sin2xkt dt
3 T

-T/2
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There are limitations on the convergence of the Fourier series, including

__l”lx(t)ldt<  = (ie the area under the time signal is finite), but almost

every practical vibration problem satisfies these conditions. The main effect

worth noting for structural dynamic problems is that the summation of the

series at a discontinuity in a signal will give the average x(t) of the two values

of response at the discontinuity. This is important in the representation of

impulsive excitations in transient response analysis.

The frequency spacing of the harmonic components is 2x/r. As T becomes large

the frequency spacing decreases and in the limit, when the signal is

no longer periodic (T =+), the summation can be represented by an

effectively

integral.

Four ier  In tegra l

Subject to certain conditions the Fourier series (4.1) becomes the Fourier

integral (4.3) when the signal is no longer periodic. Also, the individual

frequency components of the Fourier series have merged together and the

Fourier coefficients (4.2) turn into continuous functions of frequency (4.4)

called the Fourier transform (FT). The Fourier integral is also known as the

Inverse Fourier transform (IFT). The signals in both domains are now

continuous to infinity. This representation of Fourier theory can be written in

complex notation as a Fourier transform pair:-
Do

x(t) = W)e iwt do-, Fourier integral or IFT (4.3)

MP-i& dt FT (4.4)

In most practical applications data are sampled, thus providing discrete, not

continuous, data. Thus to deal with real data, the requirement is for a

transformation using discrete data in both working domains and this is provided

by the DFT.
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Discrete Fourier Transform (DFT)

The DFT satisfies this requirement by replacing the integrals for the Fourier

coefficients in (4.2) by summations. This then provides an approximate

formula for calculating the coefficients of the Fourier series. The inverse DFT

(IDFT) is similar to the Fourier series but there are now a finite number of

frequency components (N) in the series. Using

the approximate coefficient of the kth component,

the discrete time series the DFT and IDFT can be
N-i

N-l
xr =

c
‘k ei2xkr’N

k=O

complex notation where xk is

and xr is the rth component of

written as:-

DFI- (4.5)

IDFl- (4.6)

Fast Fourier transform

The fast Fourier transform (FFT) is a computer algorithm for calculating the

DFT and there is much literature available on this application of the DFT

including refs [107] to [log].  The FFT works by partitioning the full sequence

{x,} into a number of shorter sequences, and the DFTs of the shorter sequences

are then calculated. The FFT then combines the results from the shorter

sequences together to form the full DFT of {x,}. This full calculation requires

less operations than evaluating the transform directly and this means that

are fewer rounding errors in the computation. Overall, this results

quicker, and more accurate procedure which is widely used in practice.
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4.2  L imi ta t ions  of using the ‘Fourier transform

method’ within the DFT
There are two main sources of error when using the DFT that are discussed in

this section: those of frequency aliasing and those of time aliasing. To eliminate

frequency aliasing a minimum sample rate - known as the Nyquist frequency -

must be applied to the signal. To avoid time aliasing when transforming from

the time to the frequency domain, a window can be applied, but it must be noted

that this effectively adds damping to the system. Also, when transforming to the

time domain, guidelines to the maximum frequency spacing for a given error in

a system have been developed to assist in identifying when time aliasing may be

a problem.

4.2.1 Frequency aliasing and windowing

Use of the DFT imposes a periodicity on the signal in both the -time and the

frequency domains which, in turn, limits the maximum frequency that can be

identified in any signal to one half the sample rate of the signal. This is called

the Nyquist, or ‘folding’, frequency. If frequencies above this Nyquist frequency

are present in the original signal then the coefficients calculated by the DFT for

lower frequencies will be distorted. This problem of errors being introduced

when the sample rate is less than twice the maximum frequency component in

the signal, is known as frequency aliasing and is a common occurence  with

digitising experimental data. The usual solution is to use a low-pass filter on

the signal to remove signal component above the Nyquist frequency.

Windowing is a method of truncating time data, such that the signal is reduced to

zero outside a specified range. There are several types of window function,

their main differences being seen in the frequency domain where the width of

the main lobe (ideally a delta function for perfect resolution) is traded against

the magnitude of the side lobes. Examples of the more common windows in use,

along with their frequency components, are shown in fig (4.1). Frequency

components of a signal falling outside the main lobe of the chosen window may

also contaminate distant frequencies if the side lobes are large. This

phenomenon is called leakage. For good estimates of the frequency components of

an experimental signal, a high resolution and low leakage window is required.
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This demand on the window - for a narrow main lobe and small amplitude side

lobes - has conflicting requirements and, for a given data length, the

parameters have to be compromised.

These limitations on the accuracy of the DFT as a

applicable in this study of transient response prediction

result of aliasing are

mainly to transforming

the input transient signal to the frequency domain. The nature of a transient

input signal is such that it will contain high frequencies but will decay rapidly,

which means that the application of a window will not be necessary to reduce the

signal to zero, but frequency aliasing may be a problem. The maximum

frequency component required from the input signal will probably be dictated

by the maximum frequency of the FRF. The transient input should therefore be

low-pass filtered at this maximum frequency of the FRF to remove higher

components, then sampled at twice this frequency.

4.2.2 Errors due to time aliasing

Transforming from the time to the frequency domain it is easy to establish if the

time signal has not decayed away within the time length of interest and, if

necessary, to apply a window so as to avoid frequency aliasing. Transforming in

the other direction - from frequency to time - it is harder to predict if the time

signal has decayed away, but a time aliasing effect will result if the time signal

has not decayed to zero (ref [l lo]). For transformation in both directions, a

simple relationship between the error in maximum amplitude, the system

parameters, and the DFT parameters has been developed for SDOF systems (ref

[ill]) and also applied to individual modes in MDOF structures. The maximum

error in the peak amplitude of the first cycle of a single mode when

transforming from frequency to time domain is given by:-

Error = 1
exp(n6)-1

(4.7)

where Em is the largest possible error due to mode m.

6 is the logarithmic decrement (ref [20]) of mode m.

and n is the number of cycles in the calculated response at the

natural frequency of mode m.
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In terms of frequency spacing (AF) and natural frequency (f,) this can be

written as:

BE=-
fo W+E,,JE,)

This is the maximum ratio of frequency spacing to natural frequency for a given

error.

Time aliasing and the condition that _jW]x(t)]dt<  00 (which is applicable to

most decaying systems) have implications for the suspension of a test structure

for transient response prediction, and also the type of input signal. Starting

with the test conditions of the structure, if the structure is suspended free-free

then the displacement time-history will theoretically have a static component

that will result in a continually increasing response, and the velocity will

finish with a constant value - not necessarily zero. In both these cases the

transformed result will not be correct as the convergence criterion is not

satisfied. Ideally the structure should be ‘grounded’ (coupling the structure to

ground at specific coordinates) before transforming. If the modal analysis tests

are performed on a free-free structure then the rigid body modes should be

analysed and included in the modal model to enable the model to be subsequently

‘grounded’ for transient response prediction.

There are two main types of input signal that may cause problems - those of a

step input and step relaxation. Nicolson (ref 11121) has examined the problem

of a step input, and replaces the step with a ramp which provides the correct

frequency components in the response but not the correct time-history. An

alternative approach is to use a long pulse, where the length of the pulse

corresponds to the time length of interest in the step response plus a length of

time with zero force input that is sufficient to ensure the response has decayed

to zero. The predicted response during the time of the pulse is an accurate

description of the step response over the same time. The main disadvantage of

this method is large extended time period, hence number of samples, required

for what may be a short period of interest. Step relaxation, whilst correctly
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described as an initial displacement on a structure, could be treated as a step

input with the structure starting at zero displacement. The response from the

start time to the time when the input returns to zero will represent the

response due to step relaxation, but with the displacement origin shifted by the

amount of the initial displacement. With careful presentation of the force

inputs and interpretation of results, the responses to most transient inputs can

be determined using the ‘Fourier transform method’.
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4.3  L imi ta t ions  of using the ‘Fourier transform

method’ resulting from errors in experimental data
In generating experimental data for use in the ‘Fourier transform method’ there

are several areas which could cause inaccuracies in the predicted results. These

include the choice of linear damping model - viscous or hysteretic - errors in

the measured data or calculated modal parameters and also the effect of the

out-of-range modes on the predicted response. These topics will now be

discussed in detail.

4.3.1 Consequences of linear damping model

In general, the measurement of damping is not a precise procedure, and indeed

the mechanism of damping is not fully understood. To permit the analysis of

structures in a linear fashion, two main types of damping are used - viscous or

hysteretic (structural) - the latter being defined from the former. In many

cases the structural damping model is a much better approximation to the actual

dissipation mechanism than is the viscous damping model, and for forced

vibration and MDOF systems the algebra is much simpler.

In the time domain the responses are calculated using the impulse response

function (IRF). In linear theory the IRF is simply the inverse Fourier

transform of the frequency response function (FRF). For systems using a

viscous damping model the IRF obtained by transforming the FRF is a sine wave

at the damped natural frequency (od), multiplied by a decaying exponential.

x(t) = _j._e-~%in(wdt)

mod

Milne [113] transformed the FRF with hysteretic damping and quantified a

resulting non-causal component in the IRF. This predicted movement before the

structure sees the pulse is the only difference between the two types of damping

for lightly damped structures, but as the damping increases the pre-cursor

movement also affects the response after the pulse. Figs (4.2) & (4.3) show

examples of the differences in the IRFs when calculated by transforming the

FRFs with the two different linear damping models.
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For a system to be physically realisable it must have an IRF which is zero for

k0. This implies that the system with a hysteretic damping model, whilst a

better description than the viscous damping model in many cases, is not strictly

a realisable system. Whilst the differences in the IRF are only minimal for

light damping, it is nevertheless recommended that modal models derived for

transient response prediction should use the viscous damping model to ensure a

linear model for the time domain response. However, as was seen in chapter 3

and Appendix 2, it is usual for the hysteretic damping loss factor to be

calculated from modal analysis methods, as this type of damping implies

frequency independent modal constants. The relationship between the damping

loss factor and the damping ratio (discussed in chapter 3) q=2< (valid only at

resonance) should be used to determine the equivalent viscous damping term for

each mode in the modal model that is to be used for transient response

prediction. It is shown in Appendix 5 that for light damping the relationship

TJ=~C is also applicable for the free decay rate of a system.

4.3.2 Accuracy of experimental data

There are two major sources of error in experimental data - errors in the raw

measured data and errors in the modal parameters extracted from the

measurements. If experimental data are to be transformed for transient

prediction, the measurement errors will effect the prediction. A signal

contaminated by random errors (with normal distribution) will result in the

transformed signal plus the transform of the errors, which will still k have

gaussian  distribution (ref [i 141).

When using modal parameters, the three variables - natural frequency,

(complex) modal constant and damping factor - affect the result in different

ways. Errors in the natural frequency affect the timing of events, but not the

overall shape of the response of an SDOF element. In MDOF systems, errors in

natural frequency will produce largest errors when the contribution from one

of the modes shifts a half cycle relative to the others. To demonstrate the errors

in this and the next section, a theoretical 12 mode structure is used, the modal

parameters of which are given in table (4.1). Fig (4.4) compares the correct
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solution to those from a system with 10% error in the location of the first

natural frequency, and from a prediction with 10% error in the second natural

frequency. All modal analysis techniques are capable of accurately locating

natural frequencies from measured data, and errors in this parameter are more

likely to be due to the experimental test procedure physically altering the

system (eg transducer mass causing a reduction in the natural frequencies).

Errors in the modal constant may be of two types: magnitude and phase error.

Deviation in the magnitude produces a linear scaling in the time-histories of

SDOF elements, but in MDOF systems there may also be an effect on the shape of

the response. This is shown in fig (4.5) which is the theoretical structure with

10% error in the magnitude of the modal constants of modes 1 and 3. Incorrect

phase alters the ‘starting’ position of the signal - for instance, if a signal with

zero phase starts with maximum velocity, then one with a phase of n, starts

with minimum velocity. In most of the analysis methods a phase of 0 or x, is

assumed, which is a reasonable approximation for lightly damped structures

with uncoupled modes. For structures with very complex modes, errors in the

time response can be significant if the phase is not properly accounted for. In

this application Nyquist analysis is the method to use for extracting modal

parameters as complex modes can be evaluated, but care must be exercised to

ensure that the complexity of the mode under examination is not the result of

the effects of the other modes. The effect of varying the phase is shown in fig

(4.6), where a phase of 10’ has been added to modes 1 and 3.

Variation in the damping estimate affects the predicted result more than

deviations in either the natural frequency or the modal constant and influences

the overall shape of the response. Errors in damping terms evaluated by using

the relationship of the half power points or the peak response can be large, but

the calculated loss factors are always greater than the true value (ref [115])

and this results in the predicted response showing a quicker decay than applies

in the actual system. In some MDOF systems the prediction can be altered quite

markedly from the correct solution by erroneous damping factors. This is

particularly unfortunate as the damping term is often the least accurate

parameter that is calculated from any of the modal analysis methods, frequently

being more than a factor of ten greater than the true value. This is
67



demonstrated in fig (4.7) where the damping is increased by a factor of ten for

modes 1 and 3. The most accurate estimate of damping from analysis of FRF data

will be obtained by using the Nyquist analysis with sufficient points between the

half power points to calculate accurate modal parameters. The damping

estimates from the inverse of receptance are usually quite acceptable, but the

calculation relies on a line fit between the two damping values above and below

resonance, and if either of these are in error then the damping estimate could

also have a large error.

4.3.3 Effect of the out-of-range modes

Modes that are outside the frequency range of measured data need to be

considered in two separate groups - those below the frequencies of the measured

data (low-frequency residuals), and those above (high-frequency residuals).

The effect of these residuals on predicted time-histories also depend on the

required response - displacement, velocity or acceleration.

The low-frequency modes of a system determine the overall shape of the

transient response. Replacing the first few modes, if they were out of the

measured frequency range, by a single low frequency residual would not help to

correct the response. It is recommended that the experimental testing starts at

as low a frequency as practically possible in order to include all the low

frequency modes. Figs (4.8) to (4.10) show the displacement, velocity and

acceleration predictions of the theoretical 12 mode system, and compares the

responses from the complete system to the response with the first three modes

omitted, and then to the response with a low-frequency residual included to

represent the three low frequency-modes. None of the ‘predictions’ are an

accurate description of the ‘true‘ response, but the acceleration time-histories

are a closer representation than either velocity or displacement. When the test

structure is suspended ‘free-free’, then the rigid body modes can be represented

as a zero frequency mass residual. However, if the model is to be used for

transient response prediction then this zero frequency should be included as a

‘mode’ to enable the system to be theoretically grounded before attempting to use

the ‘Fourier transform method’.
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With the high-frequency out-of-range modes, the effect on the predicted

time-histories is dependent on the type of response. For displacement

responses the high-frequency content is very small, and the transient response

can often be predicted quite accurately from the first few modes with no

residual term included. This is demonstrated with the theoretical structure by

first using the lowest six modes, then only the four lowest modes to predict the

transient response, and the results are shown in fig (4.11). The effect of the

high-frequency modes is more noticable in the velocity time-histories (fig

(4.12)),  but for the test system the first six modes still predicts a good

representation of the exact response. For acceleration response prediction, the

contribution of the high-frequency modes can be almost as significant as the low

modes. Omission of these modes can lead to a significantly different shape of

response as well as incorrect levels of response as shown in fig (4.13). For an

accurate acceleration prediction many modes need to be included in the model.

For all three types of response the first few modes of the structure are very

important and need to be well defined. It is suggested that above the

low-frequency modes, the FRF in the response parameter of interest is

examined, and all modes analysed and included in the model whose response is

greater than or within a certain value of the low frequency modes. This model,

when used in conjunction with the ‘Fourier transform method’, should then

provide a good estimate to the true transient response of the structure.
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4.4 Case study - Transient response analysis of a

beam
The ‘Fourier transform method’ combines modal analysis of the steady state

response of a structure and Fourier theory to predict the transient response of

the structure from experimental data. There are many routes available in

modal analysis - all of which should theoretically result in the same set of

modal parameters for a linear system. These modal parameters can be

substituted in FRFs and the ‘Fourier transform method’ used to calculate a

transient response of the structure for each set of modal parameters, all of

which should correspond to the exact transient response. There is, however, a

preferred route using sine excitation and Nyquist analysis to minimise any

error possibilities. These routes are summarised in fig (4.14) with the

preferred route for linear systems identified.

Several of these techniques have been employed in a study of an aluminium bar

to obtain transient response predictions. The experimental setups for the

various excitation techniques used are shown in fig (4.15). These experimental

testing setups included the measuring of an ‘exact’ transient response as an

acceleration time-history (fig(4.15a))  and the input force signal to be

subsequently used in the prediction of the time-histories. The three excitation

techniques used were stepped-sine (fig (4.15b)), random excitation

(fig(4.15c))  and impulse excitation (fig (4.15d)).  In all cases, three

accelerometers were in place all the time to avoid any alteration in the

structure due to varying the mass distribution which results from the resiting

of a single transducer from one point to the next.

Nyquist circle-fit and reciprocal-of-receptance analyses were used on FRF data

from the stepped-sine test. Also a technique for lightly damped systems

(‘IDENT’ ref [77]) was used on the same FRF data, and all the evaluated

parameters for pt(l,l) (response point, force input point) and pt(3,l) are

presented in table (4.2). FRF data from random excitation (up to 2000 Hz)

were analysed using reciprocal-of-receptance and ‘IDENT’ type analyses, and

the
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two sets of modal parameters for pt(l,l) and pt(3,l) are shown in table

(4.3). Impulse excitation resulted in poor quality data, and was only

analysable, using an ‘IDENT’ type technique up to 1000 Hz. The results are also

shown in table (4.3).

The measured force signal (fig (4.16)) was then low-pass filtered to ensure

that it did not contain frequencies above 2000 Hz. The sample rate chosen for

the ‘Fourier transform method’ was 5000 Hz which would enable a maximum

frequency of 2500 Hz to be calculated from the force signal. Examining the first

few resonances from the different excitations and analyses indicated that a

frequency spacing of 0.2 Hz would result in a maximum of 10% error in the

maximum amplitude when transforming to the time domain - this frequency

spacing was used, requiring a 25000 point transform. As the beam was

suspended free-free an acceleration time-history was predicted for the first

0.04 seconds of the response, with the associated problems of many modes

affecting the transient response. The measured acceleration time-history from

pt(3,l)  (response data the opposite end of the beam to the input) is shown in

fig (4.17). where it is immediately clear that high-frequency components are

present in the response.

The acceleration time-history was then predicted for pt(3,l)  using the six sets

of modal parameters in tables (4.2) & (4.3) and the resulting predictions are

presented in fig (4.18). In all cases, the predicted time-history generally

overestimated the magnitude of the response. In the predictions, there is a

response following the input signal, but the measured response indicates only a

small response initially followed by a larger response when the input pulse has

travelled the length of the structure. This first large acceleration peak in the

measured time-history corresponds to the third positive peak in the predicted

results (second peak from the impact test). Some of the higher magnitude peaks

are identif ied on the measured t ime-history (f ig (4.17)), and- the

corresponding peaks located in the predictions (fig (4.18)). The prediction

from the impulse test (fig (4.18f)) shows little resemblance to the measured

result, but this is to be expected with a predicted acceleration time-history

from an FRF lacking in the high-frequency modes. The other five predictions all

show some similarity with the measured response despite the large variation in
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the calculated modal parameters. Examining the modal parameters from the

different modal tests the largest range is seen in the damping estimates, with

the modal constants also showing large variations in some cases. Least variation

is seen in the damping estimates from the three analyses of data from

stepped-sine excitation, where there is sufficient measured data around

resonance for an accurate estimate to be made independent of the analysis

technique. The variation in the time-histories that these differences in the

damping loss factor will cause are more noticable  at longer times, but in this

example and for the time length of interest none of the predictions from

stepped-sine or random excitation are obviously ‘better‘ than the others despite

the large variation in modal parameters.

To make comparison between the different predictions easier to visualise, a

shorter time sample was taken and pairs of predictions overlaid. For sufficient

data in this expanded region it was necessary to increase the damping on all

modes by a factor of 10, or the transform would require upto 250000 points

for sufficient data resolution, and to avoid time aliasing. This vast number of

points can be a serious problem when attempting to predict the transient

response from structures that are so lightly damped, but most engineering

structures have greater damping than this single aluminium beam. The

comparisons are shown in fig (4.19), where the results from different

analyses of the same FRF data and predictions using data analysed with the same

technique are compared. From the stepped-sine tests the first major peak is

similar from all the analyses (figs (4.19a,b&c)),  but the initial response

shows a large variation. Fig (4.19d) compares the results from the random

tests, and again the two are similar. Comparing the results from the same

analysis, clearly the results from the impulse test (fig (4.19g&h)) do not

agree with the predictions from the other excitations analysed using an ‘IDENT

type analysis, but the results from stepped-sine and random analysed using an

‘IDENT’ type technique (fig (4.19f))  agree better than when analysed using

reciprocal-of-receptance (fig (4.1 se)). In theory this aluminium beam

should have provided the same result independent of modal test. This has not

been shown to be the case for this particular example, where the results are not

only dependent on the excitation technique, but also on the analysis method.

72



4.5 Discussion
In using the discrete Fourier transform (DFT) the main problems are due to

aliasing - either frequency or time - which is caused by the periodicity that is

imposed on the signal by the DFT in both domains. This problem can be

overcome by ensuring that the signal is negligible at either end of the sample

(ie that it has decayed away) in the time domain; that the sample rate is at least

twice the maximum frequency component in the signal; and that the ratio of

frequency spacing to natural frequency gives acceptable errors. With

commercially-available FFT routines, there is often a maximum number of

points that can be used and this requires a compromise of the other parameters.

Another alternative is to apply a window to the function, but the effect of

windowing the data introduces other errors as the resulting effect in the

frequency domain is to increase the apparent damping - which in turn reduces

the amplitude - so causing errors in the maximum amplitude.

If the system data used are not accurate, errors will occur in the predicted

transient response. With the hysteretic damping model errors will be

generated with high levels of damping due to the non-causal component. It is

concluded that for transient response the preferred linear damping model to use

is viscous damping, which can be evaluated from the damping loss factor

determined from experimental modal analysis. Also in the analysis stage, the

preferred method - when the data is to be use for transient response - is the

Nyquist circle-fit as this method can estimate reliable damping values and also

take account of the phase components. Out-of-range modes also create

problems. All the low-frequency modes are required for accurate predictions,

and for acceleration responses, many high frequency modes must also be

analysed. In displacement, the response can usually be described accurately by

using just the first few modes.

Time-aliasing, and the requirement for a response to return to zero places

limitations on the support of a structure for transient response prediction, and

also on the type of input signal that can be used. Ideally, the structure should be

grounded before a transient response analysis is attempted, as a ‘free-free’

structure will have a large static component and the response will not return to

73



zero, hence the convergence criterion of Fourier theory will not be satisfied. If

the modal model is of a free-free structure, then this model can be theoretically

‘grounded’ if the rigid body modes of the structure have been included and there

is a measurement point at the grounding position. If the input is a step or step

relaxation, the DFT will still impose periodicity on the signal with the results

being valid for the periodic signals, and not necessarily for the single step. This

can be overcome by applying an offset to the step relaxation (so the input

appears like a step input) and the input in both situations returned to zero after

the time length of interest in the response, with sufficient time at zero for the

response to effectively have decayed away.

Using the ‘Fourier transform method’ with FRF data is an effective method of

predicting the transient response of linear structures from experimental data.

However, there are several possible sources of error all of which which can be

minimised if care is taken over the transformation procedure and the collection

and analysis of experimental data.
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Mode N a t u r a l Damp ing Moda l
F r e q u e n c y r a t i o constanl

1 11.5 0. QQ530 O.lBQ4
2 1 5 . 6 0 . 0 0 6 8 0 0 . 0 8 5 4
3 1 5 . 7 0 . 0 0 6 6 0 0 . 0 8 4 5
4 2 1 . 9 0 . 0 1 0 3 2 0 . 0 6 2 6
S 2 3 . 1 0 . 0 0 6 8 9 0 . 0 5 1 2
6 2 5 . 0 0 . 0 0 4 2 3 0 . 0 9 9 8
7 3.6 . 2 0 . 0 0 8 9 0 0 . 0 7 5 3
8 4 7 . 3 0 . 0 1 0 1 0 0 . 0 4 6 5
9 6 2 . 4 0 . 0 0 7 1 7 0,0886

10 7 2 . 8 0 . 0 0 5 0 0 0 . 1 1 3 0
11 8 1 . 0 0 . 0 1 2 3 0 0 . 0 9 5 8
12 9 2 . 2 0 . 0 0 8 5 2 0 . 0 6 5 8

T a b l e  4 . 1 M o d a l  p a r a m e t e r s  f o r  t h e o r e t i c a l
12  m o d e  s t r u c t u r e
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S T E P P E D - S I N E  E X C I T R T I O N :  N Y Q U I S T  HNRLYSIS

Mode N a t u r a l
frequency

5 6 . 3 0 0
161.397
312 .130
514 .000
750 .850

1019.ss0
1304.225
1626.412

Damp Ing M o d e  s h a p e  pt(1 1) Mode shape pt(3,  1)
r a t i o V e c t o r phase V e c t o r ph ate

1.309E-3 2.8043 + 5 . 2 3 . 1 5 8 0 f 4.7
3.999E-4 2 . 2 1 2 s f 2 . 9 2 . 7 3 5 7 - 1 7 5 . 3
6 .7 00E-4 1 . 5 8 7 3 - 2 . 2 2.3355 - 2.3
0.700E-4 1 .391s - 0 . 1 2 .3904 - 1 6 0 . 0
1.36SE-3 0 .9193 - 9 . 3 2 .3512 - 8.0
9.82SE-4 0.2594 - 0 . 3 3 .1605 +170.3
1.41SE-3 0 .5183 - 3 . 6 1 .S487 +177.2
1 .S01E-3 1.0127 - 1.1 1.6017 t 0.5

S T E P P E D - S I N E  E X C I T R T I O N : RECIPROCAL- OF- RECEPTftNCE

N a t u r a l Damping Mode sh
f r e q u e n c y r a t i o V e c t o r

50.505 1.312E-3 2 . 9 9 1 8
1 6 1 . 4 2 7 4.010E-4 2 . 2 1 1 8

L .JJJL-J U. 312,JJ2
l !3J..E-4 1 590s* ““.. Y

1 .S01E-3 1.0119 0 . 0 1.6013 0 . 0

3INE EXCITflTION: ’ IDENT’ TYPE RNRLYSIS

v-

t

Damping Mode shape pt(l,lI Mode  shape  pt(3, 1)
r a t i o V e c t o r phase V e c t o r phase

I I
1.41SE-3 2.4964 0.0 2.7007 0.0 1 SB.S00
4. 110E-4 1.9894 0.0 2.8515 180.0 2 161.400
9.700E-4 1.6845 0.0 2 .6337 0 . 0 3 312 .100
8.70SE-4 1.3439 0.0 2.4978 180.0 4 5 1 4 . 0 0 0
1.37SE-3 0.8971 0.0 2.5092 0 . 0 S 7 5 0 . 6 0 0
9.8SSE-4 0 .2522 0.0 2 .6478 180.0 6 1019.700
1.429E-3 0 .3958 0.0 1.7041 180 .0 7 1304.200
1.4SBE-3 0.9951 0.0 1.6112 0 . 0 9 1626.500

da1  p a r a m e t e r s f r o m  F R F  d a t a  o b t a i n e d T a b l e 4.2 M O

i n g  s t e p p e d - s i n e  e x c i t a t i o n u s
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3e pt(l,l)
phase

T Mode sh
V e c t o r

0 . 0 3 . 3 1 7 9
0 . 0 2 . 6 4 7 3
0 . 0 2 . 3 1 2 9

STEPPED-

Mode N a t u r a l
f r e q u e n c y



RflNDOM E X C I T R T I O N : RECIPROCRL- OF-RECEPTRNCE

(“O”.I

1
2
3
4
5
6
7

5 6 . 4 2 2
1 6 1 . 2 6 9
3 0 9 . 8 8 7
5 0 9 . 7 6 9
7 4 1 . 1 9 5

1 2 8 4 . 8 8 0
1 6 1 7 . 5 3 1

Damping Mode shape ptCl,l) M o d e  s h a p e  p t  (3,l j
rat10 v e c t o r phase v e c t o r phase

t
1.39SE-3
1.69SE-3
1.020E-3
2.0SSE-3
l.l95E-3
2.8SSE-3
2.860E-3

2 . 4 7 2 1
1 . 7 1 4 5
1 . 4 9 1 9
1 . 6 3 0 5
0 . 6 8 2 4
0 . 6 8 6 0
8 . 9 9 0 9

0.0
0.0
0.0
0.0
0.0
0.0
0.0

2 . 3 3 1 8
2 . 7 9 8 7
2 . 4 9 2 1
1 . 7 0 2 7
2 . 0 0 7 7
1 . 4 7 8 4
1 . 7 4 9 2

0.0
1 8 0 . 0

0 . 0
160.0

0 . 0
1 8 0 . 0

0 . 0

RRNIIOM E X C I T A T I O N : ‘IDENT’ T Y P E  FtNFlLYSIS

N a t u r a l Damping
f r e q u e n c y ratlo

60 2.672E-2
160 2.280E-3
3 1 0 1.440E-3
510 3.060E-3
7 4 0 1.930E-3

1290 1.840E-3
1615 Z.S4SE-3

LDQ  rJt(l.1) 1 M o d e  s h a

I
Mode sha
V e c t o r

2 . 3 0 9 1
1 . 9 8 1 0
1 .s794
1 . 1 9 6 4
0 . 6 6 2 8
0 . 4 4 0 3
0 . 8 7 9 7

i- phase Vector
a pt(3,l)

ph ass

0 . 0 3 . 4 1 1 0 0 . 0
0 . 0 2 . 9 2 3 9 1 8 0 . 0
0 . 0 2 . 9 3 2 1 0 . 0
0 . 0 2 . 9 5 7 8 1 8 0 . 0
0 . 0 2 . 7 0 6 3 0 . 0
0 . 0 2 . 5 6 6 8 1 8 0 . 0
0 . 0 2 . 1 1 9 8 0 . 0

-

I M P U L S E  EXCITFITION: ‘IDENT’ T Y P E  ANRLYSIS

Mode N a t u r a l
I

Damping M o d e  s h a p e  pt(l,l) 1 ilodd shape  p t  (3, 1)
f  requancy r a t i o V e c t o r  1 p h a s e 1 Vector 1 phase

6 0 3.519E-2 2 . 3 7 6 5 0 . 0 3 . 3 6 6 3 0 . 0
160 1.240E-2 1 . 9 6 4 5 0 . 0 3 . 3 0 1 6 1 8 0 . 0
31s 1.257E-2 1 . 6 3 4 7 0 . 0 3 . 0 7 7 1 0 . 0
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5  R E S P O N S E  C H A R A C T E R I S T I C S  O F  N O N - L I N E A R

ELEMENTS USING MODAL TESTING TECHNIQUES

5.0  In t roduct ion

All structures are non-linear to some degree, and most non-linearities tend to

be concentrated in single elements or components of a structural assembly.

Methods discussed previously in this thesis are intended for application to

linear structures and this provides a satisfactory approximation for the

structures under test for most purposes. However, some structures are

sufficiently non-linear that the difference between the measured response .and

the linear approximation is large. The application of linear modal analysis

techniques to such non-linear components needs to be undertaken carefully and

the resulting data evaluated in terms of its usefulness in describing some

aspects of a non-linear structure. The aim of this chapter is to examine the

characteristics of non-linear elements using modal testing methods. The data

from two excitation techniques - sine and impulse - are compared in both the

frequency and the time domains, and the observed trends are used for classifying

the non-linearity.

Generally, a non-linear system does not obey superposition, and for such
systems the choice and level of excitation will also determine the response

characteristics obtained. The ‘modal’ parameters obtained by using linear modal

analysis methods are no longer a unique description of the system - several

different sets of modal parameters may be calculated from the same frequency

response function (FRF) using different analysis techniques and criteria to

decide which are the ‘correct’ values. For most non-linearities the results

from one test cannot be used with confidence to predict

different excitation, either for a different force level or

signal, and often the modal-parameters do not regenerate a

FRF from which they were calculated.

the response to a

type of excitation

close match to the
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This chapter starts with a brief examination of some non-linearities found in

practice, followed by a discussion of the measurement of FRFs of non-linear

elements. The different non-linearities are then subjected to a simulated

constant-force sine excitation, and the results and trends that emerge in data

presentation are examined. Next, the non-linearities are analysed using a

simulated impulse: first, characteristics in the time-histories are discussed

followed by transforming data to the frequency domain where trends in the data

are again documented. Transforming measured data from an impulse excitation

is the usual procedure for modal analysis, and for linear structures the

transformed impulse response function (IRF) is the same as the measured FRF.

However, this is not the case for non-linear structures, and the trends in the

frequency data obtained by using the two types of excitation - constant-force

sine and impulse excitation - are compared. Finally, to complete the cycle, the

FRF data are transformed to the time domain (for a linear system the

transformed FRF corresponds to the IRF) and the time-histories of the various

non-linearities compared from the two excitation methods.
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5.1 Some examples of non-linear elements found in

practice
Non-linearities in structural dynamics can be broadly split into two types;

those that effect the stiffness of the system and those that effect the damping.

This can be a useful division in the analysis of non-linear elements, although in

practice it is unusual to find only one non-linearity present in a system.

One of the methods of describing identified non-linearities is to use equivalent

linearised equations of motion (ref [116] to [118]),  these equations being

derived assuming a sinusoidal excitation. To form a single linear equation of

motion from the non-linear equations, an equivalent natural frequency and

damping ratio are calculated. These parameters may be amplitude-dependent

but they can be used with the linear FRFs when the input force (or the

amplitude of response) is known. There follows in this section a brief

description of some non-linear elements, where they are likely to be

encountered in structures and, where applicable, the linearised equation of

motion is quoted.

5.1 .l Stiffness type non-l inearit ies

There are many types of stiffness non-linearity of which three will be

mentioned here. The schematic representation of the non-linearities and the

corresponding relationship between spring force and displacement are shown in

fig (5.1) along with the notation definition.

Cubic stiffness

Cubic stiffness (fig

ref [28] & (1191  to

(5.1a))  is probably the most researched non-linearity (eg

[121]) and occurs where the stress/strain relationship of

the material has a cubic term in addition to the linear term. The equation of

motion is the classical Duffing equation:-

j2 + 2@x + e&*(x + px3) = ft
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Where p can be positive or negative for hardening or softening cubic stiffness

respectively, and f, = (F,/m)sin ot. The equivalent linearised equation of

motion for forced harmonic vibration is:-

X + 2&e0i + oO*(l + 3j3a2/4)x = ft

where a is the amplitude of response.

Examining the linearised equation of motion shows that the damping is not
/

affected by the non-linearity, but that the equivalent natural frequency does

change with amplitude of response. The additional term in the equivalent

natural frequency is 3j3a2/4  where a is a positive displacement and p is the

non-linearity. If p is positive, ie a hardening cubic stiffness, then the natural

frequency will tend to increase in value in comparison with the linear system

when the non-linearity or the response level is increased. If p is negative,

representing a softening cubic stiffness, then the natural frequency will

decrease for the same conditions. This type of non-linearity is one specific

example from a family of power laws on displacement (px” ), each of which

have their own characteristics.

Backlash

This non-linearity (fig (5.1 b)) is often found at loose-fitting joints where

there is a small gap between contacts in positive and negative displacements.

The equations of motion are:-

x + 2Q00a + 002(x - x0) = ft 1x1 ’ x(J
2 = ft 1x1 < xg

Other versions of this type of non-linearity have a secondary spring in the gap

which is much softer than the main spring. Also, the equilibrium position may

be displaced from the centre of the gap either by pre-loading or self weight.
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Bi-linear stiffness

Bi-linear stiffness (fig (5.1~)).  is often found in bolted joints where the

stiffness of the bolt in tension is different to that when the bolt is in

compression. For this case, bi-linear stiffness is defined as a spring whose

stiffness takes one of two different values depending upon whether the

displacement is positive or negative. The equations of motion are:-

j2 + 2(56@? + 012x = ft XC0

j2 + 2(5cl@ + w22x = ft x20

and the equivalent linearised equation of motion is:-

Whilst this is a non-linear element, the equivalent linearised equation shows

the equivalent damping and natural frequency to be independent of amplitude or

force. This implies that a given system with bi-linear stiffness would exhibit

superposition and appear to be linear for any excitation level in the frequency

domain, but clearly any time-history will be dominated by the two different

stiffnesses and as such this non-linearity is important.

5.1.2 Damping type non-linearit ies

There are many types of damping non-linearity of which two will be mentioned

here. The schematic diagrams and the relationship between the damping force

and the response are shown in fig (5.2) with the notation definition.

Friction

Friction (fig (52a))  is the more familiar of the damping type non-linearities

and has a force characteristic that is positive if the velocity is negative, and

negative if the velocity is positive. Friction usually occurs when two moving

surfaces are in contact, eg the surfaces at joints and is also known as coulomb

damping. The equation of motion for friction is:-

i + 2@+)x + 002x + R x = f,

Gi
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. . and the equivalent linearised equation of motion is:-

Inspection of the linearised equation of motion indicates that the natural

frequency will not change with the introduction of this type of non-linearity.

The damping, however, will be increased by 4Rlnaoe showing that for

decreasing response amplitudes or increasing friction force the effective

damping is increased. These equations all assume that the friction force

remains constant: in reality, a slipping friction force is less than the

corresponding sticking friction force, neither of which is necessarily a constant

value. No attempt has been made here to simulate that more complex condition

due, largely, to an absence of reliable data.

Quadratic viscous damping

This form of non-linearity (fig (52b)) is Is one from the family of power laws

on velocity to provide a non-linear damping term of the form (dx”). In this

case the equation of motion is:-

and the equivalent linearised equation of motion is:-

From this equation it is clear that there is no change in the resonance frequency

of the system with varying amplitude, but that the effective damping increases

with non-linearity or response level. Quadratic viscous damping often arises

from the displacement of fluids, eg air flow over a panel.
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5 . 2  Frequehcy response m e a s u r e m e n t  o f  n o n - l i n e a r

e l e m e n t s

Unlike the linear case, where the FRF is independent of the excitation technique,

non-linear elements respond in a different manner to different types of

excitation and to various levels of a given excitation type. This section examines

the response of some non-linear elements to some of the ‘standard’ excitation

methods available (see chapter 3) and the techniques that can be used either to

linearise the response or to enhance the non-linearity so as to assist in the

identification of non-linear behaviour in a structure.

Sine excitation

Using the stepped-sine excitation technique (ref [122]),  where the output

voltage from the generator is kept constant, the input force to the structure is

allowed to vary and this results in a rapid decrease in the force to the structure

around resonance. The resulting FRFs from non-linear structures may appear

to be linear, double peaked, or simply very noisy. As can be seen from the

equivalent linearised equations, the response of a non-linear element is usually

amplitude-dependent. If the response of the structure is kept constant over the

frequency range of interest, then the structural behaviour has effectively been

linearised and this is one technique of dealing with non-linear systems. To

enhance the effect of a non-linearity in the FRF a wide range of amplitudes is

required and this can be obtained by providing a constant-force input to the

structure which will ensure a large range of response amplitudes around

resonance. If non-linearity is suspected, a suitable test is sinusoidal excitation

using force control on the input to the structure. If the results from two tests

at different force levels show a change in the characteristics of the response

then, assuming that the excitation equipment - generator, amplifiers and

shaker - has not been driven into a non-linear regime, the structure is

behaving in a non-linear fashion and care must be exercised when analysing

that region of data. Examples of different FRFs obtained by using two different

force levels are shown in fig (5.3). These results were calculated from the

linearised equations of motion of two non-linearities with the input force

amplitude kept constant for each FRF.
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Random excitation

Because of the nature of the various random excitation methods, these

procedures tend to ‘average’ out any non-linearities - resulting in an optimum

linearised model for the given excitation (ref [123]). By using several levels

of random excitation, different FRFs can be obtained indicating the presence of

non-linearities, but analysis of any one of the FRF plots would suggest the

system to be linear. The parameters that are obtained from this type of test can

be used in vibration analysis, but are not generally suitable for transient

response analysis. There is one other parameter that provides an indication

that the system is non-linear - the coherence. The coherence for measurements

on a non-linear system is less than for a corresponding linear system with the

same quality signals. There may also be coherence drops at harmonic

frequencies (ref [124]) which could be used to assist in identifying a system as

being non-linear.

Impulse excitat ion

Very little work has been performed on impact testing with non-linearities

(ref [120] to [123]), probably for several reasons. The main reason is that

impact testing usually requires many averages to obtain a noise-free result

and, unless the impacts are monitored and are identical for non-linear systems,

the results are then of no use as the non-linearities are ‘averaged’ out, in the

same manner as for random excitation. The results from an impact test depend

on the free decay of the system which means that the range of response

amplitudes is large, so there is potential for non-linear classification using

impact testing. In non-linear systems the relationship between the IRF and the

FRF is no longer through the Fourier transform, thus bringing into question the

validity of using impact testing to find the FRF. However, the interest in this

thesis is in predicting the transient response so the relationship between the

FRFs from sine testing and impact testing needs to be examined further.
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5 . 3  F r e q u e n c y  r e s p o n s e  c h a r a c t e r i s t i c s  f r o m  s i n e

t e s t s

Having discussed the various non-linearities and the application of excitation

techniques, the frequency domain results - Bode, Nyquist, 3-D damping and

reciprocal-of-receptance plots - from constant-force sine excitation of the

non-linearities are now examined for identifiable trends. Also in this section

the term ‘effective non-linearity’ is introduced, which has meaning only when

discussing altering the non-linear effect in a system. The term, apart from the

value of the non-linearity, includes the effect of changing the amplitude of the

input force: increasing the force may have the same effect as either increasing

or decreasing the non-linearity.

Non-linear frequency domain characteristics are clear from measurements

using constant-force stepped-sine excitation, and many of the characteristics

are well documented (eg (1171 & [125]) and are summarised below. Using

constant-response amplitude sine tests produces a linear FRF therefore there

are no trends in the individual plots with which to identify non-linearities

other than the fact that different response amplitudes result in different

(linear) characteristics. This type of test can be used for producing a linear

model, and a change in response level will generate a different linear model.

Conventional sine tests, where the input force level is allowed to vary, have the

same amplitude-dependent characteristics as the constant-force sine tests, but

any trends are not as immediately evident. A new method has been developed

11261 to extract the characteristics from these tests.

The following results for constant-force sine tests were produced in three

ways:-

(i) using an analogue computer to simulate the non-linearity;

(ii) computing the response characteristics by using the equivalent linearised

equations of motion; and

109



(iii) direct time-marching solution of the non-linear equations of motion for

sinusoidal forcing functions over a specified range of frequencies. The

magnitude of the response at the forcing frequency is then calculated along with

the phase relationship between the input and response. This technique is

similar to that used by frequency response analysers (FRA) and will be

referred to as the ‘simulated FRA’ method.

5.3.1 Characteristics of the measured Bode plot

A frequency response plot from a linear structure is expected to be a smooth and

/ continuous curve. If the plot is not continuous, or the resonance appears to lean

uncharacteristically, then there is a strong possibility of non-linearities being

effective in that region. It has been shown (eg refs [I 191, [120], [i 271 &

[128]) that the type of distortion in the Bode diagram, or the trend with

changing force level (or changing non-linearity), can be used to classify the

type of non-linearity. These trends for individual non-linearities are now

reviewed.

Cubic stiffness

The main characteristic of cubic stiffness is a change in the frequency of the

peak response with varying force level or non-linearity and also sweep

direction. Mayman and Richfield [121] explored the use of the frequency and

magnitude at maximum amplitude to calculate the non-linearity in the system.

Results for cubic stiffness were generated during this study from the analogue

computer and from the equivalent linearised equation of motion. The Bode plot

characteristics for hardening cubic stiffness are shown in fig (5.4),  displaying

a distortion around resonance that increases with increasing non-linearity. For

softening cubic stiffness the trends are just the opposite. For these systems,

increasing non-linear effect is increasing the p parameter or increasing the

input force level.
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Backlash

The Bode plots for a system with backlash

frequency decreasing with increasing gap or

lean forward, with the resonance

decreasing force. The FRF before

resonance is increased relative to the linear system, and decreased after

resonance. Data for this non-linearity were calculated using the ‘simulated

FRA’ method and the trends in these FRFs are shown in fig (5.5). For a system

with backlash, increasing the non-linear effect is achieved by increasing the

gap or by decreasing the input force level.

B i - l inear  s t i f fness

According to the equivalent linearised equation of motion, the FRF for a system

with bi-linear stiffness should appear linear with a resonance frequency

related to the average of the stiffnesses. Using the ‘simulated FRA’ solution

route, the results did appear linear, but the main resonance is not at the

predicted frequency. Also, there are several other ‘resonances’ that occur at

frequencies which are multiples of the main resonance frequency, none of which

distort or alter in the Bode plot with changing force level (fig (5.6)). With

this non-linearity, changing the force level did not alter the FRF, as seen in fig

(5.6a).

Friction

The equivalent linearised equation of motion is used to generate data for this

example and examining the equation indicates that the resonance frequency is

not altered by the non-linearity; only the effective damping levels vary.

. Examples of Bode plots for this type of non-linearity are shown in fig (5.7),

where it can be seen that as the level of friction in the system increases the

inertance FRF decreases. Decreasing the input force has the same effect as

increasing friction and is increasing the effective non-linearity.
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Quadratic viscous damping

These solutions were obtained from the equivalent linearised equation of motion

and, as in the case of friction, the resonance frequency is found not to change;

only the effective damping alters with changing non-linearity or response level.

The inertance decreases with increasing quadratic viscous damping or

increasing force, which is also increasing the effective non-linearity. Details

of the variation in the resonance region of the Bode plot for quadratic viscous

damping are shown in fig (5.8).

5.3.2 Modal parameters obtained from SDOF modal analysis

Examination of the two frequency domain modal analysis methods - Nyquist

analysis and the inverse of receptance (discussed in chapter three) - yields that

there are several forms of data presentation which can provide indications of

the type of non-linearity. The Nyquist locus is fairly sensitive to the presence

of non-linearities as is the associated 3-D damping plot. It was found that plots

of the inverse of receptance can also be used to classify the non-linearity and to

differentiate between stiffness and damping type non-linearities. There is an

increasing amount of literature on the subject of trends in data caused by

n o n - l i n e a r i t i e s  ( e g  r e f s  [69], [116], [119], [120] & [128]) a n d  t h e

characteristics shown from these plots and from the Bode plots are summarised

in table (5.1).

Cubic stiffness

For a system with hardening cubic stiffness, the Nyquist plot loses its

symmetry - as shown in fig (59a)  - the amount of distortion increasing with

effective non-linearity. For systems with small effective non-linearity the

loss factor increases as the upper frequency point is raised, and decreases as the

lower frequency point moves down (fig (59bl)). Locating the ‘natural’

frequency using the position of greatest sweep rate for systems with large

effective non-linearity will result in similar 3-D damping plots as obtained

above, but if the criterion used for locating the resonance frequency is that of

least damping variation, then the loss factor - for both hardening and softening

cubic stiffness - increases as either frequency point used in the calculation is

further from the ‘natural’ frequency (fig (5.9b2)). Using Nyquist analysis,
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. . different parameters are obtained depending on the criterion used - eg

maximum sweep rate, least variation on the 3-D damping plot or closest ta zero

phase.

With reciprocal-of-receptance, the real part shows a decrease in the slope

approaching the resonance frequency, after which it returns to the original

slope (fig (59c)). The slope of the real part away from resonance corresponds

to the linear system; this is important as it enables the parameters of the

underlying linear system to be determined - not just a set of linearised

I parameters. The imaginary part of the reciprocal-of-receptance is not affected

by this non-linearity, so the correct damping value can be taken from this plot.

Table (5.2) provides some idea to the range of parameters that can be calculated

from a single FRF of a system with hardening cubic stiffness.

Backlash

The Nyquist plot for a system with backlash shows a similar distortion as for

the hardening cubic stiffness case (fig (5.10a)), and with large non-linear

effects the jump phenomenon. The loss factor increases as the higher frequency

point is increased, and decreases as the lower frequency point moves down, as

shown in the 3-D damping plot in fig (5.10b). The real part of the inverse of

receptance plot (fig (5.10~)) has a smaller slope than a linear system before

resonance and greater slope after resonance, but plots for different levels of

effective non-linearity all cross the axis at about the same point. The change in

slope near the resonance frequency in the real part is also reflected in the

imaginary part. This change in the imaginary part is to be expected as the

model used assumes no damping over the centre section so the effective damping

will alter with the change in relative time spent in the free zone to time in

contact with the spring. A summary of some results from a single measurement

of a system with backlash is given in table (5.3).
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Bi-linear stiffness

With bi-linearity there is no indication from either of the analysis methods of

the presence of a non-linearity. Examples of plots from the fundamental

resonance and from the first harmonic are shown in figs (5.11) & (5.12)

where the Nyquist plots are circular, 3-D damping plots are flat and level, and

the plots of the reciprocal-of-receptance appear ‘linear’. The imaginary part

for both plots is not quite as flat or as smooth as might be expected from a linear

system, but there is insufficient deviation from a linear system to enable this to

be used to identify and to categorise bi-linear stiffness.

Friction

For a system with coulomb friction damping subjected to constant-force

stepped-sine excitation, the Nyquist plot is almost circular when the effective

non-linearity is low. However, the distortion of the plot increases with

increasing effective non-linearity and at high levels of non-linearity the

Nyquist plot becomes egg-shaped (fig (5.13a)). The 3-D damping plot

decreases away from the resonance point both above and below (fig (513b)).

Using reciprocal-of-receptance the real part is not affected, but the imaginary

part shows a marked deviation from its usual straight line, with a turning point

coinciding with the frequency at which the real part crosses the axis (fig

(5.13~)). The values of coulomb damping and viscous damping can be calculated

separately using the imaginary part of the

shown in Appendix 6. The results from using

are shown in table (5.4).

Quadratic viscous damping

reciprocal-of-receptance and is

different analyses on these data

For this case, the Nyquist plot takes on the opposite shape to friction - a

squashed circle (fig (514a)). The 3-D damping plot is flat for most cases, and

no particular trends were observed (fig (514b)). There is no change in the

real part of reciprocal-of-receptance, whilst the imaginary part deviates from

the usual straight line as shown in fig (5.14~). It is possible to calculate the

values of viscous and quadratic viscous damping from the imaginary part of

reciprocal-of-receptance in a similar manner to that described for friction.

Table (5.5) shows the range of values obtained from different analyses.
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5.3.3  Hi lbert  t ransform

The application of the Hilbert transform in non-linear structural vibrations is

a fairly recent development. The theory of the Hilbert transform has been

developed for the identification of non-linearities refs [i 181, [123], & 11291

to [134]; If a system is linear, the Hilbert transforms of any form of its FRF

data (eg magnitude and phase, real and imaginary, or Nyquist) will overlay the

original data. However, if the Hilbert transforms do not overlay, it may

because’of errors in the transform, eg truncation errors, or due to the presence

of non-linearities. This method has the potential of showing the presence and

the type of non-linearity by comparison of the transform with the original data

from a single measurement. In general, the trends in the Hilbert transformed

data are opposite to the trends in the measured data, and any of the displays -

Bode, reciprocal-of-receptance, Nyquist or real and imaginary - can be used to

compare results. Hilbert transform describers have also been defined in the

form of energy ratios. The way that these describers change with applied force

and their relative magnitudes can be used to classify different types of

non-linearity (refs [I 181 & [123])

5.3.4 Characteristics using ‘standard’ sine excitation

Using ‘standard’ sine excitation - where there is no control on the input force to

the structure or on the response amplitude - the trends that have been seen in

the constant-force tests can still be identified if the amplitudes of response or

the input force levels to the system are known at each frequency measurement

point. It is the variation in response amplitude that causes the trends in the

results from non-linear structures, and so long as the response amplitude is

not constant (in which case a linearised response is measured) then these

effects are present and can be used to classify the type of non-linearity. He

[126] has developed a technique to enhance and exploit these trends in data from

‘standard’ sine excitation with some success in quantifying the non-linearity.
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.
5.4 Response characteristics from impulse tests
Trends that exist in data from non-linear elements, when excited using

constant-force sine input, have been assessed for their suitability in

classifying and quantifying the non-linearity for the five types listed at the

beginning of the chapter. Attention is now focused on testing non-linearities

with impulse excitation and the subsequent information that is available from

the measured data. The measured time-histories are first compared with a

‘reference’ linear time-history; then the impulse responses are transformed to

the frequency domain and the presentations - Bode, Nyquist, 3-D damping and

reciprocal-of-receptance - are examined for identifiable trends.

Using impulse testing the primary information sought and obtained is the

impulse response function (IRF). This IRF is often immediately transformed to

the frequency domain in commercially-available analysers to provide an FRF

and the initial measurement of the IRF is generally not displayed. Non-linear

systems can produce IRFs that are distinctly different from the exponentially

decaying sine waves of a linear system. If these non-linear IRFs are then

transformed to the frequency domain the characteristics are often quite

dissimilar to those obtained from FRFs measured directly using sine excitation.

Both measured and transformed IRFs are now examined and the trends discussed.

In the examples below, the IRFs were generated by direct solution of the

equations of motion with the initial conditions set up with an initial velocity to

simulate an impulse. The displacement, velocity and acceleration

time-histories from the reference linear system are shown in fig (5.15).

5.4.1 Characteristics of the time-histories

Cubic stiffness

With this non-linearity there is little variation from the linear case; only a

slight shift in the major frequency component which slowly returns to the

linear period as the response amplitude decreases. Examples of IRFs from

systems with hardening cubic stiffness are shown in fig (5.16). The most

significant difference is seen in the acceleration trace (fig (5.16d)) where, as

well as a frequency shift, the response level is higher than for the linear

example but by less than 10%.
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Backlash

For a system with backlash the acceleration trace indicates the presence of

non-linearity more clearly than do the velocity or displacement traces. As there

is no spring in the centre of the element (fig (Sib)) there is no force on the

mass whilst it is in this region. This implies that, so long as there is no

external force on the mass, the acceleration in the middle is zero - and

therefore constant velocity and linearly increasing displacement. The

acceleration trace is shown in fig (517d) where the zero acceleration is clear.

The corresponding velocity plot has flat-topped sine waves (fig (517c)),

while the displacement plot - although not clearly non-linear from the enlarged

view (fig (5.17b)) - does not decay as fast as the linear case when a longer

time period is examined (fig (5.17a)). Also the response period varies

throughout the decay.

Bi-linear stiffness

The IRF generated for the bi-linear stiffness element is as expected - a

different period whilst the displacement is positive to that whilst the

displacement is negative. An example is shown in figs (5.18a and b). The

velocity trace is a leaning sine wave (fig (5.18c)), and the acceleration

time-history in this example has a shorter period and larger magnitude when

the acceleration is positive (corresponding to the time when the displacement is

negative) than when the acceleration is negative (fig (5.18d)).

Friction

The IRF of a system with friction as the only form of damping is the classical

linearly-decaying ‘sine’ wave (fig (5.19a)).  With viscous damping also

present in the system, there is still the ‘dead zone’ and the decay rate is a

combination of a linear decay due to friction and the exponential decay from the

viscous damping (fig (5.19b)). Returning to the system with only coulomb

damping, the velocity trace appears similar to the displacement trace (fig

(5.19c)), and the discontinuities in the acceleration at the extremes of motion

are evident in the corresponding plot (fig (5.19d)).
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Quadratic viscous damping

The IRF for a system with quadratic viscous damping has the opposite

characteristics to the IRF for a system with friction. The initial decay in this

case is more rapid than for the linear system fig (520b)), but the response

continues at a small amplitude for a long time (fig (5.20a)). The

corresponding velocity and acceleration traces are shown in fig (5.20~ & d))

where the feature of interest in this example is the high initial acceleration

response and the apparent discontinuity where the displacement reaches its

first maximum; for low effective non-linearities the acceleration time-history

does not exhibit this high initial response.

5.4.2 Data trends in the frequency domain from impulse excitation

After deriving the IRF, data are then transformed to the frequency domain in

order to obtain an FRF for modal analysis. This transformation has been

performed for the non-linearities under consideration and the frequency domain

presentations are examined for trends. These results are summarised in table

(5.6) and are discussed below.

Cubic stiffness

The Bode plot of the FRF obtained by Fourier transforming the IRF (which will

be referred to as the impulse response FRF - or IRFRF) from a system with

hardening cubic stiffness subjected to impulse excitation still exhibits the

‘jump’ phenomenon with large non-linear effects, but now the ‘jump’ is on the

low frequency side of resonance (fig (5.21a)) and, in addition, ‘harmonic

resonances’ (apparent modes at frequencies that are multiples of the

fundamental resonance) also become evident. The frequency of maximum

response increases with effective non-linearity. There is a corresponding shift

clockwise in the distortion of the Nyquist plot as shown in fig (5.21 b), and the

3-D damping plot now decreases away from resonance in both directions (fig

(5.21~)). The plot of real part of the reciprocal-of-receptance (fig (5.21d)

has a similar slope to the linear system, but lies parallel and crosses the axis

at a higher frequency with increasing effective non-linearity. There is also a

slight distortion just before resonance where there is a ‘dip’ in the line. The

imaginary part is also affected in this case with a drop in the value just before
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resonance and tending to a greater value after the dip for systems with higher

non-linear effects (fig (521d)).  The results obtained from different analyses

of the same impulse data are shown in table (5.7). The ‘harmonic resonances’

(starting with the second harmonic frequency) that begin to show in the Bode

plot with increasing effective non-linearity possess similar trends to the

fundamental resonance when analysed, but the Nyquist plot is translated from

the origin (fig (5.22)).

Backlash

/ The IRFRF for this type non-linearity appears to be very ‘noisy’ (fig (523a))

with the noise content increasing with the effective non-linearity. A ‘harmonic

resonance’ also begins to show through the noise within the frequency range of

the FRF. Around resonance there is a ‘jump’ on the low frequency side of

resonance for higher levels of non-linearity and, as the non-linear effect

increases, the frequency of maximum response decreases. The points on the

Nyquist plot are distorted clockwise, and there is a bulge out of the circle on the

low frequency side of resonance as shown in fig (5.23b). The 3-D damping

plots are not smooth, nor are the perturbations of a random nature, but clear

trends are not easily identified (fig (5.23~)). The reciprocal-of-receptance

plot (fig (5.23d)) shows a large variation below resonance in both parts, but

above resonance the real part becomes parallel lines crossing the axis at lower

frequency with increasing non-linearity while the imaginary part converges to

the linear line. Results from some analyses are shown in table (5.8) and a plot

from analysis of the harmonic resonance is shown in fig (5.24).

Bil inear stif fness

For a single grounded element, the IRFRF plots appeared to come from a multi-

mode system (fig (5.25)). Data analysed around any of the ‘modes’ appear

linear (although from a MDOF system), with evenly-spaced highly complex

Nyquist circles, and flat 3-D damping plots. The reciprocal-of-receptance plots

are also as expected from a linear MDOF system: however, in the development of

the analysis method based on this form of presentation all modes are assumed to

be real and so the approach is not really valid for such highly complex ‘modes’.

The analysis plots for the ‘modes’ shown in the Bode plot are presented in fig

(5.26), and the results from analysing the ‘modes’ are in table (5.9).
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Fr i c t i on

The IRFRF plot for a system with just coulomb damping appears initially to

have many heavily damped ‘modes’ and harmonic resonances that are

distinguishable (fig (5.27a)). As the ratio of viscous damping to coulomb

damping increases, these perturbations near resonance in the IRFRF smooth out

into the familiar Bode plot plus an harmonic resonance showing through. The

amplitude of the fundamental resonance decreases with increasing non-linearity

and is displayed in fig (5.27a). The Nyquist plot maps these extra ‘modes’ (fig

(5.27b)) and the trend is for the ‘circle’ to become squashed with increasing

non-linear effect. The 3-D damping plots decrease away from resonance in

either direction (fig (5.27~)). The reciprocal-of-receptance shows a

distinctive characteristic in the imaginary part (ref [135]) as shown in fig

(5.27d). There are large variations in this plot which can be enveloped with the

lower limit relating to the amount of viscous damping in the system and the

angle between the upper and lower envelopes to the amount of coulomb damping

present. The real part averages to a straight line of the same slope as the linear

system and the plots all cross the axis at the natural frequency. Fig (5.28)

present the reciprocal-of-receptance displays for increasing viscous damping

or increasing coulomb damping, and the results from various analyses of a

single FRF measurement are presented in table (5.10).

Quadratic viscous damping

In this case, each individual IRFRF plot appears to be linear with only a small

distortion evident around the second harmonic frequency, but the magnitude of

the response at resonance decreases with increasing non-linear effect (fig

(5.29a)).  The Nyquist plots are smaller than the linear system and become

elongated along the imaginary axis (fig (5.29b)) whilst the 3-D damping plots

increase away from resonance in both directions (fig (5.29c)). Plots of

reciprocal-of-receptance are shown in fig (5.29d)  where the real part is

displaced in slope around resonance but always crosses at the same frequency,

and the imaginary part is also distorted. Results from analyses on different

non-linearities are given in table (5.11).
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5 . 5  C o m p a r i s o n  o f  r e s p o n s e  c h a r a c t e r i s t i c s  i n  t h e

time domain

Distinct response characteristics, that depend not only on the non-linearity but

also on the excitation technique used, have emerged for non-linear systems.

These differences have been discussed in the previous section for frequency

domain presentations, and in this section the focus is on the variations in the

time domain presentation. To examine the differences in the time domain

responses, frequency response data from constant-force sine tests were

transformed to the time domain using the inverse discrete Fourier transform

(which will be referred to as the frequency response IRF - or FRIRF) and

compared with the IRF. One effect to note is that in this transformed data there

is an apparently non-causal component from some of the non-linear

components. As this non-causal component is due to the non-linearities in the

system, removal of this part of the response would bring the total response

closer to the linear ideal. A method for calculating this ‘linearised’ response

involves averaging the non-causal time function and the time domain

representation of its Hilbert transform (refs [118], [123], [130] & [131]).

The result is a causal response, which is a partially linearised function

representing the original system. Using data from any analysis to regenerate

curves would produce an exponentially decaying sine wave (which is not

shown), but the linear example in fig (5.30) can be used to identify differences

between the exact time-histories from the non-linearities and a linear

response. The differences between the IRF & FRIRF are now briefly discussed

for each non-linearity.

Cubic stiffness

The comments made here are for hardening cubic stiffness elements: trends are

opposite for the softening cubic stiffness cases. In the time-history (fig
(5.31)) the results from an impulse are similar to the linear example (fig
(5.30)) with a slight change in period at the start. The transformed

constant-force sine test data, however, decay away rapidly at the start and the

large non-causal component effects the end of the data and also the magnitude at

the begining of the record. The IRF & FRIRF results for cubic stiffness are very

dissimilar in appearance.
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Backlash

The time-histories for backlash non-linearity can be very different due to the

varying time that the mass spends in the gap and for the example shown in fig

(5.32) the IRF decay is very similar to the linear system until the

displacement is less than the gap when there is no more decay. The FRIRF has a

large non-causal component which will affect the magnitude at the begining, but

the general trend is a rapid initial decay which becomes less than the linear

example after a short time.

/ Bi-linear stiffness

For bi-linear stiffnes the IRF and the FRIRF, unlike the FRF and the IRFRF, can

be very different (fig (5.33)) if there is much variation between the two

spring stiffnesses when the ratio of the two periods spent in positive or negative

displacement is large. Also, the amplitude of response is different for positive

or negative displacements. This is because in this example the damper is

assumed to be the same for both springs, which means that the damping ratio

(<=c/2=),  hence the maximum amplitude and decay rate, differs for each

spring stiffness. These variations in the IRF and FRIRF are important when

predicting the transient response for this non-linear element.

Friction

The FRIRF of a system with friction (fig (5.34)) appears similar to a linear

system, but with a little more damping. There is an indication of the

non-linearity by the small non-causal component at the end. The IRF however,

decays to within the dead zone of the friction element well within the decay time

of the FRIRF and so the actual decay rate is much greater than the FRIRF would

indicate.

Quadratic viscous damping

In the time-histories of a system with quadratic viscous damping (fig (5.35))

the FRIRF has a small non-causal component the amplitude at the start is larger

than in the IRF, and the response finishes in less time than the response from

the impulse test. In both cases (IRF and FRIRF) the response is less than the

linear example which is to be expected as the quadratic viscous damping

increases the total damping of the system.
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5.6 Discussion

In this chapter conventional modal analysis techniques have been applied to

non-linear elements to establish characteristics that can be used in classifying

and quantifying non-linearities. Of the excitation techniques used to measure

the frequency response function (FRF), random excitat ion and

constant-response amplitude sine tests produce linearised models that

represent the non-linear element for that particular excitation condition and

have not been considered in detail. FRFs from constant-force sine tests and

from impulse tests exhibit distinct trends, and furthermore, the FRFs from

these two types of excitation do not usually agree for non-linear elements.

Trends exist in data from sine tests where the input force is allowed to vary,

but manipulation is required on the data to enable the trends to be high-lighted.

Of particular importance to this research are the characteristics of the

response from impulse tests, as these need to be fully understood in order to be

able to predict accurately the impulse response function (IRF) of a non-linear

element from modal tests.

Trends of plots from constant-force sine tests in the Bode, Nyquist and 3-D.

damping formats are well documented (eg refs [69], [116], [119],  [120]

[128] and section 5.3 of this thesis), and it is also shown that the reciprocal-of

-receptance plots can be used to identify and quantify some aspects of

non-linearity. Similar displays are also examined for data from impulse tests

where the trends are not usually the same for a given non-linearity as from a

constant-force sine test, but may correspond to a different non-linearity

subjected to a constant-force sine test. It is therefore important to know what

excitation technique was used to measure an FRF so that trends in the data can be

attributed to the correct non-linearity.

The different trends exhibited for the same non-linearity subjected to an

impulse or constant-force stepped-sine test, are mainly due to the mechanism

of excitation and the amplitude dependence of non-linearities. The

constant-force stepped-sine test will result in a steady-state response - not

necessarily a sine-wave, but the amplitude of the input frequency component of

the response will be constant. Varying the amplitude of the input will change

the level of the response, and hence the system characteristics. The impulse
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test however, relies on an average value of response from the initial pulse down

to zero response. Stiffness-type non-iinearities generally cause the the

natural frequency of a system to change with response amplitude, and so the

alteration may be visible in the IRF as the amplitude decays: the IRFRF will

therefore have a resonance that is an average as the response decays to zero.

However, any change in the natural frequency of the IRFRF from that of the

linear system will still be in the same direction as for the FRF. Using friction

as an example of damping-type non-linearity, the non-linear effect decreases

with increasing amplitude. For the constant-force test, the response around

resonance is largest and so the system is most linear at that point. This is seen

in the Nyquist plot where the points close to resonance are closer to the linear

system than the points away from resonance. With the impulse test however,

the response decays away much more quickly than for a linear system, hence the

average amplitude around resonance is low and the IRFRF is most non-linear

around resonance. This is again seen in the Nyquist plot where the points close

to resonance are now furthest away from those of the linear plot. The opposite

is the case for quadratic viscous damping, where small response amplitudes

imply a more linear response. In general, if the non-linear effect is reduced

with decreasing response amplitude, then the response from an impulse test

will probably appear more linear than the response from a constant-force

stepped-sine test, as the response at resonance from the latter test will be large

even with small input amplitudes.

As a first attempt at predicting the IRF of a non-linear element, the FRF data

measured from a constant-force sine test were transformed to the time domain.

For most of the non-linearities this is clearly an unacceptable prediction, and

therefore different approaches need to be examined for predicting the IRF of

non-linear systems using data from experimental modal analysis.
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(Hardening)
CUBIC
STIFFNESS

BACKLASH

BI-LINEAR

FRICTION

QUAORATIC
VISCOUS
DAMPING

Bode Plot

Leans forvard.
Frequency increases
wi th  increas ing
non- l i near i t y

Leans forward. Fre-
quency decreases with
increasing non-
l i n e a r i t y . Response
greater before reson-
ance ,  l e s s  a f ter .

Remains circular.
a n d  p o i n t s  d i s t o r t
an t i -c lockwise .

Appears l inear. Circular and
but  multi-moded. evenly spaced.

Response amplitude
decreases with
increasing non-
l i n e a r i t y .

Response amp1 i tude
decrea se s  with
increasing non-
l i n e a r i t y .

Nyquist

Remains circular -
same diameter. but
points  move anti-
c lockwise , leav ing
gap at jump fre-
quency.

Become smaller
and elongated
down imaginary
a x i s .

Become smaller
and squashed
down imaginary
a x i s .

3-O Damping

b e l o w  f o r  light ncln-
l i n e a r i t y  o r  u s i n g
position of maximum
sweep. Otherwise
increases in both
d i r e c t i o n s .

Increases moving abow
resonance and decrease
moving away below.

Flat

Decrease moving
away from
resonance in both
direc t ions

A p p e a r s  f a i r l y
flat,  no apparent
trends .

bzciprocal-of-

c

Reciprocal-of -
\eceptancr - R e a l eceptance - Imaginary

.inear away from ot a f f e c t e d .
resonance. Slope
Iecreases approach-
ing resonance then t
jumps down.

Slope remains straight Increase in slope
but less below resonancebefore resonance and
and greater slope above decrease after.  About
resonance. Al l  cross same value near
a t  same p o i n t . resonance.

Straight 1 ine Same approximate slope
but not a smooth line.
Vo par t i cu lar  t rend .

Straight 1 ine
as  l inear .

Becomes ‘V’ shaped
with minimum value
near resonance

S t r a i g h t  l i n e
as  l inear .

Becomes bumped
uith maximum value
near resonance.

Table 5.1 Trends in Frequency domain displays from non-linear systems subjected to sine testing.
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(Deg)
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Table 5.8 Various parameters evaluated from a system with backlash
subjected to an impulse. (Response of system shown at the top).
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6 TRANSIENT, RESPONSE PREDICTION OF NON-LINEAR

ELEMENTS USING DATA FROM MODAL TESTS

6.0 Introduction
The previous chapter explored the application of modal testing procedures to

non-linear structural elements. It was found that the results in both the time

and frequency domains depend on the type of test performed and the excitation

level of the test, and many of the graphical presentations exhibit characteristic

trends with changes in the non-linear effect. The application of transient

response prediction methods for non-linear elements, using experimental data

that are obtained from modal tests and modal analysis, is now examined.

There are three main types of input where the transient response of a system

(linear or non-linear) may be required as a time-history: the response

between two different steady-siate conditions; the response to an impulse-like

excitation, and the response to a non-steady forcing function. Often, this latter

type of excitation is found in working machinery and the level and form of

excitation can be measured - the tests in these cases can also be performed in

situ with the correct excitation. The transient response is short between

steady-state conditions, unless the system is very lightly damped. In these

short transients the effect of the non-linearity is likely to be small, so a linear

model can be used if this response is required. The response to an impulse-like

excitation is mainly free decay and it is this response - the impulse response -

that is now examined in more detail with the intention of calculating a

satisfactory approximation to the impulse response function (IRF).

There are several approaches to impulse response prediction, all of which will

provide an answer. In the case of a linear system, all such answers must be the

same, but in the non-linear situation the results from different methods can

show marked differences. It is the aim of this chapter to examine the

alternative solutions for various non-linear elements and to establish the

feasibility and accuracy of the results in providing transient response

prediction for non-linear elements. The different solution routes are shown on

fig (6.1), and are summarised below.
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6 . 1  S u m m a r y  o f routes  for  t rans ient response

prediction
The first route (A) shown in fig (6.1) is by direct solution of the equations of

motion. This requires the system to be described analytically which, as

explained previously, is not usually possible in practical cases. However,

solutions for theoretical systems with well defined non-linear elements were

calculated using this procedure with

and the results are used as the basis

prediction methods.

the computer program ‘NONLIN’ ref [136]

for comparison of the accuracy of the other

The initial step in experimental modal analysis is to measure the frequency

response function (FRF) properties. Depending on the choice of excitation

method and the level of excitation, this can result in one of several alternative

FRFs for each non-linear system. These data can be transformed to the time

domain to provide corresponding transient response predictions. As was seen in

figs (5.31) to (5.35),  when comparing these results with the impulse

response functions (IRFs) this technique does not always generate

time-histories that resemble the exact solution, and also often have a

non-causal component.

The alternative FRFs can all be analysed using available modal analysis routines

and, combined with criteria used for selecting the data points for analysis,

several sets of modal parameters can be calculated from the same experimental

data. These sets of modal parameters from all the FRFs of the same

non-linearity can be used in the (linear) formulae to regenerate FRFs which

can then be inverse Fourier transformed to provide corresponding estimates for

the transient response prediction of the non-linear element. For some

non-linearities in limited applications, one of these solutions may provide an

acceptable approximation to the IRF.

Alternatively, models could be developed to account for the non-linearities in a

system. These ‘non-linear models’ may be described in either the frequency or

the time domain, but whether the predicted transient response is transformed

from a non-linear frequency domain model, or generated using a time-domain
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model, the resulting prediction will be a closer approximation to the true

time-history than a linear approximation. Non-linear models have to be

developed individually for each non-linearity and the information required

from modal analysis may include the underlying linear system parameters and

the non-linear parameters of the system. For some non-linearities, these

parameters are relatively straightforward to evaluate, but others need

examining in more detail to determine how to separate the linear parameters

from the non-linearities, and how to calculate the non-linear parameters. The

non-linear model will usually be dependent on the initial conditions of the free

decay, so these will also need to%alculated  for the impulse or at the start of the

free decay of a system.
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6 . 2  T r a n s i e n t r e s p o n s e  p r e d i c t i o n  f o r  a  c u b i c

stiffness element
With cubic stiffness, the presence of non-linearity is evident from all displays

from either constant-force sine test or impulse tests. It is least obvious from

the exact IRF where the only indications are found in cases with high effective

non-linearity when phase shifts may be observed in the initial part of the

response. From examination of the exact IRF of an element with cubic stiffness

(either theoretically generated or from an analogue computer) it is clear that

the response of a cubic stiffness element in free decay resembles the response of

the underlying linear system closer than the large distortions in the FRFs

obtained from the constant-force sine tests would imply.

For this type of non-linearity it is found that using the underlying linear

parameters will provide an adequate impulse response prediction and, once

these parameters have been obtained, the implication is that a linear model can

be used in any future analysis where the primary interest is in the transient

response. Clearly, this model would not provide good FRF predictions if the

requirement was the steady state response of the structure as the large

resonance frequency changes due to the increasing response amplitudes at

resonance would not be exhibited.

Linear models can be obtained from analysis of the data produced by any of the

excitation methods, but the most reliable model is evaluated from a

constant-force sine test. Here, included in the range of modal parameters that
, can be calculated from a single FRF, is a set that are very close to the

underlying linear parameters. This set can be calculated using

reciprocal-of-receptance analysis on data points above resonance (or below

resonance for softening cubic stiffness). There is very little variation in this

parameter set with excitation force level.

Random testing conveniently, in this case, produces a linear model from which a

set of linear parameters can be estimated. The variation in response with

different force levels is not as great as in sine testing techniques and the

calculated modal parameters can be used as a first approximation to the linear

184

.I 1 ‘, _  .i‘ ‘__. __ .



system. These parameters would probably be slightly different if the test was

performed with a second random signal, but will generate adequate transient

response predictions - provided the conditions on random testing for transient

response prediction are satisfied; that is, there must be sufficient data points

around resonance to determine the damping accurately.

Once cubic stiffness is identified in the system, the recommended procedure is

to calculate the underlying linear parameters using reciprocal-of-receptance

analysis on data from a sine test. The parameters thus produced can then be

used in a linear model for transient response prediction using the ‘Fourier

transform method’ (as discussed in chapter 4). This corresponds to route p in

fig (6.1), with the reciprocal-of-receptance analysis method used so that the

underlying linear parameters can be evaluated.

Examples of transient response prediction for a system with hardening cubic

stiffness using the recommended procedure are shown in figs (6.2) & (6.3).

The system has the following properties:-

COO= 13.77 Hz

p = 200 l/m2

c = 0.00522

Modal constant = 1.0 l/Kg

From reciprocal-of-receptance analysis on data from a sine test, using data

points above resonance, the calculated parameters are (from table (5.2)):-

COO= 13.79 Hz

c = 0.005025

Modal constant = 0.965 l/Kg

These parameters are then used in a linear FRF model and transformed to the

time domain to provide a prediction of the IRF, calculated for four initial

conditions:-

185



0 i(O) = 1.0 m/s
ii) x(0) = 2.0 m/s

iii) x(0) = 5.0 m/s

iv) x(O) = 10.0 m/s

In the first example (fig (6.2a)) no difference is evident between the exact and

the predicted response from the full comparison, but the expanded view (fig

(6.2b)) high-lights the slight change in the period of oscillation that is

present. The results were similar for x(0)=2.0 m/s. For x(0)=5.0 m/s and

x(0)=10.0 m/s cases the discrepancies between the exact and the predicted

responses increase, with the initial predicted amplitude now being larger than

the exact (fig (6.3)). However, the decay rate of the ‘exact’ solution is not

constant, and the response amplitudes converge as the damping in the ‘exact’

response converges with the underlying linear damping parameter. This

apparently non-linear damping effect in the IRF was indicated in the imaginary

part of the reciprocal-of-receptance plots of a system subjected to an impulse

(fig (5.21)).

In a system with softening cubic stiffness, and with large initial displacement,

the true transient response will be greater than the predicted response using a

linear model. Although the decay rate will initially be greater than exponential,

the two amplitudes will converge at about the same stage as for the hardening

cubic stiffness. This means that for most of the response the predicted

amplitude would be lower than the exact response.

Using the recommended route (p from fig (6.1)) the predictions are quite good

for low effective non-linearities with variations between exact and predicted

responses increasing with non-linear effect. Initially, it is just the frequency

that changes as the amplitude decreases, but with the higher responses, the

amplitudes differ also. For this example the predicted response is greater than

the exact response, but for a system with softening cubic stiffness the predicted

response may be less than the exact response and the initial conditions should be

examined to ensure a valid prediction.
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6.3 Transient response prediction for a system with

backlash
With a backlash characteristic, the presence of a stiffness-type non-linearity

is evident from both impulse tests and from constant force sine tests, viewed in

the frequency domain plots or the time domain plots. Some of the characteristics

from both tests are similar to those from a system with cubic stiffness but

there are sufficient differences to be able to differentiate the two types of

non-linearity if not from a single plot then from the trends exhibited from

comparing tests with different force conditions.

There are three categories of the transient response:-

(i) where the response is similar to the system without a gap (fig (6.4)).

(ii) where the response is greater than the linear system (fig (6Sa)).

(iii) a region between

linear system and the

system (fig (6.6)).

the two where part of the response approximates to the

tail end of the response is greater than that for the linear

The actual category of the response is determined by the ratio of the initial

displacement amplitude to the gap dimension and for any response parameter -

displacement velocity or acceleration - the traces fall into the same category. If

the gap is less than about 1% of the maximum displacement, then using the

linear parameters from the system would provide a good approximation to the

transient response. If the gap is greater than about 10% of the maximum

displacement, then using the linear parameters would grossly underestimate the

response.

The problem with this type of non-linearity is in evaluating the linear

parameters. As the non-linear effect is reduced at high amplitudes, using a sine

test with as high a force level as possible could approximate to the linear

system, and if data points close to resonance are used for the analysis then good

approximations will be obtained to the linear parameters. It is interesting to

note that from a constant-force sine test the average modal constant and damping

loss factor from two separate reciprocal-of-receptance analyses are very close

to the linear system as shown in table (6.1). These parameters are evaluated
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by first using data points above resonance, then data points below. The two sets

of modal parameters produced are then averaged, and this has been performed

using varying force levels and systems with different gap dimensions.

Transient response predictions using the average values from this table were

calculated and compared with the exact solution when the initial response is

over one hundred times the gap dimension. In all cases the prediction was good

for the maximum amplitudes, and for the first few cycles the responses

overlayed. As the response level decreases, there is a slight change in the

period of oscillation. Fig (6.4) shows an example of these transient response

predictions using route p from fig (6.1) with the following properties

calculated from the average of the two reciprocal-of-receptance analyses

(system 1 from table (6.1)).

6.p 13.7595 Hz

c = 0.01047

Modal constant = 0.10013 l/Kg

For gap dimensions greater than about 10% of the maximum displacement, the

true responses are larger than those predicted by the linear system throughout

the full time-history, as shown in fig (6Sa).  This is for system 1 from table

(6.1) with an initial displacement of about 10 times the gap dimension. In this

case, the linear model does not provide a good estimation and a non-linear model

(route (BDE2) from fig (6.1)) must be recommended. The reason for the high

response of this system is because of the zero damping in the gap, so the

effective damping of the system is reduced as the ratio of time spent in the gap to

time spent in contact with the spring increases. One possible approach to

developing a model (Ml) to provide a reasonable approximation to the transient

response of a system with backlash is to find a relationship between an apparent

damping of the system and the system parameters and excitation conditions.

This could then be used in a linear model for a transient reponse prediction. The

example in fig (6Sa) is calculated a second time using an apparent viscous

damping factor of 0.007 and the result is shown in fig (6.5b). Whilst the

maximum responses are still not predicted accurately, the general response
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prediction is better than using the linear system parameters. The alternative is

to develop a full non-linear model (M2) that includes a type of ‘dead zone’

where the mass continues to oscillate but with an increasing period. Either of

these models (Ml or M2) require knowledge of the system parameters

including the gap size which can be calculated using known offsets on the system.

It is interesting to note that it is the resulting damping non-linearity in this

particular backlash element (no damping within the gap) that causes most of the

errors in the transient response prediction.

Response predictions when the displacement-to-gap ratio is greater than 1%

and less than 10% could take either route - using the underlying linear system

parameters (route p from fig (6.1)) or a non-linear model (route (BDE2)) -

depending on the requirements of the results. In general, for responses in this

category, the maximum amplitude of the first peak is estimated quite well using

the linear parameters obtained from averaging the results from two reciprocal

-of-receptance analyses. Examples using system 1 from table (6.1) are shown

in fig (6.6) where the gap dimension is about 5% of the initial displacement. In

this example the prediction is good for the first four cycles. The larger the

initial response of the system, the more cycles of oscillation are predicted

accurately using the linear model: if only the peak response is of interest the

the linear model will provide a good estimation. However, depending on the time

length of interest in the signal, a non-linear model may have to be used. In all

cases the extended vibration in the gap will be of interest if it is significant in

comparison with the maximum amplitudes and fatigue is of interest.

For this backlash non-linearity two different routes are recommended,

depending on the application and the amplitude of response. In all cases, the

non-linearity first needs to be identified and a suitable test performed to

classify it as backlash. When the response is large in comparison with the gap,

or initial values only are of interest, then, if the linear system parameters can

be evaluated, a linear model can be used with those parameters (route p from

fig (6.1)). In the other cases all the system parameters need to be calculated

including the gap, and a non-linear model developed (route (BDE2)) that will

also be dependent on the initial amplitude of response.

189

t ,



6.4 Transient reponse prediction for a system with

bi-linear stiffness
This non-linearity is most distinct in the exact IRF where the two different

frequencies and amplitudes are clearly evident (fig (6.7)). However, from the

frequency domain displays there are no indications of non-linearity present in

the system as all displays and analyses indicate the system to be linear. There

is a suggestion of bi-linear stiffness in the FRFs as all of the ‘modes’ are found

at harmonics of the fundamental frequency, and if the FRF from a sine test is

transformed, then the resulting IRF will have a small non-causal component

(fig (5.33)). Applying an offset to the system and repeating the modal test will

alter the resonance frequencies and, if the offset is known, the change in

frequencies can be used to identify the ratio of the stiffnesses. Observing the

response signal from a sine test would indicate the presence of this type of

non-linearity as the response will be different above and below the equilibrium

position. It may be necessary to identify the origin before the start of the test

as the response may resemble a displaced sine wave. The ratio of the two

stiffnesses can also be evaluated from inspection of the IRF, but such an

identification of the two stiffness parameters by examining the time response -

either the time history or the reponse signal - may not be possible for a

multi-degree-of-freedom system as the response could be too complex to

identify any asymmetry about the time axis.

If the two stiffnesses are known, it is fairly easy to set up the time domain

model to predict the transient response of the bi-linear system as shown in fig

(6.7). However, a frequency domain model that predicts a non-symmetric

time-history is not available, and the transformed IRF would need to be

examined in detail to determine if this non-linear model can be developed.

This type of non-linearity is quite common, and although the steady-state model

is effectively linear in behaviour, the impulse response is dominated by the

difference in the two spring stiffnesses. It is recommended that in this case the

non-linearity should first be identified (which may be the hardest part), then

the ratio of the two springs evaluated by inspecting the free decay from the
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element or the response signal from a sine test. A non-linear time domain

model should then be used, although the model consists of a pair of linear

equations for this particular element. If it is not possible to identify the spring

ratio, a conservative solution would be provided by using the value of the softer

spring, since that produces the largest response in a linear model.
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6.5 Transient response prediction for a system with

friction
The damping-type non-linearity provided by coulomb friction is easily

identified from almost all the displays of either impulse tests or sine tests. The

Bode plot from a sine test is the hardest to interpret correctly, as a single plot

may be classified as a heavily damped linear mode. From constant-force sine

tests it is possible to evaluate the values of viscous and coulomb damping using

reciprocal-of-receptance analysis by recording two values of the imaginary

part and using a simple relationship derived from the linearised equation of

motion. The FRF response derived from an impulse test also appears to have

potential to predict the two values of damping, again from the reciprocal-of-

receptance plot. There are clear trends in the imaginary part of the reciprocal

-of-receptance that depend on the amount of viscous and coulomb damping

present in the system.

When the force level in a constant-force sine test is high in comparison with

the friction force, the results may indicate a linear behaviour, and analysis can

be performed on the data to obtain a set of linear parameters with a single

damping value. In this case, the linear parameters thus determined would have

a damping value that is higher than the underlying system but which combines

the effect of the coulomb damping with the linear viscous damping. Also,

reciprocal-of-receptance analysis on data from a sine test will yield

parameters close to those of the linear system, with a single damping factor

combining the viscous damping and the effective coulomb damping for that test.

If the initial velocity of the transient is’of the same order as the velocity around

resonance of the sine test, then this linear model (route cx from fig (6.1)) can

be used with the ‘Fourier transform method’ and a result obtained in this way is

shown in fig (6.8). This calculation relates to the system in table (5.4) using

the parameters from the reciprocal-of-receptance analysis. However, if the

initial velocity of the transient is much higher than the response velocity in the

vicinity of resonance in the sine test, then the effective damping is

correspondingly lower so that the predicted curve decays away too quickly, as is

shown in fig (6.9a) where the initial velocity is twice that in fig (6.8). If the

initial velocity is less than the velocity around resonance in the sine test, then
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the opposite occurs as shown in fig (6.9b) but in this case the prediction is a

conservative estimate. In the extreme, using only the viscous damping in the

system for the model would always provide a conservative estimate to the

transient response.

The alternative approach is to develop a non-linear model that takes account of

both the viscous and the coulomb damping elemenfs and the initial conditions. A

non-linear model has been developed for friction (assuming a constant slipping

friction force) by examining the time histories of several systems under

different impulse conditions (ref [135]),  and the results are summarised in

Appendix 7. This non-linear model model requires the modal constant, the

resonant frequency (which does not change with friction), the viscous damping

component and the coulomb damping component of the system, all of which can

be calculated using an adapted version of the reciprocal-of-receptance analysis

on constant-force sine test data (Appendix 6). Also required is the response

level at the start of the free decay, and this whole procedure corresponds to

route y in fig (6.1). This non-linear frequency domain model does not

represent the steady-state solution, and is only suited for transforming to the

time-domain for transient response prediction. Examples using the non-linear

model are shown in fig (6.10) and correspond to the same initial conditions as

in fig (6.9). The predictions are clearly an improvement over those using the

linear parameters evaluated with standard analysis techniques.

For this non-linearity it is recommended that after identifying friction in the

system, the amount of viscous and coulomb damping present then be calculated

using reciprocal-of-receptance FRF plots. Then, the non-linear model (route

y) needs to be used for transient reponse prediction as the limitations on the

validity of using a linear model are such that it eliminates most applications for

the simpler prediction method (route (BD2El)), although a conservative

prediction can always be obtained by using the underlying linear system

parameters with the ‘Fourier transform method’ (route p).

193



6.6 Transient response predict ion for an element

with quadratic viscous damping
For most displays in the frequency domain or the time domain from either the

constant-force sine test or an impulse test, the trends for quadratic viscous

damping are opposite to those for friction: the difference being that the

non-linearity increases with increasing force for systems with quadratic

viscous damping. It is possible to distinguish between the viscous damping and

the quadratic viscous damping terms using a similar technique to that used for

friction on the reciprocal-of- receptance data.

For this non-linearity the initial free decay is more rapid than for the linear

system, and so using a linear model with only the viscous damping in the system

will always overestimate the maximum response in the displacement

time-history as shown in fig (6.11). The system for this example is:-

co,= 13.77 Hz

q =1001/m

c = 0.00522

Modal constant = 1 .O l/Kg

using initial velocities of:-

i) X(O) = 1 .OO m/s

ii) X(O) = 0.10 m/s

The acceleration response may initially be greater than for the linear system,

as shown in fig (6.12), and so if this response was of major interest, using the

linear model might not be appropriate. When the response is required as

acceleration, or a more accurate response is required, then a non-linear model

would be recommended (route (BDE2) from fig (6.1)). It is envisaged that this

would be developed in the same fashion as the model for transient response of a

system with friction, accounting for the two types of damping and the initial

conditions before free decay.
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If quadratic viscous damping has been identified in a system, it is recommended

that the linear system parameters should be evaluated when predicting

displacement and velocity time-histories: the linear model using those system

parameters will generate conservative estimates of the response under all

initial conditions. It is only necessary to use a non-linear model when a more

accurate description of the system is required or when acceleration is the

response parameter of interest.
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6.7 Discussion
It is clear that when non-linearities are present in a system the prediction of

the transient response requires careful consideration, as using the first set of

parameters to be evaluated from a model test in a linear model with the ‘Fourier

transform method’ will not necessarily generate a suitable response prediction.

The first step will always be to identify the type of non-linearity as this

determines the approach to further analysis for transient response. In some

cases a linear model may be used for that particular transient response

analysis. This is the simplest approach and is easily adapted for further use -

eg coupling with other structures. However, the types of non-linearity that

this approach can be used on with confidence are limited; the conditions of use in

each case, and which set of experimentally determined linear parameters should

be used in the model, place severe restrictions on this approach.

The use of a non-linear model is found to be necessary in most cases and

applications. These models may vary from an accurate description of the system

to specific linearised models which provide conservative estimates suitable for

some requirements. It is found that the parameters that are required for

non-linear model are generally available from measured FRF data using

specifically-adapted reciprocal-of-receptance analysis methods (the variation

on the reciprocal-of-receptance technique depends on the non-linearity

involved). The solution routes are summarised in fig (6.13) starting with an

unknown system from which a transient response prediction is required. The

complex non-linear models, whilst providing good approximations to, the

transient response, are best used only where absolutely necessary as they

increase the calculation times and can be difficult to manipulate.

A non-linear model has been developed for a friction element, but each such

type of non-linearity needs individual treatment and this has not been

undertaken for other cases. Also, the development of analysis routines to

evaluate non-linear parameters once the non-linearity has been identified (for

systems other than those with friction or quadratic viscous damping) needs to

be addressed.
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7  R E S P O N S E  A N A L Y S I S  O F  M D O F  S Y S T E M S  W I T H  A

NON-LINEAR ELEMENT

7 .0  In t roduct ion

The response of a single-degree-of-freedom (SDOF) system with a non-linear

element has been shown to depend on the type and level of excitation. When

different analysis techniques are applied to the frequency response functions

(FRFs) measured in different ways, a wide range of modal parameters are

obtained. The variation in the displays (in either the frequency or the time

domain) can be used to identify, and sometimes to quantify, the non-linearity in

the system. The approach for transient response prediction of the non-linear

element has also been discussed in chapter 6 and different prediction routes

recommended for specific non-linearities, depending on the eventual application

of the results. It is the aim of this chapter to consider the applicability of the

techniques for identifying and quantifying non-linearity in a SDOF element to

identifying and quantifying non-linearity in a multi-degree-of-freedom

(MDOF) system, and also for predicting the transient response of that type of

system.

A linear model with a single non-linear element ‘added’ on is used in this

chapter to examine the effect of non-linear elements on an MDOF system. This

non-linear system is then excited using constant-force sine tests and the

Nyquist and reciprocal-of-receptance analyses performed to study the extent of

the effect of different non-linear elements on the remaining linear system. The

responses are also inspected to determine if the trends that that have been

identified in SDOF non-linear elements are also applicable to MDOF systems.

The transient responses of the systems are then compared with the linear

response for various initial conditions to examine the effect of the non-linear

element on the time-history of an MDOF system.

The chapter begins with a description of the system used for the illustrations

followed by a brief summary of existing methods for the transient response

prediction of non-linear MDOF structures. The basic system is then analysed in

the frequency domain with various non-linear elements in place and finally the

transient responses are examined.
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7.1 System definition
In many practical systems the non-linearity is often limited to one part of the

structure, such as a joint, and is therefore concentrated in one element of the

spatial model. The non-linearity will, however, affect the response of all the

structure, thereby classifying the whole structure as non-linear. It is found in

practice that the effect of a non-linearity is usually most noticeable in the

low-frequency resonances where the response amplitude is generally largest.

As non-linearities tend to be concentrated in one element of the real structure,

the system that is to be used for theoretical analysis in this chapter is, in terms

of the spatial model, an MDOF linear system with one non-linear element. This

is shown below where either knl or cnI can be non-linear

I system .....!I.. .... i
:*-:......L..: . ..+_“~ :--: *:...:. .% 2. .. f. .: ..

........................... . ,

This non-linear system will be used to initiate study into the effect of a single

non-linear element coupled to a linear system and will explore ways of

analysing the resulting non-linear system, with particular attention on the use

of the evaluated parameters for the transient response prediction of such a

system. For the specific examples in this chapter, the linear system consists of

two masses connected by a single linear spring and damper as shown below.

Linear system
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7.2 Application of prediction techniques for transient

response of MDOF non-linear systems
The techniques that exist and are adapted for non-linear transient response

prediction all require knowledge of the basic system parameters - including the

non-linearity _ in either spatial or modal form. The methods are all mentioned

in chapter 2 and are briefly recalled in this section. The solution route that

will be used as the reference transient response for comparison later in this

chapter is the direct solution of the equations of motion. This requires the

spatial model of the system which, as stated previously, is often difficult to

derive from experimental data even for a simple linear component, and when

non-linear elements are included this solution route is totally inappropriate.

However, for our examples the spatial model is known and provides a suitable

reference solution as the number of degrees-of-freedom are small.

The Newmark-P  method (eg ref [9]) has received attention and is adapted for

use with non-linear systems. This is a method of solving the equations of

motion, but one in. which the modal parameters of the system can be used in

place of the spatial properties. Again, the non-linearity needs to be quantified -

which is possible for damping type non-linearities, but difficult for stiffness

type non-linearities - and for large numbers of degrees of freedom the

equations become difficult to manipulate.

The hybrid method by Lyons et al [14] combines the necessity for a

time-marching solution for the non-linear systems with the more efficient

linear transform technique for transient response prediction. This hybrid

technique has been tested to find where the non-linearities are most evident and

concludes that they are only noticeable around the low frequency modes. Other

work (eg ref [12]) also suggests that only the first few modes affect the

displacement response to a transient - in many cases only the first three modes

- in which case the second stage of this hybrid method is unnecessary,

particularly as the recommendation is that the first ten modes are used to

ensure that all the non-linear effects are accounted for. If the response

required is displacement, and the non-linear effects can be quantified, then it is

possible to use any of the methods that have beed adapted for non-linear systems
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representing the structure by the first few modes only. With

acceleration response, the number of modes required to describe

adequately for a transient excitation increases, thereby making the

equations large and any manipulation or solution inefficient

consuming.

velocity or

the system

numbers of

and time-

In summary, there are a limited number of techniques available for the

transient response prediction of non-linear systems. Each method requires

information on the system parameters, which necessitates the ability to

evaluate these parameters from a non-linear component. The assumption that

these parameters are available using any of the linear analysis methods on a

non-linear structure is not necessarily valid.
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7.3 Modal analysis, of non-linear systems
The MDOF system described in section 7.1 has been analysed for the five

different types of non-linearity previously discussed, and for various forcing

levels. The physical description of each system is given in table (7.1),  and the

results of analyses of data from simulated constant-force sine tests are

presented in tables (7.2) to (7.9). When the non-linearity is evident, the

trends that emerge in all systems are the same as for the equivalent SDOF

non-linear element discussed in chapter 6. In most examples, the second mode

is found to be linear, and only at high effective non-linearities does this mode

begin to appear non-linear. Often, the system is more non-linear when the

excitation is applied to mass 2, and reciprocity does not hold for the non-linear

examples - ie FRF (2,l) is not the same as FRF (1,2).  Examples of the Bode

plot sets are shown in figs (7.1) to (7.6), including the linear system and one

example from each non-linear element.

For the example with cubic stiffness (fig (7.2), the second mode has not been

affected by the non-linearity at the chosen forcing levels, but the first

resonance could be identified as a SDOF cubic stiffness element. The reciprocal-

of-receptance analysis is performed using data above that resonance but, while

the results show less variation than those from a Nyquist analysis, some of the

parameters are not as close to the linear system as was obtained for the SDOF

elements - a difference mainly confined to those cases with very high

non-linear effects.

With the backlash examples the non-linearity is evident in both resonances (fig

(7.3)). The trends are the same in the two resonances as seen in the SDOF

non-linear element study. For the reciprocal-of-receptance analysis, the

average parameters from the above and below resonance regions have been

calculated for both resonances when non-linearity is apparent. The modal

parameters obtained using this method are more consistently close to the linear

system than are those from Nyquist analysis, but the resonance frequency

estimated from the average is usually low.
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The results for the bi-linear stiffness in these examples are

interesting (fig (7.4)). There are, as expected, two modes with

particularly

frequencies

slightly shifted from those of the original linear system (26.95Hz and 66.78Hz

as compared with the linear system natural frequencies of 24.45Hz and

63.41Hz). but there is also a ‘harmonic’ natural frequency showing through

near 54Hz. For FRFs (1,l) (2,i) and (1,2),  this is ony a single point

disturbance in the Bode plot, and would probably be ignored in analysis.

However, for FRF (2,2),  the corresponding response is quite large and a modal

analysis performed on the full data generated the results shown in table (7.10).

A small disturbance of this nature is often seen in Bode plots from

measurements and it is recommended to check if the ‘resonant’ frequency is a

harmonic component of any of the more dominant modes to consider the

possibility that the system has a bi-linear stiffness characteristic.

For the friction (fig (7.5)) and quadratic viscous damping (fig (7.6))

examples, only the first resonance appears to be affected by the non-linearity.

With both types of non-linearity, the trends in the Nyquist circle, 3-D damping

plots and the reciprocal-of-receptance displays are very similar to those from

the corresponding SDOF non-linear elements.

For the examples presented in this section, the effect of the single non-linear

element is usually only obvious in the first resonance of the system, unless the

effective non-linearity is high when the effect can also be seen in the second

resonance. This is essentially as expected due to the larger displacements of the

lower frequency resonances. The results from the second mode when there is no

indication of non-linearity present are similar to those from the linear system,

indicating that analysing that resonance as a linear mode for that particular

excitation condition is valid. This will aid system modelling if the FRF can

sensibly be analysed as linear with ‘non-linear modes’ rather than having to

undertake an analysis of the full response as a non-linear system. One problem

that emerged, and was particularly noticeable in FRF (2,2),  is when the modes

that are effectively linear are noticeably influenced by the ‘non-linear’ modes.

For the linear FRF (2,2),  analysis by iterations on the circle-fit method is

necessary in order to remove the effects of mode 1 from the resonance of mode

2. In the non-linear examples it is assumed that, as the Nyquist plot for mode 2
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is similar to that plot from the linear system, the interaction of ‘non-linear’

mode 1 on mode 2 is ‘linear’. However, a problem now exists in that clearly

mode 2 cannot be sensibly analysed without the effects of ‘non-linear’ mode 1

being first removed, but this requires the interaction to be identified. This

aspect of modal analysis of non-linear systems is an area of work that requires

further attention.

In addition to the identification of non-linearities in MDOF non-linear systems,

the location of non-linear elements within a structure using experimental

modal analysis is an area that also requires exploring. There are several

possibilities, but as an individual linear element cannot necessarily be

quantified from modal analysis - and only modal parameters are available - the

concept of ‘modal non-linearity’ needs exploring. Returning to the non-linear

systems analysed in this section, the effect of the non-linear element is more

noticeable in the first resonance than in the second, so in these examples the

‘modal non-linearity’ would be greater for the lower frequency resonance than

for the higher resonance.

If a component that is to be coupled to others to form a complete system model

has been identified as non-linear, there will be concern about the validity of

continuing with a linear coupling technique. This is one application area of

modal data in which the effect that non-linear components have on the results

has to be examined in detail. There is the possibility of using an iterative

technique for including the non-linearity which effectively uses non-linear

amplitude dependent frequency or time domain models. For this application, the

non-linearity needs to be quantified and the response dependence of the

non-linearity determined, and this returns to the problem of accurately

analysing non-linear data for the required parameters.
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7.4 Transient response of non-linear systems via the

frequency domain
Once the problems of modal analysis of a MDOF non-linear system have been

addressed, and a set of modal parameters obtained, the transient response

prediction via the frequency domain of the same system can be considered. In

this section the validity of using a linear model for transient response

prediction of a non-linear system is assessed. As for the SDOF elements

discussed in chapter 6, a non-linear model is still required for some

applications and those non-linear models need developing such that they now

also account for the influence of the other elements in the system.

For cubic stiffness (figs (7.7) to (7.9)) the linear model clearly provides a

good prediction for the smaller initial velocity (fig (7.7)) with the

discrepancies in amplitude increasing with increasing non-linear effects as

seen in figs (7.8) & (7.9) where the non-linear effects are increased in the

higher figure numbers. For most of the trace, the linear prediction provides a

conservative estimate. However, as can be seen in the expanded view of fig

(7.9), the prediction does on two occasions underestimate the response of minor

maxima and minima. It is also anticipated that for softening cubic stiffness the

linear prediction will underestimate the response.

Backlash (fig (7.10) to (7.12)) shows a satisfactory prediction using the

linear system for up to 2% gap-to-initial-displacement ratio. The response

for a ratio value of 3.5% is shown in fig (7.13a) and demonstrates an irregular

response when the mass remains almost totally within the gap, although the

trend of an ever-increasing period is similar to that from the SDOF backlash

element. The transient response prediction for the initial response of this

example is shown in fig (7.13b).

The response for a system with the bi-linear stiffness element is shown in fig

(7.14). The linear responses using the softer spring, the stiffer spring, and

the average spring stiffness are shown in figs (7.15) to (7.17) and should be

compared with the exact response shown in fig (7.14). To ensure that the

maximum values are not underestimated the softer spring should be used, but
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the final decay is better represented be the stiffer linear system. The response

from the average spring stiffness is approximately the response that would be

estimateJQJ sing parameters evaluated from a modal test on a system with

bi-linear stiffness.

In both of the damping type non-linearities the linear system overestimates the

response and thus provides a conservative estimate, but not necessarily a good

prediction. For friction (figs (7.18) to (7.20)), the difference between the

predicted and the exact responses is more noticeable later in the response, and

in the examples shown the initial responses are very similar. With quadratic

viscous damping, figs (7.21) & (7.22),  the overestimation in the first part of

the response is significant, and the amplitudes of the two time-histories

converge at later times. As damping type non-linearities increase the overall

damping in a system, the use of the underlying linear parameters to estimate a

transient response prediction will produce a conservative estimate for any

damping type non-linearity.
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7.5 Discussion

Existing techniques for transient response prediction of non-linear systems

require information on the system parameters. This involves evaluating the

parameters from experimental tests when details of the structure are not

available as a theoretical model. From the examples discussed in this chapter

and other undocumented experimental modal analysis on non-linear structures,

the initial indications are that trends in the data from a MDOF non-linear

system correspond to the SDOF non-linear element, facilitating non-linear

identification in MDOF systems. Also, any modes that appear to be linear can be

analysed as such, but it must be remembered that as the whole structure is

non-linear and if the effective non-linearity is increased then the non-linear

effect may also be apparent those modes, thereby invalidating the initial

analysis. When a non-linearity - eg friction - is quantified from the analysis,

just as the viscous damping term evaluated is a modal quantity, then the

non-linearity is not necessarily represented as a spatial quantity and will

generally be the modal contribution of that non-linearity. This aspect of ‘modal

non-linearity’ is a topic that requires further research.

One other area of modal analysis for MDOF non-linear systems that requires

further attention is the influence of one mode on another. If a structure has two

coupled modes, and the dominant mode appears to be linear, then its effects can

be removed from the ‘non-linear mode’. However, it is not necessarily valid to

assume that the effect of the linear mode on the ‘non-linear’ mode is a linear

relationship - the resulting change in response amplitude of the ‘non-linear

mode‘ due to the effect of ‘linear modes’ will result in a change in the effective

non-linearity. When the situation is reversed, and the ‘non-linear mode’ is

dominant, it appears that the effects of the ‘non-linear mode’ on the linear mode

have a ‘linear’ relationship - or distortions would occur making both modes

appear non-linear - but the influence of different types of ‘non-linear modes’

on the linear mode has yet to be determined. This problem will be extended

when the coupling becomes stronger as the modes move closer together in

frequency. In these cases, a situation is easily envisaged when both modes are

clearly non-linear, and the effect of one mode on the other may also now be

non-linear. The problem of decoupling two ‘non-linear modes’ to be able to
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analyse each one separately with SDOF non-linear identification techniques,

needs to be examined. It may be that this linear approach of separating the

resonances is not applicable, and where there are two strongly coupled

‘non-linear modes’ the approach may be to analyse that section of the FRF as a

whole.

Using the linear parameters of the system for transient response prediction of a

non-linear system via the frequency domain has been examined for accuracy and

applicability. For systems with only damping-type non-linearities, the

underlying linear system always overestimates the response and provides an

easy-to-use conservative estimate. This is particularly useful for friction and

quadratic viscous damping where the viscous damping term can be isolated from

the damping non-linearity by using a reciprocal-of-receptance type analysis

on measured FRF data. Stiffness-type non-linearities affect the natural

frequency, and hence the phase relationship in MDOF systems. In these cases, it

is possible that the time-history at a specific point in time has two modes in

phase with each other, whilst the linear prediction for the same point in time

has the modes out of phase; this would result in a gross underestimation of the

response from the linear model. In the examples shown, the linear predictions

for cubic stiffness and backlash are reasonable, and it is envisaged that serious

underestimation of maximum responses wil l  only occur with large

displacements or large non-linear elements in a system. For the response not

to be underestimated in a system with bi-linear stiffness, the softer of the two

springs should be used in the linear model. Any non-linear model - in either

the frequency or the time domain - needs developing for MDOF systems with

possibly an iterative process to account for the effects of the other elements in

the system. It may be necessary to develop a non-linear model when a

conservative estimate is not sufficient and a good transient response prediction

is required.
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Non-linearity
(Non-linearity and
forcing amplitude

Natural Frequency

Reciprocal-of-

Viscous 200

Table 7.2 Parameters from Mode 1 point 1,l
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Non-linearity

Table 7.3 Parameters from Mode 2 point 1.1
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Non-linearity Analysis Natural Frequency Modal Constant Damping Loss Phase
Factor

Linear

Reciprocal-of-
Receotance 24.173 I 0.50873 0.04602 0.00

Reciprocal-of-
Receptance 26.961 0.39933 0.02677 0.00

I
3i-linear 2 Nyquist )

Reciprocal-of-)(Not  measured - the same as Bi-linea.: 1)
Receptance )

kiction 1 Nyquist 24.450 0.42412 0.02664 +, 18

Reciprocal-of-

kiction 5

luadratic
'iscous 100

badratic
'iscous 200

Nyquist 24.415 0.55377 0.06133 +3.66

Reciprocal-of-Receptance 24 446 0.44461 0.05574 0.00

Table 7.4 Parameters frOm?Iode 1 Point I.2
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Receptance '
Friction 1 Nyquist 63.430 0.36188 0.07427 +176.55

Reciprocal-of- 63 663 0.45723 0.08616 +180.00
Receptance

'riction 2 Nyquist 63.400 0.40733 0.06994 +179.62

Reciprocal-of- 63 633 0.45632 0.07598 +180.00Receptance

'riction 5

F

F

F
v

Q
V

L

Nyquist 1 I I I
ReCiDrOCd-Of-,

(Not measured - as inear)

Receptance '
$adratic
iscous 100

Nyquist 63.440 0.48012 0.07340 +178 92

Reciprocal-of-
Receptance

63 6,g 0.45545 0.07316 +180.00

luadracic
iscous 200

Nyquist 63.400 0.50135 0.07943 179.51

Reciprocal-of-Receptance 63 633 0.45585 0.07760 +180.00

Reciprocal-of- 63.622 cl.45187 0.06708 +180.00Receptance
(pts above)

Cubic 100 Nyquist 63.495 0.45146 0.06564 +17A.94

Reciprocal-of- 63.642 0.45088 0.06685 +180.00Receptance
(pts above)

Backlash 1 Nyquist 62.590 0.42005 0.05639 +153.49

Reciurocal-of-

Backlash 5

Linear

Cubic 50

Bi-linear 1

Recebtance
above
below
average

62.579 0.23007 0.03285 +180.00
62.593 0.61787 0.08819 +180.00
62.586 0.42397 0.06052 +180.00

Nyquist 62.100 0.23707 0.03010 +84.48

Reciprocal-of-
Receptance

above (Too much distorcior)
below 61.499 0.65712 0.09159 +180.00
average

Nyquist 66.790 0.40941 0.06234 -178.40

Reciprocal-of- 66 gg6 0.41383 0.06319 +180.00
Receptance I

Bi-linear 2 Nyquist )I I

Reciorocal-of!  ( Not measured - as
Y-linear ')

Table 7.5 Parameters from Mode 2 point 1,2
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Non-linearity

Linear

Cubic 50

Cubic 75

Cubic 100

Backlash 1

Backlash 5

Bi-linear 1

Bi-linear 2

Friction 1

Friction 2

Friction 5

badratic
Iiscous 100

juadratic
Iiscous 200

A n a l y s i s Natural Frequency 1 Nodal Constant 1 “,l;;frp Loss 1 Phase

(pts above)
Nyquist 24.395 0.40797 0.02252 25 77

Reciprocal-of-
Receptance

above
below

24.404 0.20074 0.01556
24.370 0.57506 0.03196

average 24.387 0.42790 0.02376 0.00
Nyquist 24.340 0.32739 0.01787 54.27

Reciprocal-of-
Receptance

above
below

24.391 0.10276 0.00560
24.274 0.68529 0.03787

Reciprocal-of-

Table 7.6 Parameters from Mode 1 point 2.1
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Non- l inear i ty

Linear

Cubic 50

Cubic 75

Cubic 100

Backlash 1

Backlash 5

B i - l i n e a r  1

Bi- l inear  2

Frict ion 1

Frict ion 2

Friction 5

Juadratic
Jiscous  100

juadratic
Jiscous  200

Analysis Natural Frequency / Modal Constant / hpd;g  Loss 1 Phase

below
average

Nyquist 62.400 0.44476 0.05770 +144.50
I

R e c i p r o c a l - o f -
Receptanceabove 62.029 0.33624 0.04751 +180.00

below 62.102 0.60125 0.06556 +180.00
average 62.065 0.46874 0.06653 +180.00

Nyquist 66.785 0.40412 0.06190 -179.59

Reciprocal- of - 66.975 0.41616 0.06367 +180.00
Receptance
Nyquis t 66.785 0.40413 0.06190 -179.59

R e c i p r o c a l - o f - 66.975 0.41616 0.06375 +180.00
Receptance
Nyquist 63.420 0.39885 0.07105 +179.77

R e c i p r o c a l - o f - 63.636 0.45249 0.07712 +180.00
Receptance !
iyquis t 63.455 1 0.42522 1 0.06827 1+178.14

I I I

leceptance

Table 7 .7  Parameters  f rom Mode  2 ,  point  2.1
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Non-linearity

Linear

Cubic 50

Cubic 75

Cubic 100

Sacklash  I

Backlash 5

Bi-linear 1

Bi-linear 2

Friction  1

Friction 2

Friction 5

Zjuadratic
Viscous 100

Juadratic
'iscous 200 I

Reciprocal-of- 24.796 0.67152 0.02787 0.00
ReceptanCe
(pts above)
Nyquist 24.;95 0.71221 0.02416 -11.03

Reciprocal-of-
Recepcance

above 24.417 I 0.56235 I 0.01916 I 0.00
below 24.397 0.86769 0.02945 0.00
avera e 24.407 0.71502 0.02430 0.00

Nyquist 24.375 0.67067 0.02262 -28.22

Reciprocal-of-

1

1

I

1

1

1

I

1

1

J

I

1

I

F
A

Reciprocal-of- 24.451 0.73165 0.02608 0.00
Receptance

!Iyquist )
Reciprocal-of! (Not measured - as linear)
Receptance 1
Yyquist 24.445 0.84949 0.04687 +1.51

Reciprocal-of-. 24.455 0.73150 0.04413 0.00
Receptance
qyquist 24.425 0.91387 0.06137 +3.49

:eciprocal-of-
I 24.458:eceptance

0.73426 0.05560 0.00

Nyquist 26.700 0.76101 0.02418 -71.65

Reciprocal-of- 24.641 0.68375 0.02424 0.00
Receptance
Nyquist 27.7:o 0.78562 0.02559 -68.39

i t
Reciprocal-of- 24.695 0.68170 0.02626 0.00
Receptance
(PCS above)
Nyquist 28.665 0.75195 0.02491 -75.43

Natural Frequency Elodal  Constant

Table 7.8 Parameters from Mode 1, point 2.2
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Non-linearity

Cubic 75

Reciprocal-of -

Backlash 5

F r i c t i o n  I

Viscous 100

Quadratic
Viscous 200

Reciprocal-of - 63.401
Receptance
Nyquist 63.390

Reciprocal-of - 63.388
Receptance

0.26610 0.07120 0.00

0.20824 0.07792 CO.38

0.27127 0.07633 0.00

Table 7.9 Parameters from Mode 2, point 2.2
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Mode Frequency Modal
Constant Phase Damping

$1 (l/kg) (deg) Loss Facto1

1 27 0.7839 0 0.02764

2 54 0.0142 0 0.00898

3 67 0.23078 0 0.06348

Table 7.10 Results from using 'Ident' type analysis of
Point (2,2) of the 2 degree-of-freedom system
with bi-linear stiffness (fig 7.3d)
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8 CONCLUDING DISCUSSION

8.0 Introduction
The aim of this research work has been to explore the use of experimental modal

analysis techniques for application to the transient response prediction of

structures. Particular attention has been paid to the accuracy required of the

modal analysis methods. In addition to examining techniques for transient

response of linear StruCtures,  the implications of using these techniques on

non-linear systems has also been considered in some detail since most practical

structures are to some degree non-linear and transient responses do tend to

cover a wide range of amplitudes, thereby exposing amplitude-dependent

effects.

The conclusions and discussions on the limitations and accuracy of experimental

modal analysis and Fourier transform methods are summarised first in this

chapter. This is followed by recommendations of how to used experimental

modal analysis in transient response predictions, and conclusions about the

limitations within the procedure. Finally, there are suggestions for further

research.

8.1 Discussion
Various techniques that are available for transient response prediction have

been examined in this thesis with the focus on their applicability to physical

structures rather than to mathematical models of systems. It is found that most

of the methods require a mathematical description of the structure - usually in

terms of its mass, stiffness and damping elements. Such formulations are

difficult to obtain by experimental description and the method that exhibits

most potential for use with experimental data is that referred to as the ‘Fourier

transform method’ - which takes the frequency response of the structure and

the input force spectrum and then transforms the product to the time domain

using the discrete Fourier transform. In practice, whilst many structures can

now be modelled theoretically, there are still some systems that, due to their

complexity, can only reaktically  be determined via experimental procedures.

It is concluded that this ‘Fourier transform method’ is the most appropriate
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technique to be used for a transient response prediction of those structures that

may not be modelled  analytically with sufficient reliability or confidence.

The methods available for experimentally determining the properties of a

structure in the frequency domain are generally known as ‘experimental modal

analysis’ and have been reviewed in chapter three. There are several excitation

techniques and analysis procedures that can be used in undertaking an

experimental modal analysis, all of which will generate accurate results

provided that care is taken in the measuring of the data and that the most

suitable analysis method for the available data is used. The structural

properties evaluated using experimental modal analysis techniques are

frequently in the form of ‘modal parameters’ from which the physical system

parameters most often required by transient prediction techniques cannot

usually be evaluated because of the incompleteness of the measured data. This

enforces the need to develop the ‘Fourier transform method’, which uses the

frequency response of the structure available through experimental modal

analysis.

The relevant forms of Fourier transform theory have been examined in order to

determine the limitations that the discrete Fourier transform places on the

quality of modal data used and on the accuracy of the resulting response

time-histories. The Fourier transform technique uses measured frequency

response data, or frequency response data regenerated using parameters

evaluated from modal analysis of the measured data. There is much literature

available on the subject of Fourier transforms, and the minimum sample rate

required in digitising signals to avoid frequency aliasing. Corresponding to this

minimum sample rate to avoid frequency aliasing, a maximum frequency

spacing relationship has been derived to avoid time-aliasing. This frequency

spacing is related to the largest possible error in the maximum amplitude of the

transformed signal, and is expressed in terms of the natural frequency and the

damping in the mode.

Most practical structures are non-linear to some degree, and for that reason the

application of the aforementioned techniques has also been examined in relation

to a number of the more commonly occuring non-linearities. The application of
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‘standard’ experimental modal analysis to individual non-linear elements was

considered first, where it was shown how trends in measured data (either from

constant-force sine tests or from impulse excitation) can identify clearly the

type of non-linearity. It has also been shown that for damping-type

non-linearities, it is possible to separate non-linear damping terms from the

linear viscous damping in the system using reciprocal-of-receptance type

analysis. Comparison in both the frequency and time domains is then made

between the measured and transformed responses from impulse excitation and

from constant-force sine tests. It was found that for any given non-linearity

the plots and trends are often dissimilar from the two types of excitation, and

may in fact agree with the trends of another non-linearity excited using the

other technique. Transforming frequency response data measured using a

constant-force stepped-sine test does not generally result in an acceptable

prediction of the impulse response function, and it is concluded that different

approaches need to be considered for predicting the impulse response function of

non-linear systems using data from experimental modal analysis. The different

frequency response functions (FRFs) for a system with a given non-linearity,

obtained using various force levels or types of excitation, can all be used with

any of the analysis techniques to evaluate modal parameters. The resulting sets

of ‘modal’ parameters do not necessarily agree. By careful choice of the data to

be analysed and the method used, it was found that consistent parameters - close

to the underlying linear system - could be determined from some of the

non-linear elements. These included:

i) cubic stiffness - using data away from resonance with reciprocal-of-,
receptance analysis produced a good estimate to the underlying linear system;

ii) backlash - using two reciprocal-of-receptance analyses on data above

resonance then data below resonance. The average of the two sets of parameters

are close to the underlying linear system; and

iii) friction and quadratic viscous damping - with an adapted version of

reciprocal-of-receptance analysis, the linear parameters can be evaluated and

also the non-linear damping term.
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Consideration is given to the application of the techniques of the single-degree-

of-freedom (SDOF) non-linear system to multi-degree-of-freedom (MDOF)

systems. For the example used in chapter 7 of a linear system plus a

non-linear element, the non-linearity appears to affect the resonances of MDOF

systems in much the same way as in those of the SDOF elements. In these cases,

any trends in a MDOF system can be related to the corresponding SDOF element

and hence the type of non-linearity identified. For small non-linear effects in

the symmetric non-linearities considered in this study, only the first

resonance is noticeably different to a linear response, but as the effective non-

linearity increases - by changing the force level or the non-linear component -

the second resonance sometimes becomes affected. However, there is no reason

to believe that the parameters chosen for the examples used in this study

emphasise a particular characteristic, and the results from undocumented

experimental modal analysis on non-linear structures have also appeared to

exhibit one ‘non-linear mode’ with the other modes behaving in a linear

manner. The ‘non-linear modes’ in these cases also possess the same

characteristics of known non-linear elements. The first resonance of a system

will generally be vibrating at the largest displacement amplitude (hence a

variation in amplitude through resonance), and as many of the non-linearities

are amplitude-dependent, it is felt that this causes the first resonance to be

more pronouncedly non-linear. When subsequent resonances are excited to the

same level and with the same range of displacements, then it is assumed that

they too will exhibit similar non-linear characteristics to the initial resonance.

Bi-linear stiffness appeared almost linear in the example used (the ‘extra’

resonance would not be identified as ‘extra’ from a structure of unknown degrees

of freedom), and the response was not amplitude-dependent. As this non-

linearity is not amplitude-dependent, it does not follow in this case that the

first mode is where the non-linearity is most evident. The effect - most

noticeable in the time domain - will affect all the modes that the particular

spring element is active in. However, as the time-history of a MDOF system

with bi-linear stiffness may be too complex to identify any discrepancies in the

positive and negative responses, it may no longer be feasible to use it as a

method of identifying and quantifying this non-linearity. Bi-linear stiffness

appears to be harder to detect in MDOF systems than SDOF systems.
255



8.2 Recommendations for transient response

predictions
For practical structures that are modelled  using experimental techniques, and

that may be treated as linear, the most suitable approach to transient response

prediction is found to be using frequency response data from experimental

modal analysis together with the Fourier transform, as all other transient

response prediction methods require the mass, stiffness and damping properties

of the structure explicitly. To satisfy the accuracy required of modal

parameters when they are to be used in transient response prediction, the

structure should be tested with sufficient data around resonance so that an

accurate value of damping can be estimated. Also, the limitations of the process

of discrete Fourier transforming data are such that a minimum sample rate and

a maximum frequency spacing are stipulated for a given structure to avoid both

frequency and time aliasing. Provided that these conditions are met both in the

modal analysis stage and in the transformation of the data, the predictions will

provide an accurate description of the transient respohse of the structure.

However, large deviations from the true response can be introduced in the

prediction if any of the modal parameters are in error, or if time aliasing

occurs in the transform to the time-history. In summary, experimentally-

derived structural models can be used for transient response analysis provided

the following conditions are observed:

i) data must be measured as accurately as possible to enable good estimates of

the modal parameters to be evaluated. Particular care is required over the

damping loss factor and in determining the phase of a modal constant, implying

the need to use Nyquist circle-fit type modal analysis; and

ii) the measured or regenerated frequency response functions should have

sufficient points around resonance to avoid time aliasing, and the force input

should be sampled rapidly enough to avoid frequency alising.
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The choice of linear damping model is a topic of discussion. For frequency

response functions, hysteretic damping is a better representation than viscous

damping in most cases of the dissipation mechanism in structures - but neither

is an accurate model of the damping. ln terms of the mathematics, viscous

damping provides a rigorous solution, but the equations for hysteretic damping

are often easier to manipulate and can be related by engineering interpretation

to the solutions for free vibration even though hysteretic damping is only

strictly defined for forced vibrations. Most modal analysis routines calculate

the damping loss factor at resonance, and this can be changed to an equivalent

viscous damping ratio using the relationship derived from energy

considerations at resonance. It was shown that this relationship also holds with

light damping for the decay rate of the time-history. If a hysteretic damping

model is used in an FRF which is then subjected to a Fourier transform, a non-

causal response - which is usually associated with non-linear systems - will

result. It is recommended therefore, that a viscous damping model is used for

transient response prediction to avoid this apparent non-linearity in the

system, which will hinder the detection of any non-linear elements present.

It was noted in the previous section that for any given non-linearity the trends

in the response depend on the type of excitation. These differences in trends for

the same non-linearity have a two-fold significance. The first is that exciting a

non-linear structure using an impulsive or other transient excitation will not

necessarily generate the FRF for the required excitation level (the FRF

represents the response frequency by frequency for steady-state excitation),

and as such, a constant-force sine test should be used to measure the FRF.

However, the second point is that using the modal parameters evaluated from

FRFs measured using constant-force sine tests for predicting the transient

response of a non-linear model may yield incorrect results. Clearly, in this

second case, what is required is a frequency response model that closely matches

the transformed impulse response, and not the measured FRF. Such a

non-linear model, using parameters evaluated from data measured using a

constant-force sine test, has been developed for friction non-linearity. The

model was very complex, and led to the conclusion that it should only be used if

an alternative solution using a linear frequency response model could not be

derived.
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For a specific non-linear system, several different sets of modal parameters

can be calculated and, thus, several different impulse response predictions can

be estimated for the same system using the ‘Fourier transform method’. By

examination of the resulting time-histories it has been shown which answers

are acceptable, and under what conditions, and therefore which experimentally

derived modal parameters should be used. However, for some applications, the

use of a non-linear model rather than a linear model is still recommended. It is

obviously a much easier approach if a linear model can be used, both in terms of

computational time and in the determination of the required parameters. Thus,

wherever possible it is recommended that a linear model is used.

For damping-type non-linearities the linear approximations to the transient

response of MDOF systems are valid for the same situations as the SDOF

elements; using the underlying linear system parameters will always provide

an overestimation of the response. In situations where a non-linear model is

recommended for good approximations in the SDOF elements, the model would

now have to account for the influence of other modes on the amplitude of

response. For the symmetric stiffness-type non-linearities, the techniques for

evaluating the underlying system parameters are still valid, but not always as

accurately as from the SDOF element. Also, the linear model does not

over-predict the response at all times due to the now continually changing phase

relationship of the modes caused by the natural frequency changing with

amplitude.

The main diff icult ies are with detecting non-symmetric st i f fness

non-linearities, where the force due to positive response does not equal the

magnitude of the force due to negative displacements. For the example used -

bi-linear stiffness - it is difficult to detect the non-linearity in the frequency

domain from any type of excitation, but the effect is very noticable in the

transient response time-history. For an accurate time-history prediction,

time domain models need to be developed which require the identification of the

different spring stiffnesses. However, a linear model using the softer of the two

springs can be used for transient response analysis which will generate an

overestimation of the result.
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In general, the conditions for steady-state response prediction and transient

response prediction vary considerably with non-linearities, and one response

cannot necessarily be predicted from the measurement of the other. A few of the

many alternative linear models that can be calculated using modal analysis

techniques on non-linear structures can be used in some applications of

transient response prediction when conservative estimates of the response is

the requirement. However, where accurate predictions are required,

non-linear models will have to be developed, but as these models will increase

the work involved in obtaining a transient response prediction, their use should

be restricted to cases for which they are absolutely necessary.
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8.3 Suggestions for further research
While many of the questions raised at the outset of this research have now been

answered, this study has highlighted a number of problems that require further

research. These topics are all related to the analysis and treatment of

non-linear systems.

In using modal analysis techniques on non-linear structures, the main problem

at present lies in identifying and quantifying a non-symmetric non-linearity

from frequency domain data. If the presence of this non-linearity is detected,

then there are methods of quantifying the different non-linear parameters for

SDOF elements but corresponding methods for quantifying the parameters need

to be examined for MDOF systems as the effect of applying an off-set to the

structural component will change more than one resonance. Using the other

technique of visual inspection of signals, it may become increasingly difficult to

identify non-symmetry in the response, in which case the implication is that

for MDOF systems the non-symmetry in non-linearities can be ignored in the

transient response prediction of such systems. This is another aspect that needs

further research, which may make the initial problem to be addressed - that of

detecting this type of non-linearity - unnecessary.

For symmetric non-linearities, further investigation is required into the

evaluation of consistent parameters from experimental tests on MDOF

structures, with a more comprehensive study of such systems than was

recorded in this study. Related to this is the interpretation of any non-linear

parameter evaluated from the frequency response of a MDOF system, where the

possibility of physically locating a non-linearity from modal analysis, or

expressing the non-linearity in modal terms requires further research.

In the transient response prediction of non-linear structures, where a non-

linear model is recommended, one would have to be created for the specific

non-linearity and application (except in the case of a friction element where a

non-linear model has already been developed in this work), but any

requirement for accurate predictions balanced against the extra time and effort

involved in developing and using a non-linear model.
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APPENDIX 1 Summary of essential modal theory
The theory presented in this appendix is a brief summary of the development of

modal analysis, and is found in literature on the subject. This section has been

included to support the sections in the thesis where these methods have been

USt?d.

Deacri ption
of structure -

Vi bretion Response
modea level3

SPATIAL MOD E -\ MODAL MODEL
r

RESPONSE MODEL

Mass, damping, Natural frequencies Frequency responses
stiffness Mode shapes Impulse responses

Fig (Al .1) Theoretical route to vibration analysis

Fig (Al.l) sets out the steps in theoretical modal analysis. This procedure will

now be followed for a single-degree-of-freedom (SDOF) undamped model, with

extensions for the damped models and multi-degree-of-freedom (MDOF)

systems.

SDOF undamped spatial model

k\v m
>

Fig (A1.2) SDOF undamped spatial model

First consider the system with no external forcing

mx + kx = 0

SDOF undamped modal model

The solution x(t)=xe i0t leads to the requirement that (k - 02m) = 0. The

modal model for this system consists of a single mode of vibration with a natural

frequency 61, given by (k/m)lB.
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SDOF undamped response model

Consider now the forced system where f(t)=fe%

rnx + kx = feiot

and a solution of the form x(t)=xeiot, where x and f are complex to accommodate

both phase and amplitude information.

(k - c.02m)xeicot  = feiot

The frequency response function (FRF) is the response model and takes ihe

form:-
X 1

T-= k- 02m

= a(o) the system receptance FRF

Damped SDOF models

There are two linear damping model%& be used in vibration analysis. These

are viscous and hysteretic (or structural) damping

Spatial model

vlodal model

Iesponse
lode1

Viscous

mwC

mx + cx + kx = f(t)

setting f(t)=0 leads to

x = e-&eW

where cod= eQ)A@

wO=Jiz$

c = c/(24Eii)

using f(t) = feiwt leads to

aW) =  
(k-02m)+i(oc)
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Hysteretic

or

mR +k(l+ih)x = f(t)

using f(t) = feiwt leads to

W.4 = ___l_._
(k-02m)+i(h)



MDOF systems

The solutions for MDOF systems are similar in appearance to a SDOF system,

but the elements are replaced by matrices.

Spatial model

+ . . .

[M]{:(t)} + [Cl(W) + WIWI = {f(t))

Modal model

To obtain the modal model (f(t)) is set to zero. The solution takes the form

{x(t)} = {x}eiot and for the undamped system ([C]=O)  this leads to the

condition

det ][K] - 02[M]l = 0

For an N DOF system, N values of o2 are obtained and also N sets of relative

values for {x) can be calculated. These can be usually written as two matrices

[‘we_] Natural frequency squared (eigenvalues)

[--w-J Mode shapes
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Response models

Using the function {f(t)} = {f)eiot and assuming a solution of the form

b(t)) = We iot for the undamped case the equations are:-,

WI - ~2[Wxl = {fl

or ix] = WI - ~21W-1 U?

Now ([K] - w2[M$can be written as [a(o)] and is known as the response

model. By matrix manipulation the individual parameters of the response model
can be expressed as:-

N

OrjkW = c
r=l

fiik

w;-02

where Pjk is the rth modal constant and is the product of the rth mode shape

vectors from coordinates j and k.

If proportional damping is introduced (ie [damping] = P[K] + y[M]) then the

general FRF expressions are:-
N

ajk(w)  =
c. - fijk Viscous damping

r=l (k,-~‘m,)+i(~,)

N

Ocjkta) = c fijk Hysteretic damping

r=l (kr-02mr)+i(hr)

where the denominator is now complex ie complex eigenvalues, but the mode

shapes are the same as the undamped model.

/
For general damping

numerator is complex,

function of frequency.

the expressions are similar, but in both cases the

and for viscous damping the modal constant is also a
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Different forms of the FRF

The three main forms of FRF use displacement, velocity or acceleration.

DisDlacement  = Receptance = [a (o)]
Force

Velocitv
Force

= Mobility = i 0 [a(O)]  = IWO )I

*
Pcceleratlqn = Accelerance = i o [Y(o)] =

Force
-~2bNWI = IA(o)1

In all three cases the definition for a single element

forces to the system must be zero, ie

also states that all other

ajk-
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APPENDIX 2 Summary of SDOF modal analysis methods
This appendix covers the theoretical development of two SDOF modal analysis

methods. These are the Nyquist circle fit method, and the reciprocal-of-

receptance analysis. The Nyquist method is covered in much of the literature on

modal analysis (eg ref [64] to 1661 & [69]) and is included for imformation.

The techniques behind the reciprocal-of-receptance method are exploited in some

of the applications to non-linear analysis.

Nyquist circle f it

The Nyquist circle for two particular cases - mobility for the viscously damped

system and receptance for a hysteretically damped system - trace out exact

circles for SDOF systems.

For the hysteretically damped case:-
Im@)

a(o)= 1 =

k-02m+ih

Re(a) = k-02m

(k-02m)2+h2

k-02m-ih

(k-W2m)2+h2

; lm(a) = -h

(k-02m)2+h2

n
+Re(a))L+(lm(a)+l/2h)2 = (1/2h)2

Hence plots of Re(a) against lm(a) will trace out a circle of radius 1/2h and

centre (O,-1/2h).  Similar analysis can be made for the system with viscous

damping using the mobility FRF data and results in a circle of radius (1/2c)

and centre (1/2c,O). ,
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Natural frequency estimation

For the system with hysteretic damping:-
tm(a)

Ma) a(o) = 1 (The modal constant

or?U -(w/or)2)+itlJ scales the circle, and

tarry = qr rotates it if complex)

l-(6YciQ2

tan (99-g = tan (e/2) = (1 -(ciVr~+)~ )/ qr

The reciprocal of this quantity - which is a measure of the rate at which the

locus sweeps around the arc - may be shown to reach a maximum value

(maximum sweep rate) when o= or The natural frequency of the system. This

is shown by further differentiation, this time with respect to frequency:-

d = 0 when (CII 2-02) = 0r
do(do2/de)

This property can be used to estimate the natural frequency by examining the

relative spacing of linearly spaced data points around resonance. A similar

analysis can be made for viscous damping on the mobility plot.
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Damping estimates

Once the natural frequency has been located at the position of maximum sweep

rate, the damping can be estimated. Working through with hysteretic damping

and using the receptance plot:-
ReJa) CX(C.0)  = 1

k-w2m+ikrj

Now tan(8,/2)  = k-(w,‘)2m

krl
and -tan(82/2)  = k-(w2’)2m

which leads to

As can be seen different combinations of frequency

resonance can be used to provide a damping estimate.

values will all be the same, but by examining the 3-D

are easily classified as random (for instance due to

systematic (for example due to incorrect location of the natural frequency or

non-linearities in the system). The values obtained for the damping ratios can

be averaged to find a single value or, after examining the 3-D damping plot, a

weighted average can be used.

Summary of Nyquist analysis procedure

Locate. the natural frequency: (o,= (k/m)ln)

Calculate damping ratio:

Find the Nyquist circle radius:

(rl= h/k)

(diameter= l/h)

Hence all values can be determined. In the case of the SDOF system these m, k and h

relate to the physical model, but in the MDOF systems they relate to the modal

model, and usually the modal constant is calculated from the Nyquist diameter which

can also be expressed as:-
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This procedure can also be followed for systems with viscous damping. In this case

the damping expression in terms of frequency points above and below resonance is:-

c = (02j2 - (co,‘)2 ( 1

*(% wl’tan(B1/2) + o,‘tan(Bd*) i

and the mobility Nyquist circle radius is:-

MDOF systems

Applying this SDOF technique to MDOF

the vicinity of resonance the response is

rth mode this means that-.

ajk(w) = rAjk + B.r jk
(orW)+i$o~

The contribution of other modes in this

which has the effect of displacing the

shown in pictorial form.

!Jm
Re

D rAjk
(wrW)+hJro~

systems the assumption is made that in

dominated by that single mode. For the

(in the vicinity of the rth mode)

?egion is approximated by a single term

Vyquist circle for the rth mode. This is

+

Re )
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Reciprocal-of-receptance analysis

Using the receptance FRF;

a(o) = A

(c002-~2)+2ic0c00<

1 =  (w02-~2)+2ioo,<

Re(lla(o))= (coo2-w2)
A

Re(l/a(o))

cl?

Im(l/a(o))= 2wo,5

A

Im( 1 /a(o))

6

‘r-

10
I cl?

For hysteretic damping

Im(lla(o))= 0,2f.l

Im(l  /a(o))
t

A

Which on a plot of Re(l/a(o))  against o2

has a slope of -l/A and crosses the axis at
002/A

In the vicinity of resonance this

approximates to a straight line when
plotted against 02, and at cc=oo  the value

is 2o02r/A ; - 61, and A being calculated

from the Re(l/a(o))plot hence TJ can be

evaluated.

Which is a straight line, and knowing oo2

and A from the Re(l/a(o))  plot, q can be
calculated.
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APPENDIX 3 MDOF curve fitting for lightly damped

structures
This appendix describes the theory behind an MDOF curve fitting routine for

lightly damped structures (ref [77]), that is often referred to as ‘Ident’

analysis.

Starting with an undamped modek-

N

~j(o)=

c
Pij

r=l 0 2-o2r

The receptance can be recorded at specific frequency values from the FRF curve,

and the resonance frequencies can also be located. The receptance can then be

written as:-

cxij(Q,) = { (6+212)-1 (02~-~,~)-’ ....................... ~

Once the resonances have been located, N other FRF measurements are chosen

where N is the number of resonances plus 2 (to account for the residuals).

(co 2422 12)-l . . . . . . . . . . . . . . . . . . . . . .

(022-Q22)-l ... . . . . . . . . . . . . . . . . . . .

‘0 24 3-l
1 1

C012-i2*2)‘1

. .
. .
. .
. .

co12-RN2)-1

. .

. .

. .

. .

(co 2-i2N2)-12 . . . . . . . . . . . . . . . . . ...*.

r -

lAij

ZAij

. .

. .
. .
. .

NAi.
-&
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Now all of the a(Q) values are known and the corresponding frequency also, the

resonance frequencies are known. This leads to :-

[Aijl = [W’[aij(Q )I

from which the modal constants can be calculated.

Returning to the damped model - using a generalised damping term:
N

Tjtw) =
c

P i j

r=l o 2-02+iDr

at resonance assume that the response is due to that mode only

which is:-

qjtw,' = hj
-

iD,

rAtj has been calculated, and aij(o,) has been recorded from the

FRF curve, so the damping term can now be calculated.
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APPENDIX 4 Basic impedance coupling theory
The theory behind impedance coupling is briefly summarised in this appendix to

provide a reminder to the parameters required when using this technique to

form a single response model from several models from different components.

The excitations and responses are related by:-

XA = FAuA

‘B = FB%

xc = FCaC

When A and B are connected

xA = xB = xC

and

FA + FB = FC

which leads to

1= 1+-L

% aA aB

This can be extended to MDOF systems for coupling, and this now becomes:-

[aJ1 = [aA] -’ + [aB] -*

291



APPENDIX 5 Free decay for systems with viscous or

hysteretic damping
This section is included to show how the two different forms of linear damping

have the same relationship for free decay as they do at resonance for steady state

response.

Starting with the equation of motion for viscous damping:

ii + 2~0,i + ao2x = (forcing function)

assume a solution of the form {x) = {X)eSt

which leads to the familiar solution

or

(x} = {X}e -W (cos (o,m2)t + i sin (w0a2)t)

The same procedure can be followed

solution evaluated is for free vibration

for forced harmonic vibration.

for hysteretic damping even though the

and hysteretic damping is only defined

Starting with the equation of motion for hysteretic damping:

j2 + oo2( 1 +i?J)x = (forcing function)

assume a solution of the form {x} = {X)eM

where h is complex.

This leads to

h2 + cJ102 (l+Q) = 0

or

Now let h = a + ib

* h2 = a2 - b2 + 2iab. .
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Also

h2 = -oo2( 1 +iq)

.
0. a2 - b2 = -coo2

and 2ab = -o,?J

from which

- 4a4+4a20 2. . 0 - 6104?f = 0

=s a = -cc0

Expanding this equation leads to

a = -oort/2 + woq3/1 6 - . . . . . . . . . . . .

The estimated value of damping in most structures is such that the second term

is negligible. This leads to:-

a = -ooTJ /2 (0.125% error with TJ = 0.1)

and

b = o. from above (0.125% error with ‘IT = 0.1)

Substituting the values for a and b in the solution leads to

{x} - {X)e -(~‘2)@(cos  0,t + i sin 03 0 t)

Comparing this with the solution for viscous damping shows that for the decay

term -QBo = -(W2)~o

This is the same relationship as is derived for the two forms of damping using

energy considerations for systems subjected to steady state vibration and at

resonance frequency.
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APPENDIX 6 Determination of friction damping from

reciprocal-of-receptance analysis
This section is included to demonstrate how different forms of damping can be

determined from a single frequency response measurement, when the input

force level is known, using an adaption of the reciprocal-of-receptance analysis

method.

Starting with the receptance equation for a system with friction from the

equivalent linearised equation of motion:-

Examining

parts leads

a(@ = 
w02-c02+2i@XOO+4RiOC00

the inverse of this equation and splitting into real and imaginary

to:

Re(l/a) = (w,~-co~)/  A

Im(lla) = 2~00~~ + 4Ro

A Axo,a

(as in linear case)

Now ‘a’, the amplitude, can be written as aF (where F is the input force level).

If two values of Im(lla) are taken from a single plot from a constant input

force stepped-sine excitation then R can be calculated as follows:

Im(lla)l = 2~0~0~~  + 4Ro,

A Axo,a,  F

similarly
Im(lla), = 2~0~~0~~ + 4R02

A Axo,a,F

Multiply 1 by o2 and 2 by o1 then subtract to give:-

(a6.1)

(a6.2)
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Axo,F \a, a2/

where F is the constant excitation force amplitude

and l/a, and lla, are the reciprocals of the magnitude of receptance (not just

the real or the imaginary part).

This information is available from one receptance curve. Having calculated R

using the equation above, this value can then be used to calculate the viscous

damping in the system from either (a6.1) or (a6.2). A similar analysis can be

performed for systems with quadratic viscous damping which again enables the

two forms of damping in a system to be evaluated separately.
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APPENDIX 7 Development of non-linear model for the

transient response prediction of a friction element

W .[A 351)
This is a brief summary of the results developed in ref [135] for the transient

response prediction of a friction element.

The results were obtained by observation of the time-histories of a system with

friction and viscous damping subjected to an impulse, and an equation derived

that uses the system parameters that can be calculated (modal constant, natural

frequency, viscous damping, friction and the initial conditions). This equation

was then analytically transformed to the frequency domain to provide the

non-linear frequency response function for use in the transient response

prediction of a system with friction. The equation is:-

a(o)= 1

[

*Od + Ae(-i*@b)T(  (-iw-@OO)  Sin adT  - ad COS odT)
-
od (U02- 02+2iwwO<) (c$ w2+2iWOc)

- BTe(-i*~W~T((-ic~~O)  Sin COOT - ad cos adT) + BcI?,(-ic@xO)

+ Be(-i@<ua)T

2(U02- 02+2iwwO~) (0,2- w2+2iwc00~)2

((0,2 o2 + 2iooO~-2 wd2) sin r.cdT  - 2(-io<oO)  od cos mdT)

2(w02- w2+2iwoO~)2

- B (l-2$) 2iood - B (i-27rc)  TesiWT(-io  sin COOT - cod  cm  o,T)
-
2 (cOd2- cl?)2 2 (Od’ 02)

- B (l -27rc) esioT(  (od2+ 02) sin adT - 2iood cos COAT)

2 (cO$ 6.1x)2 I
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where a(o)

@d

A

A

B

is the response divided by the input force

is the undamped natural frequency

is the damping ratio

is the damped natural frequency ( ad= o,JT--41)

is the modal constant multiplied by the initial velocity

is friction force/stiffness (m); the ‘dead zone’

is 20,~A/z multiplied by the modal constant

and T satisfies 2Ae-@oT - BTe-@oT - BT + ~JcB~T = 0

Using the ‘Fourier transform method’ with this non-linear frequency response

function generates good predictions, and examples are shown in chapter 6 in fig

(6.10).
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