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SUMMARY

This dissertation is concerned with the determ nation of
such nodal properties as natural frequencies and nodal
danping of lightly danped |inear and non-|inear structures.

The material is presented in three sections, the first of
whi ch anal yses in detail the problenms that are encountered
when using electro-dynamc vibration exciters to harnon-
ically excite a structural resonance in order that the
nodal properties can be accurately determ ned.

The second section of the work deals with the effect of
nmodal interaction and different danping distributions on
the ability to excite the normal nodes of vibration of

| inear structures, and the influence of these on the result-
I ng nodal properties.

The results fromthis work and those of the first section
are used to develop a rig which includes a non-Ilinear
friction device on which normal nobde tests are conduct ed.
This constitutes the final section of the work which is
devoted to the theoretical and experinmental identification
of the nodal properties of non-linear systens using nornma
nmode net hods.




INTRODUCTION ‘

The work described in this dissertation was instigated through
contacts wth the Departnent of Mechanical Test, British
Aerospace, Warton, Preston. One of the functions of this
Departnent is to carry out Gound Resonance Tests on mlitary
aircraft. These tests enploy steady state forced vibration
procedures using nultiple exciter inputs to excite the nornal
nodes of aircraft in order to accurately determ ne such nodal
properties as normal node frequencies, danpi ng ratios, general -
ised masses and stiffnesses.

However, problens arise in the forced vibration testing of

t hese conplex structures due to the effects of non-linearities
such as friction, non-linear stiffnesses and backlash. As a
result of these problens the author becanme involved in a
research project which was concerned with the identification
of the danping ratios and natural frequencies (the properties
of generalised nass and stiffness be'ing excluded fromthe
identification process) of non-linear structures enploying

mul ti-point excitation methods.

However, initial experimental tests, enployed to 'practise'

the art of multi-point normal node excitation procedures,

which were carried out on rigs which had | ow danpi ng properties
reveal ed problens relating to the effects of the vibration
exciters which the author had not expected. These problens
resulted in a considerable effort being spent on their invest-

i gation and eventual solution before any work enploying multi-
poi nt excitation nmethods on structures with and w t hout
controlled non-linearities could be carried out.

Thus the overall programe of work is presented in three
sections. The first section deals with the effects of using
el ectro-dynamic vibration exciters to vibrate a structure.
This work analyses in detail the constraints that these
exciters inpose upon a vibration test programme and reveal s

t he cause of the harnonic input force distortion which arises
when vibration tests are carried out on lightly danped




structures, which, although reportA by ot her researchers,
have never been satisfactorily explained.

The second section of the work is devoted to an area which
has recently received considerable attention, that of the
effect of a nodal danping natrix with off-diagonal terns

whi ch causes nodal interaction. This was a further problem
with which the author was confronted in the initial testing
stage and the results of this investigation have produced
criteria which enhance the existing know edge of the effects
of nmodal interaction on the ability to excite the normal
nodes of vibration of |inear danped structures.

The final section exploits the information obtained fromthe
work described in the earlier sections to investigate the
effects of two comonly occurring structural non-linearities,
Coul omb friction and non-linear stiffness. A considerable
part of this section concentrates in particular on the effect
of Coulomb friction, since this had proved to be a problem
on swng-wing aircraft at British Aerospace, and the work has
produced an original identification procedure using multi-
poi nt excitation nmethods which is supported by extensive
experinental work.




NOVENCLATURE

Definition of Geek synbols used ¥ the text is listed

bel ow, ot her nonmenclature which is used is defined the
first time it is introduced, and where possible, it is
consi stent throughout, although in some cases it has been
necessary to use the sanme synbol to describe nore than
one variabl e.

o Constant representing the maxi num arnature
di spl acenent .

Ratio of adjacent natural circular frequencies.

B Ratio of excitation frequency to test structure
natural frequency.

Y Co-ordinate system

S Structural (hysteretic) danping factor.

s* Equi val ent structural danping factor.

€s Percentage error in the nodal danping factor.

€, Percentage error in the transverse normal node
frequency.

z Vi scous danping ratio.

zq Test structure viscous danping ratio.

z, Vi bration exciter viscous danping ratio.

A Nor mal i si ng constant.

Non-|inear stiffness coefficient.
Matrix of nmobdal danping coefficients.

3
£ Matri x of nodal coupling danping coefficients
~ whose | eadi ng di agonal is zero.

D agonal nmatrix of nodal danping coefficients.
Surface integral.

Phase angle between input force and out put
di spl acenent .

Modal matri x.

Magnetic flux |inkage.

Transformation matrix.

Excitation frequency.

Test structure natural circular frequency.

Vi bration exciter natural circular frequency.

S qQ M
[a

€ e < e

E E
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&

Natural circular frequency of vibration in the
transverse (bending) node.

Nor mal node frequency of.vibration.

Nat ural circular frequency of vibration in the
torsional node.

Natural frequency of vibration in the j th gng
kth node respectively.

Rati o of excitation frequency to normal node
frequency.




ECTION 1

FREQUENCY RESPONSE TESTING OF
LIGHTLY DAMPED STRUCTURES
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&
1. FREQUENCY RESPONSE TESTI NG USI NG ELECTRO- DYNAM C
VI BRATI ON  EXCl TERS

1.1 | NTRCDUCTI ON .

The use of electro-dynam c vibration exciters in the
frequency response testing of structures is alnmost universal.
These exciters are very sinple in their basic design and
construction (1) and due to their ease of application,
particularly in the ability to attach and orientate these

on the test structure, they are the type of vibration exciter
nost comonly used in forced vibration tests. There are two
basi ¢ nodes of operation with such exciters, these being
related to the reference used as the input to the structure.

In order to excite a structural resonance, a harnonic force
Is injected into the structure under test. In order to
establish the resonant condition of the structure, it is
necessary to have sone know edge of the phase of the input
force wwth respect to the output response, particularly if
the structure is lightly danped when accurate determ nation
of peak anplitudes is difficult.

This can be done in two ways. The first, and nost commonly
used node of operation, is to use a force gauge which is
inserted between the vibration exciter and the test structure,
whi ch gives an output voltage proportional in magnitude and
phase to the force being injected into the structure at that
point. The second nethod is to neasure the input current,

in magni tude and phase, to the vibration exciter fromthe
oscillator and anplifier. Reference to the basic equations
of motion of an electro-dynam c exciter (2) shows that the
force delivered by the vibration exciter is proportional to
the current flow ng through the coil of the exciter armature.

- There are fundanental differences between these two approaches

since the latter approach involves the structure plus the

vi bration exciter characteristics whereas with the first
approach one is dealing with the virgin structure. Al though
the use of a force gauge appears to be the nost obvious




choice to provide the reference inﬂht force source,

probl ens arise when the structure under test is lightly
danped. Under these conditions the force signal around the
resonant regions reduces in magnitade and, particularly at
the fundanental resonance, becomes considerably non-linear.

This aspect of the effects of electro-dynamc vibration
exciters on a systemunder test has received considerable
attention. For exanple, the work by Taylor et al (3), and
Hol mes (4) discusses nmeans of conpensating for the exciter
mass, stiffness and danping characteristics, which may be
very significant if the structure is lightly danped. How
ever, no reference is made to the problens of harnonic
force distortion which occur in the resonance testing of
lightly danped structures.

The probl em of harnmonic force distortion is one which seens

to have received little attention in ternms of understanding
exactly what is the cause of this, or the manner in which

t he frequency spectrumof the input force varies, particular-
l'y near the structural resonance. The reason for this is

due to the fact that techniques for renoving unwanted

harnonics e.g. the use of tracking filters (5) have been |ong
establ i shed and present day techniques based on digital filter-
ing methods are often taken for granted when using sophisti-
cated equi pment. Neverthel ess, nobst researchers in the field
of vibration testing will undoubtedly have at some tine
observed on an oscilloscope the output froma force transducer
in the region of a structural resonance when the nmagnitude

of the force signal has reduced considerably and has displ ay-
ed considerable non-linear harnonic distortion. These

effects have been analysed in detail and the theoretical
predictions confirmed by carrying out an extensive experinental
programme and anal ogue conputer sinulation study.

In order to understand fully the inplications of using either
the input current as a reference input force source or using
a force gauge directly, a further analysis relating to the
effects of a typical electro-dynamc vibration exciter on
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the response of a single degree—ofJ’¥eedom system has been
carried out. The analysis covers not only the nodifications
whi ch occur in the interpretation of the resonant condition
due to using the input current as a force reference, but

al so the inportance of relating the output response to the

I nput response of a test systemin order to neasure the

true system characteristics.

1.2 ANALYSI S OF THE HARMONI C FORCE DI STORTI ON
ENCOUNTERED W TH ELECTRO- DYNAM C VI BRATI ON EXCl TERS

Experinental tests (described in the follow ng Chapter) had
shown that the non-linearities occurring in the input force
signal in the region of a structural resonance of a lightly
danped structure were predom nantly due to second harnonic
effects and the origin of these was the el ectro-dynamc
vibration exciter. This was indicated by the fact that

al though the input current to the exciter, the notion of
the armature of the vibration exciter and the output response
wer e sinusoidal throughout the tests, the input force signal
di spl ayed consi derabl e harnonic distortion as the resonant
condition of the structure was approached.

Thus having isolated the source of the harnonic distortion
as the vibration exciter it was necessary to know in detai
somet hing of the vibration exciter characteristics. The
underlying theory of electro-dynamc exciters, which distin-
gui shes them from el ectro-nagnetic exciters, is that the
force generated by the exciter is assuned to be proportion-
al to the input current, the constant of proportionality
being a function of both the armature coil design and the
magnetic field structure (7).

In the case of electro-dynamc exciters, the magnetic fl ux

~field is assunmed constant which results in an equation for
the force generated beinggivenas:

10
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where, 1= coil length in the flux eﬁeld
B = flux density
N number of turns of length 1,
i current Ve

However, if the nmagnetic field structure does not produce
a uniform flux density field, then equation (1) does not
hold true and one nust resort to the fundanental el ectro-

magneti c equations which allow for variations in the nmagnetic

flux field

1.2.1 CHARACTERI STICS OF THE VI BRATI ON EXClI TER
MAGNETI C FLUX FI ELD

The voltage V which results when a coil is oscillated in
a magnetic flux field is given as (8):

_dy dx
V—a—i.-d?..............(Z)

wher e %% Is the rate of change of flux Iinkage with respect
to the instantaneous displacement within the magnetic fl ux
field and %% Is the instantaneous velocity. To be able to
derive a characteristic of the magnetic flux field behaviour
it was required to be able to identify the behaviour of %%

In equation (2).

In order to exam ne the characteristics of the vibration
exciter magnetic flux field, two vibration exciters with
simlar characteristics were connected armature to armature
via arigid link as shown in Figure 1. One of the exciters
was used to 'drive' the other exciter, whose armature was
open-circuited, with a constant peak-to-peak anplitude at

a given frequency, the anplitudes being measured by a non-
contact displacenment transducer. By superinposing a d.c.
bias voltage onto the drive signal, the nean position of
the open-circuit exciter armature (i.e. the static equil-

I brium point about which the vibration takes place) could
be varied throughout its working displacenent range for that

11
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FIGURE 1

MEASUREMENT OF VI BRATI ON EXCI TER MAGNETI C FLUX
FI ELD CHARACTERI STI CS.
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particular exciter nodel. For eacﬁ‘mean position of the
open-circuited exciter armature a constant peak-to-peak
anplitude of vibration was applied, this anplitude repre-
senting 15% of the rated maxi mum peak-to-peak di splacenent
range of the exciter. Tests were carried out at different
frequencies (for the sanme mean arnmature positions and
anplitudes of vibration) and the results fromtests carried
out at 30 Hz and 60 Hz are shown on Figure 2. These curves,
which are even functions with a square-|law characteristic,
are related to the back enf generated by the velocity of
the armature and the position of the armature in the flux
field.

The characteristics of Figure 2 show that the assunption of
a constant magnetic field is invalid and that there is a
variation in the nagnetic field structure which is related
to the position of the exciter armature in the magnetic

field. In the case of lightly danped structures where the
amplitudes of vibration are large and the |level of the input
forces are small, the nornmal governing el ectro-dynamc

equations are inapplicable.

Since, for each test the velocity was constant, the
characteristics of Figure 2 must represent %%. The
characteristics of the curves of Figure 2 are given by:

Gl -alx,+ 0% . . . .. (3
e -alx, v 0B L ()
where vo = constant
1

maxi mum rated peak displacenent of the exciter

1
I .. .. .. .. .. .. (5)
0
due to the constraints inposed by the exciter design, i.e.
13
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the armature 'Dbottoms' on the centrg pol e magnet if,

(x0 + x) >

|-
kT

where x = nean position of the armature
x =i nstantaneous peak displacenment of the armature
C = constant related to the maxi num back enf generated

Thus the back enf generated as a result of the notion of
the armature in the magnetic flux field of Figure 2 is:

vy :d%.gzt(—= c{1 - a(x, +x)2}>'(. . . . (6)

|f the well-known basic equations of notion (see Appendi x
|) of an electro-dynamc vibration exciter are nodified to
include the terns of equation (6) one gets an expression

for the armature equation of notion: S

. kx K 2, _ F
X + = + m—R‘{l - oc(xo + x)%}x = —gVcoswt

where the constant K is a conbination of the force current
constant kg and the back enf constant ky, (it is generally
assuned that these quantities are equal since the electrical
power devel oped in the armature is equal to the nechanica
power absorbed by the armature).

Equation (7), which represents the equation of notion of

the armature of the vibration exciter, is a non-linear
second order differential equation. |f the solution of this
equation was obtained in terms of the anplitude of vibration
'x' then the effect of the square |aw terns (x, t x)2 woul d
be negligible conpared to the fundanmental conponent and the
- out put displacenent would have virtually no harnonic distor-
tion.

However, it is not the anplitude of vibration which is under

14
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4

observation but the force delivered by the exciter to
produce this notion. To exam ne the validity of equation
(7), a nodel of a single degree-of-freedom System excited
by an el ectro-dynam c vibration exciter, whose equati on of
nmotion is governed by equation (7) was anal ysed on an EAL
380 Anal ogue Computer

1.3 SI MULATI ON STUDY OF HARMONI C FORCE DI STORTI ON

The physical nodel of the systemused in the sinulation is
shown on Figure 3, and the equation of notion for this two-
mass singl e degree-of-freedom system assum ng that steady
state vibration is about the zero nean, i.e. X, = o

x =X;=X,) s

c (kq+tk,)x
. 1 K 2 PR
+ + - + = = =
X {m1+m2 R(ml_*_m;y(l aX ) 1% m1+m2
kacoswt
——— (8)
m1+m2 L] I = == . *

The anal ogue conputer bl ock diagram used to sinulate equation
(8) is shown on Figure 4. The physical quantities used in
the sinmulation were obtained fromthe tests carried out on

a cantilever beamdetailed in Chapter 2 and fromthe data
supplied by the nmanufacturers of the vibration exciter

The phot ographs on Plate 1 show the results of the sinmula-
tion exercise and a set of experinmental results fromtests
carried out on a cantilever beam (detailed in Chapter 2).

It can be seen that the behaviour of the force trace is
almost identical in both cases. The centre set of traces of
the/experinEntaI results also show the input current to the
exciter at resonance and it can be clearly seen that no
harnonic distortion is apparent. The results of the anal ogue
simul ation produced the identical force input behaviour as
was obtai ned during experinmental testing whereby the force

I nput signal approached a m ninum at resonance, wth second
harmonic distortion becom ng predonminant. Above and bel ow

15
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the resonant condition the force inﬁbt signal is predom n-
antly the fundanental conponent and displays negligible
amounts of harnonic distortion

Fiad
In each of the traces shown on Plate 1 the resulting
di spl acenent response is given and it can be seen that no
harnonic distortion is present, the displacenent being in
phase with the force bel ow resonance, changing to 180° out
of phase above resonance, which is the case for a single
degree-of -freedom system  The 90° phase change at resonance
cannot be readily discerned due to the high Ievel of second
harnmoni ¢ distortion of the force signal

1.4 THEORETI CAL ANALYSI S OF THE HARMONI C DI STORTI ON
MAGNI TUDES

Havi ng established that due to the square |aw characteristics
of the flux field the harnonic distortion was predom nantly
second harnonic in nature, an analysis of the harnonic
distortion magnitudes likely to be experienced when testing
systens which bebave basically asa single degree-of-freedom
system (i.e. well separated resonant frequencies) was carried
out. Wth reference to Figure 3 it can be assuned that the
total force generated by the vibration exciter is represent-
ed by a harnonic series:

Fy = 3 Fp ed (MOt ) o1 2 e .. .. (9)
n=1 "'n
where F, = F od(nut+e,) (mZD2 +c,D + kz)xej(nwt+¢n) (10)
n n
and F_ = magnitude of nth har noni ¢ conmponent
w = excitation frequency
¢, = phase angl e between nth force and di spl acenent

conponent

The force F, reacts agai nst the test structure to give:
n
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F, = (mD° + cD+ k) xed (NWt*o) .. .. an

An

ej(nwt+¢n)(Fn- szzx - czﬁ; - k,x) =

(m D + ¢;D + ky) xed (0T (g

For harmonic motion Dx = jnwx

(k1 - mlnzw2 + jclnw).F ej(nwt+¢n)
Fpoo = A (13)
n {(k1+k2) - (my+m,)n“w” + (c1+c2)jnw}

and introducing the notation:

k
wzz = ﬁz (vibration exciter natural frequency)
2
2 kg
Wy = o (structure natural frequency)
1
m k
2 ' 2 ' nw
— = m = k B = juihad
my R ©on w1
TS T !
= = —= , £ = __£
ky wy kg Wy

equation (13) becomes:

j(nwt+¢ )

2 .
. (1-8,7+3iB, z,) Foe (14)

Ao {asx") - gty j2ngs r2z,nd k)

At the structural resonant frequency, w = w4 and 61 =1,
thus the fundamental harmonic force component is:

(jzcl) Flej(wt+¢1)
F = .. (15)

Mo taskn - ) o+ j (2T +2r,5tkn)}
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the second harnonic force conponent is:

(-3+j4zy) Fyel (20%70y)
F, - .. (18
2 {(1+k') - 4(1+m') + J(4C1+4C2 =1k ")}

substituting for zlk' = {m'k' in equations (15) and (16)
gives for the ratio of the second harnonic conponent to the
f undament al :

F

A erj(wt+¢)(-3+j4C1) {(k'-m")+5 (2gy+2g \m k)]

2
-t = — .
Fay, B1 T8 {(k-am'-3)+j (4t +ag Al k"))
Equations simlar to equation (17) nay be witten for the
hi gher harnonics but the effects of these are obviously
| oner than the second harnonic contribution

An equation simlar to equation (17) was devel oped by Asher
(9) who based his original equations of notion on the somne-
what dubi ous assunption that 'the force transducer stiff-
ness was simlar to (and in certain cases |less than) the
stiffness of the structural system under test'. He gave an

equation for the ratio of FAZ/FAl as:

Fr, Fy (-3+iall)  {okr -iEa }

2.2 Wi S (18)
F F 201 _3k'_ 4cl )
O {(12 4k") - i ( )}.

where all the synbols have the sane definition apart from
k' which was given as:

x' = lorce transdﬁcer stiffness . L (19)
1

Unfortunately, equation (18) has no practical significance
since the use of a force transducer which has a stiffness
| ess than or equal to the structural stiffness would |ead

21




Q

toextremedi fficulties in resonance testing. Another
factor which eluded Asher is that his equations do not
allow for the fact that the vibrataon exciter effects

are mnimsed when the vibration exciter natural frequency
coincides wth the structural natural frequency (k' = m'
in equations (14) to (17)) as shown in Appendix II, and
thus the effects of the harnonic distortion are also

m ni m sed.

Normal Iy in resonance testing, the vibration exciter is
chosen so that its mass and stiffness effects will have a

mnimal effect on the structure under test, and in these
cases we have the follow ng conditions:

m'< k'<< 1 . . . . L0 (20)
Equation (17) can then be approximated, for the case of

lightly danped structures, to:

2 "_ll..............(zn

Equation (21) indicates that for the second harnonic distor-
tion to be less than 100%, the stiffness ratio k'« 2ty .

For lightly danped structures, where the equival ence 2z = §
(6 being the structural danping factor) can be made then
k' ¢ 6§ and since structural danmping forces increase wth
stiffness, the stiffer the structure the lower wll be the
harnmonic force distortion

The reason behind the harnonic distortion becom ng predom
inant at a systemresonance is easily shown by considering
_equation (14). Equation (14) represents the harnonic force
conponents applied to the system under test. If one assumnes
that the exciter is being driven by a high output inpedance
amplifier then electrical danping effects can be ignored

(3, 4. Also if one considers the nechanical danping of the
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exciter to be negligible, equation (14) for the nodul us of
t he fundanental and second harnonic force conponent respect-
i vely reduces to: &

{a - 8%+ (ep2e? P E -

{(a ey -efa s mn? e ety

{1 - a8% + weyrp e,
(@ + k0 -agfa + mn? v e’

and |FA2| = T (23)

Equation (22) is shown plotted on Figure 5 as a function of
the frequency ratio (B1) for different values of the system
damping ratio for the cases when the system natural frequency
Is greater and |less than the exciter natural frequency.

| nspection of equation (23) shows that the magnitude of the
second harnmonic content is alnpbst constant. Since the
magni tude of the fundanental harnonic approaches a m ni mum
at the resonant condition, as shown by Figure 5, the ratio
of the second (and the higher harnonics) to the fundanental
harmonic at this point is a maxi mum

Figure 5 also shows that the force characteristic is
“inverted" when the condition of the system natural frequency
changes from a val ue above to a val ue bel ow that of the
exciter natural frequency.

1.5 SOVE PI TFALLS ENCOUNTERED DURI NG THE RESONANCE
TESTI NG OF LI GHTLY DAMPED STRUCTURES

The work detailed in the above sections has shown that the
mass and stiffness properties of an el ectro-dynam c exciter

can affect the force being injected into a systemunder test.

It is commonly thought that if a constant current source is
used to drive an electro-dynamc vibration exciter then the
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force exciting the test structure is also constant in
magni tude (and phase with respect to the oscillator).

However, the results of experinental tests (Chapter 2,
Section 2.3) showed that this is not the case if the system
under test is lightly danmped. These effects have been noted
by other researchers and neans of conpensating for these
have been suggested (3, 10). An analysis of why there is
such a large variation in the magnitude and phase of the

input force has been carried out and is presented in
Appendi x 11.

This analysis is based on the nodel of Figure 3 and considers
a constant input current source being fed to the exciter
coi|l which produces a force to excite a structure.

However, the force which is devel oped nust also accelerate
the additional nmasses of the exciter and its connections to
the structure under test. This results in an equation
relating the exciter and structural natural frequency to
the force, (F), generated as a result of the input drive
current. This equation, given in Appendix Il, A.II.131is:

W
k,X (%%)2 - 1) = FSing . « o v o v v v . . (24)

where the synbols have the usual neaning, and

¢ = phase angle between the force F and the actual
resultant force applied to the test structure.

Equation (24) shows that the actual force which is applied
to the test structure is only in phase with the force
delivered by the exciter when one or nore of the follow ng

conditions arise:

(a) ¢ =0
(b) Wy = W,
(¢) X =0
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Condition (b) is inpractical since this requires some neans
of varying the exciter natural frequency in order that this
coincides with the structure naturgd frequency, and condi-
tion (c) requires that the armature, and hence structural

di spl acenents, is zero.

To satisfy condition (a) a technique can be used which has
been reported by Cox (11) and Taylor et al (3), whereby an
addi tional current at quadrature phase relative to the
excitation current, which is in phase with the oscillator
reference voltage, is injected into the exciter to allow

t he phase angle of the excitation force to be nodified,

i.e. the effects of the exciter mass and stiffness can be
conpensat ed. The nethod of doing this is detailed in
reference (3) and the effect of enploying quadrature current
Is shown on Figure A l1l.3, where the force vectors are drawn
at resonance.

It can be seen fromFigure A ll.3 that the addition of a
current at quadrature to the reference current allows the
effects of the exciter noving parts on the resultant force
applied to the structure to be negated. It nust be empha-
sised that the use of quadrature current techniques are only
necessary when exciting lightly danmped structures where the
exciter effects are going to be significant and that in the
general case of single point excitation nethods where the
actual input force (froma transducer) to the structure is
used as the reference no exciter conpensation is required,
al t hough mass, conpensation due to the effective mass of the
transducers may be necessary if this is significant (6).

If the force available froma force transducer attached to
the structure at the excitation point is used as the
reference then a 90° phase angl e between the out put

di spl acenent and the input force defines the resonant

condi tion.
It is inportant to realise the inplications of the above
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statements in that for each case, nanely using current or
force, it is a Transfer Function which is being used to
establish the conditions for resonfnce, i.e. the phase

angl e between the output response and the input to the
system and their appropriate magnitudes. If just the out-
put response was neasured and used, for exanple, assum ng
resonance to occur when the output resonse was a maxi num
this would |l ead to erroneous results due to the exciter

mass, stiffness and danping nodifying the original structure

(4) -

This has been shown in Appendix Il1.2 by considering the
forced response of a single degree-of-freedomsystemwth
a typical electro-dynamc vibration exciter

The resulting displacenent of the actual system which
conprises both the test structure and the vibration exciter
Is given in Appendix I1.2 by equation A Il.18 as:

x| s Mt
X - [ ] ‘ 2 W 1 2 % (25)
{1k~ (1+m DT Gk

The maxi mum response is given by equation A ll.20 as:

F/k
_ 1
Jmax, = 22| | — .. (26)
opfCEme-1y + (I+k))E T

2Cuol (Twm")
z z, k!
where C = oLy 22
w1 ws

Thus it can be seen fromequation (26) that by nmerely using
t he out put response of the system under test to indicate
the resonant condition then large errors may be incurred.

The true resonant condition is given by replacing F in
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equation (25) with that given by equation (15) and then
differentiating the result for a turning point. This wll
then result in the famliar equati®n for a single degree-
of -freedom system resonant anplitude as:

IF/%, |
IX | = 5.1 | * .. <.k .. (27)
2§1(1'C1 )2

The above effects were verified during the constant current
tests of Section 2.3 when both the output response and the
ratio of the output response to the input force (neasured
wth a piezoelectric force gauge) were plotted as a
function of frequency. Figure 6 shows these effects quite
alarmngly.
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2. EXPERI MENTAL TESTS TO DETERM NE THE FORCE | NPUT
BEHAVI OQUR AT A SYSTEM RESONANCE

o

2.1 | NTRCDUCTI ON

The predicted variation in the level of the input force
and acconpanying harnonic distortion detailed in Chapter
1 was investigated by carrying out a series of controlled
experinental tests on a lightly danped structure.

The object of these tests was to exam ne the force
injected into the structure under the structural resonant
conditions with the input current to the exciter being
hel d constant and then with the structural displacenment
being naintained constant. At the same tinme, the |levels
of harnonic distortion present in the force signal were
al so noni tored.

To sinmplify the experinmental procedures, to allow a
conmparison to be nmade with the theoretical predictions of
Chapter 1, an effective single degree-of-freedomrig was
used which was sinply a uniformsteel cantilever beam
with the frequency range of interest being restricted to
the region of the fundanental resonant frequency.

2.2 EXPERI MENTAL  ARRANGEMENT

The steel cantilever beamwas excited at its tip by an

el ectro-dynam c vibration exciter whose naxi mum peak force
avai l able was 24N. The exciter arnmature was connected to
the tip of the cantilever beamusing a push-rod (this is

a device which has a high axial stiffness and does not
otherw se restrict the novenent of the structure (12)) and

~piezoelectric force transducer assenbly (see Appendix VI ),

the force gauge being attached to the cantilever tip with
a nylon stud. The response of the cantilever was nonitor-
ed (at the excitation point) with a piezoelectric acceler-
ometer which was also rigidly attached to the cantil ever
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with a nylon stud. The purpose of the nylon studs was to
elimnate any noi se which nay have been generated by
different earthing |oops between tke transducers and the
test structure. The exciter was fed with a current from

a d.c. coupled power anplifier which was controlled by

the oscillator voltage source froma Solartron Frequency
Response Anal yser (FRA). The outputs of both the force

and accel eration transducers were fed via charge anplifiers
into the FRA which allowed either the individual properties
of the acceleration or force to be recorded in their in-
phase and quadrature conponents or in polar form Alter-
natively the transfer function of output acceleration to
input force in the sane nodes of measurenment coul d be
obt ai ned.

Figure 7 shows a diagrammati c sketch of the experinental

| ayout. Before any experinental tests were carried out

the harnonic distortion levels on the outputs of both the
FRA and the power anplifier were checked on a harnonic

anal yser. These .quantities were found to be insignificant,
the largest harnmonic distortion, expressed as a percentage
of the fundamental harmonic, was on the output of the power
anplifier and was neasured as 2% for the second harnonic
and 0.7% for the third harnonic. Qher researchers have
noted simlar characteristics where |ow power |evels (as

in this case) are used, but in the case of the output power
of the anplifier being greater than 80% of the maxi mum
third harnonic distortion has been recorded as high as 20%

(13).
2.3 CONSTANT | NPUT CURRENT TESTS

The input current to the vibration exciter was nonitored

. by neasuring the voltage drop across a 0.19Q resistor which

was connected in series between the power anplifier and
the vibration exciter.

For a constant input current of 0.1 anps, the excitation
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frequency was varied over the fundanment al resonant
frequency range of the cantilever beam and the resultant
input force level was measured together with the
inertiance (ratio of output accelerétion to resultant
input force).

Figure 8 shows the pattern of behaviour of these quantities
as the frequency is varied and it can be seen that there

iIs a large variation in the force input components at or
near the resonant condition. The most striking feature

of Figure 8 is the rapid reduction in the resultant force
at the resonant condition, followed by a rapid increase

in the force just after resonance and the gradual reduction
of the force to a level approaching its initial value.

For this test, the exciter natural frequency was greater
than the beam resonant frequency, thus this condition was
reversed by changing the length of the cantilever beam in
order to make its fundamental resonant frequency greater
than the exciter, natural frequency and the test was repeated.

Figure 8 also shows the results of this test and it can be
seen that the pattern of force behaviour is inverted.

If the resultant force results of Figure 8 are compared

with the theoretical results of Figure 5, it can be seen
that there is excellent agreement between the theoretical
and experimental results.

During the above tests, the harmonic content of the result-
ant applied force was also measured using the harmonic
analyser unit on the FRA. This unit recorded the rms
voltage levels of the harmonics up to the tenth harmonic.
Figure 9 shows the second and third harmonics; expressed
as a ratio of the fundamental harmonic, as the excitation
frequency was varied over the resonant frequency and the
predominent distortion can be seen to be due to the second
harmonic components. The input current to the exciter,
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whi ch was observed throughout the tests, displayed no
harnoni ¢ distortion.

o

2.4 CONSTANT DI SPLACEMENT TESTS

In order to carry out constant displacement tests a non-
contact capacitance probe was used to nonitor the displace-
ment of the beam since the signal fromthe accel eroneter
was continuously used for evaluating the inertiance as in
the previous test.

The procedure for this test was the sane as that of the
constant current tests except that the output displacenent
was held constant as the frequency was varied. Figure 10
shows the variation in the resultant force input conponent
and in this case it can be seen that there is a |inear

rel ati onship between the resultant force and the frequency
with a mninmunmagai n occurring at the resonant frequency.
These characteristics support the fact that the variation
in input force to the structure is nodified by the inertia
and stiffness effects of the exciter since in the tests
carried out the exciter's flexural stiffness was the pre-
dom nant factor (inertia forces being nuch smaller due to
the | ow accel eration) and when the displacenent was nain-
tained constant the resulting variations in the input force
to the structure were mnimsed.

The harnonic content of the resultant force applied to the
structure was also neasured, the procedure enployed being
the sane as that described in the constant input current
tests. The trend of the results for the second and third
harnoni cs, expressed as a percentage of the fundanenta
harnmonic, were very simlar to the results shown on Figure
9.

2.5 HARMONI C DI STORTI ON AS A FUNCTI ON OF DI SPLACENMENT
Since the greatest harnmonic force distortion occurred at
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the resonance condition, a series of constant displacenent
tests were carried out on the cantilever beamw th the beam
in a resonant condition. The proeedure enpl oyed was to

nmoni tor the displacenent with t he non- cont act capaci tance
probe and maintain this at a pre-selected value at the
fundanental resonant frequency of the cantilever beam
whil st the fundamental, second and third harnonics were
measured on the harnonic analyser. This was repeated for

a range of constant armature peak-to-peak displacenent

val ues.

The resulting harmonics were nornalised to the harnonic
| evel s obtained fromthe m ni mum di spl acement tests (i.e.

the initial starting value). Figure 11 shows the results
obtained at the resonant frequency as a function of
armature di spl acenent. It can be seen that the fundanent-

al force conponent is directly proportional to the armature
di spl acement, but the second and third harnoni c conponents
display a non-linear relationship. This supported the
prediction of equation 21 that |arge anplitudes of vibra-
tion (i.e. flexible structures) produce significant
harmonic force distortion

Due to the fact that the tests had been carried out on a
cantilever beam at the higher anplitudes of vibration a
significant anount of rotation acconpanied the translation
at the cantilever beamtip where the excitation was appli ed,
with the possible result that the msalignment of the
armature due to the rotational novement could be affecting
the harnonic force distortion |evels. In order to mnimse
these effects the sane series of tests as detailed above
were carried out on an encastré beam  Excitation was
applied at the md-point of the beam whereby only trans-

| ational notion of the armature occurred and the harnonic
content of the force input signal for a range of constant

di spl acenent val ues was mneasur ed.

The trend of the results was very simlar to those obtained
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fromthe constant displacenent tests on the cantilever
beam whi ch indicated that the rotational effects fromthe
cantilever experiments did not produce any significant
harnonic force distortion

The above tests had confirmed the theoretical predictions
regarding the variation in the magnitude of the input
force around the resonance region of a lightly danped
structure and that the harnonic distortion present was
predom nantly second harnonic.

In order to mnimse these effects, equation (21) showed
that by keeping the value of k' (the ratio of the vibration
exciter stiffness to the structural stiffness) to a

mninum then this should prevent severe harnonic force
distortion.

In order to examne the validity of this equation a further
set of tests were carried out on the cantilever beam

The tests allowed the stiffness ratio k' to be varied by
changing the flexural stiffness' of a standard electro-
dynam ¢ vibration exciter. This nethod of varying k' was
used in preference to sinply changing the beamlength in
order to alter the value of k' since this had nore practica
significance, and also the nmass ratio m' was constant.

During the tests the beam was excited over its fundanmental
frequency range with a constant displacenent and the first
and second harnoni ¢ conponents of the input force signa

were neasured on the harmonic analyser. In order to provide
a variation in k', the stiffness of the exciter was nodified
by removing one of the fibre flexure supports. This reduced
the stiffness of the exciter by approximately 50% As a
result of this nodification the lateral stiffness of the
exciter was reduced to such an extent that a |linear ball-
race guide had to be used to provide lateral support and
hence prevent side-stressing (armature rubbing on the centre
pol e magnet) of the exciter coil (81). Plate 2 shows the
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experimental set-up for these tests. The linear ball-
race obviously increased the exciter frictional damping
but transient results indicated that this was minimal for
steady state vibrations. The results of the har moni ¢
distortion tests are shown on Figure 12 together with the
theoretical curve from equation (14).
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2.6

L)
DI SCUSSI ON AND CONCLUSI ONS

It has been shown that harmenic distortion of the
input force signal at a systemresonance is primarily
due to the non-linear characteristics of the electro-
dynam c vibration exciter. These non-linearities,

whi ch characterise the nmagnetic field strength of

the exciter, are basically square-law in nature

which results in the force distortion being predom
inantly second harmonic. Hi gher harnonics will be
present in the force signal due to the fact that
distortions of the square-law characteristic wll
occur during testing from such aspects as armature

m sal i ngnment, higher order ternms in the nmagnetic
field strength characteristics and variations in
characteristics of one vibrator to another.

It is also shown that the danping factor in the
system under test is a very inportant aspect and in
order to mnimse the harnonic force distortion
occurring at resonance this nmust be significantly
greater than the ratio of the vibration exciter
stiffness to the test structure stiffness. If the
anplitudes of vibration are small, e.g. as a result
of exciting higher nodes, the harnonic distortion

is reduced as a result of two factors. The first

is that small anplitudes of vibration restrict the
armature novenent in the non-linear magnetic field,
and hence the non-linearities are mninised. The
second factor is that higher nodes of vibration tend
to produce |arger danping forces which result in an
increase in the fundanental force conponent, whereas
t he second and hi gher order conponents renmain approx-
imtely constant, consequently the effects of the
harnmonic distortion are |less noticeable.

It has been further shown that regardl ess of whether
or not a high output inpedance anplifier is used to
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supply a constant current source, large variations
in the magnitude and phase of the input force can
occur when testing lightly damped systems. This has
been confirmed to be due to the forces arising from
the mass and stiffness characteristics of the
vibration exciter which modify the resultant force
applied to the system at the system resonance.

If the natural frequency of the vibration exciter
is the same as that of the system under test then a
constant force would be applied to the system since
the vibration exciter effects would be self-compen-
sating.

If a constant current source is used as a reference
force condition, then in the case of a lightly
damped single degree-of-freedom system, a ninety
degree phase shift between the input current and
the output displacement (or acceleration) does not
necessarily indicate a natural frequency. Only if
the input force, measured at the point of applica-
tion on the test system, and the corresponding
response are used can this criterion be applied.

In terms of the harmonic force distortion levels at
resonance, some improvement would be achieved by
employing a constant current source since the magni-
tude of the non-linear term would be a function of
the force current constant only as opposed to a
combination of this and the back e.m.f. constant
which would be the case with a voltage source.
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SECTION 2

THE EFFECTS OF MODAL COUPLING
IN LIGHTLY DAMPED STRUCTURES
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3. THE | NFLUENCE OF MODAL COUPLI NG I N LI GHTLY

DAMPED STRUCTURES

3.1 | NTRCDUCTI ON

The follow ng Chapters are concerned with the influence

of danping on the nodal properties of |ightly danped
structures. O particular interest is the ability to
generate real normal nodes of vibration in structures where
t he danping matri x cannot be diagonalised by a transforna-
tion matrix (comonly called non-proportional danping (14)),
since this is of fundanental inportance in structural
identification programmes.

It is worthwhile to consider initially the type of danping
w th which one should be concerned, e.g. should the nodel
used to represent the danpi ng nmechani sm be considered as a
vi scous property or should one assume a hysteretic danping
model, or, if the systemcan be considered as lightly
danped, are both these nodels really the sane?

3.2 THE DAMPI NG MCDEL

The subject of dynamic structural danping in relation to
the vibrational characteristics of conplex structures (in
this context 'conplex' being used to define structures

whi ch may have close natural frequencies and/or non-Ilinear
characteristics) is still a problemarea and is continually
receiving attention (15) with over 3,000 publications
appearing on the subject of danping since the year 1900 (16).
A review of the mathenatical nodels and experinental tech-

ni ques for neasuring the danping behaviour of solid nmateriais
was given in a paper by Bert (17) who conpared the nathem
atical nodels devel oped to describe rheological systens.

One of the nost common techniques used to represent the
behavi our of viscoelastic solids is the two-paraneter nodel
of a spring in parallel with a dashpot, called the Kelvin-
Voi gt nmodel (16). Al though this nodel has some deficiencies
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as a conplex quantity when subjected to sinusoidal vibra-
tion. The comon single degree-of-freedom nodel, nanely
the nmass-spring-danper system is actually a poi nt nass
rigidly attached to a Kelvin-Voigt'element with the result-
ing linear differential equation of notion:

mX + cx + kx = Fej wt .. .. .. .. .. (28)

where x is the displacenent response.

By replacing the Kelvin-Voigt coefficients k and jwec with
a single conplex stiffness:

K=k *dwuc . . . . . ... (29
equation (28) can be represented as:
m¥ + kx = Fej @t P € 10)

The energy dissipated during one cycle by a dashpot el enent
subj ected to an external sinusoidal force is:

2n/w
U=fF.dx:/F)'cdt Ce e .o s (3
0

where F = dashpot force = cx.

Now t he response x is a conplex quantity, which for steady
state nmotion is:

x=uej°°'C .« .o .o .o .o .o .. (32)

where |u| is the displacement anplitude, thus equation
(31) gives:

U = mewlul® . : : D eeseaeaa (33)
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Equation (33) shows that the energy |oss due to a dashpot
I's dependent on the exciting frequency w but it was
observed by Kinball and Lovell (18) that in the case of
many engi neering materials, the energy |osses were indep-
endent of w and that the energy |oss per cycle was govern-
ed by an equation of the type:

U= clul? e e e e e e e e (3

and this was later confirmed by other workers in this
field (16) although contradictions to this exist (19). By
conbi ni ng equations (33) and (34) one finds that:

=S L

TW

This quantity is often terned the 'equival ent viscous
danmpi ng' for structural danping nodels and the danping
force is then given by:

where d = %

which is sonetinmes referred to as 'frequency-dependent
danping’ since the normal dashpot coefficient ¢ has been
repl aced by g.

For structural danping nechanisns, the equations of notion
i nclude the constant d by conmbining it with the spring

stiffness constant to give the Kinball-Lovell conplex stiff-
ness expression (20)

which results in an equation of notion in free vibration
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of the form:

mX + (k + jd)x = O (38)

-

Other alternatives to equation (37) have been proposed
(21, 22) but in all cases criticisms have been raised as

to their validity and ease of application. The major
concern over the use of an equation of motion of the form
given 1in equation (38) is that the resulting solutions are
complex exponential (23) and are physically unrealisable
(24). Nevertheless, the use of equation (38) in connection
with sinusoidally steady state forced vibration of struc-
tures 1is very common, although its main drawback in this
context is that at zero frequency the conventionally
defined magnification factor is not equal to unity, but
this can be accounted for by defining the equivalent static
deflection as:

1
u, = %% , Where ke = (k2 2y2

which results in a magnification factor for a single degree-

of-freedom system as:

M'

(k2 + dz)%/{(k - mwl)? o+ dz}% ce .. (39)

ise. M' o= (1 + 52)%/{(1 - (wi)z) + 52}% .. .. (40)
- ‘

where 8§ is the structural damping factor or loss factor.

If one makes a comparison between a Kelvin-Voigt viscously
damped single degree-of-freedom system and a mass-spring
system where the spring is considered to behave as a
Kimball-Lovell material (complex-modulus) then using the
standard definitions for natural frequency, critical damping

and damping ratio, e.g.
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w —

k C
n m

> C. =2\lmk, z = q

&
one finds that the conventionally defined nmagnification
factor is (17)

1

M= qa-ghie eyt

for the Kinball-Lovell system but for the Kel vin-Voi gt
vi scously danped systemthis is:

M= a - G - b S T 07
n

Bot h equations give the sane magnification factor when

w = w, but the magnification factors at resonance (i.e
when Mis a maximun) are different, although in the case of
lightly danped structures (z < 0.2) the difference between
the results of equations (41) and (42) is very small and is
general ly ignored. | f one considers the equations of
notion for both systens subjected to a sinusoidal exciting
force,

m5&+c>'c+kx=Fejwt:mié+k(1+j6)x.. . (43)
and assum ng harmonic notion, i.e. x = uej“t,
2 . .

(wn - wz)u + JZanwu = (wnz - wz)u + Jmnzau (44)

When the exciting frequency corresponds to the natural
frequency (in the case of lightly danped systens this would
be the resonant frequency), then equation (44) gives the

- useful expression:

6:2c................(45)
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This can al so be derived considering the energies
di ssipated in the dashpot and the spring (17).

Thus the question as to whether oéZ shoul d use a dashpot
nodel or a spring with conplex stiffness to represent the

di ssi pation nmechani smseens only to lie with the theor-
eticians, since in practical structural dynam c anal ysis,
where the danmping is normally low, particularly in the
aerospace industry (25), then either nodel will suffice

for steady state forced vibration analyses and this is
borne out by the fact that both are wi dely used to represent
t he sane physical systens subjected to forced sinusoidal

vi brati on.

One aspect which may influence the choice of the danping
nodel is that it is not possible to nodel hysteretic danp-
ing on an anal ogue conputer (22), a tool which has seen
extensive use in the study and behavi our of |unped para-
meter nodels of structural systens (26). In the case of
finite element analyses, danping is generally introduced
in terms of nodal damping (as opposed to | ocal danpers),
i.e. some fraction (or percentage) of critical danping is
introduced for a particular natural node of structural

vi bration and thus the danpi ng nodel can be of either form

The next question one nust ask has far reaching consequences
both in ternms of single and nulti-point vibration testing
methods and in relation to a widely used identification

met hod, nanely the Kennedy and Pancu vector plot (27). It
is related to the interference of one node of vibration

w th another as a result of the damping coupling and is
simply "if a systemis governed by a nodal danping matrix

in which the off-diagonal elenents are non-zero and conpar -
able in magnitude to the | eading diagonal elenents, is it
possible to excite the normal nodes of the systenP”
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3.3 NORVAL MODES OF VI BRATI ON I N DAMPED LI NEAR SYSTEMS

The ability to analyse structuralpsystems in ternms of their
classical normal or principal node‘s (28) has been of great
benefit to dynamicists, particularly in the aerospace
industry (29). The existence of classical normal npdes in
undanped systens produces real node shapes, (eigenvectors)
with real natural frequencies (eigenvalues). However, when
danping (either hysteretic or viscous danping) is intro-
duced into the equations of notion, the resulting analysis
is governed by certain constraints related to the distri-
bution of the localised danpers in the structure, which
may result in conplex eigenval ues and ei genvectors (40)

One of these constraints was first pointed out by Rayleigh
(30) who showed that if the danping matrix is a |inear
conbi nation of the stiffness and nass matrices, the danped
systemw || exhibit classical nornmal nodes. Later, Foss
(31) in 1956 published a general treatnent of danped
structures which utilised special co-ordinates to uncouple
the equations of motion. The first analysis of the condi-
tions which allow a danped |inear systemto possess class-
i cal normal nodes was given by Caughey (28) in 1960 who
showed that a necessary and sufficient condition for the
exi stence of classical normal nodes is that the danping
matri x can be transformed to a diagonal natrix using the
same transformation which results in the classical normal
nodes for the undanped system In mathematical terms this
can be expressed by firstly considering an n degree-of-
freedom wundanped |inear systemwhich is represented as a
set of n coupled equations in matrix form as,

AL+ Ku = 0 e (46)

~

where A and K are n x n matrices representing the mass and
stiffness properties respectively, which are symetrical and
positive-definite and u is a colum vector of generalised
co-ordi nat es. Equation (46) has n eigenval ues and
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correspondi ng eigenvectors, nanely w, wy . . . w, assoc-

lated with 01, 0, . . . 0. These ei genval ues and their
correspondi ng ei genvectors uni que&y define the nodal
properties of the system unless there are repeated natural
frequencies, and the eigenvectors also satisfy the orthogon-
ality condition for i # j, i.e.

t Cnn atus
2225 = 0= 25K8;

[f the nmodal matrix is given as:

g:[¢1¢2 ...@nl N T3

t hen equation (47) can be represented as:

where A and X are diagonal matrices of order n.
If we apply a co-ordinate transformation such that

U = 0Z . .. (51)

o

then substitution of (51) into (46) and pre-multiplication
by ot gives:

et Aoz +oetkoz=0. ... ... ... (52
whi ch, according to equations (49) and (50), can be

represented by a set of n uncoupled equations of notion:

"

AZ + Kz = 0 i i, (53)

~ o~ ~

where the vector Z is the principal or normal node co-
ordinate vector of the system |f equation (46) is now
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nmodi fied to include viscous danping i.e.
Al + B + Ku=0 .. .. .. .. e e (58
e ~ ~~ e

then the transformation of equation (51), according to
Caughey, nust al so uncouple equation (53) if the systemis
to possess classical normal nodes. The condition specified
by Rayleigh, nanely that:

B =  sA + EK v e e e e e e e e e e e (55)

where s and t are constants, obviously neets this condition
and is known as proportional danping. Caughey et al (32)
went on to show that if equation (54) is represented in the
form

fq+ Bg + Kqg =0.. «v «u  ee .. .. (56)

~ o~ ~ o~

where the A matrix has been transforned to an identity

matrix of order n, 8 and K are still symetrical and positive

definite, and q is the vector of transforned co-ordinates
I.e.

u=¥q. . . . . . . . . . . . . . . . (5]

where ¥ is a known transformation matrix, then systens
governed by equation (56) possess classical normal nodes
if 8and K comute i.e. if:

BK = KB . + + « v v v o (58)

This results in a general expression for the formof the
danmping matrix given as (34):

n-|
A™lB = aj(é‘lx)J R €1 )
1=0
where a.. = constant.
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A nunber of conditions which arise as a result of equations
(58) and (59) are quoted by various authors. Bahar (33),
showed an application of equatiog,(59) to a three degree-of-
freedom system and a special formof equation (59) nanely,

Lx=xats . o 00000 (60)

B A
was applied to the same exanple by Fawzy (34). Fawzy also
poi nted out that an obvious solution of equation (58) was:

B=XKY.... . . . . . . . . . . . . (61

Thus there are a nunber of conditions regarding the form

of the danping matrix which allow classical normal nodes

to exist in danped structures other than the standard cases
of the undanped and proportionally danped ones, although

t hese seem to have eluded sonme authors (35)(36). The
physical interpretation of the conditions given by equations
(58) to (60) have not been considered by their authors,
probably due to the fact that in practice the mass and
stiffness matrix elenments are generally know, or can be
obtained directly, whereas the formof the danping matrix is
a nuch nore conplex problem and cannot be obtained a priori.

3.4 FORCED NORVAL MCODES OF VI BRATI ON

In real structures, it is unlikely that any of the above
condi tions which allow the equations of notion to be trans-
formed to normal node co-ordinates apply in general, and
in practice the danping matrix will have |eading and off-
di agonal ternmns.

The question then arises as to whether or not it is possible
to excite the normal nodes of a structure whose nodal danp-
ing matrix has off-diagonal elenments, (the author feels it

m sleading to refer to this condition as non-proportional
danpi ng as have sone past authors, since this is often used
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.t0 inply that the equations of notion cannot be trans-
formed to uncoupl ed equations although this is not always
‘the case as has been shown above ir Section 3.3), even
-though the off-diagonal elenents are not small conpared
to those of the | eadi ng di agonal .

-The technique of exciting normal nodes -has its main appl i-
ations in the aerospace industry where ground resonance
ests attenpt to isolate the normal nodes of a structure
fhithin a given frequency range. Thus it would be useful
to consider the question in the context of normal node
.excitation as applied to a conplex structure such as an

ircraft.

-The basic dynam c equations of notion of an unrestrained
aeroelastic structure in terns of the normal nodes are
derived by Kiichemann et al (37) and a revisimof these

is given below. The equations of motion in generalised

form are;

Mo dg (1) + Mo wla (8) , D DG (1) = Q(t) .. (62)
r=1

where,

M =Z;f.\[fm(P){uis(P)}2dP. ... ... . (863

i=1, 2, 3; v = integration with respect to the
vol une

is the generalised mass of the sth normal node of vibration
of the aerostructure in a vacuum

(P is any point in the structure i.e. P = (x15 Xp, X4)

u;c are the normal node functions of the undanped

structure)
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now, M oug = Kss = cC C [[/f?fsik(P’P )uiS(P)uks (P')dPdp:
' k-v Y,

g

(64)

(S (P,P") bei ng second order stiffness influence

functions),
t hus, Kes is the generalised stiffness of the sth nor mal
mode
D_, = ZZ ffffffwik(P,P')fis(P)fkr(P')deP' (65)
i k \"% v
wher e W are t he danping influence functions, f.ls, f1r

are node functions which satisfy the boundary condtions
and Q (t) are the generalised surface forces given by:

Q) =D [ffueu e L (66)
I~ o

o denoting a surface integral.

Q; (P,t) is an arbitrary pressure function which generates
di spl acenent functions ui(P,t). hbmei(P,t) can be
expressed as:

Q(Put) = D Q(ai(t) . .. ... . (6])
r=1

| f we assune that Qy is a harnonic exciting force with a
normal node frequency wg i e

t

qq(t) = a.ej”s (68)

t hen conbi ning equations (62),(66), (67) and (68) gives:
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ji:(jwsnrs)qr - 2 :{ 2 :jIQir(P)UiS(P)dc}qr (69)
r=1

r=1 io

Equation (69) shows that for equilibriumthe externa
forces nmust bal ance the internal energy dissipation when
the structure is vibrating in a nornal node.

In terns of experinental testing, it is inpossible to
excite the structure at an infinite nunber of points and
thus equation (69) is realised as:

_ 1
De = G 20 20 FirPduss®n) . o . . . . (1)
n |

Thus we have N discrete exciting force anplitudes Fir(Pn)

at the N points (P). Equation (66) is satisfied when

I1,(Q;;(P)) =0and R (u; (P)) = O e e (71)

Equation (71) forms the basis of the classical Phase-
Resonance Criterion (7) which is commonly used to experi -
mentally define a normal node condition whereby the response
I's in-phase (or anti-phase) and at quadrature to the real

I nput forces.which are also in-phase (or anti-phase).

Thus it has been shown that regardless of the formof the
damping matrix it is theoretically possible to excite the
normal nodes of a danped structure. The limtations of
this are purely practical which results in the nodified
form of equation (69), namely equation (70).

These limtations result in one of the remaining contro-

versial questions in the use of nmulti-point excitation
met hods for inducing pure normal nodes of real structures,
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"if the damping matrix is of such a form that it cannot be
diagonalised according to any of the conditions given in
Section 3.2, is it possible to ex%%te a normal mode with a
finite number of vibration exciters?'". This has been
examined for the simple case of a two degree-of-freedom
model by Sloane et al (35) who showed that the natural
frequencies for such a system differ from those of the
undamped system and that the resulting eigenvectors are
complex. He further showed that if the input forces are
in-phase and at quadrature to the in-phase response (phase-
resonance criterion) then the frequencies of excitation
coincide with the natural frequencies of the undamped
system; which are not equal to the natural frequencies of
the system in question, and that the response at the
excitation frequencies gives eigenvectors of the undamped
system as opposed to the eigenvectors of the actual system.

To overcome this he proposed the use of an input excitation
which is a complex frequency excitation. This would take
the form of a damped sinusoid, pumped periodically into the
structure to maintain sufficient energy to overcome any

low-level non-linearities.

Unfortunately, no application of this method has been
reported (at least to the author's knowledge) and the
apparent added complexity of the method raises doubts as

to its practicality and advantages over the existing methods
unless the damping distribution is such that the existing

tests cannot satisfactorily excite a normal mode.

In order to provide some guidance as to the problem of
modal interaction resulting from the closeness of adjacent
natural frequencies and/or damping distributions, an
analysis was undertaken to examine the relationship between

these.
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3.5 MODAL | NTERACTI ON CRI TERI A

In order to obtain sone guidelineg relating the natural
frequencies and danping of a structure to the effects that
t hese have on the ability to excite real normal nodes, a
theoretical analysis has been carried out on a system
represented by equations of notion in which the danping
matrix does not necessarily satisfy any of the conditions
of Section 3.2, i.e.:

m¥ + dx + kx = gelut e e e e e e e e (72)

where x represents a vector of discrete co-ordinates, f is
a force vector, wis the excitation frequency and m d and
k are the square symetric mass, danping and stiffness
matrices respectively. Using the standard transformation
matrix to represent equation (72) in terns of the nornmal
mode co- ordi nat es:

equation (72) becomnes:

where M and K are square diagonal matrices, but D is non-
di agonal . If the systemis linear the response wll have
the formq = qej®% and equation (74) can be witten as:

-Iwza + wl% = M_1

L0 >
Q>

+ e F .. .. .. .. (75)

where | = unity matrix
9% = diagonal natrix where each elenent is given by
wZ _ Krr
rr M
TrTr

¢ = non-diagonal natrix of nodal danping coefficients.
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Following the technique of Hassel man (23), the matrix ¢
can be considered as:

§=§d+§n..............(76)

wher e £4 Is a square diagonal matrix, each el enment taking
t he formgrr = 2w, and £, IS a square symmetric matrix
whi ch represents the coupling ternms between the nornal
nodes whose | eading diagonal is zero. This results in
equation (75) being witten as:

1

(8d + 2n)g = MF . . . . . . . . . . (77)

where zd is a diagonal matrix whose el enents take the form

%drr = wI‘ - w + JZCrwri .......... (78)

and zn = j&n, a non-diagonal matrix whose | eadi ng di agonal
el enents are zero.

In order to be able to have a neaningful relationship
between the elements of %Zd and Zn it is useful to apply a
transformation to diagonalise 2d to a unity matrix i.e.
consider the transformation fromthe gq co-ordinate system
to the y co-ordinates:

Q=Y (79)
where the transformation matrix ¥ is-given by ¥ = 2d72,
Thus equation (77) becones:

=1 -
(I +zn)y =227 L 0 0 0L 0L oL (80)

~

where | is the unity matrix and %ny = 232t2n23%.  For
simplicity consider two adjacent nodes of vi bration whose
natural frequencies and nodal danping coefficients are
given respectively as:
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. .. c.o= 270
mJ,gJJ and Wy Exx wher e EJJ ST and
Ekk = ZCkwk- @2\
Then we can wite equation (77) as:
2 2. . ~
- . . 0 . .
wjmw TIwkyy 0 IO\ || 43
+
0 w 2-w2+'w€ jwE 0 q
L k ISk JOLk; Ak
-1
M. E
JJ
= - .o . . . . . (81)
-1
MF

and applying the transformation of equation (79) to equation
(81) leads to:

: . ..M. F
10\ /0  2ov\||Y¥j; 2dy5 My Fy
+ = (82)
0 1, Zny 0 Yk 2d, 1 My By
wher e
iwg .
Zny = ik . (83)

2 2 . 1.2 2 . i
(wj - w F Jngj)z(wk -w o+ Jwgkk)z

If w = we < Wy, then equation (83) becones:

jw'g'k
Zny = - 7 31 7 ]J 2. % (84)
(JZCjwj )2((wk 'mj )JZEkwkwj)
1
£ (320:05) 7
Zny = k- ) (85)

2 . z
ZCjwj((wk -wj ) chkwkwj)
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and,
{ 1 F
d 2
IZDY‘ = Zg,w,‘th. 2.. 2\1? IE 4 k| (86)
2 2:2
Clog ™ = w3y D)7+ Ay vy g )7 il

wher e Ejf = Zgjwj.
Equation (86) represents the interaction between the two

adj acent nodes of vibration and if the off-diagonal elenents
of the danping matrix, £, , are assuned equal to the diagonal

elements, ‘§ then equation (86) becomnes:

I
3
(ij)

| Zny| = -
(82 - 1%+ ag 8hs

(87)

where g8 = wk/wj

Equation (87) shows that the nodal interaction is dependent
upon the closeness of the natural frequencies and the
relative danmping in each node.

This has al so been shown by Marples (39) who derived an

i nterference boundary showi ng the relation between nodal
dampi ng and natural frequency ratios. However, he was
concerned with the errors invoked in estimating nodal
characteristics fromthe vector plots as a result of nodal
interaction and no reference was nmade to the formof the

system danpi ng matri ces.

In order to show a graphical representation of the inter-
action nmechanism a carpet plot of equation (87) is shown
on Figure 13. The plot is in terms of the frequency ratio,
w/wj and the danping ratios cj/;k as a function of the
paranmeter |zny|, which represents the nodal coupling ternmns.
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| nspection of Figure 13 shows that the worst condition for
nodal interaction (which is alnost intuitive) is when the
natural frequencies and danping ratios In the two adjacent
modes of vibration are equal in magnitude, (point |Zny| =
1.0).

As the separation between either the danping ratios or the
natural frequencies increases, the magnitude of |zny|

reduces and hence the effect of the off-diagonal danping
terms is reduced. It can be seen that the npbst sensitive
factor is that of the natural frequency ratio, indicating
that conplex structures which have natural frequency clusters
w || have severe nodal interaction, regardless of the |evel

of danping, unless of course the relative danping of a pair
of adjacent nodes is significantly different i.e. ;j/;k<<1,

One may ask what significance equation (87) really has since
it does not offer any guidelines as to when nodal inter-
action is going to beconme a problem Unfortunately, this
Is a question of how small is small, since in the above
case one is conparing the off-diagonal nodal coupling termns
wth unity. The inportant point which nust be borne in
mnd is that we have assuned that the off-diagonal nodal
danmpi ng coefficients (£.x) are equal in nagnitude to the
diagonal terns, yet if the natural frequencies of the two
nodes are well separated, nodal interaction becones
negligi bl e.

In order to apply equation (87) and establish its cred-
ibility in terms of what |evel of magnitude the off-

di agonal elenments can take with respect to the |eading

di agonal elements, before serious errors are incurred in
the identification process, a sinulation exercise was
carried out on a digital conputer of a two degre-of-freedom
system The aimof the exercise was to explore the effects
of close natural frequencies and danping ratios on the
ability to excite normal nodes using nulti-point excitation

net hods.
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3.6 DI G TAL SI MULATI ON OF NORVAL MODES | N DAMPED
LI NEAR SYSTEMS

A
The nodel chosen for this analysis was a sinple two degree-
of -freedom system since whatever applies to this system
must apply to an n degree-of-freedom system Figure 14
shows a diagrammatic sketch of the physical nodel used for
the sinulation exercise.

Two fundanmental areas were considered in the analysis, |
both being related to the form of the danping matrix. The
first area of interest was related to the analysis carried
out in Section 3.4 and here the equations governing the
physi cal nodel were transformed to their nodal co-ordinates
in order that the magnitude of the off-diagonal elenents

of the danmping matrix could be chosen in relation to the
magni tude of the |eading diagonal elenents and the effect
of close nodal natural frequencies and danpi ng separation
on the normal nodes could be investigated.

The second area was concerned with an investigation into

how sensitive were changes in the normal nodes to deviations
in the force input magni tudes and phases fromthose required
to classically excite the normal nodes when the danping
matrix was proportional to the stiffness matrix.

3.6.1 THE MATHEMATI CAL MODEL

The equations of notion of the physical nodel in terns of
t he co-ordinates Xq and X, of Figure (14) are:

mk + kx +jdx = £e5°Y .. .. .. .. .. (88)

where the nmass matrix mis:

- -
m—
T 2

[

(89)

=
|
(o8]
8
T L]

ol LSVER ol L

66




Datum
X2
-Rigid beam
mass, m,
Inertia, T .
v Fyeiwt
Fye jwt
FI GURE 14

TWO DEGREE- OF- FREEDOM PHYSI CAL MODEL EMPLOYED I N
THE SI MULATI ON EXERCI SE.

ks &; RESPRESENT THE STI FFNESS AND HYSTERETI C
DAMPI NG I N THE TRANSVERSE MODE.

koo 6, REPRESENT THE STI FFNESS AND HYSTERETI C
DAMPI NG I N THE TORSI ONAL MODE.
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the stiffness matrix k:
o
I Lz b L2
| .. .. .. .. (90)
L B N
4 L2 4 L_Z'
and the hysteretic danping matrix d is:
diq dys
(91)
dyg dyy

where the elenents d'1‘

of the danping matrix are given by:

J
dij =<Skij for i =j, 14, ) =1 2. ..n. (92)
= ciakijfor i #j, 0, ) =1 2...n (93)
kij being the elements of the stiffness matrix
8§ being the hysteretic danping factor or |oss factor
c Is a constant which is greater than zero.
In the special case of a stiffness proportionally danped
system
dij =<Skij for i, | =], 2 n (94)
The force vector f is sinply:
fl'
(95)
fz-
The nodal matrix for this system derived fromthe eigenval ue
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problem is obtained as:

1.0
&,
¢ = .. .. S .. .. .o (96)
1.0 -

and the eigenvalue matrix is:

2
“p
w? = R €V 3
0 nn&i

wher e, wy, Is termed the transverse nornmal node frequency
of vibration
w, IS terned the torsional normal node frequency
of vibration, and

£
fz[fz] (98)

| f equation (88) is expressed in ternms of the nodal
co-ordinates, q, the resulting equation for the nodel is:

b - W e3pa=MTE=Q.
where o 2 K__/M
rr ~ ‘rr’ rr?
and K = @t 5 o
M= otm g
S I e ee e .. (100)
F =9t f

3.7 COMPUTER PROGRAMS
In order to be able to investigate efficiently the large

nunber of input conditions on the nornmal node response of
the two degree-of-freedom system and to have a standard
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met hod of cal culating such factors as nodal danping ratios
and normal node frequencies, two conputer progranms were
devel oped. -

The prograns are listed in Appendix |1l and a brief
description of their use will be given in this section.

The first program (program ZTHA), is a general purpose
program for hysteretically danped multi degree-of-freedom
systems. This programreads in the mass, stiffness and
danmping matrices together with the appropriate frequency
paraneters and in particular, the input forces in their
real and imaginary parts. Thus, any conbination of input
force conditions in terms of their relative magnitude and
phase coul d be used.

This allowed the effect of any arbitrary force=distribution
on the theoretical normal nodes to be observed, whil st
varying the closeness of the normal node frequencies and
modal danpi ng.

Further, by presenting the data in terns of the nodal nass,
stiffness and danmping matrices the effect on the nornmal
nodes of varying the magnitudes of the off-diagonal elenents
of the nodal danping matrix could be observed when the
correct input force distributions were used. This again
could be carried out for a wide range of normal node
frequencies and nodal danmping ratio conditions.

The second conputer program (program CFIT), was witten

to allow the data generated by the first programto be
presented graphically, on-line, in terns of a vector plot.
This program was based on the theory of the Kennedy and
Pancu vector plots in which the response of a lightly

danped systemtraces out the locus of a circle in the
resonant region (27). To do this, a curve fitting procedure
whi ch produced a 'best-fit' circular arc within the

resonant region of the conputed response data was devel oped.

T
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This 'circle of best-fit' was plotted by the conputer and
t he nodal danping ratio and resonant frequency were
eval uated from this. -,
3.8  EXCI TATION OF THE NORMAL MODES IN A SYSTEM WTH A
FULL MODAL DAMPI NG MATRI X

The theoretical analysis of Section 3.4 showed that nodal
interaction was mnimsed when there was sufficient
separation between the natural frequencies of any two

adj acent nodes of vibration, or when the danping in one
of the nodes was very small conpared to that in the

adj acent node, even when the nodal danping nmatrix was
“full' (14).

In order to investigate the limts on the cl oseness of
the nmodal natural frequencies, in terns of errors arising
fromthe determnation of the individual nodal danping
ratios and natural frequencies of the conputed responses,
a series of tests were carried out using conputer program
ZTHA.

Qobviously, there can be no hard and fast criterion which
establ i shes the amount of error one can expect in the

cal cul ated val ues of natural frequency and nodal danping
for a given frequency separation of adjacent nodes, since
t hese are dependent upon the |evel of danping in the

i ndividual nodes. Thus, the sinmulation tests were carried
out for a level of structural danping typical of aircraft
structures, nanely 2% critical danping. The individua
nodal danping ratios were naintained at a constant val ue
and the closeness of the two natural frequencies was

adj usted by varying the torsional node natural frequency,
the transverse node natural frequency being held constant.

The val ues assigned to the physical paraneters of equations
(89) to (95) were based upon the values of the experinental

rig described in Chapter 4. These are |isted bel ow
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m= 16 kg; J =10 kgmz L=1Im
k; = 400 kN/m; k,(initial) = 56k§§d;
§=0.04 fl =£,=4N. ~

The above quantities were used in equations (89) through

to (100) to give the transformed nodal matrices:

_ 2
(L)b 0 0.25 0

w® = . 10° (2242 (101)
L0 w’ 0 0.56
3 2
€11 512 w, & &y2

Eo- _ (a2 .. (102)
1821 22 £21  Yilg
0.5 al

Q = N; g -= [ } (103)

0 4,

The of f-di agonal el enents, (812 = &57) of equation (102)
were chosen to be equal to the value of &1 t hroughout the
anal ysi s.

The value of 0.56 x 10° (rad/s)2 for the torsional nobde
natural frequency was increnentally reduced until the
difference between the frequencies of vibration was only

2%, i.e. wi/wy = 1.02; the nodal danping matrix at this
condi tion being given as:
0.1 0.
£ = 10* (r_a_d_) 2
0.1 0. S

For each frequency ratio increnent the nodal co-ordinates
were automatically plotted on a vector plot and the nodal
danping ratio and normal node frequencies eval uated.

72




4
3.9 RESULTS OF COWPUTER SI MULATI ON

3.9.1 THE EFFECT OF CLOSE NATURAL‘£REQUENCIES

Figures 15 to 20 show the effect of varying the closeness
of the natural frequencies of the sinmulated two degree-of-
freedom systemin terns of the vector plots for the trans-
verse normal node response. It can be seen that as the
separation between the two frequencies increases (i.e. B

i ncreases) and approaches a value of 1.25, the response
approaches that of a pure normal node.

The effect of the off-diagonal terns of the danping matrix
on the vector plot response, due to the closeness of the
natural frequencies, is to cause a rotation and a displ ace-
ment of the pure normal node response. This is evident
from Figures 15 to 20, where these effects can be clearly
seen as the frequency ratio g approaches 1.0.

These effects have been reported by other workers in the
field (40) (41), but if one extends the analysis and
extracts the nodal information fromthese results then it
Is possible to identify the errors in derived nodal proper-
ties which arise due to the above effects.

Figure 21 shows the deviation froma pure nornal node
response due to the closeness of the nodal natural frequen-
cies. This figure was obtained by determning the ratio

of the real to imaginary parts of the response at the true
transverse nornal node frequency of vibration. It can be
seen from Figure 21 that when the frequency separation of
the two nodes of vibration is greater than 1.25, only a
smal | inmprovenent in the nornmal node response is obtained
since the curve becomes asynptotic to the zero condition,
which is the required val ue.

From each of the responses shown on Figures 15 to 20 the
nodal danmping factors and nornmal node frequencies were
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conputed. Table 3.1 shows these quantities expressed as
percentage errors of the true values. The errors in the
results are, in the case of the diah danping factors

very large whereas the errors in the normal node frequencies
are considerably | ower and again, as the frequency separa-
tion approaches 1.25 the errors in both these quantities
reduces considerably.

These results, which are based on a nodal danping matrix
whose coupling (off-diagonal) elenents are conparable in
magni tude to the | eading diagonal elenments indicate that,
for the level of structural danping used in the analysis,
if the frequency separation of any two adjacent nodes is
greater than 1.25, then it is possible to excite a nornmal
node within normal experinental error bounds, and the nodal
danping and natural frequencies of vibration determ ned
fromthis response will be within acceptable limts.

If, however, the nodal damping |evels are changed then the
value of 1.25 for the frequency ratio separation will no

| onger be an accurate criterion for the mninmal nodal

I nteraction.

Table 3.2 shows this effect by giving simlar information
as in Table 3.1 except that the results are for a danping
| evel of 4%critical, i.e. § = 0.08.

It can be seen that for the same frequency separation
factor the errors in the estimted nodal danping factors
and normal node frequencies have increased.

3.10 PROPORTI ONALLY DAMPED SYSTEMS
Wth proportionally danped systens the equations of notion
can be transfornmed into individual uncoupled equations

which leads to a nunber of interesting results when such
systens are subject to nulti-point excitation
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FI GURE 15

VECTOR PLOT OF THE MODAL RESPONSE c’il IN THE TRANSVERSE
MODE.

FREQUENCY SEPARATI ON BETWEEN THE TRANSVERSE ( wb) AND
THE TORSI ONAL MODE (wt) IS 2%
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FI GURE 16
VECTOR PLOT OF gqj. FREQUENCY SEPARATION BETWEEN THE
TRANSVERSE  (w,) AND TORSI ONAL MODE (w.) IS 4%
1
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FI GURE 17

VECTOR PLOT OF ‘31' NATURAL FREQUENCY SEPARATI ON BETWEEN
MODES | S 6%
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FI GURE 18

VECTOR PLOT OF (q\l. NATURAL FREQUENCY SEPARATI ON BETWEEN
MODES IS 15%
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FI GURE 19

VECTOR PLOT OF c’il. NATURAL FREQUENCY SEPARATI ON BETWEEN
MODES IS 25%
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FI GURE 20

VECTOR PLOT OF &l.
MODES |'S 50%

NATURAL FREQUENCY SEPARATI ON BETWEEN
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FI GURE 21

THE EFFECT OF CLOSE NATURAL FREQUENCIES ON THE ABILITY
TO EXCITE A PURE NORVAL MODE

R
%I—e REPRESENTS THE PERCENTAGE OF REAL TO | MAG NARY PART

m OF THE MODAL RESPONSE §1 AT THE TRUE TRANSVERSE NORMAL
MODE FREQUENCY, Wy = 257165 Hz
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TABLE 3.1 6 = 0.04, o, = 158.1 Igﬂ (25.165 Hz)

&,

Frequency
Separation €s €,

Rati o

B=wk/wb
1.02 84 1.5
1.04 30 1.3
1.06 2 0.9
1.15 1.8 0.54
1.25 1.1 0.14
1.5 0.01 0. 06

TABLE 3.2 § = 0.08, w, = 158.1 L&

Frequency
Separation € €
Ratio -6 @
B=wk/wb
1.02 95 1.0
1.15 14 0.8
1.5 10 0.14

In the above Tables, the paraneters €5 and e, [epresent
t he percentage errors in the nodal danping factor and the
normal nmode frequency of the transverse node, i.e.

ey = § - § calculated 100‘
6
wy - cal cul at ed
e = X 100‘
w wb
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3.10.1 NORVAL MODES COF PROPORTI ONALLY DAMPED SYSTEMS

The mat hematical nodel used in tke sinulation studies of
the previous sections was again used except that the danping
matri x was proportional to the stiffness matrix, i.e.

d = 8k . . . . . (104)

and the equations were solved in terns of the discrete
co-ordinates X1 and X,, not the nodal co-ordinates al and

3,

The force vector given by [4.0, 4.0Tﬁqwas used to excite
the transverse normal node of vibration and the results of
this test are shown in terns of the output response xI and
X, in Table 3.3. This table shows the real, quadrature

and correspondi ng pol ar output responses as the frequency
is varied over both the normal node frequencies of vibration.
The interesting result of this table is that the node shape
remai ns unchanged for any excitation frequency. The
responses in this case are of course equal in nmagnitude due
to the symmetry of the system but even if the nodel had
not had symmetrical properties and the correct excitation
vector was used, the only difference in the results would
have been a change in the individual magnitudes, but the
ratio of these would have remai ned unchanged and equal to

t he node shape.

Since there are no coupling terms in the transfornmed equa-
tions of notion, the closeness of the natural frequencies
have no effect upon the nodal responses of the system

This leads to a further interesting result which is related
to estimating the natural frequencies and danping ratios

of nmulti-degree-of-freedom systens with proportional danping.
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E?ghbghtgn X Real (X) | Quadrature (X) Pol ar (x)
(Hz) (mm) (nmm) () R(mm 6(deg)
24.6 X4 0.249 -0.224 0. 335 41.97
X 0.249 -0.224 0. 335 41.97
25.0 Xq 0.147 - 0. 452 0.475 71.98
X, 0.147 -0. 452 0.475 71.98

25. 165 Xy 0.0 0.5 0.5 90.0

X, 0.0 0.5 0.5 90.0

25. 6 Xy -0. 248 -0. 284 0.377 131.1

X, -0. 248 -0. 284 0.377 131.1

26.0 X1 -0. 219 -0.13 0.255 149.0

X, -0.219 -0.13 0.255 149.0

TABLE 3.3

Proportional ly
Show ng t hat

Remai ns Unchanged with Excitation Frequency

Wy
[N}
t

Danped System Response
the Mbde Shape (x;/x3)

25.165 Hz
25.6 Hz
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3.10.2 THE EFFECT OF AN | NCORRECT FORCE I NPUT VECTOR ON THE

ESTI MATED MODAL DAMPI NG RATI OS AND NATURAL FREQUENCI ES
>

The fact that systenms which have off-diagonal terms in the

nodal danping matrix are sensitive to an incorrect (based

on the requirement of normal node excitation) force vector

| eads one to investigate the effect of this on a system

with proportional danping.

This was done by arbitrarily changing the input force
vector of the transverse node so that the elements of the
vector were in-phase but incorrect in magnitude, relative
to the true transverse normal node excitation vector.

The results of these sinulations are shown on Figure 22
where the response, in terns of the nodal co-ordinate for
the transverse node are plotted on a vector plot. The
constant frequency lines are also drawn on these plots and
it can be seen that the effect of an incorrect input force
vector is to nmerely increase (or decrease) the radius of
the response circle along a given constant frequency |ine.
Thus the danping ratio determned fromthese plots is
unchanged and the natural frequency is always given by

the point at which the real part of the response is zero.

These results are obvious when one considers that the
transforned equations of notion remain unchanged except
that the nodal input forces are changed in nmagnitude.
This is readily shown by the followi ng sinple analysis.

Let the equations of notion of a system in terns of the
di screte co-ordi nates, be given as:

+ (1+§6) . eJ9t  (105)
k
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PROPORTI ONALLY DAMPED SYSTEM VECTOR PLOTS SHOW NG EFFECT
OF AN ARBI TRARY | NPUT FORCE VECTOR

A INPUT FORCE VECTOR 'Fl 4.0]
_FZ = _l.O_
e | NPUT FORCE VECTOR —Fl' 4,07
F2 2.0
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wt

If a solution of the formx = uel®" is assuned, then by

solving the characteristic equation

e

( [d- m]ePu =0 . ... .. .. . (106

t he general expressions for the undanped normal node
vectors, assumng the |ast component u, is unity, are:

r m, 2—
1- 1'2—2'(1)1
uld) - .. .. .. .. .. (107)
1
| J
Z 2nm
L= =, 2
2
i(2
u(?) - (108)
1
k k m k k m
wher e wlz,Z = % <—1 + .__2_(1 + __2.)>4-((_1 + _.2_(]_ + __g))z
ml m2 ml m1 ,m2 ml
k-k
1™2
-4 ) . .. . .. .. (109)
mym; }

| f equation (105) is transformed into nodal co-ordinates,
the mass, stiffness and danping matrices becone diagonal
and the transformed force vector is given by:

g (DO - 812) + g, (D

Q = ce e .. (110)

e ()

2
)+ i

2 "2
s ®a K, “2

In order for a normal node of this systemto be excited,

87

e




4

fl(l), fz(l) and fl(z), fz(z), whi ch denote the magnitudes
of the individual elenents of the real force vectors in
the first and second normal mode® of vibration, will be

unique, i.e. if fz(l) = fz(z) i; these are given by:
e (1) 2 -1 -<k1 _ mleZ) (111)
1 - kz . o * o . o LI
2
ky, - muw
(2) _ \ 171
£, =-1- < X ) e e e e e e (112)

However, when these force vectors are not nornal
node vectors then this nmerely neans that the response

amplitude is changed by a scalar quantity, i.e.:
1 1
fl( )" afl(l) o ceee oo (113)
1) 1N
fz( ) - bf, L ceee e (118)

1 ngl 2
and Q = .. . (115)
(2)" M2 2 (2)"
£ (1 - ?;wz ] + £,

where a and b represent the scalar changes in the magnitudes
of the forces.

The inplications of this are that the node shape changes
with frequency and only satisfies the normal node condition
when the excitation frequency corresponds to the nornal
mode frequency, but the nodal danping and nornmal node
frequency remain unchanged. Thus, if it was possible to
know a priori that the danping was proportional, then it

R R SRR - ppn e Sy
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woul d not be necessary to obtain the actual force distri-
bution required to excite a normal node if all one was
interested in obtaining was the medal danpi ng and nat ural
frequency, since an approxination‘to the normal node
excitation vector,maintained in that appropriation, as the
excitation frequency was varied would enable vector plots
to be obtained which would provide accurate val ues for
the natural frequency and nodal danping ratio.

3.11 DI SCUSSI ON AND CONCLUSI ONS

The work detailed in this section was concerned with the
effect of nodal interaction in conplex systems. The
follow ng points are the conclusions that have been drawn
fromthis work.

1. The main factor contributing toward nodal interaction
Is the closeness of the natural frequencies of
adj acent nodes, and that in all practical terns the
nodes of structurally danped systens can be consi dered
uncoupled if the frequency ratio of adjacent nodes is
greater than 1.5, even if the off-diagonal terns of
the danping matrix are conparable to the |eading
diagonal terns. The factor of 1.5 is, of course, only
a guide and is based upon a maxi mum structural danping
factor of 0.08.

2. In the case of proportionally danped systens the
normal node conditions are independent of the excita-
tion frequency.

3. [f an input force vector, which does not correspond
to a normal node excitation vector, is used to excite
a multi degree-of-freedom system which can be cl ass-
ified as proportionally danped then the node shape
changes with frequency. However, the vector plot of
t he nodal responses nerely increases in magnitude
along the constant frequency lines. As a result of
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this the nodal danping ratios and nornmal node
frequencies determned fromthese plots remain
unchanged. .

The inplications of this are that for systens
where nodal interaction is mninal then it would
appear that it is not necessary to set up an
accurate normal node excitation vector if al

one is interested in is the nodal danping ratio
and normal node frequency.
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4. EXPERI MENTAL PROGRAMVE

The aim of the experinmental work was to design an
experimental rig on which nulti-point excitation tests
could be carried out in order that normal node excitation
met hods of conplex structures could be investigated.

Since the techniques involved in exciting normal nodes of
conpl ex structures required some practice, (the author

had spent sone tine during the research period at British
Aerospace, Warton, Preston, on nulti-point excitation
tests of mlitary aircraft and found the procedures invol v-
ed sonewhat lengthy), it was decided that the initial
experimental programre should be used to 'practice' the

t echni ques whi ch had been observed in the ground resonance
testing of aircraft at British Aerospace.

4.1 | NI TI AL NORVAL MODE | NVESTI GATI ONS

4.1.1 | NTROCDUCTI ON

The preceedi ng Chapters have shown that there are inportant
criteria which nmust be satisfied in order that normal nobdes
can be experinentally produced when exciting conpl ex
structures. In order to design a rig which could be used
to experinentally investigate the effect of non-linearities
and which incorporated nultiple shakers to excite the

normal nodes, the infornation obtained fromthe experinenta
and analysis work of the preceeding Chapters had to be

consi der ed.

The fact that nodal interaction can be mnimsed by choosing
a suitable natural frequency separation between adjacent
modes of vibration, and that this can be further enhanced

by enploying the same principle with the consecutive danp-
ing ratios (wth the levels of damping being snall), poses
somewhat of a paradox. The work which was carried out on
harmonic force distortion and detailed in Chapters 1 and 2
showed that for lightly danped structures the force |evels
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at resonance are very small and harnonic distortion of the
I nput force can be very severe.

&
In the case of nulti-point excitation nethods, this aspect
can be particularly inportant since the input forces (both
in magni tude and phase) are used as part of the criterion
for establishing the normal nodes and, if the levels are
very small (bearing in mnd that one is nerely overcom ng
the | ocal structural danping at the input points when the
structure is vibrating in a normal mode) then problens
wi th phase coherence could be critical

Thus the paradox is that although one would prefer a
structure with very |light danping to m nimse danping
coupling, the force levels at resonance are so small (and
resulting anplitudes relatively high) that vibration
exciter and distortion effects nay become a problem

Since the ultimate aimof the experinmental work was to
investigate the use of nornmal nodes in identifying the
nodal properties of conplex structures, it was felt
necessary to initially establish what |evels of nodal
stiffness (based on purely hysteretic danping) would allow
t he generation of normal nodes without severe force dis-
tortion occurring and w thout having to conpensate for the
vibration exciter characteristics. This would then allow
arigto be designed wth nodal stiffnesses which would
require exciting forces that were not so small in magnitude
to prevent satisfactory nornal nodes being excited.

The techni ques enpl oyed for exciting the normal nodes
together wth the instrumentation used in this prelimnary
experimental work are discussed in detail in Sections 4.6
to 4.8 together with details of the transducer calibrations.

4.2 DESCRI PTI ON OF EXPERI MENTAL PROCEDURES

DARTAEL

A sinple rig was designed which utilised two-point excitation
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to excite the normal nodes. The rig was designed to have
two principal nodes of vibration, a transverse (or bending
nmode) and a torsional node. The m»ig basically consisted

of a rectangular solid steel beam pinned at one end and
encastre at the other which supported a hollow steel cross-
tube. Figure 23 shows a diagrammatic sketch of the rig,
together with the positions of the nmeasuring transducers
and the vibration exciters. The rig was designed to be
symmetrical so that the node shapes and correspondi ng i nput
force ratios were sinple to produce experinentally, e.g.
the transverse normal node was to be identified when the
accel eroneters on each end of the cross-tube were equal

i n magni tude and phase and at quadrature to the input
forces, which were also equal in magnitude and phase and
the torsional node when the responses were in anti-phase
with the input forces in-phase and at quadrature to the
response.

The aimof the tests was to determ ne the nodal stiffness
whi ch woul d allow the transverse normal node to be excited
with the input force ratio F)/F| = 1.0. This was to be
done by varying the position of the cross-tube along the
beam and at each position exciting the transverse nornal
mode of vibration.

The effect of varying the position of the cross-tube was
to change the mass and stiffness distribution of the rig
and thus for each re-location (within the constraints of
the rig) it was necessary to determ ne the nodal stiffness
as well as excite the 'new' nornmal node of vibration. It
was found that with the cross-beamin a position which
approxi mated to half-way al ong the beam (i.e. the nost
flexible position) difficulty was encountered in obtaining
an input force ratio which resenbled the required ratio
i.e. FZ/F1 = 1) to excite the normal nobdes. Hence it was
found necessary to obtain a check on the nodal stiffness
by exciting the transverse node with one exciter acting at
the centre of the cross-tube (the nodal point of the
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torsional node) and this was carried out for each re-

| ocation of the cross-tube. As a further check on the
stiffness properties, occasional static tests were carried
out. These conprised |loading the rig at the centre of the
cross-tube and neasuring the resulting static deflections
under the applied | oad.

4.3 SINGLE PO NT EXC TATI ON TESTS

The results of these tests were obtained in the form of
the inertiance i.e. output acceleration divided by input
force (this being kept constant). This quantity was
nmeasured with the frequency response anal yser and was
recorded in the formof the real and quadrature conponents
in order that the results could be presented in the form
of the Kennedy and Pancu vector plots. This node of
presentation allowed the nodal stiffness and danping to be
readi |y evaluated and also allowed the use of the conputer
prograns, developed in the previous Section, to obtain
accurate curve fits to the experinmental data.

The initial single point excitation tests were concerned
with establishing the 'danping symetry' of the experi-
mental rig. These were carried out by exciting the cross-
beam at points symetrical about the centre line of the

rig (Wwth the same exciter) and measuring the inertiance

as the frequency was varied over the transverse node natural
frequency. The resulting vector plots of these tests are
shown on Figure 24.

It can be seen fromFigure 24 that the vector plots differ
very slightly, with the result that the cal cul ated danping
factors are different, indicating danping asymetry.

Figure 25 shows a typical vector plot of the transverse
nmode from which the nodal stiffness was evaluated for that
particular configuration and Figure 27 shows the results
of the static stiffness tests which provided a check on
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t he nodal stiffnesses.

The results of the static and sjpngle point excitation
tests are given in Table 4.1.

4.4 TWO- PO NT EXCI TATI ON TESTS

For each of the cross-tube positions enployed in the

single point excitation tests, a multi-point excitation
test was carried out with the intention of exciting the
transverse normal node. As nentioned earlier, difficulties
were encountered in satisfying the normal node criterion,
and it was decided that a normal node was excited when the
resulting responses were in-phase and at quadrature (within
a phase tolerance of + 5% to the in-phase input forces.
The results of these tests are detailed in Table 4.1 which
shows the input force ratios as a function of the nodal
stiffness and the associ ated nodal danpi ng.

A typical vector plot fromthese tests is shown on
Figure 26 with the input force ratio satisfying al nost
exactly the theoretical ratio of 1.0.

4.5 DI SCUSSI ON OF RESULTS

The aim of these tests was to establish a suitable nodal
stiffness whereby it was possible to excite a structure,
inits normal node, such that the individual input forces
used to overcone the structural danping and maintain the
normal node condition were not affected by significant
harnoni c distortion.

Since the input force levels at a normal node frequency
are nerely overcom ng the modai structural danping, then
the stiffer the structure, the larger will be the levels
of input force for a given displacenent and structural
danmpi ng factor. This in turn nmeans that the effects
of exciter and harnonic distortion characteristics are
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FI GURE 24

SINGLE PO NT EXCI TATI ON TESTS:
I NVESTI GATI ON OF DAMPI NG SYMMETRY FOR THE TRANSVERSE

MODE COF VI BRATI ON
e RESPONSE OF a; WTH ONLY F, ACTING (%,/F;)
0 RESPONSE OF a,W.IH ONLY F. ACTI l\lC‘L"(ir:z’/IE)

e CALCULATED DafPING FACTCR §, = 0.0034
o CALCULATED DAWPING FACTOR g1 = 0.0024
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FI GURE 25

VECTOR PLOT FROM TYPI CAL SINGLE PO NT
EXCI TATI ON TEST AT CENTRE OF BEAM

i-|N
o

290

FI GURE 26

VECTOR PLOT FROM TWO- PO NT EXCI TATI ON TEST
W TH FZ/Fl = 0.975
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al so reduced.

This is borne out by examning the results detailed in
Table 4.1. \Wen the nodal stiffnggs of the rig was | ow
it was not possible to achieve a force ratio which
corresponded to the theoretical force input ratio of

1.0. Nevertheless, the vector plot response indicated

an al nost pure single node response when this force ratio
was maintai ned constant as the frequency was varied over
the natural frequency range and the vector plot measured.

An expl anation of why the ratio of the force input of one
side of the rig to the other (Fz/Fl) shoul d al ways be |ess
than 1.0 can be explained by the results obtained from
Figure 24. These results indicated that the danping
distribution was asynmetrical and that the danping ratio
calculated fromtests carried out using F, as the input
source was |lower than that at the other side of the rig,
namely input source Fl. Since the danping level is snall
the resulting force levels are also small and hence the
input force at the point where the danmping was the great-
est became the predom nant exciting force.

As the nodal stiffnesses were increased, the individual
force levels increased and the input force ratio approach-
ed the theoretical ratio of 1.0 as shown by Table 4.1.

The resulting nodal stiffness which gave this condition

was then the required m ni num design stiffness in order

that suitable force levels would be available to excite

the normal node.

4.6 TEST | NSTRUVENTATI ON

The instrunentation used to excite, neasure and record the
normal node results is shown on Plates 3 and 4. The

met hod of exciting the normal nodes required that the
various phases and magni tudes of the input and out put
responses be nonitored alnost instantaneously. This was
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achi eved during the experimental tests by designing a
switching unit which allowed both of the input forces,

t he out put accelerations and the individual input forces
and out put accelerations to be oﬁgérved by a sinple
series of swtching operations.

The output of the transducers was fed via this unit to
t he frequency response analyser (F.R A).

The F.R A. had a dual role. The response of the system
was neasured on the F.R A (this was displayed in digital
form in either the real and quadrature conponents or in
polar form The F.R A had two input channels which

al l owed either a conparison between the two input signals
(i.e. a transfer function) or sinply each individual
channel could be observed.

The other role of this instrument was as the master
frequency control. An output voltage fromthe F.R A was
fed to two individual anplifiers which in turn were
connected to the vibration exciters. The frequency of the
excitation voltage (and hence current) fed to the vibra-
tion exciters was thus controlled by the internal oscillator
unit of the F.R A, thus all the frequency information
supplied as inputs to the F.R A were referenced to its

own internal oscillator. This allowed the instrunent to
correlate the input frequencies with its reference frequency
and thus reject high levels of harnonic distortion.

The vibration exciters used were el ectro-dynam ¢ nodel s
with a peak force rating of 25N. These were connected to
the test rig (the cross-beanm) via the push-rod and force
link assenblies, the output current of each exciter being
controlled by its own anplifier which allowed the force
levels to be adjusted independently.

The two input forces were neasured with piezoelectric
force transducers and the two output responses, nonitored
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at the sanme points were neasured with piezoelectric

accel eroneters. The outputs of these transducers were
fed to a bank of four charge anplifiers which in turn
were connected to the swtching uhdt in order that the
various configurations of responses could be recorded on
the F.R A

Throughout the tests, the output accelerations and input
forces were continuously nonitored on oscilloscopes in
order to give both a visual picture of the phase orien-
tations of the responses (i.e. for identifying in-phase
or anti-phase conditions) and to observe the quality of
the input forces to check for such aspects as misaling-
ment or bottom ng of the armature in the vibration exciters,
both of which produce a distorted force input waveform (81).

A second switch was incorporated bet ween each vibration
exciter and its corresponding anplifier in order that
transient tests could be carried out. This switch allowed
the exciters to be sinmultaneously open-circuited and hence
virtually uncoupled (electrically) fromthe excitation
system The actual location of this switch is very inpor-
tant in order that the free-vibration response of the rig
Is not to be affected by the electrical danping character-
istics of the vibration exciters. These effects are due
to the back enf generated during free vibration and unl ess
the anplifier unit feeding the exciter has a very high

out put i npedance (which in the case of the exciter input
bei ng open-circuited produces the effect of an anplifier
with an infinite output inpedance) this results in a
finite current in the coil of the exciter armature which
produces a force opposing the notion of the armature and
effectively danps the free vibration. These back enf
effects have been recorded by other researchers (4) and
are particularly inportant in the case of lightly danped
structures.
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4.6.1 CALI BRATI ON OF TRANSDUCERS

In order that a common reference sensitivity could be
applied to each of the piezoelectric transducers and al so
to act as a check on the nmanufacturer's calibrations,

each of the transducerswere--calibrated using a non-contact
t echni que.

The calibration techni que used had previously been

enpl oyed to calibrate force transducers (13) and relied
upon a solid steel prismwth grids of 0.127 mm (0. 005")

and 0.254 mm (0.010") etched onto one face which was highly
polished. The transducer to be calibrated was securely

| ocated on the steel prismwhich was then vibrated at a
given frequency. By adjusting the anplitude of vibration
at this frequency and observing the grids with a m croscope,
synchronisation of the lines indicated peak-to-peak
anplitudes of vibration in steps of 0.127 mmor 0.254 nmm

The output fromthe transducer was fed to its corresponding
charge anplifier and the voltage from the cha-rge anplifier
was recorded on a digital voltmeter. By repeating this
procedure for a range of frequencies (this techni que was
found satisfactory over the frequency range 5 to 400 Hz)

a calibration graph of output voltage against accel eration
(derived fromthe product of wlx di spl acenent) for an

accel eroneter and its charge anplifier was obtained.

In the case of the piezoelectric force links, the procedure
was nodified slightly in that a body of known mass was
rigidly nounted on a force link and the same procedure
applied as with the accel eroneters, except that in this case
the resulting calibration curves were in terns of output

vol tage against force (this being determned fromthe
product of the known mass and the acceleration). Through-
out the tests the responses of the transducers were observed
on an oscilloscope to ensure that sinple harnonic notion

was occurring, otherwi se the calibration curves would have
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been invalid. Appendix VIT gives the results of the
calibration tests and resulting sensitivities.

-~
4.7 DESI GN OF A TWDO DEGREE- OF- FREEDOM TEST RIG W TH
TUNABLE FREQUENCI ES

The final experimental rig design had to incorporate the
information obtained fromthe earlier tests on the

l'ightly danped sinple beamrig described in Section 4.2
where it was shown that difficulties in setting up the
normal nodes were experienced with Iightly danped structures.
It was established fromthese tests that if the nodal
stiffness was sufficiently high then the resulting excita-
tion forces at resonance would be of a sufficient magnitude
to satisfactorily excite the normal nodes of the test rig.
Thus the two nodes of vibration of the experinmental rig

had to satisfy these conditions.

Plate 3 shows a photograph of the experinental rig and

test instrumentation. The rig basically consists of a
steel rectangul ar tube encastre at one end and on a support
at the other end which allows axial novenment to occur but
restricts torsional and vertical novenent (sinple-support).
The rectangul ar steel tube supports a solid square steel
cross-beam which is located on the tube by allow ng the
tube to pass through the steel cross-beam  The cross-beam
Is securely fastened to the rectangul ar steel tube by bolts
acting on a brass slipper pad to prevent |ocal deformation
of the steel tube;

The cross-beam had additional nasses secured symmetrically

whi ch were adjustable in position in order to vary the

mass nonent of inertia, and hence vary the torsional

. natural frequency of vibration wthout changing the trans-
verse natural frequency of vibration. This provided tunable
natural frequenci es.

105




901

N

- L]
(92}

=7

Di gital Phaseneter
Switch Unit for F.RA
Frequency Response Anal yser (F.R.A.)

. Amplifiers

Charge Amplifiers

Osci | | oscopes

Vi bration Exciters

Switch Unit for Qpen-circuiting exciters

7
o~

==

77
8
9

KEY FOR PLATE 3 OVERLEAF




"NOILVINIWAYLSNI LSHL ANV DIY TVINEWIYIdIXH

€ dLVId

- -
L = L .VI. eee
8| o) ==
P 8] o]
¢ P L)
Ay d sl ... 908
— v v..:
e :
g -
| R N
P!

—

oY




"STIIVY-HdIND NO
JILVO0T SHALIOXH NOILVYHEIA ONIMOHS DI¥ TVINIWINAAXT

¥ dL¥'1d

7 4
i
‘ il
Ty
A
N
o |
/'
R L
il #
....._
- ey |I..I.l_
1"
|| 1
|
T

o
-




--

*SHITHWISSY ao¥-HSNd
0NY ;SNOILISOd ¥ADNASNWYIL ONIMOHS OI¥ TYINIWINIIXH

S HIvVId

-

1, . Ve
; S <

110




Y

The use of a rectangular steel tube to provide the trans-
verse and torsional spring effects arose fromthe fact
that in order to have a high modayl stiffness in both

nodes of vibration it was necessary to increase the polar
and second noments of area w thout increasing signif-
icantly the mass of the elastic menber. The fundament al
natural frequencies of vibration for the two nodes were
chosen to be in the frequency range 15 - 30 Hz, this range
being a typical frequency range which is encountered
during aircraft ground vibration tests.

Facilities were available for attaching el ectro-dynamc
vibration exciters to the bottomof the cross-beam

These allowed the exciters to be situated at any position
al ong the cross-beam by having them nounted on trunnions
running on guide-rails, Plate 4 shows these aspects

The exciters were connected to the cross-beam via push-
rod and force |link assenblies as shown on Plate 5. The
push-rod assenblies allowed the vibration exciters to be
easily positioned and in particular alignment and set-up
of the exciters, so that when the rig was in its static
equi li brium position the armatures of the exciters were
not pre-loaded; and due to their lateral and torsional
flexibility they did not restrict the notion of the system

The entire rig was nounted on nassive cast-iron bed plates
in a fabricated rolled-steel-joist framework whose natural
frequencies were wel| above those used throughout the
tests. The design calculations for the experinental rig
are given in Appendix VI.
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4.8  NORVAL MODE TESTING PROCEDURES

In order to assess the quality oprhe rig in terns of
exciting real normal nopdes of vibration and to determne
the normal node frequencies of vibration,a series of
transient and forced vibration tests were carried out on
the rig. Before these are discussed in detail, it is
felt that an introduction to normal node experinental
procedures woul d be worthwhile.

The techniques enployed in experinmentally exciting normal
nodes of vibration enploy the phase-resonance criterion
and are based on an iterative process since little infor-
mation i s known apriori regarding the nmode shapes (and
hence appropriate force distributions). The usua
procedure, for exanple, in a ground vibration test on an
aircraft is toinitially excite the structure by using
two vibration exciters (usually placedsymetrically, one
on each wing), and to sweep a given frequency range and
record the transducer (acceleroneter) responses over the
structure. This is done for in-phase and anti-phase
excitation conditions.

From the resulting responses, guidance as to the symetric
and anti-symretric node shapes and resonant frequencies

of vibration is obtained. Using this infornation, vibra-
tion exciters are located in positions which will (hope-
fully) excite only a particular single node of vibration,
i.e. the effects of adjacent nodes are elimnated. The
input forces are then adjusted, one at a time, until the
response of the structure is approaching an in-phase (or
anti-phase) condition. |f this cannot be achieved, the ;
frequency is adjusted until the responses converge to this
condition. The force magnitude distribution is then

adj usted until an in-phase condition,which is at quadrature

wth the response,is obtained. This nmay also require a
frequency adjustnent as well as enploying exciter conpen-
sation nethods to satisfy the required criterion.
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If it is still found that it is not possible to obtain a
set of conditions which reasonably conformto the above,
it may be necessary to adjust theplocation of the excit-
ers, in which case the whole procedure has to be repeated.

Once the phase resonance criteria have been satisfied,

the frequency can be varied around the normal node frequ-
ency (with the force appropriation held constant in

magni tude and phase) in order that vector plots or conplex
power plots can be obtained from which such aspects as the
nodal danping can be cal cul ated. Techniques for inproving
this tedious iterative nethod are being continuously
investigated and reference to (42 » 49) provi desan overal
view of these.

In the case of the author's experinmental rig, the theor-
etical node shapes were sinple and known a priori and thus
the experimental procedure was greatly sinplified. Never-
thel ess, the process of setting-up the normal nodes
accurately was extremely time consum ng since the force

| evel s and frequency adjustnents were all manual ly

controll ed, whereas nost industrial tests are fully automated.

The procedure enployed for exciting the nornmal nodes on
the test rig was to set the excitation frequency at the
natural frequency indicated by a transient test and to
adjust the two force levels until the two responses were

I n-phase (or anti-phase). The phase angle between one of
the forces and the correspondi ng output response (acceler-
ation) at that point was then checked for a 90° phase

di fference. If this was in error by nmore than plus or
mnus two degrees, the frequency of excitation was changed
until this condition was achieved. The phase of the out-
put responses was again checked and if this was not wthin
t he phase margin of plus or mnus two degrees the other
excitation force nagnitude was adjusted until this condi-
tion was satisfied. The phase angles between the two

I nput forces were then checked for an in-phase condition
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and if this was within the phase margin of two degrees

it was then assunmed that the frequency of excitation was
at the normal node frequency. -

Under these conditions the rig was vibrating as a single
degree-of -freedomwi th the output response in-phase (or
anti-phase) and at quadrature to the input forces which
were also in-phase (or anti-phase). Once the nornal

node conditions were established, the purity of the
normal node was checked by carrying out a transient test.
This was done by switching off the excitation to the
vibration exciters (switching the exciters to open-circuit)
and recording the response on an ultra-violet recorder

4.9 NORVAL MODE EXPERI MENTAL TEST RESULTS

A typical set of experinental results, for an arbitrary
| evel of input force at the normal node frequencies, are
shown in Tables 4.2 and 4.3 for the transverse and
torsional nodes respectively.

It can be seen fromboth Tables 4.2 and 4.3 that the input
forces are predomnantly real and that the output acceler-
ations are alnost purely imaginary. The phase angle margins
of +2° are satisfied and the input forces are at quadrature
to the output. Thus the conditions satisfy (wthin the

set experinmental bounds) the classical phase-resonance
criterion.

Figures 28 and 29 show the transient response for the
transverse and torsional nodes when the exciters were
switched to open-circuit with the rig vibrating under the
conditions specified by Tables 4.2 and 4. 3.

The nodal purity from observation of the transient traces
I's obvious since, had the excitation configuration not
been correct, beati ng woul d have been evident in the trans-
ient responses. Thus it was established that the normal
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Measur ed aj a F F

Quantity (volts) (vofts) (volts) (vofts) a1/Fy a,/F,

Real 0.03 0. 032 1.65 1.64

| magi nary -0.7 -0.71 0. 04 0.05

Pol ar 0.701/-87.510.71/-87.4 1.65/1.39 |1.64/1.75 |0.425/88.9 {0.427/89.2
TABLE 4.2

Transver se Nor nmal

wg = 23.3 Hz

Mode Excitation Conditions
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nmodes of vibration of the rig could be excited and

confidence placed in the neasured results.
~,

4.10 DI SCUSSI ON

The experimental work described has shown that problens
can arise in obtaining satisfactory nornal node excita-
tion vectors of flexible (i.e. lightly danped) struc-
tures.

These problens are due to the fact that the internal
danping of flexible structures is very |ow at resonance
and consequently the excitation force levels are snall.

As a result of this, the force signals becone non-linear.
with significant harnonic distortion (see Section 1).

It has been shown that by choosing a suitable combination
of nodal stiffness, and hence danping levels, that these
probl enms can be overcone and accurate nornmal node invest-
igations using nulti-point excitation nmethods can be
carried out under controlled conditions.

The final section of the dissertation concerned the

i nvestigation of the effects of non-linearities, partic-
ularly the non-linear effects caused by dry surfaces in
contact noving relative to each other - Coulonb friction -
using the above experinental rig.
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ANALYSIS OF STRUCTURES WITH
COMMON NON-LINEARITIES
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5. | DENTI FI CATI ON OF STRUCTURES W TH NON- LI NEAR
CHARACTERI STI CS
~

5.1 | NTRCDUCTI ON

Non-linearities represent one of the major stunbling

bl ocks in the field of dynam c nodelling and frequency
response testing methods. In the field of structural
dynam cs the nost common type of non-linearities
encountered are those due to Coulonb friction (SO, and
non-1inear stiffness characteristics (51).

Anot her very common non-linearity, is that due to

' backl ash' (52), although this type of non-linearity

causes problens mainly in mechanisns and control systens
and thus no enphasis is placed on the analysis of struc-
tural systems wth backlash in this dissertation, although
reference may be nade to its effects in the follow ng
Chapters.

The main non-linearity which is investigated is that of
Coul omb friction as a result of the author's involvenment
with ground resonance testing of aircraft where this type
of non-linearity is very comon (38)(53)(54). A section
of the work is also devoted to anal ysing systens with non-
l'inear stiffness characteristics, since in regard to air-
craft flutter analyses these structurally caused non-
linearities can have serious consequences (51).

The anal ytical techniques available for analysing systens
governed by non-linear differential equations of notion
are nunmerous, the basic mathematical ideas and techni ques
bei ng devel oped by Poincaré (55). The study of the basic
physi cal problenms (which is the author's prine concern)
was attributed to Rayleigh (31), Van Der Pol (56) and
Duffing (57). Van Der Pol's and Duffing's well-known
equations continuously formthe basis for investigations
of non-linear systems, and the analysis techniques of
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Kryl of f and Bugoliuboff (58) and numerous others (59)
have contributed to a better understanding of the various
phenonena which occur in the field®of non-linear systens.

The effects of the non-linear elements under consideration,
namely stiffness and friction effects, are anal ysed by
l'inearising these elenments using the nethod of Harnonic

Bal ance (or Harmonic Linearisation) (60). This is often
ternmed the 'Describing Function Method' and its origins
lie in the analysis of non-linear control systems (61).

This method has found extensive use in the field of non-
linear dynamics, particularly in the aerospace field (51
53), and the linearised equivalent elenments for such
characteristics as non-linear stiffness and Coul omb
friction are readily available in the cited literature
(60, 62).

Unfortunately, few of these areas of analysis make any
progress toward identifying real structures. For exanpl e,
nmet hods have been proposed for the forced vibration

anal ysis of systens with Coulonmb friction (50) (63) (64),
various types of non-linear danping (65) (66) and stiff-
ness characteristics (67), but in each case little experi-
mental evidence is available to establish the validity or
direct application of these nethods.

The work detailed in the follow ng chapters describes a

t echni que, based upon the work by Bonneau (68) and Baticle
(69), which considers the conpl ex power input to systens
at resonance that allows nulti degree-of-freedom systens
wth non-linear stiffness and Coulonb friction elenments

to be identified enploying normal-node multi-point excita-
I on et hods.

5.2 THE COVPLEX POAER SUPPLI ED AT RESONANCE

In order to express the basic principles involved in the
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Kryl of f and Bugoliuboff (58) and numerous others (59)
have contributed to a better understanding of the various
phenonena whi ch occur in the field®of non-linear systens.

The effects of the non-linear elements under consideration,
namely stiffness and friction effects, are anal ysed by
l'inearising these elenments using the nethod of Harnonic

Bal ance (or Harmonic Linearisation) (60). This is often
termed the 'Describing Function Method' and its origins
lie in the analysis of non-linear control systems (61).

This method has found extensive use in the field of non-
linear dynamcs, particularly in the aerospace field (51
53), and the linearised equival ent elenents for such
characteristics as non-linear stiffness and Coul onb
friction are readily available in the cited literature
(60, 62).

Unfortunately, few of these areas of anal ysis make any
progress toward identifying real structures. For exanpl e,
nmet hods have been proposed for the forced vibration
analysis of systens with Coulonmb friction (50) (63) (64),
various types of non-linear danping (65) (66) and stiff-
ness characteristics (67), but in each case little experi-
mental evidence is available to establish the validity or
direct application of these nethods.

The work detailed in the follow ng chapters describes a

t echni que, based upon the work by Bonneau (68) and Baticle
(69), which considers the conpl ex power input to systens
at resonance that allows nulti degree-of-freedom systens
wth non-linear stiffness and Coulonb friction elenments

to be identified enploying normal-node nulti-point excita-
I on et hods.

5.2 THE COVPLEX POAER SUPPLI ED AT RESONANCE

In order to express the basic principles involved in the
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use of the conplex power nethod, the inportant relation-
ships which arise as a result of the nethod will be given
in this section, the derivation ofthese quantities being
given in Appendix IV.

|f one considers a viscously danmped, |inear single degree-
of -freedom system subject to forced vibration, the response
of the systemin terns of the in-phase and quadrature
conponents can be expressed as:

U = u' + ju" . . . (117)

where u' represents the in-phase displacenent
u'" represents the quadrature displacenent.

If the total input power at a given frequency of excitation
is W this nust be conposed of the quantities:

W= W'+ jw' . . . . . . . . . . .. (118)

where W' the in-phase power = -Fyu"
W' the quadrature power = jFuwu'
and F is the magni tude of the input force.

Appendi x V shows that when the excitation frequency equals
the natural frequency of the single degree-of-freedom
system the follow ng conditions apply:

WH dwl _
- _%(ﬁw O v v v v e ... (119)
n n
and
dw” _ .
In = a nmaxi mum e e e e e e e .. (120)

These conditions can be shown (Appendix V) to give the
danping ratio as:
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p = L W P & 3 §)
®n dw'/dw
w=wp ~,

The in-phase and quadrature power conponents are given by
equations A V.5 and A V.6 as:

F2
W ZCT wsl
(1 _ a2y2 + gglp?.roax oo (122)
2
Frw 2
(1 - %)
W = k . . x .. % (123)
(1 - 952 T a72? : : :
where @ = w/wn

| f equations (122) and (123) are plotted as a function of
the excitation frequency w, then the characteristics appear
as shown on Figure 30 and fromthese the various quantities
necessary to determne the danping ratio, given in equation
(121), can be obt ai ned.

5.3 "ANALYSIS OF A SI NGLE DEGREE- OF- FREEDOM SYSTEM W TH
NON- LI NEAR STI FFNESS PROPERTI ES USI NG COWMPLEX POWER
METHCDS

Non-linear structural stiffnesses usually arise as a result
of nmovenents in joints (51)(70), gui deways (71), and el astic
el ements such as plates and beans subject to |large deflec-
tions (72).

In all cases, the non-linear terns usually represent a
hardening or a softening spring characteristic (73) which
results in an equation of notion for a hysteretically
danped singl e degree-of-freedom system subjected to an
external harnonic excitation force of constant nmagnitude as:

3 _ pejot

mX + k(1 + jé)x + c'x (124)
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.




wl

w'mux'
wro ~,

dw? 3

-+
-1-

W=Wn —

dw

FI GURE 30

I N-PHASE (W') AND QUADRATURE (W) COWPLEX POWER
COVPONENT CHARACTERI STICS AS A FUNCTION OF THE

EXClI TATI ON  FREQUENCY FOR A SINGLE DEGREE- OF- FREEDOM
SYSTEM
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where c¢' Iis a constant coefficient.

By enploying the principle of harfnic bal ance, equation
(124) becomnes:

m% + k(1 + j&)x + k*x = Fel®t (125)

where k* = %C‘Az, A being the anplitude of vibration of
the non-linear elenent.

Assum ng a steady state solution of the form
x = uel®t where |u|=A

we obtain the solution of equation (125) as:

u = > F (126)
(k - mo” + k*) + jké
. US
i.e. u = .. .. .. .. .. (127)
2 .
(D,* - 2%) + s
2 _ i '
wher e D~ =1 +v(%); v =91—<—
Q = w/wn
U = Fk
Now A = |u|, thus
U
A= | 5| \ . e .. (128)
((DAZ _ Q2)2 + 62)5.* . .
The solution of equation (128) for e is:
QZ =D 2 + ((uS 2 _ 62)% (129)
I »
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The maxi mum val ue of A occurs at a frequency given by:

QZ = DA2 i.e. when, ~y
sl
A = 3 Ce e e (130)
and 0% =1 + v(k—).. Ce e e (131)
by

The interesting point about equation (131) is that the
poi nt at which the excitation frequency equals the system
natural frequency (i.e. @ = 1) does not coincide with a
90° phase angl e between the displacenent response A and
the excitation force unless v = 0, i.e. there are no non-
linear terms in the equation of notion. This has been
observed by a nunber of researchers who showed that the
effect of the non-linear stiffness terns is to curve the
constant frequency lines on the vector plot (72) (73).

A second effect occurs on the vector plot which renders a
criterion, invaluable in the analysis of |inear systens,
ineffective in this case. This is the criterion whereby
the maxi mumrate of change of arc length per unit frequency
(ds/dw), denotes the natural frequency condition (74).
This was anal ysed in sone detail by Wite (72) who showed
that as the non-linear effects increase, the frequency at
whi ch the val ue of ds/dw IS a maxi mum corresponds to val ues
wel | above those of the true natural frequency. The val ues
of the system danping ratios, derived from vector plots
using the hal f-power point method (75) and the nmethod due
to Mead (78), were also in error which reduces the vector
pl ot approach for a systemw th a non-linear stiffness

. quite ineffedtive,as one woul d expect.

| f one considers equation (126) in ternms of its real and
quadrature parts, the expression becones:
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2 Qz) u_d
-] 132
S a2+ g2 0 zﬂﬂ o2y + 52 (132)

u uS(DA
— 2
(Dy

>*

Equation (132) can be expressed in terns of its in-phase
and quadrat ure power conponents as:

W= wr+ jwr . . . . .. .. .. .. (133)
wher e
. Fu, (DA2 - 92)
| n- phase power W' = - 134
Fuswd
Quadrature power W" = > 2. (135)
(0,7 — 8% 52 .
Expressing equations (134) and (135) as:
, Fu_&8Q
%i__: > ;2 vi . .o . .o SO (136)
n (DA - Q7)) + 6
o Fu (0,2 - ea
AR > — . . . » (137)
Wp (D 0 62 "

A

al lows the individual power conmponents to be plotted as a
function of @ for given values of F, u and 6. Figure 31

shows aplot of the expressions (136) and (137) for
constant val ues of F, u and § with different val ues of the

non-linear stiffness coefficient v. FromFigure 31' the
damping ratios and natural frequencies are determ ned using
t he expressions:
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w'/wnlmax - . .. . . (138)

d Tt
Qaﬁ(h /U)rl)l

W' =0

2
wher e -&%(W'/wﬁ)= S 297 4t o wr =0 .. .. .. .. (139)

62

The values of the non-linear stiffness coefficient v used
in the above analysis are the same as those used by Wite
(72), (Wiite's notation for the non-linear stiffness
coefficient was «). Thus it is possible to nake a direct
conpari son between the resonant frequencies and danping
rati os obtained fromthe vector plots by Wite with those
obt ai ned from the above conpl ex power expressions.

Table 5.1 shows the results for three values of v, (the
| argest val ue of v being just bel ow that which would
produce the junp phenonena) and it can be clearly seen
that the nost consistent and accurate results are those
obtai ned fromthe conpl ex power expressions.

White attenpted to apply the vector plot approach to a

set of experinental results, however his results at the
hi ghest force levels produced distortion of the vector

pl ots which prevented any analysis being carried out.

However, his experinental results are somewhat dubiousin
that wuse was made of the current in the exciter coil as a

force reference, and since the system was being driven into
large amplitudes of vibration at resonance, the actual

magnitude and phase of the force input to the structure
would almost certainly be different to that in the exciter
coil, as was shown by the results of Chapter 1.

The concept of resonance in a systemwth a non-Ilinear
stiffness elenment (in this context, resonance is defined
as the frequency at which the maxi num response i s obtained
for a constant input force) has been di scussed by Tondl
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FI GURE 31

COVPLEX POVNER PLOTS FOR A SI NGLE DEGREE- OF- FREEDOM
SYSTEM WTH A HARDENI NG SPRI NG CHARACTERI STI C
GOVERNED BY EQUATIONS (136) AND (137) WTH:

4y

1. v =0; 2. v =1 x 10 '} 8 = 0.04, Fu =1

S
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0.5 x 10°% | 0.0205 0.0180 0. 0200

0.0200 | 0.0200 0. 0200

10°% | 0.0210 | 0.0240 | 0.0191

1.0 x
TABLE 5.1
* fromreference (72)

®4 = % neasured from half power point method
z. = ¢ neasured from phase difference nethod,

P " reference (78)

Ceep = measured from conpl ex power pl ot
v = non-1inear stiffness coefficient
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(76) who points out that due to the fact that a non-Ilinear
system resonance may have no typical single-peak character
it would be sensible only to acknéwledge the existence of

a resonance wWithin a given excitation frequency range.

It is interesting to note that the frequency at which the
conpl ex power conponents denote a natural frequency is
when the real part of the response (or the quadrature
power) is zero, which is the same condition that defines
a natural frequency in a linear single degree-of-freedom
system

This may not be a very useful guide in practical systens
when single point excitation methods are used, due to the
fact that danping coupling between adjacent nobdes can
cause nodal interaction as discussed in Chapter 3, but in
the case of nmulti-point excitation nethods where a single
nmode response is excited, or when the adjacent noda
natural frequencies satisfy the criteria of Section 3.8.1,
then the concept of zero quadrature power could be used
to identify the natural frequency of a non-linear system

5.4 ANALYSI S OF A SI NGLE DEGREE- OF- FREEDOM SYSTEM W TH
COULOMB FRI CTI ON USI NG COWPLEX PONER METHODS

5.4.1 THE EFFECT OF COULOVB FRI CTI ON ON THE VECTOR PLOT

The previous section has shown that the use of conplex
power mnethods in analysing sinple single degree-of-freedom
systenms with non-linear stiffnesses offers advantages over
the vector plot approach. The approach used in the

previ ous section can be applied to non-Ilinear danping
characteristics since the non-linear elenment can readily
be represented by an equivalent |inearised el enment using
the nethod of harnonic bal ance.

Fol I owi ng the approach used in the previous section, a non-
| i near Coul omb danping elenent is represented as an
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equi val ent hysteretic danpi ng constant h*,

~,
where h* = ;ﬁ¥}r e . .. S, .. (140)

and g represents the level of the frictional force, which
for Coul omb type danping is governed by the system
rel ations:

f(x) = q for x>0 .. .. .. .. .. .. (141)
f(GQ = -qfor x <0, x = velocity
and |u| is the peak displacenent.
The equival ent hysteretic danping constant given by equation
(140) can be conbined with the elastic dissipative proper-
ties of a structure to give an el ement whose conplex stiff-

ness is given as:

kK +jh* = k(1 + jé&*) C e e e (142)

where k el astic stiffness conponent

§* § + h*/k', 8§ being the structural danping factor

Thus a single degree-of-freedom system can now be repre-
sented as a body of mass m supported by an elenent with a
conpl ex stiffness given by equation (142). Thus the
equation of notion of this single degree-of-freedom system
subjected to a harnonic force Fe 79t pecones:

mX + k(1 + jé*)x =Fejwt e e e e e e e (143)

The solution of this equation is sinply:
x = ue I where u = |u]el?

131

gt e e




F

%
Thus [u] = T - . . . (144)
(1 -9t * e .

and ¢ = tan'l(a*/l - 92), Q

w\/m/k'

From equation (144),

ul2ga - oh2 v o2 - B oL o oo (149
* 4q .
substituting 6* = § + %T =5+ TET’ where r ==din

equation (145) and solving for |ul| gives:

-6t +{(£,)2((1—92)2+62) , r2(1-92)2}5

|lul| = (146)
(1 - Q2)2 + 62
8 +(__r__) |
and tan ¢ = —————l%l— .. .o .. .. .. .. (147)
1 -0

| nspection of equation: (146) shows that a solution for |ul
is only possible if the followng condition is satisfied:

The practical significance of this is that the magnitude

of the applied force F nust be greater than the magnitude
of the friction force q in order for any notion to exist,

which is usually the case in practice (62). ‘

By plotting equations (146) and (147) in ternms of their
real and quadrature components the vector plot for a single
degree-of -freedom system wi th Coul onb danpi ng i s obtained.
Figure 32 shows the typical loci obtained for various
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values of r, which for a given elastic stiffness is
directly proportional to the frictional force |level q.

o~
Cearly, the effect of the Coulonmb- friction is to distort
the normal circular locus in such a manner that the
quadrature axis conponents becone el ongated, resulting in
an alnost elliptical shape as the frictional forces
I ncrease.

Al though it is quite obvious fromFigure 32 that errors
will be incurred if any attenpt is nmade to extract danping
rati os using the normal techniques of half-power point or
reduced angle fornmulae, it appears that the natural frequ-
ency still occurs at the point where the rate-of-change of
arc length per equal frequency increnent is a maxinum as
in the case of linear systens.

This can be investigated by obtaining an expression in
terns of an arc length denoted by s, the phase angle ¢,

and the frequency ratio Q.

Let ds = snall arc at a radius |u|, then

ds = [u|.d¢ . . . . . . . . ce oo .. (148)
e P ¢ XD
_ do d
= ulggd - oo (150)
1 - @2
where y = cotan ¢ = T+ T O .. .. .. .. (151)
d 2|ul@
I - [u] ce (152

(1 + y2) (s + v/|u])

Equation (152) is shown plotted on Figure 33 as a function

of the frequency ratio, and it can be seen that %% Is a
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VECTOR PLOTS FOR A SI NGLE DECREE- OF- FREEDOM SYSTEM W TH
COULOVB DANPI NG
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FI GURE 33

RATE- OF- CHANGE 0" ARC LENGTH PER UNI T FREQUENCY ds/dg
AGAINST @ FOR A SINGLE DEGREE- OF- FREEDOM SYSTEM W TH
COULOMB FRI CTI ON.

1, § = o.015}p = 5N, g = 2.5N
2. & =0.012Jx'= 350 Nm
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maximum when ¢ = 1 for the conditions given. Hence in the
case of a system with a non-linear Coulomb type friction
clement, it would appear that itais still possible to
identify the natural frequency cohdition as that frequency
which gives a maximum rate-of-change of arc length with

frequency.

5.4.2 THE RESPONSE IN TERMS OF THE COMPLEX POWER
COMPONENTS

The response in terms of the in-phase and quadrature power

components is given as:

Wo= W+ W

2 2
'F—a(l)é* . {—'U)(l - Qz)
ie. W = +] — .. (153)
@ -5 + sx2 (@ - gy2 ., gx2 *
2 2

F os* F - ede
W X . K
o 7.2 7 7 2.2 7 -0 0 (154)

n (1 - Q7)° + &* (1 - °)° + ¢+

The similarity between equation (153) and equations (122
and 123), which depicts the complex power components for a
linear hysteretically damped system at resonance, allows
the same analytical approach which results in the system
damping and natural frequency being obtained from the
graphical characteristics of the complex power components.
This can be best illustrated by an example.

Consider a single degree-of-freedom system with a linear
elastic spring element and a linearised Coulomb friction
element, the equation of motion of the system being the
same as that of equation (143) i.e.

mX + k' (1 + jé&*)x = pedot (155)
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wvhere & § + 77}('1UT
~,
and lu] is given by cquation (146). Letthe system

physical paramcters be:
§ = 0.015; q = 2.5N; F = 5N; k' = 350N/mm:

The i-n-phase and guadrature power components are given
by equation (154) and these are shown plotted on Figure
34. It can be seen that the in-phase power is a maximum
and that the quadrature power is zero at the natural
frequency of the system.

The total damping is calcuiated from the expression:

ZW'/wn
6* = u—d-“—vh (i);l_ . . .. .. .. .. .. (156)

[ L
dq a=1

which gives from Figure 34:

735 _ 0°0416

st = 2 x 1.73
1x83.3

This compares with the exact value of §* = 0.0412.

Unfortunately this approach does not offer any information
relating to the individual (i.e. linear and non-linear)
damping factors. In order to obtain expressions for both
the linear damping factor and that due to the Coulomb
damping, it is necessary to consider the power input to
the system at resonance.

At resonance, the in-phase power input to the system (the

guadrature power is zero) is obtained from equation (154)
as:

137




Y
W szn

=1 = TE"A(S‘*— .. .. . .. .. .. .. (157)

o~

' 2
=w k' (S[ul® & ruly .. .. . .. (158)
which can be expressed as:

s - k's|ul + k't N S 01

w, Tul )
=1

Equation (159) represents a straight line of slope k'é and
intercepts k'r. Hence by plotting W'/wn|U| as a function
of Ju| at resonance, the individual damping factors and
the non-linear Coulomb friction force level can be obtained
since kx = 4q/w.

5.5 APPLICATION OF THE COMPLEX POWER METHOD TO SYSTEMS
WITH SEVERAL DEGREES-OF-FREEDOM

It has been shown that for systems which can be described
by a single degree-of-freedom that if the non-linearity has
either a stiffness or a Coulomb friction characteristic
then it is possible to define the modal properties of the
system. There are two rather important factors which arise
as a result of the single degree-of-freedom analysis which
may not apply when the techniques used in the above analysis
are applied to non-linear systems with more than one degree-
of-freedom.

The first factor is related to the location of the non-
linear element in the previous analyses. In these analyses
it was assumed that the non-linear element was connected
between the defined co-ordinate position and ground i.e.
the instantaneous displacement of the non-linear element
was absolute. In the case of systems with several degrees-
of-freedom it may well be that the non-linear element (or
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COWPLEX POWER CHARACTERI STICS FOR A SINGLE DEGREE-OF-
FREEDOM SYSTEM W TH COULOVB FRI CTI ON GOVERNED BY
EQUATI ON (155).
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clavents) IS situated between two co ordinates, say the

th th (which need not neccessarily be adjacent).

and the s
The effect of this is to couple tisc points in the structure

which places restrictions on the prcviously sinple analysis.

The sccond factor is only relevant to multi degrce-of-
freedom systens where the non-linearity is a hard or soft
spring characteristic. In these cases, the normal node
shape and frequency may change with input force level, the
deviation in the node shapes also being dependent upon the
| ocation of the non-linearity.

This factor restricts the ampunt of information which can
be obtained from a system which has a non-linear stiffness
characteristic since it is not possible to determ ne the
form of the non-linearity due to the fact that any varia-
tion in the input power at a given normal node frequency
wi Il change the nbde shape, which is not the case with the
Coul omb friction elenents. However, assuming that it is
possible using multi-point excitation nethods to excite a
"given normal node', i.e. satisfy the normal node criterion
for a ¢iven input force level and distribution of a system
with several degrees-of-freedom then the 'given norma
node' frequency and the system danping can be estinated as
detailed in Section 6.3.

5.6 THE EFFECT OF COULOVB FRICTI ON Oh' SYSTEMS HAVI NG
SEVERAL DEGREES- OF- FREEDOM

In order to analyse systens with several degrees-of-freedom
it is necessary to represent the system by a | unped- paraneter
nodal with n degrees-of-freedom If the systemis assumed

o be linear with a harnonic solution x = ueJMK, the result-
ing equations of notion are given as:
~w’Mu + Ku + jHu = p N ¢ X :10))

where M k and H are the symetrical mass, stiffness and
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damping matrices.

If the systemis excited at its L&? no rma 1 mode frequency

Wy by an appropriate force distribution Py cquatioon (160)

gi ves:

Jgui = Dj C e (161)
si nce wZiMui = Ku, and u. represents the peak displacenents.
In terns of the ith normal i sed node shape, equation (162)

can be witten as:

JAHV. = pooee . ... Lo (163)

wher e V.. represents the normalised node shape and X is a
const ant .

Equation (163) shows that if the vector of input forces is
real, all the displacenents will be in phase with each other
and at quadrature to the input forces, this condition
satisfying the classical phase-resonance criterion.

Since we are concerned with both Coul onb and hysteretic
danping it will be necessary to consider the way in which
these separate quantities will contribute to the response
of the system

The non-linear Coulonb friction elenments which are linear-
ised by the nmethod of harnonic linearisation take the
general form

1
fi_m"'°""""'°"(164)
where bi is a constant which depends upon the |evel of the
Coulonb friction force and |u| is the peak anplitude of

vibration of the non-linear elenent.

141

e e e o




&

Siuce we are dealing with n degrees-oi-freedom the

elemwents given by equation (164) can be represented by
a frictional danmping matriX. If this danping matrix is
definedas F, its elenents nmay be ekpressed in terns of

the displacements as:

. :;“bkl
A NS 9] ce e e 165
k1 Mdgkl(ul, Uy u) (165)

wher e fkl is an elenment in the kth row and ith col umm

bkl is a constant
811 is a linear function of anplitudes Upeonns u -

A physical representation of equation (165) can be shown
by considering the lunped parameter three degree-of-freedom

system with linearised Coulonb friction elenents situated
as shown in Figure 35.

The linearised elenments are given from equation (164) as:

b b

b
1 2 3
f = I Y f —_ s .
1 Tuy| 2 = Tu,-ugf f: _ Tug-ugT (166)
The frictional damping matrix for this systemis:
f1+f2+f3 —fz —f3
F= -1, £, 0 .. . . .. (167)
and thus from equation (165):
b b b
1
ti1 = + : + - > (168)
[1 0 o] u, El 1 0] u, [—1 0 1] uy
U2 ) 42
u3 US u3
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FI GURE 35

LUMPED PARAMETER SYSTEM W TH COULOVB FRI CTI ON ELEMENTS
(£1.f,,f5) ONLY.
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th natural frequency,

If the systemis excited at its i
equation (168) can be represented in ternms of the normal-

ised node shape as:

b
£ ___ k1 N G T D
Ax1Vi

The frictional danmping matrix can now be expressed in the

I )\ I~.1 . .. . o . . . o . e . . 1;0

where the elenents of F. are i ndependent of the anplitude

~

of vibration and take the form

byq

t\/'
£x1VYi

(171)

F.
~1

If the hysteretic danmping matrix, which represents the
danmping in the linear system is denoted by S, then the
system danping matrix nmay be derived from equations (171)
and (163) as:

H = AS + F. . . « ... .. .. .. .. (172)
thus, equation (163) becones:

j(AS + L T R (173)

The conpl ex power conponents when the system is vibrating

144




Y

at its i ' mal mwode frequency are obtained with the aid
of ¢quation (173). The power dissipated at this frequency
is given by: -~

\\'i < Cuy py o= —jwi Vi P; .. .. .. .. (174)

whichrepresentsthe quadrature input power components, the
in-phase power componcnts being zero.

It. follows from equations (173) and (174) that:

L t 2

Mi = ui.yi(k S + xgi)yi e e (175)
and

W.

1 _ t t

Moy T Ma Syt v By e e e (176

Equation (176) represents the total input power to the
system at the normal mode frequency Wy and shows that it is
possible to evaluate n values of \ﬁijiyi corresponding to
n modes of vibration. Unfortunately, in order to define
the form of the Coulomb damping matrix and identify individ-
ual friction force levels this information is not sufficient

to completely define the Coulomb damping matrix F..

If one bears in mind that the off-diagonal terms of the
matrix Ei are related to co-ordinates coupled by Coulomb
damping elements, then if it is known a priori that all the
Coulomb damping elements are grounded then the F. matrix
must be diagonal and a unique solution can be obtained to
give the values of the corresponding hysteretic damping

constants.

However, the author has not been successful in deriving
such a general unique solution when the system also posesses
Coulomb frictional devices which couple one co-ordinate to
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another.

Nevertheless, a technique has bean developed which allows
the locations and, in the case of a single non-linecar
element, the characteristics of the Coulomb friction elements
to be identified.

Consider a lumped parameter system and let the power input
to each co-ordinate be W.p, i.e. individual power input in

the ith mode at the rth co-ordinate = wir' Consider the

rth co-ordinate of equation (176):

W.

T
- FS . FF. V.
Awi ~1 <r "ir ~1 ~1r "1ir

(177)

th

V. is the rth

ir
F. is the rth
~17T

column of the S matrix
element of the vector v.1
column of the Fi matrix

where Sr is the r

Equation (177) is now of the same form as equation (159).
Thus equation (177) can be used in the same way as equation
(159) to identify the location and characteristics of the

non-linearity.

For example, if the left-hand-side of equation (177) is
plotted as a function of X, a non-zero Y‘icwlzf V.. intercept
indicates that a frictional device is coupIeAd to the rth
co-ordinate. Thus it is possible, by measuring the power
input at each co-ordinate, to determine the locations of

the Coulomb damping elements.

Further, if only a single Coulomb damping element coupling
say the rth and sth co-ordinates in the system is present,
then the only non-zero intercepts would be those associated
with the rth and sth co-ordinates and hence the magnitude q
of the Coulomb damping elements could be evaluated directly,

since:
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Jn order to examine the mechanism"\'of applying equations
(174) through to (178), two worked examples are given in
Appendix V. The first example deals with grounded Coulomb
damping elements and the second example considers a system
with a coupled Coulomb element.

A programme of experimental work was carried out on the
rig discussed in Section 4.7, which included a controlled
non-linear device that provided a characteristic closely
resembling that of Coulomb friction, and the techniques
described above were applied with the aim of establishing
the level of the Coulomb damping force.
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6. EXPERI MENTAL TESTS ON A TWO- DEGREE- OF- FREEDOM
SYSTEM W TH A COULOVB FRI CTI ON ELENMENT
~,
6.1 DESIGN OF THE COULOVB FRI CTI ON ELEMENT

The Coul onb friction elenment consisted of two itens, the
body which housed an adjustable highly polished steel disc
and spring assenbly, and an alum nium pad coated w th
Teflon. Appendix VI shows the construction of the el enent
and Plate 6 shows the actual elenment which was | ocated

at one end of the cross-beam of the main rig described in
Chapter 4. The location of the non-linear device was not
altered throughout the series of tests.

The body of the Coulomb friction el ement was securely

| ocated to a rigid support which in turn was rigidly conn-
ected to the massive cast-iron base supporting the entire
rig. Thus this part of the friction elenent was not
physically connected to the vibration elenents of the rig,
i.e. it was grounded. The disc assenbly was permanently
pre-loaded by a spring, which could be adjusted by a cal-

I brated screw nmechanismin order to increase or reduce this
pre-1oad and hence retract or extend the disc assenbly from
a given position,

The disc assenbly was aligned horizontally and nornal to

an al um nium pad which was secured to the cross-beam of the
min rig, i.e. this forned the vibrating element. This

al um nium pad was evenly coated with Teflon to prevent
scuffing arising froma netal-to-netal interface. )

Initially the pad was not in contact with the steel disc,
but by adjusting the screw nechanismit was possible to
bring the disc into contact with the pad, hence creating a
" Coul onb' friction force between the vibrating cross-beam
of the rig and ground, the interface pressure and hence the
| evel of the frictionforce between the vibrating Teflon
coated pad and the stationary hardened steel disc being
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adj ustable by nerely varying the pre-load on the spring.
6.2 CALI BRATI ON TESTS OF THE COMLOMB FRI CTI ON ELEMENT

In order to exam ne the characteristics of the Coul onb
friction elenent it was necessary to carry out tests which
woul d allow the actual friction force levels to be neasured.
It was felt also that if the hysteresis characteristics for
the Coulonb friction elenents could be obtained at the sane
tinme, then a visual conparison between the actual behaviour
of the device and the theoretical characteristics of a

Coul omb friction el enent woul d be possible which woul d
indicate the effectiveness of the device inits role as a
Coul onb danper.

This was achieved by carrying out a set of quasi-static
tests. These consisted of exciting the systemat a very
| ow frequency and nmeasuring the input force and the
correspondi ng system di spl acenent.

6.2.1 QUASI - STATI C VI BRATI ON TESTS

Figure 36 shows a diagrammatic sketch of the rig and the
instrunentation used in these tests. Wth the steel disc
retracted so that no contact was nade with the Teflon
coated pad, i.e. no Coulonb friction was present, the
cross-beam was excited at symetrical points with the input
forces equal in nagnitude. The output displacenment was
neasured at the position of the Coulonb friction el enent
using a non-contact displacement transducer, which had been
previously calibrated so as to provide a known output volt-
age for a known displacenent, and this was fed into the 'X'
axi s channel of an X-Y recorder.

The voltage representing the force input at the position
nearest to the Coulonb friction elenment was fed into the
'Y' axis of the X-Y recorder. Since both the vibration
exciters were controlled fromthe Frequency Response
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DIAGRAMMATIC SkElTcH OF EXPeERI MENT AL SET-UP FOR
QUASI - STATI C TESTS.
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Anal yser via their individual matched anplifiers, no
probl ens were encountered with the phase or frequency
control of the two input forces.sBy choosing a very | ow
excitation frequency (hence the title of the tests) of
20mHz, the X-Y plotter could record directly the cyclic

| oad deflection characteristics of the system It nust
be mentioned here that in order to produce satisfactory
results the instrumentation, and in particular the charge
anplifiers, must have low drift characteristics otherw se
the | ow frequencies of operation required cannot be used
in conjunction wth the piezoelectric force |inks.

6.2.2.RESULTS OF THE QUASI - STATI C TESTS

Fi gure 37 shows the hysteresis |oop obtained fromthe first
test when there was no contact between the Teflon coated
pad and the steel disc. The nmean slope of this character-
Istic represents the static stiffness of the rig in the
transverse node, the small area enclosed by the curve being
due, of course, to the cyclic strain energy absorbed by the
rig. The actual stiffness in this node, determ ned from
the mean sl ope was 380 kN/m, which conpares‘well with the
results of a static stiffness test of 370 kN/m.

Figure 38 shows the hysteresis | oops obtained wth the disc
and pad in contact for increasing values of the Coul onb
friction force. The behaviour of the device as a Coul onb
friction element is excellent, as denonstrated by the
measured hysteresis curves conpared to a theoretical hyster-
esis loop for a Coulonb friction element (62). The slopes
of these curves again represent the stiffness of the trans-
verse node of vibration and the linearity and repeatability
of these endorse the behaviour of the device.

At the higher friction force levels stiction becane a
problem This is indicated on Figure 38 where this effect
is plainly seen on curve 3, and as a consequence of this
all steady state forced vibration tests were carried out at
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friction force levels below those at which stiction was
apparent. The cause of the stiction effect was attributed
to the fact that the face of the jardened steel disc was
not exactly parallel to the Teflon coated face of the

al um nium pad, and when the force between these reached a
certain level, the msalignment caused the steel disc to
‘score’ the Teflon coating.

6. 2.3 STEADY STATE VI BRATI ON CHARACTERI STICS W TH
COULOMB FRI CTI ON

Plate 7 shows a comparison between the output accelera-
tion, velocity and displacenment in the transverse node
w th and w thout the Coul onb danper in operation.

It is interesting to note fromthese that the assunptions
used in the analysis regarding the nmethod of harnonic

bal ance are justified and that the velocity profile with
Coul omb friction closely resenbles the theoretical case.

6.3 EXPERI MENTAL DETERM NATI ON OF THE COULOMVB FRI CTI ON
FORCE LEVEL BY THE METHOD OF COVPLEX POWER

In order to be able to determ ne the characteristics of

the non-linearity, equation (177) showed that it was
necessary to obtain the power input to a normal node as a
function of sone reference anplitude of the normal node,
This requires that within a given frequency range all the
normal nodes are excited (this being done by multi-point
excitation methods) and at each normal node frequency the
force levels are varied and the corresponding change in the
| evel s of the node shape neasured. These results provide

t he power input to the nmobde and can then be plotted as
described in Section 6.6 to obtain the |evel of the Coul onb
friction forces.

Since the responses throughout the tests were neasured in
terms of acceleration levels it is worthwhile considering
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QUASI - STATIC TEST WTH COULOVB FRI CTI ON REMOVED.
HYSTERESI S LOOP OF EXCI TATION FORCE (F) AGAI NST
RESULTI NG DI SPLACEMENT (u). EXClI TATI ON FREQUENCY
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FI GURE 38

HYSTERESI S CURVES FROM QUASI - STATI C TESTS FOR VARI QUS
LEVELS OF COULOVB FRI CTI ON FORCE:

1 - FRICTION FORCE PEAK-TO PEAK LEVEL
2 - FRICTION FORCE PEAK-TO PEAK LEVEL
3 - FRICTION FORCE PEAK-TO- PEAK LEVEL

4.5N ¢ EREQUENCY 20mHz

1'75N} EXCl TATI ON
8.5N

155




RESPONSE W TH RESPONSE W THOUT
COULOVB FRI CTI ON COULOVB FRI CTI ON
PLATE 7

EXPERI MENTAL RESULTS SHOW NG THE OUTPUT RESPONSE IN
THE TRANSVERSE MODE W TH AND WITHOUT THE COULOVB
FRI CTI ON ELEMENT | N OPERATI ON.

A - ACCELERATI ON
v - VELOCI TY
D - DI SPLACEMENT
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t he conpl ex power expressions in terns of the acceleration

response.
~
6.3.1 COVPLEX PONER | NPUT USI NG ACCELERATI ON RESPONSES

The total power input to a given node of vibration is given
by:

N
L I € YD
I =l
where Fi = Force input |evel at station
u, =Velocity level at station i
N = Nunmber of exciters

|f the excitation frequency is changed by only a small
amount around the normal node frequency, then the force
vector will be predomnantly real and:

W= W'+ §W"' . . . . (180)

where W' = F.u.', u;' = in-phase velocity

W' = F.u.", u." = quadrature velocity

In the case of the response being in terns of acceleration
units:

W' = Fiui”/wr . . . . L] . L4 . . . . . . . (181)
w" = Fiiii'/wr (182)
wher e W= normal node frequency
i, =quadrature acceleration

1

;' = I n-phase accel eration

Thus the in-phase power is given as the product of the force
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and quadrature acceleration, and the quadrature power as

t he product of force and in-phase accel eration conponent.
~

In ternms of the experinmental rig requirenents, where there

were two input forces and two responses, this neant:

F
s 1 — ke gy
Wl = wl' + le - E;(ul + Jul') - o C (183)
: Fy . .
W2 = Wz' + JWZ" = o (uz" + Juz') .o .o .o (184)

~1
vg - -1.01 then the accel eration conponents at the

éynnetrical points on the rig should be equal at the nornal
mode frequency, and the in-phase and quadrature power
conmponents given as:

hbWsticG the normal node shapes were vt = [1.0, 1.01I
/

ﬁ "

R L4y

Wo=wt W, “w’r“(FlJ’Fz) Ce o (185)
iy

W= WM e Wyt = L(F) + F,) ce e .. o(a8e)

r

Unfortunately the experinmental values of the accelerations
were not identical and as a result of this it was necessary
to obtain a range of values of the in-phase and quadrature
responses around the normal node frequency of vibration

whi ch could then be‘plotted in ternms of the in-phase and .
quadrature power inputs to the normal node (equations (184)
and (185)) and fromthese results the average power input
to the node could be derived at the normal node frequency.

6. 3. 2 EXPERI MENTAL PROCEDURE FOR DETERM NI NG THE COWPLEX
POAER | NPUT TO A NORVAL MCODE

The experinental procedure required to measure the in-phase
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and quadrature power conponents is alnost identical to
that used for obtaining vector plots. The only differ-
ences are that the individual force and response measure-
ments are required (vector plots can utilise the ratio

of these) in order that the actual power can be eval uated
and that this information is obtained froma nuch smaller
frequency range than that required for a vector plot.

Once a normal node had been established, (by the procedure
described in Section 4.8), the force distribution arising
fromthis was naintai ned constant as the frequency of
excitation was varied around the normal node frequency,

and the acceleration responses, in terms of the in-phase
and quadrature conponents, were recorded at each frequency
i ncrenent.

This procedure was repeated for a range of force input
level s in the transverse and torsional normal nodes in
order that equation (177) could be applied. The in-phase
and quadrature powers were obtained from equations (183)
and (184).

6.4 RESULTS OF NORVAL MCODE TESTS
6.4.1 TRANSVERSE MODE

Figures 39 to 41 show typical in-phase and quadrature

power inputs as a function of the excitation frequency
around the nornal node frequency for a range of input
powers. It can be seen fromthese figures that the maxi-
mum i n- phase power does not always occur at the frequency
where the quadrature power is zero, whereas the theoret-

i cal expressions show that the in-phase power is a maxinum
. at the normal node frequency and the quadrature power is
zero. Thus to allow for experinental error the norma

node frequency was cal cul ated fromthe expression:
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W'=max W' =0

w, = ? .. .. .. .. (187)

and this average val ue of w, Was used to determ ne the

conditions in the expression for the danping ratio,

Wl
c = aw"

C el .. (188)
“dw

Figure 43 shows the normal node frequency as a function of
the input power levels. These results show that there is
a slight reduction in the normal node frequency wth

I ncreasing input power.

These effects can be explained by the fact that the Coul onb
friction non-linearity can be considered as an extrenme case
of a soft-spring characteristic (77) which produces .a
reduction in the resonant frequency for an increasing

i nput excitation force level, these effects of course being
t he exact opposite of a systemwth a non-linear hardening
spring characteristic. This observed reduction in the
normal node frequency of vibration with increasing input
power was confirmed by sinulation tests. The tests

i nvol ved nodelling a single degree-of-freedom system w th
vi scous danmping and an ideal Coulonmb friction character-
istic (i.e. a sinple relay) on an anal og

results of this simulation, which confirm the practica
results, are shown on Figure 44.

6.4.2 TORSI ONAL MODE

The in-phase and quadrature power inputs for a simlar
set of input power levels are shown on Figures 45 to 47.
Agai n the maxi mum i n-phase power does not always occur at
the sanme frequency where the quadrature power is zero,
thus the sanme procedures as in 6.4.1 were used for estab-
l'ishing the normal node frequency and danping rati os.
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TRANSVERSE MODE COWPLEX POWER CHARACTERI STICS
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TORSI ONAL MODE COVPLEX POWER CHARACTERI STICS AS A
FUNCTI ON OF THE EXC TATI ON FREQUENCY
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NORVAL MODE FREQUENCY OF 15.72 Hz
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Figure 42 shows the sanme trend for the torsional nornmnal
node frequency for increasing input power |evels as those
of the transverse node of 6.4.1 which of course was

expect ed.

6.5 VECTOR PLOTS WTH COULOMVB FRI CTI ON

In Section 6.4.1 of Chapter 6 the theoretical analysis

of a single degree-of-freedom systemwith Coul omb friction
shows that when the response is plotted as a vector plot
the result no longer represents a circular locus (Figure
32).

Figure 48 shows the experinmental results fromone of the
tests of Section 6.4.1 plotted as a vector plot together
with the theoretical curve from equations (146) and (147).

The close simlarity between these results confirms the
theoretical predictions.

6.6 DETERM NATI ON OF THE COULOMB FRI CTI ON FORCE LEVEL

From the experinental results of the normal node shapes
and the power absorbed at the normal node frequency of

each node for various |levels of input powers, equation
(176) could be appli ed.

The in-phase power at the normal node frequency was deter-
mned. This, together with the correspondi ng overal
change in the level of the nbode shape was plotted in the
formof equation (176) and is shown on Figure 49.

The intercepts of the ordinate on Figure 49 represent

the el ements F. of the frictional danmping matrix and the
sl opes represent the linear hysteretic danping factors of
each node of vibration
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SI NGLE DEGREE- OF- FREEDOM SYSTEM VECTOR PLOT W TH
couLovB FRI CTI ON
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The magni tude of the Coulonb friction force is readily
obtained fromeither value of the intercepts with the aid
of equation (178) since the normglised node shapes were:

vt = [1.0,1.0], v,t = .o, -1.01

and hence from equation (178):

- 4aq
Fi o= 2 o o e e e e e .. (189)

since the Coul onb el ement was grounded and thus g can be
eval uated directly.

Table 6.1 shows the values of the magnitude of the Coul onb
friction force determned fromthe intercepts and equation
(189) for each node together with the actual friction force
| evel determ ned fromthe quasi-static tests.

6.7 TRANSI ENT TEST RESULTS W TH COULOMB FRI CTI ON

During the nornmal node tests a series of transient tests
were carried out to investigate the purity of the nornal
nodes and the behaviour of the transient response of a
system with Coul omb friction.

Figures 50 and 51 show the transient response in the trans-
verse and torsional nodes respectively when the exciters
were switched to open circuit.

The quality of the normal node excitation can be observed
by the fact that very little beating is apparent in either
response. The linear decay of each trace represents the
Coul omb friction and the remaining exponential type decay
represents the danping, Wwhich continues when relative
vibration occurs as a result of the notion at the |ocation
of the Coulonb friction el enment being zero. Striking
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exanples of simlar effects are given in the paper by
Hai dl (53), who carried out tests on a nodel of a torsional
system with Coul omb friction. o~
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Met hod of Eval uation

Coul omb Friction
Force Level
(N peak-t o- peak)

Transver se

Nor mal Mbde 4.4
Power Curve Mbde
(Fig. 57 Torsional
Nbde 4.16
Quasi-Static Tests 4.5

TABLE 6.1

Coul omb Friction Force Levels btai ned
fromthe Power Input to a Mbde Conpared

to the Actual

Friction Force Level

Measured Directly from Quasi-static Tests
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Met hod of Eval uation

Coul omb Friction
Force Level
(N peak-t o- peak)

Transver se
Nor mal Mbde 4.4
Power Curve Mode
(Fig. 57) :
Tor ﬁ/lbggal 4 16
Quasi-Static Tests 4.5

TABLE 6.1

Coul onb Friction Force Levels (Obtained
fromthe Power Input to a Mode Conpared
to the Actual Friction Force Level
Measured Directly from Quasi-static Tests
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6.8

&
DI SCUSSI ON AND CONCLUS1ONS

The work described in thisﬂﬁgction has shown t hat

it is possible to identify systems which include
either Coulonb friction non-linearities or non-
l'inear stiffness characteristics on the understand-
ing that the system can be excited in a normal node,
i.e. the response of the systemis that of a single

degree- of - freedom syst em

In the case of a systemw th hysteretic danping and
a non-linear stiffness characteristic, it has been
shown that the 'normal node frequency' and nodal
damping ratio can be accurately determ ned as |ong
as no discontinuities (i.e. the junp phenonena)
occur in the excitation frequency range. Further,
the natural frequency for a given excitation |evel
is denoted as the condition at which the quadrature
power input is zero and this provides a useful
criterion in experimental testing nethods.

Al t hough the nodel analysed was a single degree-of-
freedom systemit is obvious that the techniques
enpl oyed are applicable to multi degree-of-freedom
systens which can be excited in their normal nobdes
using nulti-point excitation nethods.

For a non-linear system which has only a single
Coul omb friction element and hysteretic danmping it
has been shown that not only can the nmagnitude o6f

the frictional force be evaluated, the actual loca-

tion of the non-linear elenent within the system
can be obtained.

In the case of nmore than one Coul onb friction
element, it is necessary to have a priori know edge
regarding the |ocation of these non-linearities in
order that their conplete characteristics can be
eval uat ed.
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The application of conplex power techniques to the
frequency response testing of both |inear and non-
l'inear systems appears to gffer considerable advan-
tages over other established techniques such as the
vector plot since no extra experinentation is
required, it actually requires fewer frequency incre-
ments to produce the necessary plots, and errors in
the derived nodal properties due to non-linearities
are mnimsed.

The techni ques developed in this section apply only
to systens where the danping, besides the Coul onb
danping, is assumed to be linear and the elastic

el ements are assuned |inear.

The results of the experinmental programe gave very
encouraging results and showed that, for the system
tested, a high degree of accuracy is possible in the
identification of systems with Coulonb friction non-
[inearities. Further, the use of nulti-point
excitation nethods has allowed non-linear systens to
be identified which would not have been possible
usi ng singl e-point nodal testing methods.
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SUMVARY OF CONCLUSI ONS

The three sections of work descr%&ed in this dissertation are
sunmari sed below. These are abridged concl usions taken
fromthe detailed conclusions given at the end of each
section.

1. The harnonic distortion of the input force signal
to a lightly danped systemis primarily due to the
non-1inear magnetic field characteristics of the
el ectro-dynamc vibration exciter. These non-
linearities are square-law in nature resulting in
significant second harnonic distortion of the force
I nput signal at the test structure resonance
condi tion. It has been shown that harnmonic distor-
tion can be mnimsed if k'<< 2z, where k' is the
ratio of the vibration exciter stiffness to the
structure nodal stiffness.

2. Wth lightly danped nodal structures, there is a
| arge variation in the magnitude of the input force
in the region of the test structure resonance. This
is due to the forces arising fromthe exciter mass
and stiffness characteristics and is independent of
the anplifier output inpedance.

3. The main factor which contributes to nodal inter-
action of conplex structures is the closeness of the
natural frequencies of adjacent nodes. It has been
shown that if the frequency ratio of adjacent nodes
is greater than 1.5, then in all practical terms the -
nodes of structurally danped systens can be considered
uncoupl ed, even if the magnitude of the off-diagonal
terms of the danping matrix are conparable to the
| eadi ng di agonal terns.

4, If a multi degree-of-freedom system can be classified
as proportionally danped, then the excitation vector
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does not have to conformto a normal node excitation
vector in order to determ ne the nodal danmping ratio
and resonant frequency from® vector plot.

Yor non-linear |unped paraneter nulti degree-of-
freedom systens which have only a single Coul onb
friction element and hysteretic danping, the |ocation
of the elenent and the nmagni tude of the Coul onb
frictional force can be evaluated by determning the
power input to excite a normal node of the system

For systens with nore than one Coul onb friction
element | a priori know edge of their location is
required in order to fully identify their character-
I stics.

In the case of systens with hysteretic danping and

a non-linear stiffness characteristic, the nmeasure-
ment of the conplex power required to excite a normal
node all ows accurate determ nation of the resonant
frequency and nodal danping ratio, provided no

di scontinuities occur in the response of the system

Al t hough current trends in nodal testing nmethods are
enphasi si ng post-nmeasurenent anal ysis techniques,

the identification of non-linear structures has,

until now, been very linited. The techniques pre-
sented for identifying non-linear structures enploy
the rather involved multi-point nodal testing nethod.
However, on-line conputer control of these procedures_
I's now reasonably wel| established (82) which reduces
the intensive experinental work, and may well justify
the continued use of multi-point testing methods for
both conplex |inear and non-linear structures.
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SUGGESTI ONS FOR FURTHER WORK

The first section of the disscrtgtion indicated that problems
can be encountered during the forced vibration testing of
l'ightly danped structures due to harnonic distortion

However, no attenpt was made to establish where a structure
shoul d be excited in order that these effects would be

m ni m sed.

For exanple, if one were to excite a beamelenent at a
position which offered low flexibility then the anplitudes
of vibration for a given input force level would be smaller
than if the excitation point were at a position adjacent

to the nost flexible region of the element, wth the result
that the harmonic force distortion would be reduced. This
coul d be extended to plate and shell elenments where the
danping is small and where judicious choice of excitation
positions could be beneficial.

The second section of work,which was concerned with the
effects of nodal interaction was based upon a theoretical
nmodel and digital sinulation, no experinental work was
carried out to support the conclusions of this section.
The author feels that this is a very inportant area which
needs experinmental justification. This would require a
structure which would have controlled known |evels of
danping at pre-deternmined |ocations. Thus the danping
distribution is known a priori and hence tests could be
carried out to ascertain the effects of this on the ability
to excite the normal nodes of vibration. '

Finally the renaining section of the work, which was
concerned with the identification of non-linear structures,
by neasuring the power input to a nornal node, is only a
beginning in this area. The nethod devel oped was applied
to a very sinple structure which was devoid of the conpl ex-
ities of, say, an aircraft wing. In order to fully
establish the advantages, or disadvantages, of the proposed
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nmet hod an experinmental programme on a nore conplex non-
l'i near structure should be carried out.

~,
Further, to inprove the efficiency of applying the nethod
to a conplex structure, an on-line identification nethod,
based on neasured data from single point frequency sweep
tests, should be devel oped which would allow the appro-
priate force distributions necessary to excite the nornal
nodes with a given frequency range to be nore effectively
obtained. This would greatly enhance the application of
t he conpl ex power method and hence the identification
procedures of conplex |inear and non-linear structures.

British Aerospace have expressed an interest in these
| atter proposals and these now form part of a further
research contract which, it is hoped, will result in a
nore cost effective and satisfactory approach to the
normal node testing of mlitary aircraft,
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APPENDI X |

The physical nodel of an electrogdynamic exciter can be
considered sinply as a resistor rkpresenting the coil wth
an additional voltage drop due to the velocity of the coi
movi ng through the magnetic field of the permanent magnet.
The nechani cal sub-systemis nerely a mass and a spring
driven by a force proportional to the current, danping
effects due to the flexure stiffness hysteresis and the
rubber dust cap being ignored. The basic equations of
motion are:

mx+kX:kFi .o ..

R+ kpgx = veoswt .. .. .. .. .. (A 1.2)

where m = effective armature nass

k = flexure stiffness

kg = force current constant

kp = back enf constant

I = armature current

v = applied voltage at frequency w

R = exciter coil resistance plus drive anmplifier

out put resistance

x = armature displacenent
Thus the equation of notion of the armature fromA. 1.l and
Al.2 is:

g 7 %% +-§%;§ X = ;g vcoswt . . . . . (A 1.3)

Assum ng that the electrical power developed in the armature
is equal to the mechanical power absorbed, then:

kpxi = kpxi, i.e. ky = kg . . . . (A 1.4)
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and equation (A 1.3) is:

k ~

i+%+%ﬁi=ﬁ%vcoswt

where X = kaB
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APPENDIX TII

THE EFFECTS OF AN ELECTRO—DYNAMIQﬁEXCITER ON A
VIBRATING STRUCTURE )

II.1 THE USE OF INPUT CURRENT AS A REFERENCE FORCE

The force necessary to vibrate a structure is produced by
the current through the exciter coil. The moving elements
of the exciter, namely the armature and some fraction of
the flexure mass and the push-rod assembly (which incor-
porates the force gauge), are rigidly attached to the
structure under test and as a result some of the force 1is
used to accelerate these additional masses. If the
structure under test is at resonance then the displacement
of the excitation point is at quadrature to the exciting
force. The additional masses of the moving elements of
the exciter are in-phase with the structure but the accel-
eration forces of these additional masses oppose the
forces arising from the effect of the flexure stiffness of
the exciter. This results in the oscillator current vector
not being at quadrature to the displacement of the struc-
ture at resonance. This can be explained by considering a
single degree-of-freedom system excited by an electro-
dynamic exciter. The model of the system under analysis

is shown on Figure 3, Chapter 1.
The resultant R force applied to the structure 1is:

R = Fel®t - m,%, - ek, - kyx, .. .. (AIILD)
where F is the force delivered to the moving parts of the
exciter as a result of the oscillator current (which is
held constant in magnitude and phase with the oscillator
reference voltage). If the stiffness of the force trans-
ducer is considered to be infinite compared to the exciter

and test structure stiffness the displacements within the
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system are common, 1i.e.

X, = X, = X .. .. . . .. .o A.I1.2
2 1 - ( )

The displacement of the armature (and structure) 1is
related to the oscillator reference current by:

x = xed (0t * V) N ¢ V5 & %)

where ¢ is the phase angle between the oscillator
reference current and the displacement
X is the peak amplitude of the displacement

w is the angular frequency.

Equations (A.II.1) and (A.II.3) are expressed on a vector
diagram on Figure A.II.1 and the resultant force applied

to the structure is obtained as:

R = Fcoswt+m2w2Xcos(wt—w)—kZXcos(wt—w)

+c2wXSin(wt—w) .. .. .. .. .. (A.I1.4)

The reaction force of the structure, which will be equal

and opposite to R, will be:

RF = -R = mlmZXcos(wt—w)-lecos(mt—w)+c1stin(wt~¢)
(A.II1.5)

If the forces are expressed relative to the oscillator

reference then at a given frequency there will be a phase
angle between the force delivered from the exciter and the-
resultant force as a result of equation (A.II.4). Thus

the vector diagram can now be drawn as shown on Figure

A.IT.2.

From Figure A.II.2, the resultant force applied to the
structure expressed relative to the oscillator reference
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is:

Rsing mzszsinw - RZXSinw FSCZXNCOS¢ .. (A.11.6)

mywlXcosy + k,Xcosy - cpuXsiny + F (A.I1.7)

]

Rcos¢

For a lightly damped single degree-of-freedom system
resonance occurs when the phase angle between the result-
ing displacement and the applied force is 900, i.e. when:

6 + v =90 .. .. . .. . .. (A.II.8)

Substituting ¥ = 90 - ¢ in equations (A.I1.6) and (A.II.7)
gives: '

2

Rsing = (mzw - kz)Xcos¢ - CZXsin¢ - (A.1I1.9)

Rcos¢ (mzwz - kz)Xsin¢ - chcos¢ + F .. (A.I1.10)

Multiplying equation (A.II.9) by cos¢ and equation
(A.I1.10) by sin¢ and rearranging gives:
(mzw - kZ)X = Fsing - .o . .o (A.11.11)

Denoting the exciter and structure natural frequency

respectively by:

k -
z ﬁi 2 1 .. (ALI1.12)

kox (12 - 1) = Fsi
X (G = Fsind .. .. .. .. (A.TI1.13)
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Thus the force which is applied to the structure is only
in phase with the force delivered by the exciter when one
or nore of the follow ng conditiqgs ari ses:

(a) ¢ = O
(b) w; T W,
(¢ X =0

Condition (a) is satisfied by adding a current at quad-
rature to the excitation current which nodifies the force
injected into the structure as shown by Figure All.3.

1.2 |1 DENTIFI CATION OF A SYSTEM RESONANCE

The response of a single degree-of-freedom systemwith
vi scous danmping to a single harnonic force input is given
by:

F
() - moD)? + (i} -

(A 11.14)

|x| =

where the input force F is assumed to have a constant
magni tude as the frequency is varied.

Differentiating equation (A 11.14) and equating to zero

for a turning point gives the frequency for maxi mum response
as:

w?=w P - 2B L . 0 L L L .. (AII15)

Substitution of (A 11.15) in (A 1l1.14) gives the maxi num
response as:

F/k '
- 1 . e eeoe .. (A.I1.16)
20, (1 - 747)

lxmaxl

[N
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| f one now considers the actual system conprising both the
test system and the el ectro-dynam c vibration exciter,
equation (A 11.14) is nodified thgive:

x| = IFJ . 22 (AIl.17)
{ikpky) - (mpmpde®}? + (epvey) v}

l?/kll (A.11.18)

2 2 1
{M1+k')—(1+m'}£ij} +(2c1£%+2c2§§k')2}2
1

i.e. |x| =

The frequency at which the maxi mum response occurs is again
gi ven by:

dlxl -0

dw

2

- 2_ __“n B} 251, k'2 A.II1.19
. e. w - m(l"‘k') Zwl ((l)1+2;2-w_2-) . ' ( )

Putting A 11.19 in A11.18 and sinmplifying gives the
maxi mum r esponse as:

|F/k

1]
x| = (A 11.20)
e w Pchm-1) + (1+k))E
ZCwl{ (1 T m') }
z z, k'
where C = — + = (A 11.21)
“1 2

Thus if one compares A 11.20 with A11.16 it can be seen
that by nerely using the output response of the system

| arge errors nmay be incurred, as the true resonant condi-
tion can only be obtained by replacing F in equation
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A 11.18 with that given in equation (15), Chapter 1, and
then differentiating for a turning point. This will then
result in the same equation as A.J4I.16 which is the correct
one.

The natural frequency of the conbined systemis given as:

1
k k,)?
w {u} e e e e (A11.22)
n m1+m2
'1 1
I—n‘l*(l*k)
w, = N O W B X)
@ +m')
1

If k" =m',i.e. the exciter natural frequency is the sane
as the natural frequency of the system under test, then
equation (A I1.23) reverts to:

k.. 1
Wy ={ﬁl}2 which is the true system natural frequency.
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A Il X1 - Listing of Program ZTHA Y

MASTER HYSYSTEMS

Commmmnn- PROGRAM FOR HARMONIC ANALYSI S OF HYSTERETICALLY-
DAMEED SYSTEMS o

Crommmmmn- THE H MATRI X MAY NOT BE A SCALAR MULTIPLE OF THE
K MATRI X

COVPLEX F, X, Z, FO, ZO, FV

REAL MASS,K

DI MENSI ON' F(10), FR(10), FI (10, FSC(1 O, X(1 O, FV(1 O
DI MENSI ON MASS(LO, 10),K(10,10),Z(10,10) ,DAMP(10,10)
DATA STAR/4H****/ PI/3,1415926/,EPS/1.0E-5/,TEN3/
1.0E3/IERR=0

PI2=2,0%PI
C--------- READ | N NUMBER OF PARAMETRI C SETS | N DATA GROUPS
1 READ(1,1005)NSETS

1005 FORMAT(10)
| F (NSETS.EQ.0) STOP

C--------- MAI N LOOP FOR DATA GROUPS
DO 250 NS=1,NSETS
G-------- READ | N FUNDAMENTAL PARAMETERS
5 READ(1,1000)N,H,FMIN, FMAX, DF
1000 FORMAT(10,4F0.0)
C-—----—---CHECK DEGREES OF FREEDOM

IF(N.GT.O0.AND.N.LE.10) GOTO 10
WRITE (3,1990)STAR,STAR
1990 FORMAT(1X,A4,29H ERROR | N DEGREES OF FREEDOM ,A4)
IERR=1
Crmemmmme- CHECK FOR +VE OR ZERO DAMPI NG FACTOR
10 | F (H.GE.0.0) GOTO 20
WRITE(3,1980)STAR,STAR
1980 FORMAT(1X,A3,23H DAMPI NG FACTOR IS - VE ,A4)
Cooemmmne CHECK FOR +VE FREQUENCY PARAMETERS
20 | F (FMAX.GT.0.0.AND.FMIN.GT.0.0.AND.DT.GT.0.0) GOTO 30
WRITE(3,1970)STAR,STAR
1970 FORMAT(1X,A4,31H A FREQUENCY PARAMETER NOT +VE ,A4)

IERR=1

GOTO 50
Cremmmne CHECK ORDER OF FREQUENCY LIM TS
30 IF (FMAX.GI.FMN) GOTO 40

WRITE(3,1960)STAR, STAR
1960 FORMAT(1X,A4,33H FREQUENCY LIM TS I N WRONG ORDER ,A4)
IERR=1
C-------- CHECK FREQUENCY | NCREMENT
40 FDI FF=FMAX- FM N
| F (DF.LE.ABS(FDIFF)) GOTO 50
WRITE(3,195))STAR,STAR
1950 FORMAT(1X,A4,31H FREQUENCY | NCREMENT TOO LARGE ,A4)

IERR=1
Crommmee- STOP RUN | F ERRORS ON 1ST CARD
50 |F (IERR EQI) STOP
Crommmmmn- OUTPUT PROGRAM Tl TLE AND DATA ON 1ST CARD

WRITE (3, 2000)

2000 FORMAT(51HIHARMONIC ANALYSI S OF HYSTERETI CALLY
DAMPED SYSTEMS)
| F (H.EQ.0.0) WRI TE ¢3,2005)N,FMAX,FMIN, DF
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HDS010

HDS020
HDS030
HDS040
HDS050
HDS055
HDS060
HDS065

HDS070
HDS075
HDS078

HDS080

HDS085
HDS090

HDS095
HDS100
HDS105
HDS110

HDS120
HDS130
HDs 135

HDS150
HDS160
HDS165
HDS170
HDS175

HDS180
HDS190
HDS195
HDS200

HDS210 -

HDS220
HDS230
HDS235
HDS240

HDS245

HDS250

HDS260
HDS265



2005 FORMAT (34HONUMBER OF DEGREES OF FREEDOM N = ,12/

' 36H NO PROPORTI ONAL DAMPI NG COEFFI Cl ENT/

i 26H MAXI MUM FREQUENCY FMAX = |F8.2,4H CPS/
* 26H M NIl MUM FREQUENCY FMIN = ,F8.2,4H CPS/
* 26H FREQUENCY | NCREMENT DEm= ,F8.4,4H CPS/

| F (H.GT.0.0) WRITE(3,2010)N,H,FMAX, FMIN, DF
2010 FORMAT (34HONUMBER OF DEGREES OF FREEDOM N = ,12/

* 25H DAMPING COEFFICIENT H = ,F6.3/

* 26H MAXI MUM FREQUENCY FMAX = ,F8.2,4H CPS/
* 26H M NI MUM FREQUENCY FM N = ,F8.2,4H CPS/
*

26H FREQUENCY | NCREMENT DF = ,F8.4,4H CPS)

C--------- CONVERT CYCLE- FREQUENCY | NTO ANGULAR- FREQUENCY
WMAX=P12*FMAX
WMIN=P12*FMIN
DW=P12*DF
WMAX1=WMAX+0.5*DW
|F (NS.GT.L) GOTO 65

C--------- READ I N MASS MATRI X - 1 COMUMN ON EACH CARD
DO 60 J=1,N

60 READ(1,1010) (MASS(I,J), I=1,N)

1010 FORMAT (10F0.0)

Crommmrme NPRINT = NEAR OR AT M DDLE COF MATRI X
NPRINT=(N+1)/2
Cr—mm————- OUTPUT MASS MATRI X BY RON6

65 WRITE(3,2020)
2020 FORMAT(26HOORIGINAL MASS MATRIX(KG)/1X,25(1H-))
DO 70 I=1,N
WRITE (3,2030) (MASS(I,J),J=1,N)
2030 FORMAT(7X,10(F8.4,1X))
|F (1.EQ NPRINT) WRITE(3,2040)
2040 FORMAT(7H+M = )
70 CONTI NUE
|F (NS.GT.1) GOTO 80

Comememne- READ | N STIFFNESS MATRI X - 1 COLUMN ON EACH CARD
DO 75 J=1,N

75 READ(1,10 0 (K(I,J),1=,N

Commmmme- OUTPUT STI FFNESS MATRI X BY ROAS

80 WRITE (3, 2050)

2050 FORMAT(32HOORIGINAL STIFFNESS MATRI X (N/M)/1X,31(1H-))
DO 85 I=1,N
WRITE(3,2060) (K(I,J),J=1,N)

2060 FORMAT(7X,10(E10.4,1X))
IF (1.EQ NPRINT) WRITE(3,2065)

2065 FORMAT(7H+K = )

85 CONTI NUE

Crmmmemmm— CHECK FOR ZERO DAMPI NG FACTOR
| F (H.EQ.0.0) GOTO 92

C--------- DAMPI NG MATRI X = DAMPI NG FACTOR* STI FFNESS MATRI X
DO 90 I=1,N
DO 90 J=1,N

90 DAMP( 1, J) =HK(1, J)
GOoro 98

C--------- READ IN DAMPI NG MATRI X - 1 COLUWN ON EACH CARD
DO 95 J=1,N

95 READ(1,1010) (DAMP(I,J),I=1,N)

C--------- QUTPUT DAMF' | NG MATRI X BY RONS
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HDS270
HDS271
HDS272
HDS273
HDS274
HDS275
HDS280
HDS281
HDS282
HDS283
HDS284

HDS290
HDS295
HDS300
HDS305
HDS308

HDS310
HDS320
HDS330

HDS340

HDS350
HDS360
HDS370
HDS380
HDS390
HDS395
HDS400
HDS410
HDS415

HDS420
HDS430

HDS440
HDS450
HDS460
HDS470
HDSA475
HDS480
HDS485
HDS490 .

HDS492

HDS493
HDS494
HDs495
HDS496

HDS500
HDS502
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98 WRITE(3,2055) HDS504
2055 FORMAT (30HOORIGINAL DAMPI NG MATRIX (N/M)/iX,29(1H-)) HDS505
DO 100 I=1,N HDS506
WRITE(3,2060) (DAMP(I,J),J=1,N) HDS508
| F (I.EQ.NPRINT) WRITE(3,2075) o~ HDS509
2075 FORMAT(7H+H = ) " HDS510
100  CONTI NUE HDS512
Crmmmmm- READ | N SCALAR MULTI PLI ERS AND FORCE VECTOR
DO 105 I=1,N HDs515
105 READ(1,1020)FSC(I),FR(I),FI(I) HDS518
1020 FORVAT( 3F0. 0) HDS520
Crmmmmmme- OUTPUT FORCE VECTOR BY ELEMENTS
WRITE(3,2070) HDS530
2070 FORMAT (26HOORIGINAL FORCE VECTOR (N)/iX,25(1H-)) HDS540
DO 110 I=1,N HDS550
WRITE(3,2080)FR(I),FI(I) HDS560
2080 FORMAT(7X,2(F8.4.2X)) HDS570
|F (I.EQ NPRINT) WRITE(3,2090) HDS575
2090 FORMAT (7H+F = ) HDS580
110  CONTI NUE HDS590
LINE=1 HDS600
Crommmmee- FORM THE COMPLEX VECTOR F
DO 120 I=1,N HDS605
120 F(1), FV(1)=CMPLX(FR(1), FI (1))*FSC(1) HDS610
Crmmmeme- MAIN LOOP OF PROGRAM - USI NG COMPLEX EQUATI ONS
CPS=FM N HDS615
W=WMIN HDS620
130 Ww=wkw HDS625
Crmmmmmee s FORM THE COWPLEX MATRI X Z
DO 140 1=1,N HDS630
DO 140 J=1,N HDS640
140  Z(I,J)=CMPLX(K(I,J)-WW*MAXX(I,J),DAMP(I,J)) HDS650
Crommmme- COVPUTE DI SPLACEMENT VECTOR X FROM EQUATI ONS
DO 200 I=k, N HDS660
ZMAX=0.0 HDS665
[ FIND COLUMN ELEMENT W TH MAXI MUM MODULUS
DO 150 L=I.N HDS670
ZMOD=CABS(Z(L, 1)) HDS680
| F (ZMOD. LE. ZMAX) GOTO 150 HDS685
ZMAX=ZMOD HDS690
| ND=L HDS695
150  CONTI NUE HDS700
Crmmmmeme- CHECK FOR A SINGULAR MATRI X
| F (ZMAX. GT. EPS) GOTO 155 HDS705
WRITE(Z,1900)STAR, STAR HDS708 .
1900 FORMAT (1H ,A4,33H |LL- BEHAVED SYSTEM OF EQUATI ONS ,A4)  HDS710
STOP HDS712
155 | F (I.EQ.N) GOTO 205 HDS715
YMIN=1.0/ZMAX HDS718
| F (IND.EQ.I) GOTO 165 HDS719
(R TTANSPOSE ROWS | N EQUATI ONS AND SCALE NEW ROW |
DO 160 J=1,N HDS720
ZO= Z(1.J) HDS730
Z(IJ)=Z(IND,J)*YMIN HDS735
160 Z(I1ND, J) =20 HDS740
. FO=F(1) HDS750
F(1)=F(IND)*YM N HDS755
F(1 ND) =FO HDS760
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Goro 175

165 DO 170 J=1,N
170 Z(I.J)=Z(1.J)*YMIN

Ty x ~
C----- FCOTOVRRTIRATR X 1 NTO TRI ANGULAR” FGRM
175 DO 190 L=I+i,N
| F(CABS(Z(L, 1)) EQ.0) GOTO 190
F(L)=Z(1,1)*F(L)-Z(L, 1)*D(I)
DO 180 J=I+1,N
180 Z(L,3)=z(1,1)*Z(L, 3)-Z(L, 1)*Z(1,J)
190  CONTI NUE
200  CONTI NUE

Commmmmmm- SOLVE EQUATI ONS BY BACKWARD SUBSTI TUTI ON
205  X(N)=F(N)/Z(N, N)

F(N) =FV(N)

DO 220 I=I, N1

L=N-|

X(L)=F(L)
Crommmmee- RESTORE FORCE VECTOR

F(L) =FV(L)

DO 210 J=L+1,N
210  X(LO=X(L)-2(L,J)*X(L)
220  X(L)=X(L)/2(L,L)

Commmmmmne CONVERT Di SPLACEMENTS | NTO M LLI METRES
DO 225 L=1,N
225 X(L)=X(L)*TEN3
Commmmmnne OUTPUT TABLE OF DI SPLACEMEMIS | N COMPONENTS- FORM

|F (LINE. EQ ) WRITE(3,2100)CPS
2100 FORMAT (22H1FREQUENCY | N CPS = ,F8.4)
|F (LINE GT.|) WRITE(3,2110)CPS
2110 FORMAT(22HOFREQUENCY | N CPS = ,F8.4)
WRITE (3,2120)
2120 FORMAT(23X,9HCARTESIAN, 23X, 5HPOLAR/
* 6H X(MM),15X,4HREAL, 6X,4HIMAG,14x,17HMODULUS
ARG DEG))
C--------- CARTESI AN AND POLAR COVPONENTS OF DI SPLACEMENTS
DO 230 1I=1,N
XR=REAL( X(1))
XI =Al MAG( X(1))
XMECABS( X(1))
XA=PI2-ACOS (XR/XM)
| F (XI.LT.0.0) XA=PI2-XA
Cr——————=- EXPRESS ANGLE | N DEGREES
XA=180.0%XA/PI
230 WRITE(3,2130)1,XR,XI,XM,XA
2130 FORMAT(2X,12,1X,2(11X,F9,2,1X,F9,3))

C--------- [ NCREMENT ANGULAR- FREQUENCY FOR NEXT TABLE
CPS=CPS+DF
WEWDW
| F (W.GT.wWMAX1) GOTO 250

C--------- CHECK POsSI TION OF 1ST LINE IN TABLE

LINE=LINE+N+4
| F (LINE+N+2,GT.60) LI NE=1
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HDS762

HDS764
HDS766
HDS768

HDS770
HDS775
HDS780
HDS790
HDS800
HDS810
HDS820

HDS830
HDS835
HDS840
HDS845
HDS850

HDS855
HDS860
HDS865
HDS870

HDS875
HDS880

HDS885
HDS890
HDS895
HDS900
HDS905
HDSS10

HDS911

HDS915
HDS920
HDS925
HDS930
HDS940
HDS945

JDS950 .

HDS955
HDS960

HDS965
HDS970
HDS975

HDS980
HDS985
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Commmmmmn- RETURN TO CALCULATE NEXT TABLE
GOT0130

250  CONTI NUE
GOTO 1
END -

END OF SEGMENT, LENGTH 1320, NAME HDSYSTEMS
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HDS988
HDS990
HDS992
HDS995



Alll.2 - Listing of Program CFIT ‘

MASTER CFI T
- C------ PROGRAM TO FIND A Cl RCLE OF BEST FI T- ERROR MARG N POSSI BLE
Cmummem G.TOMLINSON -~
DI MENSI ON FI LE (1),XP(100),YP(100),AST(1),PL(1),TEST(1),SFCAP(11)
_ DI MENSI ON XAX(1),YAX(1l),FREQ(100),IRAD(11),SFC(2),SFS(1)
DATA SFCAP(1)/32H10.0 8.0 6.25 5.0 /
DATA SFCAP(5)/32H4.0 3.125 2.5 2.0 /
DATA SFCAP(9)/24H1.6 1.25 1.0 /
- DATA IRAD/40,50,64,80,100,128,160,200,250,320,400/
DATA SF/10.0,8.0,6.25,5.0,4.0,3.125,2.5,2.0,1.6,1.25,1.0/
DATA FILE(1)/8HZTCFR2FZ/,STAR/4H***x*/ PREC/1.0E-6/
DATA AST(10/1H*/,PL(1)/1H*/,TEST(1)/8HTEST NO /
DATA XAX(1)/4HREAD/,YAX(1)/4HIMAG/,SFC(1)/16H SCALE FACTOR = /
C------ STATEMENT FUNCTI ON FOR DI STANCE
- DIST(XA,YA,XB,YB)=SQRT( (XB=XA) **2+(YB-YA) ¥*2)
QPI=ATAN(1.0)
NDATA, NPAGE=0
HPI=2,0*QPI
- C------ | NI TI ALl ZE GRAPH=PLOTTER PARANETERS
CALL HGPDI SC(O FILE, O
CALL HGPLOT(0.0,0.0,16,1)
CALL HGPI DENT( FI LE)
CALL HGPLOT(0.0,3.0,0.4)
CALL DATE( DAY)
- IERR=0
C------ READ NUMBER OF PO NTS, X, Y-ERROR MARG NS AND ANNOTATI ON
10 READ(1,1000)NP,ZERR, YERR, INOT
1000  FORMAT(IO,2G0.0,I0)
- | F (NP.EQ.0) GOTO 999
C------ CHECK NUMBER OF PO NTS GE 4 AND LE 100
| F (NP.GE.4.AND.NO.LE.100) GOTO 20
WRITE(3,1995) STAR, STAR
1995  FORMAT(1X,A4.24H NUMBER OF PO NTS WRONG A4)
IERR=1
C------ CHECK ERROR MARGI NS ARE NOT - VE
20 | F (XERR, GT. - PREC) GOTO 25
WRITE(3,1990) STAR, STAR
1990 FORMAT(1X,A4,20H - VE X- ERROR MARG N ,A4)
IERR=1
25 IF (YERR GT. - PREC) GOTO 30
WRITE(3,1985)STAR, STAR
- 1985  FORMAT(1X,A4.20H - VE Y- ERROR MARG N ,A4)
IERR=1
C------ READ | N CO- ORDI NATES OF PO NTS AND FREQUENCI ES
_ 30 DO 40 NN=1,NP
READ(1,1010)FREQ(NN) , XP(NN), YP(NN)
1010 FORMAT( 3Q0. 0)
B C------ CHECK FREQUENCY VALUE
| F (FREQUNN), GT. Q. O AND. FREQUNN). LE. | 00.O) GOT0 38
WRITE(3,1975)STAR,NN, STAR
1975  FORMAT(1X,A4.32H WRONG FREQUENCY VALUE AT PO NT ,I2,1X,A4)
- IERR=1
C------ CHECK FOR Y CO ORDI NATE W THI N RANGE
38 | F (YP(NN).GE.C.0.AND.YP(NN).LE.20.0) GOTO 40

WRITE(3,1970) STAR,NN, STAR
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CFPOL10

CFPO11
CFPO12
CFP0O14
CFPO16
CFPO18
CFPO23
CFP024
CFPO25
CFPO26
CFP0O27

CFPO28
CFPO29
CFPO30
CFPO31

CFPO32
CFPO35
CFPO40
CFPO45
CFPO46
CFPO4. 8

CFPO50
CFPO55
CFPO60

CFPO65
CFPO70
CFPO75
CFPO78

CFPO80
CFPO85
CFPOS0
CFP092
CFP095
CFP100
CFP105
CFP108

CFP118
CFP120
CFP122

CFP124.
CFP126
CFP128
CFP129

CFP130
CFP131



1970  FORMAT(1X,A4,32H Y-VALUE OUTSI DE RANGE AT PO NT ,12,1X,A4) CFP132

IERR=1 CFP134
40 CONTI NUE CFP135
C------ FI ND RANGE OF X CO ORDI NATE
XMIN=1.0E7 CFP136
XMAX=-XMIN CFP137
DO 45 NN=1,NP CFP138
| F (XMIN.GT.XP(NN)) XM N=XP( NN) CFP140
IF (XMAX. LT. XP(NN))  XMAX=XP( NN) CFP142
45 CONTI NUE CFP144
C------ CHECK PO NTS ARE W TH N RANGE
XSPAN=EXMAX=XM N CFP145
| F (XSPAN. LE. 20. 0) GOTO 48 CFP146
WRITE) 3,1965) STAR, STAR CFP148
1965  FORMAT(1X,A4.28H CO ORDI NATES QOUTSI DE RANGE ,A6) CFP149
IERR=1 CFP150
48 | F (IERR.EQ.0) GOTO 49
C------ STOP RUN FOR ERRORS | N | NPUT DATA
WRITE(3,1960)STAR, STAR CFP151
1960  FORMAT(1X,A4.28H RUN STOPPED THROUGH ERROCRS ,A4) CFP154
GOTO0 999
C------ FIND CENTRO D OF Cl RCLE- CENTRES
49 XBAR, YBAR, RMAX=0. O CFP155
NC=0 CFP156
DO 60 N =I, NP-2 CFP158
DO 55 N2=N1+1,NP-1 CFP160
DO 50 N3=N2+1,NP CFP162
X21=XP(N2)~XP(N1) CFP164
Y21=YP(N2)-YP(N1) CFP166
X31=XP(N3)-XP(N1) CFP168
Y31=YP(N3)-YP(N1) CFP170.
DEL=X21*Y31-X31*Y21 CFP172
| F (ABS(DEL).LT. PREC) GOTO 50 CFP174
NC=NC+1 CFP176
RR21=X21* (XP(N2)+XP(NL)+Y21*(YP(N2)+YP(N1)) CFP178
RR31=X31% (XP(N3)+XP(N1))+Y31* (YP(N3)+YP(N1)) CFP180
REC=0.5/DEL CFP182
XBAR=REC* (RR21*Y31-RR31*Y21)+XBAR CFP184
YBAR=REC* (RR31*X21-RR21*X31)+YBAR CFP185
50 CONTI NUE CFP186
55 CONTI NUE CFP188
60 CONTI NUE . CFP190
XBAR=XBAR/ FLOAT( NC) CFP192
YBAR=YBAR/ FLOAT( NC) CFP194
CG----- UPDATE TEST DATA NUMVBER CFP194
NPAGE=NPAGE+1 CFP195
NDATA=NDATA+1 CFP196
DATN=NDATA CFP197
C------ OUTPUT PROGRAM TI TLE AND DATA ON 1ST CARD
WRITE (3, 2000) NDATA, DAY, NPAGE, NP, XERR, YERR CFP198
2000 FORMAT(9H1TEST NO ,I1,41X,5HDATA ,A8,37X,5HPAGE ,I1// CFP200
* 20H NUVBER OFPOINTS = ,13/ CFP201
* 18H X- ERROR MARG N = ,F6.4/ CFP202
* 18H Y-ERROR MARGI N = ,F6.4) CFP203
C------ OQUTPUT CO- ORDI NATES OF PO NTS AND FREQUENCI ES
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WRITE (3,2010)

2010 FORMAT (39HOCO~ORDINATES OF PO NTS AND FREQUENCI ES/
* 31H NN FREQ(NN) XP(NN)  YP(NN))
DO 65 NN=1,NP

65 WRITE (3,2020)NN,FREQ(NN) ,XP(NN),YP(NN)
2020 FORMAT(1X,I3.1X,F8.4,2(1X%,F8.3))
C------ FIND PO NT NEAREST TO RESONANT FREQUENCY

DO 70 NN=2,NP-1

RAT1=DIST(XP(NN-1) ,YP(NN-1) ,XP(NN),YP(NN))/(FREQ(NN)~-FREQ(NN-1))

RAT2=DIST(XY(NN+1),YP(NN+1),XP(NN),YP(NN))/(FREQ(NN+1)~-FREQ(NN))
C-onv-- AVERAGE VALUE OF DS/DF

RAT=0.5*(RAT1+RAT2)

| F (RAT. LE. RMAX) GOTO 70

NRES=NN
RVAX=RAT
70 CONTI NUE
C-———— OUTPUT MEAN Cl RCLE CENTRE

WRITE(3,2030)XBAR,YBAR
2030 FORMAT(19HOMEAN Cl RCLE CENTRE/8H XBAR = ,F8.3/8H YBAR = ,F8.3)

C-mmnn- FIND MEAN RADI US OF POl NTS FROM CENTRE
RAD=0. O
DO 72 NN=1,NP

72 RAD=DI ST( XBAR, YBAR, XP( NN) , YP( NN) ) +RAD
RAD=RAD/ FLOAT( NP)

C---n-- CHECK RADIUS |'S W THI N RANGE

| F (RAD.GE.1,0.AND.RAD.LE.10.0) GOTO 75
WRITE(3,198))STAR,RAD,STAR
1980 FORMAT (1X,A4,10H RADIUS = ,F6.3,18H | S OUTSI DE RANGE ,A4)

GOor0 999
75 WRITE (3,2040)RAD
2040  FORMAT(37HOMEAN RADI US OF PO NTS FROM CENTRE = ,F8.3)
C----- CALCULATE ABSOLUTE ERROR FOR MEAN RADI US
RERR=DI ST(O. O, O O, XERR, YERR)
C------ FIND HORI ZONTAL SPAN COF Cl RCLE

XM N=XBAR- RAD- RERR
XMAX=XBAR+RAD+RERR

Commmm- CHECK FOR MARG NAL ERROR Cl RCLES
|F (RERR LT. PREC) GOTO 76)
WRITE(3,2050)RERR

2050 FORMAT(24H ERROR | N MEAN RADI US = ,F6.4)

C----- OQUTPUT RESONANT FREQUENCY

76 WRITE(3,2055)NRES, FREQ(NRES)

20£L FORMAT (7HOPOINT ,12,24M - RESONANT FREQUENCY = ,F7.4)
C------ FI ND LARGEST ABSOLUTE VALUE OF Y

YLIM=RAD+RERR+YBAR
YLIM=AMAX1 (YLIM, 2,0%RAD)
C--nn-- FIND APPROPRI ATE SCALI NG FACTOR
MRAD=20.0*YLIM+0.5
| F (MRAD. LT. 40) MRAD=40
DO 77 NS=2,11
| F ( MRAD. LE. | RAD( NS) . AND. MRAD. GT. | RAD(NS- 1)) GOTO 78
77 CONTI NUE
NS=1
78 SCALE=SF( NS)
DS=0.005*%FLOAT (IRAD(NS))
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C-----

CONVERT SCALE- FACTOR | NTO CHARACTERS
CALL COPY8(SFS(1),SFCAP(NS))

CALL HGPSYMBL(0.0,-22.0,0.7,SFC,0.0,16)
CALL HGPSYMBL(9.6,-22.0,0.7,SFS,0.0,5)
CALCULATE PARAMETERS FOR AXES
NXY=INT(YLIM/DS)+1
SYAX=2,0*FLOAT (NSY)

FIND POSITION OF Y-AXI S

| F (XMIN.GT.0.0) GOTO 82
NS1=1~-INT(XMIN/DS)
XLIM=~-DS*FLOAT(NS1)

| F (XMAX.GT.0.0) GOTO 81

CI RCLE OFFSET ON -VE SIDE OF Y-AXI S
SXAX,XYAX=NS1+NS1

&Ooro 84

CIRCLE I'N NORVAL POSITION
NS2=NS1+INT(XMAX/DS)+1

XYAX=NS1+NS1

SXAX=NS2+NS2

GOTO 84

Cl RCLE OFFSET ON +VE SIDE OF Y-AXI S
NS2=INT(XMAX/DS)+1

XLI M XYAX=0. O

sxax=NS2+NS2

SCALE PARAMETERS FOR GRAPH PLOTTI NG
XBG=(XBAR-XLIM)*SCALE

YBG=- YBAR* SCALE

RAG=RAD* SCALE

RAG1=(RAD-RERR) *SCALE
RAG2=(RAD+RERR) *SCALE

PLOT PO NTS AND CENTRE FOR GRAPH PLOTTER

DO 90 NN=1,NP

XX=( XP(NN) - XLI M * SCALE
Xs=xx-0.12

YY=- YP( NN) * SCALE

YS=YY-0. 21

CALL HGPSYMBL(XS,YS,C.42,PL,0.0.1)
FI ND DI RECTI ON OF ANNOTATI ON
| F (INOT.EQ.O.AND.NN.NE.NRES) GOI0 90
ANNOTATE FREQUENCY VALUE
DX=XX- XBG

DY=YY- YBG

VECT=DI ST( Q. O, Q. O, DX, DY)

IF (DX LT, O @GOr0 85

THETA TAKEN AS -VE
THETA=ATANZ2 (DY, DX)
RAI=VECT+0.2
XF=XBG+RAI * COS( THETA)
YF=YBG*+RAI * S| N( THETA)

GOro 88

THETA TAKEN AS +VE

DX=- DX

DyY=- DY

THETA=ATAN2 (DY, DX)
RAO=VECT+1.7
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XF=XBG RAO* COS( THETA)

YF=YBG RAO* SI N( THETA)

ANGLE=90.0*THETA/HPI

CALL HGPNUMBER(XF,YF,0.21,FREQ(NN),ANGLEQ,2,4)
| F (NN. NE. NRES) GOTO 90

UNDERLI NE RESONANT FREQUENCY
XA=XF+0.1*SIN(THETA)

YA=YF- O. L* COS( THETA)

XB=XA+1.5%COS (THETA)

YB=YA+1,5*%SIN(THETA)

CALL HGPDASHLN( ZA, YA, XB, YB, O. O)

CONTI NUE

PLOT MEAN Cl RCLE ON GRAPH PLOTTER

XS=XBG- 0. 12

YS=YBG 0. 21

CALL HGPSYMBL(XS,YS,0.42.AST,0.0,1)
XO=XBG+RAG

YO=YBG

CALL HGPCIRCLE(X0,Y0,0.0,360.0,RAG,RAG,0.0)
| F(RERR LT. PREC) GOTO 95

PLOT MARG NAL Cl RCLES ON GRAPH- PLOTTER
X0=XBG+RAG1

CALL HGPCIRCLE(XO0,Y0,0.0,360.0,RAG1,RAGL,0.5)
XO=XBG+RAG2

CALL HGPCIRCLE (X0,Y0,0.0,360.0,RAG2,RAG2,0.5)
PLOT TITLE OF GRAPH AND CO ORDI NATE AXES
CALL HGPSYMBL(0.0,2.0,0.7,TEST,0.0,8)

CALL HGPNUMBER(4.2,2.0,0.7,DATN,0.0,0,1,0)
CALL HGPAXISV(XYAX,0.0,YAX,-4,SYAX,-90.0,0.0,DS,2.0,4)
CALL PGHAXISV(0.0,0.0,XAX,4,SXAX,0.0,XLIM,DS,2.0,4)
PRQJECTI ONS OF RESONANT FREQUENCY VECTOR
DXO=XP( NRES) - XBAR

DYO=YP(NRES)-YBAR

DFAC=0. O

FACT=2.0/FREQ (NRES)

NTERMEQ

ANGLE OF ROTATION |'S ANTI CLOCKW SE
DO104NO=1,NRES-1

N =NRES- NO

PRQJECTI ONS OF LOWER FREQUENCY VECTOR
DX1=XP(N1)-XBAR

DY1=YP(N1)~YBAR

HOR1=DXO*DX1+DYO*DY1

VER1=DX1+DYO-DX0*DY1

| F (ABS(HOR1) .LE.PREC) TH1=2,0*QPI

| F (ABS(HOR1) .GT.PREC) TH1=ATAN2(VER1,HOR1)
IF(TH1,GT.QPI) GOTO 110

TAN1-TAN(O.5%TH1)

ANGLE OF ROTATION |'S CLOCKW SE

DO 100 N2=NRES+1,NP

PRQJECTI ONS OF H GHER FREQUENCY VECTOR
DX2=XP (N2)-XBAR

DY2=YP(N2)-YBAR

HOR2=DX0*DX2+DY2*DYO

VER2=DX0*DY2-DX2*DYO
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| F (ABS(HOR2),LE.PREC) TH2=2.0*QPI CFP451

| F (ABS(HOR2).GT.PREC) TH2=ATANZ(VER2,HOR2) CFP452
| F (TH2.GT.QPI) GOTO 100 CFP453
TSUM=TAN (O.5*TH2) +TAN1 CFP456
C------ SUMVATI ON TO OBTAI N AVERAGE DAMPI NG FACTOR
DFAC=FACT* (FREQ)N2) -FREQ(N1) ) /TSUM+DFAC CFP458
TERM=NTERM+1 CFP460
100 CONTI NUE CFP462
105 CONTI NUE CFP465
------ CHECK WHETHER DAMPI NG FACTOR |'S CALCULABLE
110 | F (NTERM.GT.0) GOTO 120 CFP466
WRITE(3,1950)STAR, STAR CFP467
1950  FORMAT(1X,A4,31H DAMPI NG FACTOR NOT CALCULABLE ,A4) CFP468
GOoro 125 CFP469
C------ AVERAGE DAMPI NG FACTOR
120 DFAC=DFAC/ FLOAT( NTERM CFP470
WRITE(3,2060)DFAC CFP480
2060  FORMAT (26HOAVERAGE DAMPI NG FACTOR = ,F6.4) CFP485
------ CHECK POSI TI ON ON GRAPH- PLOTTER
125 CALL HGPWHERE( XW YW CFP510
XW=XW-SXAX-5.0 CFP515
------ RESET ORI GIN FOR NEXT SET OF DATA (IF ANY)
CALL HGPLOT(XW,YW,0.4) CFP520
@&Ooro 10 CFP525
------ FINISH OF GRAPH PLOTTER
999 CALL HGPLOT(10.0,0.0,3,0) CFP530
CALL HGPLOT(0.0,0.0,0,0,2) CFP535
CALL HGPDISC(1,FILE,0) CFP540
STOP CFP545
END CFP550
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DETERM NATI ON OF THE DAMPI NG RATI O BY THE METHOD OF
COVPLEX PONER

For a single degree-of-freedom system the displacenent

response is given by:

F
u = wg _ (A.TV.1)
- (577 + j2g -
n n
Now Power (W = Fxu = jFyu
.sz
I
W = ; .. (AI1V.2)
I S R
In terns of the real and inmaginary parts,
T - W )
FZ . w
- %y -izg}
ie. W= — — w‘; . (AIV.4)
(1-(5—) )+ 4’ .
n “n
2 W g2,
' (.0
W = __n Kk (A 1V.5)
(1-(55) 2% + 4z ( )
n

216




Flo(-GD)5)
and w" = ' L w2 e e ee .. (AIV.B)
a-GHH" TG

; F Wy "
W= o s W= 0 ce e e e e (AIVY
_ 2
Now W—"0". .. .. .. .. .. .. (AIVY
where 1 = (1 - ((—j"—)z)2 + 4c2(£i)2
n n
3 2 .2
w F w® F° dr
car YRR e R
L , ce ee e ee (A1V9)
T
Again, at o = w,
2 2
' F~ _ F” dr
aw _ I‘.4C—E— Zgu)—k-'.a-a ALV |O
c 16c4 .o .. .. .. .. (A IV.10

2 2 2
Now, g = 2(1 - (5% (5) + (827
n n n

and at w = w1
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9 2 2 2

F F™ 8t
aw' _ 4z Ag - 2(:.-k—._—-‘w_
dw 16;4
2 2
3F 3F
=16z;—k——16g—-R—ZO
16«;4
aw'
- 0 at resonance
aw'
1.6.3—(3 L:wn =0
2 2 2
F F" w F i- w~2dT
dwn r.T - 3T°wn2 - k (wn)z)a—w
Now,a—
w r2
atﬂ):wn; T=4E2, g—;:g_
[9)]
n
. 2 "¢ gl
g—w _ 4C (—k— - 3?)
dw 16;4
aw" _ _ F?
dw 2kc2
szn .
Now 7Tk w fromAIV.7
ﬂn _ W'
dw W
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2 2 2
2 . F 4
d_w__' ) 4C 4?;—k'“ - ZQ —k—.——"w
dw 16;4
2 2
16;3%F - 16c3%?
16c4
aw'
- de 0 at resonance
aw'
1.€ dw L=wn = 0
2 2 2 2
F F" w F e - w~2dr
d‘v 1} T —k— - 3_1(—'.(1) 2 - k (w Z)d_w-
3 N n s
I\OW,'a—B >
T
at o = w3 TS 4;2, %% = 8 2
“n
2 2
N 2.. E° ,F
aw'” _ Aot (- 3T
dw 16;4
MH - _ FZ
dw chz
szn ,
NOW—E_CT_W fromA|V7
1] ]
aw' _ W
dw cmn
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- —— at

1 W'

oo T _
n dW /dw w=w

resonance,

(%g IS a negative
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| DENTI FI CATI ON OF A MULTI DEGREE- OF- FREEDOM SYSTEM
W TH COULOMB FRI CTI ON ELEMENTS

Consi der a three degree-of-freedom | unped narameter sSystem
whi ch has only hysteretic danping and Coul onb damnpi ng.

CASE 1 - GROUNDED COULOVB ELEMENTS

A1
i
7
7 "3
é - L13
Z hz
where k = elastic stiffness

[
1

di spl acenent

The Coul onb friction elenents are linearised by the nethod
of harnonic bal ance and are denoted by the constants b.
whi ch represent the |evel of the Coulonb friction forces
I.e..

b= —% . i=1,2. . . . . . .. (A.VI.1)

The structural danping matrix S is given by:
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k;+k, -k, 0
S = -k, k,+ky ~k4 (A VI.2)
| 0 -k4 kg ]

where § is the structural danping coefficient; and the
frictional danping matrix F is given by:

iy 0 0
F= L 0 0 AR 0 WV )
.
U3

|f the force vector corresponds to a nornmal node excita-
tion vector at a normal node frequency Wy, t hen:

[ V17
U, = Av; = A v, O -V
L V3]
b -
[ 1 0 0
Vi
and F. =2 0 0 0 .. .. .. (A.VI.5)
L 0 0 b3—

| f one now considers equation (177) i.e.:
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ir t . t
_Xzo— - }\Yi §Tvir + \Yi Eirvir . . . . .. (AoVI-())

then the power input at each co-ordinate is obtained from
equations A VI.2, AVI.4 and A VI.5 as:

W
—w—% = )\[vi v, vsj"s(kl+kz)' (Vl) +
—61(2
| 0
[Vl v, V3]~b17 (vy) . .. .. (A VI.T)
vy
0
L O .
Wit
a’;}'\' = )\Vla{kz(vl = VZ)"' klvl} + bl vl . (A V|8)
Simlarly,
Wip _ |
‘u")—i"'x‘ - }\Vza{kz(\rz - VI) - k3V3} .. . (A- VI .9)
Wiz '
= = )\VScS{k:,)(V3 - )} + bsv3 G (A.VI.10)

If the left hand side of equations A VI.8, A V.9 and
A.VI.10 are plotted as a function of X, the resulting
curves are given as:
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u,

Thus the non-zero intercepts allow the non-linear Coul onb
friction force levels to be eval uated.

CASE 2 - COUPLED COULOMB ELEMENT

/F B o Yy s
A
A n —\V\A— ", N\ \M— n,
A * K, ks
b

The structural danmping matrix is given by equation A.VI.2
and the frictional danping matrix is:
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0 0
b
F = 0 _
0 -b
: |U27u3|

0 -

__-b

b

(A.VI.11)

Y2743

Again if a normal node vector, given

by equation A Vl.4, is

empl oyed, equation A VI.|| becones,
- O 0 0 7
F. =20 b -b (A.VI.12)
1 |V2-v3| lvz—v3| thTe
0 -b b
= |V2-V3| IVZ-V3|“

Enpl oyi ng equation (177) gives for the power input to each

co-ordi nat e,

W

i

11

g

X Avlﬁ{kl + kz(Vl - Vz)}.

Wio
Wik Aw,dik, (v - vy) + kg(v, -
W,
i3 _ _
G—X = AVSS{kS(VS

VZ)} - bV3

(AVI.13)

vg)} + bv, (A VI.14)

(A V1. 15)

Expressing the above quantities graphically as a function

of A gives,
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from which the

intercepts again provide the values of the

non-linear friction force levels.
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DESI GN CALCULATI ONS FOR EXPERIMENTAL RI G

1. TRANSVERSE MODE CALCULATI ONS

The requirenent for the transverse node, based on the
results of Table 4.1, Chapter 4, is that the nodal stiff-

ness » 300 kN/m. The value chosen for the nodal stiff-
ness was 350 kN/m.

B Fromreference (79), the stiffness' of a beam between C
and D for the boundary conditions given by,

W a

>

r
“l
A YA

Ry L
I's:
Ky = - GE'Z —asxgl. . (AVI.1)
Rl(x = 3L%"x) + 3a®x
where R = —EL{SaZL - a3).
212

The second nonment of area for the holl ow beami s:

| = BD" 4 o bd” Y -, )

where the cross-section of the holl ow beami s:
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|

VA A A A A A S [
d

[/
/‘h, _
i e

I 77777 L 1L L7

and B =50.8 nm D= 254 mm
b=47.6 mm d=22.2 mm
. T =26 x lb_91n4
From equation AVI.I, with a =b = %,
76SEl
Kn _
B = 7L3

Assum ng a value for Young's Mdulus of steel as 21OGN/m2,
the required length of the hollow steel beamis given as:

9

2% 26 x 107 )1/3
3

_ /768 X 210 x 10
( 7 x 350 x 10

L= 1.2m

This holl ow beam supports a solid steel cross beamat L/Z
whose cross-sectional dinmensions were chosen as 50.8 mm
square to allow the hollow beamto slot through this and be

| ocated securely.

Assuming a transverse node natural frequency of 25Hz gives
the lcngth of the solid steel cross beam as:

mp = MBSS of cross beam = pA%

.
_ B
OA“-M—“z
B
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0 - 350 x 10°
(25 x Zﬂ)z x 7.84 x 10° x (0.0508)2

L= 0.7m
2. TORSI ONAL MODE CALCULATI ONS
The natural frequency of vibration in the torsional node
w Il already be defined by the transverse node physical

par anet ers.

The polar second nonment of area, from Bredt Batho theory
(80) is:

40? .
Jp = 15 > 4’= surface integra
t ds = surface contour
t = thickness
A = cross sectional area

4(5).8 X 25.4)7
P 5(50.8 + 25.4)

J_ =69 920 mn? = 69.92 x 1072 n*

The torsional node stiffness is given by:

Assumi ng a value for the Mdulus of Rigidity for steel as
G = 80GN/m’:

(= 4 x 80 x 109 x 69.92 x 107
T = 1.7
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KT = 18. 65 kNm/rad.

The mass nonment of inertia of the cross-beam (the inertia
effects of the hollow support tube being negligible) is
gi ven by:

m
_ B ,.2 2
|PP—T-2—(a +L)

_ 14 2
= 17(.051° + 0.72)

| 0.575 kgn’

PP

.. the torsional node natural frequency,
J 1

1 Pl

£ = ——{——}
t 27V 1
A

. £

_ 1 418.65 x 103)?
1 = s

f. = 28.7 Hz.

T

3. EFFECT OF ADDI TI ONAL NMASSES

The basic experinental rig had design natural frequencies
in the transverse and torsional node respectively of 25Hz
and 28.7Hz. In order to 'tune' these so that these natural
frequencies could be either well separated or made al nost
equal, nmasses were added to the cross-beam which varied the
inertia and mass effects:
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Thus the nmass nonent of inertia becane:

m_.E(az
12

2 2
PP + L) + ZmAh

and the effective nass of the beam becane:

mg' = Mg + ZmA
The val ues of my used in the tests were chosen as 6kg. at
a radius of 0.33m. This gave the design natural frequen-

cies of vibration in the torsional and transverse nodes
respectively as:

;. 18.65 x 102 \?
T = 2rm 2

0.575 + (2 X 6 X 0.33 )}
£ = 15.84 Hz.

1
e - 1 (_316x 10° 2
B =~ Zn\4d+ 2 x 6)

fy = 18.36 Hz.

The actual natural frequencies of the rig with the above
physi cal paraneters frominitial tests were:

Hh
1

15.54 Hz
18.24 Hz

h
1
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Transducer Calibration Curves
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Journal of Sound and Vibration (1979) 63(3), 337-350

FORCE DISTORTION IN RESONANCE TESTING OF STRUCTURES
WITH ELECTRO-DYNAMIC VIBRATION EXCITERS

6. R. ToMLinson T

Department of Mechanical, Production and Chemical Engineering,
Manchester Polytechnic, Manchester M| 5GD, England

(Received 1 June 1978, and in revisedform 7 October 1978)

Harmonic input force distortion which arises when systems are excited with electro-
dynamic exciters is shown to be predominantly second harmonic, the major source of the
harmonic distortion being due to the vibration exciter characteristics. These are examined
by experimentally determining the magnetic field strength properties of a typical exciter
and the results show these to be a non-linear even function. This information is used with
the equations of motion of the exciter which are simulated on an-analog computer. The
computed force characteristics are shown to compare very closely with experimentaresults.
The amount of second harmonic force distortion generated at a system resonance is analyzed
by considering a simple single degree-of-freedom model. It is shown that the amount of
force distortion is related to the damping of the system under test and the ratio of the exciter
stiffness to the system stiffness. It is also shown that the force input to a system near a
system resonance can vary considerably, even though theinput current to the exciter is
constant. These effects are shown to he due to the for ces arising from the mass and stiffness
characteristics of the exciter being used. Experimental tests on a smple sysem confirm the
theoretical predictions.

1. INTRODUCTION

The use of electro-dynamic vibration exciters for the steady state forced vibration of struc-
tures is almost universal [ 1]. These types of exciters are used as force generators to apply a
harmonic force to a structure in order that modal data such as resonant frequencies,
impedance data, mode shapes, generalized masses and stiffnesses can be obtained. In theory,
measurement of the input force (or forces) and the structural response is straightforward.
A sinusoidal voltage applied to an electro-dynamic vibration exciter via an amplifier should
generate similar simple harmonic forces and accel erations. However, in practice, when the
structure under test resonates, the reaction force (which is equal and opposite to the applied
force) between the vibration exciter and the structure tends to become very small [2].
At this very point, i.e., the resonant condition, which is the point of greatest interest as
regards test data, harmonics of the forcing frequency become very predominant. This
harmonic distortion must be accounted for by suitable signal processing, especialy when
impedance tests are being carried out in order that reliable experimental results are
obtained and techniques for filtering out unwanted harmonics are well established [2, 3]-
In the past the source of the major harmonic force distortion was erroneously attributed
to the stiffness of the force transducer [4] and to harmonics being generated within the
amplifier plus oscillator together with some distortion within the vibration exciter. In this
paper it is shown that the distortion is predominantly second harmonic which is generated
due to non-linearities in the vibration exciter, andthatthe magnitude of the harmonic
distortion depends basically upon the damping and stiffness of the structure under test.

1 Now at the Department of Mechanical Engineering, University of Manchester, Manchester, England.
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Itis often assumed that the use of high output impedance amplifiers used in connection
with constant input current drive to an exciter will provide a constant input force to the
system under test. With lightly damped structures, where the amplitudes of vibration may
be relatively high, this assumption does not hold true and it is shown that if a constant
current source is used to drive the exciter then large variations in the magnitude of the
force input at the point of application of the structure may be encountered. These effects
are shown to be due to the forces arising from the mass and stiffness characteristics of the
exciter which modify the constant force generated in the coil of the exciter. Experimental
results from a set of tests on a simple cantilever beam are compared with the theoretical
predictions.

2. FORCE DISTORTION ENCOUNTERED DURING RESONANCE TESTING

Resonance testing of structures by use of electro-dynamic vibration exciters must, out of
necessity, rely upon arigid connection between the exciter and test structure along the line
of action of the applied force. This often results in a type of force distortion arising from
misalignment known as “ side-stressing”, and is due to the moving coil of the vibration
exciter coming into contact with and rubbing against the centre pole magnet. In order to
detect, and hence correct, side-stressing it is necessary to include a force detecting device
between the vibration exciter and the structure under test, since monitoring of the current
in the exciter coil gives little information relating to the actual input force level and aso
does not convey to the investigator the quality of the signal being applied to the structure
under test. Side-stressing can be easily avoided by employing techniques which restrict the
lateral movement of the vibration exciter armature [5] and by increasing the air gap be-
tween the centre pole magnet and the armature coil, athough this latter method does
reduce the efficiency of the exciter at high frequencies. A common method of reducing the
interaction between the structure under test and the vibration exciter (often used in con-
junction with the above techniques) is to use push-rods [6-8]. These are rods of high axial
stiffness but allow lateral and rgtational motion between their ends.

When structures which have low modal stiffnesses are tested one finds that the force
levels at resonance are very small, with correspondingly large amplitudes, and this often
is the main cause of harmonic force distortion. The level of this distortion can be very
considerable (e.g., over 100 % relative to the fundamental component) and is predominantly
second harmonic [9]. A typical input force signa with predominantly second harmonic
distortion and the resulting output response of the same point of a structure at resonance
is shown in Figure 1 together with a case of “side-stressing”.

Output acceleration

A S

Input force

(a) (b)
Figure 1. (a) Force distortion due to “side-stressing”; (b) input force a resonance and resulting motion at the
same point.

-
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Figure 2. Experimental arrangement to determine magnetic field characteristics of an electro-dynamic exciter.

In the theory of electro-dynamic exciters it is assumed that the force generated is pro-
portiona to the input current, the constant of proportionality being a function of both the
- armature coil design and the magnetic field structure design [10]. If the magnetic flux field
is assumed constant then a constant current produces a constant force. However, if the
magnetic field structure does not produce a uniform flux density field, then a more funda-
mental approach is required in which the properties of the magnetic flux field are considered.
In order to examine the characteristics of the vibration exciter magnetic flux field, two
vibration exciters with similar characteristics were connected together via a piezoelectric
force transducer as shown in Figure 2. One of the exciters was used to “ drive’ the other
o exciter, whose armature was open-circuited, with a constant peak-to-peak amplitude at a
given frequency, the amplitudes being measured by a non-contact displacement transducer.
By superimposing a d.c. bias voltage on to the drive signal, the mean position of the open-
— circuit exciter armature (i.e., the static equilibrium point about which the vibration takes
place) could be varied throughout its working displacement range for that particular
exciter model. For each mean position of the open-circuited exciter armature a constant
peak-to-peak amplitude of vibration was applied, this amplitude representing 15 % of the
rated maximum peak-to-peak displacement range of the exciter. Tests were carried out at
different frequencies (for the same mean armature positions and amplitudes of vibration)
and the results for two different frequencies are shown on Figure 3. These curves, which
- are even functions with a square-law characteristic, are related to the back emf generated
by the velocity of the armature and the position of the armature in the flux field.
The characteristics of Figure 3 show that the assumption of a constant magnetic field
- are invalid and that there is a variation in the magnetic field structure which is related to
the position of the exciter armature in the magnetic field. In the case of lightly damped
structures where the amplitudes of vibration are large and the level of the input forces are
small, the normal governing electrodynamic equations are inapplicable and one must
resort to €lectromagnetic theory to include the resulting variations.
From simple electromagnetic theory, the voltage arising as a consequence ofthe change of
flux linkage is given as [I 1]:
v = (dyr/dx)(dx/dt), (1)

where i is the flux linkage, x is the instantaneous displacement within the magnetic flux
and v is the voltage. Since for each test the velocity was constant, the characteristics of
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Figure 3. Back emfgenerated vs. mean position of open-circuit exciter as a function of maximum rated displace-
ment of exciter.

Figure 3 must represent dy/dx: i.e.,
dy/dx = C{1— afx, + x)*}, (2)
where
Ja = constant
=1/ (maximum rated peak displacement of the exciter) >1/(x, + X),

due to the constraints imposed by the exciter design (i.e., the armature “bottoms” on the
centre pole magnet if (x, + X) > 1/4/a), and where x,, is the mean position of the armature,
X is the instantaneous peak displacement of the armature and C is a constant related to
the maximum back emf generated. Thus the back emf generated as a result of the motion
of the armature in the magnetic flux field of Figure 3is

vp = (Ay/dx)(dx/de) = C{1—alx, + x)*}x. 3

If the well known basic equations of motion (see Appendix 1) of an electro-dynamic vibra-
tion exciter are modified to include the terms of equation (3) one obtains the following
expression for the armature equation of motion:

% 4 (k/m)x + (K/mR) {1 —a(x, + x)*}% = (k/mR)v cos wt, (4)

where the constant K combines the force current and the back emf constant (these being
assumed to be equa in this analysis). Equation (4) represents the motion of the exciter
armature, which actually consists of a series of harmonic components. However, due to
the fact that the magnitude of the fundamental component of the armature motion is very
much greater than the square law terms and the higher harmonics, these become in-
significant.

An analysis of the effects of the characteristics derived for the exciter was carried out by
using an analog computer. The model analyzed represented a single degree-of-freedom
system excited by an electro-dynamic vibration exciter via a force transducer. The model
is shown in Figure 4 where the stiffness of the force transducer is assumed to be infinite

[ 4

M-
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Figure 4. Smple model of single degree-of-freedom system and vibration exciter.

(piezoelectric force transducers have nominal stiffnesses >10® N/m). In Figure 4, m, is
the mass of the test structure plus the effective mass of the force transducer above the crystal,
m, is the mass of the vibration exciter coil assembly plus the effective mass of the force
transducer below the crystal, k, is the stiffness of the test structure, k, is the flexure stiffness
of the exciter, ¢, is the damping associated with the test structure, c, is the damping associ-
ated with the vibration exciter, and F, is the total force applied to the test structure from
the exciter.

Since the force transducer is assumed to have infinite stiffness then x, = x, = x, and
the equation of mation of the mass and armature, the vibration being assumed to occur
about the zero mean (i.e., x, = 0), is

C K k + k,)x kv cos wt
i+ { S (- axz)}x 4B 2)X kg cos o (5)
m . .. Rmg+m) m, +m, mg + m,

Simulation studies of equation (5) were carried out on an EAL 380 Analog Compuiter.
The physical quantities expressed by the various constants in equation (5) were obtained
from data supplied by the manufacturers of the vibration exciters used, and from tests
carried out on the exciters. These quantities, together with the simulation diagram used are
given in Appendix |. Figure 5 shows a sample set of results from the analog simulation.
The simulation predicts the pattern of behaviour which was observed during the experi-
mental tests where, at frequencies above and below the test structure resonant frequency,
the force signal is predominantly the fundamental component. At the test structure resonant
frequency the magnitude of the fundamental component reduces considerably and the
harmonic distortion becomes predominantly second harmonic.

3. ESTIMATION OF HARMONIC DISTORTION MAGNITUDES

In order to establish the levels of harmonic force distortion which can occur during testing,
an analysis of the system shown in Figure 4 was carried out. The force generated by the

w
WAt

' ]
W/, =0T w/w,= 09— w/w,=1-0—> w/w,=I| ——Ju/w,, = I-ZS-J

Figure 5. Analog simulation results showing the pattern of behaviour of the force. input signal around resonance
for the system shown in Figure 4.
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vibration exciter can be assumed to be represented by a harmonic series

8

F,=Y F, ittt + ¢, n=12,...,0, (6)
=1

where
F, =F, " *% —(m,D*+c,D+k,)x el * én) W)

and F, is the magnitude of the nth harmonic component, w is the excitation frequency, and
¢, is the phase angle between the nth force and displacement components, respectively.
Theforce F, reacts against the test structure to give

F, =(mD*+c, D +k)x el 4 90, ®)

and therefore
x e ENE fx _ m,D* —c,D —k,) = (m,D? + ¢,D + k,)xelnt+én), )

For harmonic motion Dnx = j nwx and hence
F, = (m,D2 +¢, D + k,)F, gitnor + "’")/[(kl + k) —(m, + mz)nzw2 + (¢, + ¢,) jnw]

(10)
Upon introducing the notation

w? = k,/m, (vibration exciter natural frequency),
w? = k,/m, (structure natural frequency),
m,/m;, = m, k,/k, = K, B, = no/w,, c,/ky = 20w, ok, = 20,/0,,
equation (10) becomes:
F, =Q- B+ jB2L,)F, & + *[(1 + k)= B(1 + m) + j{20,B, + 2,n(w/w,)k'}].
(11)

At the structural resonant frequency w = w, and g, =1; thus the fundamental harmonic
force component is

F,= (G2 )F, e+ e0[(1 + k) — (1 + m') + {20, + 2{,(w,/w,)K}] (12)
The second harmonic force component is
F, =(—3+ j4))F, el e/[(1 + k') — 41 + m') + j{4,, + 40 ,(@,/w,)k'}]. (13)

Substituting for (w,/w, )k’ = \/m’k’ in equations (12) and (13) gives, for the ratio of the
second harmonic component to the fundamental,

Fao _Fo@%® (3 +j4l))  [(K —m) +32{, + 2{,\/m'k)] (14
Fa F, J20,) [k —4m' — 3) + j(4L, + 4L, /mK)]

Equations similar to equation (14) may be written for the higher harmonics but the effects
of these are obvioudly lower than the second harmonic contribution.
If one considers that generally m’ <k’ < 1, then equation (14) reduces to

[F 4,/F 4] = (K/20,)|F/F,|. (15)

Equation (15) indicates that for the second harmonic distortion to be less than 1009,
the stiffness ratio k”< 2¢,. For lightly damped structures, where the equivalence 2{ = g
(9 being the structura damping factor) can be made, then k' < g and, since structura
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damping forces increase with stiffness, the stiffer the structure the lower will be the harmonic
force distortion.

The reason behind the harmonic.distortion becoming predominant at a system reson-
ance is easily shown by considering eguation (11). Equation (1 I) represents the harmonic
force components applied to the system under test. If one assumes that the exciter is being
driven by a high output impedance amplifier then electrical damping effects can be ignored
[12, 133. Also, if one considers the mechanical damping of the exciter to be negligible,
zquation (11), for the fundamenta harmonic force component, reduces to

Fu= (L= B3+ JB20)F, €= 91+ k) - B1 + mi) + J2C,B)) (16)
or
[F ol = [0 = 8D + (B.2L,PTPIF 1 + k) = B0+ m)* + QLE)T? gy

where 8, = w/w,. Equation (17) is shown plotted on Figure 6 as a function of the frequency
ratio (w/w, ) for different values of the system damping ratio for the cases when the system
natural frequency is greater and less than the exciter natural frequency. It can be seen from

30

',";‘I/F'l

2.0

Fores detivered Yo structure
Force delivered by exciter

~——
——

Figure 6. Theoretical CUrves of eguation (11) showing input force variation at a structural resonance. ——.
Exciter Natural frequency < structure natural frequency; —-———-, exciter natural frequency > structure natural
frequency. Curve 1, {=0-01,m" = 0175, k' = 0-14; curve I, { =0-05, m’ = 0175,k = 0.14; curve IIl, { =001,
m' = 0-00S, k' = 0-06.

Figure 6 that there is alarge variation in the input force in both cases which reduces as the
system damping is increased (i.e., the amplitudes of forced vibration, for a given force,
are reduced). Also, the force characteristic is “ inverted” when the system natural frequency
changes from a value above to a value below that of the exciter natural frequency. These
effects have been noted by other researchers [ 12, 14) and were attributed to the mass and
stiffness effects of the exciter.

An analysis of the effects of an exciter's mass and stiffness properties on the force injected
into a system has been carried out in Appendix 2. In the analysis it is assumed that a con-

M
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stant current source is used. The analysis shows, with the aid of vector diagrams, that when
lightly damped structures are excited with electro-dynamic exciters then considerable
variation in both the magnitude and phase of the actua input force to the system under
test is encountered.

4. EXPERIMENTAL INVESTIGATION

Tests were carried out on a simple cantilever beam in order to test the validity of the
above analyses. The tests allowed the stiffnessratio k' to be varied by changing the flexural
stiffness of a standard electro-dynamic vibration exciter. This method of varying k' was
used in preference to simply changing the beam length in order to ater the value of k
since this had more practical significance, and aso the mass ratio m' was constant. The
cantilever beam used in the tests was 25 mm wide, 50 mm deep and 1-25 m long. It was
excited at its tip via a piezoelectric force transducer and push-rod assembly with a standard
(commercia) electro-dynamic vibration exciter. The flexure stiffness and effective armature
mass of the exciter were 14 N/mm and 0-2 kg respectively. During the tests the beam ivas
excited over its fundamental frequency range with a constant displacement and the first
and second harmonic components of the input force signal were measured on an harmonic
analyzer. In order to provide a variation in k', the stiffness of the exciter was modified by
removing one of thefibre flexure supports. This reduced the stiffnessof the exciter by approxi-
mately 50 %. Asaresult of this modification the lateral stiffness of the exciter was reduced
to such an extent that a linear ball-race guide had to be used to provide lateral support
and hence prevent side-stressing of the exciter coil. This obvioudy increased the exciter
frictional damping but transient results indicated that this was minimal for steady state
vibrations. The results of the tests are shown on Figure 7 and it can be seen that there is
good correlation between the theoretical and experimental resullts.

T T T

60
lo] o

40}

20

A
(7N

X

Percentage second harmonic distortion
&
T

] 1
235 24.0 245
Frequency (Hz)

Figure 7. Results from tests on simple cantilever beam. Variation in second harmonic force distortion Wwith
exciter dtiffness. @———@, Standard exciter with k' = 0160, m’ = 0016, {, = 0-0013; x- x, modified
exciter with k' = 007, m" = 0-016,{, = 04013; , theoretical curve from equation (11) With k' = 0-160,
m = 0016, {,= 00013,{,=00.
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Figure 8. Constant current experimental results showing variation in the input force to a structure at the struc-
tural resonance. 0———O0, Exciter natural frequency < structure natural frequency: A -A, exciter natural
frequency > structure natura frequency.

Constant current tests were also carried out and the magnitude of the fundamenta har-
monic input force component, measured by the piezoelectric force transducer at the tip
of the beam, was obtained as the excitation frequency was swept over the fundamental
natural frequency of the beam. These tests were carried out with the beam fundamental
natural frequency above and below that of the exciter being used in the tests. Figure 8
shows the experimental results obtained in these tests and if a comparison between these
and the theoretical curves of Figure 6 is made it can be seen that there is excellent agreement.

5. DISCUSSION

The work reported in this paper has shown that harmonic distortion of the input force
signal at a system resonance is primarily due to the non-linear characteristics of the electro-
dynamic vibration exciter. These non-linearities, which characterize the -magnetic field
strength ofthe exciter, are basically square-law in nature, which results in the force distortion
being predominantly second harmonic. Higher harmonics will be present in the force
signal due to the fact that distortions of the square-law characteristic will occur during
testing, these distortions arising from such things as armature misalignment, higher order
terms in the magnetic field strength characteristics and variations in characteristics from
one vibrator to another.

It is shown that the damping in the system under test is a very important factor and in
order to minimize the harmonic force distortion occurring at resonance this must be
significantly greater than the ratio of the vibration exciter stiffness to the test structure
gtiffness. If the amplitudes of vibration are small, e.g., asaresult of exciting higher modes,
the harmonic distortion is reduced as a result of two factors. Small amplitudes of vibration
restrict the armature movement in the non-linear magnetic field: i.e.,, movement is restricted
to the region around the zero mean position of the curve on Figure 3 and hence the non-
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linearities are minimized. The second factor is that higher modes of vibration tend to pro-
duce larger damping forces which result in an increase in the fundamental force component,
whereas the second and higher order components remain approximately constant.

Further, it has been shown that regardless of whether or not a high output impedance
amplifier is used to supply a constant current source, large variations in the magnitude and
phase of the input force can occur when testing lightly damped systems. This has been
confirmed to be due to the forces arising from the mass and stiffness characteristics of the
vibration exciter which modify the resultant force applied to the system at the system
resonance. |f the natural frequency of the vibration exciter were to be the same as that of the
system under test then a constant force would be applied to the system since the vibration
exciter effects would be self-compensating.

The importance of these factorsisthat if a constant current source is used as areference
force condition, then, in the case of a lightly damped single degree-of-freedom system,
a ninety degree phase shift between the input current and the output displacement (or
acceleration) does not necessarily indicate a natural frequency. Only if the input force
measured at the point of application on the test system and the corresponding response are
used can this criterion be applied.

However, in terms of the harmonic force distortion levels at resonance, some improve-
ment would be achieved by employing a constant current source since the magnitude of the
non-linear term of equation (5) would be reduced. This is because the non-linear term would
be afunction of the force current constant only as opposed to a combination of this and the
back emf constant which would be the case with a voltage source (see Appendix 1).
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APPENDIX 1: BASIC EQUATIONS OF MOTION OF AN ELECTRO-DYNAMIC
VIBRATION EXCITER AND ANALOG SIMULATION DIAGRAM

The physical model of an electro-dynamic exciter can be considered simply as a resistor,
representing the coil, with an additiona voltage drop due to the velocity of the coil moving
through the magnetic field of the permanent magnet. The mechanical sub-system is merely
amass and a spring driven by aforce proportional to the current, damping effects due to
the flexure stiffness hysteresis and the rubber dust cap being ignored. The basic equations
of motion are

mx + kx = kg, Ri + kgX = vcos wt, (Al,2)

where m is the effective armature mass, k is the flexural stiffness, k. is the force current con-
stant, kg is the back emf constant, i is the armature current, v is the applied voltage at
frequency w, and R is the exciter coil resistance plus the drive amplifier output resistance.
Thus the equation of motion of the armature, from eguations (Al) and (A2) is

% + (kx/m) + (kpky/mR)% = (ke/mR) cos ot. (A3)

If the electrical power developed in the armature is assumed to be equal to the mechanical
power absorbed, then

kgXi = kpxi: i.e, ky= kg (A4)

Signal NP ™ q
genel'atOI' necoraer

. F=m,)v'|+C‘| i|+k|l|

e el el [0

Squarer

®

x25 _

Figure Al. Analog simulation block diagram used to compute tbe force arising from equation (4). @ indicates
a potentiometer. Values used in the simulation were m; = 0-1 kg, m, = 0:02kg, k, = 1 kN/m, k, = 3 kN/m,
Cy=0-2. Ns/m, k.= ky= 8 N/A, R =4 ohms. ¢ = 025 X 10%/m?.

A
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Both k, and k, are dependent upon the characteristic of the magnetic flux field of the exciter
and these effects, given by equation (2) of section 2, can be combined in equation (A3) to
give equation (4) of section 2: i.e.,

% + (kx/m) + (K/mR){ 1 — a(x, + X)'} % = (k/mR) v COS wt. (AS)

The block diagram used in the analog simulation of equation (5) is shown in Figure Al
together with the values of the various physical constants used in the simulation.

APPENDIX 2: THE EFFECTSOF AN ELECTRO-DYNAMIC EXCITER ON A
VIBRATING STRUCTURE

The force necessary to vibrate a structure is produced by the current through the exciter
coil. The moving elements of the exciter, namely the armature and some fraction of the
flexure mass and the push-rod assembly (which incorporates the force gauge), are rigidly
attached to the structure under test and as a result some of the force is used to accelerate
these additional masses. If the structure under test is at resonance then the displacement
of the excitation point is in quadrature with the exciting force. The additional masses of
the moving elements of the exciter are in phase with the structure but the acceleration forces
of these additional masses oppose the forces arising from the effects of the flexural stiffness
of the exciter. This results in the oscillator current vector not being in quadrature with the
displacement of the structure at resonance. This can be explained by considering a single
degree-of-freedom system excited by an electro-dynamic exciter. The model of the system
under analysisis shown in Figure 4.

The resultant force R applied to the structure is

R = F & —m,%, — ¢,X, — k,x,, (A6)

where F isthe force delivered to the moving parts of the exciter as aresult of the oscillator
current {which is held constant in magnitude and phase with the oscillator reference
voltage). If the stiffness of the force transducer is considered to be infinite compared to the
exciter and test structure stiffness, then the displacements within the system are common:
e,

X, = X; = X (A7)
The displacement of the armature(and structure) is related to the oscillator reference current
by

x = X9, (A8)

where y is the phase angle between the oscillator reference current and the displacement,
X isthe peak amplitude of the displacement and w is the radian frequency. With the aid of

the vector diagram in Figure A2 the resultant force applied to the structure can be obtained.

as
R = F cos wt + m,w?X cos(wt — ) — k,X cos(wt — ) + c,wX sin(wt — ). (A9)
The reaction force of the structure, which will be equal and opposite to R, will be
R; = -R = m,w*X cos(wt —~ ¥) — k,; X cos(wt — ) + c,wX sin(wt — ). (A10)

If the forces are expressed relative to the oscillator reference then at a given frequency
there will be a phase angle between the force delivered from the exciter and the resultant
force as aresult of equation (A9), and as shown on Figure A3.
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Figure A2. Vector diagram for equations (A6), (A7) and (A8).
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Figure A3. Vector diagram showing the force applied to the structure( R)  and the force delivered to the exciter
(F).

From Figure A3 the resultant force applied to the structure expressed relative to the
oscillator reference is

R sing = m,w’X siny — k, X siny — c,Xw cosy, (A11)

R cos ¢ = —m,w’X cos y + k,X cos Y —c,wX siny +F. (A12)

For a lightly damped single degree-of-freedom system resonance occurs when the phase
angle between the resulting displacement and the applied force is 90°: i.e., when

o+y =90, (A13)

Substituting ¥ = 90" — ¢ in equations (Al 1) and (A12) gives
R Sin ¢ = (m,w? ~ k,)X cos ¢ —c,X sin @, (A14)
R cos ¢ = —(m,w*—k,)X Sin ¢ —c,X cos ¢ + F. (A15)

Multiplying equation (A14) by cos ¢ and equation (A15) by sin ¢ and rearranging gives
(my,w® — k,)X =F sin ¢. (A16)

i
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With the exciter and structure natural frequencies denoted, respectively, by

Wl = ky/my,, @2 = k,/m,, (A17)
equation (A16) can be written as
k,X((w,/w,)*~ 1) = F sin ¢. (A18)

Thus the force which is applied to the structure is only in phase with the force delivered by
the exciter when one or more of the following conditions arises: (a) ¢ = 0; (b) w, = w,;
(c) x=0.
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The effect of coulomb friction on the Kennedy and Pancu vector plot of a single degree-
of-freedom system is analyzed by using the method of harmonic balance. It is shown that
the resulting diagram no longer conformsto a locus of a circle in the resonant region, which
restrictsthe usual methods of analysis. A technique, based upon the in-phase and quadrature
power dissipated when exciting a normal mode, is presented which allows the magnitude
of the non-linear friction force and the hysteretic damping constant to be evaluated. The
technique is also applied to systems having several degrees-of-freedom and it shows that
it is possible to identify the characteristics of a single non-linear coulomb device situated
within a structure, but in the case of more than one device, the technique has some restric-
tions. The theoretical results are compared with experimental data from a structure con-
taining a non-linear coulomb device.

1. INTRODUCTION

The egtimation of modal parameters from frequency or transient response data has relied
heavily on the use of vector plots derived by Kennedy and Pancu [1]. This technique, which
has been applied to a wide number of applications [2], relies upon acircular arc being curve-
fitted to experimental data in the resonant regions [3]. Any deviation in the experimental
data from the locus of a circle in these regions will automatically evoke errors, and in
certain cases, will restrict the application of this technique.

Such a case arises with systems comprising non-linear elements [4], for which the best
curve fit to the experimental data may result in figures resembling elongated circles (ellipti-
cal shapes) or combinations of circles with distorted regions, White [5] showed such effects
from the results of a structure subjected to large deflections and concluded that as a result
of thii the methods which are normally used to obtain certain modal parameters, such as
the maximum frequency spacing criterion for estimation of the moda frequency, did not
hold true.

Methods for identifying modal parameters of systems which display non-linear character-
istics have, in the past, been only partialy successful in the sense that the analysis either was
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Other techniques[9] have shown that it is theoretically possible to ascertain the position
- and the characteristics of the non-linear element, but only if the characteristics of the non-
linearity are dependent upon the absolute amplitude of the element: i.e., it is grounded.

In this paper the effects of a non-linear coulomb friction device on the Kennedy and .
_ Pancu plot of a single degree-of-freedom system are analyzed by using the method of Y
harmonic balance, and this principle is then applied to the normal mode response of a %

multidegree-of-freedom system. A technique is thereby derived for locating and identifying
the characteristics of a single coulomb frictional device, which may be situated anywhere in

- the structure, and the application of the technique to systems comprising more than one
frictional device is discussed It must be realized however that the types of system to which
the technique is applicable are restricted to those where the el astic elements are assumed to

—_ be linear, and where, besides coulomb friction, there exists only linear damping. The results
from experimental tests on a two degree-of-freedom model, having a controlled coulomb
frictional device, are compared with the theoretically predicted characteristics

2. NORMAL MODE RESPONSE OF A SYSTEM WITH COULOMB FRICTION '

14
- The conditions for the existence of classical normal modes in structures where frictional
energy is dissipated [10,11], appear to have no physica justification but systems can fre-
quently be described adequately by equivalent single degree-of-freedom models providing
that the modes are well separated or the frictional forces are not excessive [12]. In the
following analysis it is assumed that the frictional mechanism is of the coulomb form: that is,

the frictiona force fix) is defined by the relationships
B fx) = q for x> 0, fx)=—q for x<0, 0]

where q is the peak magnitude of the frictional force. By using the method of harmonic
— balance, this characteristic can be represented by an equivalent hysteretic damping constant
h*, where

h* = 4g/nlul @)

and [u] is the peak displacement.
If the elastic and non-frictional dissipative properties of the structure are to be represented
by amassless element of complex stiffness the equivalent single degree-of-freedom model
- for a particular mode may be represented by a body of mass m supported by an el ement of .

complex stiffness, given as

_ k + jh* = K'(1 + j0%), ©)
wherek is the elastic component of stiffness and the equivalent loss factor 6* has the form
5* = (6 + 4q/mk'|u]), 4

& being the structura (non-frictional) loss factor. When a harmonic force pe/* is applied to
the body of mass m, the equation of motion is

- m% + k'(1 + jo%)x = pe'”, (5
which has the solution x = ue’*, where u = [u] &',
[u| = @K1 — Q%) + 6*°]'72, (6)

and tan ¢ = §*/(1 — Q2%), where 2 = w/m/k’.

—
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Equation (4) may now be substituted into equation (6) to give:

fuf = =07+ ORI - 0 + &%) — P’ = @
- (1 -5+ 4 ’

(7)

where r = 4q/znk’.

A solution for [u] is only possible when r < p/k’. In practical situations this means that
the applied force p must be greater than the magnitude of the friction force ¢ in order for
any relative motion to exist The phase angle, for equations (4) and (6), is given by

tan ¢ = [6 + (r/lu)JA1 ~ 2%). ]
When the vector response, from equations (7) and (8), is plotted in the phase planeit is
found that the locus has a form similar to that shown in Figure 1. Clearly, the effect of the

Ro (¢} (mm}
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Figure 1. Effect of coulomb friction on the vector response locus of a single degr ee-of-freedosystem with
hysteretic damping r being proportional to the friction force level (r 4¢/xk).

coulomb frictional forcesisto produce an elongation, parallel to the imaginary axis, of the
familiar circular locus which is obtained for lightly damped linear systems. As a result of
this distortion, the system parameters cannot be determined as readily from this vector
response locus as they can when the systemis linear.

An alternative approach is that based upon the measurement of complex power in the
region of resonance as proposed by Bonneau [13]. In this method, the total input power W
to a mode is determined by obtaining the product of the applied force and the associated
velocity. It is evident that the power must be a complex quantity having real and imaginary
components W’ and W* respectively. It can be easily shown [ 13) that for a viscously damped
single degree-of-freedom system the following conditions apply at resonance (w = w,):

w" = dW/do|,_, =0, ©)

dw"/dw|,, ., = a maximum. 10)

lo=an

These conditions can be shown to give the damping ratio { as
{ = Yo J{W/[(dW"[dw)}|, ., (11)
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Thus plots of the in-phase and quadrature power against frequency will provide esti-
mates of the damping and the natural frequency. Typical plots of thein-phase and quadrature
components from a set of experimental results are shown on Figure 6 of section 6. The
obvious advantages resulting from this technique are that the curve fitting procedures in-
volved are simple and do not need to be modified for the type of non-linearity under
investigation.

It is evident from equations (7) and (8) that when a frictionally damped single degree-of-
freedom system is excited at its resonant frequency, the displacement and force are in
quadrature and

lu| = [e/k) — )8 (12)
It follows therefore that since at resonance
p = K(8|u| + 1),
then
Wlpew = o K'(8|ul? + r|u)) (13)
and since also W’,_,, =0, equation (13) can be expressed in the form
(W/o,|u|)yzon = K'8|u| + k'r. (14)

If, therefore, W'/w,|u| is plotted against {u|, at the resonant frequency, the resulting curve
will be a straight line with an intercept equal to the value of k'r. The results may then be
substituted into equation (14) to obtain the vaue of the linear hysteretic damping constant
k's.

3. THE EFFECT OF COULOMB FRICTION ON SYSTEMS HAVING SEVERAL
DEGREES-OF-FREEDOM

The procedure described in the previous section can be used to analyze complex struc-
tures when modal interaction is not particularly strong. However, there are many cases
where the frictional coupling is such that a more refined dynamical model needs to be
identified In such cases, it is necessary to represent the structure by a lumped parameter
system with n degrees-of-freedom The system may then be defined by mass, stiffness and
damping matrices M, K and H respectively. If the system is assumed to be linear, the har-
monic solution X = u e gives the resulting matrix equations

— @w*Mu + Ku + jHu = p. (15)

When the system is excited at itsith natural frequency w, by the forces p; such that the peak
displacements are given by v, where v, is the ith normalized mode shape and 4 is a con-
stant, equation (15) reducesto

jAHY, = p, (16)

since w?Mv, = Kv, Thus, providing that p, is real, al the displacements will be in phase
with each other and in quadrature with the forces.

If it is assumed that the damping is a combination of structural (hysteretic) damping and
frictional damping, denoted by the matrices S and F respectively, the matrix F can be
formed by linearizing the coulomb friction elements. The elements of the F matrix may be
expressed in terms of the displacements in the following manner:

Ju =2 [b/9uuy, 4y - 0] (17
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where f,, is the element in the kth row and Ith column, b, is a constant and g,, is alinear
function of amplitudes. Thus, when the system is excited at its ith natural frequency,

fa=X [by/2g5v,], (18)

where g, is a transposed vector of constants. The frictional damping matrix can then be
expressed in the form

F = (1/AF, (19)
where the elements of F; have the amplitude independent form
b./g.v, (20)
Equation (16) may therefore be stated as
S + Fv, = p, (21)

Since the power dissipated, W, when the system is vibrating at its ith natural frequency, is
given by

i = _i';l’i = — jo, AV,

it follows that
W, = oV(A*S + AF)v, (22)

W/iw, = AvSv, + ViF,v, (23)

Clearly, equation (23) can be used to evaluate the n values of v;, F; and v, corresponding
ton modes of the system. However, thisinformation is not sufficient to completely define
the form of the coulomb damping matrix ¥, unless there is additional information relating
to the location of the frictional mechanisms. For example, if it is known that all such
mechanisms couple the structure to ground, ¥, must be diagonal and a unique solution
can readily be found to give the values of the corresponding hysteretic damping constants.
Unfortunately, it would appear that no such general unique solution exists when the system
also possesses frictional devices which couple one co-ordinate to another. However, the co-
ordinates which are coupled either to ground or to other co-ordinates by frictional devices
can easlly be identified by measuring the power input, W, to each co-ordinate; when only
the power to the rth co-ordinate is considered, equation (23) takes the form

W, /2w, = AvS v, + ViF, v, (24)

rir ir’ir

wherev, isthe rth element of v, F, istherth column of the matrix ¥, and S, is the rth column.
of the matrix S. Equation (24) is now of the same form as equation (14) and when this result
is plotted, a non-zero v;F, v, intercept indicates that a frictional device is coupled to the
rth co-ordinate. Further, in the case of only a single frictional device being present in the
system, which couples a pair of co-ordinates, say the rth and sth, the only non-zero intercepts
would be those associated with these two co-ordinates and the magnitude g of the frictional
device can be evaluated directly since

F, =F,=~-F_ =—F,_=d4g/n, —0). (25)

4. EXPERIMENTAL INVESTIGATION

A series of tests were carried out in order that the identification method described in
this paper could be applied to a practical system which included a coulomb frictional
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device. The rig was designed to have two principal modes of vibration, a torsional mode
and a transverse mode which could be tuned to provide close or well separated natural
frequencies.

The essential features of the rig comprised a hollow stedl rectangular tube which was
securely connected to a rigid steel cross beam This assembly was mounted on a massive
base and the ends of the tube were constrained so as to produce an encastre-pinned beam.
Thus the hollow beam acted as both a spring in bending and torsion, the rigid steel cross
beam providing the mass and inertia properties. Load masses, which were adjustable in
position, were attached to the steel cross beam to provide a means of tuning the natural
frequencies. The coulomb frictional device, which was located close to one end of the rigid
cross beam, consisted of a highly polished hardened stedl disc held in contact by a spring
against a Teflon coated aluminium pad which was attached to the cross beam. In order to
excite the normal modes of vibration of the system two electro-dynamic vibration exciters
were connected to the cross beam via push-rod and piezoelectric force link assemblies, the
output responses of the system being measured at the input points by piezoelectric accelero-
meters.

5. EXPERIMENTAL PROCEDURE

The criterion used for establishing when a normal mode of vibration was excited was the
classical phase-resonance criterion [14]. By employing this criterion, the input powers in
each norma mode were determined as a function of areference modal amplitude. A typical
sat of results from these tests are shown on Figure 2. In order to determine the actual
coulomb friction force magnitudes used in the tests, quasi-static measurements were
carried out. These consisted of measuring the displacement of the cross beam and the input
force at an excitation frequency of 20 mHz The input force was plotted directly against the
output displacement on an X-Y recorder which resulted in a hysteresis curve from which

Wy /e

5/L 1 1 1 1 1

. 04 08 1-2 6
Normalizing constant, A

Figure 2 Experimental modal input powers from the transverse (-A-) and torsional (——@—) normal
modetests. Theresults are plotted accor ding to the form ofequation (23).
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Figure 3. Hysteresis curve obtained from the quasi-static transverse mode test with the friction pad in contact.
Frequency of excitation force is 20 mHz. dF/du = static tiffness.
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Figure 4. Hysteresis curve from the transverse mode without the friction pad in contact. The lope (asin Figure 4)

represents the static stiffness of this mode. Frequency of excitation force is 20 mHz.
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the frictional damping element characteristics could be obtained, Figures 3 and 4 show the
hysteresis curves obtained from the quasi-static tests with and without the frictional device
in operation.

6. ANALYSIS OF RESULTS

The form of the F, matrix for the system under test is obtained by using the intercepts of
the curves on Figure 2 and equation (25). The magnitude ¢ of the frictional forceisthen given
directly by using the information from either of the two modes since in this case

Taee 1
Method of evaluation Coulomb friction force level
(N peak-to-peak)
N Transverse 44
pg:vmal cmode mode
er curve Torsional
(Figure 2) mode 4.16
Quasi-static tests 4.5

v; =[101-0], v, =[1-:0—1-0] and F, = 4g/n. The vaues of 4 obtained from this anaysis
for both the torsional and transverse modes are shown in Table 1 together with the value
of g obtained from the quasi-static tests. The results from one set of normal mode tests in
the transverse mode were plotted in terms of the vector response in the phase plane,
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~0-4r 1-0l 7

Figure 5. Distortion of a single mode vector response as a result of coulomb friction, curve (a) experimental
results and (b) theoretical response using equations (7) and (8) with values of 6, r and P/k” obtained from test (a)

-results.
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Figure 6. Experimental results from curve (a) of Figure 5 plotted in terms of the complex power components.
B—n In-phase component;€—@ quadrature component.

together with the curve from equations (7) and (8). Figure 5 displays the similarity between
the measured and theoretical results, and the same experimenta data, in terms of the in-
phase and quadrature powers is shown plotted on Figure 6.

7. CONCLUSIONS

The work described in this paper has shown that it is possible to analyze systems which
include non-linear elements characterized by coulomb friction devices. In the case of a
system comprising only one such device it has been shown that not only can the magnitudes
of the frictional forces involved be evaluated but also the actual location of the non-linear
element within the system is obtained In the case of more than one frictional device being
present, it is necessary to have a priori knowledge regarding the location of those non-
linearities in order that their characteristics can be evaluated In some cases these locations
may be obvious, for example, a hinge or a guideway would provide the necessary mech-
anism, in which case their characteristics could be identified The application of complex
power techniques to the frequency response testing of both linear and non-linear systems
appears to offer advantages over the Kennedy and Pancu type plots, where, in the case of
non-linearities, the response locus becomes disturbed to such an extent that damping and
natural frequency estimates incur large errors. The mechanism of obtaining the power
dissipation experimentally is exactly the same as that for obtaining the Kennedy and Pancu
information, whether multi-point or single point excitation methods are used; thus no
deviation in experimental technique is required.

The results of the experimental programme gave very encouraging results, and in the
analysis of complex structures such as the ground resonance testing of aircraft the tech-
nique could be utilized, to aid the present identification schemes aready employed.
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