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This dissertation is concerned with the determination of
such modal properties as natural frequencies and modal
damping of lightly damped linear and non-linear structures.

The material is presented in three sections, the first of
which analyses in detail the problems that are encountered
when using electro-dynamic vibration exciters to harmon-
ically excite a structural resonance in order that the
modal properties can be accurately determined.

The second section of the work deals with the effect of
modal interaction and different damping distributions on
the ability to excite the normal modes of vibration of
linear structures, and the influence of these on the result-
ing modal properties.

The results from this work and those of the first section
are used to deve,lop a rig which includes a non-linear
friction device on which normal mode tests are conducted.
This constitutes the final section of the work uhich is
devoted to the theoretical and experimental identification
of the modal properties of non-linear systems using normal
mode methods.



The work described in this dissertation was instigated through

contacts with the Department of mhanical Test, British
Aerospace, Warton, Preston. One of the functions of this
Department is to carry out Ground Resonance Tests on military
aircraft. These tests employ steady state forced vibration
procedures using multiple exciter inputs to excite the normal
modes of aircraft in order to accurately determine such modal

.
properties as normal mode frequencies, damping ratios, general-
ised masses and stiffnesses.

However, problems arise in the forced vibration testing of
these complex structures due to the effects of non-linearities
such as friction, non-linear stiffnesses and backlash. As a
result of these problems the author became involved in a
research project which was concerned with the identification
of the damping ratios and natural frequencies (the properties
of generalised mass and stiffness be'ing excluded from the
identification process) of non-linear structures employing
multi-point exc,itation methods.

However, initial experimental tests, employed to 'practise'
the art of multi-point normal mode excitation procedures,
which were carried out on rigs which had low damping properties
revealed problems relating to the effects of the vibration
exciters which the author had not expected. These problems
resulted in a considerable effort being spent on their invest-
igation and eventual solution before any work employing multi-
point excitation methods on structures with and without
controlled non-linearities could be carried out.

Thus the overall programme of work is presented in three
sections. The first section deals with the effects of using

_

electro-dynamic vibration exciters to vibrate a structure.
This work analyses in detail the constraints that these
exciters impose upon a vibration test programme and reveals
the cause of the harmonic input force distortion which arises
when vibration tests are carried out on lightly damped

I
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structures, which, although reportA by other researchers,
have never been satisfactorily explained.

The second section of the work is$evoted to an area which
has recently received considerable attention, that of the
effect of a modal damping matrix with off-diagonal terms
which causes modal interaction. This was a further problem
with which the author was confronted in the initial testing
stage and the results of this investigation have produced
criteria which enhance the existing knowledge of the effects
of modal interaction on the ability to excite the normal
modes of vibration of linear damped structures.

The final section exploits the information obtained from the
work described in the earlier sections to investigate the
effects of two commonly occurring structural non-linearities,
Coulomb friction and non-linear stiffness. A considerable
part of this section concentrates in particular on the effect
of Coulomb friction, since this had proved to be a problem
on swing-wing aircraft at British Aerospace, and the work has
produced an original identification procedure using multi-
point excitation methods which is supported by extensive
experimental work.



NOMENCLATURE

Definition of Greek symbols used ti the text is listed
below, other nomenclature which is used is defined the
first time it is introduced, and where possible, it is
consistent throughout, although in some cases it has been
necessary to use the same symbol to describe more than

variable.

Constant representing the maximum armature
displacement.
Ratio of adjacent natural circular frequencies.
Ratio of excitation frequency to test structure
natural frequency.
Co-ordinate system.
Structural (hysteretic) damping factor.
Equivalent structural damping factor.
Percentage error in the modal damping f;ictor.
Percentage error in the transverse normal mode
frequency.
Viscous damping ratio.
Test structure viscous damping ratio.
Vibration exciter viscous damping ratio.
Normalising constant.
Non-linear stiffness coefficient.
Matrix of modal damping coefficients.
Matrix of modal coupling damping coefficients
whose leading diagonal is zero.
Diagonal matrix of modal damping coefficients.
Surface integral.
Phase angle between input force and output
displacement.
Modal matrix.
Magnetic flux linkage.
Transformation matrix.
Excitation frequency.
Test structure natural circular frequency.
Vibration exciter natural circular frequency.

6



a
w
b

wn
5

wj 'k

R

Natural circular frequency of vibration in the
transverse (bending) mode.
Normal mode frequency of,+vibration.
Natural circular frequency of vibration in the
torsional mode.
Natural frequency of vibration in the j th
kth mode respectively.

and

Ratio of excitation frequency to normal mode
frequency.

7
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1. FREQUENCY RESPONSE TESTING USING ELECTRO-DYNAMIC

VIBRATION EXCITERS

1.1 INTRODUCTION ;?=

The use of electro-dynamic vibration exciters in the
frequency response testing of structures is almost universal.
These exciters are very simple in their basic design and
construction (1) and due to their ease of application,
particularly in the ability to attach and orientate these
on the test structure, they are the type of vibration exciter
most commonly used in forced vibration tests. There are two
basic modes of operation with such exciters, these being
related to the reference used as the input to the structure.

In order to excite a structural resonance, a harmonic force
is injected into the structure under test. In order to
establish the resonant condition of the structure, it is
necessary to have some knowledge of the phase of the input
force with respect to the output response, particularly if
the structure is, lightly damped when accurate determination
of peak amplitudes is difficult.

This can be done in two ways. The first, and most commonly
used mode of operation, is to use a force gauge which is
inserted between the vibration exciter and the test structure,
which gives an output voltage proportional in magnitude and
phase to the force being injected into the structure at that
point. The second method is to measure the input current,
in magnitude and phase, to the vibration exciter from the
oscillator and amplifier. Reference to the basic equations
of motion of an electro-dynamic exciter (2) shows that the
force delivered by the vibration exciter is proportional to
the current flowing through the coil of the exciter armature.

. There are fundamental differences between these two approaches
since the latter approach involves the structure plus the
vibration exciter characteristics whereas with the first
approach one is dealing with the virgin structure. Although
the use of a force gauge appears to be the most obvious

8



choice to provide the reference in8 t force source,
problems arise when the structure under test is lightly
damped. Under these conditions the force signal around the
resonant regions reduces in magnitude and, particularly at
the fundamental resonance, becomes considerably non-linear.

This aspect of the effects of electro-dynamic vibration
exciters on a system under test has received considerable
attention. For example, the work by Taylor et al (3), and
Holmes (4) discusses means of compensating for the exciter
mass, stiffness and damping characteristics, which may be
very significant if the structure is lightly damped. How-
ever, no reference is made to the problems of harmonic
force distortion which occur in the resonance testing of
lightly damped structures.

The problem of harmonic force distortion is one which seems
to have received little attention in terms of understanding
exactly what is the cause of this, or the manner in which
the frequency spectrum of the input force varies, particular-
ly near the structural resonance. The reason for this is
due to the fact that techniques for removing unwanted
harmonics e.g. the use of tracking filters (5) have been long
established and present day techniques based on digital filter-
ing methods are often taken for granted when using sophisti-
cated equipment. Nevertheless, most researchers in the field
of vibration testing will undoubtedly have at some time
observed on an oscilloscope the output from a force transducer
in the region of a structural resonance when the magnitude
of the force signal has reduced considerably and has display-
ed considerable non-linear harmonic distortion. These
effects have been analysed in detail and the theoretical
predictions confirmed by carrying out an extensive experimental
programme and analogue computer simulation study.

In order to understand fully the implications of using either
the input current as a reference input force source or using
a force gauge directly, a further analysis relating to the
effects of a typical electro-dynamic vibration exciter on

9
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the response of a single degree-of-+reedom system has been
carried out. The analysis covers not only the modifications
which occur in the interpretation of the resonant condition
due to using the input current as P force reference, but
also the importance of relating the output response to the
input response of a test system in order to measure the
true system characteristics.

1.2 ANALYSIS OF
ENCOUNTERED

THE HARMONIC FORCE DISTORTION
WITH ELECTRO-DYNAMIC VIBRATION EXCITERS

Experimental tests (described in the following Chapter) had
shown that the non-linearities occurring in the input force
signal in the region of a structural resonance of a lightly
damped structure were predominantly due to second harmonic
effects and the origin of these was the electro-dynamic
vibration exciter. This was indicated by the fact that
although the input current to the exciter, the motion of
the armature of the vibration exciter and the output response
were sinusoidal throughout the tests, the input force signal
displayed considerable harmonic distortion as the resonant
condition of the structure was approached.

Thus having isolated the source of the harmonic distortion
as the vibration exciter it was necessary to know in detail
something of the vibration exciter characteristics. The
underlying theory of electro-dynamic exciters, which distin-
guishes them from electro-magnetic exciters, is that the
force generated by the exciter is assumed to be proportion-
al to the input current, the constant of proportionality
being a function of both the armature coil design and the
magnetic field structure (7).

In the case of electro-dynamic exciters, the magnetic flux
. field is assumed constant which results in an equation for

the force generated being given as:

F = BlNi . . . . . . . . . . . . . . . . (1)

10
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where, 1 = coil length in the flux 94-eld
B = flux density
N = number of turns of length 1,
i = current i%

However, if the magnetic field structure does not produce
a uniform flux density field, then equation (1) does not
hold true and one must resort to the fundamental electro-
magnetic equations which allow for variations in the magnetic
flux field.

1.2.1 CHARACTERISTICS OF THE VIBRATION EXCITER
MAGNETIC FLUX FIELD

The voltage V which results when a coil is oscillated in
a magnetic flux field is given as (8):

v = $-g . g . . . . . . . . . . . . . . (2)

d$where dx is the rate of change of flux linkage with respect
to the instantaneous displacement within the magnetic flux
field and $ is the instantaneous velocity. To be able to
derive a characteristic of the magnetic flux field behaviour

d$it was required to be able to identify the behaviour of -d-x
in equation (2).

In order to examine the characteristics of the vibration
exciter magnetic flux field, two vibration exciters with
similar characteristics were connected armature to armature
via a rigid link as shown in Figure 1. One of the exciters
was used to 'drive' the other exciter, whose armature was
open-circuited, with a constant peak-to-peak amplitude at
a given frequency, the amplitudes being measured by a non-
contact displacement transducer. By superimposing a d.c.
bias voltage onto the drive signal, the mean position of
the open-circuit exciter armature (i.e. the static equil-
ibrium point about which the vibration takes place) could
be varied throughout its working displacement range for that

11
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FIGURE 1

MEASUREMENT OF VIBRATION EXCITER MAGNETIC FLUX
FIELD CHARACTERISTICS.
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particular exciter model. r,For each ean position of the
open-circuited exciter armature a constant peak-to-peak
amplitude of vibration was applied, this amplitude repre-
senting 15% of the rated maximum peak-to-peak  displacement
range of the exciter. Tests were carried out at different
frequencies (for the same mean armature positions and
amplitudes of vibration) and the results from tests carried
out at 30 Hz and 60 Hz are shown on Figure 2. These curves,
which are even functions with a square-law characteristic,
are related to the back emf generated by the velocity of
the armature and the position of the armature in the flux
field.

The characteristics of Figure 2 show that the assumption of
a constant magnetic field is invalid and that there is a
variation in the magnetic field structure which is related
to the position of the exciter armature in the magnetic
field. In the case of lightly damped structures where the
amplitudes of vibration are large and the level of the input
forces are small, the normal governing electro-dynamic
equations are inapplicable.

Since, for each test the velocity was constant, the
dllrcharacteristics of Figure 2 must represent ax. The

characteristics of the curves of Figure 2 are given by:

C{l - a(xo + x)2l . . . . . . . . . . . . (3)

W:. -& = cc1 - "(X0 + x)2) . . . . . . .= (4)

where fi = constant

1
= maximum rated peak displacement of the exciter

1 (x
1
+ x . . . . . . . . . . . . (5)

0

due to the constraints imposed by the exciter design, i.e.

13
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the armature 'bottoms' on the 9centr pole magnet if,

(xo + x > la--
fi

wherexo = mean position of the armature
X = instantaneous peak displacement of the armature
C = constant related to the maximum back emf generated

Thus the back emf generated as a result of the motion of
the armature in the magnetic flux field of Figure 2 is:

d$ dxVB = z . ay = C{l - a(x, + x)21i . . . . . . (6)

If the well-known basic equations of motion (see Appendix
I) of an electro-dynamic vibration exciter are modified to
include the terms of equation (6) one gets an expression .' I
for the armature equation of motion:

f+k”+K(l kF
m mR - a(xo + x)2ji = --&VCOSWt

where the constant K is a combination of the force current
constant kF and the back emf constant kB, (it is generally
assumed that these quantities are equal since the electrical
power developed in the armature is equal to the mechanical
power absorbed by the armature).

Equation (7), which represents the equation of motion of
the armature of the vibration exciter, is a non-linear
second order differential equation. If the solution of this
equation was obtained in terms of the amplitude of vibration
‘X’ then the effect of the square law terms (x0 + x) 2 would
be negligible compared to the fundamental component and the

. output displacement would have virtually no harmonic distor-
tion.

However, it is not the amplitude of vibration which is under

14
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a
observation but the force delivered by the exciter to
produce this motion. To examine the validity of equation
(7), a model of a single degree-o+freedom  system excited
by an electro-dynamic vibration ex-titer, whose equation of
motion is governed by equation (7) was analysed on an EAL
380 Analogue Computer.

1.3 SIMULATION STUDY OF HARMONIC FORCE DISTORTION

The physical model of the system used in the simulation is
shown on Figure 3, and the equation of motion for this two-
mass single degree-of-freedom system, assuming that steady
state vibration is about the zero mean, i.e. x
(x = Xl = X2) is:

0
= 0,

j2 + {
c1

ml+m2

kFvcosWt

ml+m2 l '= -- l *

0, +k,) x
)I%+ - - =

ml+m2

. . (8)

The analogue computer block diagram used to simulate equation
(8) is shown on Figure 4. The physical quantities used in
the simulation were obtained from the tests carried out on
a cantilever beam detailed in Chapter 2 and from the data
supplied by the manufacturers of the vibration exciter.

The photographs on Plate 1 show the results of the simula-
tion exercise and a set of experimental results from tests
carried out on a cantilever beam (detailed in Chapter 2).
It can be seen that the behaviour of the force trace is ;'

'/ almost identical in both cases. The centre set of traces of( --7 ..x _-.
the experimental results also show the input current to the
exciter at resonance and it can be clearly seen that no
harmonic distortion is apparent. The results of the analogue
simulation produced the identical force input behaviour as
was obtained during experimental testing whereby the force
input signal approached a minimum at resonance, with second
harmonic d i stortion becoming predominant. Above and below

15 a
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the resonant condition the force in%t signal is predomin-
antly the fundamental component and displays negligible
amounts of harmonic distortion.

A*
In each of the traces shown on Plate 1 the resulting
displacement response is given and it can be seen that no
harmonic distortion is present, the displacement being in
phase with the force below resonance, changing to 180' out
of phase above resonance, which is the case for a single
degree-of-freedom system. The 90' phase change at resonance
cannot be readily discerned due to the high level of second
harmonic distortion of the force signal.

1.4 THEORETICAL ANALYSIS OF THE HARMONIC DISTORTION
MAGNITUDES

Having established that due to the square law characteristics
of the flux field the harmonic distortion was predominantly
second harmonic in nature, an analysis of the harmonic
distortion magnitudes likely to be experienced when testing
systems which bebave basically as a single degree-of-freedom
system (i.e. well separated resonant frequencies) was carried
out. With reference to Figure 3 it can be assumed that the
total force generated by the vibration exciter is represent-
ed by a harmonic series:

FA = n=l A,%F e j (n(JJt+O,),  n = 1, 2
l . . . .

co
. . . .

where F = F ej(nwt+@n) _
An n

(m Dz
2 + c2D + k2)xej(nwt+@n

(9)

) (10)

and F, = magnitude of nth harmonic component
w = excitation frequency

@n = phase angle between nth force and displacement
component

The force FA reacts against the test structure to give:
n

19
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a
the second harmonic force component is:

FA2 =
(-3+j4<1) F2ej('?'$2)

. .
{U+k’) - 4(l+m') + j(4<1+4<2zk')}

substituting for $k! = drn'k' in equations (15) and
gives for the ratio of the second harmonic component
fundamental:

(16)

(16)
to the

FA2 F2ej(wt+a'  (-3+j4cl) {(k1-m1)+j(2<1+2<2dm'k')}

-=5FAl
j(2S,) {(k'-4m' -3)+j(4Cl +4c2dm1k')}

Equations similar to equation (17) may be written for the
higher harmonics but the effects of these are obviously
lower than the second harmonic contribution.

An equation similar to equation (17) was developed by Asher
(9) uho based his original equations of motion on the some-
what dubious assumption that 'the force transducer stiff-
ness was similar to (and in certain cases less than) the
stiffness of the structural system under test'. He gave an
equation for the ratio of FA

21FA as:1

FA2 F2 (-3+j4&) -k'
WI

_ j.Q_(kl_l)

-=5
w1 m'

FAl
251

hi7
(12-S_4kf)-j4c1  k'-+-4))  l - (18)

-

where all the symbols have the same definition apart from
k' which was given as:

k’ = force transducer stiffness
kl

. . . . . . WV

Unfortunately, equation (18) has no practical significance
since the use of a force transducer which has a stiffness
less than or equal to the structural stiffness would lead
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to extreme difficulties in resonance testing. Another
factor which eluded Asher is that his equations do not
allow for the fact that the vibrat&on exciter effects
are minimised when the vibration exciter natural frequency
coincides with the structural natural frequency (k' = m'
in equations (14) to (17)) as shown in Appendix II, and
thus the effects of the harmonic distortion are also
minimised.

Normally in resonance testing, the vibration exciter is
chosen so that its mass and stiffness effects will have a
minimal effect on the structure under test, and in these
cases we have the following conditions:

m' < k1 << 1 . . . . . . . . . . . . . . (20)

Equation (17) can then be approximated, for the case of
lightly damped structures, to:

FA2
FAl

F2+5 . . . . . . . . . . . . . .I I (21)
.

Equation (21) indicates that for the second harmonic distor-
tion to be less than lOO%, the stiffness ratio k1 SC 2~~.
For lightly damped structures, where the equivalence 25 = 6
(6 being the structural damping factor) can be made then
k' 6 6 and since structural damping forces increase with
stiffness, the stiffer the structure the lower will be the
harmonic force distortion.

The reason behind the harmonic distortion becoming predom-
inant at a system resonance is easily shown by considering

. equation (14). Equation (14) represents the harmonic force
components applied to the system under test. If one assumes
that the exciter is being driven by a high output impedance
amplifier then electrical damping effects can be ignored
(3, 4). Also if one considers the mechanical damping of the
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exciter to be negligible, equation (14) for the modulus of
the fundamental and second harmonic force component respect-
ively reduces to: A*

IFAl/ = (1 - B1212 + (81251)2)11,1 1

1
((1 +  k') - f312(l + m1))2 +

1

(2i161)2}"
(22)

and IFA =
(1 - 4B,2)2 + (48111)2}'1,21

1 (23)
((1 + .k') - 4B12(l + ml)) 2 + (4<lB,)2}z

Equation (22) is shown plotted on Figure 5 as a function of
the frequency ratio (Bl) for different values of the system
damping ratio for the cases when the system natural frequency
is greater and less than the exciter natural frequency.

Inspection of equation (23) shows that the magnitude of the
second harmonic content is almost constant. Since the
magnitude of the fundamental harmonic approaches a minimum
at the resonant condition, as shown by Figure 5, the ratio
of the second (and the higher harmonics) to the fundamental
harmonic at this point is a maximum.

Figure 5 also shows that the force characteristic is
'inverted' when the condition of the system natural frequency
changes from a value above to a value below that of the
exciter natural frequency.

1.5 SOME PITFALLS ENCOUNTERED DURING THE RESONANCE
TESTING OF LIGHTLY DAMPED STRUCTURES

The work detailed in the above sections has shown that the
mass and stiffness properties of an electro-dynamic exciter
can affect the force being injected into a system under test.

It is commonly thought that if a constant current source is
used to drive an electro-dynamic vibration exciter then the
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THEORETICAL CURVES FROM EQUATION (22) SHOWING INPUT
FORCE VARIATION AT A STRUCTURAL RESONANCE FOR:
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force exciting the test structure is also constant in
magnitude (and phase with respect to the oscillator).

A*

However, the results of experimental tests (Chapter 2,
Section 2.3) showed that this is not the case if the system
under test is lightly damped. These effects have been noted
by other researchers and means of compensating for these
have been suggested (3, 10). An analysis of why there is
such a large variation in the magnitude and phase of the
input force has been carried out and is presented in
Appendix II.

This analysis is based on the model of Figure 3 and considers
a constant input current source being fed to the exciter
coil which produces a force to excite a structure.

However, the force which is developed must also accelerate
the additional masses of the exciter and its connections to
the structure under test. This results in an equation
relating the exciter and structural natural frequency to
the force, (F), generated as a result of the input drive
current. This equation, given in Appendix II, A-II.13 is:

= Fsin$ . . . . . . . . . . (24)

where the symbols have the usual meaning, and
4 = phase angle between the force F and the actual

resultant force applied to the test structure.

Equation (24) shows that the actual force which is applied
to the test structure is only in phase with the force
delivered by the exciter when one or more of the following
conditions arise:

@I w1 = u2

(c) x = 0
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Condition (b) is impractical since this requires some means
of varying the exciter natural frequency in order that this
coincides with the structure natur*: frequency, and condi-
tion (c) requires that the armature, and hence structural
displacements, is zero.

To satisfy condition (a) a technique can be used which has
been reported by Cox (11) and Taylor et al (3), whereby an
additional current at quadrature phase relative to the
excitation current, which is in phase with the oscillator
reference voltage, is injected into the exciter to allow
the phase angle of the excitation force to be modified,
i.e. the effects of the exciter mass and stiffness can be
compensated. The method of doing this is detailed in
reference (3) and the effect of employing quadrature current
is shown on Figure A.II.3, where the force vectors are drawn
at resonance.

It can be seen from Figure A.II.3 that the addition of a
current at quadrature to the reference current allows the
effects of the exciter moving parts on the resultant force
applied to the structure to be negated. It must be empha-
sised that the use of quadrature current techniques are only
necessary when exciting lightly damped structures where the
exciter effects are going to be significant and that in the
general case of single point excitation methods where the
actual input force (from a transducer) to the structure is
used as the reference no exciter compensation is required,
although mass,compensation due to the effective mass of the
transducers may be necessary if this is significant (6).

If the force available from a force transducer attached to
the structure at the excitation point is used as the
reference then a 90' phase angle between the output
displacement and the input force defines the resonant
condition.

It is important to realise the implications of the above

26
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statements in that for each case, namely using current or
force, it is a Transfer Function which is being used to
establish the conditions for reson&ce, i.e. the phase
angle between the output response and the input to the
system and their appropriate magnitudes. If just the out-
put response was measured and used, for example, assuming
resonance to occur when the output resonse was a maximum,
this would lead to erroneous results due to the exciter
mass, stiffness and damping modifying the original structure
(4) -

This has been shown in Appendix II.2 by considering the
forced response of a single degree-of-freedom system with
a typical electro-dynamic vibration exciter.

The resulting displacement of the actual system which
comprises both the test structure and the vibration exciter
is given in Appendix II.2 by equation A.II.18 as:

I F/k1 I
z

((l+k')-(l+m')L) 2 + (2+&+2<2-&k')2
(25)

U2

The maximum response is given by equation A.II.20 as:

I I
Xmax =

F/k1

2CWl
f

w12C2(mV-1)
1

.* l '+ (l+k') 2 (26)

(l+m') 1

51 c2k'
where C = - + -

9 w2

Thus it can be seen from equation (26) that by merely using
the output response of the system under test to indicate
the resonant condition then large errors may be incurred.

The true resonant condition is given by replacing F in

27
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equation (25) with that given by equation (15) and then
differentiating the result for a turning point. This will
then result in the familiar equati&.n for a single degree-
of-freedom system resonant amplitude as:

Ixmaxl = ‘F’kl’
2Cl(l_512); l * ** .* l * ** (27)

The above effects were verified during the constant current
tests of Section 2.3 when both the output response and the
ratio of the output response to the input force (measured
with a piezoelectric force gauge) were plotted as a
function of frequency. Figure 6 shows these effects quite
alarmingly.
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FIGURE 6

EXPERIMENTAL RESULTS OF CONSTANT INPUT CURRENT TESTS.
A OUTPUT RESPONSE ONLY

RATIO OF OUTPUT RESPONSE TO INPUT FORCE (INERTIANCE)
;I IS THE MEASURED QUANTITY NORWLISED TO THE MAXIMUM

VALUE
B1 IS THE FREQUENCY RATIO.
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2. EXPERIMENTAL TESTS TO DETERMINE THE FORCE INPUT

BEHAVIOUR AT A SYSTEM RESONANCE
;t"

2.1 INTRODUCTION

The predicted variation in the level of the input force
and accompanying harmonic distortion detailed in Chapter
1 was investigated by carrying out a series of controlled
experimental tests on a lightly damped structure.

The object of these tests was to examine the force
injected into the structure under the structural resonant
conditions with the input current to the exciter being
held constant and then with the structural displacement
being maintained constant. At the same time, the levels
of harmonic distortion present in the force signal were
also monitored.

To simplify the experimental procedures, to allow a
comparison to be made with the theoretical predictions of
Chapter 1, an effective single degree-of-freedom rig was
used which was simply a uniform steel cantilever beam,
with the frequency range of interest being restricted to
the region of the fundamental resonant frequency.

2.2 EXPERIMENTAL ARRANGEMENT
-

The steel cantilever beam was excited at its tip by an
electro-dynamic vibration exciter whose maximum peak force
available was 24N. The exciter armature was connected to
the tip of the cantilever beam using a push-rod (this is
a device which has a high axial stiffness and does not
otherwise restrict the movement of the structure (12)) and

. piezoelectric force transducer assembly (see Appendix VI ),
the force gauge being attached to the cantilever tip with
a nylon stud. The response of the cantilever was monitor-
ed (at the excitation point) with a piezoelectric acceler-
ometer which was also rigidly attached to the cantilever

30
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with a nylon stud. The purpose of the nylon studs was to
eliminate any noise which may have been generated by
different earthing loops between t& transducers and the
test structure. The exciter was fed with a current from
a d.c. coupled power amplifier which was controlled by
the oscillator voltage source from a Solartron Frequency
Response Analyser (FRA). The outputs of both the force
and acceleration transducers were fed via charge amplifiers
into the FRA which allowed either the individual properties
of the acceleration or force to be recorded in their in-
phase and quadrature components or in polar form. Alter-
natively the transfer function of output acceleration to
input force in the same modes of measurement could be
obtained.

Figure 7 shows a diagrammatic sketch of the experimental
layout. Before any experimental tests were carried out
the harmonic distortion levels on the outputs of both the
FRA and the power amplifier were checked on a harmonic
analyser. These.quantities  were found to be insignificant,
the largest harmonic distortion, expressed as a percentage
of the fundamental harmonic, was on the output of the power
amplifier and was measured as 2% for the second harmonic
and 0.7% for the third harmonic. Other researchers have
noted similar characteristics where low power levels (as
in this case) are used, but in the case of the output power
of the amplifier being greater than 80% of the maximum,
third harmonic distortion has been recorded as high as 20%
(13).

2.3 CONSTANT INPUT CURRENT TESTS

The input current to the vibration exciter was monitored
. by measuring the voltage drop across a O.lR resistor which
was connected in series between the power amplifier and
the vibration exciter.

For a constant input current of 0.1 amps, the excitation
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frequency was varied over the fundamental resonant
frequency range of the cantilever beam and the resultant
input force level was measured together with the:
inert iance  (rat io  o f  output  accelerat ion to  resultant
input  force) .

Figure 8 shows the pattern of behaviour of these quantities
as the frequency is varied and it can be seen that there
is a large variation in the force input components at or
near the resonant condition. The most striking feature
of Figure 8 is the rapid reduction in the resultant force
at the resonant condition, followed by a rapid increase
in the force just after resonance and the gradual reduction
of  the  force  to  a  level  approaching i ts  init ia l  value.

For  this  test , the exciter natural frequency was greater
than the beam resonant frequency, thus this condition was
reversed by changing the length of the cantilever beam in
order to make its fundamental resonant frequency greater
than the exciter, natural frequency and the test was repeated.

Figure 8 also shows the results of this test and it can be
seen that the pattern of force behaviour is inverted.

If  the resultant force results of Figure 8 are compared
with the theoretical results of Figure 5, it  can be seen
that there is excellent agreement between the theoretical
and experimental results.

During the above tests, the harmonic content of the result-
ant applied force was also measured using the harmonic
analyser unit on the FRA. This unit recorded the rms
voltage levels of the harmonics up to the tenth harmonic.
Figure 9 shows the second and third harmonics; expressed
as a ratio of the fundamental harmonic,  as the excitation
frequency was varied over the resonant frequency and the
predominent distortion can be seen to be due to the second
harmonic components. The input current to the exciter,
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which was observed throughout the tests, displayed no
harmonic distortion.

c*
2.4 CONSTANT DISPLACEMENT TESTS

In order to carry out constant displacement tests a non-
contact capacitance probe was used to monitor the displace-
ment of the beam since the signal from the accelerometer
was continuously used for evaluating the inertiance as in
the previous test.

The procedure for this test was the same as that of the
constant current tests except that the output displacement
was held constant as the frequency was varied. Figure 10
shows the variation in the resultant force input component
and in this case it can be seen that there is a linear
relationship between the resultant force and the frequency
with a minimumagain occurring at the resonant frequency.
These characteristics support the fact that the variation
in input force to the structure is modified by the inertia
and stiffness effects of the exciter since in the tests
carried out the exciter's flexural stiffness was the pre-
dominant factor (inertia forces being much smaller due to
the low acceleration) and when the displacement was main-
tained constant the resulting variations in the input force
to the structure were minimised.

The harmonic content of the resultant force applied to the
structure was also measured, the procedure employed being
the same as that described in the constant input current
tests. The trend of the results for the second and third
harmonics, expressed as a percentage of the fundamental
harmonic, were very similar to the results shown on Figure
9.

2.5 HARMONIC DISTORTION AS A FUNCTION OF DISPLACEMENT

Since the greatest harmonic force distortion occurred at
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a
the resonance condition, a series of constant displacement
tests were carried out on the cantilever beam with the beam
in a resonant condition. The profiedure employed was to:
monitor the displacement with the non-contact capacitance
probe and maintain this at a pre-selected value at the
fundamental resonant frequency of the cantilever beam,
whilst the fundamental, second and third harmonics were
measured on the harmonic analyser. This was repeated for
a range of constant armature peak-to-peak displacement
values.

The resulting harmonics were normalised to the harmonic
levels obtained from the minimum displacement tests (i.e.
the initial starting value). Figure 11 shows the results
obtained at the resonant frequency as a function of
armature displacement. It can be seen that the fundament-
al force component is directly proportional to the armature
displacement, but the second and third harmonic components
display a non-linear relationship. This supported the
prediction of e,quation 21 that large amplitudes of vibra-
tion (i.e. flexible structures) produce significant
harmonic force distortion.

Due to the fact that the tests had been carried out on a
cantilever beam, at the higher amplitudes of vibration a
significant amount of rotation accompanied the translation
at the cantilever beam tip where the excitation was applied,
with the possible result that the misalignment of the
armature due to the rotational movement could be affecting
the harmonic force distortion levels. In order to minimise
these effects the same series of tests as detailed above
were carried out on an encastr6 beam. Excitation was
applied at the mid-point of the beam whereby only trans-
lational motion of the armature occurred and the harmonic
content of the force input signal for a range of constant
displacement values was measured.

The trend of the results was very similar to those obtained
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a
from the constant displacement tests on the cantilever
beam which indicated that the rotational effects from the
cantilever experiments did not prguce any significant

:
harmonic force distortion.

The above tests had confirmed the theoretical predictions
regarding the variation in the magnitude of the input
force around the resonance region of a lightly damped
structure and that the harmonic distortion present was
predominantly second harmonic.

In order to minimise these effects, equation (21) showed
that by keeping the value of k' (the ratio of the vibration
exciter stiffness to the structural stiffness) to a
minimum, then this should prevent severe harmonic force
distortion.

In order to examine the validity of this equation a further
set of tests were carried out on the cantilever beam.
The tests allowed the stiffness ratio k' to be varied by
changing the flexural stiffness'of a standard electro-
dynamic vibration exciter. This method of varying k' was
used in preference to simply changing the beam length in
order to alter the value of k' since this had more practical
significance, and also the mass ratio m' was constant.
During the tests the beam was excited over its fundamental
frequency range with a constant displacement and the first
and second harmonic components of the input force signal
were measured on the harmonic analyser. In order to provide
a variation in k', the stiffness of the exciter was modified
by removing one of the fibre flexure supports. This reduced
the stiffness of the exciter by approximately 50%. As a
result of this modification the lateral stiffness of the
exciter was reduced to such an extent that a linear ball-
race guide had to be used to provide lateral support and
hence prevent side-stressing (armature rubbing on the centre
pole magnet) of the exciter coil (81). Plate 2 shows the
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experimental set-up for these tests. The linear ball-
race  obviously  increased the exci ter  fr ict ional  damping
but transient results indicated tbt this was minimal:
steady state  v ibrat ions . The results of the harmonic
distortion tests are shown on Figure 12 together with
theoretical curve from equation (14).

41
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FORCED VIBRATION TESTS
EXCITER SHOWING LINEAR
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2.6 DISCUSSION AND CONCLUSIONS

1. It has been shown that harmpic distortion of the
input force signal at a system resonance is primarily
due to the non-linear characteristics of the electro-
dynamic vibration exciter. These non-linearities,
which characterise the magnetic field strength of
the exciter, are basically square-law in nature
which results in the force distortion being predom-
inantly second harmonic. Higher harmonics will be
present in the force signal due to the fact that
distortions of the square-law characteristic will
occur during testing from such aspects as armature
misalingment, higher order terms in the magnetic
field strength characteristics and variations in
characteristics of one vibrator to another.

2. It is also shown that the damping factor in the
system under test is a very important aspect and in
order to minimise the harmonic force distortion
occurring at resonance this must be significantly
greater than the ratio of the vibration exciter
stiffness to the test structure stiffness. If the
amplitudes of vibration are small, e.g. as a result
of exciting higher modes, the harmonic distortion
is reduced as a result of two factors. The first
is that small amplitudes of vibration restrict the
armature movement in the non-linear magnetic field,
and hence the non-linearities are minimised. The
second factor is that higher modes of vibration tend
to produce larger damping forces which result in an
increase in the fundamental force component, whereas
the second and higher order components remain approx-
imately constant, consequently the effects of the
harmonic distortion are less noticeable.

3. It has been further shown that regardless of whether
or not a high output impedance amplifier is used to
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supply a constant current source, large variations
in the magnitude and phase of the input force can
occur when testing lightly *mped systems. This has
been confirmed to be due to the forces arising from
the mass and stiffness characteristics of the
vibration exciter which modify the resultant force
applied to the system at the system resonance.

4. I f  the  natural  frequency of  the  v ibrat ion exciter
is the same as that of the system under test then a
constant force would be applied to the system since
the v ibrat ion exc i ter  e f fects  would be  se l f -compen-
sating.

-

-

-

-

-

-

-

5. If  a constant current source is used as a reference
f o r ce  c ond i t i on , then in the case of a lightly
damped single degree-of-freedom system, a ninety
degree phase shift between the input current and
the output displacement (or acceleration) does not
necessari ly  indicat-e a natural frequency. Only i f
the  input  force , measured at the point of applica-
tion on the test system, and the corresponding
response are used can this criterion be applied.

6. In terms of the harmonic force distortion levels at
resonance, some improvement would be achieved by
employing a constant current source since the magni-
tude of the non-linear term would be a function of
the force current constant only as opposed to a
combination of this and the back e.m.f.  constant
which would be the case with a voltage source.

-
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3. THE INFLUENCE OF MODAL COUPLING IN LIGHTLY

DAMPED STRUCTURES

m
3.1 INTRODUCTION :

The following Chapters are concerned with the influence
of damping on the modal properties of lightly damped
structures. Of particular interest is the ability to
generate real normal modes of vibration in structures where
the damping matrix cannot be diagonalised by a transforma-
tion matrix (commonly called non-proportional damping (14)),
since this is of fundamental importance in structural
identification programmes.

It is worthwhile to consider initially the type of damping
with which one should be concerned, e.g. should the model
used to represent the damping mechanism be considered as a
viscous property or should one assume a hysteretic damping
model, or, if the system can be considered as lightly
damped, are both these models really the same?

3.2 THE DAMPING MODEL

The subject of dynamic structural damping in relation to
the vibrational characteristics of complex structures (in
this context 'complex' being used to define structures
which may have close natural frequencies and/or non-linear
characteristics) is still a problem area and is continually
receiving attention (15) with over 3,000 publications
appearing on the subject of damping since the year 1900 (16).

IS

A review of the mathematical models and experimental tech-
niques for measuring the damping behaviour of solid materia
was given in a paper by Bert (17) who compared the mathem-
atical models developed to describe rheological systems.
One of the most common techniques used to represent the
behaviour of viscoelastic solids is the two-parameter model
of a spring in parallel with a dashpot, called the Kelvin-
Voigt model (16). Although this model has some deficiencies



a
as a complex quantity when subjected to sinusoidal vibra-
tion. The common single degree-of-freedom model, namely
the mass-spring-damper system, isPactually a point mass
rigidly attached to a Kelvin-Voigt'element with the result-
ing linear differential equation of motion:

mit + CK + kx = Fej wt
. . . . . . . . . . (28)

where x is the displacement response.

By replacing the Kelvin-Voigt coefficients k and jwc with
a single complex stiffness:

.

i=k+jwc . . . . . . . . . . . . . . (29)

equation (28) can be represented as:

mii. + kx = Fej wt
. . . . . . . . . . . . (30)

The energy dissipated during one cycle by a dashpot element
subjected to an external sinusoidal force is:

U =fF.dx = fn:,t . . . . . . . . . . (31)

where F = dashpot force = c?.

Now the response x is a complex quantity, which for steady
state motion is:

.wtx = UeJ . . . . . . . . . . . . . . (32)

where 11~1 is the displacement amplitude, thus equation
(31) gives:

U = 7rewlu12 . . . . . . . . . . . . . . (33)
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Equation (33) shows that the energy loss due to a dashpot
is dependent on the exciting frequency w but it was
observed by Kimball and Love11 (l\$ that in the case of
many engineering materials, the energy losses were indep-
endent of w and that the energy loss per cycle was govern-
ed by an equation of the type:

u = $Jp . . . . . . . . . . . . . . (34)

and this was later confirmed by other workers in this
field (16) although contradictions to this exist (19). By
combining equations (33) and (34) one finds that:

h

c=& . . . . . . . . . . . . . . . . (35)

This quantity is often termed the 'equivalent viscous
damping' for structural damping models and the damping
force is then given by:

F =$" . . . . . . . . . . . . . . . . (36)

cwhere d = -rr

which is sometimes referred to as 'frequency-dependent
damping' since the normal dashpot coefficient c has been
replaced by i.

For structural damping mechanisms, the equations of motion
include the constant d by combining it with the spring
stiffness constant to give the Kimball-Love11 complex stiff-
ness expression (20)

k*=k+jd . . . . . . . . . . . . . . (37)

which results in an equation of motion in free vibration
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-

-

-

2w =k Cn -?m C = Zdmk, 5 = -$
C

one finds that the conventionally defined magnification
factor is (17)

M = {(l - ($)')' + 4~'}-~ . . . . . . . . (41)
n

for the Kimball-Love11 system, but for the Kelvin-Voigt
viscously damped system this is:

M = {(l - (fi)')' + . . . . . . (42)
n

Both equations give the same magnification factor when
w=wn, but the magnification factors at resonance (i.e.
when M is a maximum) are different, although in the case of
lightly damped structures (s < 0.2) the difference between
the results of equations (41) and (42) is very small and is
generally ignored. If one considers the equations of
motion for both systems subjected to a sinusoidal exciting
force,

rn? + c? + kx = Fej wt = mil + k(1 + j&)x . . . . (43)

.wtand assuming harmonic motion, i.e. x = uej ,

(tin2 - w2)u + j2<wnwu = (wn2 - w2)u + jwn26u (44)

When the exciting frequency corresponds to the natural
frequency (in the case of lightly damped systems this would
be the resonant frequency), then equation (44) gives the

* useful expression:

6 = 25 . . . . . . . . . . . . . . . . (45)
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This can also be derived considering the energies
dissipated in the dashpot and the spring (17).

Thus the question as to whether o$ should use a dashpot
model or a spring with complex stiffness to represent the
dissipation mechanism seems only to lie with the theor-
eticians, since in practical structural dynamic analysis,
where the damping is normally low, particularly in the
aerospace industry (25), then either model will suffice
for steady state forced vibration analyses and this is
borne out by the fact that both are widely used to represent
the same physical systems subjected to forced sinusoidal
vibration.

One aspect which may influence the choice of the damping
model is that it is not possible to model hysteretic damp-
ing on an analogue computer (22), a tool which has seen
extensive use in the study and behaviour of lumped para-
meter models of structural systems (26). In the case of
finite element analyses, damping is generally introduced
in terms of modal damping (as opposed to local dampers),
i.e. some fraction (or percentage) of critical damping is
introduced for a particular natural mode of structural
vibration and thus the damping model can be of either form.

The next question one must ask has far reaching consequences
both in terms of single and multi-point vibration testing
methods and in relation to a widely used identification
method, namely the Kennedy and Pancu vector plot (27). It
is related to the interference of one mode of vibration
with another as a result of the damping coupling and is
simply "if a system is governed by a modal damping matrix
in which the off-diagonal elements are non-zero and compar-
able in magnitude to the leading diagonal elements, is it
possible to excite the normal modes of the system?"
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3.3 NORMAL MODES OF VIBRATION IN DAMPED LINEAR SYSTEMS

The ability to analyse structuralmsystems in terms of their
classical normal or principal mode‘s (28) has been of great
benefit to dynamicists, particularly in the aerospace
industry (29). The existence of classical normal modes in
undamped systems produces real mode shapes, (eigenvectors)
with real natural frequencies (eigenvalues). However, when
damping (either hysteretic or viscous damping) is intro-
duced into the equations of motion, the resulting analysis
is governed by certain constraints related to the distri-
bution of the localised dampers in the structure, which
may result in complex eigenvalues and eigenvectors (40)

One of these constraints was first pointed out by Rayleigh
(30) who showed that if the damping matrix is a linear
combination of the stiffness and mass matrices, the damped
system will exhibit classical normal modes. Later, Foss
(31) in 1956 published a general treatment of damped
structures which utilised special co-ordinates to uncouple
the equations of motion. The first analysis of the condi-
tions which allow a damped linear system to possess class-
ical normal modes was given by Caughey (28) in 1960 who
showed that a necessary and sufficient condition for the
existence of classical normal modes is that the damping
matrix can be transformed to a diagonal matrix using the
same transformation which results in the classical normal
modes for the undamped system. In mathematical terms this
can be expressed by firstly considering an n degree-of-
freedom, undamped linear system which is represented as a
set of n coupled equations in matrix form as,

Aii + Ku = 0 . . . . . . . . . . . . . ... (46)..,..,

where A and K are n x n matrices representing the mass and
stiffness properties respectively, which are symmetrical and
positive-definite and u is a column vector of generalised
co-ordinates. Equation (46) has n eigenvalues and
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corresponding eigenvectors, namely wl, w2 . . . wn assoc-
iated with @l, @Z . . . Q~. These eigenvalues and their
corresponding eigenvectors unique&y define the modal
properties of the system, unless  t-here are repeated natural
f r e q u e n c i e s , and the  e igenvectors  a lso  sat is fy  the  orthogon-
a l i t y c o n d i t i o n  f o r  i  # j ,  i . e .

= 0 = $kK@. i, j = 1, 2 . ..n)W.W J (

If the modal matrix is given as:

z = [@l o2 ..A,1 . . . . . . . .
then equation (47) can be represented as:

QtA@ = A . . . . . . . . . . . .w ..,..,

QtK@ = I( . . . . . . . . . . . ..-” . .

. .

. .

. .

. .

. .

. .

. .

. .

where ii and R are diagonal matrices of order n.

If we apply a co-ordinate transformation such that

u = QZ . . . . . . . . . . . . . . . .. ..W

(47)

(48)

(49)

(50)

(51)

then subst i tut ion of  (51)  into  (46)  and pre-mult ipl icat ion
by @t g ives :

$&+QtK@Z = 0 . . . . . . . . . . (52)- W-W

which, according to equations (49) and (50), can be
represented by a set of n uncoupled equations of motion:

-11
AZ + KZ = 0 . . . . . . . . . . . . . . (53)..2.., _W

where the vector Z is the principal or normal mode co-
ordinate vector of the system. If equation (46) is now
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modified to include viscous damping i.e.

then the transformation of equation (Sl), according to
Caughey, must also uncouple equation (53) if the system is
to possess classical normal modes. The condition specified
by Rayleigh, namely that:

E = sA + tK . . . . . . . . . . . . . . WI

where s and t are constants, obviously meets this condition
and is known as proportional damping. Caughey et al (32)
went on to show that if equation (54) is represented in the
form:

A”
Iq + g4 + ;zq = 0 . . . . . . . .
w.., w.., e.,w

. . . . (56)

where the A matrix has been transformed to an identity
matrix of order n, fi and k are still symmetrical and positive
definite, and q is the vector of transformed co-ordinates
i.e.

u=Yq . . . . . . . . . . . . . . . . (57)..,W

where Y is a known transformation matrix, then systems
governed by equation (56) possess classical normal modes
if 5 and i commute i.e. if:

iii? = G . . . . . . . . . . . . . . . . (58)WW WY

This results in a general expression for the form of the
damping matrix given as (34):

n-l
A-‘B =
. s..

aj(A-lK)J . . . . . . . .

where a.J = constant.
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A number of conditions which arise as a result of equations
(58) and (59) are quoted by various authors. Bahar (33),
showed an application of equatiog (59) to a three degree-of-
freedom system, and a special form of equation (59) namely,

B A-l K=KA-lB . . . . . . . . . . . . (60)W-W WY

was applied to the same example by Fawzy (34). Fawzy also
pointed out that an obvious solution of equation (58) was:

ii=? . . . . l . . . . . . . . . . . (61)

Thus there are a number of conditions regarding the form
of the damping matrix which allow classical normal modes
to exist in damped structures other than the standard cases
of the undamped and proportionally damped ones, although
these seem to have eluded some authors (35)(36). The
physical interpretation of the conditions given by equations
(58) to (60) have not been considered by their authors,
probably due to the fact that in practice the mass and
stiffness matrix elements are generally know, or can be
obtained directly, whereas the form of the damping matrix is
a much more complex problem and cannot be obtained a priori.

3.4 FORCED NORMAL MODES OF VIBRATION

In real structures, it is unlikely that any of the above
conditions which allow the equations of motion to be trans-
formed to normal mode co-ordinates apply in general, and
in practice the damping matrix will have leading and off-
diagonal terms.

The question then arises as to whether or not it is possible
to excite the normal modes of a structure whose modal damp-
ing matrix has off-diagonal elements, (the author feels it
misleading to refer to this condition as non-proportional
damping as have some past authors, since this is often used
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o imply that the equations of motion cannot be trans-

to uncoupled equations although this is not alway
e as has been shown above illq,Section 3.3), even
the off-diagonal elements are not small compared

&to those of the leading diagonal.

The technique of exciting normal modes -has its main appl
-cations in the aerospace industry where ground resonance

&tests attempt to isolate the normal modes of a structure&
gwithin a given frequency range. Thus it would be useful

consider the question in the context of normal mode
excitation as applied to a complex structure such as an
rcraft.

__

y-The basic dynamic equations of motion of an unrestrained
in terms of the normal modes are

by Kiichemann et al (37) and a revis'kof these
The equations of motion in generalised

form are:

MS&(t)

here,

+MssGqs(t ) + CDrs4r
r=l

(t) = Q,(t) 0. 162)

S

i-

Mss =xjjfi(P){uis(P)}2dP  . . . . . . . . (63)
i v

i = 1, 2, 3; G = integration with respect to the
volume

the generalised mass of the s th normal mode of vibration
the aerostructure in a vacuum:

(P is any point in the structure i.e. P = (xl, x2, x3)
uis are the normal mode functions of the undamped
structure)
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now, M 2
ssus = Kss = c c  ///J!?T%k

i k-v v
(P,P')uis(P)Uks(P')dPdP'

&.:
. . . . . . . . . . . . (64)

(Sik(P,P') being second order stiffness influence
functions),

thus, Kss is the generalised stiffness of the s th normal
mode.

Drs = ik(P,P')fis(P)fkr(P')dPdP'  (65)

--

where Wik are the damping influence functions, f.
1s' fkr

are mode functions which satisfy the boundary condtions
and Q,(t) are the generalised surface forces given by:

- o denoting a surface integral.

Q(t) = CJSJqi(P,t)uis(P)do . . . . . . (66)
i a

Qi(P,t) is an arbitrary pressure function which generates
displacement functions ui(P,t). Now Qi(P,t) can be
expressed as:

co

Qi(P,t) = c Qir(P)qr(t) . . . . . . . . (67)
r=l

If we assume that Qir is a harmonic exciting force with a
normal mode frequency ws i.e.

9, (t) = qSejWst . . . . . . . . . . . . (68)

then combining equations (62),(66), (67) and (68) gives:
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Equation (69) shows that for equilibrium the external
forces must balance the internal energy dissipation when
the structure is vibrating in a normal mode.

i

In terms of experimental testing, it is impossible to
excite the structure at an infinite number of points and
thus equation (69) is realised as:

D =rs $X Fir(Pn)uis(Pn) l * l * l * (70)
n i

i = 1, 2, 3; n=l,Z.....N

Thus we have N discrete exciting force amplitudes Fir(Pn)
at the N points (P,). Equation (66) is satisfied when:

Im(Qir(Pl) = 0 and Re(uis(P)) = 0 . . . . (71)

Equation (71) forms the basis of the classical Phase-
Resonance Criterion (7) which is commonly used to experi-
mentally define a normal mode condition whereby the response
is in-phase (or anti-phase) and at quadrature to the real
input forces.which are also in-phase (or anti-phase).

Thus it has been shown that regardless of the form of the I

damping matrix it is theoretically possible to excite the :

normal modes of a damped structure. The limitations of
this are purely practical which results in the modified
form of equation (69), namely equation (70).

These limitations result in one of the remaining contro-
versial questions in the use of multi-point excitation
methods for inducing pure normal modes of real structures,
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3.5 MODAL INTERACTION CRITERIA

In order to obtain some guideline+ relating the natural
frequencies and damping of a structure to the effects that
these have on the ability to excite real normal modes, a
theoretical analysis has been carried out on a system
represented by equations of motion in which the damping
matrix does not necessarily satisfy any of the conditions
of Section 3.2, i.e.:

m% + dK + kx = fejWt . . . . . . . . . . (72)VY WW -5

where x represents a vector of discrete co-ordinates, f is
a force vector, w is the excitation frequency and m, d and_ W
k are the square symmetric mass, damping and stiffness
matrices respectively. Using the standard transformation
matrix to represent equation (72) in terms of the normal
mode co-ordinates:

x=@q *. . . . . . . . . . . . . . . (73)-"5

equation (72) becomes:

Mq + D: + Kq = F . . . . . . . . . . . . (74)..,... WW ..,..,

where M and K are square diagonal matrices, but D is non-
diagonal. If the system is linear the response will have
the form q = iej wt and equation (74) can be written as:

. . . . . . . . (75)

where I = unity matrix
i2:r = diagonal matrix where each element is given by

< = non-diagonal matrix of modal damping coefficients.
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Following the technique of Hasselman (23), the matrix 5
can be considered as:

5 = ,Sd + sn . . . . . . . . . . l 0 l * (76)

where sd is a square diagonal matrix, each element taking
the form srr = 25r_5, and 5, is a square symmetric matrix
which represents the coupling terms between the normal
modes whose leading diagonal is zero. This results in
equation (75) being written as:

(Zd + Zn); = M-1F . . . . . . . . . . . . (77)." W

where iSd is a diagonal matrix whose elements take the form:

zdrr = U; - w2 + j2Crwr-.. . . . . . . . . (78)

and Zn = j<n, a non-diagonal matrix whose leading diagonal
elements are zero.

In order to be able to have a meaningful relationship
between the elements of Zd and Zn it is useful to apply a
transformation to diagonalise Zd to a unity matrix i.e.
consider the transformation from the G co-ordinate system
to the y co-ordinates:

i=YY-- . . . . . . . . . . . . . . . . (79)

:where the transformation matrix Y is-given by Y = Zd--.
Thus equation (77) becomes:

(I + Zny)y = Zd+M-lF . . . . . . . . . . G301w .”

where I is the unity matrix and Zny = Zd3tZnZ?ii. ForW..,
simplicity consider two adjacent modes of vibration whose
natural frequencies and modal damping coefficients are
given respectively as:
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wj, 5jj and tik, ckk where Sjj = 2<jmj and

Skk = 2<kwk. P:

Then we can write equation (77) as:

I( W2-W2+jW~jjJ

L 0

MTfF
JJ j

=
-1

MkkFk I

. . . . . . . . . . . . . . (81)

and applying the transformation of equation (79) to equation
(81) leads to:

where,

ZQY

0 >

‘jj

Ykk1 = Zd.. M.. F.
33 JJ J

Zdkk Mkk FkI (82)

Zny =
jd -k . . (83)

(Ui - W2 + jUcjj)f(Ui - W2 + jut,,):

If w = w. < Wk,7 then equation (83) becomes:

Zny = 1 1

(j2<juj2)'((uk2 - wj2) +  j25kUk(JJj)’ l *

(84)

~jk(j2~jwj)
;

ZnY =
2~jwj((wk2 - wj

1 . . . . (85)
+  j2<kukuj)'
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a n d ,

[ZnYl = 1 25.0. 2 14. T.22'5 fl y . . (86)
l(wk2 - Wj2)2 + 451( Wk wj 1' jj

I

where 5.. = 25.u..17 J J

Equation (86) represents the interaction between the two
adjacent modes of vibration and if the off-diagonal elements
of the damping matrix, 5.

Jk' are assumed equal to the diagonal
elements;5..,

JJ
then equation (86) becomes:

IZnYl =
(zCjli

m2 1
- 132 + 4Ck2B2)"

. . . . (87)

where @ = wk/wj

Equation (87) shows that the modal interaction is dependent
upon the closeness of the natural frequencies and the
relative damping in each mode.

This has also been shown by Marples (39) who derived an
interference boundary showing the relation between modal
damping and natural frequency ratios. However, he was
concerned with the errors invoked in estimating modal
characteristics from the vector plots as a result of modal
interaction and no reference was made to the form of the
system damping matrices.

In order to show a graphical representation of the inter-
action mechanism, a carpet plot of equation (87) is shown
on Figure 13. The plot is in terms of the frequency ratio,
Wk/W j and the damping ratios cj/rk as a function of the
parameter IZnyl, which represents the modal coupling terms.
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FIGURE 13 INTERACTION BETWEEN ADJACENT MODES OF VIBRATION FOR A SYSTEM
WITH A FULL MODAL DAMPING MATRIX



a
Inspection of Figure 13 shows that the worst condition for
modal interaction (which is almost intuitive) is when the
natural frequencies and damping ptios in the two adjacent
modes of vibration are equal in magnitude, (point ]Znyl =
1.0).

As the separation between either the damping ratios or the
natural frequencies increases, the magnitude of IZnYl
reduces and hence the effect of the off-diagonal damping
terms is reduced. It can be seen that the most sensitive
factor is that of the natural frequency ratio, indicating
that complex structures which have natural frequency clusters
will have severe modal interaction, regardless of the level
of damping, unless of course the relative damping of a pair
of adjacent modes is significantly different i.e. C./C

7 k<cl.

One may ask what significance equation (87) really has since
it does not offer any guidelines as to when modal inter-
action is going to become a problem. Unfortunately, this
is a question of how small is small, since in the above
case one is comparing the off-diagonal modal coupling terms
with unity. The important point which must be borne in
mind is that we have assumed that the off-diagonal modal
damping coefficients (ejk) are equal in magnitude to the
diagonal terms, yet if the natural frequencies of the two
modes are well separated, modal interaction becomes
negligible.

In order to apply equation (87) and establish its cred-
ibility in terms of what level of magnitude the off-
diagonal elements can take with respect to the leading
diagonal elements, before serious errors are incurred in
the identification process, a simulation exercise was
carried out on a digital computer of a two degre-of-freedom
system. The aim of the exercise was to explore the effects
of close natural frequencies and damping ratios on the
ability to excite normal modes using multi-point excitation
methods.
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3.6 DIGITAL SIMULATION OF NORMAL MODES IN DAMPED

LINEAR SYSTEMS

The model chosen for this analysis was a simple two degree-
of-freedom system, since whatever applies to this system

i must apply to an n degree-of-freedom system. Figure 14
shows a diagrammatic sketch of the physical model used for
the simulation exercise.

Two fundamental areas were considered in the analysis,
both being related to the form of the damping matrix. The
first area of interest was related to the analysis carried
out in Section 3.4 and here the equations governing the
physical model were transformed to their modal co-ordinates
in order that the magnitude of the off-diagonal elements
of the damping matrix could be chosen in relation to the
magnitude of the leading diagonal elements and the effect
of close modal natural frequencies and damping separation
on the normal modes could be investigated.

The second area was concerned with an investigation into
how sensitive were changes in the normal modes to deviations
in the force input magnitudes and phases from those required
to classically excite the normal modes when the damping
matrix was proportional to the stiffness matrix.

3.6.1 THE MATHEMATICAL MODEL

The equations of motion of the physical model in terms of
the co-ordinates x1 and x2 of Figure (14) are:

rn% + kx + jdx = .wtfej . . . . . . . . . . (88)_w ..,.” ..s.w

. where the mass matrix m is:

. . . . . . . . . . (89)

_ ’ ,, ,. _. . ._, , .-‘,lr  ,.. :.



Datum

Xl x2

‘I -<  -Rigid b e a m
-. mass, m,

*
Jntrtia,  T.

.Fle w’t

FIGURE 14

TWO DEGREE-OF-FREEDOM.PHYSICAL MODEL EMPLOYED IN
THE SIMULATION EXERCISE.

kl' dl RESPRESENT  THE STIFFNESS AND HYSTERETIC
DAMPING IN THE TRANSVERSE MODE.

k2' cS2 REPRESENT THE STIFFNESS AND HYSTERETIC
DAMPING IN THE TORSIONAL MODE.
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the stiffness matrix k:

[

kl+!TL
4 L2

kl k2
4- Z

kl k2
-b- Z 1 . .
kl k2
-V?

. . . . . . . . (90)

and the hysteretic damping matrix d is:

. . . . . . . . . . . . . . (91)

where the elements d..iJ of the damping matrix are given by:

d ij = skij for i = j, i, j = 1, 2 . ..n . . . . (92)

= Cidk ij for i # j, i, j = 1, 2...n . . (93)

k ij being the elements of the stiffness matrix
6 being the hysteretic damping factor or loss factor
C is a constant which is greater than zero.

In the special case of a stiffness proportionally damped
system,

d ij = 6k.. for i, j = j, 2...n  . .13 . . . . (941

The force vector f is simply:

fl-

[_f2

. . . . . . . . . . . . . . . . (95)

The modal matrix for this system, derived from the eigenvalue
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problem is obtained as:

-

1.0 1.0

-[ 1 P
@= -.‘. . . . . . . . . . . . VW

1.0 -1.0

and the eigenvalue matrix is:

2
Wb 0

LlJ2
-[ 1= . . . .

0 2
%

. . . . . . . . (97)

where, tib is termed the transverse normal mode frequency
of vibration

tit is termed the torsional normal mode frequency
of vibration, and

. . . . . . ..I . . . . . . . . (98)

-

If equation (88) is expressed in terms of the modal
co-ordinates, L the resulting equation for the model is:

+ j$)$ = F-lF = Q . . . . . . . . (49)

where wrr 2 = K,,/M,,,

-
and K=Qtk@Y..,
M=&p
&=M--1",t d g . . . . '. . . . . . . . (100)

F=$f.., ..,
)

3.7 COMPUTER PROGRAMS

In order to be able to investigate efficiently the large
number of input conditions on the normal mode response of
the two degree-of-freedom system and to have a standard
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method of calculating such factors as modal damping ratios
and normal mode frequencies, two computer programs were
developed. Pr

The programs are listed in Appendix III and a brief
description of their use will be given in this section.

The first program, (program ZTHA), is a general purpose
program for hysteretically damped multi degree-of-freedom
systems. This program reads in the mass, stiffness and
damping matrices together with the appropriate frequency
parameters and in particular, the input forces in their
real and imaginary parts. Thus, any combination of input
force conditions in terms of their relative magnitude and
phase could be used.

This allowed the effect of any ~LTbf:~rary-~furcerdPStr~bu-tiOn
on the theoretical normal modes to be observed, whilst
varying the closeness of the normal mode frequencies and
modal damping.

Further, by presenting the data in terms of the modal mass,
stiffness and damping matrices the effect on the normal
modes of varying the magnitudes of the off-diagonal elements
of the modal damping matrix could be observed when the
correct input force distributions were used. This again
could be carried out for a wide range of normal mode
frequencies and modal damping ratio conditions.

The second computer program, (program CFIT), was written
to allow the data generated by the first program to be
presented graphically, on-line, in terms of a vector plot.
This program was based on the theory of the Kennedy and
Pancu vector plots in which the response of a lightly
damped system traces out the locus of a circle in the
resonant region (27). To do this, a curve fitting procedure
which produced a 'best-fit' circular arc within the
resonant region of the computed response data was developed.
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This 'circle of best-fit' was plotted by the computer and
the modal damping ratio and resonant frequency were
evaluated from this. s">

3.8 EXCITATION OF THE NORMAL MODES IN A SYSTEM WITH A
FULL MODAL DAMPING MATRIX

The theoretical analysis of Section 3.4 showed that modal
interaction was minimised when there was sufficient
separation between the natural frequencies of any two
adjacent modes of vibration, or when the damping in one
of the modes was very small compared to that in the
adjacent mode, even when the modal damping matrix was
'full' (14).

In order to investigate the limits on the closeness of
the modal natural frequencies, in terms of errors arising
from the determination of the individual modal damping
ratios and natural frequencies of the computed responses,
a series of tests were carried out using computer program
ZTHA.

Obviously, there can be no hard and fast criterion which
establishes the amount of error one can expect in the
calculated values of natural frequency and modal damping
for a given frequency separation of adjacent modes, since
these are dependent upon the level of damping in the
individual modes. Thus, the simulation tests were carried
out for a level of structural damping typical of aircraft
structures, namely 2% critical damping. The individual
modal damping ratios were maintained at a constant value
and the closeness of the two natural frequencies was
adjusted by varying the torsional mode natural frequency,
the transverse mode natural frequency being held constant.

The values assigned to the physical parameters of equations
(89) to (95) were based upon the values of the experimental
rig described in Chapter 4. These are listed below:
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m = 16 kg; J = 1.0 kgm‘; L = lm;

kl = 400 kN/m; k2(initial)  = 56kgd;

CS = 0.04; fl = f2 = 4N. PP.

The above quantities were used in equations (89) through
to (100) to give the transformed modal matrices:

. . . .

(101)

(102)

(103)

The off-diagonal elements, (El, = <,l) of equation (102)
were chosen to be equal to the value of 511 throughout the
analysis.

The value of 0.56 x lo5 (rad/s)2 for the torsional mode
natural frequency was incrementally reduced until the
difference between the frequencies of vibration was only
2%, i.e. Wt/tib = 1.02; the modal damping matrix at this
condition being given as:

0.1 0.1
$= I 1 104(=$2

0.1 0.104 S

For each frequency ratio increment the modal co-ordinates
were automatically plotted on a vector plot and the modal
damping ratio and normal mode frequencies evaluated.
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3.9 RESULTS OF COMPUTER SIMULATION

-

-

-

3.9.1 THE EFFECT OF CLOSE NATURAL~REQUENCIES
z

Figures 15 to 20 show the effect of varying the closeness
of the natural frequencies of the simulated two degree-of-
freedom system in terms of the vector plots for the trans-
verse normal mode response. It can be seen that as the
separation between the two frequencies increases (i.e. @
increases) and approaches a value of 1.25, the response
approaches that of a pure normal mode.

The effect of the off-diagonal terms of the damping matrix
on the vector plot response, due to the closeness of the
natural frequencies, is to cause a rotation and a displace-
ment of the pure normal mode response. This is evident
from Figures 15 to 20, where these effects can be clearly
seen as the frequency ratio B approaches 1.0.

These effects have been reported by other workers in the
field (40) (41), but if one extends the analysis and
extracts the modal information from these results then it
is possible to identify the errors in derived modal proper-
ties which arise due to the above effects.

Figure 21 shows the deviation from a pure normal mode
response due to the closeness of the modal natural frequen-
cies. This figure was obtained by determining the ratio
of the real to imaginary parts of the response at the true
transverse normal mode frequency of vibration. It can be
seen from Figure 21 that when the frequency separation of
the two modes of vibration is greater than 1.25, only a
small improvement in the normal mode response is obtained
since the curve becomes asymptotic to the zero condition,
which is the required value.

From each of the responses shown on Figures 15 to 20 the
modal damping factors and normal mode frequencies were
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computed. Table 3.1 shows these quantities expressed as
percentage errors of the true values. The errors in the
results are, in the case of the s,odal damping factors,
very large whereas the errors in dhe normal mode frequencies
are considerably lower and again, as the frequency separa-
tion approaches 1.25 the errors in both these quantities
reduces considerably.

These results, which are based on a modal damping matrix
whose coupling (off-diagonal) elements are comparable in
magnitude to the leading diagonal elements indicate that,
for the level of structural damping used in the analysis,
if the frequency separation of any two adjacent modes is
greater than 1.25, then it is possible to excite a normal
mode within normal experimental error bounds, and the modal
damping and natural frequencies of vibration determined
from this response will be within acceptable limits.

If, however, the modal damping levels are changed then the
value of 1.25 for the frequency ratio separation will no
longer be an accurate criterion for the minimal modal !

interaction.

Table 3.2 shows this effect by giving similar information
as in Table 3.1 except that the results are for a damping
level of 4% critical, i.e. 6 = 0.08.

It can be seen that for the same frequency separation
factor the errors in the estimated modal damping factors
and normal mode frequencies have increased.

3.10 PROPORTIONALLY DAMPED SYSTEMS

With proportionally damped systems the equations of motion
can be transformed into individual uncoupled equations
which leads to a number of interesting results when such
systems are subject to multi-point excitation.
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-0.8

O-1 Im (i&)/mm

FIGURE 15

VECTOR PLOT OF THE MODAL RESPONSE ;I IN THE TRANSVERSE
MODE.
FREQUENCY SEPARATION BETWEEN THE TRANSVERSE (w,) AND
THE TORSIONAL MODE (w,) IS 2%.
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FIGURE 16

VECTOR PLOT OF ;I. FREQUENCY SEPARATION BETWEEN THE
TRANSVERSE (w,) AND TORSIONAL MODE (w,) IS 4%.
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FIGURE 17

VECTOR PLOT OF G1. NATURAL FREQUENCY SEPARATION BETWEEN
MODES IS 6%.
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FIGURE 18

VECTOR PLOT OF 41. NATURAL FREQUENCY
MODES IS 15%.
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FIGURE ,19

VECTOR PLOT OF G1. NATURAL FREQUENCY SEPARATION BETWEEN
MODES IS 25%.
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VECTOR PLOT OF i&.
MODES IS 50%
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FIGURE 21

THE EFFECT OF CLOSE NATURAL FREQUENCIES ON THE ABILITY
TO EXCITE A PURE NORMAL MODE

Re%-
lrn

REPRESENTS THE PERCENTAGE OF REAL TO IMAGINARY PART
OF THE MODAL RESPONSE 41 AT THE TRUE TRANSVERSE NORMAL
MODE FREQUENCY, cob = 25.165 Hz
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TABLE 3.1 6 = 0.04, ~b = 158.1 F (25.165 Hz)

Frequency
Separation

Ratio
B'UIJUb

1.02 84 1 : 5
1.04 30 1.3
1.06 2 0.9
1.15 1.8 0.54
1.25 1.1 0.14
1.5 0.01 0.06

E w

radTABLE 3.2 6 = 0.08, tib = 158.1 s

Frequency
Separation

Ratio “6

95

14
10

E w

1.0
0.8
0.14

In the above Tables, the parameters c6 and tzU represent
the percentage errors in the modal damping factor and the
normal mode frequency of the transverse mode, i.e.

E6 =

E =
w

6 - 6 calculated x 1oo
6

Wb - w calculated
x 100

Ob
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3.10.1 NORMAL MODES OF PROPORTIONALLY DAMPED SYSTEMS

The mathematical model used in tk simulation studies of
the previous sections was again used except that the damping
matrix was proportional to the stiffness matrix, i.e.

d = 6k . . . . . . . . . . . . . . . . (104)

and the equations were solved in terms of the discrete
co-ordinates x 1 and x2, not the modal co-ordinates 61 and
62'

The force vector given by [4.0, 4.0]tNwas used to excite
the transverse normal mode of vibration and the results of
this test are shown in terms of the output response xl and
x2 in Table 3.3. This table shows the real, quadrature
and corresponding polar output responses as the frequency
is varied over both the normal mode frequencies of vibration.
The interesting result of this table is that the mode shape
remains unchanged for any excitation frequency. The
responses in this case are of course equal in magnitude due
to the symmetry of the system, but even if the model had
not had symmetrical properties and the correct excitation
vector was used, the only difference in the results would
have been a change in the individual magnitudes, but the
ratio of these would have remained unchanged and equal to
the mode shape.

Since there are no coupling terms in the transformed equa-
tions of motion, the closeness of the natural frequencies
have no effect upon the modal responses of the system.
This leads to a further interesting result which is related
to estimating the natural frequencies and damping ratios

. of multi-degree-of-freedom systems with proportional damping.
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Excitation
Frequency

(Hz)

24.6

25.0

25.165

25.6

26.0

Real (x)
(mm)

0.249 -0.224 0.335 41.97
0.249 -0.224 0.335 41.97

0.147 -0.452 0.475 71.98
0.147 -0.452 0.475 71.98

0.0
0.0

-0.5
-0.5

-0.248 -0.284
-0.248 -0.284

0.5 90.0
0.5 90.0

0.377 131.1
0.377 131.1

-0.219 -0.13 0.255 149.0
-0.219 -0.13 0.255 149.0

TABLE 3.3

QuadrTtu;e (x)
mm

Polar (x)
R(mm) e(deg)

Proportionally Damped System Response
Showing that the Mode Shape (x1/x2)

Remains Unchanged with Excitation Frequency

ib = 25.165 Hz

t = 25.6 Hz
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3.10.2 THE EFFECT OF AN INCORRECT FORCE INPUT VECTOR ON THE
ESTIMATED MODAL DAMPING RATIOS AND NATURAL FREQUENCIES

;h:
The fact that systems which have off-diagonal terms in the
modal damping matrix are sensitive to an incorrect (based
on the requirement of normal mode excitation) force vector
leads one to investigate the effect of this on a system
with proportional damping.

This was done by arbitrarily changing the input force
vector of the transverse mode so that the elements of the
vector were in-phase but incorrect in magnitude, relative
to the true transverse normal mode excitation vector.

The results of these simulations are shown on Figure 22
where the response, in terms of the modal co-ordinate for
the transverse mode are plotted on a vector plot. The
constant frequency lines are also drawn on these plots and
it can be seen that the effect of an incorrect input force
vector is to merely increase (or decrease) the radius of
the response circle along a given constant frequency line.
Thus the damping ratio determined from these plots is
unchanged and the natural frequency is always given by
the point at which the real part of the response is zero.

These results are obvious when one considers that the
transformed equations of motion remain unchanged except
that the modal input forces are changed in magnitude.
This is readily shown by the following simple analysis.

Let the equations of motion of a system, in terms of the
discrete co-ordinates, be given as:
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OF AN ARBITRARY INPUT FORCE VECTOR
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If a solution of the form x = ueJWt is assumed, then by
solving the characteristic equation,

4..:

( PI - [mJ~2)~ = 0 . . _.. . . . . . . (106)

the general expressions for the undamped normal mode
vectors, assuming the last component u, is unity, are:

,Cll  =

,w =

3

1 - m2 w125;-
2

1

-w22 m21 -
k2

1

where w &,2 = $1

I
1

&

. . . . . . . .

. . . . . . . . . . (1081

. . (107)

klk2-4-
,)

. . . .
mlm2

. . . . . . (109)

If equation (105) is transformed into modal co-ordinates
the mass, stiffness and damping matrices become diagonal
and the transformed force vector is given by:

g=

fl
(l)(l - $12) + f2(l)

fl
m2(2)(1 - k2 u22) + f2(2)

,

. . . . . . ww

In order for a normal mode of this system to be excit'ed,
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fl cl), f

2
(l)  and f

1
(‘), f2c2), which denote the magnitudes

of the individual elements of the real force vectors in
the first and second normal mod&:of vibration, will be
unique, i.e. if f2 (1) = f2(2) = -1, these are given by:

2

fl
(1) = -1 _

(
kl - mlw2

k2 )
. . . . . . . . wu

fl
(2) = -1 - kl - mlwl2

( k2
. . . . . . . . (112)

However, when these force vectors are not normal
mode vectors then this merely means that the response
amplitude is changed by a scalar quantity, i.e.:

fl (l)’ = afl(l) . . . . . .

f?(l)' r-7 \

L
= bf2(l' . . . . . .

and Q =

fl
m2 2(l)'(l - q&J1 ) + f2(l)'

. . . . . . (113)

. . . . . . (114)

. . . . (115)

f1(2)'(1 m2 2
-72 ) + f2(2)'

where a and b represent the scalar changes in the magnitudes
of the forces.

The implications of this are that the mode shape changes
with frequency and only satisfies the normal mode condition

.
when the excitation frequency corresponds to the normal
mode frequency, but the modal damping and normal mode
frequency remain unchanged. Thus, if it was possible to
know a priori that the damping was proportional, then it
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would not be necessary to obtain the actual force distri-
bution required to excite a normal mode if all one was
interested in obtaining was the mdal damping and natural:
frequency, since an approximation to the normal mode
excitation vector,maintained in that appropriation, as the
excitation frequency was varied would enable vector plots
to be obtained which would provide accurate values for
the natural frequency and modal damping ratio.

3.11 DISCUSSION AND CONCLUSIONS

The work detailed in this section was concerned with the
effect of modal interaction in complex systems. The
following points are the conclusions that have been drawn
from this work.

1. The main factor contributing toward modal interaction
is the closeness of the natural frequencies of
adjacent modes, and that in all practical terms the
modes of structurally damped systems can be considered
uncoupled if the frequency ratio of adjacent modes is
greater than 1.5, even if the off-diagonal terms of
the damping matrix are comparable to the leading
diagonal terms. The factor of 1.5 is, of course, only
a guide and is based upon a maximum structural damping
factor of 0.08.

2. In the case of proportionally damped systems the
normal mode conditions are independent of the excita-
tion frequency.

3. If an input force vector, which does not correspond
to a normal mode excitation vector, is used to excite
a multi degree-of-freedom system which can be class-
ified as proportionally damped then the mode shape
changes with frequency. However, the vector plot of
the modal responses merely increases in magnitude
along the constant frequency lines. As a result of
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a
this the modal damping ratios and normal mode
frequencies determined from these plots remain
unchanged. P:

The implications of this are that for systems
where modal interaction is minimal then it would
appear that it is not necessary to set up an
accurate normal mode excitation vector if all
one is interested in is the modal damping ratio
and normal mode frequency.
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4. EXPERIMENTAL PROGRAMME

The aim of the experimental work,was to design an
experimental rig on which multi-point excitation tests
could be carried out in order that normal mode excitation
methods of complex structures could be investigated.
Since the techniques involved in exciting normal modes of
complex structures required some practice, (the author
had spent some time during the research period at British
Aerospace, Warton, Preston, on multi-point excitation
tests of military aircraft and found the procedures involv-
ed somewhat lengthy), it was decided that the initial
experimental programme should be used to 'practice' the
techniques which had been observed in the ground resonance
testing of aircraft at British Aerospace.

4.1 INITIAL NORMAL MODE INVESTIGATIONS

4.1.1 INTRODUCTION

The preceeding Chapters have shown that there are important
criteria which must be satisfied in order that normal modes
can be experimentally produced when exciting complex
structures. In order to design a rig which could be used
to experimentally investigate the effect of non-linearities
and which incorporated multiple shakers to excite the
normal modes, the information obtained from the experimental
and analysis work of the preceeding Chapters had to be
considered.

The fact that modal interaction can be minimised by choosing
a suitable natural frequency separation between adjacent
modes of vibration, and that this can be further enhanced
by employing the same principle with the consecutive damp-
ing ratios (with the levels of damping being small), poses
somewhat of a paradox. The work which was carried out on
harmonic force distortion and detailed in Chapters 1 and 2
showed that for lightly damped structures the force levels
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at resonance are very small and harmonic distortion of the
input force can be very severe.

In the case of multi-point excitation methods, this aspect
can be particularly important since the input forces (both
in magnitude and phase) are used as part of the criterion
for establishing the normal modes and, if the levels are
very small (bearing in mind that one is merely overcoming
the local structural damping at the input points when the
structure is vibrating in a normal mode) then problems
with phase coherence could be critical.

Thus the paradox is that although one would prefer a
structure with very light damping to minimise damping
coupling, the force levels at resonance are so small (and
resulting amplitudes relatively high) that vibration
exciter and distortion effects may become a problem.

Since the ultimate aim of the experimental work was to
investigate the use of normal modes in identifying the
modal properties of complex structures, it was felt
necessary to initially establish what levels of modal
stiffness (based on purely hysteretic damping) would allow
the generation of normal modes without severe force dis-
tortion occurring and without having to compensate for the
vibration exciter characteristics. This would then allow
a rig to be designed with modal stiffnesses which would
require exciting forces that were not so small in magnitude
to prevent satisfactory normal modes being excited.

The techniques employed for exciting the normal modes
together with the instrumentation used in this preliminary
experimental work are discussed in detail in Sections 4.6
to 4.8 together with details of the transducer calibrations.

4.2 DESCRIPTION OF EXPERIMENTAL PROCEDURES

A simple rig was designed which utilised two-point excitation
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to excite the normal modes. The rig was designed to have
two principal modes of vibration, a transverse (or bending
mode) and a torsional mode. The r_lg basically consisted
of a rectangular solid steel beam, pinned at one end and
encastr; at the other which supported a hollow steel cross-
tube. Figure 23 shows a diagrammatic sketch of the rig,
together with the positions of the measuring transducers
and the vibration exciters. The rig was designed to be
symmetrical so that the mode shapes and corresponding input
force ratios were simple to produce experimentally, e.g.
the transverse normal mode was to be identified when the
accelerometers on each end of the cross-tube were equal
in magnitude and phase and at quadrature to the input
forces, which were also equal in magnitude and phase and
the torsional mode when the responses were in anti-phase
with the input forces in-phase and at quadrature to the
response.

The aim of the tests was to determine the modal stiffness
which would allow the transverse normal mode to be excited
with the input force ratio F2/Fl = 1.0. This was to be
done by varying the position of the cross-tube along the
beam and at each position exciting the transverse normal
mode of vibration.

The effect of varying the position of the cross-tube was
to change the mass and stiffness distribution of the rig
and thus for each re-location (within the constraints of
the rig) it was necessary to determine the modal stiffness
as well as excite the 'new' normal mode of vibration. It
was found that with the cross-beam in a position which
approximated to half-way along the beam (i.e. the most
flexible position) difficulty was encountered in obtaining
an input force ratio which resembled the required ratio
i.e. F2/Fl = 1) to excite the normal modes. Hence it was
found necessary to obtain a check on the modal stiffness
by exciting the transverse mode with one exciter acting at
the centre of the cross-tube (the nodal point of the
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a
torsional mode) and this was carried out for each re-
location of the cross-tube. As a further check on the
stiffness properties, occasional -atic tests were carried
out. These comprised loading the rig at the centre of the
cross-tube and measuring the resulting static deflections
under the applied load.

4.3 SINGLE POINT EXCITATION TESTS

The results of these tests were obtained in the form of
the inertiance i.e. output acceleration divided by.input
force (this being kept constant). This quantity was .

measured with the frequency response analyser and was
recorded in the form of the real and quadrature components
in order that the results could be presented in the form
of the Kennedy and Pancu vector plots. This mode of
presentation allotied the modal stiffness and damping to be
readily evaluated and also allowed the use of the computer
programs, developed in the previous Section, to obtain
accurate curve fits to the experimental data.

The initial single point excitation tests were concerned
with establishing the 'damping symmetry' of the experi-
mental rig. These were carried out by exciting the cross-
beam at points symmetrical about the centre line of the
rig (with the same exciter) and measuring the inertiance
as the frequency was varied over the transverse mode natural
frequency. The resulting vector plots of these tests are
shown on Figure 24.

It can be seen from Figure 24 that the vector plots differ
very slightly, with the result that the calculated damping
factors are different, indicating damping asymmetry.

Figure 25 shows a typical vector plot of the transverse
mode from which the modal stiffness was evaluated for that
particular configuration and Figure 27 shows the results
of the static stiffness tests which provided a check on
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the modal stiffnesses.

The results of the static and s&ngle point excitation
tests are given in Table 4.1. '.

4.4 TWO-POINT EXCITATION TESTS

For each of the cross-tube positions employed in the
single point excitation tests, a multi-point excitation
test was carried out with the intention of exciting the
transverse normal mode. As mentioned earlier, difficulties
were encountered in satisfying the normal mode criterion,
and it was decided that a normal mode was excited when the
resulting responses were in-phase and at quadrature (within
a phase tolerance of f. So) to the in-phase input forces.
The results of these tests are detailed in Table 4.1 which
shows the input force ratios as a function of the modal
stiffness and the associated modal damping.

A typical vector plot from these tests is shown on
Figure 26 with the input force ratio satisfying almost
exactly the theoretical ratio of 1.0.

4.5 DISCUSSION OF RESULTS

The aim of these tests was to establish a suitable modal
stiffness whereby it was possible to excite a structure,
in its normal mode, such that the individual input forces
used to overcome the structural damping and maintain the
normal mode condition were not affected by significant
harmonic distortion.

Since the input force levels at a normal mode frequency
are merely overcoming the modal structural damping, then
the stiffer the structure, the larger will be the levels
of input force for a given displacement and structural
damping factor. This in turn means that the effects
of exciter and harmonic distortion characteristics are
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FIGURE 24

SINGLE POINT EXCITATION TESTS:
INVESTIGATION OF DAMPING SYMMETRY FOR THE TRANSVERSE
MODE OF VIBRATION
l RESPONSE OF al WITH ONLY F1 ACTING (zl/F1)
o RESPONSE OF a WITH ONLY F
0
0

CALCULATED DA&PING FACTOR s'l
ACTING (x /F )
= o.oo342 2

CALCULATED DAMPING FACTOR &2 = 0.0024
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FIGURE 25

VECTOR PLOT FROM TYPICAL SINGLE POINT
EXCITATION TEST AT CENTRE OF BEAM

28-85
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FIGURE 26

VECTOR PLOT FROM TWO-POINT EXCITATION TEST
WITH F2/F1 = 0.975
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STATIC LOAD DEFLECTION CURVES TO DETERMINE EFFECTIVE
STATIC STIFFNESSES.
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UNDER THE APPLIED LOAD.
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also reduced.

This is borne out by examining the results detailed in
Table 4.1. When the modal stiffncks of the rig was low
it was not possible to achieve a force ratio which
corresponded to the theoretical force input ratio of
1.0. Nevertheless, the vector plot response indicated
an almost pure single mode response when this force ratio
was maintained constant as the frequency was varied over
the natural frequency range and the vector plot measured.

An explanation of why the ratio of the force input of one
side of the rig to the other (F2/Fl) should always be less
than 1.0 can be explained by the results obtained from
Figure 24. These results indicated that the damping
distribution was asymmetrical and that the damping ratio
calculated from tests carried out using F2 as the input
source was lower than that at the other side of the rig,
namely input source Fl. Since the damping level is small,
the resulting force levels are also small and hence the
input force at the point where the damping was the great-
est became the predominant exciting force.

As the modal stiffnesses were increased, the individual
force levels increased and the input force ratio approach-
ed the theoretical ratio of 1.0 as shown by Table 4.1.
The resulting modal stiffness which gave this condition
was then the required minimum design stiffness in order
that suitable force levels would be available to excite
the normal mode.

4.6 TEST INSTRUMENTATION

. The instrumentation used to excite, measure and record the
normal mode results is shown on Plates 3 and 4. The
method of exciting the normal modes required that the
various phases and magnitudes of the input and output
responses be monitored almost instantaneously. This was
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achieved during the experimental tests by designing a
switching unit which allowed both of the input forces,
the output accelerations and the individual input forces
and output accelerations to be ob%rved by a simple
series of switching operations.

The output of the transducers was fed via this unit to
the frequency response analyser (F.R.A.).

The F.R.A. had a dual role. The response of the system
was measured on the F.R.A. (this was displayed in digital
form) in either the real and quadrature components or in
polar form. The F.R.A. had two input channels which
allowed either a comparison between the two input signals
( i.e. a transfer function) or simply each individual
channel could be observed.

The other role of this instrument was as the master
frequency control. An output voltage from the F.R.A. was
fed to two individual amplifiers which in turn were
connected to the vibration exciters. The frequency of the
excitation voltage (and hence current) fed to the vibra-
tion exciters was thus controlled by the internal oscillator
unit of the F.R.A., thus all the frequency information
supplied as inputs to the F.R.A. were referenced to its
own internal oscillator. This allowed the instrument to
correlate the input frequencies with its reference frequency
and thus reject high levels of harmonic distortion.

The vibration exciters used were electro-dynamic models
with a peak force rating of 25N. These were connected to
the test rig (the cross-beam) via the push-rod and force
link assemblies, the output current of each exciter being
controlled by its own amplifier which allowed the force.
levels to be adjusted independently.

The two input forces were measured with piezoelectric
force transducers and the two output responses, monitored
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at the same points were measured with piezoelectric
accelerometers. The outputs of these transducers were
fed to a bank of four charge amplifiers which in turn
were connected to the switching u$*t in order that the
various configurations of responses could be recorded on
the F.R.A.

Throughout the tests, the output accelerations and input
forces were continuously monitored on oscilloscopes in
order to give both a visual picture of the phase orien-
tations of the responses (i.e. for identifying in-phase
or anti-phase conditions) and to observe the quality of
the input forces to check for such aspects as misaling-
ment or bottoming of the armature in the vibration exciters,
both of which produce a distorted force input waveform (81).

A second switch was incorporated between each vibration
exciter and its corresponding amplifier in order that
transient tests could be carried out. This switch allowed
the exciters to be simultaneously open-circuited and hence
virtually uncoupled (electrically) from the excitation
system. The actual location of this switch is very impor-
tant in order that the free-vibration response of the rig
is not to be affected by the electrical damping character-
istics of the vibration exciters. These effects are due
to the back emf generated during free vibration and unless
the amplifier unit feeding the exciter has a very high
output impedance (which in the case of the exciter input
being open-circuited produces the effect of an amplifier
with an infinite output impedance) this results in a
finite current in the coil of the exciter armature which
produces a force opposing the motion of the armature and
effectively damps the free vibration. These back emf
effects have been recorded by other researchers (4) and
are particularly important in the case of lightly damped
structures.
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4.6.1 CALIBRATION OF TRANSDUCERS

In order that a common reference sensitivity could be
applied to each of the piezoelectric transducers and also
to act as a check on the manufacturer's calibrations,
each of the transducerswere--calibrated using a non-contact
technique.

The calibration technique used had previously been
employed to calibrate force transducers (13) and relied
upon a solid steel prism with grids of 0.127 mm (0.005")
and 0.254 mm (0.010") etched onto one face which was highly
polished. The transducer to be calibrated was securely
located on the steel prism which was then vibrated at a
given frequency. By adjusting the amplitude of vibration
at this frequency and observing the grids with a microscope,
synchronisation of the lines indicated peak-to-peak
amplitudes of vibration in steps of 0.127 mm or 0.254 mm.

The output from the transducer was fed to its corresponding
charge amplifier and the voltage from the cha-rge amplifier
was recorded on a digital voltmeter. By repeating this
procedure for a range of frequencies (this technique was
found satisfactory over the frequency range 5 to 400 Hz)
a calibration graph of output voltage against acceleration
(derived from the product of 02x displacement) for an
accelerometer and its charge amplifier was obtained.

In the case of the piezoelectric force links, the procedure
was modified slightly in that a body of known mass was
rigidly mounted on a force link and the same procedure
applied as with the accelerometers,except that in this case
the resulting calibration curves were in terms of output
voltage against force (this being determined from the.
product of the known mass and the acceleration). Through-
out the tests the responses of the transducers were observed
on an oscilloscope to ensure that simple harmonic motion
was occurring, otherwise the calibration curves would have
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4
been invalid. AppendixVII  gives the results of the
calibration tests and resulting sensitivities.

b
4.7 DESIGN OF A TWO DEGREE-OF-FREEDOM TEST RIG WITH

TUNABLE FREQUENCIES

The final experimental rig design had to incorporate the
information obtained from the earlier tests on the
lightly damped simple beam rig described in Section 4.2
where it was shown that difficulties in setting up the
normal modes were experienced with lightly damped structures.
It was established from these tests that if the modal
stiffness was sufficiently high then the resulting excita-
tion forces at resonance would be of a sufficient magnitude
to satisfactorily excite the normal modes of the test rig.
Thus the two modes of vibration of the experimental rig
had to satisfy these conditions.

Plate 3 shows a photograph of the experimental rig and
test instrumentation. The rig basically consists of a
steel rectangular tube encastrg at one end and on a support
at the other end which allows axial movement to occur but
restricts torsional and vertical movement (simple-support).
The rectangular steel tube supports a solid square steel
cross-beam which is located on the tube by allowing the
tube to pass through the steel cross-beam. The cross-beam
is securely fastened to the rectangular steel tube by bolts
acting on a brass slipper pad to prevent local deformation
of the steel tube;

The cross-beam had additional masses secured symmetrically
which were adjustable in position in order to vary the
mass moment of inertia, and hence vary the torsional

. natural frequency of vibration without changing the trans-
verse natural frequency of vibration. This provided tunable
patural frequencies.
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1.

2.
3.
4.5.
6.
7.
8.
9.

Digital Phasemeter
Switch Unit for F.R.A.
Frequency Response Analyser
Amplifiers
Charge Amplifiers
Oscilloscopes
Vibration Exciters

(F.R.A.

Switch Unit for Open-circuiting exciters

KEY FOR PLATE 3 OVERLEAF
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The use of a rectangular steel tube to provide the trans-
verse and torsional spring effects arose from the fact
that in order to have a high mod$l stiffness in both
modes of vibration it was necessary to increase the polar
and second moments of area without increasing signif-
icantly the mass of the elastic member. The fundamental
natural frequencies of vibration for the two modes were
chosen to be in the frequency range 15 - 30 Hz, this range
being a typical frequency range which is encountered
during aircraft ground vibration tests.

Facilities were available for attaching electro-dynamic
vibration exciters to the bottom of the cross-beam.
These allowed the exciters to be situated at any position
along the cross-beam by having them mounted on trunnions
running on guide-rails, Plate 4 shows these aspects.

The exciters were connected to the cross-beam via push-
rod and force link assemblies as shown on Plate 5. The
push-rod assemblies allowed the vibration exciters to be
easily positioned and in particular alignment and set-up
of the exciters, so that when the rig was in its static
equilibrium position the armatures of the exciters were
not pre-loaded; and due to their lateral and torsional
flexibility they did not restrict the motion of the system.

The entire rig was mounted on massive cast-iron bed plates
in a fabricated rolled-steel-joist framework whose natural
frequencies were well above those used throughout the
tests. The design calculations for the experimental rig
are given in Appendix VI.
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4.8 NORMAL MODE TESTING PROCEDURES

-

-

-

In order to assess the quality ofFthe rig in terms of
1

exciting real normal modes of vibr'ation and to determine
the normal mode frequencies of vibration,a series of
transient and forced vibration tests were carried out on
the rig. Before these are discussed in detail, it is
felt that an introduction to normal mode experimental
procedures would be worthwhile.

The techniques employed in experimentally exciting normal
modes of vibration employ the phase-resonance criterion
and are based on an iterative process since little infor-
mation is known a priori regarding the mode shapes (and
hence appropriate force distributions). The usual
procedure, for example, in a ground vibration test on an
aircraft is to initially excite the structure by using
two vibration exciters (usually placedsymmetrically, one
on each wing), and to sweep a given frequency range and
record the transducer (accelerometer) responses over the
structure. This is done for in-phase and anti-phase
excitation conditions.

From the resulting responses, guidance as to the symmetric
and anti-symmetric mode shapes and resonant frequencies
of vibration is obtained. Using this information, vibra-
tion exciters are located in positions which will (hope-
fully) excite only a particular single mode of vibration,
i.e. the effects of adjacent modes are eliminated. The
input forces are then adjusted, one at a time, until the
response of the structure is approaching an in-phase (or
anti-phase) condition. If this cannot be achieved, the ‘;
frequency is adjusted until the responses converge to this
condition. The force magnitude distribution is then
adjusted until an in-phase condition,which is at quadrature
with the response,is obtained. This may also require a
frequency adjustment as well as employing exciter compen-
sation methods to satisfy the required criterion.
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If it is still found that it is not possible to obtain a
set of conditions which reasonably conform to the above,
it may be necessary to adjust thedocation of the excit-.
ers, in which case the whole procedure has to be repeated.

Once the phase resonance criteria have been satisfied,
the frequency can be varied around the normal mode frequ-
ency (with the force appropriation held constant in
magnitude and phase) in order that vector plots or complex
power plots can be obtained from which such aspects as the
modal damping can be calculated. Techniques for improving
this tedious iterative method are being continuously
investigated and reference to (42 -f 49) providesan overall
view of these.

In the case of the author's experimental rig, the theor-
etical mode shapes were simple and known a priori and thus
the experimental procedure was greatly simplified. Never-
theless, the process of setting-up the normal modes
accurately was extremely time consuming since the force
levels and frequency adjustments were all manually
controlled, whereas most industrial tests are fully automated.

The procedure employed for exciting the normal modes on
the test rig was to set the excitation frequency at the
natural frequency indicated by a transient test and to
adjust the two force levels until the two responses were
in-phase (or anti-phase). The phase angle between one of
the forces and the corresponding output response (acceler-
ation) at that point was then checked for a 90' phase
difference. If this was in error by more than plus or
minus two degrees, the frequency of excitation was changed
until this condition was achieved. The phase of the out-
put responses was again checked and if this was not within
the phase margin of plus or minus two degrees the other
excitation force magnitude was adjusted until this condi-
tion was satisfied. The phase angles between the two
input forces were then checked for an in-phase condition
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and if this was within the phase margin of two degrees
it was then assumed that the frequency of excitation was
at the normal mode frequency.

Under these conditions the rig was vibrating as a single
degree-of-freedom with the output response in-phase (or
anti-phase) and at quadrature to the input forces which
were also in-phase (or anti-phase). Once the normal
mode conditions were established, the purity of the
normal mode was checked by carrying out a transient test.
This was done by switching off the excitation to the
vibration exciters (switching the exciters to open-circuit)
and recording the

4.9 NORMAL MODE

response on an ultra-violet recorder.

EXPERIMENTAL TEST RESULTS

A typical set of experimental results, for an arbitrary
level of input force at the normal mode frequencies, are
shown in Tables 4.2 and 4.3 for the transverse and
torsional modes respectively.

It can be seen from both Tables 4.2 and 4.3 that the input
forces are predominantly real and that the output acceler-
ations are almost purely imaginary. The phase angle margins
of + 2O are satisfied and the input forces are at quadrature
to the output. Thus the conditions satisfy (within the
set experimental bounds) the classical phase-resonance
criterion.

Figures 28 and 29 show the transient response for the
transverse and torsional modes when the exciters were
switched to open-circuit with the rig vibrating under the
conditions specified by Tables 4.2 and 4.3.

The modal purity from observation of the transient traces
is obvious since, had the excitation configuration not
been correct,beating would have been evident in the trans-
ient responses. Thus it was established that the normal
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Measured
Quantity (v&s) (vks) Fl

(volts) (vks)  _al'F1 a2'F2
__

Real 0.03 0.032 1.65 1.64

Imaginary -0.7 -0.71 0.04 0.05

Polar
I
0.701/-87.5 0.71/-87.4

I I
1.65/1.39 1.64/1.75 0.425/88.9 0.427/89.2

I I

TABLE 4.2

Transverse Normal Mode Excitation Conditions

WB = 23.3 Hz
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modes of vibration of the rig could be excited and
confidence placed in the measured results.

5
4.10 DISCUSSION

The experimental work described has shown that problems
can arise in obtaining satisfactory normal mode excita-
tion vectors of flexible (i.e. lightly damped) struc-
tures.

These problems are due to the fact that the internal
damping of flexible structures is very low at resonance
and consequently the excitation force levels are small.
As a result of this, the force signals become non-linear.
with significant harmonic distortion (see Section 1).
It has been shown that by choosing a suitable combination
of modal stiffness, and hence damping levels, that these
problems can be overcome and accurate normal mode invest-
igations using multi-point excitation methods can be
carried out under controlled conditions.

The final section of the dissertation concerned the
investigation of the effects of non-linearities, partic-
ularly the non-linear effects caused by dry surfaces in
contact moving relative to each other - Coulomb friction -
using the above experimental rig.

-
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5. IDENTIFICATION OF STRUCTURES WITH NON-LINEAR
CHARACTERISTICS

?+
5.1 INTRODUCTION

Non-linearities represent one of the major stumbling
blocks in the field of dynamic modelling and frequency
response testing methods. In the field of structural
dynamics the most common type of non-linearities
encountered are those due to Coulomb friction (SO), and
non-linear stiffness characteristics (51).

Another very common non-linearity, is that due to
'backlash' (SZ),although this type of non-linearity
causes problems mainly in mechanisms and control systems
and thus no emphasis is placed on the analysis of struc-
tural systems with backlash in this dissertation, although

reference may be made to its effects in the following
Chapters.

The main non-linearity which is investigated is that of
Coulomb friction as a result of the author's involvement
with ground resonance testing of aircraft where this type
of non-linearity is very common (38)(53)(54).  A section
of the work is also devoted to analysing systems with non-
linear stiffness characteristics, since in regard to air-
craft flutter analyses these structurally caused non-
linearities can have serious consequences (51).

The analytical techniques available for analysing systems
governed by non-linear differential equations of motion
are numerous, the basic mathematical ideas and techniques
being developed by Poincare (55). The study of the basic
physical problems (which is the author's prime concern)
was attributed to Rayleigh (31), Van Der Pol (56) and
Duffing (57). Van Der Pal's and Duffing's well-known
equations continuously form the basis for investigations
of non-linear systems, and the analysis techniques of
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a
Kryloff and Bugoliuboff (58) and numerous others (59)
have contributed to a better understanding of the various
phenomena which occur in the fiel@jof non-linear systems.

The effects of the non-linear elements under consideration,
namely stiffness and friction effects, are analysed by
linearising these elements using the method of Harmonic
Balance (or Harmonic Linearisation) (60). This is often
termed the 'Describing Function Method' and its origins
lie in the analysis of non-linear control systems (61).

This method has found extensive use in the field of non-
linear dynamics, particularly in the aerospace field (51,

53), and the linearised equivalent elements for such
characteristics as non-linear stiffness and Coulomb
friction are readily available in the cited literature
(60, 62).

Unfortunately, few of these areas of analysis make any
progress toward,identifying  real structures. For example,
methods have been proposed for the forced vibration
analysis of systems with Coulomb friction (50) (63) (64),
various types of non-linear damping (65) (66) and stiff-
ness characteristics (67), but in each case little experi-
mental evidence is available to establish the validity or
direct application of these methods.

The work detailed in the following chapters describes a
technique, based upon the work by Bonneau (68) and Baticle
(69)s which considers the complex power input to systems
at resonance that allows multi degree-of-freedom systems
with non-linear stiffness and Coulomb friction elements
to be identified employing normal-mode multi-point excita-

. tion methods.

5.2 THE COMPLEX POWER SUPPLIED AT RESONANCE

In order to express the basic principles involved in the
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a
use of the complex power method, the important relation-
ships which arise as a result of the method will be given
in this section, the derivation ofb\these quantities being
given in Appendix IV.

If one considers a viscously damped, linear single degree-
of-freedom system subject to forced vibration, the response
of the system in terms of the in-phase and quadrature
components can be expressed as:

u = u1 + ju" . . . . . . . . . . . . . . (117)

where u' represents the in-phase displacement
l-l” represents the quadrature displacement.

If the total input power at a given frequency of excitation
is W, this must be composed of the quantities:

W = W' + jW" . . . . . . . . . . . . . . (118)

where W' the in-phase power = -FLU"
W" the quadrature power = jFwu'
and F is the magnitude of the input force.

Appendix V shows that when the excitation frequency equals
the natural frequency of the single degree-of-freedom

the following conditions apply:system,

W" = 2’ =o . . . . . . . . . . (119)
w=wn w=lJ.ln

and

FE” = a maximum . . . . . . . .
w=wn

. . ( 1 2 0 )

These conditions can be shown (Appendix V) to give the
damping ratio as:
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<=L. WI . . . . . . . . . . (121)wn dW"/dw
w=wn 3

The in-phase and quadrature power components are given by
equations A.V.5 and A.V.6 as:

F2
W' =

257 wR

(1 _ ,2)2 + 4<2Q2 l * l * l * l * .' (122)

2
Y(l - n2)

W" =
(1 _ ,2)2 + 452n2 l * l * l * '** l * (123)

where R = w/wn

If equations (122) and (123) are plotted as a function of
the excitation frequency w, then the characteristics appear
as shown on Figure 30 and from these the various quantities
necessary to determine the damping ratio, given in equation
(121), can be obtained.

5.3 "ANALYSIS OF A SINGLE DEGREE-OF-FREEDOM SYSTEM
NON-LINEAR STIFFNESS PROPERTIES USING COMPLEX
METHODS

WITH
POWER

-

-

Non-linear structural stiffnesses usually arise as a result
of movements in joints (51)(70), guideways (71), and elastic
elements such as plates and beams subject to large deflec-
tions (72).

In all cases, the non-linear terms usually represent a
hardening or a softening spring characteristic (73) which
results in an equation of motion for a hysteretically
damped single degree-of-freedom system subjected to an
external harmonic excitation force of constant magnitude as:

rnZ + k(1 + j&)x + c'x 3 = FejWt . . . . . . (124)
-
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FIGURE 30

IN-PHASE (TV') AND QUADRATURE (W") COMPLEX POWER
COMPONENT CHARACTERISTICS AS A FUNCTION OF THE
EXCITATION FREQUENCY FOR A SINGLE DEGREE-OF-FREEDOM
SYSTEM
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where c' is a constant coefficient.

By employing the principle of harn@nic balance, equation
(124) becomes:

mil + k(1 + jS)x + k*x = Fejat . . . . . . (125)

where k* = ac1A2, A being the amplitude of vibration of
the non-linear element.

Assuming a steady state solution of the form

x = uejwt, where 11.11 = A

we obtain the solution of equation (125) as:

u =
(k - mu2 + k*) + jk6

. . . .

U
i.e. u = S

(DA2 - S12) + jS
. . . . . .

*

where DA2 = l+v($);v=$

R = w/wn
U

S
= F/k

Now A = 1111, thus

U
A = S

((DA2
_ n2)2 + 62); l * l * l *

. The solution of equation (128) for f12 is:
-

!a2 = DA2 + ((>)2 - 62)3
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The maximum value of A occurs at a frequency given by:
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$3 = DA2 i.e. when,

A =q . . . . . . . . . . . . . . . . (130)

*

and Q2 = 1 + +,.. . . . . . . . . . . . . (131)
C ’

The interesting point about equation (131) is that the
point at which the excitation frequency equals the system
natural frequency (i.e. 52 = 1) does not coincide with a
90' phase angle between the displacement response A and
the excitation force unless v = 0, i.e. there are no non-
linear terms in the equation of motion. This has been
observed by a number of researchers who showed that the
effect of the non-linear stiffness terms is to curve the
constant frequency lines on the vector*plot (72) (73).

A second effect occurs on the vector plot which renders a
criterion, invaluable in the analysis of linear systems,
ineffective in this case. This is the criterion whereby
the maximum rate of change of arc length per unit frequency
(ds/dw), denotes the natural frequency condition (74).
This was analysed in some detail by White (72) who showed
that as the non-linear effects increase, the frequency at
which the value of ds/dU is a maximum corresponds to values
well above those of the true natural frequency. The values
of the system damping ratios, derived from vector.plots
using the half-power point method (75) and the method due
to Mead (78), were also in error which reduces the vector
plot approach for a system with a non-linear stiffness

. quite ineffedtive,as one would expect.

If one considers equation (126) in terms of its real and
quadrature parts, the expression becomes:
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us (DA2 - n2)
- j us6

u = (DA2 - ,2)2 + &2 (DA24 f12) + 62 l *
(132)

Equation (132) can be expressed in terms of its in-phase
and quadrature power components as:

W = W' + jW" . . . . . .

where,

. . . . . . . . (133)

In-phase power W' =
Fus (DA2 - n2)

(DA2 - f12)2 + &2 l * l '
(134)

Quadrature power MT" =
FuswG

(DA2
_ n2)2 + &2 l ' l . (135)

Expressing equations (134) and (135) as:

W" = Fus(DA2 - n2)s2

w, (DA2 - ,2)2 + 62 l .
. . . . . . . .

, (136)

(137)

allows the individual power components to be plotted as a
function of R for given values of F, us and 6. Figure 31
shows a plot of the expressions (136) and (137) for
constant values of F, us and 6 with different values of the
non-linear stiffness coefficient v. From Figure 3l'the
damping ratios and natural frequencies are determined using
the expressions:
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where &(W'/CAQ= - $ at W" = 0 . . . . . . . . (139)

The values of the non-linear stiffness coefficient v used
in the above analysis are the same as those used by White
(72), (White's notation for the non-linear stiffness
coefficient was a). Thus it is possible to make a direct
comparison between the resonant frequencies and damping
ratios obtained from the vector plots by White with those
obtained from the above complex power expressions.

Table 5.1 shows the results for three values of v, (the
largest value of v being just below that which would
produce the jump phenomena) and it can be clearly seen
that the most consistent and accurate results are those
obtained from the complex power expressions.

White attempted to apply the vector plot approach to a
set of experimental results, however his results at the
highest force levels produced distortion of the vector
plots which prevented any analysis being carried out.

However, his experimental results are somewhat dubious in
that use.was made of the cur-r-ent in the exciter coil as a
force reference, and since the system was being driven into
large amplitudes of vibration at resonance, the actual
magnitude and phase of the force input to the structure
would almost certainly be different to that in the exciter
coil, as was shown by the results of Chapter 1.

The concept of resonance in a system with a non-linear
stiffness element (in this context, resonance is defined
as the frequency at which the maximum response is obtained
for a constant input force) has been discussed by Tondl
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FIGURE 31

COMPLEX POWER PLOTS FOR A SINGLE DEGREE-OF-FREEDOM
SYSTEM WITH A HARDENING SPRING CHARACTERISTIC
GOVERNED BY EQUATIONS (136) AND (137) WITH:

1. v=o; 2. v = 1 x lO-4) t5 = 0.04, Fu = 1S
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V I <H* I <p* I 5 C-P

0 0.0200 0.0200 0.0200

0.5 x 1o-4 0.0205 0.0180 0.0200

1.0 x 1o-4 0.0210 0.0240 0.0191

TABLE 5.1

* from reference (72)
CH + measured from half power point method
?p .T 5 measured from phase difference method,

reference (78)
5 C-P

= c me,asured from complex power plot
v = non-linear stiffness coefficient

-

-

-

-
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(76) who points out that due to the fact that a non-linear
system resonance may have no typical single-peak character,
it would be sensible only to ackn*ledge the existence of
a resonance within a given excitation frequency range.

It is interesting to note that the frequency at which the
complex power components denote a natural frequency is
when the real part of the response (or the quadrature
power) is zero, which is the same condition that defines
a natural frequency in a linear single degree-of-freedom
system.

This may not be a very useful guide in practical systems
when single point excitation methods are used, due to the
fact that damping coupling between adjacent modes can
cause modal interaction as discussed in Chapter 3, but in
the case of multi-point excitation methods where a single
mode response is excited, or when the adjacent modal
natural frequencies satisfy the criteria of Section 3.8.1,
then the concept of zero quadrature power could be used
to identify the natural frequency of a non-linear system.

-

5.4 ANALYSIS OF A SINGLE DEGREE-OF-FREEDOM SYSTEM WITH
COULOMB FRICTION USING COMPLEX POWER METHODS-

5.4.1 THE EFFECT OF COULOMB FRICTION ON THE VECTOR PLOT
-

-

-

-

-

-

-

The previous section has shown that the use of complex
power methods in analysing simple single degree-of-freedom
systems with non-linear stiffnesses offers advantages over
the vector plot approach. The approach used in the
previous section can be applied to non-linear damping
characteristics since the non-linear element can readily
be represented by an equivalent linearised element using
the method of harmonic balance.

Following the approach used in the previous section, a non-
linear Coulomb damping element is represented as an
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equivalent hysteretic damping constant h*,

where h* = 4
--?-I-

5. . . . . . . . . .-rr u

and q represents the level of the frictional force,
for Coulomb type damping is governed by the system
relations:

f(k) = q for 2 > 0 . . . . . . . . . . . .

f(G) = -qfor G < 0, G = velocity

and 1~11 is the peak displacement.

The equivalent hysteretic damping constant given by

wh ich

(140)

(141)

equation
(140) can be combined with the elastic dissipative proper-
ties of a structure to give an element whose complex stiff-
ness is given as:

k + jh* = k'(l + jS*) . . . . . . . . . . (142)

where k = elastic stiffness component

6* = 6 + h*/k', 6 being the structural damping factor.

Thus a single degree-of-freedom system can now be repre-
sented as a body of mass m supported by an element with a
complex stiffness given by equation (142). Thus the
equation of motion of this single degree-of-freedom system
subjected to a harmonic force Fe jwt becomes:

rn? + k'(1 + j&*)x = FejWt . . . . . . . . (143)

The solution of this equation is simply:-

x = ue JUt, where u = lulej@
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Thus Iu] = El
1

_ ,2)2 + &*2)2
. . . . . . . . (144)

((1 5

and + = tan-l(&*/l - Q2), R = w+/k'

From equation (144),

lu12](l  - $)2 + &*2} - (EJ2 = 0 . . . . .* (145)

substituting 6* = 6 + E = 6 +
4where r = ~ in-9

equation (145) and solving for IuI gives:

I4 =
-6r + (iJ2((1-R2)2+62)  - r2(l-Q2)2}l1 . . (146)

(1 - fi2)2 + 62

and tan 0 =

Inspection of equation: (146) shows that a solution for lul
is only possible if the following condition is satisfied:

.

The practical significance of this is that the magnitude
of the applied force F must be greater than the magnitude
of the friction force q in order for any motion to exist,

’which is usually the case in practice (62).

By plotting equations (146) and (147) in terms of their
real and quadrature components the vector plot for a single
degree-of-freedom system with Coulomb damping is obtained.
Figure 32 shows the typical loci obtained for various

132



-

-

-

-

-

-

-

-

-

-

-

values of r, which for a given elastic stiffness is
directly proportional to the frictional force level q.

4
Clearly, the effect of the Coulomb- friction is to distort
the normal circular locus in such a manner that the
quadrature axis components become elongated, resulting in
an almost elliptical shape as the frictional forces
increase.

Although it is quite obvious from Figure 32 that errors
will be incurred if any attempt is made to extract damping
ratios using the normal techniques of half-power point or
reduced angle formulae, it appears that the natural frequ-
ency still occurs at the point where the rate-of-change of
arc length per equal frequency increment is a maximum, as
in the case of linear systems.

This can be investigated by obtaining an expression in
terms of an arc length denoted by s, the phase
and the frequency ratio R.

angle (9,

Let ds = small arc at a radius [ul, then

ds = juI.d$ . . . . . . . .

.
. . g = Ill& . . . . . . . .

= ILlI$$$g . . . . . . . .

where y = cotan $ = 1 - n2
6+r u . .

. 2jl_lln
. . g=

(1 + y21U + r/Iu[> l *

. .

. .

. .

. .

. .

Equation (152) is shown plotted on Figure 33 as a function
of the frequency ratio, and it can be seen that % is a
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FIGURE 32

VECTOR PLOTS FOR A SINGLE DEGREE-OF-FREEDOM SYSTEM WITH
COULOMB DAMPING
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FIGURE 33

RATE-OF-CHANGE 0" ARC LENGTH PER UNIT FREQUENCY ds/dQ
AGAINST R FOR A SINGLE DEGREE-OF-FREEDOM SYSTEPI WITH
COULO?IB FRICTION.
1.
2.

F = 5N, q = 2.5N
k'= 350 N/m
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maximum when 52 = 1 for the conditions given. Hence in tile
case of a system with a non-linear Coulomb type friction
clement, i t  wou ld  appear  that  itm$s st i l l  possible  to.
identi fy  the natural  fresuency condition 3s tha t  f r equency
\khich gives 3 maximum rate-of-change of arc length with
f rcquency .

5.4.2 THE RESPONSE IN TERMS OF THE COMPLEX POKER
COMPONENTS

The response in terms of the in-phase and quadrature power
components is given as:

2
L,*

2
k’ &W(l - n2)

i.e. 11’ = +j
(1 - Q2)2 + g*2 (1 _ Q2)2 +6*2 .* l * (153)

F2
. W. . _---= p”&* + . $1 - n2)n

w (1 - ,z>z + ,*7 J(l _ ,2)2 + &,2 ** l . (154)
n

The similarity between equation (153) and equations (122
and 123)) which depicts the complex power components for a
linear hysteretically damped system at resonance, allows
the same analytical approach which results in the system
damping and natural frequency being obtained from the
graphical characteristics of the complex power components.
This can be best illustrated by an example.

Consider a single degree-of-freedom system with a linear
elastic spring element and a linearised Coulomb friction
element, the equation of motion of the system being the
same as that of equation (143) i .e.

rnjl + k’ (1 + j6*)x = FejWt . . . . . . . . (155)
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Let the s y s t e m

k’ = 350K/mm:

The i-n-phase and qtladraturc power components are given
by equation (154) and these are shown plotted on Figure
34. It can be seen that the in-phase power is a maximum
and that the quadrature power is zero at the natural
frequency of the system.

The total damping is calculated from the expression:

. . . . . . . . . . . . (156)

which gives from Figure 34:

6* 2 x l.735zz =
1 x 8 3 . 3

0 ’0416

Th i s  c o m p a r e s  with the exact value of 6* = 0.04 12.

Unfortunately this approach does not offer any information
relat ing to  the individual  ( i .e .  l inear  and non- l inear)
damping factors. In order to obtain expressions for both
the linear damping factor and that due to the Coulomb
damping, it  is necessary to consider the power input to
the system at resonance.

At resonance, the in-phase power input to the system (the
quadrature power is zero) is obtained from equation (154)
as :
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= wnk’(61uj2 +  r/u\) ..

which can be expressed as:

Equation (159) represents a straight line of slope h’6 a n d

. . . . . .

. . . . . .

. . . . . .

(157)

(158)

(159)

in te r cep t s  k ‘r. Hence by plott ing ~‘/w~lul as a function
of IuI a t  r e s o n a n c e , the individual damping factors and
the non-linear Coulomb friction force level can be obtained
since  k’r  =  4q/r.

5.5 APPLICATION OF THE COMPLEX POWER METHOD TO SYSTEMS
WITH SEVERAL DEGREES-OF-FREEDOM

It has been shown that for systems which can be described
by a single degree-of-freedom that if  the non-linearity has
either  a  st i f fness  or  a  Coulomb fr ict ion character ist ic
then it is possible to define the modal properties of the
system. There are two rather important factors which arise
as a result of the single degree-of-freedom analysis which
may not apply when the techniques used in the above analysis
are applied to non-linear systems with more than one degree-
of - freedom.

The f irst  factor  is  re lated to  the  locat ion o f  the  non-
linear element in the previous analyses. In these analyses
it was assumed that the non-linear element was connected
between the defined co-ordinate position and ground i .e.
the instantaneous displacement of the non-linear element
was absolute. In the case of systems with several degrees-
of-freedom it may well be that the non-linear element (or
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FIGURE 34

COMPLEX POWER CHARACTERISTICS FOR A SINGLE DEGREE-OF-
FREEDOM SYSTEM WITH COULOMB FRICTION GOVERNED BY
EQUATION (155).
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clr  i!icllts) is situated bct\,een t\to co Cjrdinates, say the
rth and the s th (h-hich need not necessarily  be adjacent).
The effect of this is to couple tbse Doints in the structure
xhish places restrictions on the pre\~iously simple analysis.

The sc>cond factor is only relevant to multi degrec-of-
freedom systems ushere the non-linearity is a hard or soft
spring characteristic. In these cases, the normal mode
shape and frequency may change with input force level, the
deviation in the mode shapes also being dependent upon the
location of the non-linearity.

This factor restricts the amount of information which can
be obtained from a system which has a non-linear stiffness
characteristic s;nce it is not possible to determine the
form of the non-linearity due to the fact that any varia-
tion in the input power at a given normal mode frequency
will change the mode shape, which is not the case with the
Coulomb friction elements. However, assuming that it is
possible using multi-point excitation methods to excite a
'given normal mode', i.e. satisfy the normal mode criterion
for a fiven input force level and distribution of a system
with several degrees-of-freedom, then the 'given normal
mode' frequency and the system damping can be estimated as
detailed in Section 6.3.

5.6 THE EFFECT OF COULOMB FRICTION Oh' SYSTEMS HAVING
SEVERAL DEGREES-OF-FREEDOM

In order to analyse systems with several degrees-of-freedom
it is necessary to represent the system by a lumped-parameter
modal with n degrees-of-freedom. If the system is assumed
:o be linear with a harmonic solution x = ue jwt , the result-

ing equations of motion are given as:

-w'Mu + Ku + jHu = p . . . . . . . . . . (160)_Y SW -5

where M, k and H are the symmetrical mass, stiffness andW _
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If the system is excited at its sJh no I-ma 1 mode frequency
w. by an appropriate force distribution p.1 -1' ecjuat i on (160)
gives:

jlJui = pi . . . . . . . . . . . . . . (161)

since w 'iMUi = Ku. and us-1
_i represents the peak displacements.

In terms of the i th normalised mode shape, equation (162)
can be written as:

jXHv. = pi a. . . . . . . . . . . . .s-1 (163)

where v..-1 represents the normalised mode shape and X is a
constant.

Equation (163) shows that if the vector of input forces is
real, all the displacements will be in phase with each other
and at quadrature to the input forces, this condition
satisfying the classical phase-resonance criterion.

Since we are concerned with both Coulomb and hysteretic
damping it will be necessary to consider the way in which
these separate quantities will contribute to the response
of the system.

The non-linear Coulomb friction elements which are linear-
ised by the method of harmonic linearisation  take the
general form:

f. =1 & . . . . . . . . . . . . . . . . (164)

where bi is a constant which depends upon the level of the
Coulomb friction force and 1uI is the peak amplitude of
vibration of the non-linear element.
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';T~j(-e lie are dealjng b-ith n degrees-oi-freedom, the
elc,!l:crlts given by equation (164) can be represented b)
a Eric-tional damping matrix. If tlrjs damping matrix is.
defined  as F, its elements may be expressed in terms of
tlic tli~placcments  as:

fkl =
--,bkl

> --- --""'gkl(ul,  u7...un)
. . * . . . . . (165)

i

where fkl is an element in the k th row and ith column

bkl is a constant
gkl is a linear function of amplitudes ul.....un.

A physical representation of equation (165) can be shown
by considering the lumped parameter three degree-of-freedom
system with linearised Coulomb friction elements situated
as shown in Figure 35.

The linearised elements are given from equation (164) as:

bl
fl = Tuj 9

b2
f2 = Iu2_ull- '

b3
f3 = Iu3_u11 -*

The frictional damping matrix for this system is:

F =

f1+f2+f3 -f2 -f3

-f2 f2 0

-f3 0 f3

and thus from equation (165):

. . . . . .
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LUMPED PARAMETER SYSTEM WITH COULOMB FRICTION ELEMENTS
(fl,f2,f3) ONLY.
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If the system is excited at its i th natural frequency,
equation (168) can be represented in terms of the normal-
ised mode shape as:

fkl = c bkl__--
t

'gkl!!i
. . . . . . . . . . . . (169)

-

The frictional damping matrix can now be expressed in the
form:

- F = (+) F.
.._l . . . . . . . . . . . . . . (170)

where the elements of ,Fi are independent of the amplitude
of vibration and take the form:

F. = bkl . . . . . .-1 . . . . . . . . (171)

If the hysteretic damping matrix, which represents the
damping in the linear system, is denoted by S, then the
system damping matrix may be derived from equations (171)
and (163) as:

H = AS + ,Fi . . . . 0.

thus, equation (163) becomes:

. . . . . . . . (172)

jO,S + Fi)xi = pi . . . . . . . . . . .. (173)

The complex power components when the system is vibrating
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4 1 h
cl c its i nr~rinal ~iiode frequcrli) ;ire olliained with t h e  a i d
of  t~.quation  ( 1 7 3 ) . ‘The power dissipated at this frequency
is given b y : E;

(174)

\ihich roprcsent.s  t.lle quadrature input po”er components ,  the
in-phase power components being zero.

It.  follows from equations (173) and (174) that:

Vi i = (Jj. v_1 _; (X2S +  XFi)Yi . . . . . . . . (175)

and

Equation (176) represents the total input power to the
system at the normal mode frequency wi and shows that it is
poss ib l e  t o  clialuate n values of yt Fi vi c o r r e s p o n d i n g  t o
n modes of vibration. Unfortunately, in order to define
the form of the Coulomb damping matrix and identify individ-
ua l  f r i c t i on  f o r ce  l eve l s  th i s  in f o rmat i on  i s  no t  su f f i c i en t
to completely define the Coulomb damping matrix Fi.

If one bears in mind that the off-diagonal terms of the
matrix F_i are related to co-ordinates coupled by Coulomb
damping elements, then if it is known a priori that all the
Coulomb damping elements are grounded then the ,Fi matrix
must be diagonal and a unique solution can be obtained to
give the values of the corresponding hysteretic damping
constants .

However, the author has not been successful in deriving
such a general unique solution when the system also posesses
Coulomb frictional devices which couple one co-ordinate to
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Nevertheless,  a technique
the locations and, in the
element, the  character ist
t o  be  ident i f i ed .

has be?, developed which allows
case  o f  a  s ingle  non-l.inear

its of the Coulomb friction elemen ts

Consider a lumped parameter system and let the pol;(3r input
to each co-ordinate be Wir, i . e . individual  power irlput in
the  ith mode at the r th co-ordinate  =  Ii.ir’ Consider the
rth co-ordinate  o f  equation (176) :

I< .lr- -  =
xwi AvTSrvir+“rEirvir  ” .. ‘* (177)

where S is  the  rth-r column of the S matrix
v -rr is  the  rth element of the vector v.

is  the  rth
-.l

F.-lr column of the F. matrix-1

Equation (177) is now of the same form as equation (159).
Thus equation (177) can be used in the same way as equation
(159)  to  identi fy  the  locat ion and character ist ics  o f  the
non - l inear i ty .

For example, i f  the le ft -hand-side of  equation (177)  is
p l o t t ed  as  a  func t i on  o f  A, a  n o n - z e r o  I$ F. v._lr lr intercept
indicates  that  a  fr ict ional  device  is  coupled to  the  r th

co - o rd inate . Thus i t  is  poss ible , by measuring the power
input at each co-ordinate, to determine the locations of
the Coulomb damping elements.

Further, if only a single Coulomb damping element coupling
say the r th and sth co-ordinates in the system is present,
then the only non-zero intercepts would be those associated
with the rth and sth co-ordinates and hence the magnitude q
of the Coulomb damping elements could be evaluated directly,
s i n c e :
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i
= Fi = -Fi = _Fi =7;rr ss I-S sr

&
Jn order to examine the mechanism ‘of applying equations
(174) through to (178)) two worked examples are given in

78)

Append ix  I’ . The first example deals with grounded Coulomb
damping elements and the second example considers a system
with a coupled Coulomb element.

A prograliime of  experimental  b,ork Las carried out on the
rig discussed in Section 4.7, which included a controlled
non- l inear  device  that  provided a  character ist ic  c losely
resembling that of Coulomb friction, and the techniques
described above were applied with the aim of establishing
the level of the Coulomb damping force.
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6. EXPERIMENTAL TESTS ON A TWO-DEGREE-OF-FREEDOM

SYSTEM WITH A COULOMB FRICTION ELEMENT-
5

6.1 DESIGN OF THE COULOMB FRICTION ELEMENT
-

-

-

-

-

-

The Coulomb friction element consisted of two items, the
body which housed an adjustable highly polished steel disc
and spring assembly, and an aluminium pad coated with
Teflon. Appendix VI shows the construction of the element
and Plate 6 shows the actual element which was located
at one end of the cross-beam of the main rig described in
Chapter 4. The location of the non-linear device was not
altered throughout the series of tests.

The body of the Coulomb friction element was securely
located to a rigid support which in turn was rigidly conn-
ected to the massive cast-iron base supporting the entire
rig. Thus this part of the friction element was not
physically connected to the vibration elements of the rig,
i.e. it was grounded. The disc assembly was permanently
pre-loaded by a spring, which could be adjusted by a cal-
ibrated screw mechanism in order to increase or reduce this
pre-load and hence retract or extend the disc assembly from
a given position.

The disc assembly was aligned horizontally and normal to
an aluminium pad which was secured to the cross-beam of the
main rig, i.e. this formed the vibrating element. This
aluminium pad was evenly coated with Teflon to prevent
scuffing arising from a metal-to-metal interface.

Initially the pad was not in contact with the steel disc,
but by adjusting the screw mechanism it was possible to
bring the disc into contact with the pad, hence creating a
'Coulomb' friction force between the vibrating cross-beam
of the rig and ground, the interface pressure and hence the
level of the frictionforce between the vibrating Teflon
coated pad and the stationary hardened steel disc being
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PLATE 6

EXPERIMENTAL RIG SHOWING THE LOCATION OF THE COULOMB FRICTION
ELEMENT. THE ALUMINIUM PAD IS SITUATED DIRECTLY BELOW THE
ACCELEROMETER:



adjustable by merely varying the pre-load on the spring.

6.2 CALIBRATION TESTS OF THE CqLOMB FRICTION ELEMENT

In order to examine the characteristics of the Coulomb
friction element it was necessary to carry out tests which
would allow the actual friction force levels to be measured.
It was felt also that if the hysteresis characteristics for

- the Coulomb friction elements could be obtained at the same
time, then a visual comparison between the actual behaviour
of the device and the theoretical characteristics of a
Coulomb friction element would be possible which would
indicate the effectiveness of the device in its role as a
Coulomb damper.

This was achieved by carrying out a set of quasi-static
tests. These consisted of exciting the system at a very

- low frequency and measuring the input force and the
corresponding system displacement.

-

6.2.1 QUASI-STATIC VIBRATION TESTS

Figure 36 shows a diagrammatic sketch of the rig and the
instrumentation used in these tests. With the steel disc
retracted so that no contact was made with the Teflon
coated pad, i.e. no Coulomb friction was present, the

-
cross-beam was excited at symmetrical points with the input
forces equal in magnitude. The output displacement was
measured at the position of the Coulomb friction element
using a non-contact displacement transducer, which had been
previously calibrated so as to provide a known output volt-
age for a known displacement, and this was fed into the 'X1
axis channel of an X-Y recorder.

The voltage representing the force input at the position
nearest to the Coulomb friction element was fed into the
*Yc axis of the X-Y recorder. Since both the vibration
exciters were controlled from the Frequency Response
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FIGURE 36

DIAGwwATIc SK ETCH 0~ EXPERIMENT AL SET-up FOR
QUASI-STATIC TESTS.

.

151



. 4

-_

-

-

-

-.

-

Analyser via their individual matched amplifiers, no
problems were encountered with the phase or frequency
control of the two input forces .r\By choosing a very low
excitation frequency (hence the title of the tests) of
ZOmHz, the X-Y plotter could record directly the cyclic
load deflection characteristics of the system. It must
be mentioned here that in order to produce satisfactory
results the instrumentation, and in particular the charge
amplifiers, must have low drift characteristics otherwise
the low frequencies of operation required cannot be used
in conjunction with the piezoelectric force links.

6.2.2.RESULTS  OF THE QUASI-STATIC TESTS

Figure 37 shows the hysteresis loop obtained from the first
test when there was no contact between the Teflon coated
pad and the steel disc. The mean slope of this character-
istic represents the static stiffness of the rig in the
transverse mode, the small area enclosed by the curve being
due, of course, to the cyclic strain energy absorbed by the
rig. The actual stiffness in this mode, determined from
the mean slope was 380 kN/m, which compares‘well with the
results of a static stiffness test of 370 kN/m.

Figure 38 shows the hysteresis loops obtained with the disc
and pad in contact for increasing values of the Coulomb
friction force. The behaviour of the device as a Coulomb
friction element is excellent, as demonstrated by the
measured hysteresis curves compared to a theoretical hyster-
esis loop for a Coulomb friction element (62). The slbpes
of these curves again represent the stiffness of the trans-
verse mode of vibration and the linearity and repeatability
of these endorse the behaviour of the device.

At the higher friction force levels stiction became a
problem. This is indicated on Figure 38 where this effect
is plainly seen on curve 3, and as a consequence of this
all steady state forced vibration tests were carried out at
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friction force levels below those at iA:hich stiction was
apparent. The cause of the stiction effect was attributed
to the fact that the face of the P\ardened steel disc was.
not exactly parallel to the Teflon coated face of the
aluminium pad, and when the force between these reached a
certain level, the misalignment caused the steel disc to
'score' the Teflon coating.

6.2.3 STEADY STATE VIBRATION CHARACTERISTICS WITH
COULOMB FRICTION

Plate 7 shows a comparsison between the output accelera-
tion, velocity and displacement in the transverse mode
with and without the Coulomb damper in operation.

It is interesting to note from these that the assumptions
used in the analysis regarding the method of harmonic
balance are justified and that the velocity profile with
Coulomb friction closely resembles the theoretical case.

-

6.3 EXPERIMENTAL DETERMINATION OF THE COULOMB FRICTION
FORCE LEVEL BY THE METHOD OF COMPLEX POWER

In order to be able to determine the characteristics of
the non-linearity, equation (177) showed that it was
necessary to obtain the power input to a normal mode as a
function of some reference amplitude of the normal mode,
This requires that within a given frequency range all the
normal modes are excited (this being done by multi-point
excitation methods) and at each normal mode frequency ihe
force levels are varied and the corresponding change in the
levels of the mode shape measured. These results provide
the power input to the mode and can then be plotted as
described in Section 6.6 to obtain the level of the Coulomb
friction forces.

Since the responses throughout the tests were measured in
terms of acceleration levels it is worthwhile considering
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FIGURE 37

QUASI-STATIC TEST WITH COULOMB FRICTION REMOVED.
HYSTERESIS LOOP OF EXCITATION FORCE (F) AGAINST
RESULTING DISPLACEMENT (u). EXCITATION FREQUENCY
2OmHz.
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FIGURE 38
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HYSTERESIS CURVES FROM QUASI-STATIC TESTS FOR VARIOUS
LEVELS OF COULOMB FRICTION FORCE:
l- FRICTION FORCE PEAK-TO-PEAK LEVEL = 1.75N
2- FRICTION FORCE PEAK-TO-PEAK LEVEL = 4.5N EXCITATION
3- FRICTION FORCE PEAK-TO-PEAK LEVEL = 8.5N FREQUENCY 20mHz
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RESPONSE WITH RESPONSE WITHOUT
COULOMB FRICTION COULOMB FRICTION

PLATE 7

EXPERIMENTAL RESULTS SHOWING THE OUTPUT RESPONSE IN
THE TRANSVERSE MODE WITH AND WITHOL'T THE COULOMB
FRICTION ELEMENT IN OPERATION.
A- ACCELERATION
V- VELOCITY
D- DISPLACEMENT
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the complex power expressions in terms of the acceleration
response.

3
6.3.1 COMPLEX POWER INPUT USING ACCELERATION RESPONSES

The total power input to a given mode of vibration is given
by:

N
b’l = c F-6. . . . . . . . . . . . . . .1 1 ww

i=l

where Fi = Force input level at station i
.
U-

N1
= Velocity level at station i
= Number of exciters

If the excitation frequency is changed by only a small
amount around the normal mode frequency, then the force
vector will be predominantly real and:

W = W' + j'W" . . . . . . . . . . . . . . (180)

where W' = Fi;i', ;i' = in-phase velocity
W" = Fi$ $I1 = quadrature velocity

In the case of the response being in terms of acceleration
units:

W' = Fiiii"/wr . . . . . . . . . . . . . . (1811
.

W” = Fiiii'/wr . . . . . . . . . . . . . . (182j

where Wr = normal mode frequency
'. ,!U-1

= quadrature acceleration
iii' = in-phase acceleration

Thus the in-phase power is given as the product of the force
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and quadrature acceleration, and the quadrature power as
the product of force and in-phase acceleration component.

-

-

-

-

-

-

In terms of the experimental rig requirements, where there
were two input forces and two responses, this meant:

w1
F1= Wl' + jW1" = w(ii It + jii,') . .
r1

. . . . (183)

w2
F2= W2' + jW2" = w(G2" + jii,') . . . . . . (184)
r

Now since the normal mode shapes were xi = 1.0, 1.0 ;y; = [
c 11.0, -1.0 1 then the acceleration components at the

symmetrical points on the rig should be equal at the normal
mode frequency, and the in-phase and quadrature power
components given as:

W' %"= Wl' + W2' = --&Fl + F2) . . . . . . (185)
r

W"
ii1 ’

= Wl" + W2" = --+Fl + F2) . . . . . . (1861
r

Unfortunately the experimental values of the accelerations
were not identical and as a result of this it was necessary
to obtain a range of values of the in-phase and quadrature
responses around the normal mode frequency of vibratiop
which could then be‘plotted in terms of the in-phase and _

quadrature power inputs to the normal mode (equations (184)
and (185)) and from these results the average power input
to the mode could be derived at the normal mode frequency.

6.3.2 EXPERIMENTAL PROCEDURE FOR DETERMINING THE COMPLEX
POWER INPUT TO A NORMAL MODE

The experimental procedure required to measure the in-phase
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and quadrature power components is almost identical to
that used for obtaining vector plots. The only differ-
ences are that the individual f~y;ce and response mcasure-
ments are required (vector plots can utilise the ratio
of these) in order that the actual power can be evaluated
and that this information is obtained from a much smaller
frequency range than that required'for a vector plot.

Once a normal mode had been established, (by the procedure
described in Section 4.8), the force distribution arising
from this was maintained constant as the frequency of
excitation was varied around the normal mode frequency,
and the acceleration responses, in terms of the in-phase
and quadrature components, were recorded at each frequency
increment.

This procedure was repeated for a range of force input
levels in the transverse and torsional normal modes in
order that equation (177) could be applied. The in-phase
and quadrature powers were obtained from equations (183)
and (184).

6.4 RESULTS OF NORMAL MODE TESTS

6.4.1 TRANSVERSE MODE

Figures 39 to 41 show typical in-phase and quadrature
power inputs as a function of the excitation frequency
around the normal mode frequency for a range of input
powers. It can be seen from these figures that the nfaxi-
mum in-phase power does not always occur at the frequency
where the quadrature power is zero, whereas the theoret-
ical expressions show that the in-phase power is a maximum

_ at the normal mode frequency and the quadrature power is
zero. Thus to allow for experimental error the normal
mode frequency was calculated from the expression:
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0) ’ + w
W'=max 11JTIl = 0

w =n 2 . . . . . . . . (187)

and this average value of w, was used to determine the
conditions in the expression for the damping ratio,

W'
c=dW"w;li3 w=wn . . ..’ .* l * ‘0 l l ** (188)

Figure 43 shows the normal mode frequency as a function of
the input power levels. These results show that there is
a slight reduction in the normal mode frequency with
increasing input power.

These effects can be explained by the fact that the Coulomb
friction non-linearity can be considered as an extreme case
of a soft-spring characteristic (77) which produces .a
reduction in the resonant frequency for an increasing
input excitati,on  force level, these effects of course being
the exact opposite of a system with a non-linear hardening
spring characteristic. This observed reduction in the
normal mode frequency of vibration with increasing input
power was confirmed by simulation tests. The tests
involved modelling a single degree-of-freedom system with
viscous damping and an ideal Coulomb friction character-
istic (i.e. a simple relay) on an analog
results of this simulation,which  confirm the practical
results, are shown on Figure 44.

.

6.4.2 TORSIONAL MODE

The in-phase and quadrature power inputs for a similar
set of input power levels are shown on Figures 45 to 47.
Again the maximum in-phase power does not always occur at
the same frequency where the quadrature power is zero,
thus the same procedures as in 6.4.1 were used for estab-
lishing the normal mode frequency and damping ratios.
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Figure 42 shows the same trend for the torsional normal
mode frequency for increasing input power levels as those
of the transverse mode of 6.4.1 &Jich of course was.
expected.

6.5 VECTOR PLOTS WITH COULOMB FRICTION

-

-

In Section 6.4.1 of Chapter 6 the theoretical analysis
of a single degree-of-freedom system with Coulomb friction
shows that when the response is plotted as a vector plot
the result no longer represents a circular locus (Figure
32).

Figure 48 shows the experimental results from one of the
tests of Section 6.4.1 plotted as a vector plot together
with the theoretical curve from equations (146) and (147).

The close similarity between these results confirms the
theoretical predictions.

6.6 DETERMINATION OF THE COULOMB FRICTION FORCE LEVEL

From the experimental results of the normal mode shapes
and the power absorbed at the normal mode frequency of
each mode for various levels of input powers, equation
(176) could be applied.

The in-phase power at the normal mode frequency was deter-
mined. This, together with the corresponding overall
change in the level of the mode shape was plotted in the
form of equation (176) and is shown on Figure 49.

The intercepts of the ordinate on Figure 49 represent
the elements Fi of the frictional damping matrix and the
slopes represent the linear hysteretic damping factors of
each mode of vibration.
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The magnitude of the Coulomb friction force is readily
obtained from either value of the intercepts with the aid
of equation (178) since the nnrmslised mode shapes were:

.\

I$ = [1.0, 2.0-J, y2t = [1.0, -1.01

and hence from equation (178):

Fi = ~ . . . . . . . . . . . . . . . . (189)

since the Coulomb element was grounded and thus q can be
evaluated directly.

Table 6.1 shows the values of the magnitude of the Coulomb
friction force determined from the intercepts and equation
(189) for each mode together with the actual friction force
level determined from the quasi-static tests.

6.7 TRANSIENT TEST RESULTS WITH COULOMB FRICTION

During the normal mode tests a series of transient tests
were carried out to investigate the purity of the normal
modes and the behaviour of the transient response of a
system with Coulomb friction.

Figures 50 and 51 show the transient response in the trans-
verse and torsional modes respectively when the exciters
were switched to open circuit. .

The quality of the normal mode excitation can be observed
by the fact that very little beating is apparent in either
response. The linear decay of each trace represents the
Coulomb friction and the remaining exponential type decay
represents the damping, which continues when relative
vibration occurs as a result of the motion at the location
of the Coulomb friction element being zero. Striking

172



examples of similar effects are given in the paper by
Haidl (53), who carried out tests on a model of a torsional
system with Coulomb friction. 4
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Method of Evaluation
Coulomb Friction

Force Level
(N peak-to-peak)

Normal Mode Transverse
Power Curve Mode 4.4

(Fig. 57) Torsional
Mode 4.16

I Quasi-Static Tests I 4.5 I

TABLE 6.1

Coulomb Friction Force Levels Obtained
from the Power Input to a Mode Compared

to the Actual Friction Force Level
Eieasured'Directly  from Quasi-static Tests

.

-

-
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Method of Evaluation
Coulomb Friction

Force Level
(N peak-to-peak)

Normal Mode
Power Curve
(Fig. 57)

Transverse
Mode 4.4

Torsional
Mode I

4.16

.-
I

Quasi-Static Tests 4.5

TABLE 6.1

-

Coulomb Friction Force Levels Obtained
from the Power Input to a Mode Compared

to the Actual Friction Force Level
Jieasured'Directly  from Quasi-static Tests

.

-
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4
6.8 DISCUSSION AND CONCLL_USlONS

2.

-

-

-

1. The work described in thisE;;ection has shown that
it is possible to identify iystems which include
either Coulomb friction non-linearities or non-
linear stiffness characteristics on the understand-
ing that the system can be excited in a normal mode,
i.e. the response of the system is that of a single
degree-of-freedom system.

-

-.

-

-

.-

-_

3.

In the case of a system with hysteretic damping and
a non-linear stiffness characteristic, it has been
shown that the 'normal mode frequency' and modal
damping ratio can be accurately determined as long
as no discontinuities (i.e. the jump phenomena)
occur in the excitation frequency range. Further,
the natural frequency for a given excitation level
is denoted as the condition at which the quadrature
power input is zero and this provides a useful
criterion in experimental testing methods.

Although the model analysed was a single degree-of-
freedom system it is obvious that the techniques
employed are applicable to multi degree-of-freedom
systems which can be excited in their normal modes
using multi-point excitation methods.

For a non-linear system which has only a single
Coulomb friction element and hysteretic damping it
has been shown that not only can the magnitude 6f
the frictional force be evaluated, the actual loca--
tion of the non-linear element within the system
can be obtained.

In the case of more than one Coulomb friction
element, it is necessary to have a pridri knowledge
regarding the location of these non-linearities in
order that their complete characteristics can be
evaluated.
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4. The application of complex power techniques to the
frequency response testing of both linear and non-
linear systems appears to $fcr considerable advan-
tages over other established techniques such as the
vector plot since no extra experimentation is
required, it actually requires fewer frequency incre-
ments to produce the necessary plots, and errors in
the derived modal properties due to non-linearities
are minimised.

5. The techniques developed in this section apply only
to systems where tlhe damping, besides the Coulomb
damping, is assumed to be linear and the elastic
elements are assumed linear.

6. The results of the experimental programme gave very
encouraging results and showed that, for the system
tested, a high degree of accuracy is possible in the
identification of systems with Coulomb friction non-
linearities. Further, the use of multi-point
excitation methods has allowed non-linear systems to
be identified which would not have been possible
using single-point modal testing methods.

.
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SUMMARY OF CONCLUSIONS--... __I_

-

-

-

-_

-

-

r-

The three sections of work descri.ed in this dissertation are
summarised below. These are abridged conclusions taken
from the detailed conclusions given at the end of each
section.

1. The harmonic distortion of the input force signal
to a lightly damped system is primarily due to the
non-linear magnetic field characteristics of the
electro-dynamic vibration exciter. These non-
linearities are square-law in nature resulting in
significant second harmonic distortion of the force
input signal at the test structure resonance
condition. It has been shown that harmonic distor-
tion can be minimised if k1 << 2~, where k' is the
ratio of the vibration exciter stiffness to the
structure modal stiffness.

2. With lightly damped modal structures, there is a
large variation in the magnitude of the input force
in the region of the test structure resonance. This
is due to the forces arising from the exciter mass
and stiffness characteristics and is independent of
the amplifier output impedance.

3. The main factor which contributes to modal inter-
action of complex structures is the closeness of the
natural frequencies of adjacent modes. It has been
shown that if the frequency ratio of adjacent modes
is greater than 1.5, then in all practical terms the _

modes of structurally damped systems can be considered
uncoupled, even if the magnitude of the off-diagonal
terms of the damping matrix are comparable to the
leading diagonal terms.

4. If a multi degree-of-freedom system can be classified
as proportionally damped, then the excitation vector
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does not have to conform to a normal mode excitation
vector in order to determine the modal damping ratio
and resonant frequency from% vector plot.

5. Yor non-linear lumped parameter multi degree-of-
freedom systems which have only a single Coulomb
friction element and hysteretic damping, the location
of the element and the magnitude of the Coulomb
frictional force can be evaluated by determining the
power input to excite a normal mode of the system.

For systems with more than one Coulomb friction
element , a priori knowledge of their location is
required in order to fully identify their character-
istics.

6. In the case of systems with hysteretic damping and
a non-linear stiffness characteristic, the measure-
ment of the complex power required to excite a normal
mode allows accurate determination of the resonant
frequency and modal damping ratio, provided no
discontinuities occur in the response of the system.

7. Although current trends in modal testing methods are
emphasising post-measurement analysis techniques,
the identification of non-linear structures has,
until now, been very limited. The techniques pre-
sented for identifying non-linear structures employ
the rather involved multi-point modal testing method.

l

However, on-line computer control of these procedures_
is now reasonably well established (82) which reduces
the intensive experimental work, and may well justify
the continued use of multi-point testing methods for
both complex linear and non-linear structures.
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4
SUGGESTIONS FOR FURTHER WORKLI_

_

-

-

-

-

-

The first section of the dis:ert$ion indicated that p*rob].ems
can be encountered during the forced vibration testing of
lightly damped structures due to harmonic distortion.
However, no attempt was made to establish where a structure
should be excited in order that these effects would be
minimised.

For example, if one were to excite a beam element at a
position which offered low flexibility then the amplitudes
of vibration for a given input force level would be smaller
than if the excitation point were at a position adjacent
to the most flexible region of the element, with the result
that the harmonic force distortion would be reduced. This
could be extended to plate and shell elements where the
damping is small and where judicious choice of excitation
positions could be beneficial.

The second section of work,which was concerned with the
effects of modal interaction,was  based upon a theoretical
model and digital simulation, no experimental work was
carried out to support the conclusions of this section.
The author feels that this is a very important area which
needs experimental justification. This would require a
structure which would have controlled known levels of
damping at pre-determined locations. Thus the damping
distribution is known a priori and hence tests could be
carried out to ascertain the effects of this on the ability
to excite the normal modes of vibration. .

Finally the remaining section of the work, which was
concerned with the identification of non-linear structures,
by measuring the power input to a normal mode, is only a
beginning in this area. The method developed was applied
to a very simple structure which was devoid of the complex-
ities of, say, an aircraft wing. In order to fully
establish the advantages, or disadvantages, of the proposed



-

-

-

method an experimental p;_ogramme on a more complex non-
linear structure should be carried out.

3
Further, to improve the efficiency of applying the method
to a complex structure, an on-line identification method,
based on measured data from single point frequency sweep
tests, should be developed which would allow the appro-
priate force distributions necessary to excite the normal
modes with a given frequency range to be more effectively
obtained. This would greatly enhance the application of
the complex power method and hence the identification
procedures of complex linear and non-linear structures.

British Aerospace have expressed an interest in these
latter proposals and these now form part of a further
research contract which, it is hoped, will result in a
more cost effective and satisfactory approach to the
normal mode testing of military'aircraft,

-

-

-
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APPENDIX I

-

-.

The physical model of an electro-&ynamic  exciter can be
considered simply as a resistor rkpresenting the coil with
an additional voltage drop due to the velocity of the coil
moving through the magnetic field of the permanent magnet.
The mechanical sub-system is merely a mass and a spring
driven by a force proportional to the current, damping
effects due to the flexure stiffness hysteresis and the
rubber dust cap being ignored. The basic equations of
motion are:

mil + kx = kFi . . . . . : . . . . (A.I.l)

Ri + kg; = vcoswt . . . . . . . . . . (A.I.2)

where m =
k =
kF =
kg =
i =

v =
R =

x =

effective armature mass
flexure stiffness
force current constant
back emf constant
armature current
applied voltage at frequency
exciter coil resistance plus
output resistance
armature displacement

w

drive amplifier

Thus the equation of motion of the armature from A.I.l and
A.I.2 is:

iz + & + kFkB ; = kF
.

m mR ---& vcoswt . . . . . . (A.I.3) -

Assuming that the electrical power developed in the armature
is equal to the mechanical power absorbed, then:

kB;i = kF);i, i.e. kB = kF . . . . . . (A.I.4)
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and equation (A.I.3) is:

z + kx + K ; = !2 vcoswt +m mR mR . . . . . .

where I-C A k kF B
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Thus the force which is applied to the structure is only
in phase with the force delivered by the exciter when one
or more of the following conditions arises:

111%

(al Q, = 0
(b)  ml = w2
(c) x = 0

Condition (a) is satisfied by adding a current at quad-
rature to the excitation current which modifies the force
injected into the structure as shown by Figure A.II.3.

II.2 IDENTIFICATION OF A SYSTEM RESONANCE

The response of a single degree-of-freedom system with
viscous damping to a single harmonic force input is given
by:

I4 = F r (A.II.14)
W1- ml@')' + (CIW)‘f’ l * l .

-

-

-

-

-

-

-

-

where the input force F is assumed to have a constant
magnitude as the frequency is varied.

Differentiating equation (A.II.14) and equating to zero
for a turning point gives the frequency for maximum response
as:

wLq2n (l - 2r;,2) . . . . . . . . *. (A.II.15)

Substitution of (A.II.15) in (A.II.14) gives the maximum
response as:
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If one now considers the actual system, comprising both the
test system and the electro-dynamic vibration exciter,
equation (A.II.14) is modified tsgive:

?

1x1 = I IF
(kl+k2)

2 2 1 (A.II.17)
- (ml+m2)w2}2  + (cl+c2) W }'

i.e. 1x1 = I IF/k1 (AT_II.18)

{(l+kV)-(l+mf$2[2+(2<lfi+2<2-$c')2~'
1 1

The frequency at which the maximum response occurs is again
given by:

-

-

2 w2
i.e. w = _-(+._m+l+k~)  - 2(,~l~(?+r,&)~ . . (AJI.19)

Putting A.II.19 in A.II.18 and simplifying gives the
maximum response as:

Ix I=
F/k1

max
2c9

t

w12C2(m'-1) + (l+k') l *
(A.II.20)

(1 + m')
.

cl c2k’
where C = - + -Wl 02 ** ** . . . . . . (A.II.21)

Thus if one compares A.II.20 with A.II.16 it can be seen
that by merely using the output response of the system-
large errors may be incurred, as the true resonant condi-
tion can only be obtained by replacing F in equation-

-
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A.II.18 with that given in equation (15), Chapter 1, and
then differentiating for a turning point. This will then
result in the same equation as A$I.16 which is the correct
one.

The natural frequency of the combined system is given as:

tin

.
. .

kl + k2r I 3
=

ml + m2

$1 + k')
w1 = ;

ip
+ m’)

. . . . . . . . . .

. . . . . . . . . .

(A.II.22)

(A.II.23)

If k' = m', i.e. the exciter natural frequency is the same
as the natural frequency of the system under test, then
equation (A.II.23) reverts to:

which is the true system natural frequency.

-
.

-

-

-
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-
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A.IIX.l - Listing of Program ZTHA 4

-

-

-

-

-.

MASTER HYSYSTEMS HDSOlO
C---------PROGRAM FOR HAR?dONIC ANALYSIS OF HYSTERETICALLY-

DAMT-ED SYSTEMS E"z
C---------THE H MATRIX MAY NOT BE A SCALAR MULTIPLE OF THE

K MATRIX
C---------G. TOMLINSON

COMPLEX F,X,Z,FO,ZO,FV
REAL MASS,K
DIMENSION F(lO),FR(lO),FI(lO),FSC(lO),X(lO),FV(lO)
DIMENSION MASS(L0,10),K(10,10),Z(lO,lO),DAMP(lO,lO)
DATA STAR/4H****/,PI/3,1415926/,EPS/l.OE-5/,TEN3/
l.OES/IERR=O
p12=2.o*p1

C---------READ IN NUMBER OF PARAMETRIC SETS IN DATA GROUPS
1 READ(1,1005)NSETS
1005 FORMAT(t0)

IF (NSETS.EQ.0)  STOP
C---------MAIN LOOP FOR DATA GROUPS

DO 250 NS=l,NSETS
C---------READ IN FUNDAMENTAL PARAMETERS
5 READ(l,lOOO)N,H,FMIN,FMAX,DF
1000 FORMAT(10,4FO.O)
C_----- ---CHECK DEGREES OF FREEDOM

IF(N.GT.O.AND.N.LE.10)  GOT0 10
WRITE(3,199O)STAR,STAR

1990 FORMAT(lX,A4,29H  ERROR IN DEGREES OF FREEDOM ,A4)
IERR=l

C---------CHECK FOR +VE OR ZERO DAMPING FACTOR
10 IF (H.GE.O.0) GOT0 20

WRITE(3,1980)STAR,STAR
1980 FORMAT(lX,A3,23H  DAMPING FACTOR IS -VE ,A4)
C---------CHECK FOR +VE FREQUENCY PARAMETERS
20 IF (FMAX.GT.O.O.AND.FMIN.GT.O.O.AND.DT.GT.O.0)  GOT0 30

WRITE(3,1970)STAR,STAR

HDSOBO
HDS030
HDS040
HDSOSO
HDS055
HDSOGO
HDS065

HDS070
HDS075
HDS078

HDSO80

HDS085
HDSOSO

HDS095
HDSlOO
HDS105
HDSllO

HDSl20
HDS130
HDs135

1970 FORMAT(lX,A4,31H  A FREQUENCY PARAMETER NOT +VE ,A4)
IERR=l
GOT0 50

C---------CHECK ORDER OF FREQUENCY LIMITS
30 IF (FMAX.GT.FMIN) GOT0 40

WRITE(3,1960)STAR,  STAR
1960 FORMAT(lX,A4,33H  FREQUENCY LIMITS IN WRONG ORDER ,A4)

IERR=l
C---------CHECK FREQUENCY INCREMENT
4G FDIFF=FMAX-FMIN

IF (DF.LE.ABS(FDIFF)) GOT0 50
WRITE(3,195))STAR,STAR

1950 FORMAT(lX,A4,31H  FREQUENCY INCREMENT TOO LARGE ,A4)
IERR=l

C---------STOP RUN IF ERRORS ON 1ST CARD
50 IF (IERR.EQ.l) STOP
C---------OUTPUT PROGRAM TITLE AND DATA ON 1ST CARD

WRITE(3,2000)

HDS150
HDS160
HDS165
HDs170
HDS175

HDS180
HDS190
HDS195
HDS200.

HDS210 .
HDS220
HDS230
HDS235
HDS240

HDS245

HDS250
2000 FORMAT(51HlHARMONIC  ANALYSIS OF HYSTERETICALLY

DAMPED SYSTEMS)
IF (H.EQ.O.0) WRITE (3,2005)N,FMAX,FMIN,DF

HDS260
HDS265
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2005 FORMAT(34HONUMBER  OF DEGREES OF FREEDOM N = ,12/
* 36H NO PROPORTIONAL DAMPING COEFFICIENT/
* 36H MAXIMUM FREQUENCY FMAX = ,F8.2,4H CPS/
* 26H MINIMUM FREQUENCY FMIN = ,F8.2,4H CPS/
* 26H FREQUENCY INCREMENT DFe ,F8.4,4H CPS/
IF (H.GT.O.0)  WRITE(3,2010)N,H,FMAX,FMIN,DF

2010 FORMAT(34HONUMBER  OF DEGREES OF FREEDOM N = ,12/
* 25H DA?dPING COEFFICIENT H = ,F6.3/
* 26H MAXIMUM FREQUENCY FMAX = ,F8.2,4H CPS/
* 26H MINIMUM FREQUENCY FMIN = ,F8.2,4H CPS/
* 26H FREQUENCY INCREMENT DF = ,F8.4,4H CPS)

C---------CONVERT CYCLE-FREQUENCY INTO ANGULAR-FREQUENCY
WMAX=P12+FMAX
WMIN=P12*FMIN
DW=PlB*DF
WMAXl=WMAX+O.5*DW
IF (NS.GT.L) GOT0 65

C---------READ IN MASS MATRIX - 1 COMUMN ON EACH CARD
DO 60 J=l,N

60 READ(l,lOlO)(MASS(I,J),  I=l,N)
1010 FORMAT(lOFO.0)
C---------NPRINT = NEAR OR AT MIDDLE OF MATRIX

NPRINT=(N+l)/B
C_-_----_-OUTPUT MASS MATRIX BY ROWS
65 WRITE(3,2020)
2020 FORMAT(26HOORIGINAL MASS MATRIX(KG)/lX,25(1H-))

DO 70 I=l,N
WRITE(3,2030)(MASS(I,J),J=l,N)

2030 FORMAT(7X,lO(F8,4,1X))
IF (I.EQ.NPRINT) WRITE(3,2040)

2040 FORMAT(7H+M = )
70 CONTINUE

IF (NS.GT.l) GOT0 80
C---------READ IN STIFFNESS MATRIX - 1 COLUMN ON EACH CARD

DO 75 J=l,N
75 READ(l,lOlO)(K(I,J),I=l,N)
C---------OUTPUT STIFFNESS MATRIX BY ROWS
80 WRITE(3,2050)
2050 FORMAT(32HOORIGINAL STIFFNESS MATRIX (N/M)/lX,Sl(lH-))

DO 85 I=l,N
WRITE(3,2060)(K(I,J),J=l,N)

2060 FORMAT(7X,lO(ElO.4,1X))
IF (I.EQ.NPRINT) WRITE(3,2065)

2065 FORMAT(7H+K = )
85 CONTINUE
C--__----_CHECK FOR ZERO DAMPING FACTOR

IF (H.EQ.O.0) GOT0 92
C---------DAMPING MATRIX = DAMPING FACTOR*STIFFNESS MATRIX

DO 90 I=l,N
DO 90 J=l,N

90 DAMP(I,J)=H*K(I,J)
GOT0 98

C---------READ IN DAMPING MATRIX - 1 COLUMN ON EACH CARD
DO 95 J=l,N

95 READ(1,1010)(DAMP(I,J),I=l,N)
C---------OUTPUT DAMF'ING MATRIX BY ROWS

2 0 6

HDS270
HDS271
HDS272
HDS273
HDS274
HDS275
HDS280
HDS281
HDS282
HDS283
HDS284

HDS290
HDS295
HDS300
HDS305
HDS308

HDS310
HDS320
HDS330

HDS340

HDS350
HDS360
HDS370
HDS380
HDS390
HDS395
HDS400
HDS410
HDS415

HDS420
HDS430

HDS440
HDS450
HDS460
HDs470
HDS475
HDS480
HDS485
HDs490 _

HDS492

HDS493
HDS494
HDs495
HDS496

HDSSOO
HDS502



498 WRITE(3,2055)
2055 FORMAT(30HOORIGINAL DAMPING LlATRIX (N/i?I)/iX,29(1H-))

DO 100 I=l,N
WRITE(3,2060)(DAMP(I,J),J=l,N)
IF (I.EQ.NPRINT) WRITE(3,2075) m

2075 FORhlAT(7H+H = ) ?
100 CONTINUE
C---------READ IN SCALAR MULTIPLIERS AND FORCE VECTOR

DO 105 I=l,N
105 READ(l,lO20)FSC(I),FR(I),FI(I)
1020 FORMAT(3F0.0)
C---------OUTPUT FORCE VECTOR BY ELEWENTS

WRITE(3,2070)
2070 FORMAT(26HOORIGINAL FORCE VECTOR (N)/iX,25(1H-))

DO 110 I=l,N
WRITE(3,208O)FR(I),FI(I)

2080 FORMAT(7X,2(F8.4.2X))
IF (I.EQ.NPRINT) WRITE(3,2090)

2090 FORMAT (7H+F = )
110 CONTINUE

LINE=1
C---------FORM THE COMPLEX VECTOR F

DO 120 I=l,N
120 F(I),FV(I)=CMPLX(FR(I),FI(I))*FSC(I)
C---------MAIN LOOP OF PROGRAM - USING COMPLEX EQUATIONS

CPS=FMIN
w=WMIN

130 WW=W*W
c---------FORM THE COMPLEX MATRIX Z

DO 140 I=l,N
DO 140 J=l,N

140 Z(I,J)=CMPLX(K(I,J)-WW*hfAXX(I,J),DAMP(I,J))
C---------COMPUTE DISPLACEMENT VECTOR X FROM EQUATIONS

DO 200 I=k,N
zMAx=o.o

C---------FIND COLUhIN ELEMENT WITH MAXIMUM MODULUS
DO 150 L=I.N
ZMOD=CABS(Z(L,I))
IF (ZMOD.LE.ZMAX) GOT0 150
ZMAX=ZMOD
IND=L

150 CONTINUE
C---------CHECK FOR A SINGULAR MATRIX

IF (ZMAX.GT.EPS) GOT0 155
WRITE(Z,1900)STAR,STAR

1900 FORMAT(lH  ,A4,33H ILL-BEHAVED SYSTEM OF EQUATIONS ,A4)
STOP

155 IF (1.EQ.N) GOT0 205
YMIN=l.O/ZMAX
IF (IND.EQ.1) GOT0 165

C---------TTANSPOSE ROWS IN EQUATIONS AND SCALE NEW ROW I
DO 160 J=l,N
ZO= Z(1.J)
Z(IJ)=Z(IND,J)*YMIN

160 Z(IND,J)=ZO
FO=F(I)
F(I)=F(IND)*YMIN
F(IND)=FO

2 0 7
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HDS504
HDS505
HDS506
HDS508
HDS509
HDS510
HDS512

HDs515
HDS518
HDS520

HDS530
HDs540
HDS550
HDS560
HDS570
HDS575

HDS580
HDS590
HDSGOO

HDS605
HDS610

HDS615
HDS620
HDS625

HDS630
HDS640
HDS650

HDS660
HDS665

HDS670
HDS680
HDS685
HDS690
HDS695
HDS700

HDS705
HDS708 _
HDS710
HDS712
HDS715
HDS718
HDS719

HDS720
HDS730
HDS735
HDS740
H D S 7 5 0
HDS755
HDS760
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GOT0 175
C---------SCALE ROW I
165 DO 170 J=l,N
170 Z(I.J)=Z(I.J)*YMIN

F(I)=F(I)*YMIN 3
C---------CONVERT MATRIX INTO TRIANGULAR FORM
175 DO 190 L=I+i,N

IF(CABS(Z(L,I)) EQ.0) GOT0 190
F(L)=Z(I,I)*F(L)-Z(L,I)*D(I)
DO 180 J=I+l,N

180 Z(L,J)=Z(I,I)*Z(L,J)-Z(L,I)*Z(I,J)
190 CONTINUE
200 CONTINUE
C---------SOLVE EQUATIONS BY BACKWARD SUBSTITUTION
205 X(N)=F(N)/Z(N,N)

F(N)=FV(N)
DO 220 I=l,N-1
L=N-I
X(L)=F(L)

C---------RESTORE FORCE VECTOR
F(L)=FV(L)
DO 210 J=L+l,N

210 X(LO=X(L)-2(L,J)*X(L)
220 X(L)=X(L)/B(L,L)

C---------CONVERT DISPLACEMENTS INTO MILLIMETRES
DO 225 L=l,N

225 X(L)=X(L)*TENS
C---------OUTPUT TABLE OF DISPLACEMEMTS IN COMPONENTS-FORM

IF (LINE.EQ.l) WRITE(3,2100)CPS
2100 FORMAT(22HlFREQUENCY IN CPS = ,F8.4)

IF (LINE.GT.l) WRITE(3,2110)CPS
2110 FORMAT(22HOFREQUENCY IN CPS = ,F8.4)

WRITE(3,2120)
2120 FORMAT(23X,SHCARTESIAN,23X,5HPOLAR/

* 6H X(MM),~~X,~HREAL,~X,~HIMAG,~~X,~~HMODULUS
ARG(DEG))

C---------CARTESIAN AND POLAR COMPONENTS OF DISPLACEMENTS
DO 230 I=l,N
XR=REAL(X(I))
XI=AIMAG(X(I))
XM=CABS(X(I))
XA=PIB-ACOS(XR/XM)
IF (XI.LT.O.0) XA=PIB-XA

C-___---__ EXPRESS ANGLE IN DEGREES
XA=lSO.O*XA/PI

230 WRITE(3,2130)I,XR,XI,XM,XA
2130 FORMAT(2X,I2,1X,2(1lX,F9,2,lX,F9,3))
C---------INCREMENT ANGULAR-FREQUENCY FOR NEXT TABLE

CPS=CPS+DF
W=W+DW
IF (W.GT.WMAXl)  GOT0 250

C---------CHECK POSITION OF 1ST LINE IN TABLE
LINE=LINE+N+4
IF (LINE+N+2.GT.60) LINE=1
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HDS9GC
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.
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C---------RETURN TO CALCULATE NEXT TABLE
GOT0130

250 CONTINUE
GOTO 1
END 3

END OF SEGMENT, LENGTH 1320, NAME HDSYSTEMS
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A.III.2 - Listing of Prograxl CFIT a

-

-

-

-.

-

-

*_-

-.

-..

-

-

.__. _MASTER CFIT CFPOlO
C------PROGRAM TO FIND A CIRCLE OF BEST FIT-ERROR MARGIN POSSIBLE
c------G.TOhILINSON %

DIMENSION FILE (1),xP(100),YP(10~)~,AST(1),PL(1),TEST(1),SFCAP(11)  CFPOll
DIMENSION XAX(1),YAX(1),FREQ(lOO),IRAD(ll),SFC(2),SFS(l)
DATA SFCAP(1)/32HlO.O 8.0 6.25 5.0 /
DATA SFCAP(5)/32H4.0 3.125 2.5 2.0 /
DATA SFCAP(9)/24H1.6 1.25 1.0 /
DATA 1RAD/40,50,64,80,100,128,160,200,250,320,400/
DATA SF/10.0,8.0,6.25,5.0,4.0,3.125,2.5,2.0,1.6,1.25,1.~/
DATA FILE(1)/8HZTCFR2FZ/,STAR/4H****/,PREC/l.OE-6/
DATA AST(lO/lH*/,PL(1),'lH*/,TEST(l)/8HTEST  NO /
DATA XAX(1)/4HREAD/,YAX(l)/4HIMAG/,SFC(l)/l6H  SCALE FACTOR = /

C------STATEMENT FUNCTION FOR DISTANCE
DIST(XA,YA,XB,YB)=SQRT((XB=XA)**2+(YB_YA)**2)
QPI=ATAN(l.O)
NDATA,NPAGE=O
HPI=2,0*QPI

C------INITIALIZE GRAPH=PLOTTER PARAMETERS
CALL HGPDISC(O,FILE,O)
CALL HGPLOT(O.O,O.O,16,1)
CALL HGPIDENT(FILE)
CALL HGPLOT(0.0,3.0,0.4)
CALL DATE(DAY)
IERR=O

C------READ NUMBER OF POINTS, X,Y-ERROR MARGINS AND ANNOTATION
10 READ(l,lOOO)NP,ZERR,YERR,INOT
1000 FORMAT(IO,2GO.O,10)

IF (NP.EQ.0) GOT0 999
C------CHECK NUMBER OF POINTS GE 4 AND LE 100

IF (NP.GE.4.AND.NO.LE.100)  GOT0 20
WRITE(3,1995)STAR,STAR

1995 FORMAT(lX,A4.24H NUMBER OF POINTS WRONG, A4)
IERR=l

C------CHECK ERROR MARGINS ARE NOT -VE
20 IF (XERR,GT.-PREC) GOT0 25

WRITE(3,1990)STAR,STAR
1990 FORMAT(lX,AI,BOH  -VE X-ERROR MARGIN ,A4)

IERR=l
25 IF (YERR.GT.-PREC) GOT0 30

WRITE(3,1985)STAR,STAR
1985 FORMAT(lX,A4.20H  -VE Y-ERROR MARGIN ,A4)

IERR=l .
C------READ IN CO-ORDINATES OF POINTS AND FREQUENCIES
30 DO 40 NN=l,M?

READ(l,lOlO)FREQ(NN),XP(NN),YP(NN)
1010 FORMAT(3G0.0)
C------CHECK FREQUENCY VALUE

IF (FREQ(NN),GT.O.O.AND.FREQ(NN).LE.lOO.O) GOT0 38
WRITE(3,1975)STAR,NN,STAR

1975 FORMAT(lX,A4.32H  WRONG FREQUENCY VALUE AT POINT ,12,1X,A4)
IERR=l

C------CHECK FOR Y CO-ORDINATE WITHIN RANGE
38 IF (YP(NN).GE.O.O.AND.YP(NN).LE.ZO.O)  GOT0 40

WRITE(3,1970)STAR,NN,STAR
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1970 FORMAT(lX,A4,32H  Y-VALUE OUTSIDE RANGE AT POINT ,12,1X,A4)
IERR=l

40 CONTINUE
C------FIND RANGE OF X CO-ORDINATE

XMIN=l.OEII
XMAX=-XMIN
DO 45 NN=l,NP
IF (XMIN.GT.XP(NN))  XMIN=XP(NN)
IF (XMAX.LT.XP(NN)) XMAX=XP(NN)

45 CONTINUE
C------CHECK POINTS ARE WITHIN RANGE

XSPAN=XMAX=XMIN
IF (XSPAN.LE.20.0) GOT0 48
WRITE)3,1965)STAR,STAR

1965 FORMAT(lX,A4.28H CO-ORDINATES OUTSIDE RANGE ,A6)
IERR=l

48 IF (IERR.EQ.0) GOT0 49
C------STOP RUN FOR ERRORS IN INPUT DATA

WRITE(3,1960)STAR,STAR
1960 FORMAT(lX,A4.28H  RUN STOPPED THROUGH ERRORS ,A4)

GOT0 999
C------FIND CENTROID OF CIRCLE-CENTRES
49 XBAR,YBAR,RMAX=O.O

NC=0
DO 60 Nl=l,NP-2
DO 55 NB=Nl+l,NP-1
DO 50 N3=N2+1,NP
XBl=XP(NB)-XP(N1)
YBl=YP(NB)-YP(N1)
XSl=XP(N3)-XP(N1)
Y31=YP(N3)-YP(N1)
DEL=X21*Y31-X31*Y21
IF (ABS(DEL).LT.PREC) GOT0 50
NC=NC+l
RR21=X21*(XP(N2)+XP(Nl))+Y2l*(YP(N2)+YP(Nl))
RR31=X31*(XP(N3)+XP(Nl))+Y31*o+YP(N3)+YP(Nl))
REC=0,5/DEL
XBAR=REC*(RRZl*Y31-RR3l*Y2l)+XBAR
YBAR=REC*(RR31*X21-RR2l*X3l)+YBAR

50 CONTINUE
55 CONTINUE
60 CONTINUE .

XBAR=XBAR/FLOAT(NC)
YBAR=YBAR/FLOAT(NC)

C------UPDATE TEST DATA NUMBER
NPAGE=NPAGE+l
NDATA=NDATA+l
DATN=NDATA

C------OUTPUT PROGRAM TITLE AND DATA ON 1ST CARD
WRITE(3,2000)NDATA,DAY,NPAGE,NP,XERR,YERR

2000 FORMAT(9HlTEST NO ,11,41X,5HDATA  ,A8,37X,5HPAGE  ,Il//
* 20H NUMBER OFPOINTS = ,13/
* 18H X-ERROR MARGIN = ,F6.4/
* 18H Y-ERROR MARGIN = ,F6.4)

C------OUTPUT CO-ORDINATES OF POINTS AND FREQUENCIES
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WRITE(3,ZOlO)
2010 FOR&IAT(39HGCO-ORDINATES  OF POINTS AND FREQUENCIES/

* 31H NN FREQ(NN) XP(NN) YP(NN))
DO 65 NN=l,NP

65 WRITE(3,2020)NN,FREQ(NN),XP(NN),YP(NN)
2020 FORMAT(lX,I3.1X,F8.4,2(lX,F8.3))
c------FIND POINT NEAREST TO RESONANT FREQUENCY

DO 70 NN=S,NP-1
RATl=DIST(XP(NN-l),YP(NN-l),XP(NN),YP(NN))/(FREQ(NN)-FREQ(NN~l))
RAT2=DIST(XY(NN+l),YP(NN+1),XP(NM),YP(NN))/(FREQ(NN+l)-FREQ(NN))

C------AVERAGE VALUE OF DS/DF
RAT=O.5*(RATl+RATZ)
IF (RAT.LE.RMAX) GOT0 70
NRES=NN
RMAX=RAT

70 CONTINUE
C______ OUTPUT MEAN CIRCLE CENTRE

WRITE(3,2030)XBAR,YBAR
2030 FORMAT(lQHOMEAN  CIRCLE CENTRE/8H XBAR = ,F8,3/8H YBAR = ,F8.3)
C------FIND MEAN RADIUS OF POINTS FROM CENTRE

RAD=O.O
DO 72 NN=l,NP

72 RAD=DIST(XBAR,YBAR,XP(NN),YP(NN))+RAD
RAD=RAD/FLOAT(NP)

C------CHECK RADIUS IS WITHIN RANGE
IF (RAD.GE.l.O.AND.RAD.LE.lO.0)  GOT0 75
WRITE(3,198))STAR,RAD,STAR

1980 FORMAT(lX,A4,10H  RADIUS = ,F6.3,18H IS OUTSIDE RANGE ,A4)
GOT0 999

75 WRITE(3,2040)RAD
2040 FORMAT(37HOMEAN  RADIUS OF POINTS FROM CENTRE = ,F8.3)
C------CALCULATE ABSOLUTE ERROR FOR MEAN RADIUS

RERR=DIST(O.O,O.O,XERR,YERR)
C------FIND HORIZONTAL SPAN OF CIRCLE

XMIN=XBAR-RAD-RERR
XMAX=XBAR+RAD+RERR

c------CHECK FOR MARGINAL ERROR CIRCLES
IF (RERR.LT.PREC) GOT0 76)
WRITE(3,2050)RERR

2050 FORMAT(24H ERROR IN MEAN RADIUS = ,F6.4)
C------OUTPUT RESONANT FREQUENCY
76 WRITE(3,2055)NRES,FREQ(NRES)
20!% FORMAT(7HOPOINT ,12,24M - RESONANT FREQUENCY = ,F7.4) .
C------FIND LARGEST ABSOLUTE VALUE OF Y

YLIM=RAD+RERR+YBAR
YLIM=AMAXl(YLIM,2.0*RAD)

C------FIND APPROPRIATE SCALING FACTOR
MRAD=20.O*YLIM+0.5
IF (MRAD.LT.40) MRAD=40
DO 77 NS=2,11
IF (MRAD.LE.IRAD(NS).AND.MRAD.GT.IRAD(NS-1)) GOT0 78

77 CONTINUE
NS=l

78 SCALE=SF(NS)
DS=O.OOS*FLOAT(IRAD(NS))
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C------CONVERT SCALE-FACTOR INTO CHARACTERS
CALL, COPY8(SFS(l),SFCAP(NS))
CALL HGPSYMBL(O.O,-22.0,0.7,SFC,O.O,16)
CALL HGPSYMBL(9.6,-22.0,0.7,SFS,O.O,5)

C------CALCULATE PARAMETERS FOR AXES
NXY=INT(YLIM/DS)+l
SYAX=2.0*FLOAT(NSY)

C------FIND POSITION OF Y-AXIS
IF (XMIN.GT.O.0)  GOT0 82
NSl=l-INT(XMIN/DS)
XLIM=-DS*FLOAT(NSl)
IF (XMAX.GT.O.0)  GOT0 81

C------CIRCLE OFFSET ON -VE SIDE OF Y-AXIS
SXAX,XYAX=NSI+NSl
GOT0 84

C------CIRCLE IN NORMAL POSITION
81 NS2=NSl+INT(XMAX/DS)+l

XYAX=NSl+NSl
SXAX=NSB+NSB
GOT0 84

C------CIRCLE OFFSET ON +VE SIDE OF Y-AXIS
82 NS2=INT(XMAX/DS)+l

XLIM,XYAX=O.O
sxax=NS2+NS2

C------SCALE PARAMETERS FOR GRAPH-PLOTTING
84 XBG=(XBAR-XLIM)*SCALE

YBG=-YBAR*SCALE
RAG=RAD*SCALE
RAGl=(RAD-RERR)*SCALE
RAG2=(RAD+RERR)*SCALE

c------PLOT POINTS AND CENTRE FOR GRAPH-PLOTTER
DO 90 NN=l,NP
XX=(XP(NN)-XLIM)*SCALE
xs=xx-0.12
YY=-YP(NN)*SCALE
YS=YY-0.21
CALL HGPSYMBL(XS,YS,0.42,PL,O.O.l)

C------FIND DIRECTION OF ANNOTATION
IF (INOT.E@.O.AND.NN.NE.NRES)  GOT0 90

C------ANNOTATE FREQUENCY VALUE
DX=XX-XBG
DY=YY-YBG
VECT=DIST(O.O,O.O,DX,DY)
IF (DX,LT,O.O) GOT0 85

C------THETA TAKEN AS -VE
THETA=ATAN2(DY,DX)
RAI=VECTt0.2
XF=XBG+RAI*COS(THETA)
YF=YBG+RAI*SIN(THETA)
GOT0 88

C------THETA TAKEN AS +VE
85 DX=-DX

DY=-DY
THETA=ATAN2(DY,DX)
RAO=VECT+1.7
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XF=XBG-RAO*COS(THETA)
YF=YBG-RAO*SIN(THETA)

88 ANGLE=gO.O*THETA/HPI
CALL HGPNUMBER(XF,YF,0.21,FREQ(NN),ANGLEO,2,4)
IF (NN.NE.NRES) GOT0 90

C------UNDERLINE RESONANT FREQUENCY
XA=XF+O.l*SIN(THETA)
YA=YF-O.L*COS(THETA)
XB=XA+1.5*COS(THETA)
YB=YA+l.S*SIN(THETA)
CALL HGPDASHLN(ZA,YA,XB,YB,O.O)

90 CONTINUE
C------PLOT MEAN CIRCLE ON GRAPH-PLOTTER

XS=XBG-0.12
YS=YBG-0.21
CALL HGPSYMBL(XS,YS,0.42.AST,O.O,1)
XO=XBG+RAG
YO=YBG
CALL HGPCIRCLE(XO,YO,O.O,36O.O,RAG,RAG,O.O)
IF(RERR.LT.PREC) GOT0 95

C------PLOT MARGINAL CIRCLES ON GRAPH-PLOTTER
XO=XBG+RAGl
CALL HGPCIRCLE(XO,YO,O.O,36O.O,RAGl,RAGl,O.5)
XO=XBG+RAGB
CALL HGPCIRCLE(XO,YO,O.O,36O.O,RAG2,RAG2,O.5)

C_-_-_-PLOT TITLE OF GRAPH AND CO-ORDINATE AXES
95 CALL HGPSYMBL(0.0,2.0,0.7,TEST,O.O,8)

CALL HGPNUMBER(4.2,2.0,0.7,DATN,0.0,0,1,0)
CALL HGPAXISV(XYAX,O.O,YAX,-4,SYAX,-9O.O,O.O,DS,2.O,4)
CALL PGHAXISV(O.O,O.O,XAX,4,SXAX,O.O,XLIM,DS,2.O,4)

C------PROJECTIONS OF RESONANT FREQUENCY VECTOR
DXO=XP(NRES)-XBAR
DYO=YF(NRES)-YBAR
DFAC=O.O
FACT=B.O/FREQ(NRES)
NTERM=O

C------ANGLE OF ROTATION IS ANTICLOCKWISE
D0104NO=l,NRES-1
Nl=NRES-NO

C------PROJECTIONS OF LOWER FREQUENCY VECTOR
DXl=XP(Nl)-XBAR
DYl=YP(Nl)-YBAR
HORl=DXO*DXl+DYO*DYl
VERl=DXl+DYO-DXO*DYl
IF (ABS(HORl).LE.PREC)  TH1=2,0*QPI
IF (ABS(HORl).GT.PREC)  THl=ATANB(VERl,HORl)
IF(THl,GT.QPI) GOT0 110
TANl-TAN(0.5*THl)

C------ANGLE OF ROTATION IS CLOCKWISE
DO 100 NB=NRES+l,NP

C------PROJECTIONS OF HIGHER FREQUENCY VECTOR
DXB=XP(NB)-XBAR
DY2=YP(N2)-YBAR
HOR2=DXO*DX2+DY2*DYO
VER2=DXO*DY2-DX2*DYO
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IF (ABS(HORB),LE.PREC;  TH2=2.0*QPI
IF (ABS(HORB).GT.PREC)  TH2=ATAN2(VER2,HOR2)
IF (THX.GT.QPI)  GOT0 100
TSlJM=TAN(O.5*TH2)+TANl

C------SUMMATION TO OBTAIN AVERAGE DAMPING FACTOR
DFAC=FACT*(FRE?)N2)-FREQ(Nl))/TSUM+DFAC
TERM=NTERM+l

100 CONTINUE
105 CONTINUE
C------CHECK WHETHER DAMPING FACTOR IS CALCULABLE
110 IF (NTERM.GT.0)  GOT0 120

WRITE(3,1950)STAR,STAR
1950 FORMAT(lX,A4,31H DAMPING FACTOR NOT CALCULABLE ,A4)

GOT0 125
C------AVERAGE DAMPING FACTOR
120 DFAC=DFAC/FLOAT(NTERM)

WRITE(3,2060)DFAC
2060 FORMAT(26HOAVERAGE  DAMPING FACTOR = ,F6.4)
C------CHECK POSITION ON GRAPH-PLOTTER
125 CALL HGPWHERE(XW,YW)

xw=xw-SXAX-5.0
C------RESET ORIGIN FOR NEXT SET OF DATA (IF ANY)

CALL HGPLOT(XW,YW,0.4)
GOT0 10

C------FINISH OF GRAPH-PLOTTER
999 CALL HGPLOT(10.0,0.0,3,0)

CALL HGPLOT(0.0,0.0,0,0,2)
CALL HGPDISC(l,FILE,O)
STOP
END
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APPENDIX IV

DETERMINATION OF THE DAMPING RATIO BY THE METHOD OF

COMPLEX POWER

For a single degree-of-freedom system the displacement

response is given by:

u = E
(")2

. . . e . . . .

l- + j2r+-
n n

. I CA.IV.1)

Now Power (W) = Fx; = jFwu

. . (A.IV.2)

In terms of the real and imaginary parts,

i.e.

.. .

. . . . . .

j+J{(l-[&)2) - j2c-$}

co = n n
.(l-(")2)2 + 462(-$)2

n n

2 w F2w
\$l' 7 - % k

(l-($)2)2 + 42;2(")2
n n

. . . . . .
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and W" =
F+(l-($P)

n
(&(_j!L)2)2  + 4r2$q2

n n

At resonance, w = wn and,

W ( =
F2Un
2 ; w” = 0

Now IV‘ = nr *.

where r = (1 - (-$)2)2
n

. .

3
+ 46"(")2

n

3
w F"r.4cw. 2 F2 dr

dW':. -& = n-Ii-
- 26" .k';r;;

n
r2

. .

. .

. . . .

. e . .

Again, at w = w,

L L

dW'= r.4<$- - 25wG.g
& 16~~

. . . .

. . . . . . (A.IV.6)

. . . . . . (A.IV.7)

. . . . . . (A.IV.8)

. . . . . . (A.IV.9)

. . . . . . (A.IV.lO)

.

drNow, dw = 2(1 - [-$)2)(-$) + (8~~5)
1-l n n-

and at w = wn'
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2 F2
. did' = 4C .45%-
** dw - -

16~~

16~~2
2

k=
- 165';

16~~
= o

:. g

I

= 0 at resonance

dW'l.e.dw w=wn = o . . . . . . . .

at w = un; 2r=4<, &=d
wn

2 FL FL
. dw” = 4c (k - 3T)

. .
dw 16~~

dW"
dw

F2
2kc2

. . . .

F2*
Now 2s: = W' from A.IV.7

. dW" = W ’. .
dw - <Wn
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2 F2 F2 85'
. &y’ = 45 .45x - 2r*37-

. . dw
--

16~~

16~~2
2

k - 16~~;
=

16~~
= o

:. g

I

= 0 at resonance

dW'1.e.z w=wn = o . . . . . . . . . . . . . m

at w = un; 2r=4<, &=8&
n

2 F2 F2
. dw” = 4c (k - 3y)

. .
dw 16~~

dW"
dw

F2
2k<'

. . . .

F2Li_J
Now 2s: = W' from A.IV.7

. dW" = _ L. . dw CWn

218

. . . . . . . . . .

(A.IV.11)

(A.IV.12)

.



.
. . <=_ w’

0,. cm”
at resonance,

&

i.e. 5 = -L- w ’ dW"
wn dTV"/du w=wn (& is a negative slope) (A.IV.13)
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APPENDIX V

-

IDENTIFICATION OF A MIJLTI DEGREE-OF-FREEDOM SYSTEM-__.. -
WITH COULOI\IB  FRICTION ELEMENTS

Consider a three degree-of-freedom lumped Farameter system
which has only hysteretic damping and Coulomb damping.

CASE 1 - GROUNDED COULOMB ELEMENTS

I-- bl
1

I
$5 l , I

@Q- “1 m2 + m3
kl k2 k3 L

//
--Tl 1 - u 2 - u 3

where k = elastic stiffness
u = displacement

The Coulomb friction elements are linearised by the method
of harmonic balance and are denoted by the constants bi
which represent the level of the Coulomb friction forces
i.e.:

.

4q
b. = -2 .

1 71
i=l, 2 . . . . . . . . (A.Vlr.1)

The structural damping matrix S is given by:

-

--

-

i -



kl+k2 -kZ

-kz kZ+k3

0 -k3

-k3 . . . .

0

k3 I

(A.VI.2)

where 6 is the structural damping coefficient; and the
frictional damping matrix F is given by:

F =

1 ii- bl 1 0 0

I 0 0 0 0

0 b3

. . . . . ‘ . . (A.VI.3)

ii-3

If the force vector corresponds to a normal mode excita-
tion vector at a normal mode frequency wi, then:

--

v1

U.-1 = xvi =x v2ilv3
. I

bl-
v1

0

and ,Fi=' 0

. . . . . . . . (A.VI.4)

0

0

b3 1 . . . . . . (A.VI:S) _

If one now considers equation (177) i.e.:
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-
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-
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w *
1. r- = AvitS*vi*xwi +, vlitFrvir . . . . .* (A.VI.6)

then the power input at each co-ordinate is obtained from
equations A.VI.2, A.VI.4 and A.VI.5 as:

1’ (v,> +

. . . . . . (A.VI.7)

. '~i.1
. . LQ = Xvpc2(v1 - v2) + klvl) + blvl .- (A.VI.8)

Similarly,

W-12- = Xv26{k2(v2 - vl)Wit - k3v31 .* l . (A.VI.9)

"i3- = Xv36wix Ik3(v3 - 2v )} + b3v3 . . . . (A.VI:lO)_

If the left hand side of equations A.VI.8, A.VI.9 and
A.VI.10 are plotted as a function of X, the resulting
curves are given as:
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Thus the non-zero intercepts allow the non-linear Coulomb
friction force levels to be evaluated.

CASE 2 - COUPLED COULOMB ELEMENT

-

The structural damping matrix is given by equation A.VI.2
and the frictional damping matrix is:

223
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F =

0

b
I"2-u31

. . . . (A.VI.11)

Again if a normal mode vector, given by equation A.VI.4, is
employed, equation A.VI.ll becomes,

,x

Employing equation (177) gives for the power input to each
co-ordinate,

W.11- = XvlG{kl + k2(vl - v,)) . .wih . . . . (A.VI.13)

w.12=
Wih Xv26{k2  (v2 - vl) + k3(v2 - v,)) + bv2 (A.VI.14)

W.
_S=
Wih

Xv36Ck3(v3 - v,)) - bv3 . . 0. (A.VI.15)
.

Expressing the above quantities graphically as a function
of A gives,
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-

from which the intercepts again provide the values of the
non - l inear  f r i c t i on  f o r ce  l eve l s .
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APPENDIX VI

- DESIGN CALCULATIONS FOR EXPERIMENTAL RIG- - ------

-

-

, ’ y \
-

1. TRANSVERSE MODE CALCULATIONS

The requirement for the transverse mode, based on the
results of Table 4.1, Chapter 4, is that the modal stiff-
ness > 300 kN/m. The value chosen for the modal stiff-
ness was 350 kN/m.

From reference (79), the stiffness'of a beam between C
and D for the boundary conditions given by,

C

R1 L

is:

Kg = 6EI
Rl(x3e- 3L'x) + 3a'x

a$x$L . . (A.VI.l)

where Rl = -$(3a2L - a3).

The second moment of area for the hollow beam is:
-

.

I = RD3 1-2 bd3 . . . . . . . . . . (A.VI.2) -

-

-

where the cross-section of the hollow beam is:
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II D

-

and B = 50.8 mm; D = 25.4 mm-
b = 47.6 mm; d = 22.2 mm

-
. T = 26 x 1kgm4. .

-
From equation A.VI.l, with a = b = $,

-

76SEI
KB = 7L3

-

Assuming a value for Young's Modulus of steel as 210GN/m2,
the required length of the hollol~ steel beam is given as:

L =
765 x 210 x 10' x 26 x 1O-9 l/3

7 x 350 x lo3

L = 1.2m

This hollow beam supports a solid steel cross beam at L/Z
- whose cross-sectional dimensions were chosen as 50.8 mm

square to allow the hollow beam to slot through this and be
- located securely.

.

Assuming a transverse mode natural frequency of 25Hz gives
the length o.f the solid steel cross beam as:

-

mB = mass of cross beam = PAR

-

.
. . PAR =
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-

-

-

-

-

-

-.

. 9, = 350 x IO5. .
(25 x 2~)~ x 7.84 x lo3 x (O.OSOs>z

R = 0.7m
.

2. TORSIONAL MODE CALCULATIONS

The natural frequency of vibration in the torsional mode
will already be defined by the transverse mode physical
parameters.

The polar second moment of area, from Bredt Batho theory
(80) is:

4 )= surface integral
ds = surface contour
t = thickness
A = cross sectional area

. J = 4(5).8 x 25.4)2. .
P A(50.8 + 25.4)

.

J = 69,920 mm4 = 69.92 x lo-' m4
P

The torsional mode stiffness is given by:

.
4GJ

KT= >-+

Assuming a value for the Modulus of Rigidity for steel as
G = 80GN/m2:

KT = 4 x 80 x 10' x 69.92 x lo-'
1.2

228

b
,A



KT = 18.65 kNm/rad.

The mass moment of inertia of the cross-beam (the inertia
effects of the hollow support tube being negligible) is
given by:

I "B 2 2
PP

=TZ(a + L )

= $.0512 + 0.72)

I
PP

= 0.575 kgm2

.*. the torsional mode natural frequency,

1.‘. fT = z 18.65 x lo3
0.575

fT = 28.7 Hz.

3. EFFECT OF ADDITIONAL MASSES

The basic experimental rig had design natural frequencies
in the transverse and torsional mode respectively of 25Hz
and 28.7Hz. In order to 'tune' these so that these naiural
frequencies could be either well separated or made almost _

equal, masses were added to the cross-beam which varied the
inertia and mass effects:

229



-. Thus the mass moment of inertia became:

I mB 2
PP = n(a + L2) + 2mAh2

and the effective mass of the beam became:

mB' = mB + 2mA

The values of mA used in the tests were chosen as 6kg. at
- a radius of 0.33m. This gave the design natural frequen-

cies of vibration in the torsional and transverse modes
- respectively as:

- 1 18.65 x lo2 \ ;
fT = z + (2 x 6 x 0.332)/

_-
fT = 15.84 Hz.

-

fB = &- 143f” ; :“;,( ) 1z .

-. fb = 18.36 Hz.

The actual natural frequencies of the rig with the above-
physical parameters from initial tests were:

-
fT = 15.54 Hz

fB = 18.24 Hz
-
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Transducer Calibration Curves
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FORCE DISTORTION IN RESONANCE TESTING OF STRUCTURES

WITH ELECTRO-DYNAMIC VIBRATION EXCITERS

-

-

-

-

G. R. TOMLINS0N-t

Department of Mechanical, Production and Chemical Engineering,
Manchester Polytechnic, Manchester Ml 5GD.  England

(Received 1 June 1978, and in revisedform 7 October 1978)

Harmonic input force distortion which arises when systems are excited with electro-
dynamic exciters is shown to be predominantly second harmonic, the major source of the
harmonic distortion being due to the vibration exciter characteristics. These are examined
by experimentally determining the magnetic field strength properties of a typical exciter
and the results show these to be a non-linear even function. This information is used with
the equations of motion of the exciter which are simulated on an’analog computer. The
computed force characteristics are shown to compare very closely with experimental results.
The amount of second harmonic force distortion generated at a system resonance is analyzed
by considering a simple single degree-of-freedom model. It is shown that the amount of
force distortion is related to the damping of the system under test and the ratio of the exciter
stiffness to the system stiffness. It is also shown that the force input to a system near a
system resonance can vary considerably, even though the input current to the exciter is
constant. These effects are shown to he due to the forces arising from the mass and stiffness
characteristics of the exciter being used. Experimental tests on a simple system confirm the
theoretical predictions.

1. INTRODUCTION

-

-

-

The use of electro-dynamic vibration exciters for the steady state forced vibration of struc-
tures is almost universal [ 11. These types of exciters are used as force generators to apply a
harmonic force to a structure in order that modal data such as resonant frequencies,
impedance data, mode shapes, generalized masses and stiffnesses can be obtained. In theory,
measurement of the input force (or forces) and the structural response is straightforward.
A sinusoidal voltage applied to an electro-dynamic vibration exciter via an amplifier should
generate similar simple harmonic forces and accelerations. However, in practice, when the
structure under test resonates, the reaction force (which is equal and opposite to the applied
force) between the vibration exciter and the structure tends to become very small [2].
At this very point, i.e., the resonant condition, which is the point of greatest interest as
regards test data, harmonics of the forcing frequency become very predominant. This
harmonic distortion must be accounted for by suitable signal processing, especially when
impedance tests are being carried out in order that reliable experimental results are
obtaked and techniques for.liltering out unwanted harmonics are well established [2,3].

-

In the past the source of the major harmonic force distortion was erroneously attributed
to the stiffness of the force transducer [4] and to harmonics being generated within the
amplifier plus oscillator together with some distortion within the vibration exciter. In this
paper it is shown that the distortion is predominantly second harmonic which is generated
due to non-linearities in the vibration exciter, and that the magnitude of the harmonic
distortion depends basically upon the damping and stiffness of the structure under test.

t Now at the Department of Mechanical Engineering, University of Manchester, Manchester, England.
337

0022-460X/79/070337  +14 SO2.00/0 @ 1979 Academic Press Inc. (London) Limited

. -_, -_ _.

1. . .



-

338 G. R. TOMLINSON

It is often assumed that the use of high output impedance amplifiers used in connection
with constant input current drive to an exciter will provide a constant input force to the
system under test. With lightly damped structures, where the amplitudes of vibration may

-

-

be relatively high, this assumption does not hold true and it is shown that if a corlstant
current source is used to drive the exciter then large variations in the magnitude of the
force input at the point of application of the structure may be encountered. These effects
are shown to be due to the forces arising from the mass and stiffness characteristics of the
exciter which modify the constant force generated in the coil of the exciter. Experimental
results from a set of tests on a simple cantilever beam are compared with the theoretical
predictions.

- ’

-

-

-

Resonance testing of structures by use of electro-dynamic vibration exciters must, out of
necessity, rely upon a rigid connection between the exciter and test structure along the line
of action of the applied force. This often results in a type of force distortion arising from
misalignment known as “side-stressing”, and is due to the moving coil of the vibration
exciter coming into contact with and rubbing against the centre pole magnet. In order to
detect, and hence correct, side-stressing it is necessary to include a force detecting device
between the vibration exciter and the structure under test, since monitoring of the current
in the exciter coil gives little information relating to the actual input force level and also
does not convey to the investigator the quality of the signal being applied to the structure
under test. Side-stressing can be easily avoided by employing techniques which restrict the
lateral movement of the vibration exciter armature [S] and by increasing the air gap be-
tween the centre pole magnet and the armature coil, although this latter method does
reduce the efficiency of the exciter at high frequencies. A common method of reducing the
interaction between the structure under test and the vibration exciter (often used in con-
junction with the above techniques) is to use push-rods [6-8].  These are rods of high axial
stiffness but allow lateral and rqtational motion between their ends.

When structures which have low modal stiffnesses are tested one finds that the force
levels at resonance are very small, with correspondingly large amplitudes, and this often
is the main cause of harmonic force distortion. The level of this distortion can be very
considerable (e.g., over 100 % relative to the fundamental component) and is predominantly
second harmonic [9]. A typical input force signal with predominantly second harmonic
distortion and the resulting output response of the same point of a structure at resonance
is shown in Figure I together with a case of “side-stressing”.

2. FORCE DISTORTION ENCOUNTERED DURING RESONANCE TESTING

-
,Output  occelerothon

I&t force

(a) (b)
Figure 1. (a) Force distortion due to “side-stressing”; (b) input force at resonance and resulting motion at the

same point.

-. (4,

-

t *
8,
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Figure 2. Experimental arrangement to determine magnetic field characteristics of an electro-dynamic exciter.
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In the theory of electro-dynamic exciters it is assumed that the force generated is pro-
portional to the input current, the constant of proportionality being a function of both the
armature coil design and the magnetic field structure design [lo]. If the magnetic flux field
is assumed constant then a constant current produces a constant force. However, if the
magnetic field structure does not produce a uniform flux density field, then a more funda-
mental approach is required in which the properties of the magnetic flux field are considered.

In order to examine the characteristics of the vibration exciter magnetic flux field, two
vibration exciters with similar characteristics were connected together via a piezoelectric
force transducer as shown in Figure 2. One of the exciters was used to “drive” the other
exciter, whose armature was open-circuited, with a constant peak-to-peak amplitude at a
given frequency, the amplitudes being measured by a non-contact displacement transducer.
By superimposing a d.c. bias voltage on to the drive signal, the mean position of the open-
circuit e&iter  armature (i.e., the static equilibrium point about which the vibration takes
place) could be varied throughout its working displacement range for that particular
exciter model. For each mean position of the open-circuited exciter armature a constant
peak-to-peak amplitude of vibration was applied, this amplitude representing 15 % of the
rated maximum peak-to-peak displacement range of the exciter. Tests were carried out at
different frequencies (for the same mean armature positions and amplitudes of vibration)
and the results for two different frequencies are shown on Figure 3. These curves, which
are even functions with a square-law characteristic, are related to the back emf generated
by the velocity of the armature and the position of the armature in the flux field.

The characteristics of Figure 3 show that the assumption of a constant magnetic field
are invalid and that there is a variation in the magnetic field structure which is related td
the position of the exciter armature in the magnetic field. In the case of lightly damped
structures where the amplitudes of vibration are large and the level of the input forces are
small, the normal governing electrodynamic  equations are inapplicable and one must
resort to electromagnetic theory to include the resulting variations.

From simple electromagnetic theoiy, the voltage arising as a consequence ofthe change of
flux linkage is given as [I I] :

u = (dti/dx)(dx/dr), (I)
where II/ is the flux linkage, x is the instantaneous displacement within the magnetic flux
and u is the voltage. Since for each test the velocity was constant, the characteristics of

.-
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-

-

-

-

-

-

-

Figure 3. Back emfgenerated US. mean position of open-circuit exciter as a function of maximum rated displace-
ment of exciter.

Figure 3 must represent dJl/dx: i.e.,

d+/dx  = C{ 1 - 4x0 + x)‘}, (2)

where

Ja = constant

= l/ (maximum rated peak displacement of the exciter) 2 l/(x, + x),

due to the constraints imposed by the exciter design (i.e., the armature “bottoms” on the
centre pole magnet if (x,, + x) > l/Ja),  and where x0 is the mean position of the armature,
x is the instantaneous peak displacement of the armature and C is a constant related to
the maximum back emf generated. Thus the back emf generated as a result of the motion
of the armature in the magnetic flux field of Figure 3 is

u, = (d$/dx)(dx/dt)  = C(1 - a(x, + x)*}zi. (3)
If the well known basic equations of motion (see Appendix 1) of an electro-dynamic vibra-
tion exciter are modified to include the terms of equation (3) one obtains the following
expression for the armature equation of motion:

2 + (k/m)x  + (K/mR) { 1 - a(xo + x)*}i = (k&R)u  cos wt, (4)
where the constant K combines the force current and the back emf constant (these being *
assumed to be equal in this analysis). Equation (4) represents the motion of the exciter r-
armature, which actually consists of a series of harmonic components. However, due to
the fact that the magnitude of the fundamental component of the armature motion is very
much greater than the square law terms and the higher harmonics, these become in-
significant.

An analysis of the effects of the characteristics derived for the exciter was carried out by
using an analog  computer. The model analyzed represented a single degree-of-freedom
system excited by an electro-dynamic vibration exciter via a force transducer. The model
is shown in Figure 4 where the stiffness of the force transducer is assumed to be infinite

,

i . .
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+ /
+ /
4

G Cl
Figure 4. Simple model of single degree-of-freedom system and vibration exciter.

(piezoelectric  force transducers have nominal stiffnesses > 10’ N/m). In Figure 4, m, is
the mass of the test structure plus the effective mass of the force transducer above the crystal,
m2 is the mass of the vibration exciter coil assembly plus the effective mass of the force
transducer below the crystal, k, is the stiffness of the test structure, k, is the flexure stiffness
of the exciter, ci is the damping associated with the test structure, c2 is the damping associ-
ated with the vibration exciter, and F, is the total force applied to the test structure from
the exciter.

Since the force transducer is assumed to have infinite stiffness then x1 = x2 = x, and
the equation of motion of the mass and armature, the vibration being assumed to occur
about the zero mean (i.e., x0 = 0), is

f+ Cl + )(I - ax*) i +
(k, + k,b k,ucosot= (5)

ml +  m 2 2 ml +m2 ml +  m2’

Simulation studies of equation (5) were carried out on an EAL 380 Analog Computer.
The physical quantities expressed by the various constants in equation (5) were obtained
from data supplied by the manufacturers of the vibration exciters used, and from tests
carried out on the exciters. These quantities, together with the simulation diagram used are
given in Appendix I. Figure 5 shows a sample set of results from the analog simulation.
The simulation predicts the pattern of behaviour which was observed during the experi-
mental tests where, at frequencies above and below the test structure resonant frequency,
the force signal is predominantly the fundamental component. At the test structure resonant
frequency the magnitude of the fundamental component reduces considerably and the
harmonic distortion becomes predominantly second harmonic.

3. ESTIMATION OF HARMONIC DISTORTION M A G N I T U D E S

In order to establish the levels of harmonic force distortion which can occur during testing,
an analysis of the system shown in Figure 4 was carried out. The force generated by the

Figure 5. Analog simulation results showing the pattern of behaviour of the force. input signal around resonance
for the system shown in Figure 4.
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-

vibration exciter can be assumed to be represented by a harmonic series

F, = f F,” ejWr + W, ?I = 1,2 ,..., co,
II=1

where

(6)

FAn = F, &nwt  + &) ~ (m2Dz + c2D + k2)x &@a + 4”) (7)

-

-

-

-

-

-

-

and Fn is the magnitude of the nth harmonic component, w is the excitation frequency, and
4, is the phase angle between the nth force and displacement components, respectively.
The force FAn  reacts against the test structure to give

FAn = (m,D2  + C, D + k,)x ejtncor + ‘+.), (8)
and therefore

x ej(not +&)(FJx  _ m2D2  - c,D  - k,) = (m,D2 + c,D + kl)xej(nor+6n). (9)
For harmonic motion Dnx = j ncox  and hence

FAn  = (ml  D2 + cl D + k,)F, & W’ + +n)/[(k,  + k2)  - (ml + m2)n202  + (c, + c2)  jri,]

Upon introducing the notation

0: = k,/m,  (vibration exciter natural frequency),

a: = k,/m,  (structure natural frequency),
m21m1 = ml, k,/k, = k’, B. = m-h,, qlkl  = 3349 czlk, = X,/5

equation (10) becomes:

F,” = (1 - /9.’ + j&2[,)F,  ejCnmr + +,,)I[(1 + k’) - 8.2(1  + m’) + j{2C,B, + 2~2&4~2>~>l.
(11)

At the structural resonant frequency w = wi and fi, ,= 1; thus the fundamental harmonic
force component is

J. -, *

-

-

F,, = (j 2[,)F, e”“’ + 41)I[(1 + k’) - (1 + m’) + j{X, + X2(qlw2W}]. (12)
The second harmonic force component is

FA2 = (- 3 + j4[,)F,  d(2at  + 42) /[(I + V - 41 + m’) + j{K, + 4C~(W~lw~)k’}].  (13)
Substituting for (w,/w,)k’ = Jm’3in equations (12) and (13) gives, for the ratio of the
second harmonic component to the fundamental,

F A2  _F2dfQ+“’ (-3 +jY,)- - [(k’ - m’) +j(2C, + 2C,$WJ
- F Al Fl j(X,) [W - 4m’ - 3) + j(4C, + 4C2&WJ3

Equations similar to equation (14) may be written for the higher harmonics but
of these are obviously lower than the second harmonic contribution.

-
I

If one considers that generally m’ < k’ $ 1, then equation (14) reduces to

(14)

the effects

-

-

Equation (15) indicates that for the second harmonic distortion to be less than lOO’~,
the stiffness ratio k’ < 21;,. For lightly damped structures, where the equivalence 21: = g
@ being the structural damping factor) can be made, then K < g and, since structural

- f!- *
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damping forces increase with stiffness, the stiffer the structure the lower will be the harmonic
force distortion.

The reason behind the harmonic.distortion becoming predominant at a system reson-
ance is easily shown by considering equation (11). Equation (1 I) represents the harmonic
force components applied to the system under test. If one assumes that the exciter is being
driven by a high output impedance amplifier then electrical damping effects can be ignored
[12,  133. Also, if one considers the mechanical damping of the exciter to be negligible,
equation (1 l), for the fundamental harmonic force component, reduces to

F,, = (1 - 8: + jB,2C,)F,ej@t+@/[(l  f k’) - #(l + m’) + j(X,BJJ, (16)
or

IF”,1 = [(l - p;)’ + (B12r,)2]“‘IF,(/[((l + k’) i 8:(1 + m’))2  + m,B,)21”2 (17)
where /I, = W/C+. Equation (17) is shown plotted on Figure 6 as a function of the frequency
ratio (w/or) for different values of the system damping ratio for the cases when the system
natural frequency is greater and less than the exciter natural frequency. It can be seen from

, I I I I
7 04 o-9 I.0 I.1 I.2

w/w,

1.3

Figure 6. Theoretical curves of equation (11) showing input force variation at a structural resonance. -.-..
Exciter natural frequency < structure natural frequency; ---, exciter natural frequency > structure natural
frequency. Curve 1, C = @Ol,  m’ = 0175, k’ = 014;  curve II, { = @05,  m’ = 0.175,  K = 0.14; curve III, ( = O-01,
m’ = 0005,  k’ = @06.

Figure 6 that there is a large variation in the input force in both cases which reduces as the
system damping is increased (i.e., the amplitudes of forced vibration, for a given force,
are reduced). Also, the force characteristic is “inverted” when the system natural frequency
changes from a value above to a value below that of the exciter natural frequency. These
effects have been noted by other researchers [ 12, 14) and were attributed to the mass and
stiffness effects of the exciter.

An analysis of the effects of an exciter’s mass and stiffness properties on the force injected
into a system has been carried out in Appendix 2. In the analysis it is assumed that a con-
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stant current source is used. The analysis shows, with the aid of vector diagrams, that when
lightly damped structures are excited with electro-dynamic exciters then considerable
variation in both the magnitude and phase of the actual input force to the system under
test is encountered.

Tests were carried out on a simple cantilever beam in order to test the validity of the
above analyses. The tests allowed the stiffness ratio k’ to be varied by changing the flexural
stiffness of a standard electro-dynamic vibration exciter. This method of varying k’ was
used in preference to simply changing the beam length in order to alter the value of k
since this had more practical significance, and also the mass ratio m’ was constant. The
cantilever beam used in the tests was 25 mm wide, 50 mm deep and 1.25 m long. It was
excited at its tip via a piezoelectric force transducer and push-rod assembly with a standard
(commercial) electro-dynamic vibration exciter. The flexure stiffness and effective armature
mass of the exciter were 14 N/mm and O-2 kg respectively. During the tests the beam ivas
excited over its fundamental frequency range with a constant displacement and the first
and second harmonic components of the input force signal were measured on an harmonic
analyzer. In order to provide a variation in k’, the stiffness of the exciter was modified by
removing one of the fibre flexure supports. This reduced the stiffness of the exciter by approxi-
mately 50 %. As a result of this modification the lateral stiffness of the exciter was reduced
to such an extent that a linear ball-race guide had to be used to provide lateral support
and hence prevent side-stressing of the exciter coil. This obviously increased the exciter
frictional damping but transient results indicated that this was minimal for steady state
vibrations. The results of the tests are shown on Figure 7 and it can be seen that there is
good correlation between the theoretical and experimental results.

60-

I
24.0

Frequency (Hz)

I
24.5

Figure 7. Results from tests on simple cantilever beam. Variation in second harmonic force distortion with
exciter stiffness. M, S t a n d a r d  e x c i t e r  w i t h  k’ = O-160, m’ = @016,  [I = 09013;  x - X, modified
exciter with k’ = @07,  m’ = @016,  c, = 04013; -, theoretical curve from equation (11) with k’ = @I@
m’ = 0016, C, = 00013,  c2 = @O.
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Figure 8. Constant current experimental results showing variation in the input force to a structure at the struc-
tural resonance._, Exciter natural frequency < structure natural frequency: A -A, exciter natural
frequency > structure natural frequency.

Constant current tests were also carried out and the magnitude of the fundamental har-
monic input force component, measured by the piezoelectric force transducer at the tip
of the beam, was obtained as the excitation frequency was swept over the fundamental
natural frequency of the beam. These tests were carried out with the beam fundamental
natural frequency above and below that of the exciter being used in the tests. Figure 8
shows the experimental results obtained in these tests and if a comparison between these
and the theoretical curves of Figure 6 is made it can be seen that there is excellent agreement.

5 .  DISCUSSION

The work reported in this paper has shown that harmonic distortion of the input force
signal at a system resonance is primarily due to the non-linear characteristics of the electro-
dynamic vibration exciter. These non-linearities, which characterize the -magnetic field
strength ofthe exciter, are basically square-law in nature, which results in the force distortion
being predominantly second harmonic. Higher harmonics will be present in the force
signal due to the fact that distortions of the square-law characteristic will occur during
testing, these distortions arising from such things as armature misalignment, higher order
terms in the magnetic field strength characteristics and variations in characteristics from
one vibrator to another.

It is shown that the damping in the system under test is a very important factor and in
order to minimize the harmonic force distortion occurring at resonance this must be
significantly greater than the ratio of the vibration exciter stiffness to the test structure
stiffness. If the amplitudes of vibration are small, e.g., as a result of exciting higher modes,
the harmonic distortion is reduced as a result of two factors. Small amplitudes of vibration
restrict the armature movement in the non-linear magnetic field: i.e., movement is restricted
to the region around the zero mean position of the curve on Figure 3 and hence the non-
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linearities are minimized. The second factor is that higher modes of vibration tend to pro-
duce larger damping forces which result in an increase in the fundamental force component,
whereas the second and higher order components remain approximately constant.

Further, it has been shown that regardless of whether or not a high output impedance
amplifier is used to supply a constant current source, large variations in the magnitude and
phase of the input force can occur when testing lightly damped systems. This has been
confirmed to be due to the forces arising from the mass and stiffness characteristics of the
vibration exciter which modify the resultant force applied to the system at the system
resonance. If the natural frequency of the vibration exciter were to be the same as that of the
system under test then a constant force would be applied to the system since the vibration
exciter effects would be self-compensating.

The importance of these factors is that if a constant current source is used as a reference
force condition, then, in the case of a lightly damped single degree-of-freedom system,
a ninety degree phase shift between the input current and the output displacement (or
acceleration) does not necessarily indicate a natural frequency. Only if the input force
measured at the point of application on the test system and the corresponding response are
used can this criterion be applied.

However, in terms of the harmonic force distortion levels at resonance, some improve-
ment would be achieved by employing a constant current source since the magnitude of the
non-linear term of equation (5) would be reduced. This is because the non-linear term would
be a function of the force current constant only as opposed to a combination of this and the
back emf constant which would be the case with a voltage source (see Appendix 1).
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APPENDIX 1: BASIC EQUATIONS OF MOTION OF AN ELECTRO-DYNAMIC

VIBRATION EXCITER AND ANALOG SIMULATION DIAGRAM

-

-

The physical model of an electro-dynamic exciter can be considered simply as a resistor,
representing the coil, with an additional voltage drop due to the velocity of the coil moving
through the magnetic field of the permanent magnet. The mechanical sub-system is merely
a mass and a spring driven by a force proportional to the current, damping effects due to
the flexure stiffness hysteresis and the rubber dust cap being ignored. The basic equations
of motion are

- mL  + kx = kFi, Ri + k& = ucosw, (AL 2)

-

-

-

-

where m is the effective armature mass, k is the flexural  stiffness, k, is the force current con-
stant, k, is the back emf constant, i is the armature current, u is the applied voltage at
frequency CO, and R is the exciter coil resistance plus the drive amplifier output resistance.
Thus the equation of motion of the armature, from equations (Al) and (A2) is

Z + (kx/m) + (k,k,/mR)zZ = (k,/mR) cos ot. 643)
If the electrical power developed in the armature is assumed to be equal to the mechanical
power absorbed, then

k,$i  = k&i: i.e., k, = k, (A4)

8

signal
generator

P

- Figure Al. Analog simulation block diagram used to compute tbe force arising from equation (4). @ indicates
a potentiometer. Values used in the simulation were m, = 0.1  kg, m2 = 0.02  kg k, = 1 kN/m, k, = 3 kN/m,
C, = O-2. Ns/m, kF = k, = 8 N/A, R = 4 ohms. OT  = 025 x 106/mz.
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-

Both k, and k, are dependent upon the characteristic of the magnetic flux field of the exciter
and these effects, given by equation (2) of section 2, can be combined in equation (A3) to
give equation (4) of section 2: i.e.,

2 + (kx/m) +‘(K/mR){  1 - a(x, + x)‘} ZZ = (k,/mR) u cos cot. (W
The block diagram used in the analog simulation of equation (5) is shown in Figure Al

together with the values of the various physical constants used in the simulation.

APPENDIX 2: THE EFFECTS OF AN ELECTRO-DYNAMIC EXCITER ON A
VIBRATING STRUCTURE

The force necessary to vibrate a structure is produced by the current through the exciter
coil. The moving elements of the exciter, namely the armature and some fraction of the
flexure mass and the push-rod assembly (which incorporates the force gauge), are rigidly
attached to the structure under test and as a result some of the force is used to accelerate
these additional masses. If the structure under test is at resonance then the displacement
of the excitation point is in quadrature with the exciting force. The additional masses of
the moving elements of the exciter are in phase with the structure but the acceleration forces
of these additional masses oppose the forces arising from the effects of the flexural  stiffness
of the exciter. This results in the oscillator current vector not being in quadrature with the
displacement of the structure at resonance. This can be explained by considering a single
degree-of-freedom system excited by an electro-dynamic exciter. The model of the system
under analysis is shown in Figure 4.

The resultant force R applied to the structure is

R = F d” - m.& - c#, - k2xZ, (W
where F is the force delivered to the moving parts of the exciter as a result of the oscillator
current {which is held constant in magnitude and phase with the oscillator reference
voltage). If the stiffness of the force transducer is considered to be infinite compared to the
exciter and test structure stiffness, then the displacements within the system are common:
i.e.,

x2 = x, = x. (A7)
The displacement of the armature(and structure) is related to the oscillator reference current
by

x = Xe”“‘-”, VW

where tj is the phase angle between the oscillator reference current and the displacement,
X is the peak amplitude of the displacement and w is the radian frequency. With the aid of
the vector diagram in Figure A2 the resultant force applied to the structure can be obtained.
as

R = F cos wf + m,dX cos(ot - JI) - k,X cos(ot - I& + c,oX sin(ot - I,$).  (A9)

The reaction force of the structure, which will be equal and opposite to R, will be

R, = -R = m,w*X cos(ot  - 9) - k,X cos(ot  - $) + c,wX sin(wt - $). (Alo)
If the forces are expressed relative to the oscillator reference then at a given frequency
there will be a phase angle between the force delivered from the exciter and the resultant
force as a result of equation (A9),  and as shown on Figure A3.

-. -.. i -__..._ _--- _ __.__----
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Figure A2. Vector diagram for equations (A6), (A7) and (A8).
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Im
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Figure A3. Vector diagram showing the force applied to the structure (R) and the force delivered to the exciter
(0

-

From Figure A3 the resultant force applied to the structure expressed relative to the
oscillator reference is

R sin+ = m,o*X  sin+ - k,X  sin@ - c,Xo co@, (All)
R cos 4 = -m,w*X cos t/i + k,X cos $ - c,oX  sin $ + F. (A13

-
i

For a lightly damped single degree-of-freedom system resonance occurs when the phase
angle between the resulting displacement and the applied force is 90”: i.e., when

C#J + rc/ = 90”. (Af3)
Substituting $ = 90” - C$ in equations (Al I) and (A12) gives

R sin C$ = (m,o* - k,)X cos c$ - c,X sin 4, (A 14)
T R cos c$ = - (m,o* - k,)X sin C#I  - c,X cos C#I  + F . (A13

Multiplying equation (A14) by cos C$ and equation (A15) by sin C#I  and rearranging gives

(m202 - k,)X = F sin 4. (AW

r ._
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With the exciter and structure natural frequencies denoted, respectively, by

0: = k,lm,, 0: = k,lm,, (A17)
equation (A16)  can be written as

k,X((o,/w,)’ - 1) = F sin 4. (Al@
Thus the force which is applied to the structure is only in phase with the force delivered by
the exciter when one or more of the following conditions arises: (a) 4 = 0; (b) w1 = w2;
(c) x = 0.
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IDENTIFICATION OF THE DYNAMIC CHARACTERISTICS
OF A STRUCTURE WITH COULOMB FRICTION
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The effect of coulomb friction on the Kennedy and Pancu vector plot of a single degree-
of-freedom system is analyzed by using the method of harmonic balance. It is shown that
the resulting diagram no longer conforms to a locus of a circle in the resonant region, which
restricts the usual methods of analysis. A technique, based upon the in-phase and quadrature
power dissipated when exciting a normal mode, is presented which allows the magnitude
of the non-linear friction force and the hysteretic damping constant to be evaluated. The
technique is also applied to systems having several degrees-of-freedom and it shows that
it is possible to identify the characteristics of a single non-linear coulomb device situated
within a structure, but in the case of more than one device, the technique has some restric-
tions. The theoretical results are compared with experimental data from a structure con-
taining a non-linear coulomb device.

1. INTRODUCTION

The estimation of modal parameters from frequency or transidnt response data has relied
heavily on the use of vector plots derived by Kennedy and Pancu [l]. This technique, which
has been applied to a wide number of applications [2], relies upon a circular arc being curve-
fitted to experimental data in the resonant regions [3]. Any deviation in the experimental
data from the locus of a circle in these regions will automatically evoke errors, and in
certain cases, will restrict the application of this technique.

Such a case arises with systems comprising non-linear elements [4], for which the best
curve fit to the experimental data may result in figures resembling elongated circles (ellipti-
cal shapes) or combinations of circles with distorted regions, White [S] showed such effects
from the results of a structure subjected to large deflections and concluded that as a result
of thii the methods which are normally used to obtain certain modal parameters, such ai
the maximum frequency spacing criterion for estimation of the modal frequency, did not
hold true.

Methods for identifying modal parameters of systems which display non-linear character-
istics have, in the past, been only partially successful in the sense that the analysis either was
concerned with ideal systems [6, 71 or was restricted to single degree-of-freedom systems
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Other techniques [9] have shown that it is theoretically possible to ascertain the position
and the characteristics of the non-linear element, but only if the characteristics of the non-
linearity are dependent upon the absolute amplitude of the element: i.e., it is grounded.

In this paper the effects of a non-linear coulomb friction device on the Kennedy and
Pancu plot of a single degree-of-freedom system are analyzed by using the method of
harmonic balance, and this principle is then applied to the normal mode response of a
multidegree-of-freedom system. A technique is thereby derived for locating and identifying
the characteristics of a single coulomb frictional device, which may be situated anywhere in
the structure, and the application of the technique to systems comprising more than one
frictional device is discussed It must be realized however that the types of system to which
the technique is applicable are restricted to those where the elastic elements are assumed to
be linear, and where, besides coulomb friction, there exists only linear damping. The results
from experimental tests on a two degree-of-freedom model, having a controlled coulomb
frictional device, are compared with the theoretically predicted characteristics

2. NORMAL MODE RESPONSE OF A SYSTEM WITH COULOMB FRICTION

The cbnditions for the existence of classical normal modes in structures where frictional
energy is dissipated [lo, 111,  appear to have no physical justification but systems can fre-
quently be described adequately by equivalent single degree-of-freedom models providing
that the modes are well separated or the frictional forces are not excessive [12]. In the
following analysis it is assumed that the frictional mechanism is of the coulomb form: that is,
the frictional force AZ?) is defined by the relationships

Aa) = 4 for i > 0, f(i)=-4 f o r  i<O, (I)

where q is the peak magnitude of the frictional force. By using the method of harmonic
balance, this characteristic can be represented by an equivalent hysteretic damping constant
h*, where

h* = 4q/nlul (2)

and IuI is the peak displacement.
If the elastic and non-frictional dissipative properties of the structure are to be represented

by a massless  element of complex stiffness the equivalent single degree-of-freedom model
for a particular mode may be represented by a body of mass m supported by an element of
complex stiffness, given as

k + jh* = k’(l + j6*), (3)

where k is the elastic component of stiffness and the equivalent loss factor 6* has the form

6* = (6 + 4q/rrk’(ul), (4)
S being the structural (non-frictional) loss factor. When a harmonic force @Or is applied to
the body of mass m, the equation of motion is

m% + k’(1 + jS*)x = pej@‘, (5)

which has the solution x = uej”‘, where u = IuI ei+,

IuI = (plk’)/[(l - 612)2  + S*2]1’2, (6)

and tan 4 = a*/(1 - G2),  where B = CD&@

-
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Equation (4) may now be substituted into equation (6) to give:

235

I4 = -6r + J@/k’)2[(1 - 622)2  + 821 - ?(l - 62:)’
(1 - 622)2  + 62 , (7)

where r = 4qjrrk’. I

A solution for 1~1 is only possible when r < p/k’. In practical situations this means that
the applied force p must be greater than the magnitude of the friction force q in order for
any relative motion to exist The phase angle, for equations (4) and (6), is given by

tan 4 = [S + (r/lul)]/(l  - Q*). (8)
When the vector response, from equations (7) and (Q is plotted in the phase plane it is

found that the locus has a form similar to that shown in Figure 1. Clearly, the effect of the
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_.- Figure 1. Effect of
hysteretic damping r

coulomb friction on the vector response locus of a single degree-of-freedom
being proportional to the friction force level (r = 4q/zk’).

withsystem

-
coulomb frictional forces is to produce an elongation, parallel to the imaginary axis, of the
familiar circular locus which is obtained for lightly damped linear systems. As a result of
this distortion, the system parameters cann’ot be determined as readily from this vector
response locus as they can when the system is linear.

An alternative approach is that based upon the measurement of complex power in the
region of resonance as proposed by Bonneau [13].  In this method, the total input power W
to a mode is determined by obtaining the product of the applied force Bnd the associated
velocity. It is evident that the power must be a complex quantity having real and imaginary
components w’ and w” respectively. It can be easily shown [ 13) that for a viscously damped
single degree-of-freedom system the following conditions apply at resonance (o = 03:

.

~lco=fo. = dW’/do(_,n  = 4 (9)
dW”‘/du),_  = a maximum. (10)

These conditions can be shown to give the damping ratio c as

C = (l/o3{W’/(dW”ldo))lo,=m; (11)

7.
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Thus plots of the in-phase and quadrature power against frequency will provide esti-
mates of the damping and the natural frequency. Typical plots of the in-phase and quadrature
components from a set of experimental results are shown on Figure 6 of section 6. The
obvious advantages resulting from this technique are that the curve fitting procedures in-
volved are simple and do not need to be modified for the type of non-linearity under
investigation.

It is evident from equations (7) and (8) that when a frictionally damped single degree-of-
freedom system is excited at its resonant frequency, the displacement and force are in
quadrature and

IUI = C(plk? - a~. (12)
It follows therefore that since at resonance

p = k(slul  + r),

then
wlj,,,, = c0,k’(6~u~2  + +I) (13)

and since also w” _cO--(r5, = 0, equation (13) can be expressed in the form

(wI/W”lUl),,,, = k’c+l + k’r. (14)

If, therefore, wl/onlul is plotted against 1~1, at the resonant frequency, the resulting curve
will be a straight line with an intercept equal to the value of k’r. The results may then be
substituted into equation (14) to obtain the value of the linear hysteretic damping constant
k’6.

- .

-

-_

-

- 3. THE EFFECT OF COULOMB FRICTION ON SYSTEMS HAVING SEVERAL
DEGREES-OF-FREEDOM

The procedure described in the previous section can be used to analyze complex struc-
tures when modal interaction is not particularly strong. However, there are many cases
where the frictional coupling is such that a more refined dynamical model needs to be
identified In such cases, it is necessary to represent the structure by a lumped parameter
system with n degrees-of-freedom The system may then be defined by mass, stiffness and
damping matrices M, K and H respectively. If the system is assumed to be linear, the har-
monic solution x = u ej” gives the resulting matrix equations

-

-

-
.

- 02Mu + .Ku + jHu = p. (15)

When the system is excited at its ith  natural frequency oi by the forces pi such that the peak
displacements are given by Lv, where vi is the ith normalized mode shape and 2 is a con-
stant, equation (15) reduces to

jlHvi = pi, (16)
since u$Mvi = Kvi. Thus, providing that pi is real, all the displacements will be in phase
with each other and in quadrature with the forces.

If it is assumed that the damping is a combination of structural (hysteretic) damping and
frictional damping, denoted by the matrices S and F respectively, the matrix F can be
formed by linearizing the coulomb friction elements. The elements of the F matrix may be
expressed in terms of the displacements in the following manner:

-

(17)-

t
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where &, is the element in the kth row and Ith column, b,, is a constant and gk, is a linear
function of amplitudes. Thus, when the system is excited at its ith natural frequency,

Ll = chlw,v,17 (18)
where &, is a transposed vector of constants. The frictional damping matrix can then be
expressed in the form

F = WF,,
where the elements of Fi have the amplitude independent form

4J&vr
Equation (16) may therefore be stated as

(19)

(20)

j(rS + FJvi = pi (21)
Since the power dissipated, YI when the system is vibrating at its ith natural frequency, is
given by

q = -i(p, = - jo&$p,

it follows that
y = o,v;(I% + LFi)vi, (22)
WJlwi  = hfSvi + $Fivi (23)

Clearly, equation (23) can be used to evaluate the n values of <, Fi and vi corresponding
to n modes of the system. However, this information is not sufficient to completely define
the form of the coulomb damping matrix Fi unless there is additional information relating
to the location of the frictional mechanisms. For example, if it is known that all such
mechanisms couple the structure to ground, Fi must be diagonal and a unique solution
can readily be found to give the values of the corresponding hysteretic damping constants.
Unfortunately, it would appear that no such general unique solution exists when the system
also possesses frictional devices which couple one co-ordinate to another. However, the co-
ordinates which are coupled either to ground or to other co-ordinates by frictional devices
can easily be identified by measuring the power input, WG  to each co-ordinate; when only
the power to the rth co-ordinate is considered, equation (23) takes the form

qJbi = &&+, + $Firvir, (24)
where vir is the rth element of vP F1 is the rth column of the matrix Fi and S, is the rth column.
of the matrix S. Equation (24) is now of the same form as equation (14) and when this result
is plotted, a non-zero $Fi,vL intercept indicates that a frictional device is coupled to the
rth co-ordinate. Further, in the case of only a single frictional device being present in the
system, which couples a pair of co-ordinates, say the rth and sth, the only non-zero intercepts
would be those associated with these two co-ordinates and the magnitude q of the frictional
device can be evaluated directly since

Fiw = Fiss  = - Fi,, = -Fin  = 4q/n(v,  - v,). (25)

4. EXPERIMENTAL INVESTIGATION

A series of tests were carried out in order that the identification method described in
this paper could be applied to a practical system which included a coulomb frictional
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device. The rig was designed to have two principal modes of vibration, a torsional mode
and a transverse mode which could be tuned to provide close or well separated natural
frequencies.

The essential features of the rig comprised a hollow steel rectangular tube which was
securely connected to a rigid steel cross beam This assembly was mounted on a massive
base and the ends of the tube were constrained so as to produce an encastre-pinned beam.
Thus the hollow beam acted as both a spring in bending and torsion, the rigid steel cross
beam providing the mass and inertia properties. Load masses, which were adjustable in
position, were attached to the steel cross beam to provide a means of tuning the natural
frequencies. The coulomb frictional device, which was located close to one end of the rigid
cross beam, consisted of a highly polished hardened steel disc held in contact by a spring
against a Teflon coated aluminium pad which was attached to the cross beam. In order to
excite the normal modes of vibration of the system two electro-dynamic vibration exciters
were connected to the cross beam via push-rod and piezoelectric force link assemblies, the
output responses of the system being measured at the input points by piezoelectric accelero-
meters.

-

-

-

-

-

-

-

-

5. EXPERIMENTAL PROCEDURE

The criterion used for establishing when a normal mode of vibration was excited was the
classical phase-resonance criterion [14].  By employing this criterion, the input powers in
each normal mode were determined as a function of a reference modal amplitude. A typical
set of results from these tests are shown on Figure 2. In order to determine the actual
coulomb friction force magnitudes used in the tests, quasi-static measurements were
carried out. These consisted of measuring the displacement of the cross beam and the input
force at an excitation frequency of 20 mHz The input force was plotted directly against the
output displacement on an X-Y recorder which resulted in a hysteresis curve from which

Normalizing constant, X

Figure 2 Experimental modal input powers from the transverse (-A-) and torsional (A) normal
mode tests. The results are plotted according to the form ofequation (23).
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Figure 3. Hysteresis curve obtained from the quasi-static transverse mode test with the friction pad in contact.
Frequency of excitation force is 20 mHz dF/du = static stiffness.
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Displacement (mm)
Figure 4. Hysteresis curve from the transverse mode without the friction pad in contact. The slope (as in Figure 4)

represents the static stiffness of this mode. Frequency of excitation force is 20 mHz.
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the frictional damping element characteristics could be obtained, Figures 3 and 4 show the
hysteresis curves obtained from the quasi-static tests with and without the frictional device
in operation.

6. ANALYSIS OF RESULTS

The form of the F, matrix for the system under test is obtained by using the intercepts of
the curves on Figure 2 and equation (25). The magnitude q of the frictional force is then given
directly by using the information from either of the two modes since in this case

T ABLE 1

Method of evaluation Coulomb friction force level
(N peak-to-peak)

Quasi-static tests

4.4

4.16

4.5

tir = Cl.0 l*O], gz = Cl.0 - l-01 and Fi = 4q/n. The values of q obtained from this analysis
for both the torsional and transverse modes are shown in Table 1 together with the value
of q obtained from the quasi-static tests. The results from one set of normal mode tests in
the transverse mode were plotted in terms of the vector response in the phase plane,

Re (u)(mn)
-0.2 -04

I
0-I

I

Figure 5. Distortion of a single mode vector response as a result of coulomb friction, curve (a) experimental
results and (b) theoretical response using equations (7) and (8) with values of 6, r and P/k’ obtained from test (a)
reslllts.
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-0.5t , , , , , ,
0.966 0984  I.0  I.016 l-032

cl2

Figure 6. Experimental results from curve (a) of Figure 5 plotted in terms of the complex power components.
v~ In-phase component;- quadrature component.

together with the curve from equations (7) and (8). Figure 5 displays the similarity between
the measured and theoretical results, and the same experimental data, in terms of the in-
phase and quadrature powers is shown plotted on Figure 6. _

7. CONCLUSIONS

The work described in this paper has shown that it is possible to analyze systems which
include non-linear elements characterized by coulomb friction devices. In the case of a
system comprising only one such device it has been shown that not only can the magnitudes
of the frictional forces involved be evaluated but also the actual location of the non-linear
element within the system is obtained In the case of more than one frictional device being
present, it is necessary to have a priori knowledge regarding the location of those non-
linearities in order that their characteristics can be evaluated In some cases these locations
may be obvious, for example, a hinge or a guideway would provide the necessary mech-
anism, in which case their characteristics could be identified The application of complex
power techniques to the frequency response testing of both linear and non-linear systems
appears to offer advantages over the Kennedy and Pancu type plots, where, in the case of
non-linearities, the response locus becomes disturbed to such an extent that damping and
natural frequency estimates incur large errors. The mechanism of obtaining the power
dissipation experimentally is exactly the same as that for obtaining the Kennedy and Pancu
information, whether multi-point or single point excitation methods are used; thus no
deviation in experimental technique is required.

The results of the experimental programme gave very encouraging results, and in the
analysis of complex structures such as the ground resonance testing of aircraft the tech-
nique could be utilized, to aid the present identification schemes already employed.
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