APPLICATION OF THE FINITE ELEMENT METHOD TO THE VIBRATION ANALYSIS OF AXIAL FLOW TURBINES

by
G. Jeyaraj Wilson
B.E. (Civil), Madica University, India, 1966
M.E. (Struct.), Indian Institute of Science,
Bangalore, India, 1968
A thesis submitted to the Faculty of Graduate Studies
in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering.
Carleton University
Ottawa, Ontario
October, 1972

Abstract

The undersigned hereby recommend to the Faculty of Graduate Studies, Carleton University, acceptance of this thesis, "Application of the Finite Element Method to the Vibration Analysis of Axial Flow Turbines," submitted by G. Jeyaraj Wilson, in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering.

The undersigned hereby recommend to the Faculty of Graduate Studies, Carleton University, acceptance of this thesis, "Application of the Finite Element Method to the Vibration Analysis of Axial Flow Turbines," submitted by G. Jeyaraj Wilson, in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering.

ABSTRACT

The finite element method is applied to the vibration analysis of axial flow turbine rotors.
Using the axi-symmetric properties of the configuration
of such rotors, several new finite elements are developed to
describe the bending and stretching of thin or moderately thick
circular plates, and which are characterised by only four or
eight degrees of freedom. These elements incorporate the 'desired
number of diametral nodes in their dynamic deflection functions,
and allow for any specified thickness variation in the radial
direction. In addition, the effects of in-plane stresses, which
might arise from rotation or radial temperature gradient, and the
effects of transverse shear and rotary inertia in moderately
thick plates, are readily accounted for. The accuracy and conver-
gence of these elements is demonstrated by numerical comparison
with both exact and experimental data for discs.

Making the assumption that blade dynamic loadings on the rim of a vibrating blade-disc system are continuously distributed, a method of coupling blade and disc vibration is formulated. For non-rotating configurations of simple geometry an exact solution for the coupled blade-disc frequencies and mode shapes is developed.

```
For configurations more representative of practical turbine
rotors a finite element model is detailed; this model takes into
account arbitrary disc profile and in-plane stresses, taper and twist in the blades, and allows for transverse shear and rotary inertia in both disc and blades where this is thought necessary. Numerical calculations are presented which demonstrate the convergence and accuracy of this finite element model on predicting the natural frequencies of both simple and complex bladed rotors.
Considerable effort has been made to make the computer programs developed for the numerical calculations in this work of practical usefulness to the designer, Thus these are given in some detail, and feature several options which allow flexibility to calculate disc stresses, disc alone vibration, blade alone vibration, and coupled blade-disc vibration frequencies; in the vibration analysis options are available to include effects of in-plane stresses due to rotation or thermal gradient, transverse shear, and rotary inertia.
```


ACKNOWLEDGEMENTS

Abstract

The author wishes to express his deep sense of gratitude and sincere appreciation to Professor J. Kirkhope for his valuable guidance and the many suggestions throughout the course of this investigation, and for painstakingly reading the manuscript and suggesting its improvement.

The author is grateful to Dr. E. K. Armstrong, Head of Vibration Engineering, Rolls-Royce (1971) Limited, for providing experimental data on an actual turbine rotor. Very special thanks are due to Mr. R. W. Harris, senior undergraduate student at Carleton University (1969-70), for obtaining experimental results for the bladed disc models.

This work was supported by the National Research Council of Canada through Operating Grant A-7283.

Finally, the author will be forever grateful to his wife, Jeya, for her help and patient understanding during the preparation of this thesis.

CONTENTS

ABSTRACTACKNOWLEDGEMENTS
CONTENTS
LIST OF PRINCIPAL SYMBOLS
LIST OF FIGURES
CHAPTER 1. INTRODUCTION 1
1.1. PRELIMINARY J.
1.2. REVIEW OF LITERATURE 6
1.2.1. Stress Analysis of Turbine Discs 6
1.2.2. Vibration Analysis of Turbine Discs 10
1.2.3. Vibration Analysis of Axial Flow Turbine Blades 17
1.2.4. Coupled Blade-Disc Vibration 25
1.3. OBJECT OF THE PRESENT INVESTIGATION 29
CHAPTER 2. VIBRATION ANALYSIS OF AXIAL FLOW TURBINE DISCS 32
2.1. INTRODUCTION 32
2.2. ANNULAR AND CIRCULAR THIN PLATE BENDING ELEMENTS 34
2.2.1. Element Geometry and Deflection Functions 34
2.2.2. Element Stiffness and Inertia Matrices 36
2.2.3. Application to Thin Plate Vibration Problems 42
2.3. THE EFFECT OF IN-PLANE STRESSES ON THE VIBRA- TION OF THIN DISCS 46
2.3.1. Additional Stiffness Matrix for the Annular Element due to In-Plane Stresses 47
2.3.2. Plane Stress Finite Element for Thin Discs 49
2.3.3. Numerical Applications 59
2.4. THE EFFECT OF TRANSVERSE SHEAR AND ROTARYINERTIA ON THE VIBRATION OF MODERATELY THICKDISCS62
2.4.1. Annular Plate Bending Finite Elements Inclu- ding Transverse Shear and Rotary Inertia 65
2.4.2. Numerical Applications 72
CHAPTER 3. VIBRATION ANALYSIS OF AXIAL FLOW TURBINE BLADES 75
3.1. INTRODUCTION 75
3.2. MODELLING OF BLADE SEGMENTS USING AVAILABLE BEAM FINITE ELEMENTS 76
3.3. EFFECT OF ROTATION 78
3.4. EFFECT OF TRANSVERSE SHEAR AND ROTARY INERTIA 82
3.5. VIBRATION ANALYSIS OF PRETWISTED BLADES 87
3.6. NUMERICAL APPLICATIONS 91
CHAPTER 4. ANALYSIS OF COUPLED BLADE-DISC VIBRATION IN AXIAL FLOW TURBINES 94
4.1. Introduction 94
4.2. METHOD OF ANALYSIS 95
4.2.1. System Configuration and Deflections 95
4.2.2. Dynamic Stiffness of the Subsystems 100
4.2.3. Dynamic Coupling of the Subsystems 102
4.3. EXACT SOLUTION OF NON-ROTATING ROTORS OF SIMPLE GEOMETRY 104
4.3.1. Dynamic. Stiffness of the Disc 104
4.3.2. Dynamic Stiffness of the Rim 108
4.3.3. Dynamic Stiffness of the Blade Array 108
4.3.4. Dynamic Stiffness of the Disc-Rim-Blade System 110
4.4. FINITE ELEMENT SOLUTION OF ROTORS OF GENERALGEOMETRY111
4.4.1. Dynamic Stiffness of the Disc-Rim-Blade System Neglecting Transverse Shear and Rotary Inertia 111
4.4.2. Dynamic Stiffness of the Disc-Rim-Blade SystemIncluding Transverse Shear and Rotary Inertia 113
4.5. NUMERICAL APPLICATIONS 115
4.5.1. Comparision of Exact and Finite Element Solu- tions for Simple Nonrotating Rotors 115
4.5.2. The Effect of System Parameters on the Frequ-encies of Simple Nonrotating Rotors118
4.5.3. The Effect of Rotation on the Frequencies ofSimple Rotors120
4.5.4. The Effect of Transverse Shear and RotaryInertia on the Frequencies of Simple Rotors 121
4.5.5. Calculated and Measured Frequencies of a
Complex Turbine Rotor 122
CHAPTER 5. SUMMARY AND CONCLUSIONS 124
REFERENCES 128
FIGURES 141
TABLES 176
APPENDIX A APPLICATION OF THE THIN PLATE BENDING ELEMENTSTO STATIC BENDING ANALYSIS OF CIRCULAR ANDANNULAR PLATES258
A.l. INTRODUCTION 258
A.2. NUMERICAL APPLICATIONS 259
A.3. DISCUSSION 260
APPENDIX B VIBRATION OF CIRCULAR AND ANNULAR PLATES WITH TRANSVERSE SHEAR AND ROTARY INERTIA 270
B.l. INTRODUCTION 270
B.2. MINDLIN'S PLATE THEORY 270
B.3. ANNULAR PLATE WITH FREE BOUNDARIES 273
APPENDIX C FINITE ELEMENT ANALYSIS OF THICK RECTANGULAR PLATES IN BENDING 277
c.1. INTRODUCTION 277
c.2. FINITE ELEMENT FORMULATION 278
c.3. NUMERICAL APPLICATIONS 285
c.4. NOTATION 288
APPENDIX D DETAILS OF COMPUTER PROGRAMS 294
D.l. INTRODUCTION 294
D.2. FORTRAN PROGRAM FOR THE ANALYSIS OF ROTORS OF SIMPLE GEOMETRY - PROGRAM-1 294
D.2.1. General Description 294
D.2.2. Input and Output Variables' 296
D.2.3. Subroutines Used in PROGRAM-1 299
D.3. FORTRAN PROGRAMS FOR THE ANALYSIS OF ROTORS OF GENERAL GEOMETRY - PROGRAM-2 and PROGRAM-3 300
D.3.1. General Description 300
D.3.2. Options Available in PROGRAM-2 and PROGRAM-3 301
D.3.3. Input and Output Variables 302
D.3.4. Subroutines Used in PROGRAM-2 and PROGRAM-3 305
D.4.. PROGRAM LISTING 310
D.4.1. Subroutines Used in PROGRAM-1 310
D.4.2. Subroutines Used in PROGRAM-2 323
D.4.3. Subroutines Used in PROGRAM-3 340
D.4.4. Subroutines Used Both in PROGRAM-2 and

LIST OF PRINCIPAL SYMBOLS

```
a - inner radius of turbine disc;
A - area of cross-section of rim;blade;
a| - constants in assumed deflection functions;
b - outer radius of turbine disc;
b
br - breadth of rim;
c - constant used to define variation of \sigmar
d - constant used to define variation of }\mp@subsup{\sigma}{r}{}\mathrm{ ;
d
dr - depth of rim;
D - flexural rigidity of disc;
e - constant used to define variation of 㶴;
e_ - distance from the inner boundary to centroid of rim;
e}2\mathrm{ - distance from centroid to outer boundary of rim;
E - Young's modulus;
E - energy;
f - constant used to define variation of 瑑;
F(r) - centrifugal force;
h(r) - thickness of turbine disc at radius r;
ho - thickness at the centre of the disc;
```

```
I - moment of inertia of blade section;
J - polar moment of inertia of blade section;
k - shear constant used in Timoshenko beam;
k}=(\rhoh\mp@subsup{\omega}{}{2}/D\mp@subsup{)}{}{1/2
K}\mp@subsup{G}{G}{ - St. Venant torsional stiffness of the blade cross-section;
\ell - length of blade element; length of blade;
L - length of blade;
m - number of nodal diameters;
Mr - radial bending moment;
M
n - number of nodal circles;
N - number of finite elements used in a model;
P - radial stress coefficient;
P
q - tangential stress coefficient;
Qi - integrals appearing in stiffness or inertia matrices;
r - radial distance;
R - radius at the root of the blade;
R - radius to the centre of gravity of the blade;
R}\mp@subsup{\mathbf{i}}{\mathbf{ - integrals appearing in the element matrices;}}{
RO - centroidal radius of rim;
Si - integrals appearing in the element matrices;
t - time in seconds;
T - kinetic energy;
```

```
T(r) - temperature at radius r;
u - radial displacement at the middle plane of the disc;
U - strain energy;
v - deflection of the blade along the tangential direction;
v* - deflection of the blade along the Imin direction;
w - axial deflection of the disc, rim and blade;
w* - deflection of the blade along the I,,, direction;
Z - number of blades in the rotor;
a. - constant defining thiclcness variation of element;
a* - coefficient of thermal expansion;
B - constant defining thickness variation of element;
Y
        direction;
    - additional rotation due to transverse shear in the T min
        direction;
\gamma
        direction;
\mp@subsup{W}{W}{*}
        direction;
    - stagger angle;
    -radial strain in the middle plane of the disc;
    - tangential strain in the middle plane of the disc;
0 - radial rotation;
```

```
T(r) - temperature at radius r;
u - radial displacement at the middle plane of the disc;
U - strain energy;
v - deflection of the blade along the tangential direction;
v* - deflection of the blade along the Imin direction;
w - axial deflection of the disc, rim and blade;
w* - deflection of the blade along the I,,, direction;
Z - number of blades in the rotor;
a. - constant defining thickness variation of element;
a* - coefficient of thermal expansion;
B - constant defining thickness variation of element;
\gamma
        direction;
    - additional rotation due to transverse shear in the I min
        direction;
\gamma
        direction;
\mp@subsup{\gamma}{\textrm{w}}{*}
        direction;
\delta - stagger angle;
\varepsilon
\mp@subsup{\boldsymbol{\varepsilon}}{\boldsymbol{\xi}}{}
0 - radial rotation;
```

```
0* - rotation of blade in the I,,, direction;
\lambda - nondimensional frequency parameter;
\lambda}\mp@subsup{\lambda}{1}{}=(\mp@subsup{\omega}{}{2}\rho/E\mp@subsup{E}{1}{}\mp@subsup{)}{}{1/4}
\lambda}\mp@subsup{\lambda}{2}{}=(\mp@subsup{\omega}{}{2}\rho/\mp@subsup{EI}{2}{2}\mp@subsup{)}{}{1/4}
\lambda}\mp@subsup{\lambda}{3}{}=(\textrm{J}/\mp@subsup{\textrm{GK}}{G}{}\mp@subsup{)}{}{1/2}
\mu - radius of gyration of a rectangular blade section in a
        principal direction;
v - Poisson's ratio;
\xi - angle in radians measured from the reference antinode;
p -mass density of material;
\sigma
\sigma
\sigma
\sigma
\phi - angle of twist of the blade;
\psi - tangential rotation of the blade;
\psi* - rotation of blade in the I Imin direction;
\omega - circular frequency in radians/second;
\Omega - angular velocity of rotor in radians/second;
\Omega* - nondimensional rotation of a uniform blade.
{fc} - consistent load vector resulting from rotation;
{ft } - consistent load vector resulting from temperature gradient;
{q}\mp@subsup{}}{\textrm{b}}{}}\mathrm{ - blade element displacement vector;
```

```
\{q奇 \(\}\) - blade element displacement vector along the principal
        directions;
\(\left\{\mathrm{q}_{\mathrm{B}}\right\}\) - blade subsystem displacement vector;
\(\left\{\bar{q}_{d}\right\}\) - disc element displacement vector;
\(\left\{\overline{\mathrm{q}}_{\mathrm{d}}^{\mathrm{O}}\right\}\) - circular disc element displacement vector;
\(\left\{q_{D}\right\}\) - disc subsystem displacement vector;
\(\left\{q_{R}\right\}\) - rim subsystem displacement vector;
\(\left\{q_{S}\right\}\) - rotor system displacement vector;
\(\left\{Q_{B}\right\}\) - blade subsystem load vector;
\(\left\{Q_{D}\right\}\) - disc subsystem load vector;
\(\left\{Q_{R}\right\}\) - rim subsystem load vector;
\(\left\{\mathrm{Q}_{\mathrm{S}}\right\}\) - rotor system load vector;
\(\left[\mathrm{B}_{\mathrm{d}}^{\mathrm{a}}\right]\) - ' \(\mathrm{B}^{\prime}\) matrix of rotating blade element;
\(\left[B_{d}\right]-B^{\prime}\) matrix of thin plate elements;
\(\left[B_{d}^{t}\right]\) - 'B' matrix of Thick Disc Elements;
\(\left[B_{d}^{0}\right]-' B '\) matrix of thin plate circular elements;
[C] - diagonal matrix with diagonal terms \(\cos m \xi\)
[ \(D_{B}\) ] - dynamic stiffness matrix of the blade subsystem;
[ \(D_{D}\) ] - dynamic stiffness matrix of the disc subsystem;
[ \(D_{R}\) ] - dynamic stiffness matrix of the rim subsystem;
[ \(\mathrm{D}_{\mathrm{S}}\) ] - dynamic stiffness matrix of the rotor system;
[E] - a matrix;
[ \(k \mathrm{~b}\) ] - ' \(k\) ' matrix of a rotating blade element;
[ \(k_{d}\) ] - 'k' matrix of thin plate bending annular element;
```

$\left[k_{d}^{a}\right]$ - 'k' matrix of the thin plate bending element resulting from rotation;
[$\left.k_{d}^{t}\right]$ - 'k' matrix of the Thick Disc Elements;
$\left[k_{d}^{0}\right]-{ }^{\prime} k^{\prime}$ matrix of the thin plate bending circular element;
$\left[k_{d}^{p}\right]-{ }^{\prime} k^{\prime}$ matrix of the plane stress annular element;
[$k_{\text {do }}^{a}$] - ' k ' matrix of the thin plate bending circular element resulting from rotation;
[$k_{d o}^{p}$] - 'k' matrix of the plane stress circular element;
[$\left.k_{t}^{a}\right]$ - ' k ' matrix of a blade torsional element due to rotation;
$\left[k_{v}^{a}\right]$ - 'k' matrix of a blade bending element due to rotation, for bending in the plane of rotation;
$\left[k_{w}^{a}\right]$ - 'k' matrix of a blade bending element due to rotation, for bending out of plane of rotation;
[K_{b}] - blade element stiffness matrix;
$\left[K_{b}^{a}\right]$ - additional stiffness matrix due to rotation of the blade element;
$\left[K_{b}^{t}\right]$ - blade element torsional stiffness matrix;
$\left[K_{b}^{V}\right]$ - blade element stiffness matrix for bending in the $I_{m i n}$ direction;
$\left[K_{b}^{W}\right]$ - blade element stiffness matrix for bending in the $I_{m a x}$ direction;
$\left[\begin{array}{c}\left.K_{b}^{*}\right]\end{array}\right]$ - blade element stiffness matrix corresponding to deflections along the principal directions;
$\left[K_{B}\right]$ - blade subsystem stiffness matrix;
$\left[K_{d}\right]$ - thin plate bending element stiffness matrix;
[K_{D}] - disc subsystem stiffness matrix;
$\left[K_{d}^{\mathbf{a}}\right]$ - additional stiffness matrix due to in-plane stresses of the thin plate bending annular element;

```
\(\left[K_{d}^{p}\right]\) - plane stress annular element stiffness matrix;
\(\left[K_{d}^{t}\right]\) - Thick Disc Element stiffness matrix;
\(\left[\mathrm{K}_{\mathrm{d}}^{\mathbf{0}}\right.\) ] - thin plate bending circular element stiffness matrix;
[ \(\mathrm{K}_{\mathrm{do}}^{\mathrm{a}}\) ] - additional stiffness matrix due to in-plane stresses of
        the thin plate bending circular element;
[ \(\mathrm{K}_{\mathrm{do}}^{\mathrm{p}}\) ] - plane stress circular element stiffness matrix;
[ \(\mathrm{K}_{\mathrm{R}}\) ] - rim subsystem stiffness matrix;
[ \(\mathrm{K}_{\mathrm{S}}\) ] - rotor system stiffness matrix;
[ \(\mathrm{m}_{\mathrm{d}}\) ] - ' m ' matrix of the thin plate bending annular element;
[ \(\mathrm{m}_{\mathrm{d}}^{\mathrm{t}}\) ] - ' m ' matrix of the Thick Disc Elements;
[ \(\mathrm{m}_{\mathrm{d}}^{0}\) ] - ' m ' matrix of the thin plate bending circular element;
[ \(M_{b}\) ] - blade element inertia matrix;
\(\left[M_{b}^{t}\right]\) - blade torsional element inertia matrix;
[ \(M_{b}^{V}\) ] - blade element inertia matrix for bending in the \(I_{m i n}\) direction;
[ \(\left.M_{b}^{W}\right]\) - blade element inertia matrix for bending in the \(I_{\max }\) direction;
[M大] - blade element inertia matrix corresponding to deflections
    along the principal directions;
[ \(M_{B}\) ] - blade subsystem inertia matrix;
\(\left[M_{d}\right]\) - thin plate bending element inertia matrix;
[ \(M_{D}\) ] - disc subsystem inertia matrix;
\(\left[M_{d}^{t}\right]\) - Thick Disc Element inertia matrix;
\(\left[M_{d}^{0}\right]\) - thin plate bending circular element inertia matrix;
[ \(M_{R}\) ] - rim subsystem inertia matrix;
[ \(M_{S}\) ] - rotor system inertia matrix;
[R] - rotation matrix;
```

1.1 Effect of disc stiffness on the coupled blade-disc frequencies. 141
1.2 Interference diagram. 142
2.1 Thin plate bending annular element with two nodal diameters and linear thickness variation. 143
2.2 Thin plate bending circular element with two nodal diameters and linear thickness variation. 144
2.3 Modelled circular plate. 145
2.4 Percentage absolute error in the first six frequ- ency coefficients of a simply supported circular plate. 146
2.5 Modelled circular disc with parabolic thickness variation. 147
2.6 Plane stress annular element 148
2.7 Radial and tangential stress coefficients for a uniform rotating disc, calculated using the plane stress annular element. 149
2.8 Variation of harmonic excitation frequencies with rotational speed of a thin annular plate. 150
2.9 Thick Disc Element-l with two nodal diameters and associated degrees of freedom. 151
2.10 Thick Disc Element-2 with two nodal diameters and associated degrees of freedom. 152
2.11 Stepped circular disc and five element finite element model. 153
2.12 A practical turbine disc and its finite element models. 154
3.1 Blade element with associated degrees of freedom. 155
3.2 Blade element with associated degrees of freedom when transverse shear is considered. 156
3.3 Pretwisted blade modelled with two straight beam elements. 157
3.4 Relationships between distortions along the prin- cipal directions and the coordinate system chosen 158
3.5 Variation of the first two frequencies of a rota- ting beam with speed of rotation. 159
3.6 Percentage error versus degrees of freedom of Timoshenko beam elements, simply supported beam. 160
3.7 Percentage error versus degrees of freedom of Timoshenko beam, cantilever beam 161
4.1 Bladed disc with two nodal diameters 162
4.2 Rim deflections and forces. 163
4.3 Bladed disc system configuration and deflections. 164
4.4 Bladed disc system configuration and deflections when transverse shear is considered. 165
4.5 Sand pattern illustrating mode shapes of vibrating bladed disc models. 166
4.6 Variation of the first six coupled bladed disc frequencies with nodal diameters, Model I. 167
4.7 Variation of the first six coupled bladed disc frequencies with nodal diameters, Model II. 168
4.8 Influence of R / b ratio on the first coupled bladed disc frequency. 169
4.9 Influence of blade aspect ratio on the first coupled bladed disc frequency. 170
4.10 Influence of blade stagger angle on the first coup- led bladed disc frequency. 171
4.11 Influence of R / b ratio on the higher coupled frequencies. 172
4.12 Influence of blade aspect ratio on higher coupled 173frequencies.
4.13 Influence of stagger angle on the higher coupled 174frequencies.
4.14 Details at blade disc attachment of the turbine 175 rotor.

CHAPTER1

INTRODUCTION

1.1 PRELIMINARY

Abstract

The stress and vibration analysis of almost every part of a gas turbine is of major concern to the designer. The bladed disc, which transmits torque from the blades to the shaft of the engine, constitutes an important part of the turbine. The problem of optimizing the disc configuration becomes more significant with the ever increasing demand for higher power and lighter weight of the gas turbine. The continuing emphasis on longer life together with reliable and safe operation in severe environments requires greater accuracy and speed in the mechanical analysis of the various parts of the turbine, especially the bladed disc.

The objective of present day structural design is to arrive at the most efficient structure, subjected to certain constraint conditions, for the specified load and temperature environment. In the design of the bladed disc certain geometrical restrictions may be imposed on the profile of the disc by its functional aspects as well as the geometry of other parts

```
of the turbine. In addition, certain behavioural constraints,
such as keeping the lowest natural frequency of the disc above
some specified limit, may also be imposed. Hence, the design
of the bladed rotor will normally require the accurate analysis
of several trial profiles until the satisfactory one is reached
It is therefore essential that the designer has available simple,
reliable and accurate methods of analysis.
    In a turbine disc, in addition to the stresses result-
ing from bending, torsion and temperature gradient, very high
stresses develop due to the centrifugal forces at high speeds.
These stresses constitute the major portion of the total stresses and are not reduced by the thickening of the disc. Consequently the material unavoidably works at its limit, and hence the accuracy required on the predictions of these stresses is very high. Structural vibrations of the rotor, which might be torsional, or radial,but which are most predominantly axial, may also produce high stresses and lead to fatigue failures which are not understood on the basis of high steady stresses alone. Inorder to avoid strong resonant vibrations within the operating range of the machine, itis essential that the designer should be able to predict accurately the natural frequencies of the rotating bladed rotor, .
```

```
The complexity of the system makes it impossible to consider the entire system with all its generalities, for the analysis. In general the component parts of the rotor are analysed separately, and evenso making several simplifying assumptions to facilitate the analysis. Invariably both the disc and the loading are considered to be axisymmetric while analysing the stresses. When the vibration of the bladedrotor is examined, the problem is simplified, in most cases, by assuming either rigid blades attached to a flexible vibrating disc, or, more commonly, flexible vibrating blades attached to a rigid disc
The stress analysis of typical rotating discs for axial flow rotors is quite well understood, and reliable methods for calculation of steady stresses from rotation and thermal loading are available. Determination of steady stresses in the blade is also generally satisfactory, although there remain problems with highly twisted low aspect ratio configurations.
On the other hand, the determination of the vibratory behaviour of bladed rotors is less well defined. The effects of transverse shear and rotary inertia are generally neglected, leading to substantial discrepancies with experimental data in many rotors. More important, both experimental and theoretical studies indicate that coupling between-the blades and the disc
```

cannot be neglected. It is now increasingly recognized that the significant vibration of many axial flow turbines involves combined participation by both blades and disc. This coupling between blades and disc can substantially modify the natural frequencies of the system (1), is thought to strongly influence the distribution of vibratory stresses in the blades (2-5), and can lead in some instances to aeroelastic instability (6).

A recent example of fatigue failure of turbine rotor blades resulting from coupling between blade and disc vibration is described by Morgan et al (7). Fatigue cracks were found either in the top serration of the fir tree roots or in the blade form starting at the trailing edge near the root. The resonance of the first flapwise mode (1F) with sixth orderexcitationwas thought to be the most probable cause. Modifications were made both to the blade fixings and to stiffen the disc which proved successful.

Figure 1.1, taken from the above mentioned reference, illustrates the influence of disc flexibility on the frequencies of the coupled blade-disc system, especially the first "flapwise" (1F) and the first "edgewise" (1E) modes, Here these two sets of frequencies, obtained experimentally, are plotted against engine speed and engine excitationorder, for two different rotors, one
with a thick disc (solid line), and the other with a thin disc (broken line). These rotors had the same blades. As seen from the figure, when the disc is thick, disc flexibility has very little effect on the system frequencies. The reduction in frequencies with speed of rotation is probably due to reduction of elastic modulus with temperature and some disc effect. In the operating range of 6000 to 8000 rpm, we have only a few resonances for this rotor. The $1 F$ modes of the blade areexcited only with engine orders 6 and 7, and the 1E modes with engine orders 10, 11, and 12. But when the disc is thin, within the operating range we have a large number of resonances. In this case we have the 1F modes with engine orders 2 to 7 , and the $1 E$ modes with engine orders 9 to 12. Thus the authors state that, "identification of the failure mode was difficult," because of the many resonances present. It should also be noted that, when the disc is thin, the $1 E$ modeexcitedby engine order 8 lies just above the operating range. Since eight combustors were present in the engine, engine order 8 was particularly significant.

In summary, while the designer has available reliable methods for determining steady stresses in axial flow turbines, methods of determining the vibratory behaviour are much less adequate. Any realistic vibratory analysis of practical rotors should consider the effects of centrifugal and thermal stresses, the effects of transverse shear and rotary inertia and the effects
of dynamic coupling between the vibrating blades and the vibrating disc. It is on these aspects of the vibratory behaviour of turbine discs, that the work described below is focussed.

1.2 REVIEW OF LITERATURE

Much work has been published describing typical stress and vibration problems encountered with axial flow turbine and compressor rotors. The publications of Shannon (8), Blackwell (9), Armstrong and Stevenson (10), Armstrong and Williams (11), Waldren et al (12), Goatham et al (13), and Petricone and Sisto (14), and NASA Technical Report TR R-54 (15) give excellent background and references to the problems encountered with aircraft power plant,

1.2.1 Stress Analysis of Turbine Discs

Much of the published work on the stress analysis of turbine discs deals with plane stress solutions, and three dimensional treatments are sparse. The reason for this is that when the thickness of the disc is small compared to the radius, the variation of the tangential and radial stresses over the thickness can be neglected and, taking mean values, satisfactory two dimensional approximations can be made.

Exact solutions with this plane stress approximation are available for several non-uniform profiles. Comprehensive reviews of early exact solutions of the problem are given in the classic works of Stodola (16) and Biezeno and Grammel (17) Several disc profiles suchas exponential, hyperbolic, anä conical radial thickness variation have been considered.

More recently Manna (18) has also treated several unconventional profiles where the thickness can be represented as

$$
\left.h=h_{0} I 1-(r / b .)^{2 / q}\right]^{p}
$$ where h_{0} is the thickness at the axis of rotation and b is the outer radius of the disc, q is a positive integer and p is greater than 2. Such an expression leads to a remarkably wide range of profiles, and is amenable to exact solution in terms of hypergeometric series.

Of the numerical methods which have been developed, Donath (19) first devised an approximate method where the actual disc is replaced by \boldsymbol{a} model consisting of a series of rings of uniform thickness; and further improvement of this method was made by Grammcl (17).
. Manson (20,21) and others (22) have also replaced the disc by a series of uniform thickness rings, and solved the governing differential equations by finite difference methods.

This approach has formed the basis of the most widely used techniques for stress analysis of practical axial flow turbine discs. Further developments by Manson (23) extended the method to include elasto-plastic behaviour of the disc material, and, ofcourse, these methods readily allow for both centrifugal inertia forces and radial thermal gradients.

Several other techniques have also been employed for numerical solution of the plane stress problem. Mote (24) has used stress functions with undetermined constants which are adjusted to satisfy the thermal and inplane boundary conditions. Bogdanoff et al (25) have calculated the stresses in a disc by numerical integration of the plane stress equations of classical elasticity theory, Soo (26) has used a matrix technique for this problem.

In recent years, requirements for increased analysis accuracy and the use of relatively thick disc profiles has focussed attention on the three dimensional stress distribution present. The axial stress, neglected in thin disc analysis, can have a substantial effect on disc burst speed. Haigh and Murdoch (27) have considered axially symmetrical turbine wheels of appreciable thickness for which the thin disc theory gives only approximate results. Their analysts is based on three dimensional equlibrium
equations. The solutions are obtained with a digital computer by relaxing the two governing equations using stress functions.

Radial flow rotors, while not of immediate concern in this work, are increasingly used and present most difficult problems in analysing the three dimensional stress distribution present. Such rotors are generally of asymmetric profile. Kobayashi and Trumpler (28) have developed a solution for the three dimensional stress analysis of such asymmetric discs. First the plane strain problem of a long rotating cylinder is considered. Then the surface tractions acting on a disc cut off from this cylinder are eliminated by a relaxation procedure employing Southwell stress functions. The solutions are obtained numerically using a digital computer. Only centrifugal forces are considered, and extension of this method for the calculation of thermal stress in the disc is outlined; Swansson (29) has used the two dimensional approach of Schilhansl (30) for the above problem and his results agree well with those of Kohayashi and Trumpler (28) for certain cases. Thurgood (31) has suggested further improvements of this method and has studied the effect of including axial deflection in the analysis; which he found, to have significant effect on the stress distribution in the disc.

[^0]this problem, Stordahl and Christensen (32) have treated the problem as axisymmetric and analysed the impeller using a finite element method, Chan and Hendrywood (33) have developed and used ring shaped elements of triangular cross-section in the analysis of radial flow impellers.

Besides the various numerical methods used, photoelastic analysis has also been used in the stress analysis of rotating discs (34-37).

1.2.2 Vibration Analysis of Turbine Discs

The vibration of turbine discs and of circular or annular plates is characterised by modes having integer numbers of nodal diameters and circumferential nodal circles. Much of the early work on plates and discs is summarised in the texts by Prescott (38) and Stodola (16).

The vibration of rotating discs has been quite well understood since the classic work of Campbell (39) and Stodola (16). This vibration is also found to comprise wave patterns involving integer numbers of nodal diameters and nodal circles, these patterns rotating forwards or backwards in the disc. The angular velocities of these waves in the discs are;
forward wave f_{m} / m revs./second
backward wave - $\hat{f}_{\mathrm{m}} / \mathrm{m}$ revs./second

```
where fm
with m nodal diameters. If now the disc rotates with angular
velocity \Omega revs./second, then relative to a stationary obser-
ver we have;
```

 forward wave \(\Omega+\mathrm{f}_{\mathrm{m}} / \mathrm{m}\) revs./second
 backward wave \(\Omega \rightarrow \mathrm{f}_{\mathrm{m}} / \mathrm{m}\) revs./second
 The work of Campbell and Stodola established that the
 dangerous condition of operation was such that the backward wave
Is stationary in space,

$$
\Omega-f_{m} / m=0 \quad \text { or } \quad f_{m}=m \Omega
$$

Thus a mode with m nodal diameters is stronglyexcitedby the $m^{\text {th }}$ order of rotational speed.

The mechanism by which only the backward wave is significant is complicated, and perhaps not yet completely understood, Tobias and Arnold $(40,41)$ are generally credited with the most rational explanation to date, and they concluded that unavoidable dynamic imperfections of the disc can account for the phenomenon, The major task of the designer is to avoid the dangerous resonant condition where the backward wave is stationary in space, This involves the accurate prediction of the natural frequencies of the disc; these frequencies, while mainly dependent on thin disc elastic and Inertia properties
can be substantially modified by in-plane stresses and transverse shear and rotary inertia.

Exact solutions forconstant thickness, thin circular and annular plates are given in the excellent monograph by McLeod and Bishop (42). Vogel and Skinner (43) have given numerical data for the calculation of the natural frequencies of uniform circular and annular plates with various boundary conditions. Leissa (44) has collected most of theavailablenumerical data on this problem.
Exact solutions for thin plates of variable thickness
are quite limited. Conway (45) has investigated the transverse
vibrations of some variable thickness plates when Poisson's ratio
is given particular values. Harris (46) has developed an exact
solution for the free vibration of circular plates with parabolic
thickness variations.

The transverse vibration of a circular plate of uniform thickness rotating about its axis with constant angular velocity has been studied by Lamb and Southwell (47,48). They have separated the effect of rotation and have solved the vibration problem of the membrane disc. When both' plate flexural stiffness and membrane forces are operative, the following relationship is used to get the natural frequencies of the disc
$\omega^{2}=\omega_{1}^{2}+\omega_{2}^{2}$
where ω is the lower bound of the combined frequency of the rotating disc, ω_{1} is the frequency of the membrane disc where the plate flexural stiffness is neglected, and ω_{2} is the frequency of the stationary disc in which membrane stresses are absent.

Ghosh (49) has extended this approach to plates of variable thickness. Eversman (50) has outlined a solution to this problem when both membrane stresses and disc bending stiffness are considered together.

For the vibration analysis of discs having general thickness profile several numerical methods have been used. References to Prescott (38), Stodola (16), and Biezeno and Grammel (17) gives a good summary of early numerical methods based on the assumption of very simple deflection shapes for the disc, Perhaps the most successful and widely adopted numerical method is due to Ehrich (51), who derived a transfer matrix approach. The arbitrary disc is replaced by a number of annular strips of constant thickness, Every alternate strip is considered to be massless, but to have the local elastic properties of the actual disc. The intermediate strips are considered to have the local inertial properties but no elasticity. The effect of in-plane stresses resulting from rotation is also accounted for. The natural frequencies of the

```
disc are found by a trial and iterative procedure using the residual determinants derived for various boundary conditions.
Among the other numerical methods which have been used, Mote (24) and Soo(26) have used Rayleigh-Ritz procedure. Bleich (52) has used the collocation method, for the vibration analysis of circular discs.
```

Several workers have recently applied the finite
element method to the problem. Anderson et al (53) have suggested
the use of triangular elements for the vibration analysis of
uniform annular plates. Olson and Lindberg (54) have developed
and used circular and annular sector elements for the analysis of
uniform circular and annular plates, Sawko and Merriman (55) and
Singh and Ranaswamy (56) have developed'sector elements with
sixteen and twenty degrees of freedom respectively and have
applied these elements in the static analysis of plates only.
Chernuka et al (57) have used a high precision triangular element
with one curved side for the static analysis of plates with curved
boundaries. This element is described by eighteen degrees of
freedom, and probably represents the most refined description for
plates with curved boundaries which has been reported so far.
It should.be noted that none of these finite element approaches
makes use of the axisymmetric properties of a complete circular
disc, and all result in a mathematical model which is described by a large number of degrees of freedom.

When thick discs are considered, frequencies calculated using thin plate theory differ substantially from experimental values. Three dimensional elasticity solutions should be used in such situations $(58,59)$. For the analysis of moderately thick discs and for the higher modes of relatively thin discs, plate theories which take into account effects of transverse shear and rotary inertia can be used. It is well known that both these effects serve to decrease the computed frequencies because of additional flexibility and increased inertia.
Reissner(60) extended the classical thin plate theory
to include transverse shear deformation for the static analysis
of plates. A consistent theory for the dynamic behaviour of
plates, including rotary inertia and transverse shear was then
developed by Uflyand (61), followed by Mindlin (62), who derived
the basfc sixth order system of partial differential equatfons of
motion along with potential and kinetic energy functions for this
problem. He has also given a consistent set of equations relating
moments and transverse shears to transverse deflection and bending
rotations, Mindlin and Deresiewicz (63) have further developed
and applied this theory,

Abstract

Moderately thick circular plates have been analysed by several investigators. Deresiewicz and Mindlin $(64,65)$ have considered the symmetrical vibration of circular plates. Callahan (66) used the Mindlin theory to derive characteristic determinants corresponding to eight separate sets of continuous boundary conditions for circular and eliptical plates. Bakshi and Callahan (67) have derived similar determinants for the vibration analysis of circular rings (annular plates). Onoe and Yano (68) have followed a different approach to this problem which they claim is applicable to the higher order vibrations of circular plates.

Very few numerical methods have been suggested for this problem, Pestel and Leckie (695 have derived transfer matrices for annular strips, which are used to model circular and annular discs, including transverse shear and rotary inertia. This is essentially an improvement of Ehrich's lumped mass model. Clough and Felippa (70) have incorporated a simple shear distortion mechanism into their refined quadrilateral finite element which they have used in the static analysis of circular plates including transverse shear.

No published work is available, to the knov1edge of the author, on the vibration analysis of variable thickness discs where effects of transverse shear and rotary inertia are also included in the analysis; also no one has considered the effects of in-plane stresses together with transverse shear and rotary inertia even when the disc is uniform.

Abstract

In contrast to the many theoretical results published on the vibration of turbine discs and circular plates, it is surprising how little experimental data has been published in the literature, Campbell (39) in his classic work obtained experimentally frequencies and mode shapes of steam turbine rotors and has studied the effect of rotation on the frequencies. Peterson (71) has tested annular and circular discs of both uniform and stepped sections in connection with the study of gear vibration. Recently French (72) has described experimentally observed vibration of gas turbine compressor discs. This paper does not appear to have been published in any Journal, however. Mote and Nieh (73) have investigated theoratically and experimentally the relationship between the state of disc membrane stress, critical rotation speed and the frequency spectrum in radially symmetric, uniform thickness, disc problems. Onoe and Yano (68) have obtained experimentally several frequencies of relatively small but thick circular discs, used in mechanical filters, and compared these with their analysis method.

1.2.3 Vibration Analysis of Axial Flow Turbine Blades

Much work has been published on the vibration analysis of axial flow turbine blades and a fairly complete review of the problems and various analytical methods used is given by Dokainish and Rawtani (74), Practical turbine blades have an aerofoil

```
cross-section and possess, in addition to camber and longitudinal
taper, a pretwist to allow for the variation in tangential velocity
along the span of the blade. Since all these factors complicate
the analysis, in practice, many simplifying assumptions are usually
made in the analysis. In most of the analytical methods suggested
for the analysis, the blades are idealized to behave as beams
having radial variation in section properties and pretwist.
Attachment to the disc in the case of "firtree" or "dovetail"
slots is generally considered rigid (i.e, a cantilever beam) or
bymeans of springs which represent, in some manner, the finite
flexibility of the fixing. In the case of pin attachments, the
rotational constraint about the axis of the pin is relaxed (13),
    In many cases coupling between bending and twisting
of the blade resulting from non-coincidence of the centroid and
shear centre of the aerofoil section is ignored. There are
difficulties in determining the shear centre of an aerofoil
section. Bending-torsion coupling can also result from the
fact that the blade aerofoil at the root is not in a plane
parallel to the axis of rotation; this effect cannot be accoun-
ted for with a beam model,
```

```
    . Considerable difficulty arises in determining the
```

 . Considerable difficulty arises in determining the
 torsional stiffness, This comprises three contributions.
torsional stiffness, This comprises three contributions.
(a) The St. Venant torsional stiffness,

```
    (a) The St. Venant torsional stiffness,
```

(b) Additional stiffness due to pretwist,
(c) Additional stiffness due to restrained warping at the root or at shrouds.

Thile determination of contribution (b) is complicated, this effect has been included in most refined blade models. The contribution (c) is particularly difficult to obtain even when complete warping restraint is assumed, and this effect has generally been neglected, or at best accounted for by some "effective shortening" of the blade.

```
The effects of transverse shear and rotary inertia on blade frequencies have generally been neglected, This is somewhat justified, because the limitations previously mentioned above generally result in unacceptable errors long before the effects of shear and rotary inertia become significant.
```

```
Beam type models have been successfully used for high aspect ratio, thin, compressor blades, and somewhat less successfully for high aspect ratio turbine blades. Calculated frequencies of engineering accuracy are usually limited to the first three or so modes of vibration.
```

[^1]used, and the solution to such problems probably will require modelling the blade as a curved shell of varying thickness and curvature. Notwithstanding this, beam type models of turbine and compressor blades are still widely used.

In its simplest form the axial flow turbine blade is considered to be a tapered beam of rectangular cross-section without pretwist. Pinney (75) has given an exact solution, for the frequencies and mode shapes, for beams with certain types of taper. Perhaps the most widely adopted numerical method, for nonuniform beams, is the lumped mass method of Myklestad (76). Leckfe and Lindberg (77) were the first to develop the beam flexure finite element and to demonstrate its accuracy compared to other conventional lumped parameter methods. Later Lindberg (78) and Archer (79) developed finite elements for the analysis of tapered beams. Carnegie and Thomas (80) have given a method of analysis of cantilever beams of constant thickness and linear taper in breadth.
Even when a rectangular section is assumed for the
blade, pretwisting couples bending in the two principal direc-
tions, Rosard (81) has investigated such coupled vibration of
blades, In this analysis the blade is divided into a number of
segments; the mass and elasticity are concentrated at stations,
and a transfer matrix method is developed.

Abstract

The bending vibrations of a pretwisted beam lead to two fourth order differential equations. A method of solving these two coupled equations is given by Troesch et al (82). Carnegie (83) has used Rayleigh's energy method to calculate the first frequency in bending of a pretwisted cantilever beam. The static deflection curve is used in the analysis. Slyper (84) has used the Stodola method for this problem, Dokumaci et al (85) have used the finite element technique with matrix displacement type analysis, for the determination of the bending frequencies of a pretwisted cantilever beam. They have derived the stiffness and mass matrices for a pretwlsted beam element of rectangular cross-section, Natural frequencies and mode shapes are obtained from the resulting eigenvalue problem,

When the aerofoil section of the blade is considered the torsional vibration is also coupled with the bending vibration of the blade, Mandelson and Gendler $(86,87)$ have suggested a method of analysis for the problem using the concept of station functions, Houbolt and Brooks (88) have derived the differential equations of the coupled bending-torsion vibration of twisted nonuniform blades, Dunham (89) has derived the equations of motion in a twisted coordinate system following the blade length and has used them for the determination of the first natural
frequency. Carnegie (80) has used the Rayleigh method to find an expression for the calculation of the fundamental frequency of the blade.
Perhaps the most careful and complete treatment of the
problem is that by Montoya (90) who has derived the governing
differential equations for the vibration analysis of twisted
blades of aerofoil section, including coupling between bending
and torsion. Effect of rotation on both bending and torsion are
also considered. Runge-Kutta numerical procedure is followed to
solve the problem and the differential equations are converted into
ten first order equations. Assuming unit values to each of the
unknowns at the fixed end, corresponding values are found at the
free end and are combined linearly, resulting in a set of equations.
The boundary conditions at the free end require the determinant of
these equations to vanish when the correct frequency value is
assumed. Results obtained when twist and torsional coupling are
neglected are compared with those obtained when these effects are
considered; and it is shown that these effects should not be
ignored,

When a rotating blade is considered, the additional stiffness due to the centrifugal forces should be considered. The centrifugal forces induce several additional coupling terms 'In the already complicated equations of motion. The effect of rotation
on the bending frequencies has been considered by Sutherland (91) by using a Myklestad type tabular method of analysis. Plunkett (92) has developed matrix equations governing transverse vibration of a rotating cantilever beam. Bending vibrations in a plane inclined at any general angle to the plane of rotation has been investigated by Lo et al (93). They have also observed that the equations of motion contain a nonlinear term resulting from the Corfolis acceleration (94). Equations of motion for a rotating cantilever blade using Hamilton's principle have been derived by Carnegie (95).

Jarrett and Warner (96) and Targoff (97) have solved the problem of a rotating twisted blade idealizing the blade by a lumped mass system. Isakson and Eisley $(98,99)$ have also used Myklestad type analysis for calculating the bending frequencies of pretwisted rotating beams. The effect of rotation on the torsional frequencies has been investigated by Bogdanoff and Horner (100,101) and by Brady and Targoff (102). Karupka and Baumanis (103) have derived the field equations for coupled bending-torsion vibrations of a rotating blade using Carnegie's formulation of the Lagrange equations of motion. Cowper (104) has developed a computer program to calculate the shear centre of any arbitrary cross-section.

```
When the blades are thick, the classical Bernoulli-
```

Euler beam theory for bending vibrations is known to give higher

```
values of computed frequencies. In such cases transverse shear
and rotary inertia should be included in the analysis. Rayleigh
improved the classical theory considering rotary inertia of the
cross-section of the beam. Timoshenko extended the theory to include the effects of transverse shear deformation. Prescott (38) and Volterra(105) have developed various Timoshenko type beam models. Huang (106) has given solutions of Timoshenko equations for a cantilever beam of rectangular cross-section. Carnegie and 'Thomas (107) have used the finite difference method for the bending vibration analysis of pretwisted cantilevers including the effects of transverse shear and rotary inertia.
Among the other published work connected with blade vibration; Gere (108I has derived differential equations, for the torsional vibrations of beams of thin walled open cross-section for which the shear centre and centroid coincide, including the effects of warping of the cross-section, Grinsted (109) has studied the complex nodal patterns of turbine blades; impeller vanes and discs, Ellington (110) has derived frequency equations for the modes of vibration of turbine blades laced at their tips. Pearson (111) and Sabatiuk and Sfsto (112) have discussed the aero-dynamics of turbine blade vibration.
As mentioned earlier beam type models are not applicable to low aspect ratio blades. Such blades are generally treated either as plates (113) or as shells (114).
```


1.2.4 Coupled Blade-Disc Vibration

The existence of coupling between the blades and disc and its influence on the natural frequencies of bladed rotors has been demonstrated by both experimental and theoretical studies. With a bladed disc it is found that similar concepts to that of the unbladed disc apply; the rotor oscillates in a coupled bladedisc mode characterised by diametral and circular nodes. The blades being constrained in the disc at the rim, will vibrate in 'bending motion at diametral anti-nodes, in torsional motion at nodes, and in combined bending-torsion elsewhere. The circular nodes may lie in the disc, but will more often be located in the blades. This whole pattern may rotate as in the disc alone case, and again the dangerous resonant vibration condition corresponds to an m nodal diameter mode exited by the $m^{\text {th }}$ order of rotational speed.
The general features of the resonant conditions in a
typical rotor may be illustrated in a Campbell or interference
diagram, Figure 1.2 . In this diagram are shown the resonances
predicted assuming rigid blades on a flexible disc, and flexible
blades on a rigid disc. For the former assumption the resonances
occur when the m. order of rotational speed is equal to the
frequency of the disc mode with m nodal diameters. For the

Abstract

latter assumption the resonances occur whenever the various rotational excitation frequencies are equal to a blade natural frequency. The resonances of the combined blade disc system are modified as shown. These resonances again occur when an m nodal diameter mode is excited by the $m^{\text {th }}$ engine order, and it is seen that the resulting motion degenerates to essentially disc vibration with rigid blades at low engine order excitationand high speed, and to blade vibration with a rigid disc at high engineexcitationand low speed.

The early work reported on the problem is based on very simplified models. Ellington and McCallion (115) have investigated the effect of elastic coupling, through the rim of the disc, on the frequencies of bending vibration using a simplified model. In this model the effect of twist, taper and obliquity is neglected and the blades are replaced by uniform blades fixed to the rim at their roots and vibrating in a plane parallel to the plane of the disc. For the analysis three adjacent blades are assumed to be parallel to each other and the portion of the rim joining them is taken as a straight continuous beam. A relationship between three slopes of the beam at the root of three adjacent blades are established and is used in the calculation of the natural frequencies.

bladed rotor consisting of identical mass-spring elements to represent the blades, connected to a rigid free mass which represents the disc. They examine the principal modes of such a model'and outline methods for determining the receptances (dynamic flexibility) of the system.
Wagner (2) extended this simplified model, represent-
ing each blade by a single degree of freedom system which has
the same natural frequency and damping factor as that of a
particular mode of the blade. These subsystems are attached to
a common ring representing the disc.

Capriz (117) has developed equations for the analysis of the interaction between the disc and blades. Using available numerical methods, "a number of cases of practical interest have been studied," but, "comparision with experimental results has put in evidence discrepancies when modes with large numbers of nodal diameters were considered." No numerical results are presented in the paper and the paper does not appear to have been published in a Journal.

The first extensive investigations of the problem appear to be due to Armstrong (118). Armstrong et al $(1,119)$ studied the problem by experimental investigation. Armstrong carried out experimental tests on model rotors with uniform
discs and uniform untwisted blades attached to the disc at varying stagger angles. Based on approximate receptance relations, he developed a theoretical method for the analysis of the coupled system and was able to predict satisfactorily the frequencies of the lower coupled modes of his models. The analysis was restricted to simple model configurations for which receptance relations could be easily obtained. The application to practical rotors was outlined.

At about the same time as Armstrong's work, Jager (120) developed a numerical method to predict the coupled system frequencies and mode shapes, using a transfer matrix technique based on a lumped mass model of the disc suggested by Ehrich (51) and a conventional lumped mass model of the blades treated as twisted beams. This method was therefore directly applicable to practical rotors of varying geometry, and included the stiffening effects resulting from rotation. This method has been adopted by several aircraft engine companies.

Dye (3) and Ewins (4,5) have studied the effects of detuning upon the vibration characteristics of bladed discs, in particular the variation in blade stresses which can result when the blades do not have identical frequencies. They concluded that this effect can result in a variation of vibratory stress from blade to blade by a factor as high as 1.25 approximately.

Abstract

Carta (6) describes an aeroelastic instability condition which is governed by strong coupling between bending and torsion of the blades resulting from disc or shroud dynamic coupling.' This flutter condition is highly dependent on the coupled blade-disc: shroud mode shape, which must be accurately determined. He assumes such mode shapes are available from a Jager type calculation (120), and successfully predicts the instability for a number of bladed rotors.

Finally, a paper by Stargardter (121), which also appears not to have been published in a Journal, describes qualitative results obtained by vibrating rubber models at low rotational speeds He describes the physical phenomena well, and presents some inter resting photographs showing clearly the motions involved with bladed rotors.

1.3 OBJECT OF THE PRESENT INUESTIGATION

```
    Since exact solutions of rotating discs are restricted
to certain simple geometry and boundary conditions, numerical
procedures must be adopted for the analysis of practical turbine
discs and bladed rotors of general geometry. Although transfer
matrix techniques have been applied to these problems by Ehrich
(51) and Jager (120), these methods have two disadvantages. First,
```

the use of mass lumping in the mathematical model of the system requires a large number of stations to be considered in both disc and blades if good accuracy is required, particularly for higher modes of víbration. Secondly, the natural frequencies are obtained by iterating with the frequency of vibration as a variable, and seeking the zeros of a frequency determinant. These results in a requirement for substantial computing time and storage, and not infrequently, the numerical conditioning difficulties with higher modes which arise In transfer matrix methods.

Abstract

A more profitable approachwould be to use the finite element technique which has now become firmly established as a powerful method of analysis, This method allows refinements over the other numerical procedures and when applied to the vibration analysis results in an algebraic eigen value problem,

Although the circular and annular sector finite elements
developed by Olson and Lindberg (54) and even triangular elements
may be used in the vibration analysis of circular and annular discs,
the use of these elements results in an eigenvalue problem of
considerable magnitude, Inclusion of thickness yarfation and
the effects of rotation etc., in these elements would be quite
involved. Hence, ftis desirable to develope simpler elements,
particularly suitable for the vibration analysis of turbine discs,
and which take advantage of the nature and geometry of the problem.

```
The main objective of this investigation, therefore, is to develope finite elements of annular geometry, in which radial thickness variation, the effects of in-plane stresses, and the effects of rotary inertia and transverse shear can be easily introduced, and to examine the behaviour of these elements in the analysis of simple and complex discs and bladed rotors.
Attention is to be focussed on developing methods of vibration analysis of rotating discs of general profile and bladed discs representative of practical turbine stages. Although reliable and efficient methods are available for the stress analysis of turbine discs, a plane stress finite element method compatible with the vibration analysis is developed. In the analysis of the bladed rotors, only asimplifiedmodel is to be assumed for the blades and the investigation emphasises the study of the coupling between the disc and blade motions. A thorough treatment of the blades in the light of the many complicating factors involved would require substantial amount of additional work and hence is not attempted here.
```


CHAPTER 2

VIBRATION ANALYSIS OF AXIAL FLON TURBINE DISCS

2.1 INTRODUCTION

```
    In this chapter a finite element model which will
adequately represent a turbine disc having general thickness
profile is developed for the vibration analysis of axial flow
turbine discs. The disc is idealized to be both axisymmetric
and symmetric about the middle plane. But, any general radial
thickness profile is satisfactorily described by the model.
Stiffening effects of in-plane stresses resulting from centri-
fugal and thermal loading and other boundary loadings, such as
shrinkfit pressure at the hub, and blade loading at the rim are
taken into account. This method of analysis which is based on
thin plate theory, is then further extended to include the effects
of transverse shear and rotary inertia, so that the method can
be used in the analysis of moderately thick discs.
    Detailed analysis of stress distribution across the
thickness of the disc is not attempted; rather, a plane stress
finite element method for computing the average stresses at the
middle plane of the disc is developed. While this plane stress
```

finite element model has little advantage in accuracy or efficiency over the extensively used finite difference schemes (20, 21), it has the one advantage here of being completely compatible with the analysis developed for the flexural vibration of the disc, since many of the matrix relations and operations are identical.

In section 2.2 thin plate bending finite elements having annular and circular geometry and radially varying thickness and which are particularly suitable for the vibration of thin discs are developed (122). Compared with other available finite elements for this type of problem, these new elements are described by a remarkably small number of degrees of freedom. The annular element has four degrees of freedom, while the circular element has only two or three. This is achieved by including the number of diametral nodes in the chosen displacement function for the element, and in effect this results in separate solutions for each diametral mode configuration.

In section 2.3 matrix expressions are derived which allow for the additional stiffness resulting from in-plane stresses in a thin disc. These assume that the in-plane stress distribution is known, i.e., precalculated by some means or other. In this work aplane stress annular finite element is developed and used to calculate the stress distribution; this appears to be new and could
be readily extended to handle buckling problems of discs.

```
    Finally, in section 2.4, two new methods of incorpo-
rating the effects of transverse shear and rotary inertia are
developed, which will allow accurate analysis of moderately
thick discs,
The convergence and accuracy of the finite element models are in each case critically examined by comparision with exact solutions, where available, and with experimental data, for both static and vibration problems.
```


2.2 ANNULAR AND CIRCULAR THIN PLATE BENDING ELEMENTS

2.2.1 Element Geometry and Deflection Functions

Figures 2.1 and 2.2 show the annular and circular thin plate bending finite elements with their associated degrees of freedom and diametral nodes. The annular element is bounded by two concentric circles and the circular element by a single circle, Any required number of diametral nodes is incorporated in the elements as follows.

Once the lateral deflection $\overline{\mathrm{w}}$ and the radial slope $\vec{\theta}$ at any antinode, where ξ is taken to be zero, are specified, the deflection and slope at any other point at an angle $\boldsymbol{\xi}$ from some reference antinode can be expressed as, $\overline{\mathbf{w}} \cos \mathfrak{m} \xi$ and

```
|}\operatorname{cos}m\xi, where m is the number of diametral nodes. Henc
a suitable deflection function for w , the lateral deflection
of the disc along the radial direction and an antinode, only remains
to be chosen.
```

Irrespective of the number of diametral nodes, the annular element has four degrees of freedom. These are \bar{w}_{1}, $\overline{\mathrm{w}}_{2}, \bar{\theta}_{1}$, and $\bar{\theta}_{2}$ as shown in Figure 2.1 , where θ is defined as $\theta=-\frac{a w}{\partial r}$, For the circular element, as shown in Figure 2.2, the number of degrees of freedom yary with the number of diametral nodes, It should be observed that when m is zero $\bar{\theta}_{\mathbf{1}}$ is zero, when m is odd \bar{W}_{1} is zero and when m is even both \bar{w}_{1} and $\bar{\theta}_{1}$ are zero. This indicatesthat while a single deflection function can be assumed for the annular element, three different deflection functions are to be assumed for the circular element, one for $m=0$, another for $m=1,3,5, \ldots$ and a third one for $m=2,4,6, \ldots$ However, no suitable function could be found for the second case excepting when $m=1$.

The following deflection functions are found suitable for the different cases mentioned.

$$
\begin{equation*}
w(r, \xi)=\left(a_{1}+a_{2} r+a_{3} r^{2}+a_{4} r^{3}\right) \cos m_{\xi}^{*} \tag{2.1}
\end{equation*}
$$

for the annular element;

$$
\begin{equation*}
w(r, \xi)=\left(a_{1}+a_{2} r^{2}+a_{3} r^{3}\right) \tag{2.2}
\end{equation*}
$$

[^2]for the circular element with $\mathrm{m}=0$;
\[

$$
\begin{equation*}
w(r, \xi)=\left(a_{1} r+a_{2} r^{2}+a_{3} r^{3}\right) \cos \xi \tag{2.3}
\end{equation*}
$$

\]

for the circular element with $m=1$;

$$
\begin{equation*}
w(r, \xi)=\left(a_{1} r^{2}+a_{2} r^{3}\right) \cos m \xi \tag{2.4}
\end{equation*}
$$

for the circular element with $m=2,4,6, \ldots$ where $w(r, \xi)$ is the lateral deflection of a point on the middle surface of the plate at radius \mathbf{r} and angle $\boldsymbol{\xi}$ measured from the reference antinode. The relationship of the deflection functions to those normally used for a beam element is evident. The deflection functions for the circular element are chosen considering the following conditions. For the circular element with $m=0$ it is necessary to include the rigid body translation, and with $m=1$ it is necessary to include the rigid body rotation about a diameter. The difficulty with $m=3,5,7, \ldots$ arises from the need to retain the linear rotation term, but at the same time ensure that the circumferential curvature remains finite when $r=0$. This is not possible with the simple form of deflection function chosen.

2.2.2 Element Stiffness and Inertia Matrices

The stiffness and inertia matrices of the annular element and the three different circular elements are obtained by substituting the assumed deflection functions into the strain energy and kinetic energy expressions of the elements and following
well known procedures (123). For the thin plate annular element the strain energy is given by (124),

$$
\begin{equation*}
U=\frac{1}{2} 0^{2 \pi}{\underset{r}{r}}_{r_{1}}^{\mathbf{r}_{2}}\{\chi\}^{T}[V]\{x\} r d r d \xi \tag{2.5}
\end{equation*}
$$

where

$$
[\mathrm{V}]=\mathrm{D}\left[\begin{array}{ccc}
I & \nu & 0 \tag{2.6}\\
\nu & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]
$$

and

$$
\{x\}=\left[\begin{array}{ccc}
-\frac{\partial^{2} w}{\partial r^{2}} & & \tag{2.7}\\
-\frac{1}{T} a w & \frac{1}{r^{2}} & \partial^{2} w \\
\frac{\partial \xi^{2}}{r} & \frac{\partial^{2} w}{\partial r \partial \xi} & -\frac{2}{r^{2}} \\
\frac{\partial w}{\partial \xi}
\end{array}\right]
$$

Substituting (2.1) for w in (2.7)

$$
\begin{equation*}
\{x\}=[E]\left[B_{d}\right]\left\{\bar{q}_{d}\right\} \cos m \xi \tag{2.8}
\end{equation*}
$$

where

$$
\left\{\bar{q}_{d}\right\}^{T}=\left[\begin{array}{llll}
\bar{w}_{1} & \bar{\theta}_{1} & \bar{w}_{2} & \bar{\theta}_{2} \tag{2.9}
\end{array}\right] ; \quad \theta=-\frac{\partial w}{\partial r}
$$

and

$$
[E]=\left[\begin{array}{cccc}
0 & 0 & -2 & -6 r \\
\frac{m^{2}}{r^{2}} & \frac{1}{r}\left(m^{2}-1\right) & \left(m^{2}-2\right) & r\left(m^{3}-3\right) \\
-\frac{2 m}{r^{2}} \tan m \xi & 0 & 2 m \tan m \xi & 4 m r \tan m \xi
\end{array}\right]^{(2.10)}
$$

The matrix $\quad \mathbf{B}_{\mathbf{d}}$] is given in Table 2.1. Substituting (2.8) in (2.5)

$$
\begin{align*}
& r \cos ^{2} m \xi d r d \xi \tag{2.11}
\end{align*}
$$

Therefore the stiffness matrix is given by

$$
\begin{equation*}
\left[K_{d}\right]=\int_{0}^{2 \pi} r_{1}^{r} D\left[B_{d}\right]^{T}[E]^{T}[V][E]\left[B_{d}\right] r \cos ^{2} m \xi d r d \xi \tag{2.12}
\end{equation*}
$$

ors

$$
\begin{equation*}
\left[K_{d}\right]=\left[B_{d}\right]^{T}\left[k_{d}\right]\left[B_{d}\right] \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[k_{d}\right]=\int_{0}^{2 \pi} r_{1} r^{r} D[E]^{T}[V] \quad[E] r \cos ^{2} m \xi d r d \xi \tag{2.14}
\end{equation*}
$$

The matrix $\left[k_{d}\right]$ is given in Table 2.2 .

The kinetic energy of the annular element is given by

$$
\begin{equation*}
T=\frac{1}{2} \int_{0}^{2 \pi} r_{2}^{r_{1}} \rho h(r)\left(\frac{\partial w}{\partial t}\right)^{2} r d r d \xi \tag{2.15}
\end{equation*}
$$

Substituting (2.1) in (2.15)

$$
\begin{array}{r}
T=\frac{1}{2} \int_{0}^{2 \pi} r_{j}^{r_{1}} \rho h(r)\left\{\hat{q}_{d}\right\}^{T}\left[B_{d}\right]^{T}\{s\}^{T}\{s\}\left[B_{d}\right]\left\{\frac{\theta}{q_{d}}\right\} \\
r \cos ^{2} m \xi d r d \xi \tag{2.16}
\end{array}
$$

Where
$\{s\}=\left[\begin{array}{llll}1 & r^{2} & \mathbf{r}^{3}\end{array}\right] ;$ and the dot denotes time derivative.
Therefore the inertia matrix is given by

$$
\begin{equation*}
\left[\mathrm{M}_{\mathrm{d}}\right]=\int_{\mathrm{d}}^{2 \pi} \mathrm{r}_{1} \mathrm{r}_{1} \rho \mathrm{~h}(\mathrm{r})\left[\mathrm{B}_{\mathrm{d}}\right]^{\mathrm{T}}\{\mathrm{~s}\}^{\mathrm{T}}\{\mathrm{~s}\}\left[\mathrm{B}_{\mathrm{d}}\right] r \cos ^{2} \mathrm{~m} \xi \mathrm{dr} \mathrm{~d} \xi \tag{2.17}
\end{equation*}
$$

or,

$$
\begin{equation*}
\left[M_{d}\right]=\left[B_{d}\right]^{T}\left[m_{d}\right]\left[B_{d}\right] \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[m_{d}\right]=\int_{0}^{2 \pi} r_{1}^{r_{2}} \rho h(r)^{\prime}\{s\}^{T}\{s\} r \cos ^{2} m \xi d r d \xi \tag{2.19}
\end{equation*}
$$

The matrix $\left[\mathrm{m}_{\mathrm{d}}\right]$ is given in Table 2.3

In Tables 2.2 and 2.3 the integrals P_{i} and Q_{i} are.
given by

$$
\begin{equation*}
P_{i}=C \pi \frac{E}{12\left(1-v^{2}\right)} r_{1}^{r_{1}} h^{3}(r) r^{1} d r \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{i}=C \pi \rho \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{1}} h(r) r^{i} d r \tag{2.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{C}=2 \text { when } \mathrm{m}=0 \text { and } \mathrm{C}=1 \text { when } \mathrm{m} \geqq 1 \tag{2.22}
\end{equation*}
$$

The values of $\mathbf{P}_{\mathbf{i}}$ and $\mathbf{Q}_{\mathbf{i}}$ depend on the function assumed for $h(r)$. Any desired function can be assumed. If linear thickness variation within the element is assumed, then

$$
\begin{equation*}
h(r)=a+\beta r \tag{2.23}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{h_{1} r_{2}-h_{2} r_{1}}{r_{2}-r_{1}} ; \quad \text { and } \quad B=\frac{h_{2}-h_{I}}{r_{2}-r_{1}} \tag{2.24}
\end{equation*}
$$

If parabolic thickness variation within the element is assumed, then

$$
\begin{equation*}
h(r)=a+\beta r^{2} \tag{2.25}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{h_{1} r_{2}^{2}-h_{2} r_{1}^{2}}{r_{2}^{2}-r_{1}^{2}} ; \text { and } \beta=\frac{h_{2}-h_{1}}{r_{2}^{2}-r_{1}^{2}} \tag{2.26}
\end{equation*}
$$

The two cases above require the thickness to be known only at the inner and outer boundaries of the element. Any other desired expressions for $h(r)$ can be assumed and the corresponding values of $P_{\mathbf{i}}$ and $Q_{\boldsymbol{i}}$ evaluated.

The stiffness and inertia matrices of the thin plate circular elements are derived in a similar manner and these are given by

$$
\left[K_{d}^{O}\right]=\left[B_{d}^{O}\right]^{T}\left[k_{d}^{O}\right]\left[B_{d}^{O}\right]
$$

and

$$
\begin{equation*}
\left[\mathrm{M}_{\mathrm{d}}^{\mathrm{O}}\right]=\left[\mathrm{B}_{\mathrm{d}}^{\mathrm{o}}\right]^{\mathrm{T}}\left[\mathrm{~m}_{\mathrm{d}}^{\mathrm{o}}\right]\left[\mathrm{B}_{\mathrm{d}}^{\mathrm{o}}\right] \tag{2.27}
\end{equation*}
$$

The matrices $\left[\mathrm{B}_{\mathrm{d}}^{0}\right],\left[\mathrm{k}_{\mathrm{d}}^{0}\right]$, and $\left[\mathrm{m}_{\mathrm{d}}^{0}\right]$ and the corresponding deflection vector' $\left\{q_{d}^{0}\right\}$ are given in Tables 2.4 to 2.6 , for the three different circular elements. Here again the integrals $\mathbf{P}_{\mathbf{i}}$ and $Q_{\mathbf{i}}$ are evaluated assuming desired functions for $h(r)$.

These element.stiffness matrices [Kd] and inertia
matrices $\left[M_{d}\right]$ can beassembled by conventional methods to get the disc system stiffness matrix $\left[K_{D}\right]$ and inertia matrix $\left[M_{D}\right]$, for a model of the disc comprising several elements. The dynamic stiffness relation for the disc becomes;

$$
\begin{equation*}
\left\{Q_{D}\right\}=\left\{\left[K_{D}\right]-\omega^{2}\left[M_{D}\right]\right\}\left\{q_{D}\right\} \tag{2.28}
\end{equation*}
$$

where $\left\{q_{D}\right\}$ is the disc deflection vector and $\left\{Q_{D}\right\}$ is the vector of corresponding generalised forces. For free vibration of the disc all the terms of $\left\{Q_{D}\right\}$ are zero, and Equation 2.28 becomes an algebraic eigen value problem which is solved to yield the natural frequencies and mode shapes of the disc. Such a
calculation would be repeated for each diametral mode configuration.

In static problems the inertia matrix $\left[M_{D}\right]$ disappears and $\left\{Q_{D}\right\}$ is the vector of external generalised forces at the nodes of the finite element model of the disc.

Displacement boundary conditions only are applied by deleting the appropriate rows and columns of the stiffness and inertia matrices of the disc.
2.2.3 Application to Thin Plate Vibration Problems The convergence properties and accuracy of the finite elements developed above for the vibration of thin plates are examined by comparing the nondimensional frequency parameter $\lambda=\omega b^{2} \sqrt{\frac{\mathrm{ph}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{o}}}}$ obtained, with available exact solutions. h_{o} and D_{0} are the thickness and the flexural rigidity of the plates considered. When a variable thickness plate is considered, these are the values at the centre of the plate.
(A) For a first example, complete circular plates having uniform thickness are considered. When these plates are modelled with several annular elements and one circular element at the centre as shown in Figure 2.3 , the results are restricted to modes with $m=0,1,2,4,6$, etc., only because of the difficulty in choosing a suitable deflection function for the circular

Abstract

element with odd values of m other than unity. The solutions obtained for plates with simply supported, clamped and free outer boundaries are given in Tables 2.7 to 2.9 , in which m and n are the diametral and circular node numbers respectively. These plates can also be modelled by approximating the complete plate by an annular plate having a very small central hole as shown in Figure 2.3. Only annular elements are used in this case and hence results are obtained for any value of m. The results obtained with a radius ratio $a / b=0.001$ for the three cases considered above are given in Tables 2.10 to 2.12 along with available exact solutions of complete circular plates. Comparing results from Tables 2.7 to 2.12 it is seen that the presence of the central hole has only very small effect and in practical problems the use of annular elements alone would be satisfactory.

Convergence of the solution with number of elements is seen to be extremely rapid in all cases and monotonic from above as would be expected. Frequencies of engineering accuracy are obtained with very few elements; thus the use of number of elements $N=$ (Number of modes desired -t 1) will in all cases give frequencies accurate to approximately 2% or better.

In Figure 2.4 the percentage absolute error in the
first six frequencies of the simply supported plate, calculated
using annular elements alone, are plotted against number of elements used in the model.
(B) As a second example, annular plates of uniform thick-
ness are considered. These are modelled with the annular elements
only. Results obtained for plates with radius ratios $a / b=0.1$
and 0.5 are given in Tables 2.13 to 2.18 together with the
available exact solutions. The remarks made in (A) above regard-
ing convergence and accuracy of the solution also clearly hold
for these examples.
(C) The third example chosen is that of a complete free circular plate having parabolic variation in thickness, $h(r)=h_{0}\left\{1-(r / b)^{\frac{3}{2}}\right\}$, as shown in Figure 2.5, and for which exact solutions have been obtained by Harris (46), when the plate is free along the outer boundary. The plate is approximated by considering an annular plate with $a / b=0.001$ and using only the annular elements with parabolic thickness variation. The results are presented in Table 2.19. The effect of using elements with linear thickness variation instead of parabolic thickness variation within the element is also studied and the results are given in Table 2.20.

```
the model using parabolic thickness elements converges mono-
tonically and is an upper bound solution as expected, the conver-
gence of the model using linear elements, where an approximation
of the geometry is made, is from below, at least for the first
mode, and is not monotonic for the higher modes. Convergence
and accuracy of the finite element solution with true thickness
modelling is quite remarkable.
(D) In a final example, the efficiency of the procedure
using annular elements can be judged by comparision with results
obtained using sector elements. Such a comparision is made for
a uniform freeplate in Table (2.21). Olson and Lindberg (54)
model the plate with a grid of three sector elements radially,
and 12 circumferentially. Using symmetry their resulting
model has 55 degrees of freedom. The results obtained with the
3 x 12 grid of sector elements are compared with those obtained
using two and four annular element models. It is seen that the use
of only two annular elements, resulting in only six degrees of
freedom, gives more accurate results than the use of sector elements.
Moreover the identification of the particular modes is easier
with the annular element. The sector element model yields two
values of frequency for the (2,0) and (5,0) modes; these
solutions appear to be associated with nodal diameters in the
vibrating plate passing through nodes in the grid mesh, and
passing between the nodes in the grid mesh respectivly.
```

```
It should be pointed out that the use of annular elements will involve solution of the eigen value problem once for each nodal diameter configuration. Notwithstanding this there remains considerable saving in storage and computer time requirements. In addition the use of the sector elements is ofcourse not restricted to complete annular and circular plates, unlike the annular and circular elements.
```


Abstract

Apart from these examples, where vibration problems are considered, the elements developed here may be applied to static problems also, by superposing the solutions obtained by expressing the applied load in it's Fourier components. The results of several such studies are briefly described in


``` Appendix A.
2.3 THE EFFECT OF IN-PLANE STRESSES ON THE VIBRATION OF THIN DISCS
The stiffening effect of centrifugal and thermal
stresses is significant in practical rotors, and must be taken into account in any realistic analysis. If centrifugal stresses only are considered, these are proportional to the square of the rotational speed, and additional stif'fness terms may be derived which will also be proportional to the square of the rotational speed. Thermal stresses, however, have no relationship with the rotational speed. This suggests that a method of including both
```

effects should be formulated assuming that stresses in the rotor are already known.

In section 2.3 .1 a stiffness matrix is derived which is dependent on the in-plane stresses present in the disc. This matrix simply adds to the basic elastic matrix equation to give the total stiffness matrix of the element. The radial and tangential stress values used in this additional stiffness matrix may be obtained by any method, but in section 2.3 .2 a plane stress annular finite element is derived which is used to calculate these stresses in this work. This has the advantage here being compatible with the annular bending element, and many of the matrix relations and operations are seen to be identical.

The accuracy and convergenceoffirst the method of stress analysis and second the resulting stiffening effect on the disc vibration, is examined with several numerical examples in section 2.3.3.
2.3.1 Additional Stiffness Matrix for the Annular Element due to In-Plane Stresses

When in-plane radial stress $\sigma_{\mathbf{r}}$ and tangential stress $\boldsymbol{\sigma}_{\boldsymbol{\xi}}$ are present at the middle plane of the annular thin plate element, the following additional terms arise in the strain energy
equation (124), of the annular element, Figure 2.1,

$$
\begin{equation*}
\mathrm{U}=\frac{1}{2} \int_{0}^{2 \pi}{ }^{\mathrm{r}_{2}}\left\{\sigma_{r}\left(\frac{\partial w}{\partial r}\right)^{2}+\frac{\sigma_{\xi}}{r^{2}}\left(\frac{\partial w}{\partial \xi}\right)^{2}\right\} h(r) r d r d \xi \tag{2.29}
\end{equation*}
$$

Assuming the deflection function, Equation 2.1 , as before, and substituting in the above strain energy expression, additional stiffness coefficients for the annular element are readily derived corresponding to the deflection vector,

$$
\left\{{\overline{q_{d}}}_{d}^{T}=\left[\begin{array}{llll}
\bar{w}_{1} & \bar{\theta}_{1} & \bar{w}_{2} & \bar{\theta}_{2} \tag{2.30}
\end{array}\right]\right.
$$

The additional stiffness matrix is

$$
\begin{equation*}
\left[K_{d}^{a}\right]=\left[B_{d}\right]^{T}\left[k_{d}^{a}\right]\left[B_{d}\right] \tag{2.31}
\end{equation*}
$$

where the matrices $\left[B_{d}\right]$ and $\left[k_{d}{ }_{d}\right]$ are given in Tables 2.1 and 2.22 The integrals R_{i} and S_{i} appearing in the elements of the matrix $\left[k_{d}^{a}\right]$ are given by

$$
\begin{align*}
\mathrm{R}_{\mathbf{i}} & =\mathrm{C} \pi{ }^{\mathrm{r}_{2}} \mathrm{r}_{1}^{\mathrm{i}} \mathrm{~h}(\mathrm{r}) \sigma_{\mathrm{r}}(\mathrm{r}) \mathrm{dr} \tag{2.32}\\
\mathrm{~S}_{\mathbf{i}} & =\mathrm{C} \mathrm{r}_{2}{ }^{1} \mathrm{r}^{\mathrm{i}} \mathrm{~h}(\mathrm{r}) \sigma_{\xi}(\mathrm{r}) \mathrm{dr} \tag{2.33}
\end{align*}
$$

It is convenient to assume linear variations, within the element, of $h(r), \sigma_{\mathbf{r}}(r)$, anco $\xi_{\xi}(r)$ requiring that the values need only be known at the nodal points.
assuming

$$
h(r)=\alpha+\beta r ; \sigma_{r}(r)=c+d r ; \text { and } \sigma_{\xi}(r)=e+f r
$$

then

$$
\begin{align*}
& \alpha=\left(h_{1} r_{2}-h_{2} r_{1}\right) /\left(r_{2}-r_{1}\right) ; \beta=\left(h_{2}-h_{1}\right) /\left(r_{2}-r_{1}\right) \\
& c=\left(\sigma_{r 1} r_{2}-\sigma_{r 2} r_{1}\right) /\left(r_{2}-r 1\right) ; d=\left(\sigma_{r 2}-\sigma_{r 1}\right) /\left(r_{2}-r 1\right) \\
& e=\left(\sigma_{\xi 1} r_{2}-\sigma_{\xi 2} r_{1}\right) /\left(r_{2}-r_{1}\right) ; f=\left(\sigma_{\xi 2}-\sigma_{\xi 1}\right) /\left(r_{2}-r_{1}\right) \tag{2.35}
\end{align*}
$$

and

$$
\begin{align*}
& R_{i}=\underset{C_{1}}{r_{1}} \mathbf{r}^{\mathbf{i}}(a+\beta r)(c+d r) d r \tag{2.36}\\
& S_{i}=\underset{C \pi}{r_{1}}{ }^{r_{1}} r^{i}(a+B r)(e+f r) d r \tag{2.37}
\end{align*}
$$

2.3.2 Plane Stress Finite Element For Thin Discs

When a disc rotates at speed, very high radial and tangential stresses are generally produced by the centrifugal inertia force. The presence of radial temperature gradient can substantially modify the total stress distribution and in extreme cases has been known to result in buckling at the rim. Shrinkfit pressure at the hub, in certain cases, can also modify the centrifugal stress distribution. The result of all these effects produces an in-plane stress distribution in the disc,
which changes the flexural stiffness of the disc. The variation of these stresses across the thickness of the disc is generally ignored in axial flow rotors.

By taking advantage of the axisymmetric nature of the problem, plane stress finite elements of annular and circular geometry are developed below for use in the stress analysis of discs. These elements incorporate radial thickness variation. Consistent load vectors (123) are used to replace the continuously distributed centrifugal and thermal loading, or any other axisymmetric external loading on either boundary.

Consider the axisymmetric stretching of an annular element with inner radius $\mathbf{r}_{\mathbf{1}}$ and outer radius $\mathbf{r}_{\mathbf{2}}$ and radially varying thickness $h(r)$. The geometry and deflections of the element are shown in Figure 2.6. The strain energy in the element is given by (124),

$$
\begin{equation*}
U=\frac{1}{2} \frac{27 T}{\left(1-V^{2}\right)} \mathrm{E}_{2} \mathrm{r}_{1}^{\mathrm{h}}(\mathrm{r})\left\{\varepsilon_{\mathrm{r}}^{2}+\varepsilon_{\xi}^{2}+2 \varepsilon_{\mathrm{r}} \varepsilon_{\xi}\right\} r \mathrm{dr} \tag{2.38}
\end{equation*}
$$

The radial and tangential strains in this case are

$$
\begin{equation*}
\varepsilon_{r}=\frac{\mathrm{du}}{\mathrm{dr}} ; \text { and } \varepsilon_{\xi}=\frac{\mathbf{u}}{\mathbf{r}} \tag{2.39}
\end{equation*}
$$

where u is the radial displacement. Substituting the deflection function

$$
\begin{equation*}
u(r)=a_{1}+a_{2} r+a_{3} r^{2}+a_{4} r^{3} \tag{2.40}
\end{equation*}
$$

in the strain energy expression and following standard procedure we arrive at the following expression for the stiffness matrix for the element,

$$
\begin{equation*}
\left[K_{d}^{p}\right]=\left[B_{d}\right]^{T}\left[k_{d}^{p}\right]\left[B_{d}\right] \tag{2.41}
\end{equation*}
$$

corresponding to the deflection vector

$$
\left\{q_{d}\right\}^{T}=\left[\begin{array}{llll}
u_{1} & \theta_{1} & u_{2} & \theta_{2} \tag{2.42}
\end{array}\right]
$$

where

$$
\theta=-\frac{d u}{d r}=-\varepsilon_{r}
$$

The matrics $\left[B_{d}\right]$ and $\left[\mathrm{k}_{\mathrm{d}}\right]^{\text {}}$. are given in Tables 2.1 and 2.30 .
The integrals Q. in Table 2.30 are given by

$$
\begin{equation*}
Q_{i}=\frac{2 \pi E}{1 . .2} \quad \int h(r) r^{2} d r \tag{2.43}
\end{equation*}
$$

If linear thickness variation within the element is assumed, then

$$
\begin{equation*}
h(r)=\alpha+\beta r \tag{2.44}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{h_{1} r_{2}-h_{2} r_{1}}{r_{\%}-r_{1}} \quad \text { and } \quad \beta=\frac{h_{2}-h_{1}}{r_{2}-r_{1}} \tag{2.45}
\end{equation*}
$$

$$
\begin{align*}
& \text { then, } \mathbf{Q}_{\mathbf{i}}=\frac{2 \pi E}{1-v^{2}} r_{1}^{\mathbf{r}_{2}}(\alpha+\beta r) \mathbf{r}^{\mathbf{i}} d r \\
& \tag{2.46}\\
& \text { When } \mathbf{r}_{\mathbf{1}}=0, \text { the geometry of the element becomes } \\
& \text { circular. } \quad \operatorname{In} \text { this case } \mathbf{u}_{\mathbf{1}}=0 \text { and the element has only three }
\end{align*}
$$

degrees of freedom, and

$$
\begin{equation*}
\left\{q_{d}\right\}^{T}=\left[\theta_{1} u_{2} \theta_{2}\right] \tag{2.47}
\end{equation*}
$$

By assuming the deflection function

$$
\begin{equation*}
u(r)=a_{1} r+a_{2} r^{2}+a_{3} r^{3} \tag{2.48}
\end{equation*}
$$

the stiffness matrix of the element becomes,

$$
\begin{equation*}
\left[\mathrm{K}_{\mathrm{do}}^{\mathrm{P}}\right]=\left[\mathrm{B}_{\mathrm{o}}\right]^{\mathrm{T}}\left[\mathrm{k}_{\mathrm{do}}^{\mathrm{p}}\right]\left[\mathrm{B}_{\mathrm{o}}\right] \tag{2.49}
\end{equation*}
$$

The matrices $\left[B_{o}\right]$ and $\left[k_{d o}^{p}\right]$ are given in Tables 2.4 and 2.31 .
The integrals $Q_{i o}$ in Table 2.31 are given by

$$
\begin{equation*}
Q_{i o}=\frac{2 \pi E}{1-v^{2}} \quad \int_{r_{1}}^{r_{2}} h(r) \quad r^{i} d r \tag{2.50}
\end{equation*}
$$

Again when linear thickness variation is assumed within this element

$$
\begin{equation*}
h(r)=\alpha+\beta r \tag{2.51}
\end{equation*}
$$

where

$$
\alpha=h_{1} \text { and } B=\left(h_{n}-h_{1}\right) / r
$$

then

$$
\begin{equation*}
Q_{i o}=\frac{2 \pi E}{1-v^{2}} \int_{r}^{\sim}(\alpha+\beta r) r^{i} d r \tag{2.52}
\end{equation*}
$$

The element stiffness matrices $\left[K_{d}^{p}\right]$ can be assembled by conventional methods to get the disc system stiffness matrix $\left[K_{\mathrm{D}}^{\mathrm{p}}\right]$. Now, theequilibriumcondition requires the following relation to be satisfied;

$$
\begin{equation*}
\left\{Q_{D}\right\}=\left[K_{D}^{p}\right]\left\{q_{D}\right\} \tag{2.53}
\end{equation*}
$$

where $\left\{Q_{D}\right\}$ is the vector of generalised nodal forces and $\left\{q_{D}\right\}$ is the vector of unknown nodal displacements.

Only displacement boundary conditions should be applied by deleting rows and columns in $\left[\mathrm{K}_{\mathrm{D}}^{\mathrm{P}}\right]$ corresponding to displacements which are zero. Often the turbine disc is considered to be free at either boundary while analysing the stresses in the disc; here $\left[K_{D}^{p}\right]$ is not reduced. The simultaneous equations given by the relation (2.53) may be solved by conventional procedures; if matrix inversion is followed then,

$$
\begin{equation*}
\left\{q_{D}\right\}=\left[K_{D}^{p}\right]^{-1}\left\{Q_{D}\right\} \tag{2.54}
\end{equation*}
$$

Thus all the nodal displacements are obtained.

The load vector $\left\{Q_{D}\right\}$ comprises several contributions. Thus the following should be considered.
(a) Rim loading resulting from blades should be added at the appropriate position of the vector. $\left\{Q_{D}\right\}$. If the number of blades present is Z, each with mass m^{*} and centre of gravity at radius R_{g} and if the rotational speed is Ω rad. $/ \mathrm{sec} .$, then this loading is $\mathrm{Zm}_{\mathrm{m}} \Omega^{2} \mathrm{R}_{\mathbf{g}}$.
(b) Shrinkfit pressure at the hub results in some loading at the inner radius a and is given by 2π a $\sigma_{0} h(a)$, where σ_{0} is the shrinkfit pressure and $h(a)$ the thickness at radius a.
(c) Distributed centrifugal loading.
(d) Distributed thermal gradient loading.

For (c) and (d) equivalent consistent vectors of nodal forces are obtainedbyequating work done by the hypothetical nodal forces to work done by distributed centrifugal and thermal_ loading.

Consider the distributed centrifugal inertia loading
first. When the disc is rotating with constant angular velocity Ω, by, equating the work done by the hypothetical nodal forces to the work done by the centrifugal force in the annular element, we obtain

$$
\begin{equation*}
\left\{q_{d}\right\}^{T}\left\{f_{c}\right\}=\int_{0}^{2 \pi} \int_{r_{1}}^{2} F(r) u(r) \tag{2.55}
\end{equation*}
$$

where

$$
\left\{q_{d}\right\}^{T}=\left[\begin{array}{llll}
u_{1} & \theta_{1} & u_{2} & \theta_{2} \tag{2.56}
\end{array}\right]
$$

$\left\{\mathrm{f}_{\mathbf{c}}\right\}$ - consistent vector of nodal loads.

$$
\begin{equation*}
F(r)=\rho \Omega^{2} r^{2} h(r) d r d \xi \tag{2.57}
\end{equation*}
$$

anḍ

$$
u(r)=\left[\begin{array}{lllll}
1 & r & r^{2} & r^{3}
\end{array}\right]\left[B_{d}\right]\left\{q_{d}\right\}
$$

Substituting for $F(r)$ and $u(r)$ in (2.55)

$$
\begin{equation*}
\left\{\mathrm{E}_{\mathrm{c}}\right\}=\left[\mathrm{B}_{\mathrm{d}}\right]^{\mathrm{T}}\{\mathrm{~g}\} \tag{2.59}
\end{equation*}
$$

where

$$
\{g\}^{T}=\left[\begin{array}{lllll}
g_{2} & g_{3} & g_{4} & g_{5} \tag{2.60}
\end{array}\right]
$$

and

$$
\begin{equation*}
g_{i}=2 \pi \rho \Omega^{2} \int_{r_{1}}^{r_{2}} h(r) r^{i} d r \tag{2.61}
\end{equation*}
$$

1
When linear thickness variation within the element is assumed, then

$$
\begin{equation*}
h(r)=a+\beta r \tag{2.62}
\end{equation*}
$$

and

$$
\begin{equation*}
a=\frac{\mathrm{h}_{1} \mathrm{r}_{2}-\mathrm{h}_{2} \mathrm{r}_{1}}{\mathrm{r}_{2}-{ }^{-1}} \quad \text { and } \beta=\frac{\mathrm{h}_{2}-\mathrm{h}_{1}}{\mathrm{r}_{2}-\mathrm{r}_{1}} \tag{2.63}
\end{equation*}
$$

then

$$
\begin{equation*}
g_{i}=2 \pi \rho \Omega^{2} r_{1}^{r_{1}}(a+\beta r) r^{i} d r \tag{2.64}
\end{equation*}
$$

When the disc is subjected to axisymmetrical radial

temperature gradient the thermal loading is replaced by the consistent vector given below. For the annular element,

$$
\begin{gather*}
{\left[\begin{array}{l}
\varepsilon_{r} \\
\varepsilon_{\xi}
\end{array}\right]=\left[\begin{array}{l}
\frac{d u}{d r} \\
\frac{u}{r}
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 2 r & 3 r^{2} \\
\frac{1}{r} & 1 & r & r^{2}
\end{array}\right]\left[\mathrm{B}_{\mathrm{d}}\right]\left\{q_{d}\right\}} \\
 \tag{2.65}\\
= \tag{2.66}\\
{\left[\begin{array}{c}
\sigma_{r} \\
\sigma_{\xi}
\end{array}\right]=\frac{E]\left[B_{d}\right]\left\{q_{d}\right\}}{1-v^{2}}\left[\begin{array}{ll}
1 & v \\
v & 1
\end{array}\right]\left[\begin{array}{l}
\varepsilon_{r} \\
\varepsilon_{\xi}
\end{array}\right]-\frac{E \alpha * T(r)}{1-v}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
\end{gather*}
$$

where
α^{*} - coefficient of thermal expansion of the material of the disc.
$T(r)$ - temperature at any radius r.
Equating the work done by the temperature gradient to that by the consistent load vector $\left\{\mathrm{f}_{\mathbf{t}}\right\}$

$$
\begin{align*}
& \int_{0}^{2 \pi} \int_{r_{1}}^{r_{2}}\left\{-\frac{E}{1-\nu^{2}}\left\{q_{d}\right\}^{T}\left[B_{d}\right]^{T}[E]^{T}\left[\begin{array}{lll}
-1 & \nu \\
\nu & 1_{I}
\end{array}\right]\left[B_{d}\right]\left\{q_{d}\right\}\right. \\
& \left.-\frac{E}{1-v} \alpha * T(r)\left[B_{d}\right]^{T}[E]^{T}\left\{q_{d}\right\}^{T}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} h(r) r d r d \xi \\
& =\left\{q_{d}\right\}^{T}\left[K_{d}^{p}\right]\left\{q_{d}\right\}-\left\{q_{d}\right\}^{T}\left\{f_{t}\right\} \tag{2.67}
\end{align*}
$$

Now,

$$
\left[\mathrm{K}_{\mathrm{d}}^{\mathrm{p}}\right]=\frac{E}{1-v^{2}} \int_{0}^{2 \pi} \int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}}\left[\mathrm{~B}_{\mathrm{d}}\right]^{\mathrm{T}}[E]^{T}\left[\begin{array}{ll}
1 & \nu \tag{2.68}\\
\nu & 1
\end{array}\right][E]\left[\mathrm{B}_{\mathrm{d}}\right] \mathrm{h}(\mathrm{r}) \mathrm{r} \mathrm{dr} \mathrm{~d} \xi
$$

Therefore

$$
\begin{gather*}
\left\{f_{t}\right\}=\frac{2 \pi E \alpha^{*}}{1-v}\left[B_{d}\right]^{T} \int_{r_{1}}^{\prime 2} h(r) T(r) \quad[E]^{T}\left[\begin{array}{l}
1 \\
I
\end{array}\right] r d r d \xi \\
=\left[B_{d}\right]^{T}\{g\} \tag{2.69}
\end{gather*}
$$

where

$$
\{g\}=\left[\begin{array}{lllll}
g_{0} & g_{1} & g_{2} & g_{3} \tag{2.70}
\end{array}\right]
$$

and

$$
\begin{equation*}
g_{i}=\frac{2 \pi E \alpha^{*}}{1-v} \quad \int h(r) T(r) r^{1} d r \tag{2.71}
\end{equation*}
$$

[^3]When linear thickness and temperature variations within the element are assumed, then

$$
\begin{equation*}
h(x)=a+B r \tag{2.72}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{h_{1} r_{2}-h_{2} r_{1}}{r_{2}-r_{1}} \quad \text { and } \beta=\frac{h_{2}-h_{1}}{r_{2}-r_{1}} \tag{2.73}
\end{equation*}
$$

and

$$
T(r)=c+d r
$$

where

$$
\begin{equation*}
\mathrm{c}=\frac{\mathrm{T}_{1} \mathrm{r}_{2}-\mathrm{T}_{2} \mathrm{r}_{1}}{\mathrm{r}_{2}-\mathrm{r}_{1}} \quad \text { and } \mathrm{d}=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{r}_{2}-\mathrm{r}_{1}} \tag{2.75}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
g i=\frac{2 \pi E \alpha^{*}}{1-\nu} \int_{r_{1}}^{r_{2}}(\alpha+\beta r)(c+d r) r^{i} d r \tag{2.76}
\end{equation*}
$$

As already mentioned the load vector $\left\{Q_{D}\right\}$ comprises of the above individual contributions where applicable. Now Equation 2.54 can be solved to obtain the system displacement vector. The stresses are then calculated as follows. In the case of axisymmetric stretching of the disc the shearing stress $\boldsymbol{\tau}_{\mathbf{r} \boldsymbol{\xi}}$ is zero and hence the stress strain relationship becomes,

$$
\left[\begin{array}{c}
\sigma_{r} \tag{2.77}\\
\sigma_{\xi}
\end{array}\right]=\frac{E}{1-v^{2}}\left[\begin{array}{ll}
1 & v \\
\nu & 1
\end{array}\right]\left[\begin{array}{l}
\varepsilon_{r} \\
\varepsilon_{\xi}
\end{array}\right]-\frac{E \alpha * T(r)}{1-v}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The last term on the right hand side of the above equation
vanishes if there is no temperature gradient. Now the strain vector can be expressed in terms of the assumed deflection function; which in effect gives a relationship betweenstrain and the nodal displacements.

$$
\left[\begin{array}{c}
\varepsilon_{r} \tag{2.78}\\
\varepsilon_{\xi}
\end{array}\right]=\left[\begin{array}{c}
\frac{d u}{d r} \\
\frac{u}{r}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 2 r & 3 r^{2} \\
\frac{1}{r} & 1 & r & r^{2}
\end{array}\right]\left[B_{d}\right]\left\{q_{d}\right\}
$$

The above relationship together with Equation 2.77 can be used to get the stresses σ_{r} and $\sigma_{\boldsymbol{\xi}}$ at any radius r. In such a situation $\left\{q_{d}\right\}$ is the deflection vector of the element inside which the point in question lies.

Generally we are interested in the stresses at the

 nodal points of the model only, and the following procedure should be followed. Consider an element between nodes i and i+l.The deflection vector of this element is

$$
\begin{equation*}
\left\{q_{d}\right\}^{T}=\left[u_{i} \theta_{i} u_{i+1} \theta_{i+1} I\right. \tag{2.79}
\end{equation*}
$$

This vector is obtained from the system deflection vector $\left\{q_{D}\right\}$. Now, making use of the relationships (2.77) and (2.78), we get

$$
\left[\begin{array}{c}
\sigma_{r i} \tag{2.80}\\
\sigma_{\xi i} \\
\sigma_{r i+1} \\
\sigma_{\xi_{i+1}}
\end{array}\right]=\frac{E}{1-v^{2}}\left[\begin{array}{llll}
1 & \nu & 0 & 0 \\
\nu & 1 & 0 & 0 \\
0 & 0 & 1 & \nu \\
0 & 0 & \nu & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 r_{i} & 3 r_{i}^{2} \\
\frac{1}{r_{i}} & 1 & r_{i} & r_{i}^{2} \\
0 & 1 & 2 r_{i+1} & 3 r_{i+1}^{2} \\
1 & 1 & r_{i+1} & r_{i+1}^{2}
\end{array}\right]\left[B_{d}\right]\left\{q_{d}\right\}-\frac{E \alpha *}{1-v}\left[\begin{array}{l}
T_{i} \\
T_{i+1} \\
T_{i} \\
T_{i+1}
\end{array}\right]
$$

Abstract

When there is no temperature gradient in the disc the last term in the above equation vanishes. These same stresses can be found using the deflection vectors of the adjacent elements also. Note that in this case the stresses at a node are uniquely defined since both u and du/dr happen to be degrees of freedom chosen; thus there will not be any difference in the values calculated using adjacent elements.

2.3.3 Numerical Applications

Abstract

The convergence properties and accuracy of the plane stress annular element developed are first examined by comparing with exact solutions the values of stresses calculated using these elements. Both centrifugal and thermal loading are considered. The accuracy of the use of the additional stiffness coefficients derived for the vibration of rotating discs is then assessed by comparing frequency values calculated with these coefficients and the thin plate annular elements, with exact and experimental values.

(A) First uniform annular discs with the extreme value of
$a / b=0.001$ and the more typical value 0.2 , rotating with uniform
angular velocity Ω were considered. Radial stress coefficients
$P=\left(a_{r} / \rho \Omega^{2} b^{2}\right) \times 10^{4}$, and tangential stress coefficients $q=\left(\sigma_{\xi} /\right.$
$\left.\rho \Omega^{2} b^{2}\right) \times 10^{4}$ were calculated for these discs with the plane
stress annular elements, and these are given in Tables 2.25 to 2.28 along with exact solutions. From these results it is seen that when a / b is very small, 0.001 , the finite element results are in error at the inner boundary and are unacceptable. However, at . points away from the inner boundary, agreement between finite element and exact solutions is good. For such cases it is necessary to use many elements, eg. 8 or 16 elements, in Tables 2.25 and 2.26, and to disregard the stress value obtained at the inner
boundary. When the value of a / b is increased to 0.2 , the finite element results at the inner boundary also become very much closer to the exact values, Tables 2.27 and 2.28. In both cases convergence is rapid and results with engineering accuracy are obtained with four to eight elements. In Figure 2.7, the stress coefficients p 'and q calculated, for \boldsymbol{a} disc with $a / b=0.2$, using plane stress annular elements are compared with exact solutions graphically.
(B) For a second example, an annular disc with $a / b=0.2$ and hyperbolic radial thickness variation $(17), h(r)=h(b) / r^{1}$, when $i=1$, rotating with uniform angular velocity Ω was considered. The stress coefficients p and q obtained with plane stress annular elements with linear thickness variation are given in Tables 2.29 and 2.30 along with exact solutions. Agreement between finite element and exact solutions is good and convergence is rapid with increasing number of elements.
(C) Next, temperature stresses in two uniform annular discs with $a / b=0.001$ and 0.2 were considered. The discs were subjected to radially varying temperature gradient, $T(r)=T(b) \frac{r}{b}$. Radial stress coefficients $p=\left\{\sigma_{\mathbf{r}} / \mathrm{E} * \mathrm{~T}(\mathrm{~b})\right\} \times 10^{4}$, and tangential stress coefficients $q=\left\{\sigma_{\xi} / E \alpha^{*} T(b)\right) \times 10^{4}$, calculated with the plane stress annular elements, are given in Tables 2.31 to 2.34, along with exact solutions. Remarks made under (A) above, regarding accuracy and convergence of results, hold for these cases also.
(D) The stresses obtained using plane stress elements are now used as initial in-plane stresses in the vibration analysis of rotating discs. Ignoring bending stiffness of the disc and considering only the stiffness due to the initial stresses, frequency coefficients $\lambda=\left(\omega_{1} / \Omega\right)^{2}$ of the membrane disc, where ω_{1} is the natural frequency of the membrane disc and Ω, the speed of rotation, were calculated. The values of λ obtained, for a centrally clamped disc, are given in Table 2.35 along with the exact values given by Lamb and Southwell (47). These values were also calculated taking exact stress values at nodal points and are given in Table 2.36. A value of $a / b=0.001$ was assumed to facilitate modelling the disc with annular elements only. In both cases linear variations of the stresses within the element were assumed. In either case the membrane frequencies are calculated within 3% or better using only four elements.
(E) Finally, the variation of the natural frequencies with speed of rotation of a thin annular disc with $a / b=0.5, b=8.0$ in. and $h=0.04$ in. was studied. Both the disc bending stiffness and the additional stiffness resulting from centrifugal stresses were considered together. Natural frequencies ω_{m} of this disc rotating at 0,1000 , .., 4000 rpm , calculated using eight thin plate bending and plane stress annular elements are given in Table 2.37. Convergence of results with increasing number of elements, for 3000 rpm, are shown in Table 2.38. The relationship between the natural frequencies ω_{mn} of a rotating disc and the harmonic exeitation frequency ζ is given by (73)

$$
\begin{equation*}
\zeta=\omega_{\mathrm{mn}} \pm \mathrm{m} \Omega \tag{2.81}
\end{equation*}
$$

where m is the number of nodal diameters and Ω is the speed of rotation of the disc. Mote and Nieh (73) have measured experimentally values of ζ for this disc. In Figure 2.8 values of ζ obtained from finite element results have been plotted against rpm, for the first mode of diametral nodes 0 to 5. The calculated frequencies lie very close to the experimental points showing excellent agreement between these results.
2.4 THE EFFECT OF TRANSVERSE SHEAR AND ROTARY INERTIA ON THE VIBRATION OF MODERATELY THICK DISCS

Computed frequencies using thin plate theory are always found to be higher than the experimentally measured ones when thick
discs and the higher modes of relatively thin discs are considered. An improved plate theory, which considers transverse shear and rotary inertia, would result in satisfactory analysis when the discs are moderately thick. The effect of transverse shear is to produce additional rotation and deflection; and that of rotary inertia is to increase the inertia. Thus both these effects serve to decrease the computed frequencies.

A coefficient k^{2}, known as shear coefficient, is introduced to take into account the shear stress distribution across the depth of the plate.' Mindlin (62) has used a value $\kappa^{2}=\pi^{2} / 12$, which is close to the normally used value of $5 / 6$ for rectangular section Timoshcnko beam. When moderately thick uniform circular and annular plates are considered the frequency determinants derived by Callahan (66) and Bakshi and Callahan (67) can be used; however, as mentioned previously, there is'no simple exact solution for thick discs of varying thickness.
In this section, a finite element approach is descri-
bed which can readily be used in the analysis of discs with
radial thickness variation. Two new finite elements, both of
annular geometry and having radial thickness taper, are developed.
These elements require additional degrees of freedom to take into
account transverse shear effects. The efficiency of these elements
is examined by comparing calculated frequency values with experi-
mental values published by other investigators. For uniform discs,
the exact values are computed using Mindlin's theory for comparision with finite element results. These exact values use the method of Bakshi and Callahan (67). Since their paper contains many typographical errors the frequency determinant resulting for a free annular plate is given along with a brief summary of Mindlin's equations in Appendix B.

In the finite element analysis of moderately thick turbine discs, additional strain energy due to transverse shear and addftional kinetic energy due to rotary inertia must be taken into account in obtaining the element matrices. For an annular element, the complete strain energy and kinetic energy expressions are given below when these additional energies are included (62)

$$
\begin{align*}
\mathrm{U}= & \frac{1}{2} \int_{0}^{2 \pi} \int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}} \mathrm{D}\left\{x_{b}\right\}^{\mathrm{T}}\left[\begin{array}{ccc}
\overrightarrow{1} & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]\left\{x_{b}\right\}_{\mathrm{r}} \mathrm{drd} \xi \\
& +\frac{1}{2} \int_{0}^{2 \pi} \mathrm{f}_{1} \mathrm{~K}^{2} \operatorname{Gh}(r)\left\{x_{s}\right\}^{T}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left\{x_{s}\right\}_{\mathrm{r}} \mathrm{drd} \xi \tag{2.82}
\end{align*}
$$

where

$$
\left[\begin{array}{cc}
r_{r} \tag{2.83}\\
\left\{x_{s}\right\} \\
r_{\xi}
\end{array}\right]=\begin{aligned}
r_{r} \\
r_{\xi}
\end{aligned}
$$

and

$$
\left\{x_{b}\right\}=\left[\begin{array}{l}
\frac{\partial \psi_{r}}{\partial r} \tag{2.84}\\
\frac{\psi_{r}}{r}+\frac{1}{r} \frac{\partial \psi_{\xi}}{\partial \xi} \\
\frac{1}{r} \frac{\partial \psi_{r}}{\partial \xi}-\frac{\psi_{\xi}}{r}+\frac{\partial \psi_{\xi}}{\partial r}
\end{array}\right]
$$

and

$$
\begin{align*}
T= & \frac{1}{2} \int_{0}^{2 \pi} \int_{r_{1}}^{r_{2}} \rho h(r)\left(\frac{\partial W}{\partial t}\right)^{2} r d r d \xi \\
& +\frac{1}{2} \int_{0}^{2 \pi} \int_{r_{1}}^{r_{2}} \frac{\rho h^{3}(r)}{12} I\left\{\frac{\partial \psi_{r}}{\partial t}\right\}^{2}+\left\{\frac{\partial \psi_{\xi}}{\partial t}\right\}^{2} J r \operatorname{drd\xi } \tag{2.85}
\end{align*}
$$

where

$$
\begin{equation*}
\psi_{r}=-\frac{\partial w}{\partial r}+\gamma_{r} ; \quad \psi_{\xi}=-\frac{1}{r} \frac{\partial w}{\partial \xi}+\gamma_{\xi} \tag{2.86}
\end{equation*}
$$

and, $Y_{\mathbf{r}}$ and $Y_{\boldsymbol{\xi}}$ are the additional radial and circumferential
rotations resulting from transverse shear.

2.4.1 Annular Plate Bending Finite Elements Including Transverse

 Shear And Rotary Inertia.(A) Thick Disc Element-l

In this case, in addition to the total deflections $\overline{\mathrm{w}}$ and radial rotations $\bar{\psi}_{\mathbf{r}}$ along an antinode at either boundary of
the annular element, the radial and tangential shear rotations $\bar{\gamma}_{\mathbf{r}}$ and $\bar{\gamma}_{\xi}$ are taken as additional degrees of freedom. Figure 2.9 shows this element with two nodal diameters and the degrees of freedom considered, Hence, the deflection vector, which has eight degrees of freedom, is

$$
\begin{equation*}
\left\{q_{d}\right\}^{T}=\left[\bar{w}_{1} \bar{\psi}_{r 1} \bar{\gamma}_{r 1} \bar{\gamma}_{\xi 1} \bar{w}_{2} \bar{\psi}_{r 2} \bar{\gamma}_{r 2} \bar{\gamma}_{\xi 2}\right] \tag{2.87}
\end{equation*}
$$

This formulation of the element configuration follows closly that of Pryor et al (125), who recently examined the static loading solutions for thick plates using rectangular finite elements. Now, assuming the deflection functions

$$
\begin{align*}
& w(r, \xi)=\left(a_{1}+a_{2} r+a_{3} r^{2}+a_{4} r^{3}\right) \cos m \xi \\
& \gamma_{r}(r, \xi)=\left(a_{5}+a_{6} r\right) \cos m \xi \tag{2.88}\\
& \gamma_{\xi}(r, \xi)=\left(a_{7}+a_{8} r\right) \sin m \xi
\end{align*}
$$

and substituting these into the energy equations, Equations 2.82 and 2.85, we obtain the stiffness and inertia matrices of the element as

$$
\left[K_{\mathrm{d}}^{\mathrm{t}}\right]=\left[\mathrm{B}_{\mathrm{d}}^{\mathrm{t}}\right]^{\mathrm{T}}\left[\mathrm{k}_{\mathrm{d}}^{\mathrm{t}}\right]\left[\mathrm{B}_{\mathrm{d}}^{\mathrm{t}}\right]
$$

and

$$
\begin{equation*}
\left[M_{d}^{t}\right]=\left[B_{d}^{t}\right]^{T}\left[m_{d}^{t}\right]\left[B_{d}^{t}\right] \tag{2.89}
\end{equation*}
$$

where

$$
\left[\mathrm{B}_{\mathrm{d}}^{\mathrm{t}}\right]^{-1}=\left[\left.\begin{array}{cccccccc}
1 & \mathrm{r}_{1} & \mathrm{r}_{1}^{\prime} & \mathrm{r}_{1}^{3} & 0 & 0 & 0 & 0 \tag{2.90}\\
0 & -1 & -2 \mathrm{r}_{1} & -3 r_{1}^{2} & 1 & \mathrm{r}_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \mathrm{r}_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & r_{1} \\
1 & \mathrm{r}_{2} & \mathrm{r}_{2}^{2} & \mathrm{r}_{2}^{2} & 0 & 0 & 0 & 0 \\
0 & -1 & -2 r_{2} & -3 \mathrm{r}_{2}^{2} & 1 & \mathrm{r}_{2} & 0 & 0
\end{array} \right\rvert\,\right.
$$

and

$$
\left[k_{d}^{t}\right]=\left[\begin{array}{ll}
{\left[k_{d}\right]} & {\left[k_{d}^{1}\right]} \tag{2.91}\\
{\left[k_{d}^{1}\right]^{T}} & {\left[k_{d}^{2}\right]}
\end{array}\right]
$$

The matrix $\left[k_{d}\right]$ is the same matrix of the thin plate bending annular element developed in section 2.2 .2 and is given in Table 2.2. The matrices $\left[k_{d}^{1}\right]$ and $\left[k_{d}^{2}\right]$ are given in Table 2.39 , where

$$
\begin{equation*}
P_{i}=C \pi \frac{E}{12\left(1-v^{2}\right)} \int_{r_{\perp}}^{r_{2}} h^{3}(r) r^{1} d r ; \quad Q_{i}=C \pi G \kappa^{2} \int_{r_{1}}^{r_{2}} h(r) \quad r^{i} d r \tag{2.92}
\end{equation*}
$$

$$
\left.\left.I m_{d}^{t}\right]=\left\lvert\, \begin{array}{cc}
{\left[m_{d}\right]} & {[0]} \tag{2.93}\\
{[0]} & {[0]}
\end{array}\right.\right]+\left[m_{d}^{1}\right]
$$

where

$$
\left[\mathrm{B}_{\mathrm{d}}^{\mathrm{t}}-\right]^{-1}=\left\lvert\, \begin{array}{cccccccc}
-1 & \mathrm{r}_{1} & \mathrm{r}_{1}^{2} & \mathrm{r}_{1}^{13} & 0 & 0 & 0 & 0 \\
0 & -1 & -2 r_{1} & -3 r_{1}^{2} & 1 & r_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & r_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & r_{1} \\
1 & \mathrm{r}_{2} & \mathrm{r}_{2}^{2} & \mathrm{r}_{2}^{3} & 0 & 0 & 0 & 0 \\
0 & -1 & -2 r_{2} & -3 r_{2}^{2} & 1 & r_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & r_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & r_{2} .
\end{array} \underbrace{-}\right.
$$

and

$$
\left[k_{d}^{t}\right]=\left[\begin{array}{ll}
{\left[k_{d}\right]} & {\left[k_{d}^{1}\right]} \tag{2.91}\\
{\left[k_{d}^{1}\right]^{T}} & {\left[k_{d}^{2}\right]}
\end{array}\right]
$$

The matrix $\left[k_{d}\right]$ is the same matrix of the thin plate bending annular element developed in section 2.2.2 and is given in Table 2.2. The matrices $\left[k_{d}^{1}\right]$ and $\left[k_{d}^{2}\right]$ are given in Table 2.39, where

$$
\begin{equation*}
P_{i}=C \pi \frac{E}{12\left(1-\nu^{2}\right)} \int_{r_{1}}^{r_{2}} h^{3}(r) r^{1} d r ; \quad Q_{i}=C \pi G \kappa^{2} \int_{r_{1}}^{r_{2}} h(r) \quad r^{i_{d r}} \tag{2.92}
\end{equation*}
$$

$$
\left[\mathrm{m}_{\mathrm{d}}^{\mathrm{t}}\right]=\left[\begin{array}{cc}
{\left[\mathrm{m}_{\mathrm{d}}\right]} & {[0]} \tag{2.93}\\
{[0]} & {[0]}
\end{array}\right]+\left[\mathrm{m}_{\mathrm{d}}^{1}\right]
$$

```
where [m}\mp@subsup{m}{d}{}]\mathrm{ is the same matrix of the thin plate bending annular
element, developed in section 2.2.2, and is given in Table 2.3.
The matrix [mm
    P
Linear thickness variation can be assumed within the element
in evaluating the integrals, Equations 2.92 and 2.94.
    When this element is used the following boundary
conditions should be satisfied.
\begin{tabular}{ll} 
Simply supported boundary & \(\overline{\mathrm{w}}=0\) \\
Clamped boundary & \(\overline{\mathbf{w}}=0 ; \bar{\psi}_{\mathrm{r}}=0\) \\
Free boundary & \(\bar{\Upsilon}_{\mathbf{r}}=0\)
\end{tabular}
(B) Thick Disc Element-2
```

```
    An alternative method of considering the effects of
```

 An alternative method of considering the effects of
 transverse shear and rotary inertia is to treat separately the
transverse shear and rotary inertia is to treat separately the
deformations due to bending and transverse shear. The effici-
deformations due to bending and transverse shear. The effici-
ency of this approach was first examined in the static bending
ency of this approach was first examined in the static bending
analysis of thick rectangular plates and this work is described
analysis of thick rectangular plates and this work is described
with some detail in Appendix C. It is demonstrated that this
with some detail in Appendix C. It is demonstrated that this
approach has considerable advantages for static problems (126).
approach has considerable advantages for static problems (126).
Below, this method of analysis is applied to the vibration

```
Below, this method of analysis is applied to the vibration
```

analysis of moderately thick circular plates. An annular plate bending element with eight degrees of freedom is developed. In this element, in addition to the deflections and rotations due to bending, those due to transverse shear are taken to be the additional degrees of freedom.

In the formulation of this finite element, the contributions of bending and transverse shear are separated, thus

$$
\begin{equation*}
\mathrm{w}=\mathrm{w}^{\mathrm{b}}+\mathrm{w}^{\mathbf{s}} \tag{2.95}
\end{equation*}
$$

and further it is assumed that the rotations $\psi_{\mathbf{r}}$ and $\psi_{\boldsymbol{\xi}}$ are due to bending alone.

$$
\begin{equation*}
\psi_{r}=-\frac{\partial w}{\partial r} \quad \text { and } \quad \psi_{\xi}=-\frac{1}{r} \frac{\partial w^{b}}{\partial \xi} \tag{2.96}
\end{equation*}
$$

Then the rotations $\gamma_{\mathbf{r}}$ and $\gamma_{\boldsymbol{\xi}}$ are due to shear deformation alone.

$$
\begin{equation*}
\gamma_{r}=-\frac{\partial w^{\mathbf{s}}}{\partial r} \quad \text { and } \quad \gamma_{\xi}=-\frac{1}{\mathbf{r}} \frac{\partial w^{\mathbf{s}}}{\partial \xi} \tag{2.97}
\end{equation*}
$$

Taking these shear deflections and rotations in addition to those due to bending as degrees of freedom, the deflection vector of the element Is

$$
\left\{\bar{q}_{d}\right\}=\left|\begin{array}{l}
\left\{{\overline{q_{d}}}_{d}\right\} \tag{2.98}\\
\left\{{\left.\overline{q_{d}}\right\}}^{s}\right\}
\end{array}\right|
$$

where

$$
\left\{\overline{\mathrm{q}}_{\mathrm{d}}^{\mathrm{T}}\right\}^{\mathrm{T}}=\left[\begin{array}{llll}
\overline{\mathrm{w}}_{1} & \bar{\Psi}_{r 1} & \overline{\mathrm{w}}_{2} & \bar{\psi}_{\mathrm{r} 2}
\end{array}\right]
$$

and

$$
\left\{{\overline{q_{d}}}_{d}^{T}=\left[\begin{array}{llll}
\bar{w}_{1}^{s} & \bar{\gamma}_{r 1} & \bar{w}_{2}^{s} & \bar{\gamma}_{r 2}
\end{array}\right]\right.
$$

Figure 2.10 shows this element with two nodal diameters and the degrees of freedom. Assuming the deflection functions,

$$
\begin{align*}
& w^{b}(r, \xi)=\left(a_{1}+a_{2} r+a_{3} r^{2}+a_{4} r^{3}\right) \cos m \xi \\
& w^{s}(r, \xi)=\left(a_{5} \text { fa } a_{6} r-1-a_{7} r^{2}+a_{8} r^{3}\right) \cos m \xi \tag{2.99}
\end{align*}
$$

and substituting in the energy expressions, Equations 2.82 and 2.85, we obtain the stiffness and inertia matrices.

$$
\left[K_{d}^{t}\right]=\left[B_{d}^{t}\right]^{T}\left[k_{d}^{t}\right]\left[B_{d}^{t}\right]
$$

and

$$
\begin{equation*}
\left[\mathrm{M}_{\mathrm{d}}^{\mathrm{t}}\right]=\left[\mathrm{B}_{\mathrm{d}}^{\mathrm{t}}\right]^{\mathrm{T}}\left[\mathrm{~m}_{\mathrm{d}}^{\mathrm{t}}\right]\left[\mathrm{B}_{\mathrm{d}}^{\mathrm{t}}\right] \tag{2.100}
\end{equation*}
$$

where

$$
\left[\mathrm{B}_{\mathrm{d}}^{\mathrm{t}}\right]=\left[\begin{array}{cc}
{\left[\mathrm{B}_{\mathrm{d}}\right]} & {[0]} \tag{2.101}\\
{[0]} & {\left[\mathrm{B}_{\mathrm{d}}\right]}
\end{array}\right]
$$

and

$$
\left[k_{d}^{t}\right]=\left[\begin{array}{cc}
{\left[k_{d}\right]} & {[0]} \tag{2.102}\\
{[0]} & {\left[k_{d}^{s}\right]}
\end{array}\right]
$$

where the matrices $\left[B_{d}\right]$ and $\left[k_{d}\right]$ are the same as those of the annular thin plate bending element, developed in section 2.2.2, and are given in Tables 2.1 and 2.2. The matrix $\left[\mathrm{k}_{\mathrm{d}}^{\mathbf{s}}\right]$ is given in Table 2.41, where

$$
\begin{equation*}
Q_{i}=C \pi \kappa^{2} G \underset{r_{1}}{r_{2}} h(r) r^{\mathbf{r}^{4}} d r \tag{2.103}
\end{equation*}
$$

and

$$
\left[\mathrm{m}_{\mathrm{d}}^{\mathrm{t}}\right]=\left[\begin{array}{cc}
{\left[\mathrm{m}_{\mathrm{d}}\right]} & {\left[\mathrm{m}_{\mathrm{d}}\right]} \tag{2.104}\\
{\left[\mathrm{m}_{\mathrm{d}}\right]} & {\left[\mathrm{m}_{\mathrm{d}}\right]}
\end{array}\right]+\left[\begin{array}{cc}
{\left[\mathrm{m}_{d}^{\mathrm{r}}\right]} & {[0]} \\
{[0]} & {[0]}
\end{array}\right]
$$

where the matrix $\left[m_{d}\right]$ is the same as that of the thin plate bending annular element, developed in section 2.2.2, and is given in Table 2.3. The matrix $\left[\mathrm{m}_{\mathrm{d}}^{\mathrm{r}}\right]$ is given in Table 2.42, where

$$
\begin{equation*}
P_{i}=C \pi \frac{\rho}{12} \int_{r_{I}}^{r_{2}} h(r) r^{i} d r \tag{2.105}
\end{equation*}
$$

When this'element is used the following boundary conditions should be satisfied.

Simply supported boundary

$$
\begin{aligned}
& \bar{w}^{-}=0 ; \quad \vec{w}^{s}=0 \\
& -\vec{w}=0 ; \vec{w}^{s}=0 ; \quad \bar{\psi}_{r}=0 \\
& \bar{\gamma}_{r}=0
\end{aligned}
$$

Free boundary

```
2.4.2 Numerical Applications
    The efficiency and convergence properties of these two thick disc elements are now examined by comparing frequency values computed using these elements with experimental data, for both uniform and nonuniform discs. In the case of uniform discs, the exact values are also calculated using Mindlin's theory for comparision.
```

(A) The first example is a small circular disc 75 mm in
diameter and 5 mm thick, for which some of the experimental
frequencies are given by Onoe and Yano (68). A small hole is
assumed at the centre of the disc with a/b $=0.001$. Frequencies
calculated using both thick disc elements are given in Tables 2.43
and 2.44, along with exact and experimental values. Modes of
vibration with m $=0$ to 3 are considered. Comparision of results
in Tables 2.43 and 2.44 shows little difference between results
of Element-l and Element-2; and both results compare well with
exact and experimental data. The disc was completely free and
therefore free body modes exist for m $=0$ and 1 . In these cases
convergence is from below, atleast for the first mode. In all
the other cases-convergence is from above, as would be expected,
and is rapid.
(B) A number of fairly thick discs and rings were chosen as the second example, The dimensions of these discs and rings
are given in Tables 2.45 and 2.46 along with the first frequency ($m=2$, $n=0$) values calculated using these thick disc elements. Experimental results are given by Peterson (71) for all these cases. Comparision of results in Tables 2.45 and 2.46 shows that when complete discs are considered both the elements perform well and calculated and experimental results are close. But in the case of rings Element-l gives good results whereas there is a large difference between calculated and experimental values with Element-2. Practically there is no convergence with this element. Such poor performance of Element-2 may be due to the difficulty in imposing correct boundary conditions when this element is used,
(C) As the third example two rings with different thick nesses were chosen. Experimental results for these rings for $m=2$ and $n=0$ are given by Rao(127); and are originally due to Peterson (71). Only Element-l is used in this case and the calculated frequencies are given in Table 2.47 along with exact and experimental results. The dimensions of these rings are also given in Table 2.47. Agreement between the calculated and experimental results is good.
(D) Discs with stepped section and fillets were examined
next. Three such discs were considered. Except the web thickness other dimensions are the same, Figure 2.11. Only one frequency
$(m=2, n=0)$ in each case was calculated and are given in Table 2.48 along with experimental values. Agreement between calculated and experimental values is good. These discs were modelled with five elements as shown in Figure 2.11 .
(E) The final example chosen is a practical turbine disc. The dimensions, material constants and experimentally measured frequencies for this disc were provided by Dr. E. K. Armstrong of Rolls-Royce (1971) Ltd. The profile of this disc is given in Figure 2.12, and the thickness at various radial distances are given in Table 2.49. This disc was modelled with 4, 6 and 8 elements using Element-l, and the mass of castellations present at the end of the disc was lumped at the outer boundary, Finite element results are given along with experimental frequencies in Table 2.50. Frequencies calculated using 8 thin plate elements also are given for comparision. Values calculated with thick disc elements are in much closer agreement with the experimental results. It is also perhaps worth noting that the error between calculated frequencies, with 8 elements, and experimental values is consistently 6% to 8% high; this suggests the possibility that the nominal modulus of elasticity used may be in error.

CHAPTER 3

VIBRATION ANALYSIS OF AXIAL FLOW TTJRBINE BLADES

3.1 INTRODUCTION

Abstract

Since the purpose of this investigation has more emphasis on the coupling effect between the disc and the array of blades in a bladed disc, a refined analysis of the blade is not attempted here. Much work has been published on this area, as was noted in the literature survey in chapter 1, and several methods of analysis of blade alone case are available. Such methods consider the blade with its aerofoil section and most of the other complicating factors such as camber, pretwist, longitudinal taper, root flexibility etc.

In this investigation the blade is idealized to behave as a beam having arbitrary variations in section properties and pretwist along its span. It is assumed that the centroidal and flexural axes coincide, ie the shear centre coincides with the centroid and there is no coupling between bending and torsion within the blade.
. In section 3.2 an idealization of a blade segment using available beam finite elements is outlined. The effect of

Abstract

and the presence of other stresses in the blade modifies substantially the natural frequencies of the blade. Therefore, in section 3.3, additional stiffness coefficients resulting from these effects are derived to be included in the bending and torsional stiffness matrices of the element chosen. In section 3.4 a new beam bending finite element with six degrees of freedom is developed; where transverse shear and rotary inertia effects are taken into account. Finally in section 3.5 , the method of analysis of pretwisted blades is described. ```Numerical results showing the effects of rotation, transverse shear and rotary inertia and pretwist are given along with other available solutions,```

3.2 MODELLING OF BLADE SEGMENTS USING AVAILABLE BEAM FINITE ELEMENTS

Figure 3.1 shows a nonuniform blade element with the coordinate system chosen. $O z$ is the engine axis and $O y$ and $O x$ are the tangential and radial directions respectively. The minor principal axis $O z^{*}$ of the blade cross-section is inclined at an angle δ to the engine axis $O z$. When this blade element is considered to behave according to Euler-Bernoulli beam theory, well known beam finite elements described by several authors $(78,79)$ can be used. In such cases, the element has four degrees of freedom in each principal direction in bending and two in
torsion. These are, as shown in Figure 3.1, $\mathbf{v}_{1}^{*}, \psi_{1}^{*}, v_{2}^{*}$ and ψ_{2}^{*} in bending along the minor principal direction, $w_{1}^{*}, \theta_{1}^{*}, w_{2}^{*}$ and θ_{2}^{*} in bending along the major principal direction and ϕ_{1} and ϕ_{2} in torsion. Since there is no coupling between bending in the principal directions and between bending and torsion, the element matrices are not coupled. Therefore corresponding to the displacement vector,

$$
\left\{q_{b}^{\star}\right\}^{T}=\left[\begin{array}{llllllllll}
v_{1}^{*} & \psi_{1}^{*} & v_{2}^{\star} & \psi_{2}^{\star} & w_{1}^{*} & \theta_{1}^{*} & w_{2}^{*} & \theta_{2}^{*} & \phi_{1}^{*} & \phi_{2}^{*} \tag{3.1}
\end{array}\right]
$$

the element stiffness and inertia matrices are given by
where ψ^{*} and θ^{*} are defined as

$$
\begin{equation*}
\psi^{*}=-\frac{\partial v^{*}}{\partial x} \quad \text { and } \quad \theta *=-\frac{\partial w^{*}}{\partial x} \tag{3.3}
\end{equation*}
$$

$\left[\mathrm{K}_{\mathrm{b}}^{\mathrm{V}}\right.$] and $\left[\mathrm{M}_{\mathrm{b}}^{\mathrm{V}}\right.$] are the bending stiffness and inertia matrices along the minor principal direction, $\left[\mathrm{K}_{\mathrm{b}}^{\mathrm{w}}\right]$ and $\left[\mathrm{M}_{\mathrm{b}}^{\mathrm{W}}\right]$ are the
bending stiffness and inertia matrices along the major principal direction and $\left[K_{b}^{t}\right]$ and $\left[M_{b}^{t}\right]$ are the torsional stiffness and inertia matrices. Matrices $\left[K_{b}^{\mathbf{V}}\right]$ and $\left[K_{b}^{W}\right]$ are identical and can be defined by the matrix $\left[K_{b}^{c}\right]$ in which appropriate values of moment of inertia corresponding to the required direction should be used. Matrices $\left[M_{b}^{V}\right]$ and $\left[M_{b}^{W}\right]$ are the same when rotary inertia is ignored and can be defined by the matrix $\left[M_{b}^{c}\right.$].

In Tables 3.1 and 3.2 matrices $\left[K_{b}^{c}\right],\left[M_{b}^{c}\right],\left[K_{b}^{t}\right]$ and $\left[M_{b}^{t}\right]$ are given for a beam element when linear variations of the moment of inertia I, the area of cross-section A, the torsional stiffness K_{G}, and the polar moment of inertia J are assumed.

3.3 EFFECT OF ROTATION

The additional terms arising in the energy expression of a blade element rotating with angular velocity Ω are given by (90)

$$
\begin{align*}
& U=\frac{1}{2} \int_{x_{1}}^{x_{2}} A \sigma_{X}\left\{\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}\right\} d x-\frac{1}{2} \rho \Omega^{2} \int_{x_{1}}^{x_{2}} A(v)^{2} d x \\
&+\frac{1}{2} \int_{x_{1}}^{\int_{x}} \sigma_{x} J\left(\frac{\partial \phi}{\partial x}\right)^{2} d x-\frac{\rho \Omega^{2}}{2} \int_{x_{1}}^{x_{2}}\left(I_{\max }^{\left.-I_{\min }\right)(\phi)^{2} \cos 2 \delta} d x\right. \tag{3.4}
\end{align*}
$$

where $\sigma_{\mathbf{x}}$ is the stress along the length of the blade resulting
from rotation. It should be noted that since $O z$ is the engine axis and Oy the tangential direction, the deflections w and v are perpendicular and parallel to the plane of rotation. Assum ming the deflection functions,

$$
\begin{align*}
& v(x)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3} \\
& w(x)=a 5+a_{6} x+a_{7} x^{2}+a_{8} x^{3} \tag{3.5}\\
& \phi(x)=a_{9}+a_{10} x
\end{align*}
$$

which are used to derive the basic beam matrices given in Tables 3.1 and 3.2, and substituting in the above strain energy equation we arrive at the additional stiffness matrix corresponding to the deflection vector

$$
\left\{q_{b}\right\}^{T}=\left[\begin{array}{llllllllll}
v_{1} & \psi_{1} & w_{1} & \theta_{1} & \phi_{1} & v_{2} & \psi_{2} & w_{2} & \theta_{2} & \phi_{2} \tag{3.6}
\end{array}\right]
$$

as

$$
\begin{equation*}
\left[K_{b}^{a}\right]=\left[B_{b}^{a}\right]^{T}\left[k_{b}^{a}\right]\left[B_{b}^{a}\right] \tag{3.7}
\end{equation*}
$$

where

$$
\left[\mathrm{B}_{\mathrm{b}}^{\mathrm{a}}\right]^{-1}=\left|\begin{array}{ccccccccccc}
1 & \mathrm{x}_{1} & \mathrm{x}_{1}^{2} & & \mathrm{x}_{1}^{3} & 0 & 0 & 0 & 0 & 0 & 0 \tag{3.8}\\
0 & -1 & -2 \mathrm{x}_{1} & -3 \mathrm{xf} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \mathrm{x}_{1} & \mathrm{x}_{1}^{2} & \mathrm{x}_{1}^{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & -2 \mathrm{x}_{1} & -3 \mathrm{x} ; & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mathrm{x}_{1} \\
1 & \mathrm{x}_{2} & \mathrm{x}_{2}^{2} & \mathrm{x}_{2}^{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & -2 \mathrm{x}_{2} & -3 \mathrm{x} ; & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \mathrm{x}_{2} & \mathrm{x}_{2}^{2} & \mathrm{x}_{2}^{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & -2 \mathrm{x}_{2} & -3 \mathrm{x} ; & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & x_{2}
\end{array}\right|
$$

and

$$
\left[k_{b}^{a}\right]=\left|\begin{array}{ccc}
{\left[k_{v}^{a}\right]} & {[0]} & {[0]} \tag{3.9}\\
{[0]} & {\left[k_{w}^{a}\right]} & {[0]} \\
{[0]} & {[0]} & {\left[k_{t}^{a}\right]}
\end{array}\right|
$$

where the matrices $\left[k_{v}^{a}\right],\left[k_{w}^{a}\right]$ and $\left[k_{t}^{a}\right]$ are given below.

$$
\left[k_{v}^{a}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{3.10}\\
0 & R O & 2 R_{1} & 3 R_{2} \\
0 & 2 R_{1} & 4 R_{2} & 6 R_{3} \\
0 & 3 R_{2} & 6 R_{3} & 9 R_{4}
\end{array}\right]
$$

$$
\left[\mathrm{k}_{\mathrm{W}}^{\mathrm{a}}\right]=\left[\begin{array}{cccc}
\mathrm{s}_{0} & \mathrm{~S}_{1} & \mathrm{~S}_{2} & \mathrm{~s}_{3} \tag{3.11}\\
\mathrm{~S}_{1} & \mathrm{R}_{0}+\mathrm{S}_{2} & 2 \mathrm{R}_{1}+\mathrm{S}_{3} & 3 \mathrm{R}_{2}+\mathrm{S}_{4} \\
\mathrm{~S}_{2} & 2 \mathrm{R}_{1}+\mathrm{S}_{3} & 4 \mathrm{R}_{2}+\mathrm{S}_{4} & 6 \mathrm{R}_{3}+\mathrm{S}_{5} \\
\mathrm{~S}_{3} & 3 \mathrm{R}_{2}+\mathrm{S}_{4} & 6 \mathrm{R}_{3}+\mathrm{S}_{5} & 9 \mathrm{R}_{4}+\mathrm{S}_{6}
\end{array}\right]
$$

In the above matrices

$$
\begin{equation*}
\mathrm{Ri}=\int_{\mathbf{x}_{\mathbf{1}}}^{\mathbf{x}_{2}} \sigma_{\mathrm{x}} \mathrm{~A} \mathrm{x}^{\mathbf{i} d x} \text { and } \quad \mathrm{S}_{\mathrm{i}}=-\frac{\Omega^{2} \int_{\mathbf{2}} \mathrm{A} \mathrm{x}^{\mathbf{i}} \mathrm{dx}}{\mathbf{x}_{\mathbf{1}}} \tag{3.12}
\end{equation*}
$$

and

$$
\left[k_{t}^{a}\right]=\left[\begin{array}{cc}
s_{0} & s_{1} \tag{3.13}\\
s_{1} & R_{0}+s_{2}
\end{array}\right]
$$

where

$$
\begin{aligned}
& R_{i}=\int_{x_{1}}^{x_{2}} \sigma_{x} J x^{i} d x \\
& \text { si }=-\rho \Omega^{2} \cos 26 \int_{x_{1}}\left(I_{\max }-I_{\min }\right) x^{i} d x \\
& J=\left(I_{\max }+I_{\min }\right)
\end{aligned}
$$

It is perhaps worth noting that the deflection vector
$\left\{q_{b}\right\}$ given by Equation 3.6 is different from $\left\{q_{b}^{*}\right\}$ given by Equation 3.1. The bending displacements and rotations in vector $\left\{q_{b}\right\}$ are measured along the engine axis $0 z$ and tangential direction $O y$, whereas those in vector' $\left\{q_{b}^{\star}\right\}$ are measured along the

```
principal directions 0z* and Oy*. The torsional displacements in both cases are the same and are along the Ox axis. Since the angle \(\delta\) between these two sets of coordinates vary along the length of the blade the individual element matrices given by Equation 3.2 should be transformed to the Oz-Oy coordinates before adding the additional stiffness coefficients derived in this section. This transformation is discussed in some detail in section 3.5 .
In evaluating the integrals given by Equations 3.12 and 3.14 linear variations in \(I, A, \sigma_{\mathbf{x}}\) and \(J\) can be assumed within the element. For a uniform beam element the additional stiffness matrices for bending parallel and perpendicular to the plane of rotation and for torsion are given in Tables 3.3 to 3.5, in closed form.
3.4 EFFECT OF TRANSVERSE SHEAR AND ROTARY INERTIA
In this section a new beam bending finite element which is compatible with the Thick Disc Element-l, developed in chapter 2, section 2.4 .1 , is developed. In the developement of this element transverse shear and rotary inertia are included, and in addition to the transverse deflection and rotation the additional rotation due to transverse shear is also taken as a degree of freedom in each node. Thus the element has six degrees of freedom.
```


Abstract

Although two other Timoshenko beam finite element models developed by Archer (77) and Kapur (128) are available these are not compatible with the annular Thick Disc Element-l and thus these are not used here. It turns out, in fact, that. the beam element derived hereunder is a marginal improvement in terms of convergence over those of Archer and Kapur.

Figure 3.2 shows a nonuniform blade element with the coordinate system chosen. Here again the minor principal axis Oz* is inclinedto the engine axis $0 \boldsymbol{z}$ at angle 6. The degrees of freedom of the element along the principal directions are shown in Figure 3.2. The rotations $\psi *$ and ψ^{*} in this case are defined as

$$
\begin{equation*}
\psi^{*}=-\frac{\partial v^{*}}{\partial x}+\gamma_{v}^{*} \text { and } \quad \theta *=-\frac{\partial w^{*}}{\partial x}+{\frac{y_{w}^{*}}{*}}^{*} \tag{3.15}
\end{equation*}
$$

where ${\underset{\mathbf{V}}{*}}_{*}^{*}$ and ${\underset{\mathbf{w}}{*}}_{*}^{*}$ are the additional rotations due to transverse shear corresponding to the minor and major principal directions.

Since, in our case, there is no coupling between
bending in the two principal directions, the bending stiffness matrices $\left[K_{b}^{V}\right]$ and $\left[K_{b}^{W}\right]$ and the inertia matrices $\left[M_{b}^{V}\right]$ and [M_{b}^{W}] are similar to each other except that in each case corresponding values of section properties are used. Hence the stiffness and mass matrices for the minor principal direction
only are derived here.

The strain energy and the kinetic energy in an element of the blade, shown in Figure 3.2, for the $I_{\text {min }}$ direction, when transverse shear and rotary inertia are also considered, are

$$
\begin{equation*}
u=\frac{1}{2} \int_{x_{1}}^{x_{2}} E I_{\min }\left(\frac{\partial \psi^{*}}{\partial x}\right)^{2} d x+\frac{1}{2} \int_{x_{1}}^{x_{2}} k G A\left(\gamma_{v}^{*}\right)^{2} d x \tag{3.16}
\end{equation*}
$$

where

$$
\psi^{*}=-\frac{\partial v^{*}}{\partial x}+\gamma_{v}^{*}
$$

$\gamma_{\mathbf{v}}^{*}$ - rotation due to shear, k - shear constant?,

A - area of cross-section of blade
and

$$
\begin{equation*}
T=\frac{1}{2} \int_{x_{1}}^{x_{2}} \rho A\left(\frac{\partial v^{*}}{\partial t}\right)^{2} d x+\frac{1}{2} \int_{x_{1}}^{x_{2}} \rho I_{\min }\left(\frac{\partial \psi^{*}}{\partial t}\right)^{2} d x \tag{3.17}
\end{equation*}
$$

Assuming the deflection functions

$$
\begin{align*}
& v^{*}(x)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3} \\
& \gamma_{v}^{*}(x)=a 5+a_{6} x \tag{3.18}
\end{align*}
$$

\dagger In view of difficulty in calculating k for an aerofoil section
a value of $5 / 6$ corresponding to a rectangular section is used.
and substituting in Equations 3.16 and 3.17 , we arrive at the stiffness and inertia matrices of the element for the $I_{m i n}$ direction as

$$
\begin{align*}
& {\left[K_{b}^{v}\right]=\left[B_{b}\right]^{T}\left[k_{b}^{v}\right]\left[B_{b}\right]} \\
& \text { and } \tag{3.19}\\
& {\left[M_{b}^{V}\right]=\left[B_{b}\right]^{T}\left[\mathrm{~m}_{b}^{\mathrm{V}}\right]\left[\mathrm{B}_{b}\right]}
\end{align*}
$$

corresponding to the deflection vector

$$
\begin{align*}
& \left\{q_{b}^{*}\right\}^{T}=\left[\begin{array}{llllll}
\mathrm{v} \stackrel{1}{1} & \psi & \gamma_{1}^{*} & \gamma_{\mathrm{v} 1}^{*} & \mathrm{v}_{2}^{*} & \psi_{2}^{*} \\
\gamma_{\mathrm{v} 2}^{*}
\end{array}\right] \tag{3.20}\\
& {\left[\mathrm{B}_{\mathrm{b}}\right]^{-1}=\left[\begin{array}{cccccc}
1 & \mathrm{x}_{1} & \mathrm{x}_{1}^{2} & \mathrm{x}_{1} & 0 & 0 \\
0 & -1 & -2 \mathrm{x}_{1} & -3 \mathrm{x} ; & 1 & \mathrm{x}_{1} \\
0 & 0 & 0 & 0 & 1 & \mathrm{x}_{1} \\
1 & \mathrm{x}_{2} & \mathrm{x}_{2}^{2} & \mathrm{x}_{2}^{3} & 0 & 0 \\
0 & -1 & -2 x_{2} & -3 x_{2} & 1 & x_{2} \\
0 & 0 & 0 & 0 & 1 & x_{2}
\end{array}\right]} \tag{3.21}
\end{align*}
$$

In the above matrix

$$
\begin{equation*}
R_{i}=\int_{x_{1}}^{x_{2}} E I_{\min } x^{i} d x \quad \text { and } \quad S_{i}=\int_{x_{1}}^{x_{2}} k G A x^{i} d x \tag{3.23}
\end{equation*}
$$

and

In the above matrix

$$
\begin{equation*}
R_{i}=\int_{x_{1}}^{x_{2}} \rho I_{\min } x^{i} d x \text { and } S i=\int_{x_{1}}^{x_{2}} \rho A x^{i} d x \tag{3.25}
\end{equation*}
$$

The stiffness and inertia matrices of the element for
the $I_{\max }$ direction are derived similarly and are given by

$$
\begin{equation*}
\left[K_{b}^{W}\right]=\left[B_{b}\right]^{T}\left[k_{b}^{W}\right]\left[B_{b}\right] \tag{3.26}
\end{equation*}
$$

and

$$
\left[m_{b}^{W}\right]=\left[B_{b}\right]^{T}\left[m_{b}^{W}\right]\left[B_{b}\right]
$$

```
The matrices \(\left[\mathbf{k}_{\mathbf{b}}^{\mathbf{W}}\right]\) and \(\left[\mathrm{m}_{\mathbf{b}}^{\mathbf{W}}\right]\) are given by Equations 3.22
and 3.24 when \(I_{\min }\) is replaced by \(I_{\max }\).
Linear variations within the element of the area A, \(I_{\min }, I_{\max }, K_{G}\) and \(J\) of the blade section can be assumed requiring the values to be known only at the nodes. For an element of uniform section the stiffness and mass matrices are given in' closed form in Tables 3.6 , where \(I\) is either \(I_{\min }\) or \(I_{\max }\) depending on the direction considered. \& is the length of the element, and \(\boldsymbol{\mu}\) is the radius of gyration for the particular direction considered.
The following displacement boundary conditions should
be applied when this element is used. For the \(I_{\text {min }}\) direction:
Simply supported edge
Clamped edge
Free edge
```

3.5 VIBRATION ANALYSIS OF PRETWISTED BLADES

Abstract

When the blade is pretwisted it is modelled with straight elements staggered (inclined) at an angle δ to the engine axis.' For any particular element δ is the average pretwist angles of the actual blade measured at the two nodes of the element. Figure 3.3 shows a pretwisted blade and the finite element model with two straight elements.

In this case the individual element stiffness and inertia matrices $\left[\underset{b}{K_{b}^{*}}\right]$ and $\left[\mathrm{M}_{\mathrm{b}}^{*}\right]$, given by Equation 3.2 , which correspond to the deflection vector $\left\{q_{b}^{*}\right\}$ whose elements are measured along the element principal directions, should be
transformed to the engine axis (Oz-Oy coordinates). This requires a rotation matrix
$[R]$ relating $\left\{q_{b}^{*}\right\}$ and $\left\{q_{b}\right\}$

$$
\begin{equation*}
\left\{q_{b}^{\star}\right\}=[R]\left\{q_{b}\right\} \tag{3.27}
\end{equation*}
$$

Making use of the above relationship the stiffness and inertia matrices corresponding to the deflection vector $\left\{\mathrm{q}_{\mathbf{b}}\right\}$ are given by

$$
\begin{equation*}
\left[K_{b}\right]=[R]^{T}\left[K_{b}^{*}\right][R] \tag{3.28}
\end{equation*}
$$

and

$$
\left[M_{b}\right]=[R]^{T}\left[M_{b}^{*}\right][R]
$$

Once this transformation is done the element matrices can be assembled to get the blade system matrices $\left[K_{\mathbf{B}}\right]$ and $\left[M_{B}\right]$. Additional stiffness coefficients resulting from rotation should be added to these matrices only after this transformation.

Figure 3.4 gives the relationships between coordinates appearing in the displacement vectors $\left\{q_{2}^{*}\right\}$ and $\left\{q_{b}\right\}$. Making use of these relationships the rotation matrix [R] is obtained. When transverse shear and rotary inertia are ignored the relationship between the deflection vectors
$\left\{q_{b}^{*}\right\}$ and $\left\{q_{b}\right\}$ becomes

where

$$
c=\cos \delta \quad \text { and } \quad s=\sin \delta
$$

or

$$
\left\{q_{b}^{\star}\right\}=[R]\left\{q_{b}\right\}
$$

Rearrangement of variables in $\left\{q_{b}\right\}^{\text {is }}$ carried out to facilitate assembling the complete blade matrices. When transverse shear and rotary inertia are included in the analysis, then

v_{1}^{*}			0	0	s	0	0	0	0				0				v_{1}
ψ_{1}^{*}			c	0	0	s	0	0	0	0	0	0	0		0	C	ψ_{1}
γ_{v}^{*}			0	c	0	0	s	0	0	0	0	0	0		0	c	$\gamma_{\text {vi }}$
v_{2}^{*}			0	0	0	0	0	0	c	0	0	s	0		0	C	w_{1}
ψ_{2}^{*}			0	0	0	0	0	0	0	c	0	0	s		0	C	${ }^{\theta} 1$
$\mathrm{r}_{\mathrm{v}}^{*}$			0	0	0	0	0	0	0	0	c	0	0		s	0	$\gamma_{\text {wI }}$
w_{1}^{*}			0	0	c	0	0	0	0	0	0	0	0		0	0	ϕ_{1}
θ_{1}^{*}			ms	0	0	c	0	0	0	0	0	0	0		0	0	v_{2}
$\gamma_{\text {w. }}^{*}$			0	-s	0	0	c	0	0	0	0	0	0		0	0	ψ_{2}
w_{2}^{*}			0	0	0	0	0	0	-s	0	0	c	0		0	0	$\gamma_{\text {v2 }}$
θ_{2}^{*}			0	0	0	0	0	0	0	-s	0	0	c		0	0	w_{2}
$\gamma_{\text {w: }}^{*}$			0	0	0	0	0	0	0	0	-s	0	0		c	0	θ_{2}
ϕ_{1}			0	0	0	0	0	1	0	0	0	0	0		0	0	$\gamma_{\text {w2 }}$
ϕ_{2}			0	0	0	0	0	0	0	0	0	0		0			ϕ_{2}

where

$$
c=\cos \delta \quad \text { and } \quad s=\sin \delta
$$

or

$$
\left\{q_{b}^{*}\right\}=[R]\left\{q_{b}\right\}
$$

3.6 NUMERICAL APPLICATIONS

Abstract

Numerical results are presented, in this section, which show the effects of rotation, transverse shear and rotary inertia and pretwist on the natural frequencies of uniform rectangular blades.

(A) . First, the variation of the first three nondimensional frequencies $A=\sqrt{\frac{\mathrm{ALL}^{4}}{\mathrm{EI}}}$ of a uniform rectangular blade with the nondimensional rotation $\Omega *=\Omega \sqrt{\frac{6 \mathrm{AL}^{4}}{\mathrm{EI}}}$, and the influence of R / L ratio, where R is the radius at the root and L is the length of the blade, on these frequencies, were studied. Values of λ for vibration (a) out of plane of rotation and (b) in the plane of rotation, calculated using four elements, are given in Tables 3.7 to 3.12. In these calculations, the additional stiffness coefficients given in Tables 3.3 and 3.4 are added to the beam bending stiffness matrix.

Boyce (129) has calculated upper and lower bounds of λ for vibration out of plane of rotation for a few values
of R / L ratios. In Figure 3.5 , values of λ calculated with four elements have been plotted against the nondimensional rotation $\Omega *$ for the value of $R / L=0.1$. Only the first two modes of vibration are considered. The upper and lower bounds given by Boyce for this case lie close to the finite element curves.
(B) Next, the effect of transverse shear and rotary inertia on the natural frequencies of a uniform rectangular beam was studied using the new Timoshenko beam finite element developed in section 3.4. A value of $k=0.667$ was used and the ratio u / L, where μ is the radius of gyration and L the length of the beam, was chosen to be 0.08. Nondimensional frequency parameter $\lambda=\omega \sqrt{\frac{\mathrm{oAL}^{4}}{E I}}$ for a simply supported beam and a cantilever beam, computed using 1 to 6 element models are given in Tables 3.13 and 3.14 along with exact solutions. These results demonstrate the accuracy and convergence of the elements used. Results obtained by Kapur (128) and Archer (79) are also given for comparision in Tables 3.15 and 3.16. In Figures 3.6 and 3.7 percentage error versus number of degrees of freedom have been plotted for these three beam models.
(C) Finally, the efficiency of modelling twisted blades using untwisted beam elements was studied. Dokumaci et al (85) have used beam elements in which pretwist is incorporated, for this problem. They have. computed frequency parameters $\lambda^{4}=\frac{\omega^{2} \rho A L^{4}}{E I_{m i n}}$

```
for uniform rectangular twisted beams. Here values calculated
using untwisted beam elements are compared with those of
Dokumaci et al and those given by Anliker and Troesch (82) and
Slyper (84). It is seen from the results in Table 3.17, that
when the number of elements is increased the results converge
rapidly to those given by Dokumaci et al indicatingthat in
practical problems use of untwisted beam elements in modelling
twisted blades would be satisfactory, thus avoiding the additional
complication involved in formulating the beam element which
incorporates pretwist.
```

ANALYSIS OF COUPLED BLADE-DISC VIBRATION IN AXIAL FLOW TURBINES

4.1 INTRODUCTION

The vibration of a bladed rotor is found to be similar to that of an unbladed disc. The rotor oscillates in a coupled blade-disc mode which is also characterised by diametral and circular nodes, Figure 4.1. The blades, being constrained in the disc at the rim, will vibrate in bending motion at diametral antinodes, in torsional motion at nodes, and in combined bendingtorsion elswhere, Figure 4.2. The circular nodes may lie in the disc, but will more commonly be located in the blades.

A method of analysis is developed in section 4.2 for bladed rotors with a large number of identical blades. The blade loading on the rim are assumed to be continuously distributed around the rim. With this assumption, formulation of an exact method of analysis is possible for rotors of nonrotating simple configurations. This method utilizes the exact dynamic stiffness coefficients for the disc, rim and the blade, and is detailed in section 4.3.

[^4]```
plate bending element for the disc and the conventional beam element for the blades. This method includes the effect of a rim and torsional distorsions in the blades, which are ignored by other investigators \((118,120)\). Effects of rotation, temperature' gradient and other in-plane stresses are also considered. The method is then extended to include transverse shear and rotary inertia both in the disc and blades.
A number of numerical studies are presented, in section 4.5, which examine critically the accuracy and convergence of the calculated solutions by comparision with experimental data for bladed rotors of simple and complex geometry.
```

4.2 METHOD OF ANALYSIS

### 4.2.1 System Configuration And Deflections

Figure 4.3 shows the idealized model of the rotor and for analysis purposes the rotor is considered as three distinct subsystems
(1) The disc web described by thin plate theory,
(2) The disc rim treated as a solid compact ring,
(3) The array of blades, each of which is considered to behave as a beam described by Euler-Bernoulli theory. Ignoring torsional vibration of the system about the oz axis and
considering only the flexural vibration, the coordinates shown in Figure 4.3 areassumedto describe the distortions of the subsystems.

Considering stations $1,2, \ldots, i$ in the disc as shown in Figure 4.3 the deflection vector for the disc is written as

$$
\left[q_{D}(\xi)\right]=\left[\left.\begin{array}{c}
w_{1}(\xi)  \tag{4.1}\\
\theta_{1}(\xi) \\
w_{2}(\xi) \\
\theta_{2}(\xi) \\
\cdot \\
\cdot \\
w_{i}(\xi) \\
\theta_{i}(\xi)
\end{array} \right\rvert\,\right.
$$

For the blade with stations k, k+1, . . . . the deflection vector
is written as

$$
\left[{\left.q_{B}(\xi)\right]=}^{v_{k}(\xi)} \begin{array}{l}
\psi_{k}(\xi) \\
v_{k+1}(\xi) \\
\psi_{k+1}(\xi) \\
\cdot \\
\cdot \\
\cdot \\
w_{k}(\xi) \\
\theta_{k}(\xi) \\
w_{k+1}(\xi) \\
\theta_{k+1}(\xi) \\
\cdot \\
\cdot \\
\cdot \\
\phi_{k}(\xi) \\
\phi_{k+1}(\xi) \\
\cdot \\
\cdot
\end{array}\right]
$$

Consider the system vibrating with m nodal diameters. If $\boldsymbol{\xi}$ is the angle measured from a reference diametral antinode, then for
the disc subsystem,

$$
\left\{q_{D}(\xi)\right\}=\left|\begin{array}{c}
\bar{w}_{1}  \tag{4.4}\\
\bar{\theta}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\bar{w}_{i} \\
\bar{\theta}_{i}
\end{array}\right| \cos m \xi=\left\{\bar{q}_{D}\right\} \cos m \xi
$$

where $\bar{w}_{1}, \bar{\theta}_{1}$, . . etc are the amplitudes of vibration at the reference antinode. Similarly for the rim

$$
\left\{q_{R}(\xi)\right\}=\left[\begin{array}{c}
\bar{w}_{j}  \tag{4.5}\\
\bar{\theta}_{j}
\end{array} \quad \cos m \xi=\cdot \bar{q}_{R}\right\} \quad \cos m \xi
$$

The blades are assumed to be fixed to the rim and are thus constrained to retain their orientation at the root. The flexural axes are assumed to coincide with the centroidal axis and hence there is no coupling between bending and torsion within the blade. Then a blade at an antinode is displaced in bending only as shown in Figure 4.2. However because of blade stagger, or in general, because of the pretwist in the blade, bending may take place in both axial and tangential planes. A blade at a node is displaced in torsion only. Blades at any other angular locations experience both bending and torsion. Thus the deflections of a blade at an angle may be written as

where

$$
[R]=\left[\begin{array}{lll}
{[C]} & {[0]} & {[0]}  \tag{4.7}\\
{[0]} & {[C]} & {[0]} \\
{[0]} & {[0]} & {[S]}
\end{array}\right]
$$

where [C] and [S] are diagonal matrices with diagonal terms $\cos m \xi$ and $\sin m \xi$ respectively, and $\bar{v}_{k}, \bar{\psi}_{k}, \ldots, \bar{w}_{k}, \bar{\theta}_{k}, \ldots$ are the bending amplitudes of the blade at the reference diametral antinode, while $\bar{\phi}_{k}, \ldots$ are the twisting amplitudes of the blade at a diametral node.

### 4.2.2 Dynamic Stiffness Of The Subsystems

The individual dynamic stiffness matrices are directly used for the disc and rim subsystems. Thus,
$\left[D_{D}\right]=\left[K_{D}\right]-\omega^{2}\left[M_{D}\right]$
and

$$
\begin{equation*}
\left[D_{R}\right]=\left[K_{R}\right]-\omega^{2}\left[M_{R}\right] \tag{4.8}
\end{equation*}
$$

where $\left[D_{D}\right],\left[K_{D}\right]$ and $[M D]$ are the dynamic stiffness, stiffness and mass matrices respectively of the disc corresponding to the deflection vector $\left\{\mathrm{q}_{\mathrm{D}}\right\}$ and $[\mathrm{DR}],\left[\mathrm{K}_{\mathrm{R}}\right]$ and $\left[\mathrm{M}_{\mathrm{R}}\right]$ are the corresponding matrices for the rim with respect to the deflection vector $\left\{\bar{q}_{R}\right\}$.

The dynamic stiffness matrix $[D$,$] for the vibrating$ array of blades may be obtained from the stiffness and mass matrices $\left[K_{B}\right]$ and $\left[M_{B}\right]$ of a single blade in the following manner, provided we assume sufficient number of identical blades to be present on the rotor, such that the resulting loading on the rim can be considered to be continuously distributed in a sinusoidal pattern around the rotor as shown in Figure 4.2. This condition is likely to be satisfied in typical rotors vibrating-in modes involving low numbers of nodal diameters.

The dynamic stiffness relation for a blade vibrating at a frequency $\omega$ and located at a polar angle $\xi$ from the reference
antinode is

$$
\begin{equation*}
\left\{Q_{B}(\xi)\right\}=\left[\left[K_{B}\right]-\omega^{2}\left[M_{B}\right]\right]\left\{q_{B}(\xi)\right\} \tag{4.9}
\end{equation*}
$$

where $\left\{q_{B}(\xi)\right\}$ is defined by Equation 4.3 and $\left\{Q_{B}(\xi)\right\}$ is the corresponding force vector. It should be noted that matrices $\left[K_{B}\right]$ and $\left[M_{B}\right]$ are independent of $\xi$.

Assuming that the blade loading on the rotor to be continuously distributed, the total energy, strain energy and kinetic energy, of the vibrating blades between the angles $\boldsymbol{\xi}$ and $\xi+\mathrm{d} \xi$ is

$$
\mathrm{dE}=\frac{1}{2} \cdot \frac{Z}{2 \pi}\left\{\mathrm{q}_{\mathrm{B}}(\xi)\right\}^{\mathrm{T}}\left[\left[\mathrm{~K}_{B}\right]-\omega^{2}\left[\mathrm{M}_{B}\right]\right] \quad\left\{\mathrm{q}_{B}(\xi)\right\} \quad \mathrm{d} \xi
$$

where $Z$ is the number of blades in the rotor. Substituting for $\left\{q_{B}\right\}$ from Equation 4.6

$$
d E=\frac{1}{2} \frac{Z}{2 \pi} \quad\left\{\bar{q}_{B}\right\}^{T}[R]^{T}\left[\left\{K_{B}\right]-\omega^{2}\left[M_{B}\right] 1[R]\left\{\bar{q}_{B}\right\} d \xi\right.
$$

Integrating between the limits $\boldsymbol{\xi}=0$ and $\boldsymbol{\xi}=2 \pi$ we get the total energy

$$
\begin{equation*}
E=\frac{1}{2} c \frac{Z}{2}\left\{\bar{q}_{B}\right]^{T}\left[\left[K_{B}\right]-\omega^{2}\left[M_{B}\right]\right]\left\{\bar{q}_{B}\right\} \tag{4.10}
\end{equation*}
$$

where

$$
C=2 \text { if } m=0 ; \text { and } C=1 \text { if } m \geqq I
$$

Hence the required dynamic stiffness matrix of the vibrating array
of blades corresponding to the deflection vector $\left\{\bar{q}_{B}\right\}$ is

$$
\begin{equation*}
\left[D_{B}\right]=c \frac{z}{2}\left[\left[K_{B}\right]-\omega^{2}\left[M_{B}\right]\right] \tag{4.11}
\end{equation*}
$$

### 4.2.3 Dynamic Coupling Of The Subsystems

The dynamic stiffness relation for the complete rotor system is obtained by combining the individual relations for the disc, rim and blade subsystems, taking into account the compatibility requirements at their boundaries.

The torsion of the blade at the root, $\phi_{\mathbf{k}}(\xi)$, is related to the axial deflection $w_{k}(\xi)$; thus

$$
\begin{aligned}
\phi_{k}(\xi) & =\frac{1}{R} \frac{\partial}{\partial \xi}\left\{\mathrm{w}_{\mathrm{k}}(\xi)\right\} \\
& =-\frac{m}{\mathrm{R}} \overline{\mathrm{w}}_{\mathrm{k}} \sin m \xi
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\bar{\phi}_{\mathrm{k}}=-\frac{\mathrm{m}}{\mathrm{R}} \overline{\mathrm{w}}_{\mathrm{k}} \tag{4.12}
\end{equation*}
$$

where $\mathbf{R}$ is the radius of the blade-rim attachment.

The remaining relations ensure compatibility between the three subsystems and hence depend on the nature of blade fixing. With the commonly used dovetail or fir-tree attachment cantilever blades can be assumed and in such cases the following, relations hold.

$$
\begin{aligned}
& \bar{w}_{i}=\bar{w}_{j}+e_{1} \bar{\theta}_{j} \\
& {\overline{\theta_{i}}}_{i}=\bar{\theta}_{j}=\bar{\theta}_{k} \\
& \bar{w}_{k}=\bar{w}_{j}-e_{2} \bar{\theta}_{j} \\
& \bar{u}_{k}=0 \\
& \bar{\psi}_{k}=0
\end{aligned}
$$

where $\mathbf{e}_{\mathbf{1}}$ and $\mathbf{e}_{\mathbf{2}}$ are the distances from the rim centroidal axis to the disc-rim junction and blade-rim junction respectively, Figure 4.3. Considering such cantilever blades all the coordinates at stations $j$ and $k$ can be conveniently described in terms of $\overline{\mathrm{w}}_{i}$ and $\bar{\theta}_{i}$ with the following transformation relations.

$$
\left|\begin{array}{l}
\bar{w}_{\mathbf{j}} \\
\bar{\theta}_{\mathbf{j}}
\end{array}\right| \quad\left|\begin{array}{ll}
1 & -\mathbf{e}_{1} \\
0 & \mathbf{1}
\end{array}\right|\left[\begin{array}{l}
\bar{w}_{\mathbf{i}} \\
\bar{\theta}_{\mathbf{i}}
\end{array}\right]
$$

This relationship is sufficient to allow assembly of the dynamic stiffness matrix of the coupled blade-rim-disc system.

### 4.3 EXACT SOLUTION OF NON-ROTATING ROTORS OF SIMPLE GEOMETRY


#### Abstract

When non-rotating rotors with uniform disc and uniform blades are considered, exact dynamic stiffness matrices for the disc, rim and blades can be derived. This resulting solutions are exact in so far as thin plate theory, Euler-Bernoulli beam theory and the assumption of continuous blade loading hold true and are useful in examining the accuracy and convergence of the finite element solutions.


In such cases the disc dynamic matrix $\left[D_{D}\right]$ need be derived with respect to only the axial deflection $\bar{W}_{i}$ and the radial slope $\bar{\theta}_{i}$ at the outer boundary along the reference antinode. Thus the disc deflection vector has only two generalised coordinates.

$$
\left.\overline{\{q}_{D}\right\}=\left[\begin{array}{c}
\bar{W}_{i}  \tag{4.14}\\
\vec{\theta}_{i}
\end{array}\right]
$$

The derivation of the (2 x 2 ) dynamic stiffness matrix for a uniform annular disc with its inner boundary fixed and the outer boundary free is given below. Similar matrices for other boundary conditions at the inner boundary can be readily derived.
4.3.1 Dynamic Stiffness Of The Disc

```
 The deflections }\mp@subsup{\mathbf{w}}{\mathbf{i}}{(\xi) and' }\mp@subsup{\boldsymbol{0}}{\mathbf{i}}{(\xi)
forces, corresponding to sinusoidal distributions of shear force
```

and bending moment around the rotor, and which may be related to the deflections by a dynamic stiffness matrix for the case of a uniform thickness disc, either by inversion of the corresponding receptance matrix relation given by McLeod and Bishop (42), or directly as follows.

Consider a thin annular disc, of uniform thickness h, clamped at the inner radius $a$, and subjected to transverse shear force Vi $\cos m \xi e^{i \omega t}$ and radial bending moment $M_{i} \cos m \xi e^{i \omega t}$ around the outer radius b. The governing differential equation is,

$$
\begin{equation*}
\nabla^{4} w(r, \xi)+\frac{\rho h}{D} \frac{\partial^{2}}{\partial t^{2}}\{w(r, \xi)\}=0 \tag{4.15}
\end{equation*}
$$

where $w(r, \xi)$ is the transverse deflection, $\rho$ is the material mass density, and $D$ is the flexural rigidity.

For the case being considered the solution of this equation is

$$
\begin{align*}
\mathrm{w}(r, \xi) & =\left[P J_{\mathrm{m}}(\mathrm{kr})+Q Y_{\mathrm{m}}(k r)+R I_{m}(k r)+S K_{m}(k r)\right] \cos m \xi \\
& =W(r) \cos m \xi \tag{4.16}
\end{align*}
$$

where

```
\(\boldsymbol{\omega}\) - vibratory frequency in rad./second,
\(\overline{\mathbf{w}}(\boldsymbol{r}) \quad-\quad\) amplitude at an antinode,
\(J_{m}, Y_{m}-\) Bessel functions of first and second kind of
 integer order m,
```

$$
\begin{aligned}
& I_{m}, K_{m} \quad \text { - modified Bessel functions of first and second } \\
& \quad \text { kind of integer order } m \\
& k=\left(\frac{\rho h \omega^{2}}{D}\right)^{1 / 4}
\end{aligned}
$$

Using the sign convention established in Figure 4.3

$$
\begin{align*}
& \theta=-\frac{\partial w}{\partial r} \\
& M r=-D\left[\frac{\partial^{2} w}{\partial r^{2}}+v\left(\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \xi}\right)\right] \\
& M_{r \xi}= D(1-\nu)\left[\frac{1}{r} \frac{\partial^{2} w}{\partial r \partial \xi}-\frac{1}{r^{2}} \frac{\partial w}{\partial r}\right]  \tag{4.17}\\
& Q_{r}=-D\left[\frac{\partial^{3} w}{\partial r^{3}}+\frac{1}{r} \frac{\partial^{2} w}{\partial r^{2}}-\frac{1}{r^{2}} \frac{\partial w}{\partial r}\right. \\
&\left.+\frac{1}{r^{2}} \frac{\partial^{3} W_{w}}{\partial r} \frac{2 \xi^{2}}{}+\frac{2}{r^{3}} \frac{\partial^{2} w}{\partial \xi^{2}}\right]
\end{align*}
$$

$$
V=Q_{r}-\frac{1}{r} \frac{\partial}{\partial \xi} M_{r \xi}
$$

Substituting for $w(r, \xi)$ from Equation 4.16,

$$
\begin{aligned}
\theta(r, \xi) & =-\left[P A_{1}(\mathrm{kr})+Q \mathrm{~A}_{2}(\mathrm{kr})+\mathrm{RA}_{3}(\mathrm{kr})+\mathrm{SA}_{4}(\mathrm{kr})\right] \cos \mathrm{m} \xi \\
& =\bar{\theta}(\mathrm{r}) \cos \mathrm{m} \xi \\
\mathrm{M}_{\mathrm{r}}(\mathrm{r}, \xi) & =-\left[\mathrm{PA}_{5}(\mathrm{kr})+Q \mathrm{~A}_{6}(\mathrm{kr})+\mathrm{RA}_{7}(\mathrm{kr})+\mathrm{SA}_{8}(\mathrm{kr})\right] \cos \mathrm{m} \xi \\
& =\bar{M}_{\mathrm{r}}(\mathrm{r}) \cos \mathrm{m} \xi
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}(\mathrm{r}, \xi)= & -\mathrm{D}\left[\mathrm{PA}_{9}(\mathrm{kr})+\mathrm{QA}_{10}(\mathrm{kr})+\mathrm{RA}_{11}(\mathrm{kr})+\mathrm{SA}_{12}(\mathrm{kr})\right] \cos \mathrm{m} \xi \\
& =\overline{\mathrm{V}}(\mathrm{r}) \cos \mathrm{m} \xi
\end{aligned}
$$

where $A_{1}$ through $A_{12}$ are linear combinations of the Bessel functions of order $m$ and $m-I-1$, given in Table 4.1. Applying the boundary conditions

$$
\begin{array}{ll}
w(a, \xi)=0 & \theta(a, \xi)=0 \\
w(b, \xi)=w_{i}(\xi) & \theta(b, \xi)=\theta_{i}(\xi) \\
v(b, \xi)=v_{i}(\xi) & M_{r}(b, \xi)=M_{r i}(\xi)
\end{array}
$$

and using Equations 4.16 and 4.18 gives,

$$
\left[\begin{array}{c}
V_{i}(\xi)  \tag{4.19}\\
M_{i}(\xi)
\end{array}\right]=[D]\left[\begin{array}{l}
w_{i}(\xi) \\
\theta_{i}(\xi)
\end{array}\right] \cos n i \xi
$$

where [D] is the matrix given in Table 4.2

$$
\text { Consider a unit displacement vector }\left[\begin{array}{c}
\bar{W}_{\mathbf{i}} \\
\overline{\boldsymbol{\theta}}_{\mathbf{i}}
\end{array}\right] \text { is imposed }
$$

at the reference antinode, at the outer boundary, then following standard procedure the associated force vector will be,

$$
\left[\begin{array}{c}
\overline{\mathrm{V}}_{\mathrm{i}}  \tag{4.20}\\
\bar{M}_{I}
\end{array}=\int_{0}^{2 \pi}[\mathrm{D}]\left[\begin{array}{l}
\bar{w}_{i} \\
\bar{\theta}_{i}
\end{array}\right] \quad \cos ^{2} \mathrm{~m} \xi \mathrm{~b} \mathrm{~d} \xi\right.
$$

where

$$
C=2 \text { if } m=0 \text { and } C=1 \text { if } m \geqq 1
$$

Thus the required dynamic stiffness matrix is given by

$$
\begin{equation*}
\left[D_{D}\right]=C \pi \quad b \quad[D] \tag{4.21}
\end{equation*}
$$

### 4.3.2 Dynamic Stiffness Of The Rim

The formulation of the exact dynamic stiffness relation for the rim, treated as a thin ring is well known (130). For a thin ring vibrating at frequency $\omega$ with $m$ nodal diameters, when shear deformation and rotary inertia are neglected, it takes the form,

$$
\left[\begin{array}{c}
\overline{\mathrm{V}}_{j}  \tag{4.22}\\
\overline{\mathrm{M}}_{\mathrm{j}}
\end{array}\right]=\left[\mathrm{D}_{\mathrm{R}}\right]\left[\begin{array}{c}
\overline{\mathrm{w}}_{j} \\
\bar{\theta}_{j}
\end{array}\right]
$$

where $\left[D_{R}\right]$ is the dynamic stiffness matrix of the ring and is given in Table 4.3.

### 4.3.3 Dynamic Stiffness Of The Blade Array

When we consider uniform untwisted blades, the dynamic stiffness relation for a single blade vibrating with frequency $\omega$
and located at an angle $\xi$ from the reference antinode is

$$
\begin{equation*}
\left\{Q_{k}\right\}=\left[D_{b}\right] \quad\left\{q_{k}\right\} \tag{4.23}
\end{equation*}
$$

where

$$
\left\{q_{k}\right\}=\left[\begin{array}{c}
v_{k} \\
\psi_{k} \\
w_{k} \\
\theta_{k} \\
\phi_{k}
\end{array}\right]
$$

and the matrix $\left[D_{b}\right]$ is given in Table 4.4.
In Table 4.4
E,G - elastic moduli,
$I_{1}, I_{2}$ - principal minimum and maximum second moment of area of the blade cross-section respectively,
$\delta$ stagger angle; angle between the engine axis 0 z and the $I_{\text {min }}$ direction, Figure 3.1
$\mathrm{K}_{\mathrm{G}} \quad$ - St. Venant torsional stiffness of the blade cross-section,
and

$$
\lambda_{1}=\left(\frac{\omega^{2} \rho}{E I_{1}}\right)^{1 / 4}
$$

$$
\lambda_{2}=\left(\frac{\omega^{2} \rho}{E I_{2}}\right)^{1 / 4}
$$

$\lambda_{3}=\left(\frac{\mathrm{J}}{\mathrm{GK}_{\mathrm{G}}}\right)^{1 / 2}$
$\rho-$ mass density of blade material,
J - mass polar moment of inertia of blade section,
\& - length of blade.
The matrix $\left[D_{b}\right]$ is of size ( $5 \times 5$ ), since only the five
displacements at the root of the blade are involved. This matrix
is readily obtained from the receptance relations tabulated for a
free-free beam, (131), transformed from local principal axes,
through stagger angle $\delta$ to the coordinate system used here.
From Equation 4.11, the dynamic stiffness matrix for
the array of blades is obtained by multiplying that of a single
blade by $C \frac{Z}{2}$, where $Z$ is the number of blades in the rotor.
Hence the dynamic stiffness matrix for the array of blades is
$\left[D_{B}\right]=c \frac{Z}{2}\left[D_{b}\right]$
4.3.4 Dynamic Stiffness Of The Disc-Rim-Blade System
The dynamic stiffness matrix for the complete rotor
system is obtained by combining the individual matrices for the
disc, rim and blades, taking into account the compatibility
relations given by Equation 4.13. The result is a ( 2 x 2 ) dynamic
stiffness relationship involving only the deflections $\overrightarrow{\mathbf{w}}_{\boldsymbol{i}}$ and $\overrightarrow{\boldsymbol{\theta}}_{\mathbf{i}}$
A non-trivial solution is obtained when the determinant of this
matrix is zero, and corresponds to the natural frequencies of the system. For numerical calculations the zeros of the determinant are sought by iterating with the frequency $w$ as the variable.

### 4.4 FINITE ELEMENT SOLUTION OF ROTORS OF GENERAL GEOMETRY

For rotors of general geometry with arbitrary discs and pretwisted nonuniform blades numerical procedures are adopted to obtain the subsystem dynamic stiffness matrices $\left[D_{D}\right]$ and $\left[D_{B}\right]$ of the disc and the array of blades respectively. The annular plate bending finite elements developed in chapter- 2 can be readily used here.
4.4.1 Dynamic Stiffness Of The Disc-Rim-Blade System Neglecting Transverse Shear And Rotary Inertia

The method of analysis.described here utilizes the finite element models developed for the disc and blade in section 2.2 and 3.2. Thus the matrices $\left[K_{D}\right]$ and $\left[M_{D}\right]$ of the disc subsystem appearing in Equation 2.28 are directly used in the dynamic stiffness relation

$$
\left\{\bar{Q}_{D}\right\}^{\}}=\left[\left[K_{D}\right]-\omega^{2}\left[M_{D}\right]\right]\left\{\bar{q}_{D}\right\}
$$

$=\left[D_{D}\right]\left\{\left[\bar{q}_{D}\right\}\right.$
matrix is zero, and corresponds to the natural frequencies of the system. For numerical calculations the zeros of the determinant are sought by iterating with the frequency $\omega$ as the variable.
4.4 FINITE ELEMENT SOLUTION OF ROTORS OF GENERAL GEOMETRY


#### Abstract

For rotors of general geometry with arbitrary discs and pretwisted nonuniform blades numerical procedures are adopted to obtain the subsystem dynamic stiffness matrices $\left[D_{D}\right]$ and $\left[D_{\mathbf{B}}\right]$ of the disc and the array of blades respectively. The annular plate bending finite elements developed in chapter 2 can be readily used here.


### 4.4.1 Dynamic Stiffness Of The Disc-Rim-Blade System Neglecting Transverse Shear And Rotary Inertia

The method of analysis.described here utilizes the finite element models developed for the disc and blade in section 2.2 and 3.2. Thus the matrices $\left[K_{D}\right]$ and $\left[M_{D}\right]$ of the disc subsystem appearing in Equation 2.28 are directly used in the dynamic stiffness relation

$$
\left\{\bar{Q}_{D}\right\}=\left[\left[K_{D}\right]-\omega^{2}\left[M_{D}\right]\right]\left\{\bar{q}_{D}\right\}
$$

$=\left[D_{D}\right] \cdot\left[\bar{q}_{D}\right\}$

Similarly for the array of blades matrices $\left[K_{B}\right]$ and $\left[M_{B}\right]$ from Equation 3.2 are used here, thus,

$$
\begin{align*}
\left\{\bar{Q}_{B}\right\} & =c \pi \frac{Z}{2}\left[\left[{K_{B}}_{B}\right]-\omega^{2}\left[M_{B}\right]\right]\left\{\left[\bar{Q}_{B}\right\}\right. \\
& =\left[D_{B}\right]\left\{\bar{q}_{B}\right\} \tag{4.26}
\end{align*}
$$

In this analysis, the stations $1,2, \ldots$, i considered in section 4.2.1 are the finite element nodes in the disc subsystem and hence 'the disc deflection vector $\left\{\bar{q}_{D}\right\}$ is given by Equation 4.4. Similarly the stations $k, k+1, \ldots$ considered in section 4.2.1 are the finite element nodes in any of the blades and hence the blade subsystem deflection vector $\left\{q_{B}\right\}$ is given by Equation 4.6.

The number of degrees of freedom in each of these subsystems depend on the number of elements used in each case. The constraint conditions given by Equation 4.13, now gives the relationships between the degrees of freedom at nodes $i, j$ and $k$, where $j$ is the centroid of the rim. In this analysis, for the rim, the dynamic stiffness relation given by Equation 4.22 is used. The subsystems are coupled satisfying the relations given by Equation 4.13 and the following dynamic stiffness relation for the entire system is obtained.

$$
\begin{equation*}
\left.\overline{\{Q}_{S}\right\}=\left[\left[K_{S}\right]-\omega^{2}\left[M_{S}\right]\right]\left\{\bar{q}_{S}\right\} \tag{4.27}
\end{equation*}
$$

```
When free vibration of the system is considered Equation 4.27
reduces to an algebraic eigen value problem, which may be solved
by any of the standard procedures. It should be noted that, here,
as in the disc alone vibration problem, a set of eigen value
problems result, one for each diametral mode configuration.
 The use of the annular element for the disc makes it
possible to effectively model discs with any arbitrary radial
profile. Moreover, the initial in-plane stresses resulting from
rotation and radial temperature gradient and other loading can
be computed and their effect on the vibration frequencies of the
system can be taken into account. Similarly variation in section
properties of the blades, pretwist in the blades, and the effect
of in-plane stresses in the blades are readily included.
```

```
4.4.2 Dynamic Stiffness Of The Disc-Rim-Blade System Including
 Transverse Shear And Rotary Inertia
```

    In practical rotors the disc is moderately thick and
    the use of methods based on thin plate theory may not result in
satisfactory analysis. Therefore, the finite element method of
analysis developed is now extended to include transverse shear
and rotary inertia, both in the disc and blades.
This analysis is very similar. to the one described
in section 4.4.1 above for bladed rotors, except, now the rim,
if present is considered to be a part of the disc. Hence, the whole rotor system is divided into two subsystems.
(1) The disc and rim subsystem described by Mindlin's plate theory,
(2) The array of blades, each of which is considered to behave as a beam described by Timoshenko beam theory. The annular Thick Disk Element-l, developed in chapter 2, section 2.4, is used to model the disc and rim. The blades are modelled with the Timoshenko beam element described in chapter 3, section 3.4, Hence each station in the disc has four degrees of freedom and at station i these are, Figure 4.4,

$$
\left\{\bar{q}_{i}\right\}^{T}=\left[\begin{array}{llll}
\bar{w}_{i} & \bar{\theta}_{i} & \bar{\gamma}_{r i} & \bar{\gamma}_{\xi i} \tag{4.28}
\end{array}\right]
$$

Each station in the blade has seven degrees of freedom and at station $k$ these afe,

$$
\left\{\bar{q}_{k}\right\}^{T}=\left[\bar{v}_{k} \quad \bar{\psi}_{k} \quad \bar{\gamma}_{v k} \quad \bar{w}_{k} \quad \bar{\theta}_{k} \quad \bar{\gamma}_{\mathrm{wk}} \quad \bar{\phi}_{k}\right] \text { (4.29) }
$$

When the subsystems are connected together, the following
relationships between the degrees of freedom at stations $i$ and $k$
exist, and these should be satisfied

$$
\left.\left\lvert\, \begin{array}{c}
\bar{v}_{k}  \tag{4.30}\\
\bar{\psi}_{k} \\
\bar{\gamma}_{v k} \\
\bar{w}_{k} \\
\bar{\theta}_{k} \\
\bar{\gamma}_{w k} \\
\bar{\phi}_{k}
\end{array}\right.\right] \left.=\left|\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
-\frac{m}{R} & 0 & 0 & 1 & 0
\end{array}\right| \begin{aligned}
& \bar{w}_{i} \\
& \bar{\theta}_{i} \\
& \bar{\gamma}_{r i} \\
& \bar{\gamma}_{\xi i} \\
& \bar{\gamma}_{v k}
\end{aligned} \right\rvert\,
$$

where $R$ is the radius at the root of the blade

### 4.5 NUMERICAL APPLICATIONS

4.5.1 Comparision Of Exact And Finite Element Solutions For Simple Nonrotating Rotors

The validity and accuracy of the analysis developed in sections 4.3 and 4.4 have been assessed by comparing numerical results of the coupled frequencies with experimental data on three simple nonrotating bladed disc models. For the first two models experimental data were obtained by Mr. R. W. Harris, a senior undergraduate student at Carleton University. The third model is that used by Jager (120).

All these models are of mild steel and comprise uniform thickness annular discs clamped at the inner radius and uniform
untwisted rectangular blades cantilevered at the outer boundary of the disc or rim. The blades are set at a stagger angle $\delta=45$ " in models $I$ and II, and at $\delta=50^{\prime \prime}$ in model III. The dimensions. and other details of these models are given in Table 4.5. A rim is present in models $I$ and II, but absent in III. The first six. cantilevered blade alone frequencies of these models are given in in Table 4.6. For models I and II experimental measurements of frequency were made by exciting the models using an electromagnet. A barium titanate accelerometer probe was used to detect resonance and to identify mode shapes. Figure 4.5 illustrates the vibrating bladed disc models with sand pattern showing nodal diameters.
Coupled system frequencies of thesethree models were
calculated by finite element models comprising various numbers of
elements. These frequencies were also calculated using the exact
method. As already mentioned, these values are exact in so far
the assumption of continuous blade loadings on the rim is valid.
Also certain tolerances on the value of the determinant, which
should otherwise be zero, were necessary. . The results of the
finite element analysis should converge to the exact values as the
number of elements are increased.

The numerical results for models $I$ and $I-I$ are given in Tables 4.7 and 4.8 along with experimental results. It is seen that agreement between finite element, exact and measured frequencies is excellent, and indeed that just two blade elements and two disc elements yield the first three to four modes for any
untwisted rectangular blades cantilevered at the outer boundary of the disc or rim. The blades are set at a stagger angle $\delta=45^{\prime \prime}$ in models $I$ and II, and at $\delta=50^{\prime \prime}$ in model III. The dimensions. and other details of these models are given in Table 4.5. A rim is present in models $I$ and II, but absent in III. The first six. cantilevered blade alone frequencies of these models are given in in Table 4.6. For models $I$ and 11 experimental measurements of frequency were made by exciting the models using an electromagnet. A barium titanate accelerometer probe was used to detect resonance and to identify mode shapes. Figure 4.5 illustrates the vibrating bladed disc models with sand pattern showing nodal diameters.

Coupled system frequencies of thesethree models were calculated by finite element models comprising various numbers of elements. These frequencies were also calculated using the exact method. As already mentioned, these values are exact in so far the assumption of continuous blade loadings on the rim is valid. Also certain tolerances on the value of the determinant, which should otherwise be zero, were necessary.. The results of the finite element analysis should converge to the exact values as the number of elements are increased.

The numerical results for models I and I-I are given in Tables 4.7 and 4.8 along with experimental results. It is seen that agreement between finite element, exact and measured frequencies is excellent, and indeed thatjust two blade elements and two disc elements yield the first three to four modes for any


#### Abstract

given nodal diameter configuration, with engineering accuracy for these models. Convergence of finite element solution is rapid and monotonic from above as expected.

The first six coupled system frequencies are plotted against increasing number of nodal diameters in Figures 4.6 and 4.7 for models $I$ and II. As the number of nodal diameters increases, the combined frequencies should degenerate to the cantilevered blade alone frequencies and this is seen to be the case from these graphs.


In model III, which was used by Jager, no rim was present, so that the blades overhung the disc at the point of attachment. In Table 4.9 the numerical and experimental frequencies given by Jager are compared with the finite element and exact solutions. Jager's numerical model comprised ten lumped masses in the disc and ten lumped masses in the blades. Again it is seen that good agreement is obtained between the various frequencies; more important the efficiency of the finite element model is significantly better than that of the lumped mass model. The increasing divergence between calculated and measured values for the higher modes may result from the incomplete attachment of blades to disc, since the blade chord is much greater than the thickness of the disc.
4.5.2 The Effect Of System Parameters On The Frequencies Of

Simple Nonrotating Rotors

It would be useful, as in most of the other engineering problems, to nondimensionalize the system frequencies of the bladed disc. In view of the unusually large number of parameters involved this is extremely difficult. Alternatively the variation of the frequencies with respect to a selected number of parameters, which would give some qualitative insight to the problem, may be studied. These parameters may be chosen to suit particular situations.

```
As an example, the effects of the following three parameters on the frequencies of a bladed disc are studied. The parameters considered are,
```

(1) $\frac{\ell}{\bar{b}}$ ratio, where $\ell$ is the length of the blade and $b$ is the outer radius of the disc,
(2) blade aspect $\operatorname{ratio}_{\mathfrak{b}} \frac{\ell}{}$, where $d_{b}$ is the chord of the
blade
(3) stagger angle 6 .

Seven different cases of the model were studied. In all these cases the model comprises of an uniform disc with constant inner radius and thickness. The blades, which are uniform and untwisted, are cantilevered at the outer boundary of the disc with a stagger angle. In order to minimise the number of parameters
the rim is omitted. The thickness to chord ratio is fixed at $8 \%$ which is typical of compressor blading. Only the outer radius b of the disc, the length $\ell$ of the blade and the stagger angle $\delta$ are changed independently. The number of blades in the model depends on the chord of the blade, The various dimensions of the model for the seven cases considered are given in Table 4.10, and the first four cantilevered blade alone frequencies in Table 4.11.

In all these cases the first four system frequencies were calculated with the exact method for $m=2$ to 6 . These frequencies $\omega$ are divided by the first blade alone frequency $\omega_{1}^{b}$ and the ratio $\underline{\omega}$ are given in Table4.13. Figures 4.8 to 4.10 $\omega_{1}^{b}$
show the variation of the first system frequency and Figures 4.11 to 4.13 the next three frequencies with respect to the three system parameters chosen.

From Figures 4.8 and 4.11 it is seen that when the value of $\frac{a}{b}$ is low, in other words when the blades are shorter compared to disc radius, the system frequencies are very low compared to the blade alone frequencies, at lower numbers of diametral nodes, and the vibration is controlled by the disc. These frequencies increase in their values with increasing number of diametral nodes and converge to the blade frequencies. Therefore the influence of disc is considerable when short blades are used, especially at lower values of m.

```
From Figures 4.9 and 4.12 it is seen that when the blade aspect ratio is lower the system frequencies are lower than the blade alone frequencies. In all the three cases considered the first blade frequencies are in bending in the \(I_{\text {min }}\) direction. Therefore with increasing number of nodal diameters the system frequencies converge to the first blade alone frequencies. But the higher modes of vibration of the blades in the three cases are different nature. Hence convergence of system frequencies are to the individual blade frequencies in each case.
From Figures 4.10 and 4.13 it is seen that for the first mode of vibration the system frequencies are lower for lower values of \(\delta\), the stagger angle. But for the higher modes this is reversed and the system frequencies are higher for lower values of 6 . In the case of first, second, and fourth modes, where the blade frequencies are bending frequencies, the system frequencies converge rapidly to the blade alone frequencies with increasing values of \(m\). But in the case of the third mode, where the blade frequency is a torsional frequency, convergence is slow with increasing value of m •
```

4.5.3 The Effect Of Rotation On The Frequencies Of Simple Rotors

When the bladed disc is rotating at speed, the centrifugal stresses developed both in the disc and the blades increase the stiffness of the entire system and the natural frequencies of
the bladed disc are substancially modified.


#### Abstract

In the finite element analysis of the bladed disc the effect of rotation can be readily included, since additional stiffness coefficients for the disc and blade elements are available. The stresses in the disc are calculated including the blade loading at the rim. The frequencies of bladed disc model I were calculated neglecting transverse shear and rotary inertia, but adding the centrifugal stiffening effect when the bladed disc was considered rotating at 3500 rpm and 7000 rpm , which are typical speeds of rotors of similar dimensions; Unfortunately no experimental or other numerical results are available to compare the results. These results are given in Table 4.14, along with the results of the stationary bladed disc. Comparision of results in Table 4.14 shows that variations in the frequencies are considerable at lower modes of vibration for each diametral node configuration, whereas frequencies of higher modes are not affected much.


```
4.5.4 The Effect Of Transverse Shear And Rotary Inertia On The
 Frequencies Of Simple Rotors
 The finite element method of analysis outlined in
section 4.4.2, which includes transverse shear and rotary inertia
was applied in the analysis of bladed disc models I and II. T he
first six frequencies of each of the diametral node configuration,
```

$m=2$ to 6, obtained are given in Tables 4.15 and 4.16. These results should be expected to be lower than those in Tables 4.7 and 4.8, which were obtained neglecting transverse shear and rotary inertia in the analysis. Comparision of results in these tables show this to be true except in the case of a few lower modes when $m=2$. This discrepancy is thought to be due to the difference in the models assumed for the rim. In the earlier case the rim is treated as a thin ring with constant radial slope from the inner to the outer boundaries. In the second case the rim is assumed to be a part of the disc and hence its radial slope can vary across the rim.
4.5.5 Calculated And Measured Frequencies Of A Complex Turbine Rotor

The finite element method of analysis developed for bladed discs was also used to calculate the natural frequencies of a complex turbine rotor. Experimental results and other data for this rotor were provided by Dr. Armstrong of Rolls Royce (1971) Ltd. The disc of the rotor is the same analysed in chapter 2 , section 2.4.2. The dimensions of the disc are given in Table 2.49. Other details of the rotor are given in Figure 4.14. Section properties of the blades are given in Table 4.17.

Since the computed frequencies of the disc alone were satisfactory only when transverse shear and rotary inertia were included in the analysis, here also these effects were considered.

The blades of the rotor are of aerofoil section and have pretwist and other complicating factors, and therefore the Timoshenko beam finite element model used in the analysis should not be expected to give accurate results for the blades. No torsional stiffness data was made available for this aerofoil section; thus the effect of blade torsion is necessarily neglected. The cantilevered blade alone frequencies calculated with five Timoshenko beam elements are given in Table 4.18. As expected only the first computed frequency agrees closely with the experimental value.

The rotor was modelled with 6 Thick Disc Element-l
and 5 Timoshenko beam elements. In both cases linear variations of section properties within the element were assumed. Details of the finite element model are given in Table 4.19. As mentioned earlier, the error in most of the disc computed frequencies is almost constant and is around $7 \%$. This may be due to a higher value of Youngs modulus $E$ assumed in the calculations. Therefore here the coupled frequencies were calculated using two different values for Edisc' These results are given in Table 4.20 along with experimental values. The first frequencies of each diametral node configuration are in fairly good agreement with the experimental results, Deviations in the second frequencies should be due to the inadequacy of the blade model. Use of an improved blade model should improve the results considerably.

## CHAPTER 5

SUMMARY AND CONCLUSIONS


#### Abstract

In this investigation of the application of the finite element method to the vibration analysis of axial flow turbines, the following important novel techniques have been evolved.


(1) New finite elements for the flexure of complete thin and moderately thick circular and annular plates (discs) have been derived, and critically examined for static and vibration problems.
(2) The formulation of these new disc elements has been extended to include the effects of in-plane stresses such as might result from rotation or thermal gradient. This aspect of the work is also new.
(3) A novel method of coupling blade bending and torsional vibration with disc flexural vibration has been formulated, which is particularly effective when combined with the refined modelling offered by the finite element method.
(4) An exact solution for coupled vibration of bladed rotors having simple geometry has been obtained.

The significant advantages of these developments
are
(1) By making use of the axisymmetric properties of the problem, the resultingmathematicalmodel is described by a very small number of degrees of freedom compared with other finite element techniques, with corresponding savings in computer storage and time.
(2) The finite element method itself is known to demonsrate higher accuracy compared with conventional lumped mass models, due to a more correct description of the inertia properties.
(3) A very refined mathematical model results, since incorporation of varying thickness in these new elementsis readily achieved. With other available finite element models, eg. sector elements, incorporation of thickness variation is difficult indeed formidable.
(4) The formulation of the vibration problem for the disc or the bladed disc results in an algebraic eigenvalue problem, and avoids the numerical difficulties which often arise in the transfer matrix methods with higher modes which have close frequencies.

The accuracy and convergence of the methods developed have been critically examined by comparision with exact and/or experimental data in all cases, and the results obtained demonstrate the reliability and potential of these methods. In general these comparisions show excellent agreement. The exception, unfortunately, is the calculations carried out for the one complex (real) turbine rotor, for which some experimental data was available, and which gave somewhat indifferent results. In this case the blade model was clearly inadequate, and by comparision with the precision demonstrated on other test cases, it must be admitted that the disc alone results are also disappointing. In fairness, it shouldbe pointed out that these experimental data were obtained on a single test, and may not be representative of the nominal disc frequencies.' A standard deviation in test results, amounting to $5 \%$ to $7 \%$ of the mean measured frequencies is not unusual for bladed turbine discs. In the authors opinion, this particular comparision, while disappointing, underlines the following further work necessary to clearly evaluate and improve the precision of the present bladed disc model:
(1) A need for further careful assessment of the calculated frequencies by comparision with experimental data on various complex rotors.
(2) A need for further refinement of the blade model, to include, as a first step, coupling between bending and torsional vibration within the blade (shear centre effect).

## REFERENCES

(1) Armstrong, E. K., Christie, P. I., and Hague, W. M., "Natural Frequencies of Bladed Discs," Proc. Instn. Mech. Eng., Vol. 180, Part 31, 1966, pp. 110-123.
(2) Wagner, J. T.,
"Coupling of Turbomachine Blade Vibrations Through the Rotor," Trans. ASME, T. Eng. Power, Vol. 89, no. 4, 1967, pp. 502-512.
(3) Dye, R. C. F., and Henry, T. A.,
"Vibration Amplitudes of Compressor Blades Resulting From Scatter in Blade Natural Frequencies," Trans. ASME, J. Eng. Power, Vol. 91, no. 3, 1969, pp. 182-188.
(4) Ewins, D. J.,
"The Effect of Detuning Upon The Forced Vibrations of Bladed Discs," J. Sound and Vibration, Vol. 9, no. 1, 1969, pp. 65-79.
(5) Ewins,D.J.,
"A Study of Resonance Coincidence in Bladed Rotors," J. Mech. Eng. Sai., Vol. 12, no. 5, 1970, pp. 305-312.
(6) Carta, F. O.,
"Coupled Blade-Disc-Shroud Flutter Instabilities in Turbo-Jet Engine Rotors," Trans. ASME, J. Eng. Power, Vol. 89, no. 3, 1967, pp. 419-426.
(7) Morgan, S. G., et al.,
"Gas Turbine in The Royal Navy," ASME Paper No. 70-GT-10.
(8) Shannon, J. F., "Vibration Problems in Gas Turbine, Centrifugal and Axial Flow Compressors," Aero. Res. Council, R and M 2226, March 1945.
(9) Blackwell, B. D.,
"Some Investigations in The Field of Blade Engineering," J. Roy. Aero. Soc., vol. 62, 1958, pp. 633-646.
(10) Armstrong, E, K., and Stevenson, R. E.,
"Some Practical Aspects of Compressor Blade Vibration," J. Roy. Aero. Soc., vol. 64, 1960, pp. 117-130.
(11) Armstrong, E. K., and Williams, D. D.,
"Some Intake Flow Maldistribution Effects on Compressor Rotor
Blade Vibration," J. Sound and Vibration, Vol. 3, no. 3, 1966, pp. 340-354.
(12) Waldren, N. E., et al.,
"Burst Strength of Rotating Discs," Proc. Instn. Mech. Engrs., Vol. 180, Pt. 1, no. 5, 1965-66, pp. 111-130.
(13) Goatham, J. I., et al.,
"Some Vibration Characteristics of Pin-Fixed Compressor Blades," Trans. ASME, J. Eng. Power, Vol. 89, no. 4, 1967, pp. 491-501.
(14) Petricone, R., and Sisto,
"Vibration Characteristics of Low Aspect Ratio Compressor Blades," Trans. ASME, J. Eng. Power, Vol. 93, no. 1, 1971, pp. 103-112.
(15) NASA
"Factors That Affect Operational Reliability of Turbojet Engines," NASA Technical Report, TR R-54, 1960.
(16) Stodola, A.,

Steam and Gas Turbines, Vol.2, McGraw-Hill, New York, 1927.
(17) Biezeno, C. B., and Grammel, R.,

Engineering Dynamics, Vol. III, Blackie and Sons Ltd, London, 1954.
(18) Manna, F.,
"Rotating Disks of Unconventional Profiles," (in English) Meccanica, J. Italian Asso. Theo. and App. Mech. Vol. 3, no. 4, Dec. 1968, pp. 274-282.
(19) Donath, M.,

Die Berechnung rotierender Scheiben und Ringe, Second Edition, Julius Springer, Berlin, 1929.
(20) Manson, S. S.,
"The Determination of Elastic Stresses in Gas-Turbine Disks," NACA Technical Note No. 1279, 1947.
(21) Manson, S. S.,
"Direct Method of Design and Stress Analysis of Rotating Disks With Temperature Gradients," NACA Technical Note No. 1957, 1947.
(22) Seireg, A., and Surana, K. S., "Optimum Design of Rotating Disks," Trans. ASME, J. Eng. Ind. Vol. 92, no. 1, 1970, pp. l-10.
(23) Manson, S. S.,
'Analysis of Rotating Discs of Arbitrary Contour And Radial
Temperature Distribution in The Region of Plastic Deformation," Proc. First US Nat. Cong. App. Mech., 1951, p. 569.
(24) Mote, C. D., Jr.
'Free Vibration of Initially Stressed Circular Disks,' Trans. ASME, J. Eng. for Ind., Vol. 87, 1965, pp. 258-264.
(25) Bogdanoff, J. L., et al.,
'Lateral Buckling of Rimmed Rotating Discs," Proc. Third US Nat. Cong. App. Mech., 1958, pp. 253-257.
(26) Soo, P. P.,
"An Energy Method of Natural Mode Frequency Analysis of A Turbine Disk Subjected to Uniform Rotation and Temperature Gradient," Developements in Mechanics, Proc. 10th MidWestern Mech. Conf., Vol. 4, Aug. 1967, pp. 977-994.
(27) Haigh, R. E., and Murdoch, M. L.,
"Analysis of Centrifugal Stresses in Turbine Wheels," J. Mech. Eng. Sci., Vol. 5, no. 1, 1963, pp. 66-74.
(28) Kobayashi, A. S., and Trumpler, P. R.,
'Elastic Stresses in A Rotating Disc of General Profile," Int. J. Mech. Sci., Vol. 2, 1960, pp. 13-29.
(29) Swansson, N. S.,
'The Stress Analysis of A Radial Flow Impeller," Mech. Eng. Note 259, Aero. Res. Lab., Melbourne, Aug. 1963.
(30) Schilhansl, M. J.,
"Stress Analysis of A Radial Flow Rotor," Trans. ASME, Ser. A, Vol. 84, no. 1, 1962, pp. 124-130.
(31) Thurgood, D.A.,
"Stress Distribution in A Rotating Disc," The Engineer, Vol. 224, Dec. 1967, pp. 832-834.
(32) Stordahl, H., and Christensen, H.,
'Finite Element Analysis of Axisymmetric Rotors,' J. Strain Analysis, Vol. 4, no. 3, July 1969, pp. 163-168.
(33) Chan, A. S. L., and Henrywood, R. K.,
'The Analysis of Radial Flow Impellers By the Matrix Finite Element Method," Aero. J., Roy. Aero. Soc., Vol. 75, 1971, pp. 850-860.
(34) Fessler, H.,
"Centrifugal Stresses in Turbo-Alternator Rotors," Proc. Instn. Mech. Engrs., Vol. 173, no. 29, 1959, pp. 717-733.
(35) Guernsey, R.,
"Photoelastic Study of Centrifugal Stresses in A Single Wheel and Hub," Proc. Soc. Exp. Stress Analysis, Vol. 18, no. 1, Jan. 1961.
(36) Fessler, H., and Thorpe, T. E.,
"Centrifugal Stresses in Rotationally Symmetrical GasTurbine Discs," J. Strain Analysis, Vol. 3, no. 2, 1968, pp. 135-141.
(37) Thurgood, D. A.,
"Stresses in Asymmetric Discs," J. Strain Analysis, Vol. 4, no, 1, Jan. 1969, pp. 65-73.
(38) Prescott, J.,

Applied Elasticity, McGraw-Hill Book Co., Inc., New York, 1953.
(39) Campbell, W.,
"The Protection of Steam Turbine Disk Wheels From Axial Vibration," Trans. ASME, Vol. 46, 1924, pp. 31-160.
(40) Tobias, S. A., and Arnold, R. N.,
"The Influence of Dynamical Imperfections on the Vibration of Rotating Disks," Proc. Instn. Mech. Engrs. Vol. 171, 1957, pp. 669-690.
(41) Tobias, S. A.,
"Free Undamped Nonlinear Vibrations of Imperfect Circular Disks," Proc. Instn. Mech. Engrs., Vol. 171, 1957, pp. 691-701.
(42) McLeod, A. J., and Bishop, R. E. D., "The Forced Vibration of Circular Flat Plates," Mech. Eng. Sci. Monograph No. 1, Instn. Mech. Engrs., London, 1965.
(43) Vogel, S. M., and Skinner, D. W.,
"Natural Frequencies of Transversely Vibrating Uniform Annular Plates," Trans. ASME, J. App. Mech. Vol. 32, 1965, pp. 926-931.
(44) Leissa, A. W.? Vibration of Plates, Scientific and Technical Information Division, NASA, Washington, 1969.
(45)

Conway, H. D.,
"Some Special Solutions for the Flexural Vibration of Discs of Varying Thickness," Ing. Arch., Vol. 26, 1958, pp. 408-410.
(46) Harris, G. Z.,
"The Normal Modes of A Circular Plate of Variable Thickness," Quart. J. Mech. and App. Maths., Vol. 21, 1968, pp. 321-327.
(47) Lamb, H., and Southwell, K. V.,
"The Vibrations of A Spinning Disc," Proc. Roy. Soc. of London, Vol. 99, 1921, pp. 272-280.
(48) Southwell, R. V.,
"On the Free Transverse Vibrations of A Uniform Circular Disc Clamped at Its Centre; and on the Effects of Rotation," Proc. Roy. Soc. of London, Vol. 101, 1922, pp. 133-153.
(49) Ghosh, N. C.,
"Vibration of Rotating Disk of Variable Thickness," J. Sci. Eng. Res., India, Vol. 13, no. 2, pp. 315-322.
(50) Eversman, W., et al.,
"Free Vibration of A Centrally Clamped Spinning Circular Disk," AIAA J., Vol. 7, no, 10, 1969, pp. 2010-2012.
(51) Ehrich, F. F.,
"A Matrix Solution for the Vibration Modes of Non-Uniform Discs," Trans. ASME, J. App. Mech., Vol. 23, 1956, pp. 109-115.
(52) Bleich, J. J.,
'Computer Analysis of Flexural Vibrations of A Rotating Disc With an Arbitrary Profile," ASME Paper No. 65-WA/GTP-8.
(53) Anderson, R. G., et al.,
"Vibration and Stability of Plates Using Finite Elements," Int. J. Solids and Struct., Vol. 4, 1968, pp. 1031-1055.
(54) Olson, M. D., and Lindberg, G. M., "Annular and Circular Sector Finite Elements for Plate Bending," Int. J. Mech. Sci., Vol. 12, 1970, pp. 17-33.
(55) Sawko, F., and Merriman, P.A.,
"An Annular Segment Element for Plate Bending," Int. J. Num. Meth. Eng., Vol. 3, 1971, pp. 119-129.
(56) Singh, S., and Ramaswamy, G. S., "A Sector Element for Thin Plate Flexure," Int. J. Num. Meth. Eng., vol. 4, 1972, pp: 133-142.
(57) Chernuka, M.W., et al.,
"Finite Element Analysis of Plates With Curved Edges," Int. J. Num. Meth. Eng., Vol. 4, 1972, pp. 49-65.
(58) Srinivas, S., et al.,
"An Exact Analysis for Vibration of Simply-Supported
Homogeneous and Laminated Thick Rectangular Plates,"
J. Sound and Vibr., Vol. 12, no.2, 1970, pp. 187-199.
(59) Potter, D. S., and Leedham, C. D.,
"Antisymmetric Vibrations of A Circular Plate," J. Acoust.
Soc. Amer., Vol. 49, no.5, 1971, pp. 1521-1526.
(60) Reissner, E.,
"The Effect of Transverse Shear Deformation on the Bending of Elastic Plates," J. App. Mech., vol. 12, 1945, pp. 69-77.
(61) Uflyand, Y. S.,
"The Propagation of Waves in the Transverse Vibration of Bars and Plates," (in Russian) Akad. Nauk. SSSR, Prikl.
Mat. Mech., Vol. 12, 1948, pp. 287-300.
(62) Mindlin, R. D.,
"Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic Elastic Plates," J. App. Mech., Vol. 18, no. 1, March 1951, pp. 31-38.
(63) Mindlin, R. D., and Deresiewicz, H.,
"Thickness Shear And Flexural Vibrations of a Circular Disc," J. App. Phys., Vol. 25, no. 10, 1954, pp. 1329-1332.
(64) Deresiewicz, H., and Mindlin, R. D.,
"Axially Symmetric Flexural Vibrations of a Circular Disc,"
J. App. Mech., Vol. 22, no. 1, March 1955, pp. 86-88.
(65) Deresiewicz, H.,
"Symmetric Flexural Vibrations of a Clamped Circular Disk,"
J. App. Mech., Vol. 23, no.2, June 1956, p. 319.
(66) Callahan, W. R.,
"On the Flexural Vibrations of Circular and Elliptical
Plates," Quart. Appl. Math., Vol. 13, 1956, pp. 371-380.
(67) Bakshi, J. S., and Callahan, W. R.,
"Flexural Vibrations of a Circular Ring When Transverse Shear and Rotary Inertia are Considered," J. Acoust. Soc. Amer., Vol. 40, no. 2, 1966, pp. 372-375.
(68) Onoe, M., and Yano, T.,
"Analysis of Flexural Vibrations of a Circular Disk," Electronic Communications in Japan, Vol. 51-A, no. 2, 1968, pp. 33-36.
(69) Pestel, E. C., and Leckie, P. A., Matrix Methods in Elastomechanics, McGraw-Hill Book Co., Inc., New York, 1963, pp. 404-408.
(70) Clough, R. W., and Fellippa, C.A.,
"A Refined Quadrilateral Element for Analysis of Plate Bending," Second Conf. on Matrix Meth. in Struct. Mech., Wright-Patterson AFB, Ohio, Oct. 1968.
(71) Peterson, R. E.,
"Natural Frequency of Gears," Trans. ASME, Vol. 52, APM-52-1, 1930, pp. 1-11.
(72) French,
"Aircraft Gas Turbine Rotating Compressor Disc Vibration," ASME Paper No. 65-WA/GTP-11.
(73) Mote, C. D., Jr., and Nieh, L. T., "Control of Circular Disk Stability With Membrane Stresses," Experimental Mechanics, Vol. 11, no. 11, 1971, pp. 490-498.
(74) Dokainish, M. A., and Rawtani, S.' "A Review of the Analytical Methods for Vibration Analysis of Turbomachinery Blades," Dept. of Mech. Eng., McMaster University, Hamilton, Canada, 1969.
(75) Pinney, E.,
"Vibration Modes of Tapered Beams," Amer. Math. Monthly, Vol. 54, 1.947, pp. 391-394.
(76) Myklestad, N. O., "A New Method of Calculating Natural Modes of Uncoupled Bending Vibration of Airplane Wings and Other Types of Beams," J. Aero. Soc., Vol. 11, no. 4, 1944.
(77) Leckie, F. A., and Lindberg, G. M., "The Effect of Lumped Parameters on Beam Frequencies," The Aero. Quart., Vol. 14, Aug. 1963, pp. 224-240.
(78) Lindberg, G. M., "Vibration of Non-Uniform Beams," The Aero. Quart., Vol. 14, 1963, pp. 387-395.
(79) Archer, J. S.,
'Consistent Matrix Formulation for Structural Analysis Using Influence Co-efficient Techniques," AIM J., Vol. 3, 1965, pp. 1910-1918.
(80) Carnegie, W., and Thomas, J.,
"Vibration Characteristics of Turbine Blading," The Engineer, Vol. 224, no. 5831, 1967, pp. 545-547.
(81) Rosard, D. D.,
"Natural Frequencies of Twisted Cantilever Beams," Trans. ASME, J. App. Mech., Vol. 20, no. 2, 1953, pp. 241-244.
(82) Anliker, M., and Troesch, B. A.,
"Theory of Lateral Vibrations of Pretwisted Rods," Z.A.M.P., Vol. 14, 1963.
(83) Carnegie, W.,
'Vibrations of Pretwisted Cantilever Blading," Proc. Instn. Mech. Engrs., Vol. 173, no. 12, 1959, pp. 343-374.
(84) Slyper, H. A.,
"Coupled Bending Vibrations of Pretwisted Cantilever Beams," J. Mech. Eng. Sci., Vol. 4, no. 4, 1962, pp. 365-379.
(85) Dokumaci, E., et al.,
"Matrix Displacement Analysis of Coupled Bending-Bending Vibrations of Pretwisted Blading," J. Mech. Eng. Sci., Vol. 9, no. 4, 1967, pp. 247-254.
(86) Mendelson, A., and Gendler, S.,
"Analytical Determination of Coupled Bending-Torsion Vibrations of Cantilever Beams by Means of Static Functions," NACA TN 2135, 1950.
(87) Mendelson, A., and Gendler, S.,
"Analytical and Experimental Investigation on Effects of
Twist on Vibrations of Cantilever Beams," NACA TN 2300, 1951.
(88) Houbolt, J. C., and Brooks; G. W.,
"Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending and Torsion of Twisted NonUniform Rotor Blades,' NACA TN 3905, 1957.
(89) Dunham, J.,
"The Lowest Natural Frequency of an Axial Compressor Blade," J. Roy. Aero. Soc., Vol. 62, 1958, pp. 677-680.
(90) Montoya, J.,
"Coupled Bending and Torsional Vibrations in a Twisted, Rotating Blade," Brown Boveri Review, Vol. 53, no. 3, March 1966, pp. 216-230.
(91) Sutherland, R. L.,
"Bending Vibration of a Rotating Blade, Vibrating in the Plane of Rotation," Trans. ASME, J. App. Mech., Vol. 16, 1949, pp. 389-394.
(92) Plunkett, R.,
"Free and Forced Vibration of Rotating Blades," J. Aero. sci., Vol. 18, no. 4, pp. 278-282.
(93) Lo,H., et al.,
"Bending Vibrations of Rotating Beams," Proc. First US Nat. Cong. App. Mech., 1951.
(94) LO, H.,
"A Nonlinear Problem in Bending Vibration of a Rotating Beam," Trans. ASME, J. App. Mech., Vol. 19, no. 4,1952, pp. 461-464.
(95) Carnegie, W., "Vibrations of Rotating Cantilever Blading; Theoretical Approaches to the Frequency Problem Based on Energy Methods," J. Mech. Eng. Sci., Vol. 1, no. 3, 1959, pp. 235-240.
(96) Jarrett, G.W., and Warner, P. C.,
"The Vibration of Rotating, Tapered Twisted Beams," Trans. ASME, J. App. Mech., Vol. 20, no. 3, 1953, pp. 381-389.
(97) Targoff, W., "The Bending Vibrations of a Twisted Rotating Beam," Proc. Third Midwestern Conf. on Solid Mech., 1957.
(98) Isakson, G., and Eisley, J.G., "Natural Frequencies in Bending of Twisted Rotating Blades," NASA TN D-371, March 1960.
(99) Isakson, G., and Eisley, J. G.,
'Natural Frequencies in Coupled Bending and Torsion of Twisted Rotating and Non-Rotating Blades," NASA CR-65, 1964.
(100) Bogdanoff, J. L., 'Influence of Secondary Inertia Terms on the Natural Frequencies of Rotating Beams," Trans. Trans. ASME, J. App. Mech., Vol. 22, 1955, pp. 587-591.
(101) Bogdanoff, J. L., and Horner, J. T. "Torsional Vibration of Rotating Twisted Beams," J. Aero. sci., Vol. 23, no. 4, 1956, pp. 393-395.
(102) Brady, W. G., and Targoff, W. P. "Uncoupled Torsional Vibrations of a Thin, Twisted, Rotating 'Beam," WADC Tech. Report 56-501, 1957.
(103) Krupka, R. M., and Baumanis, A. M., "Bending-Bending Mode of a Rotating Tapered Twisted Turbomachine Blade Including Rotary Inertia and Shear Deformation," Trans. ASME, J. Eng. Ind., Vol. 91, no. 4, 1969, pp. 1017-1024.
(104) Cowper, G.R.,
"A Computer Programme for Calculating Shear Centres and Other Section Properties," Mem. No. ST-68, Nat. Aero. Est., N.R.C., Ottawa, Canada, March 1966.
(105) Volterra, E.,
"Second Approximations of Method of Internal Constraint and Its Applications," Int. J. Mech. Sci., Vol. 3, 1961,p.47.
(106) Huang, T. C.,
"Effect of Rotary Inertia and Shear on the Vibration of
Beams Treated by Approximate Methods of Ritz and Galerkin," Proc. Third US Nat. Conc. of App. Mech., 1958, p. 189.
(107) Carnegie, W., and Thomas, J.,
'*The Effects of Shear Deformation and Rotary Inertia on the Lateral Frequencies of Cantilever Beams in Bending," Trans. ASME, J. Eng. Ind., Vol. 94, no. 1, 1972, pp. 267-278.
(108) Gere, J.M.,
"Torsional Vibrations of Beams of Thin-Walled Open Section," Trans. ASME, J. App. Mech., Vol. 21, 1954, 381-387.
(109) Grinsted, B.,
"Nodal Pattern Analysis," Proc. Instn. Mech. Engrs., Vol. 166, 1952, pp. 309-326.
(110) Ellington, J. P., and McCallion, H.,
"The Vibrations of Laced Turbine Blades," J. Roy. Aero. Sac., Vol. 61, no. 560, 1957, pp. 563-567.
(111) Pearson, H.,
"The Aerodynamics of Compressor Blade Vibration," Engineering, Vol. 196, no. 5098, pp. 473-476.
(112) Sabatiuk, A., and Sisto, F.,
"A Survey of Aerodynamic Excitation Problems in Turbomachines," Trans. ASME, Vol. 78, 1956, pp. 555-564.
(113) Rawtani, S., and Dokainish, M. A.,
"Vibration Analysis of Pretwisted Cantilever Plates,"
Canadian Aero. and Space Inst., Trans., Vol. 2, no. 2, 1969.
(114) Olson, M. D., and Lindberg, G. M.,
"A Finite Cylindrical Shell Element and the Vibrations of a Curved Fan Blade," Aero. Report LR-497, N.R.C., Canada, Feb. 1968.
(115) Ellington, J. P., and McCallion, H.,
"Blade Frequency of Turbines; Effect of Disc Elasticity," Engineering, Vol. 187, no. 4862, May 1959, pp. 645-646.
(116) Johnson, D. C., and Bishop, B.E.D.,
"The Modes of Vibration of a Certain System Having a Number of Equal Frequencies," Trans. ASME, J. App. Mech. Vol. 23, 1956, pp. 379-384.
(117) Capriz, G.,
'Interaction Between Disk and Blades During Vibrations of a Thick-Bladed Turbine Disk," ASME Paper No. 67-VIBR-52.
(118) Armstrong, E. K.,
"An Investigation Into the Coupling Between Turbine Disc and Blade Vibration," Ph.D., Thesis, Cambridge Univ ., 1.955.
(119) Armstrong, E. K.,
"Recent Blade Vibration Techniques," Trans. ASME, J. Eng. Power, Vol. 89, no. 3, 1967, pp. 437-444.
(120) Jager, B.,
"Eigenfrequenzen einer Scheibe mit Verwundenen Schaufeln,' Zeitschrift fur Flugwissenschaften, Vol. 10, no. 12, 1962, pp. 439-446.
(121) Stargardter, H.,
"Dynamic Models of Vibrating Rotor Stages," ASME Paper No. 66-WA/GT 12, Winter Annual Meeting, 1966.
(122) Kirkhope, J., and Wilson, G. J., "Vibration of Circular and Annular Plates Using Finite Elements,' Int. J. Num. Meth: Eng., Vol. 4, 1972, pp. 181-193.
(123) Zienkiewicz, O. C., and Cheung, Y. K., The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, London, 1967.
(124) Timoshenko, S. P., and Woinowsky-Krieger, S., Theory of Plates and Shells, Second Edition, McGrawHill Book Company, New York, 1959.
(125) Pryor, C. W., Barber, R. M., and Frederick, D., "Finite Element Bending Analysis of Reissner Plates," Proc. ASCE, J. Eng. Mech., Vol. 96, no. EM6, 1970, pp. 967-983.
(126) Wilson, G. J., and Kirkhope, J., Discussion on "Finite Element Bending Analysis of Reissner Plates," Proc. ASCE, J. Eng. Mech., Vol. 97, 1971, p. 1570.
(127) Rao, S. S.,

Effects of Transverse Shear and Rotary Inertia on the
Coupled Twist-Bending Vibrations of Circular Rings," J. Sound and Vib., Vol. 16, no. 4, 1971, pp. 567-580.
(128) Kapur, K. K.,
"Vibrations of a Timoshenko Beam, Using Finite-Element Approach," J. Acoust. Soc. Amer., Vol. 40, 1966, pp. 1058-1063.
(129) Boyce, W. E.,
"Effect of Hub Radius on the Vibrations of a Uniform Bar," Trans.ASME, J. App. Mech., Vol. 23, 1956, pp. 287-290.
(130) Kirkhope, J.,
"Vibrations of Systems of Elastically Coupled Concentric Rings," J. Acoust. Soc. Amer., Vol. 47, 1971, pp. 371-373.
(131) Bishop, R. E. D., and Johnson, D. C.,

The Mechanics of Vibration, Cambridge University Press, 1960.
(132) Kirkhope, J., and Wilson, G. J.,
"Analysis of Coupled Blade-Disc Vibration in Axial Flow Turbines and Fans," Proc. AIAA/ASME 12th Structures, Structural Dynamics and Materials Conference, Anaheim, Calif., April 1971.
(133) Herrman, L. R.,
'A Bending Analysis for Plates," Proc. First Conf. Matrix Methods Struct. Mech., Wright-Patterson AFB, Ohio, 1965.
(134) Smith, I, M.,
"A Finite Element Analysis for 'Moderately Thick' Rectangular Plates in Bending," Int. J. Mech. Sci., Vol. 10, 1968, pp. 563-570.
(135) Salerno, V. L., and Goldberg, M. A.,
"Effect of Shear Deformation on the Bending of Rectangular Plates," Trans. ASME, J. App. Mech., Vol. 27, 1960, pp. 54-58.
(136) Cowper, G. R., et al.,
"Static and Dynamic Applications of a High Precision Triangular Plate Bending Element," AIAA J. Vol. 7, 1969, pp. 1957-1965.


Figure 1.1 Effect of disc stiffness on the coupled blade-disc frequencies.


Engine Speed in rpm

Figure 1.2 Interference diagram.


Figure 2.1 Thin plate bending annular element with two nodal diameters and linear thickness variation.


Figure 2.2 Thin plate bending circular element with two nodal diameters and linear thickness variation.

(b)

Figure 2.3 Modelled circular plate. (a) With one circular element and two annular elements. (b) With a small central hole and three annular elements.


Figure 2.4 Percentage absolute error in the first six frequency coefficients of asimply supported circular plate modelled with thin plate bending annular elements.


Figure 2.5 Modelled circular disc with parabolic thickness variation.
(a) Elements with parabolic thickness variation used.
(b) Elements with linear thickness variation used.


Figure 2.6 Plane stress annular element.


Figure 2.7 Radial and tangential stress coefficients for a uniform rotating disc, calculated using the plane stress annular element.

Figure 2.8 Variation of harmonic excitation frequencies with rotational speed of a thin annular plate.


Figure 2.9 Thick Disc Element-l with two nodal diameters and associated degrees of freedom.


Figure 2. 10 Thick Disc Element-2 with two nodal diameters and associated degrees of freedom.


Figure 2.11 Stepped circular disc and five element finite element model.


Figure 2.12 A practicl turbine disc and its finite element models.


Figure 3.1 Blade element with associated degrees of freedom.

radial direction

Figure 3.2 Blade element with associated degrees of freedom when transverse shear is considered.


Figure 3.3 Pretwisted blade modelled with two straight beam elements.

$\psi^{*}=\psi \cos \delta+\theta \sin \delta$
$\theta^{*}=-\psi \sin \delta+\theta \cos \delta$

$\theta^{*}=-\psi \sin \delta+\theta \cos \delta$


$$
\begin{aligned}
& \gamma_{V}^{*}=Y_{V} \cos \delta+\gamma_{W} \sin \delta \\
& Y_{W}^{*}=-\gamma_{V} \sin \delta+\gamma_{W} \cos \delta
\end{aligned}
$$

Figure 3.4 Relationships between distortions along the principal directions and the coordinate system chosen.


Figure 3.5 Variation of the first two frequencies of a rotating beam with speed of rotation - vibration out of plane of rotation.


Figure 3.6 Percentage error versus degrees of freedom of Timoshenko beam elements.


Figure 3.7 Percentage error versus degrees of freedom of Timoshenko beam elements.


Figure 4.1 Bladed disc with two nodal diameters.
(a)

(b)

(c)


Figure 4.2 Rim deflections and forces. (a) undeflected position. (b) rim deflections. (c) blade shear force and bending moment. (d) blade torsional moment.


Figure 4.3 Bladed disc system configuration and deflections.


Figure 4.3 Bladed disc system configuration and deflections.

Figure 4.4 Bladed disc system configuration and deflections when transverse shear is also included.

$m=2$

Mode No. 4
$\omega=1123 \mathrm{~Hz}$
$m=3$
Mode No. 5
$\omega=1687 \mathrm{~Hz}$
$m=4$
Mode No. 6
$\omega=2792 \mathrm{~Hz}$
Figure 4.5 Sand pattern illustrating mode shapes of vibrating bladed disc models.


Figure 4.6 Variation of the first six coupled bladed disc frequencies with nodal diameters, Model I.


Figure 4.7 Variation of the first six coupled bladed disc frequencies with nodal diameters, Model II.


Figure 4.8 Influence of $\ell / b$ ratio on the first coupled bladed disc frequency.


Figure 4.9 Influence of blade aspect ratio on the first coupled bladed disc frequency.


Figure 4.10 Influence of blade stagger angle on the first coupled bladed disc frequency.



Figure 4.11 Influence of $R / b$ ratio on the higher coupled frequencies.


Figure 4.12 Influence of blade aspect ratio on higher coupled frequencies.


Figure 4. 13 Influence of stagger angle on the higher coupled frequencies.


Number of castellations $=113$


Figure 4.14 Details at the blade disc attachment of the turbine rotor.
Matrix $\left[B_{d}\right\}$.

| $\frac{r_{2}^{2}\left(r_{2}-3 r_{1}\right)}{\left(r_{2}-r_{1}\right)^{3}}$ | $\frac{r_{1} r_{2}^{2}}{\left(r_{2}-r_{1}\right)^{2}}$ | $\frac{r_{1}^{2}\left(3 r_{2}-r_{1}\right)}{\left(r_{2}-r_{1}\right)^{3}}$ | $\frac{r_{1}^{2} r_{2}}{\left.r_{2}-r_{1}\right)^{2}}$ |
| :---: | :---: | :---: | :---: |
| $\frac{6 r_{1} r_{2}}{\left.r_{2}-r_{1}\right)^{3}}$ | $-\frac{r_{2}\left(2 r_{1}+r_{2}\right)}{\left(r_{2}-r_{1}\right)^{2}}$ | $-\frac{6 r_{1} r_{2}}{\left(r_{2}-r_{1}\right)^{3}}$ | $r_{1}\left(r_{1}+2 r_{2}\right)$ |
| $\frac{3\left(r_{1}+r_{2}\right)}{\left.r_{2}-r_{1}\right)^{3}}$ | $\frac{\left(r_{1}+2 r_{2}\right)}{\left(r_{2}-r_{1}\right)^{2}}$ | $\frac{3\left(r_{1}+r_{2}\right)}{\left(r_{2}-r_{1}\right)^{3}}$ | $\frac{\left(2 r_{1}+r_{2}\right)}{\left(r_{2}-r_{1}\right)^{2}}$ |
| $\frac{1}{\left(r_{2}-r_{1}\right)^{3}}$ | $-\frac{2}{\left(r_{2}-r_{1}\right)^{2}}$ | $-\frac{2}{\left(r_{2}-r_{1}\right)^{3}}$ | $-\frac{1}{\left(r_{2}-r_{1}\right)^{2}}$ |

TABLE 2.2

Matrix [kd] of the thin plate bending annular element.

| $\begin{array}{c\|c} P_{-3}\left(m^{4}+2 m^{2}-\right. & P_{-2}\left(m^{4}-m^{2}\right) \\ \left.2 v m^{2}\right) & \end{array}$ | $\mathrm{P}_{-1}\left(m^{4}-4 m^{2}\right)$ | $\begin{gathered} P_{0}\left(m^{4}-7 m^{2}-\right. \\ \left.2 v m^{2}\right) \end{gathered}$ |
| :---: | :---: | :---: |
| symmetrical $\|$$\mathrm{P}_{-1}\left(\mathrm{~m}^{4}-2 \mathrm{~m}^{2}\right.$ <br> $+1)$$P_{i}=\frac{\text { CITE }}{12\left(1-v^{2}\right)} r_{\mathbf{1}}^{\prime 2} h^{3}(r) r^{i} d r$ | $\begin{aligned} & P_{0}\left(m^{4}-3 m^{2}-\right. \\ & \left.2 v m^{2}+2 v+2\right) \end{aligned}$ | $\begin{aligned} & P_{1}\left(m^{4}-4 m^{2}-\right. \\ & \left.6 v m^{2}+6 v+3\right) \end{aligned}$ |
|  | $\begin{aligned} & P_{1}\left(m^{4}-2 m^{2}-\right. \\ & \left.6 v m^{2}+8 v+8\right) \end{aligned}$ | $\begin{gathered} \mathrm{P}_{2}\left(\mathrm{~m}^{4}-\mathrm{m}^{2}-12 v \mathrm{~m}^{2}\right. \\ +18 v+18) \end{gathered}$ |
|  |  | $\begin{gathered} P_{3}\left(m^{4}+2 m^{2}-20 v m^{2}\right. \\ +36 v+45) \end{gathered}$ |

TABLE 2.3
Matrix [md] of the thin plate bending annular element.


TABLE 2.4

The deflection vector $\left\{q_{d}^{0}\right\}$ and the matrices $\left[B_{d}^{0}\right],\left[k_{d}^{0}\right]$ and $\left[\mathrm{m}_{\mathrm{d}}^{0}\right]$ of the thin plate bending circular element with $\mathrm{m}=0$.

$$
\begin{aligned}
& \left\{q_{d}^{o}\right\}^{T}=\left[\begin{array}{lll}
\bar{w}_{1} & \bar{w}_{2} & \bar{\theta}_{2}
\end{array}\right] \\
& {\left[B_{d}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{3}{r_{2}^{2}} & \frac{1}{r_{2}} & \frac{3}{r_{2}^{2}} \\
\frac{2}{r_{2}^{3}} & -\frac{1}{r_{2}^{2}} & -\frac{2}{r_{2}^{3}}
\end{array}\right]} \\
& {\left[k_{d}^{0}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & P_{1}(8 v+8) & P_{2}(18 v+18) \\
0 & P_{2}(18 v+18) & P_{3}(36 v+45)
\end{array}\right]} \\
& {\left[\mathrm{m}_{\mathrm{d}}^{0}\right]=\left[\begin{array}{lll}
\mathrm{Q}_{1} & Q_{2} & Q_{4} \\
Q_{2} & Q_{5} & Q_{6} \\
Q_{4} & Q_{6} & Q_{7}
\end{array}\right]} \\
& P_{i}=2 \pi \frac{E}{12\left(1-v^{2}\right)} \int_{0}^{r_{2}} h^{3}(r) r^{i} d r ; \quad Q_{i}=2 \pi I_{0}^{r_{2}} \rho h(r) r^{i} d r
\end{aligned}
$$

TABLE 2.5

The deflection vector $\left\{q_{d}^{0}\right\}$ and the matrices $\left[B_{d}^{0}\right],\left[k_{d}^{0}\right]$ and $\left[\mathrm{m}_{\mathrm{d}}^{0}\right]$ of the thin plate bending circular element with $\mathrm{m}=1$.

$$
\begin{aligned}
& \left\{q_{\mathrm{d}}^{\mathrm{o}}\right\}^{\mathrm{T}}=\left[\begin{array}{lll}
\bar{\theta}_{1} & \overline{\mathrm{w}}_{2} & \bar{\theta}_{2}
\end{array}\right] \\
& {\left[\mathrm{B}_{\mathrm{d}}^{0}\right]=\left[\begin{array}{l}
-1 \\
\frac{2}{\mathrm{r}_{2}} \\
-\frac{1}{\mathrm{r}_{2}}
\end{array}\right.} \\
& \begin{array}{c}
0 \\
3 \\
-2 \\
12 \\
-\frac{2}{r_{2}^{3}}
\end{array} \\
& \left.\begin{array}{c}
0 \\
\frac{1}{r_{2}} \\
-\frac{1}{r_{2}}
\end{array}\right] \\
& {\left[k_{d}^{o}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & P_{1}(7+2 v) & P_{2}(18+6 v) \\
0 & P_{2}(18+6 v) & P_{3}(48+16 v)
\end{array}\right]} \\
& {\left[\mathrm{m}_{\mathrm{d}}^{\mathrm{o}}\right]=\left[\begin{array}{l}
\mathrm{Q}_{3} \\
\mathrm{Q}_{4} \\
\mathrm{Q}_{5}
\end{array}\right.} \\
& \begin{array}{ll}
Q_{4} & Q_{5} \\
Q_{5} & Q_{6} \\
Q_{6} & Q_{7}
\end{array} \\
& P_{i}=\frac{\pi E}{12\left(1-v^{2}\right)} \int_{0}^{r_{2}} h^{3}(r) r^{i} d r \quad ; \quad Q_{i}=\int_{0}^{r_{2}} \rho h(r) r^{i} d r
\end{aligned}
$$

TABLE 2.6

The deflection vector $\left\{q_{d}^{0}\right\}$ ant the matrices $\left[B_{d}^{0}\right],\left[k_{d}^{0}\right]$ and $\left[\mathbb{m}_{d}^{0}\right]$ of the thin plate bending circular element with $m=2,4,6, \ldots$

$$
\begin{aligned}
& \left\{q_{d}^{o}\right\}^{T}=\left[\begin{array}{ll}
\bar{w}_{i} & \bar{\theta}_{2}
\end{array}\right] \\
& {\left[\mathrm{B}_{\mathrm{d}}^{\mathrm{o}}\right]=\left[\left.\begin{array}{cc}
-\frac{2}{\mathrm{r}_{2}^{2}} & \frac{1}{\mathrm{r}_{2}} \\
\frac{2}{\mathrm{r}_{2}} & -\frac{1}{\mathrm{r}_{2}^{2}}
\end{array} \right\rvert\,\right.} \\
& {\left[k_{d}^{0}\right]=\left|\begin{array}{cc}
\bar{P}_{1}\left(m^{4}-2 m^{2}-6 m^{2} v\right. & P_{2}\left(m^{4}-m^{2}-12 m^{2} v\right. \\
+8 v+8) & +18 v+18) \\
P_{2}\left(m^{4}-m^{2}-12 m^{2} v\right. & P_{3}\left(m^{4}+2 m^{2}-20 m^{2} v\right. \\
+18 v+18) & +36 v+45)
\end{array}\right|} \\
& {\left[\mathrm{m}_{\mathrm{d}}^{\mathrm{o}}\right]=\left\lfloor\begin{array}{l}
Q_{5} \\
Q_{6}
\end{array}\right.} \\
& \begin{array}{l}
Q_{6} \\
Q_{7}
\end{array} \\
& P_{i}=\frac{\pi E}{12\left(1-v^{2}\right)} \int_{0}^{r_{2}} h^{3}(r) r^{i} d r \quad ; \quad Q_{1}={ }_{0}^{r} \int_{0}^{r_{2}} \rho h(r) r^{i} d r
\end{aligned}
$$

## TABLE 2.7

Non-dimensional frequency $\lambda$ of a uniform thickness circular plate; simply supported at the outer boundary, calculated using thin plate bending circular and annular elements. $v=0.33$

| m | n | Number of elements |  |  |  | Exact <br> (42) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 4.99 \\ 39.66 \end{array}$ | $\begin{array}{r} 4.98 \\ 30.20 \\ 85.78 \\ 188.33 \end{array}$ | $\begin{array}{r} 4.98 \\ 29.78 \\ 74.79 \\ 143.28 \end{array}$ | $\begin{array}{r} 4.98 \\ 29.76 \\ 74.23 \\ 138.65 \end{array}$ | $\begin{array}{r} 4.97 \\ 29.70 \\ 74.13 \\ 138.30 \end{array}$ |
| 1 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 14.68 \\ & 60.27 \end{aligned}$ | $\begin{array}{r} 13.96 \\ 52.19 \\ 121.75 \\ 219.32 \end{array}$ | $\begin{array}{r} 13.94 \\ 48.65 \\ 104.15 \\ 193.34 \end{array}$ | $\begin{array}{r} 13.94 \\ 48.52 \\ 102.91 \\ 177.44 \end{array}$ | $\begin{array}{r} 13.91 \\ 48.58 \\ 102.82 \\ 176.89 \end{array}$ |
| 2 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | 30.62 | $\begin{array}{r} 25.85 \\ 77.67 \\ 180.00 \end{array}$ | $\begin{array}{r} 25.66 \\ 70.50 \\ 137.58 \\ 237.44 \end{array}$ | $\begin{array}{r} 25.65 \\ 70.17 \\ 134.54 \\ 219.23 \end{array}$ | $\begin{array}{r} 25.70 \\ 70.06 \\ 134.33 \\ 211.99 \end{array}$ |
| 4 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | 68.07 | $\begin{array}{r} 58.42 \\ 145.01 \\ 252.82 \end{array}$ | $\begin{array}{r} 56.93 \\ 122.79 \\ 217.93 \\ 334.98 \end{array}$ | $\begin{array}{r} 56.88 \\ 121.80 \\ 206.34 \\ 311.50 \end{array}$ | $\begin{array}{r} 56.85 \\ 121.66 \\ 205.92 \end{array}$ |
| 6 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | 140.55 | $\begin{aligned} & 101.30 \\ & 201.62 \\ & 475.62 \end{aligned}$ | $\begin{array}{r} 98.21 \\ 187.65 \\ 303.76 \\ 452.45 \end{array}$ | $\begin{array}{r} 98.04 \\ 184.12 \\ 289.12 \\ 415.34 \end{array}$ |  |

TABLE 2.8
Non-dimensional frequency $\lambda$ of a uniform thickness circular plate; clamped at the outer boundary, calculated using thin plate bending circular and annular elements. $\mathrm{v}=0.33$

| m | n | Number of elements |  |  |  | Exact <br> (42) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8. |  |
| 0 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | 10.25 | $\begin{array}{r} 10.22 \\ 40.25 \\ 115.15 \end{array}$ | $\begin{array}{r} 10.22 \\ 39.84 \\ 90.12 \\ 161.71 \end{array}$ | $\begin{array}{r} 10.22 \\ 39.78 \\ 89.18 \\ 158.64 \end{array}$ | $\begin{array}{r} 10.24 \\ 39.82 \\ 89.11 \\ 158.26 \end{array}$ |
| 1 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | 23.66 | $\begin{array}{r} 21.33 \\ 66.58 \\ 166.07 \end{array}$ | $\begin{array}{r} 21.27 \\ 61.10 \\ 121.69 \\ 218.37 \end{array}$ | $\begin{array}{r} 21.26 \\ 60.85 \\ 120.25 \\ 199.91 \end{array}$ | $\begin{array}{r} 21.25 \\ 60.84 \\ 120.12 \\ 199.09 \end{array}$ |
| 2 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ |  | $\begin{array}{r} 35.21 \\ 101.94 \end{array}$ | $\begin{array}{r} 34.91 \\ 85.21 \\ 156.19 \\ 273.86 \end{array}$ | $\begin{array}{r} 34.88 \\ 84.63 \\ 154.13 \\ 244.10 \end{array}$ | $\begin{array}{r} 34.81 \\ 84.64 \\ 153.76 \\ 243.36 \end{array}$ |
| 4 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ |  | $\begin{array}{r} 74.46 \\ 211.83 \end{array}$ | $\begin{array}{r} 69.83 \\ 141.22 \\ 245.65 \\ 388.00 \end{array}$ | $\begin{array}{r} 69.68 \\ 140.23 \\ 230.20 \\ 340.90 \end{array}$ | $\begin{array}{r} 69.72 \\ 140.19 \\ 229.52 \end{array}$ |
| 6 | 0 1 2 3 |  | $\begin{aligned} & 128.22 \\ & 437.52 \end{aligned}$ | $\begin{aligned} & 114.77 \\ & 210.92 \\ & 345.70 \\ & 518.53 \end{aligned}$ | $\begin{aligned} & 114.25 \\ & 206.33 \\ & 317.24 \\ & 448.94 \end{aligned}$ |  |

TABLE 2.9

Non-dimensional frequency $\lambda$ of a uniform thickness circular plate, free at the outer boundary, calculated using thin plate bending circular and annular elements. $v=0.33$

| m | n | Number of elements |  |  |  | Exact <br> (42) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | 1 |  | 9.06 | 9.07 | 9.07 | 9.06 |
|  | 2 |  | 35.81 | 38.39 | 38.50 | 38.44 |
|  | 3 |  | 76.63 | 88.14 | 87.86 | 87.80 |
|  | 4 |  | 183.79 | 156.49 | 157.11 | 156.75 |
| 1 | 1 |  | 20.41 | 20.52 | 20.51 | 20.52 |
|  | 2 |  | 63.72 | 60.11 | 59.88 | 59.75 |
|  | 3 |  | 138.10 | 120.01 | 119.18 | 118.81 |
|  | 4 |  | 278.11 | 214.48 | 198.74 | 197.96 |
| 2 | 0 | 5.27 | 5.26 | 5.26 | 5.26 | 5.24 |
|  | 1 | 48.83 | 35.34 | 35.28 | 35.25 | 35.50 |
|  | 2 |  | 94.95 | 84.91 | 84.42 | 84.64 |
|  | 3 |  | 250.66 | 154.72 | 153.64 | 153.51 |
| 4 | 0 | 21.86 | 21.54 | 21.53 | 21.53 | 21.50 |
|  | I | 88.75 | 75.43 | 73.52 | 73.39 | 73.45 |
|  | 2 |  | 183.58 | 142.66 | 142.46 | 142.33 |
|  | 3 |  | 297.69 | 242.91 | 231.60 |  |
| 6 | 0 | 47.19 | 46.92 | 46.83 | 46.81 |  |
|  | 1 | 171.67 | 126.29 | 122.42 | 122.28 |  |
|  | 2 |  | 263.69 | 213.50 | 211.81 |  |
|  | 3 |  | 494.18 | 339.32 | 321.17 |  |

TABLE 2.9

Non-dimensional frequency $\lambda$ of a uniform thickness circular plate, free at the outer boundary, calculated using thin plate bending circular and annular elements. $v=0.33$

| m | n | Number of elements |  |  |  | Exact <br> (42) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | 1 |  | 9.06 | 9.07 | 9.07 | 9.06 |
|  | 2 |  | 35.81 | 38.39 | 38.50 | 38.44 |
|  | 3 |  | 76.63 | 88.14 | 87.86 | 87.80 |
|  | 4 |  | 183.79 | 156.49 | 157.11 | 156.75 |
| 1 | 1 |  | 20.41 | 20.52 | 20.51 | 20.52 |
|  | 2 |  | 63.72 | 60.11 | 59.88 | 59.75 |
|  | 3 |  | 138.10 | 120.01 | 119.18 | 118.81 |
|  | 4 |  | 278.11 | 214.48 | 198.74 | 197.96 |
| 2 | 0 | 5.27 | 5.26 | 5.26 | 5.26 | 5.24 |
|  | 1 | 48.83 | 35.34 | 35.28 | 35.25 | 35.50 |
|  | 2 |  | 94.95 | 84.91 | 84.42 | 84.64 |
|  | 3 |  | 250.66 | 154.72 | 153.64 | 153.51 |
| 4 | 0 | 21.86 | 21.54 | 21.53 | 21.53 | 21.50 |
|  | I | 88.75 | 75.43 | 73.52 | 73.39 | 73.45 |
|  | 2 |  | 183.58 | 142.66 | 142.46 | 142.33 |
|  | 3 |  | 297.69 | 242.91 | 231.60 |  |
| 6 | 0 | 47.19 | 46.92 | 46.83 | 46.81 |  |
|  | 1 | 171.67 | 126.29 | 122.42 | 122.28 |  |
|  | 2 |  | 263.69 | 213.50 | 211.81 |  |
|  | 3 |  | 494.18 | 339.32 | 321.17 |  |

TABLE 2.10
Non-dimensional frequency $\lambda$ of a uniform thickness annular plate, simply supported at the outer boundary, calculated using thin plate bending annular elements. $\quad v=0.33 \quad a / b=0.001$

| m | n | Number of elements |  |  |  | Exact <br> (42) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | 0 | 4.99 | 4.98 | 4.98 | 4.98 | 4.97 |
|  | 1 | 38.80 | 30.19 | 29.78 | 29.76 | 29.70 |
|  | 2 | 176.23 | 85.68 | 74.78 | 74.23 | 74.13 |
|  | 3 |  | 185.98 | 143.22 | 138.65 | 138.30 |
| 1 | 0 | 14.68 | 13.96 | 13.94 | 13.94 | 13.91 |
|  | 1 | 60.27 | 52.18 | 48.65 | 48.52 | 48.58 |
|  | 2 | 145.10 | 121.70 | 104.15 | 102.91 | 102.82 |
|  | 3 |  | 219.33 | 193.29 | 177.44 | 176.89 |
| 2 | 0 | 30.29 | 25.84 | 25.66 | 25.65 | 25.70 |
|  | 1 | 165.30 | 77.63 | 70.49 | 70.17 | 70.06 |
|  | 2 | 435.67 | 177.93 | 139.53 | 134.53 | 134.33 |
|  | 3 |  | 516.70 | 234.47 | 219.21 | 211.99 |
| 3 | 0 | 44.05 | 41.08 | 40.02 | 39.99 | 39.94 |
|  | 1 | 381.80 | 106.88 | 95.23 | 94.62 | 94.48 |
|  | 2 | 907.25 | 200.24 | 177.45 | 169.03 | 168.74 |
|  | 3 |  | 1176.41 | 284.08 | 263.93 |  |
| 4 | 0 | 65.46 | 58.41 | 56.93 | 56.88 | 56.85 |
|  | 1 | 686.25 | 142.49 | 122.78 | 121.80 | 121.66 |
|  | 2 | 1564.89 | 244.90 | 217.89 | 206.34 | 205.92 |
|  | 3 |  | 2102.24 | 334.48 | 311.15 |  |
| 5 | 0 | 94.73 | 78.36 | 76.34 | 76.24 | 76.21 |
|  | 1 | 1077.49 | 172.75 | 153.70 | 151.65 | 151.29 |
|  | 2 | 2409.66 | 325.78 | 259.73 | 246.44 |  |
|  | 3 |  | 3290.88 | 389.94 | 361.98 |  |
| 6 | 0 | 131.44 | 101.16 | 98.21 | 98.04 |  |
|  | 1 | 1555.46 | 201.56 | 187.62 | 184.12 |  |
|  | 2 | 3441.95 | 438.60 | 303.66 | 289.28 |  |
|  | 3 |  | 4742.59 | 451.86 | 415.32 |  |

TABLE 2.11
Non-dimensional frequency $\lambda$ of a uniform thickness annular plate, clamped at the outer boundary, calculated using thin plate bending annular elements. $\nu=0.33 \quad \mathrm{a} / \mathrm{b}=0.001$

| m | n | Number of elements |  |  |  | Exact(42) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | 10.24 | $\begin{array}{r} 10.22 \\ 40.24 \\ 114.49 \\ 528.76 \end{array}$ | $\begin{array}{r} 10.22 \\ 39.88 \\ 90.11 \\ 161.66 \end{array}$ | $\begin{array}{r} 10.22 \\ 39.78 \\ 89.18 \\ 158.63 \end{array}$ | $\begin{array}{r} 10.24 \\ 39.82 \\ 89.11 \\ 158.26 \end{array}$ |
| 1 | 0 1 2 3 | 23.66 | $\begin{array}{r} 21.33 \\ 66.56 \\ 165.85 \end{array}$ | $\begin{array}{r} 21.27 \\ 61.10 \\ 121.70 \\ 218.23 \end{array}$ | $\begin{array}{r} 21.26 \\ 60.85 \\ 120.25 \\ 199.91 \end{array}$ | $\begin{array}{r} 21.25 \\ 60.84 \\ 120.12 \\ 199.09 \end{array}$ |
| 2 | 0 1 2 3 | 103.70 | $\begin{array}{r} 35.20 \\ 101.58 \\ 493.31 \end{array}$ | $\begin{array}{r} 34.91 \\ 85.20 \\ 156.14 \\ 273.81 \end{array}$ | $\begin{array}{r} 34.88 \\ 84.63 \\ 154.13 \\ 244.08 \end{array}$ | $\begin{array}{r} 34.81 \\ 84.64 \\ 153.76 \\ 243.36 \end{array}$ |
| 3 | 0 1. 2 3 | 248.69 | $\begin{array}{r} 53.47 \\ 138.14 \\ 1135.96 \end{array}$ | $\begin{array}{r} 51.12 \\ 112.00 \\ 199.49 \\ 329.13 \end{array}$ | $\begin{array}{r} 51.04 \\ 111.10 \\ 190.79 \\ 291.10 \end{array}$ | $\begin{array}{r} 50.98 \\ 111.09 \\ 190.44 \end{array}$ |
| 4 | 0 1 2 3 | 450.40 | $\begin{array}{r} 74.35 \\ 200.97 \\ 2033.55 \end{array}$ | $\begin{array}{r} 69.83 \\ 141.21 \\ 245.51 \\ 386.85 \end{array}$ | $\begin{array}{r} 69.68 \\ 140.23 \\ 230.20 \\ 340.89 \end{array}$ | $\begin{array}{r} 69.72 \\ 140.19 \\ 229.52 \end{array}$ |
| 5 | 0 1 2 3 | 709.10 | $\begin{array}{r} 98.65 \\ 289.64 \\ 3185.06 \end{array}$ | $\begin{array}{r} 91.05 \\ 174.19 \\ 294.20 \\ 447.69 \end{array}$ | $\begin{array}{r} 90.76 \\ 171.98 \\ 272.36 \\ 393.53 \end{array}$ | $\begin{array}{r} 90.82 \\ 171.87 \end{array}$ |
| 6 | 0 1 2 3 | 1024.98 | $\begin{array}{r} 127.91 \\ 401.81 \\ 4591.14 \end{array}$ | $\begin{aligned} & 114.76 \\ & 210.87 \\ & 345144 \\ & 517.78 \end{aligned}$ | $\begin{aligned} & 114.25 \\ & 206.33 \\ & 317.23 \\ & 448.93 \end{aligned}$ |  |

TABLE 2.12

Non-dimensional frequency $\lambda$ of a uniform thickness annular plate, free at the outer boundary, ca culated using thin plate bending annular elements. v = 0.33

$$
a / b=0.001
$$

| m | n | Number of elements |  |  |  | Exact(42) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ |  | $\begin{array}{r} 9.07 \\ 35.72 \\ 76.84 \\ 167.47 \end{array}$ | $\begin{array}{r} 9.07 \\ 38.38 \\ 88.15 \\ 156.41 \end{array}$ | $\begin{array}{r} 9.07 \\ 38.50 \\ 87.86 \\ 157.10 \end{array}$ | $\begin{array}{r} \mathbf{9 . 0 6} \\ 38.44 \\ 87.80 \\ 156.75 \end{array}$ |
| 1 | $\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \end{gathered}$ |  | $\begin{array}{r} 20.56 \\ 62.75 \\ 129.74 \\ 278.12 \end{array}$ | $\begin{array}{r} 20.52 \\ 60.10 \\ 120.13 \\ 214.27 \end{array}$ | $\begin{array}{r} 20.51 \\ 59.88 \\ 119.18 \\ 198.74 \end{array}$ | $\begin{array}{r} 20.52 \\ 59.75 \\ 118.81 \\ 197.96 \end{array}$ |
| 2 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 5.27 \\ 47.21 \\ 191.88 \end{array}$ | $\begin{array}{r} 5.26 \\ 35.33 \\ 94.75 \\ 245.65 \end{array}$ | $\begin{array}{r} 5.26 \\ 35.28 \\ 84.89 \\ 154.68 \end{array}$ | $\begin{array}{r} 5.26 \\ 35.25 \\ 84.42 \\ 153.64 \end{array}$ | $\begin{array}{r} 5.24 \\ 35.52 \\ 84.64 \\ 153.51 \end{array}$ |
| 3 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 12.51 \\ 63.01 \\ 430.99 \end{array}$ | $\begin{array}{r} 12.26 \\ 54.28 \\ 127.67 \\ 265.01 \end{array}$ | $\begin{array}{r} 12.25 \\ 53.0 ' 2 \\ 112.58 \\ 197.67 \end{array}$ | $\begin{array}{r} 12.24 \\ 52.93 \\ 111.99 \\ 191.14 \end{array}$ | $\begin{array}{r} 12.25 \\ 53.00 \\ 111.94 \\ 190.72 \end{array}$ |
| 4 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 21.84 \\ 86.26 \\ 770.95 \end{array}$ | $\begin{array}{r} 21.54 \\ 75.32 \\ 177.29 \\ 294.05 \end{array}$ | $\begin{array}{r} 21.53 \\ 73.52 \\ 142.66 \\ 242.81 \end{array}$ | $\begin{array}{r} 21.53 \\ 73.39 \\ 142.46 \\ 231.60 \end{array}$ | $\begin{array}{r} 21.53 \\ 73.45 \\ 142.33 \end{array}$ |
| 5 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 33.26 \\ 119.00 \\ 1208.66 \end{array}$ | $\begin{array}{r} 33.11 \\ 98.89 \\ 225.92 \\ 355.21 \end{array}$ | $\begin{array}{r} 33.07 \\ 96.69 \\ 176.32 \\ 289.99 \end{array}$ | $\begin{array}{r} 33.06 \\ 96.53 \\ 175.75 \\ 274.96 \end{array}$ | $\begin{array}{r} 33.06 \\ 96.43 \\ 175.56 \end{array}$ |
| 6 | $\mathbf{0}$ 1 2 $3^{\prime}$ | $\begin{array}{r} 47.09 \\ 160.85 \\ 1743.73 \end{array}$ | $\begin{array}{r} 46.90 \\ 126.13 \\ 262.33 \\ 458.67 \end{array}$ | $\begin{array}{r} 46.83 \\ 122.41 \\ 213.46 \\ 339.13 \end{array}$ | $\begin{array}{r} 46.81 \\ 122.28 \\ 211.81 \\ 321.17 \end{array}$ |  |

TABLE 2.13
Non-dimensional frequency $\lambda$ of a uniform thickness annular plate, simply supported at the outer boundary, calculated using thin plate bending annular elements. $\mathrm{v}=0.3 \mathrm{a} / \mathrm{b}=0.1$

| m | n | Number of elements |  |  |  | Exact <br> (43) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | 0 | 4.91 | 4.87 | 4.86 | 4.85 | 4.86 |
|  | 1 | 33.43 | 29.82 | 29.52 | 29.45 | 29.41 |
|  | 2 | 95.77 | 83.37 | 75.36 | 74.88 | 74.85 |
|  | 3 |  | 176.72 | 145.31 | 143.12 |  |
| 1 | 0 | 14.39 | 13.90 | 13.88 | 13.87 | 13.88 |
|  | 1 | 58.65 | 50.45 | 48.19 | 48.03 | 48.08 |
|  | 2 | 162.37 | 113.95 | 102.03 | 100.67 |  |
|  | 3 |  | 214.36 | 178.39 | 171.86 |  |
| 2 | 0 | 27.95 | 25.49 | 25.40 | 25.40 | 25.45 |
|  | 1 | 83.68 | 74.73 | 69.46 | 69.27 | 69.23 |
|  | 2 | 332.49 | 155.88 | 133.84 | 132.37 |  |
|  | 3 |  | 258.08 | 231.03 | 214.84 |  |
| 3 | 0 | 43.41 | 40.40 | 39.96 | 39.94 | 39.99 |
|  | 1 | 128.17 | 101.94 | 94.81 | 94.41 |  |
|  | 2 | 589.09 | 203.28 | 171.41 | 168.27. |  |
|  | 3 |  | 325.32 | 280.64 | 261.71 |  |
| 4 | 0 | 60.38 | 57.88 | 56.88 | 56.84 |  |
|  | 1 | 192.81 | 131.94 | 122.32 | 121.73 |  |
|  | 2 | 932.38 | 239.49 | 213.07 | 206.07 |  |
|  | 3 |  | 447.93 | 329.02 | 310.53 |  |
| 5 | 1 | 80.96 | 77.79 | 76.27 | 76.21 |  |
|  | 1 | 275.54 | 165.71 | 152.58 | 151.58 |  |
|  | 2 | 1371.87 | 275.96 | 256.92 | 246.19 |  |
|  | 3 |  | 614.90 | 380.85 | 361.12 |  |
| 6 | 0 | 105.94 | 100.17 | 98.10 | 98.00 |  |
|  | 1 | 375.82 | 201.11 | 185.86 | 184.04 |  |
|  | 2 | 1907.00 | 323.40 | 302.14 | 288.97 |  |
|  | 3 |  | 818.49 | 437.80 | 414.30 |  |

TABLE 2.14
Non-dimensional frequency $A$ of a uniform thickness annular plate, clamped at the outer boundary, calculated using thin plate bending annular elements. $\quad v=0.3 \quad a / b=0.1$

| m | n | Number of elements |  |  |  | Exact(43) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 10.27 \\ & 51.68 \end{aligned}$ | $\begin{array}{r} 10.21 \\ 39.87 \\ 105.67 \\ 253.03 \end{array}$ | $\begin{array}{r} 10.17 \\ 39.65 \\ 91.27 \\ 166.21 \end{array}$ | $\begin{array}{r} 10.16 \\ 39.54 \\ 90.53 \\ 164.71 \end{array}$ | 10.16 39.49 90.38 |
| 1 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 22.64 \\ 126.95 \end{array}$ | $\begin{array}{r} 21.31 \\ 63.14 \\ 144.28 \\ 332.77 \end{array}$ | $\begin{array}{r} 21.21 \\ 60.39 \\ 119.30 \\ 197.84 \end{array}$ | $\begin{array}{r} 21.20 \\ 60.10 \\ 117.31 \\ 193.43 \end{array}$ | $\begin{aligned} & 21.15 \\ & 59.98 \end{aligned}$ |
| 2 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 45.15 \\ 283.22 \end{array}$ | $\begin{array}{r} 34.70 \\ 93.09 \\ 201.48 \\ 559.97 \end{array}$ | $\begin{array}{r} 34.56 \\ 83.84 \\ 153.20 \\ 256.34 \end{array}$ | $\begin{array}{r} 34.54 \\ 83.50 \\ 151.54 \\ 238.98 \end{array}$ | $\begin{aligned} & 34.53 \\ & 83.44 \end{aligned}$ |
| 3 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 83.44 \\ 514.65 \end{array}$ | $\begin{array}{r} 51.89 \\ 127.73 \\ 292.84 \\ 899.12 \end{array}$ | $\begin{array}{r} 51.05 \\ 111.49 \\ 191.92 \\ 316.16 \end{array}$ | $\begin{array}{r} 50.99 \\ 110.83 \\ 189.80 \\ 288.33 \end{array}$ | 51.06 |
| 4 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 134.84 \\ & 829.15 \end{aligned}$ | $\begin{array}{r} 72.30 \\ 165.91 \\ 425.51 \\ 1350.27 \end{array}$ | $\begin{array}{r} 69.77 \\ 141.00 \\ 236.25 \\ 373.64 \end{array}$ | $\begin{array}{r} 69.67 \\ 140.16 \\ 229.85 \\ 339.67 \end{array}$ |  |
| 5 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 199.05 \\ 1229.88 \end{array}$ | $\begin{array}{r} 95.89 \\ 212.79 \\ 594.00 \\ 1919.23 \end{array}$ | $\begin{array}{r} 90.95 \\ 173.04 \\ 284.83 \\ 432.54 \end{array}$ | $\begin{array}{r} 90.75 \\ 171.92 \\ 272.04 \\ 392.52 \end{array}$ |  |
| 6 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 276.34 \\ 1718.04 \end{array}$ | $\begin{array}{r} 122.80 \\ 270.79 \\ 796.02 \\ 2609.34 \end{array}$ | $\begin{aligned} & 114.58 \\ & 208.30 \\ & 336.24 \\ & 495.64 \end{aligned}$ | $\begin{aligned} & 114.24 \\ & 206.24 \\ & 316.84 \\ & 447.84 \end{aligned}$ |  |

TABLE 2.15
Non-dimensional_ frequency $\lambda$ of a uniform thickness annular plate, free at the outer boundary, calculated using thin plate bending annular elements. $v=0.3 \quad \mathrm{a} / \mathrm{b}=0.1$

| mi | n | Number of elements |  |  |  | Exact <br> (43) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1. | 2 | 4 | 8 |  |
| 0 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ |  | $\begin{array}{r} 8.83 \\ 35.44 \\ 89.89 \\ 112.25 \end{array}$ | $\begin{array}{r} 8.79 \\ 38.18 \\ 89.62 \\ 159.96 \end{array}$ | $\begin{array}{r} 8.78 \\ 38.24 \\ 89.11 \\ 163.01 \end{array}$ | $\begin{array}{r} 8.77 \\ 38.17 \end{array}$ |
| 1 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ |  | $\begin{array}{r} 20.50 \\ 61.02 \\ 133.17 \\ 175.70 \end{array}$ | $\begin{array}{r} 20.42 \\ 59.39 \\ 117.80 \\ 195.53 \end{array}$ | $\begin{array}{r} 20.41 \\ 59.11 \\ 116.22 \\ 192.25 \end{array}$ | $\begin{aligned} & 20.49 \\ & 58.99 \end{aligned}$ |
| 2 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 5.31 \\ 39.38 \\ 110.10 \\ 351.47 \end{array}$ | $\begin{array}{r} 5.31 \\ 34.99 \\ 89.63 \\ 183.34 \end{array}$ | $\begin{array}{r} 5.30 \\ 34.96 \\ 83.60 \\ 152.11 \end{array}$ | $\begin{array}{r} 5.30 \\ 34.93 \\ 83.30 \\ 151.04 \end{array}$ | $\begin{array}{r} 5.30 \\ 34.86 \end{array}$ |
| 3 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 12.49 \\ 61.62 \\ 152.80 \\ 611.61 \end{array}$ | $\begin{array}{r} 12.44 \\ 53.24 \\ 121.36 \\ 253.48 \end{array}$ | $\begin{array}{r} 12.44 \\ 53.03 \\ 112.28 \\ 191.11 \end{array}$ | $\begin{array}{r} 12.44 \\ 52.97 \\ 111.76 \\ 190.19 \end{array}$ | $\begin{aligned} & 12.44 \\ & 53.04 \end{aligned}$ |
| 4 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 21.98 \\ 83.26 \\ 218.44 \\ 965.55 \end{array}$ | $\begin{array}{r} 21.85 \\ 74.45 \\ 155.88 \\ 310.02 \end{array}$ | $\begin{array}{r} 21.84 \\ 73.65 \\ 142.95 \\ 235.42 \end{array}$ | $\begin{array}{r} 21.84 \\ 73.55 \\ 142.49 \\ 321.35 \end{array}$ |  |
| 5 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 33.69 \\ 106.91 \\ 305.23 \\ 1416.29 \end{array}$ | $\begin{array}{r} 33.52 \\ 98.36 \\ 196.83 \\ 345.78 \end{array}$ | $\begin{array}{r} 33.50 \\ 96.92 \\ 176.10 \\ 283.59 \end{array}$ | $\begin{array}{r} 33.50 \\ 96.77 \\ 175.86 \\ 274.83 \end{array}$ |  |
| 6 | 3 | $\begin{array}{r} 47.57 \\ 134.62 \\ 411.76 \\ 1965.22 \end{array}$ | $\begin{array}{r} 47.43 \\ 124.92 \\ 243.63 \\ 382.73 \end{array}$ | $\begin{array}{r} 47.40 \\ 122.78 \\ 212.30 \\ 334.17 \end{array}$ | $\begin{array}{r} 47.38 \\ 122.60 \\ 211.98 \\ 321.06 \end{array}$ |  |

TABLE 2.16
Non-dimensional frequency $\lambda$ of a uniform thickness annular plate, simply supported at the outer boundary, calculated using thin plate bending annular elements. $v=0.3 \quad \mathrm{a} / \mathrm{b}=0.5$

| m | n | Number of elements |  |  |  | Exact <br> (43) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | 0 1 2 3 | $\begin{array}{r} 5.09 \\ 74.42 \\ 274.06 \end{array}$ | $\begin{array}{r} 5.08 \\ 66.02 \\ 228.44 \\ 459.05 \end{array}$ | $\begin{array}{r} 5.08 \\ 65.88 \\ 204.83 \\ 427.62 \end{array}$ | $\begin{array}{r} 5.08 \\ 65.84 \\ 203.92 \\ 421.60 \end{array}$ | $\begin{array}{r} 5.07 \\ 65.76 \\ 203.23 \end{array}$ |
| 1 | 0 1 2 3 | $\begin{array}{r} 11.71 \\ 78.35 \\ 277.19 \end{array}$ | $\begin{array}{r} 11.62 \\ 70.12 \\ 231.35 \\ 460.64 \end{array}$ | $\begin{array}{r} 11.61 \\ 69.93 \\ 207.98 \\ 430.40 \end{array}$ | $\begin{array}{r} 11.61 \\ 69.89 \\ 207.05 \\ 424.37 \end{array}$ | $\begin{aligned} & 11.62 \\ & 69.89 \end{aligned}$ |
| 2 | 0 1 2 3 | $\begin{array}{r} 22.78 \\ 89.44 \\ 286.58 \end{array}$ | $\begin{array}{r} 22.40 \\ 81.57 \\ 239.98 \\ 465.36 \end{array}$ | $\begin{array}{r} 22.36 \\ 81.17 \\ 217.30 \\ 438.75 \end{array}$ | $\begin{array}{r} 22.36 \\ 81.11 \\ 216.30 \\ 432.63 \end{array}$ | $\begin{aligned} & 22.31 \\ & 81.13 \end{aligned}$ |
| 3 | 0 1 2 3 | $\begin{array}{r} 36.54 \\ 106.21 \\ 302.30 \end{array}$ | $\begin{array}{r} 35.70 \\ 98.69 \\ 254.09 \\ 473.10 \end{array}$ | $\begin{array}{r} 35.64 \\ 97.77 \\ 232.36 \\ 452.60 \end{array}$ | $\begin{array}{r} 35.64 \\ 97.66 \\ 231.23 \\ 446.25 \end{array}$ | 35.69 |
| 4 | 0 1 2 3 | $\begin{array}{r} 53.47 \\ 127.54 \\ 324.39 \end{array}$ | $\begin{array}{r} 52.10 \\ 120.24 \\ 273.35 \\ 483.74 \end{array}$ | $\begin{array}{r} 52.04 \\ 118.50 \\ 252.62 \\ 471.84 \end{array}$ | $\begin{array}{r} 52.03 \\ 118.34 \\ 251.27 \\ 465.02 \end{array}$ |  |
| 5 | 0 1 2 3 | $\begin{array}{r} 73.64 \\ 153.02 \\ 352.82 \end{array}$ | $\begin{array}{r} 71.70 \\ 145.84 \\ 297.38 \\ 497.26 \end{array}$ | $\begin{array}{r} 71.64 \\ 143.08 \\ 277.52 \\ 496.29 \end{array}$ | $\begin{array}{r} 71.64 \\ 142.87 \\ 275.89 \\ 488.67 \end{array}$ |  |
| 6 | 0 1 2 3 | $\begin{array}{r} 96.74 \\ 182.80 . \\ 387.69 \end{array}$ | $\begin{array}{r} 94.27 \\ \text { i } 75.51 \\ 325.87 \\ 513.25 \end{array}$ | $\begin{array}{r} 94.19 \\ 171.69 \\ 306.67 \\ 525.77 \end{array}$ | $\begin{array}{r} 94.18 \\ 171.44 \\ 304.74 \\ 516.93 \end{array}$ |  |

TABLE 2.17
Non-dimensional frequency $\lambda$ of a uniform thickness annular plate, clamped at the outer boundary, calculated using thin plate bending annular elements. $\mathrm{v}=0.3 \mathrm{a} / \mathrm{b}=0.5$

| m | n | Number of elements |  |  |  | Exact <br> (43) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | 0 | 17.76 | 17.24 | 17.72 | 17.72 | 17.68 |
|  | 1 | 131.10 | 93.68 | 93.94 | 93.85 | 93.85 |
|  | 2 |  | 289.62 | 253.96 | 252.34 | 252.80 |
|  | 3 |  | 736.51 | 495.48 | 490.03 |  |
| 1 | 0 | 22.21 | 22.05 | 22.02 | 22.02 | 21.98 |
|  | 1 | 135.43 | 97.19 | 97.48 | 97.38 | 97.32 |
|  | 2 |  | 292.39 | 256.85 | 255.21 |  |
|  | 3 |  | 739.88 | 498.04 | 492.64 |  |
| 2 | 0 | 33.04 | 32.22 | 32.12 | 32.12 | 32.05 |
|  | -1 | 148.12 | 107.35 | 107.63 | 107.50 | 107.56 |
|  | 2 |  | 300.69 | 265.44 | 263.72 |  |
|  | 3 |  | 750.00 | 505.72 | 500.45 |  |
| 3 | 0 | 48.17 | 45.99 | 45.83 | 45.81 | 45.77 |
|  | 1 | 168.39 | 123.29 | 123.27 | 123.07 |  |
|  | 2 |  | 314.38 | 279.52 | 277.63 |  |
|  | 3 |  | 766.86 | 518.54 | 513.37 |  |
| 4 | 0 | 67.49 | 63.24 | 63.04 | 63.02 |  |
|  | 1 | 195.41 | 144.11 | 143.36 | 143.07 |  |
|  | 2 |  | 333.30 | 298.73 | 296.58 |  |
|  | 3 |  | 790.50 | 536.49 | 531.27 |  |
| 5 | 0 | 91.22 | 84.04 | 83.84 | 83.82 |  |
|  | 1 | 228.61 | 169.35 | 167.45 | 167.06 |  |
|  | 2 |  | 357.37 | 322.67 | 320.15 |  |
|  | 3 |  | 820.76 | 559.54 | 553.95 |  |
| 6 | 0 | 119.40 | 108.21 | 107.99 | 107.96 |  |
|  | 1 | 267.79 | 198.88 | 195.61 | 195.14 |  |
|  | 2 |  | 386.26 | 350.98 | 348.03 |  |
|  | 3 |  | 858.16 | 587.64 | 581.22 |  |

TABLE 2.18
Non--dimensional frequency $\lambda$ of a uniform thickness annular plate, free at the outer boundary, calculated using thin plate bending annular elements, $v=0.3 \quad \mathrm{a} / \mathrm{b}=0.5$

| m | n | Number of elements |  |  |  | Exact <br> (43) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ |  | $\begin{array}{r} 9.32 \\ 85.79 \\ 280.03 \\ 330.95 \end{array}$ | $\begin{array}{r} 9.31 \\ 91.97 \\ 250.86 \\ 477.12 \end{array}$ | $\begin{array}{r} 9.31 \\ 92.29 \\ 249.53 \\ 486.46 \end{array}$ | $\begin{array}{r} 9.32 \\ 92.36 \end{array}$ |
| 1 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ |  | $\begin{array}{r} 17.17 \\ 95.92 \\ 273.85 \\ 597.97 \end{array}$ | $\begin{array}{r} 17.20 \\ 96.34 \\ 253.73 \\ 492.03 \end{array}$ | $\begin{array}{r} 17.20 \\ 96.27 \\ 252.74 \\ 490.07 \end{array}$ | $\begin{aligned} & 17.18 \\ & 96.33 \end{aligned}$ |
| 2 | 0 1 2 3 | $\begin{array}{r} 4.27 \\ 31.50 \\ 123.79 \\ 380.23 \end{array}$ | $\begin{array}{r} 4.27 \\ 31.21 \\ 107.80 \\ 294.55 \end{array}$ | $\begin{array}{r} 4.27 \\ 31.12 \\ 107.66 \\ 263.73 \end{array}$ | $\begin{array}{r} 4.27 \\ 31.12 \\ 107.52 \\ 262.30 \end{array}$ | $\begin{array}{r} 4.28 \\ 31.06 \end{array}$ |
| 3 | 0 1 2 3 | $\begin{array}{r} 11.43 \\ 48.40 \\ 141.73 \\ 394.27 \end{array}$ | $\begin{array}{r} 11.43 \\ 47.66 \\ 125.26 \\ 309.17 \end{array}$ | $\begin{array}{r} 11.43 \\ 47.48 \\ 124.87 \\ 279.35 \end{array}$ | $\begin{array}{r} 11.43 \\ 47.46 \\ 124.66 \\ 277.75 \end{array}$ | $\begin{aligned} & 11.43 \\ & 47.42 \end{aligned}$ |
| 4 | 0 1 2 3 | $\begin{array}{r} 21.08 \\ 68.40 \\ 164.96 \\ 414.03 \end{array}$ | $\begin{array}{r} 21.07 \\ 66.99 \\ 147.74 \\ 329.17 \end{array}$ | $\begin{array}{r} 21.07 \\ 66.75 \\ 146.75 \\ 300.40 \end{array}$ | $\begin{array}{r} 21.07 \\ 66.72 \\ 146.44 \\ 298.57 \end{array}$ |  |
| 5 | 0 1 2 3 | $\begin{array}{r} 33.00 \\ 91.96 \\ 192.72 \\ 439.56 \end{array}$ | $\begin{array}{r} 32.99 \\ 89.66 \\ 174.59 \\ 354.26 \end{array}$ | $\begin{array}{r} 32.98 \\ 89.41 \\ 172.68 \\ 326.35 \end{array}$ | $\begin{array}{r} 32.98 \\ 89.38 \\ 172.27 \\ 324.20 \end{array}$ |  |
| 6 | 0 1 2 3 | $\begin{array}{r} 47.10 \\ 119.19 \\ 224.70 \\ 471.07 \end{array}$ | $\begin{array}{r} 47.09 \\ 115.74 \\ 205.69 \\ 384.23 \end{array}$ | $\begin{array}{r} 47.07 \\ 115.52 \\ 202.61 \\ 356.73 \end{array}$ | $\begin{array}{r} 47.06 \\ 115.48 \\ 202.10 \\ 354.23 \end{array}$ |  |

TABLE 2.19
Non-dimensional frequency $\lambda$ of a free circular plate with parabolic thickness variation, modelled with parabolic thickness variation annular thin plate bending elements. $v=0.3 \mathrm{a} / \mathrm{b}=0.001$

| m | n | Number of elements |  |  |  | Exact (46) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |  | $\begin{array}{r} 9.55 \\ 20.16 \\ 42.07 \end{array}$ | $\begin{array}{r} 9.67 \\ 29.26 \\ 54.79 \end{array}$ | $\begin{array}{r} 9.67 \\ 29.80 \\ 57.79 \end{array}$ | $\begin{array}{r} 9.67 \\ 29.83 \\ 57.86 \end{array}$ |
| 1 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |  | $\begin{aligned} & 17.80 \\ & 42.27 \\ & 71.12 \end{aligned}$ | $\begin{aligned} & 17.80 \\ & 41.93 \\ & 74.99 \end{aligned}$ | $\begin{aligned} & 17.80 \\ & 41.86 \\ & 73.99 \end{aligned}$ | $\begin{aligned} & 17.80 \\ & 41.86 \\ & 73.88 \end{aligned}$ |
| 2 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 5.80 \\ 26.65 \\ 225.72 \end{array}$ | $\begin{array}{r} 5.80 \\ 25.98 \\ 55.78 \\ 125.83 \end{array}$ | $\begin{array}{r} 5.80 \\ 25.88 \\ 54.19 \\ 91.90 \end{array}$ | $\begin{array}{r} 5.80 \\ 25.88 \\ 53.91 \\ 90.17 \end{array}$ | $\begin{array}{r} 5.80 \\ 25.88 \\ 53.89 \\ 89.89 \end{array}$ |
| 3 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 10.04 \\ 44.97 \\ 537.80 \end{array}$ | $\begin{array}{r} 10.04 \\ 34.50 \\ 75.03 \\ 157.18 \end{array}$ | $\begin{array}{r} 10.04 \\ 33.98 \\ 66.60 \\ 109.24 \end{array}$ | $\begin{array}{r} 10.94 \\ 33.94 \\ 65.99 \\ 106.45 \end{array}$ | $\begin{array}{r} 10.04 \\ 33.94 \\ 65.92 \\ 105.91 \end{array}$ |
| 4 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 14.64 \\ 75.11 \\ 970.90 \end{array}$ | $\begin{array}{r} 14.26 \\ 42.72 \\ 95.23 \\ 220.04 \end{array}$ | $\begin{array}{r} 14.20 \\ 42.10 \\ 79.08 \\ 128.16 \end{array}$ | $\begin{array}{r} 14.20 \\ 42.00 \\ 78.09 \\ 122.85 \end{array}$ | $\begin{array}{r} 14.20 \\ 42.00 \\ 77.95 \\ 121.93 \end{array}$ |
| 5 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 20.60 \\ 115.48 \\ 1525.91 \end{array}$ | $\begin{array}{r} 18.50 \\ 52.04 \\ 115.19 \\ 314.87 \end{array}$ | $\begin{array}{r} 18.34 \\ 50.28 \\ 91.72 \\ 150.22 \end{array}$ | $\begin{array}{r} 18.33 \\ 50.08 \\ 90.25 \\ 139.36 \end{array}$ | $\begin{array}{r} 18.33 \\ 50.06 \\ 89.99 \\ 137.96 \end{array}$ |
| 6 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 28.17 \\ 165.45 \\ 2203.40 \end{array}$ | $\begin{array}{r} 22.70 \\ 62.57 \\ 138.97 \\ 436.97 \end{array}$ | $\begin{array}{r} 22.47 \\ 58.50 \\ 104.83 \\ 174.69 \end{array}$ | $\begin{array}{r} 22.45 \\ 58.15 \\ 102.47 \\ 155,99 \end{array}$ | $\begin{array}{r} 22.45 \\ 58.11 \\ 102.02 \\ 153.98 \end{array}$ |

TABLE 2.20
Non-dimensional frequency $\lambda$ of a free circular plate with parabolic thickness variation, modelled with linear thickness variation annular thin plate bending elements. $v=0.3 \quad \mathrm{a} / \mathrm{b}=0.001$

| m | n | Number of elements |  |  |  | Exact <br> (46) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 0 | 1 2 3 |  | $\begin{array}{r} 9.33 \\ 18.11 \\ 41.22 \end{array}$ | $\begin{array}{r} 9.66 \\ 28.94 \\ 53.07 \end{array}$ | $\begin{array}{r} 9.67 \\ 29.78 \\ 57.64 \end{array}$ | $\begin{array}{r} 9.67 \\ 29.83 \\ 57.86 \end{array}$ |
| 1 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |  | $\begin{aligned} & 16.98 \\ & 38.56 \\ & 67.72 \end{aligned}$ | $\begin{aligned} & 17.75 \\ & 41.26 \\ & 72.77 \end{aligned}$ | $\begin{aligned} & 17.80 \\ & 41.81 \\ & 73.69 \end{aligned}$ | $\begin{aligned} & 17.80 \\ & 41.86 \\ & 73.88 \end{aligned}$ |
| 2 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 4.73 \\ 19.32 \\ 24.55 \end{array}$ | $\begin{array}{r} 5.75 \\ 23.78 \\ 52.15 \\ 123.58 \end{array}$ | $\begin{array}{r} 5.79 \\ 25.71 \\ 52.88 \\ 89.30 \end{array}$ | $\begin{array}{r} 5.80 \\ 25.87 \\ 53.80 \\ 89.61 \end{array}$ | $\begin{array}{r} 5.80 \\ 25.88 \\ 53.89 \\ 89.89 \end{array}$ |
| 3 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 7.14 \\ 36.79 \\ 593.60 \end{array}$ | $\begin{array}{r} 9.84 \\ 30.99 \\ 71.1 .9 \\ 153.19 \end{array}$ | $\begin{array}{r} 10.03 \\ 33.56 \\ 64.61 \\ 106.77 \end{array}$ | $\begin{array}{r} 10.04 \\ 33.92 \\ 65.76 \\ 105.53 \end{array}$ | $\begin{array}{r} 10.04 \\ 33.94 \\ 65.92 \\ 105.91 \end{array}$ |
| 4 | 1 2 3 | $\begin{array}{r} 10.12 \\ 64.37 \\ 1074.67 \end{array}$ | $\begin{array}{r} 13.60 \\ 38.49 \\ 91.30 \\ 212.26 \end{array}$ | $\begin{array}{r} 14.17 \\ 41.30 \\ 76.54 \\ 125.85 \end{array}$ | $\begin{array}{r} 14.20 \\ 41.95 \\ 77.71 \\ 121.49 \end{array}$ | $\begin{array}{r} 14.20 \\ 42.00 \\ 77.95 \\ 121.93 \end{array}$ |
| 5 | 0 1 2 3 | $\begin{array}{r} 14.25 \\ 100.74 \\ 1690.57 \end{array}$ | $\begin{array}{r} 17.13 \\ 47.23 \\ 111.09 \\ 301.91 \end{array}$ | $\begin{array}{r} 18.25 \\ 48.97 \\ 88.89 \\ 147.86 \end{array}$ | $\begin{array}{r} 18.33 \\ 49.97 \\ 89.68 \\ 137.64 \end{array}$ | $\begin{array}{r} 18.33 \\ 50.06 \\ 89.99 \\ 137.96 \end{array}$ |
| 6 | 1 2 3 | $\begin{array}{r} 19.57 \\ 145.52 \\ 2442.14 \end{array}$ | $\begin{array}{r} 20.53 \\ 57.10 \\ 134.48 \\ 417.75 \end{array}$ | $\begin{array}{r} 22.29 \\ 56.64 \\ 101.92 \\ 172.16 \end{array}$ | $\begin{array}{r} 22.44 \\ 57.98 \\ 101.76 \\ 154.25 \end{array}$ | $\begin{array}{r} 22.45 \\ 58.11 \\ 102.02 \\ 153.98 \end{array}$ |

## TABLE 2.21

Comparision of non-dimensional frequency $\lambda$ for a uniform free plat calculated using sector elements (54), and thin plate bending annular elements. $\quad v=0.33$


Matrix $\left[k_{d}^{a}\right]$ of the thin plate bending annular element

| $\mathrm{m}^{2} \mathrm{~S}_{-1}$ | $\mathrm{~m}^{2} \mathrm{~S}_{0}$ | $\mathrm{~m}^{2} \mathrm{Sl}$ | $\mathrm{m}^{2} \mathrm{~S}_{2}$ |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{Rl}+\mathrm{m}^{2} \mathrm{~S}_{1}$ | $2 \mathrm{R}_{2}+\mathrm{m}^{2} \mathrm{~S}_{2}$ | $3 \mathrm{R}_{3}+\mathrm{m}^{2} \mathrm{~S}_{3}$ |
|  |  | $4 \mathrm{R}_{3}+\mathrm{m}^{2} \mathrm{~S}_{3}$ | $6 \mathrm{R}_{4}+\mathrm{m}^{2} \mathrm{~S}_{4}$ |
|  |  | $9 \mathrm{R}_{5}+\mathrm{m}^{2} \mathrm{~S}_{5}$ |  |

$R_{i}=C \pi \int_{r_{1}}^{r_{2}} r^{i} h_{i}(r) \sigma_{i}(r) d r ; \quad S_{i}=C \pi \int_{r_{1}}^{r_{2}} r^{L^{\prime} h}(r) \sigma_{r_{5}}(r) d r$

TABLE 2.23

Matrix $\left[\mathrm{k}_{\mathrm{d}}^{\mathrm{p}}\right]$ of the plane stress annular element

| $Q_{-1}$ | $(1+v) Q_{0}$ | $(1+2 v) Q_{1}$ | $(1+3 v) Q_{2}$ |
| :---: | :---: | :---: | :---: |
| Symmetrical |  |  |  |
|  | $2(1+v) Q_{1}$ | $3(1+v) Q_{2}$ | $4(1+v) Q_{3}$ |
|  |  | $(5+4 v) Q_{3}$ | $(7+5 v) Q_{4}$ |

$Q_{i}=\frac{2 \pi E}{1-v^{2}} \int_{r_{1}}^{r_{2}} h(r) r^{i} d r$

TABLE 2.24

Matrix $\left[k_{d}^{p}\right]$ of the plane stress circular element

| $2(1+v) Q_{1}$ | $3(1+v) Q_{2}$ | $4(1+v) Q_{3}$ |
| :---: | :---: | :---: |
|  | .$(5+4 v) Q_{3}$ | $(7+5 v) Q_{4}$ |
| Symmetrical |  | $(10+6 v) Q_{5}$ |

$Q_{i}=\frac{2 E}{1-v^{2}} \int_{0}^{r_{2}} h(r) r^{1} d r$

Radial stress coefficients $p=\left(\sigma_{r} / \rho \Omega^{2} b^{2}\right) \times 10^{4}$ for a
uniform annular disc rotating with constant angular velocity $\Omega$ $a / b=0.001 \quad v=0.3$

| $\mathrm{r} / \mathrm{b}$ | Number of elements |  |  |  |  | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 4 | 8 | 16 |  |
| 0.001 | 4428 | 4475 | 4536 | 4604 | 4652 | 0 |
| 0.063 |  |  |  |  | 4096 | 4107 |
| 0.126 |  |  |  | 4055 | 4058 | 4059 |
| 0.188 |  |  |  |  | 3978 | 3979 |
| 0.251 |  |  | 3864 | 3865 | 3866 | 3866 |
| 0.313 |  |  |  |  | 3720 | 3720 |
| 0.376 |  |  |  | 3543 | 3543 | 3543 |
| 0.438 |  |  |  |  | 3333 | 3333 |
| 0.501 |  | 3091 | 3091 | 3092 | 3092 | 3092 |
| 0.563 |  |  |  |  | 2818 | 2818 |
| 0.625 |  |  |  | 2512 | 2512 | 2512 |
| 0.688 |  |  |  |  | 2174 | 2174 |
| 0.750 |  |  | 1803 | 1803 | 1803 | 1803 |
| 0.813 |  |  |  |  | 1401 | 1401 |
| 0,875 |  |  |  | 966 | 966 | 966 |
| 0.938 |  |  |  |  | 499 | 499 |
| 1.000 | -1 | 0 | 0 | 0 | 0 | 0 |

Tangential stress coefficients $q=\left(\frac{q}{\xi} / \rho \Omega^{2} b^{2}\right) \times 10^{4}$ for a uniform annular disc rotating with constant angular velocity $\Omega$ $a / b=0.001 \quad v=0.3$

| $r / b$ | Number of elements |  |  |  |  | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 4 | 8 | 16 |  |
| 0.001 | 5153 | 5332 | 5594 | 5960 | 6473 | 8250 |
| 0.063 |  |  |  |  | 4114 | 4116 |
| 0.126 |  |  |  | 4087 | 4087 | 4088 |
| 0.188 |  |  |  |  | 4041 | 4041 |
| 0.251 |  |  | 3975 | 3976 | 3976 | 3976 |
| 0.313 |  |  |  |  | 3892 | 3892 |
| 0.376 |  |  |  | 3790 | 3790 | 3790 |
| 0.438 |  |  |  |  | 3669 | 3669 |
| 0.501 |  | 3530 | 3530 | 3530 | 3530 | 3530 |
| 0.563 |  |  |  |  | 3372 | 3372 |
| 0.625 |  |  |  | 3196 | 3196 | 3196 |
| 0.688 |  |  |  |  | 3001 | 3001 |
| 0.750 |  |  | 2788 | 2788 | 2788 | 2788 |
| 0.813 |  |  |  |  | 2556 | 2556 |
| 0.875 |  |  |  | 2306 | 2306 | 2306 |
| 0.938 |  |  |  |  | 2037 | 2037 |
| 1.000 | 1750 | 1750 | 1750 | 1750 | 1750 | 1750 |

TABLE 2.27

Radial stress coefficients $p=\left(\sigma_{r} / \rho \Omega^{2} b^{2}\right) \times 10^{4}$ for $a$ uniform, annular disc rotating with constant angular velocity $\Omega$ $a / b=0.2 \quad v=0.3$

| r/b | Number of elements, |  |  |  |  | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 4 | 8 | 16 |  |
| 0.20 | 2023 | 965 | 316 | 77 | 15 | 0 |
| 0.25 |  |  |  |  | 1391 | 1392 |
| 0.30 |  |  |  | 2074 | 2084 | 2085 |
| 0.35 |  |  |  |  | 2437 | 2438 |
| 0.40 |  |  | 2555 | 2593 | 2598 | 2599 |
| 0.45 |  |  |  |  | 2640 | 2640 |
| 0.50 |  |  |  | 2594 | 2599 | 2599 |
| 0.55 |  |  |  |  | 2497 | 2497 |
| 0.60 |  | 2247 | 2335 | 2346 | 2347 | 2347 |
| 0.65 |  |  |  |  | 2157 | 2157 |
| 0.70 |  |  |  | 1932 | 1932 | 1932 |
| 0.75 |  |  |  |  | 1676 | 1676 |
| 0.80 |  |  | 1392 | 1392 | 1392 | 1392 |
| 0.85 |  |  |  |  | 1081 | 1081 |
| 0.90 |  |  |  | 745 | 745 | 745 |
| 0.95 |  |  |  |  | 384 | 384 |
| 1.00 | -314 | -41 | -2 | 0 | 0 | 0 |

TABLE 2.28
Tangential stress coefficients $q=\left(\sigma_{\xi}\left(\rho \Omega^{2} b^{2}\right) \times 10^{4}\right.$ for a uniform annular disc rotating with constant angular velocity 』 $a / b=0.2 v=0.3$

| $\mathrm{r} / \mathrm{b}$ | Number of elements |  |  |  |  | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 4 | 8 | 16 |  |
| 0.20 | 8736 | 8579 | 8413 | 8343 | 8324 | 8320 |
| 0.25 |  |  |  |  | 6781 | 6782 |
| 0.30 |  |  |  | 5907 | 5909 | 5910 |
| 0.35 |  |  |  |  | 5346 | 5346 |
| 0.40 |  |  | 4931 | 4940 | 4941 | 4941 |
| 0.45 |  |  |  |  | 4624 | 4624 |
| 0.50 |  |  |  | 4356 | 4356 | 4356 |
| 0.55 |  |  |  |  | 4117 | 4117 |
| 0.60 |  | 3869 | 3890 | 3893 | 3893 | 3893 |
| 0.65 |  |  |  |  | 3677 | 3677 |
| 0.70 |  |  |  | 3463 | 3463 | 3463 |
| 0.75 |  |  |  |  | 3247 | 3247 |
| 0.80 |  |  | 3027 | 3028 | 3028 | 3028 |
| 0.85 |  |  |  |  | 2802 | 2802 |
| 0.90 |  |  |  | 2570 | 2570 | 2570 |
| 0.95 |  |  |  |  | 2329 | 2329 |
| 1.00 | 1978 | 2066 | 2079 | 2680 | 2080 | 2080 |

TABLE 2.29
Radial stress coefficients $p=\left(\sigma_{r} / \rho \Omega^{2} b^{2}\right) \times 10^{4}$ for an annular disc with hyperbolic radial thickness variation rotating with constant angular velocity $\Omega$. $a / b=0.2 \quad \mathrm{v}=0.3$

| r/b | Number of elements |  |  |  |  | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 4 | 8 | 16 |  |
| 0.20 | 1105 | 507 | 167 | 41 | 8 | 0 |
| 0.25 |  |  |  |  | 883 | 880 |
| 0.30 |  |  |  | 1427 | 1423 | 1420 |
| 0.35 |  |  |  |  | 1771 | 1767 |
| 0.40 |  |  | 2003 | 1999 | 1992 | 1988 |
| 0.45 |  |  |  |  | 2121 | 2117 |
| 0.50 |  |  |  | 2184 | 2176 | 2173 |
| 0.55 |  |  |  |  | 2169 | 2166 |
| 0.60 |  | 2107 | 2127 | 2113 | 2107 | 2105 |
| 0.65 |  |  |  |  | 1995 | 1993 |
| 0.70 |  |  |  | 1840 | 1836 | 1834 |
| 0.75 |  |  |  |  | 1632 | 1631 |
| 0.80 |  |  | 1398 | 1389 | 1386 | 1385 |
| 0.85 |  |  |  |  | 1099 | 1098 |
| 0.90 |  |  |  | 773 | 772 | 771 |
| 0.95 |  |  |  |  | 405 | 405 |
| 1.00 | -220 | -26 | 1 | 0 | 0 | 0 |

TABLE 2.30
Tangential stress coefficients $q=\left(\frac{\xi}{\xi} / \rho \Omega^{2} b^{2}\right) \times 10^{4}$ for an annular disc with hyperbolic radial thickness variation rotating with constant angular velocity $\Omega$. $a / b=0.2 \mathrm{v}=0.3$

| r/b | Number of elements |  |  |  |  | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 4 | 8 | 16 |  |
| 0.20 | 5783 | 4979 | 4912 | 4951 | 4974 | 4985 |
| 0.25 |  |  |  |  | 4070 | 4079 |
| 0.30 |  |  |  | 3582 | 3602 | 3609 |
| 0.35 |  |  |  |  | 3334 | 3340 |
| 0.40 |  |  | 3103 | 3150 | 3164 | 3169 |
| 0.45 |  |  |  |  | 3043 | 3047 |
| 0.50 |  |  |  | 2934 | 2944 | 2948 |
| 0.55 |  |  |  |  | 2853 | 2856 |
| 0.60 |  | 2638 | 2724 | 2751. | 2759 | 2761 |
| 0.65 |  |  |  |  | 2657 | 2659 |
| 0.70 |  |  |  | 2537 | 2543 | 2546 |
| 0.75 |  |  |  |  | 2416 | 2418 |
| 0.80 |  |  | 2248 | 2266 | 2272 | 2274 |
| 0.85 |  |  |  |  | 2111 | 2113 |
| 0.90 |  |  |  | 1927 | 1932 | 1934 |
| 0.95 |  |  |  |  | 1735 | 1737 |
| 1.00 | 1403 | 1449 | 1499 | 1514 | 1519 | 1520 |

TABLE 2.31

Radial stress coefficients $p=\left\{\sigma_{r} / E \alpha^{*} T(b)\right\} \times .0^{4}$ for $a$ uniform annular disc with linear temperature gradient. $a / b=0.001 \quad v=0.3$

| $\mathrm{r} / \mathrm{b}$ | Number of elements |  |  |  |  | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 4 | 8 | 16 |  |
| 0.001 | 3575 | 3612 | 3662 | 3717 | 3755 | 0 |
| 0.063 |  |  |  |  | 3112 | 3121 |
| 0.126 |  |  |  | 2910 | 2912 | 2914 |
| 0,188 |  |  |  |  | 2705 | 2706 |
| 0.251 |  |  | 2496 | 2497 | 2497 | 2498 |
| 0.313 |  |  |  |  | 2289 | 2289 |
| 0.376 |  |  |  | 2081 | 2081 | 2081 |
| 0.438 |  |  |  |  | 1873 | 1873 |
| 0.501 |  | 1664 | 3.665 | 1665 | 1665 | 1665 |
| 0.563 |  |  |  |  | 1457 | 1457 |
| 0.625 |  |  |  | 1249 | 1249 | 1249 |
| 0.688 |  |  |  |  | 1041 | 1041 |
| 0.750 |  |  | 833 | 833 | 833 | 833 |
| 0.813 |  |  |  |  | 624 | 624 |
| 0.875 |  |  |  | 416 | 416 | 416 |
| 0.938 |  |  |  |  | 208 | 208 |
| 1.000 | -1 | 0 | 0 | 0 | 0 | 0 |

TABLE 2.32

Tangential stress coefficients $q=\left\{\sigma_{\xi} / E \alpha^{*} T(b)\right\} \times 10^{4}$ for a uniform annular disc with linear temperature gradient. $\mathrm{a} / \mathrm{b}=0.001 \mathrm{v}=0.3$

| r/b | Number of elements |  |  |  |  | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 4 | 8 | 16 |  |
| 0.001 | 4157 | 4301 | 4512 | 4808 | 5222 | 6657 |
| 0.063 |  |  |  |  | 2909 | 2911 |
| 0.126 |  |  |  | 2494 | 2494 | 2494 |
| 0.188 |  |  |  |  | 2078 | 2078 |
| 0.251 |  |  | 1661 | 1662 | 1662 | 1662 |
| 0.313 |  |  |  |  | 1245 | 1245 |
| 0.376 |  |  |  | 829 | 829 | 829 |
| 0.438 |  |  |  |  | 413 | 412 |
| 0.501 |  | -4 | -3 | -3 | -3 | -3 |
| 0.563 |  |  |  |  | -420 | -420 |
| 0.625 |  |  |  | -836 | -836 | -836 |
| 0.688 |  |  |  |  | -1252 | -1252 |
| 0.750 |  |  | -1668 | -1668 | -1668 | -1668 |
| 0.813 |  |  |  |  | -2085 | -2085 |
| 0.875 |  |  |  | -2501 | -2501 | -2501 |
| 0.938 |  |  |  |  | -2917 | -2917 |
| 1.000 | -3334 | -3333 | -3333 | -3333 | -3333 | -3333 |

TABLE 2.33
Radial stress coefficients $p=\left\{\sigma_{r} / E \alpha^{*} T(b)\right) \times 10^{4}$ for $a$ uniform annular disc with linar temperature gradient. $a / b=0.2 \quad v=0.3$

| $\mathrm{r} / \mathrm{b}$ | Number of elements |  |  |  |  | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 4 | 8 | 16 |  |
| 0.02 | 1362 | 650 | 213 | 52 | 10 | 0 |
| 0.25 |  |  |  |  | 832 | 833 |
| 0.30 |  |  |  | 1202 | 1209 | 1210 |
| 0.35 |  |  |  |  | 1370 | 1371 |
| 0.40 |  |  | 1387 | 1413 | 1416 | 1417 |
| 0.45 |  |  |  |  | 1396 | 1396 |
| 0.50 |  |  |  | 1332 | 1333 | 1333 |
| 0.55 |  |  |  |  | 1244 | 1244 |
| 0.60 |  | 1069 | 1128 | 1135 | 1136 | 1136 |
| 0.65 |  |  |  |  | 1015 | 1015 |
| 0.70 |  |  |  | 884 | 884 | 884 |
| 0.75 |  |  |  |  | 747 | 747 |
| 0.80 |  |  | 602 | 604 | 604 | 604 |
| 0.85 |  |  |  |  | 457 | 457 |
| 0.90 |  |  |  | 307 | 307 | 307 |
| 0.95 |  |  |  |  | 155 | 155 |
| 1.00 | -212 | -28 | -1 | 0 | 0 | 0 |

TABLE 2.34
Tangential stress coefficients $q=\left\{\sigma_{\xi} / E \alpha * T(b)\right) \times 10^{4}$ for a uniform annular disc with linear temperature gradient. $a / b=0.2 \quad v=0.3$

| $\mathrm{a} / \mathrm{b}$ | Number of elements |  |  |  |  | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 4 | 8 | 16 |  |
| 0.20 | 5169 | 5063 | 4951 | 4904 | 4892 | 4889 |
| 0.25 |  |  |  |  | 3555 | 3556 |
| 0.30 |  |  |  | 2677 | 2679 | 2679 |
| 0.35 |  |  |  |  | 2018 | 2818 |
| 0.40 |  |  | 1466 | 1471 | 1472 | 1472 |
| 0.45 |  |  |  |  | 993 | 993 |
| 0.50 |  |  |  | 555 | 556 | 556 |
| 0.55 |  |  |  |  | 145 | 145 |
| 0.60 |  | -263 | -249 | -247 | -247 | -247 |
| 0.65 |  |  |  |  | -626 | -626 |
| 0.70 |  |  |  | -996 | -996 | -996 |
| 0.75 |  |  |  |  | -1358 | -1358 |
| 0.80 |  |  | -1716 | -171.5 | -1715 | -1715 |
| 0.85 |  |  |  |  | -2068 | -2068 |
| 0.90 |  |  |  | -2418 | -2418 | -2418 |
| 0.95 |  |  |  |  | -2766 | -2766 |
| 1.00 | -3180 | -3120 | -3112 | -3111 | -3111 | -3111 |

TABLE 2.35
Frequency coefficients $\lambda$ for a centrally clamped circular membrane disc when stresses calculated using finite elements are used at the nodes of the finite element model and linear variations of stresses are taken within the elements. $\quad v=0.3 \quad \mathrm{a} / \mathrm{b}=0.001$

| m | n | Number of elements |  |  |  | Exact <br> (48) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 1 | 0 | 0.8624 | 0.9799 | 0.9977 | 0.9999 | 1.00 |
|  | 1 | 4.188 | 5.343 | 5.799 | 5.917 | 5.95 |
|  | 2 |  | 13.340 | 13.779 | 14.076 | 14.20 |
|  | 3 |  | 29.685 | 25.370 | 25.514 | 25.75 |
| 2 | 0 | 1.941 | 2.197 | 2.310 | 2.340 | 2.35 |
|  | 1 | 7.098 | 7.885 | 8.574 | 8.848 | 8.95 |
|  | 2 |  | 17.498 | 18.061 | 18.561 | 18.85 |
|  | 3 |  | 37.994 | 31.284 | 31.554 | 32.05 |
| 3 | 0 | 3.391 | 3.752 | 3.969 | 4.030 | 4.05 |
|  | 1 | 12.294 | 10.880 | 11.750 | 12.144 | 12.30 |
|  | 2 |  | 23.219 | 22.290 | 23.466 | 23.85 |
|  | 3 |  | 54.763 | 38.116 | 38.123 | 38.70 |

TABLE 2.36
Frequency coefficients $\lambda$ for a centrally clamped circular membrane disc when exact stresses are used at the nodes of the finite element model and linear variations of stresses are taken within the elements. $v=0.3 \quad a / b=0.001$

| m | n | Number of elements |  |  |  | Exact <br> (48) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |
| 1 | 0 | 0.791 | 0.963 | 0.992 | 0.998 | 1.00 |
|  | 1 | 3.843 | 5.261 | 5.763 | 5.905 | 5.95 |
|  | 2 |  | 13.185 | 13.680 | 14.038 | 14.20 |
|  | 3 |  | 29.281 | 25.175 | 25.429 | 25.75 |
| 2 | 0 | 1.803 | 2.188 | 2.309 | 2.340 | 2.35 |
|  | 1 | 6.317 | 7.796 | 8.564 | 8.848 | 8.95 |
|  | 2 |  | 17.148 | 18.012 | 18.556 | 18.85 |
|  | 3 |  | 36.493 | 31.125 | 31.538 | 32.05 |
| 3 | 0 | 3,187 | 3.750 | 3.969 | 4.030 | 4.05 |
|  | 1 | 10,742 | 10.837 | 11.750 | 12.144 | 12.30 |
|  | 2 |  | 22.883 | 22.891 | 23.466 | 23.85 |
|  | 3 |  | 51,045 | 38.068 | 38.122 | 38.70 |

TABLE 2.37

Frequencies in Hz . of a rotating annular disc, calculated using 8 thin plate bending annular elements, and the variation with speed of rotation.
$a / b=0.5, b=8.0 \mathrm{in},. \mathrm{~h}=0.04 \mathrm{in},. \mathrm{E}=30 \times 10^{6} \mathrm{psi}$,
$\rho \mathrm{g}=0.283 \mathrm{Lb} / \mathrm{in}^{3}, \mathrm{v}=0.3$

| m | n | Speed of rotation in rpm. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1000 | 2000 | 3000 | 4000 |
| 0 | 0 1 2 3 | $\begin{array}{r} 79 \\ 515 \\ 1477 \\ 2917 \end{array}$ | $\begin{array}{r} 81 \\ 517 \\ 1479 \\ 2919 \end{array}$ | $\begin{array}{r} 86 \\ 522 \\ 1483 \\ 2923 \end{array}$ | $\begin{array}{r} 93 \\ 530 \\ 1491 \\ 2931 \end{array}$ | $\begin{array}{r} 103 \\ 541 \\ 1502 \\ 2942 \end{array}$ |
| 1 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 81 \\ 525 \\ 1488 \\ 2928 \end{array}$ | $\begin{array}{r} 83 \\ 527 \\ 1489 \\ 2930 \end{array}$ | $\begin{array}{r} 91 \\ 533 \\ 1494 \\ 2934 \end{array}$ | $\begin{array}{r} 102 \\ 542 \\ 1502 \\ 2942 \end{array}$ | $\begin{array}{r} 116 \\ 555 \\ 1514 \\ 2953 \end{array}$ |
| 2 | 0 1 2 3 | $\begin{array}{r} 89 \\ 556 \\ 1519 \\ 2961 \end{array}$ | $\begin{array}{r} 94 \\ 558 \\ 1521 \\ 2963 \end{array}$ | $\begin{array}{r} 108 \\ 566 \\ 1527 \\ 2968 \end{array}$ | $\begin{array}{r} 127 \\ 578 \\ 1537 \\ 2977 \end{array}$ | $\begin{array}{r} 150 \\ 594 \\ 1550 \\ 2989 \end{array}$ |
| 3 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 112 \\ 607 \\ 1573 \\ 3016 \end{array}$ | $\begin{array}{r} 119 \\ 610 \\ 1575 \\ 3018 \end{array}$ | $\begin{array}{r} 140 \\ 620 \\ 1582 \\ 3024 \end{array}$ | $\begin{array}{r} 168 \\ 636 \\ 1594 \\ 3034 \end{array}$ | $\begin{array}{r} 200 \\ 659 \\ 1610 \\ 3048 \end{array}$ |
| 4 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 155 \\ 679 \\ 1648 \\ 3094 \end{array}$ | $\begin{array}{r} 164 \\ 683 \\ 1651 \\ 3096 \end{array}$ | $\begin{array}{r} 188 \\ 696 \\ 1660 \\ 3103 \end{array}$ | $\begin{array}{r} 222 \\ 717 \\ 1674 \\ 3115 \end{array}$ | $\begin{array}{r} 263 \\ 746 \\ 1694 \\ 3131 \end{array}$ |
| 5 | 0 1 2 3 | $\begin{array}{r} 216 \\ 772 \\ 1746 \\ 3194 \end{array}$ | $\begin{array}{r} 226 \\ 777 \\ 1750 \\ 3197 \end{array}$ | $\begin{array}{r} 252 \\ 793 \\ 1760 \\ 3205 \end{array}$ | $\begin{array}{r} 291 \\ 819 \\ 1778 \\ 3218 \end{array}$ | $\begin{array}{r} 338 \\ 854 \\ 1802 \\ 3237 \end{array}$ |

## TABLE 2.38

Frequencies in Hz . of a uniform annular disc rotating with 3000 rpm, calculated using thin plate bending annular elements.
$a / b=0.5, b=8.0$ in., $h=0.04$ in., $E=30 \times 10^{6} \mathrm{psi}$, $\rho g=0.283 \mathrm{Ib} / \mathrm{in}^{3}, v=0.3$.

| m | n | Number of elements |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 4 | 8 |
| 0 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 91 \\ 535 \\ 1844 \\ 5500 \end{array}$ | $\begin{array}{r} 93 \\ 530 \\ 1502 \\ 2976 \end{array}$ | $\begin{array}{r} 93 \\ 530 \\ 1491 \\ 2931 \end{array}$ |
| 1 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 100 \\ 548 \\ 1854 \\ 5508 \end{array}$ | $\begin{array}{r} 102 \\ 542 \\ 1514 \\ 2987 \end{array}$ | $\begin{array}{r} 102 \\ 542 \\ 1502 \\ 2942 \end{array}$ |
| 2 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 126 \\ 584 \\ 1883 \\ 5533 \end{array}$ | $\begin{array}{r} 127 \\ 578 \\ 1548 \\ 3021 \end{array}$ | $\begin{array}{r} 127 \\ 578 \\ 1537 \\ 2977 \end{array}$ |
| 3 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 167 \\ 643 \\ 1933 \\ 5573 \end{array}$ | $\begin{array}{r} 167 \\ 637 \\ 1605 \\ 3078 \end{array}$ | $\begin{array}{r} 168 \\ 636 \\ 1594 \\ 3034 \end{array}$ |
| 4 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 222 \\ 723 \\ 2003 \\ 5630 \end{array}$ | $\begin{array}{r} 222 \\ 718 \\ 1686 \\ 3158 \end{array}$ | $\begin{array}{r} 222 \\ 717 \\ 1674 \\ 3115 \end{array}$ |
| 5 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 291 \\ 825 \\ 2093 \\ 5703 \end{array}$ | $\begin{array}{r} 291 \\ 820 \\ 1790 \\ 3261 \end{array}$ | $\begin{array}{r} 291 \\ 819 \\ 1778 \\ 3218 \end{array}$ |

tiable 2.39
Matrices $\left[k_{d}^{1}\right]$ and $\left[k_{d}^{2}\right]$ of the Thick Disc Element-l

| ${ }^{P}-2^{m^{2}(2-v)}$ | $\mathrm{P}_{-1} \mathrm{Im}^{2}$ | $\mathrm{P}_{-2} \mathrm{~m}^{\left(\mathrm{m}^{2}-v+1\right)}$ | ${ }^{P}{ }_{-1} \mathrm{~m}^{3}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{P}_{-1}\left(\mathrm{~m}^{2}-1\right)$ | $\begin{gathered} P_{0}\left(m^{2}+\mathrm{m}^{2} v\right. \\ -v-1) \end{gathered}$ | ${ }^{P}-1^{m\left(m^{2}-1\right)}$ | $\mathrm{P}_{0} \mathrm{~m}\left(\mathrm{~m}^{2}-1\right)$ |
| $\mathrm{P}_{0}\left(\mathrm{~m}^{2} v-2 v-2\right)$ | $\begin{gathered} P_{1} 2\left(\mathrm{~m}^{2} v\right. \\ -2 v-2) \end{gathered}$ | $\mathrm{P}_{0} \mathrm{~m}\left(\mathrm{~m}^{2}-v-3\right)$ | $\mathrm{P}_{1} \mathrm{~m}\left(\mathrm{~m}^{2}-2 v-2\right)$ |
| $\begin{gathered} P_{1}\left(2 \mathrm{~m}^{2} v-\mathrm{m}^{2}\right. \\ -6 v-3) \end{gathered}$ | $\begin{gathered} \mathrm{P}_{2}\left(3 \mathrm{~m}^{2} v-\mathrm{m}^{2}\right. \\ -9 v-9) \end{gathered}$ | $\mathrm{P}_{1} \mathrm{~m}\left(\mathrm{~m}^{2}-5-4 v\right)$ | $\mathrm{P}_{2} \mathrm{~m}\left(\mathrm{~m}^{2}-6 \nu-3\right)$ |
| $\begin{gathered} \mathrm{P}_{-1} \frac{1}{2}\left(\mathrm{~m}^{2}-\mathrm{m}^{2} \nu\right. \\ +2)+\mathrm{Q}_{1} \end{gathered}$ | $\begin{gathered} \mathrm{P}_{0} \frac{1}{2}\left(\mathrm{~m}^{2}-\mathrm{m}^{2} \nu\right. \\ +\nu+1)+Q_{2} \end{gathered}$ | $\mathrm{P}_{-1} \frac{1}{2}^{\mathrm{m}}(3-\nu)$ | ${ }^{P} 0^{m}$ |
| Symnetrical | $\begin{aligned} & P_{1} \frac{1}{2}\left(m^{2}-m^{2} v\right. \\ & +4 v+4)+Q_{3} \end{aligned}$ | $\mathrm{P}_{0} \frac{1}{2} \frac{\mathrm{~m}}{}(3+\nu)$ | $\mathrm{P}_{1} \mathrm{~m}(1+\nu)$ |
|  |  | $\begin{gathered} P_{-1} \frac{1}{2}\left(2 m^{2}+1\right. \\ -\nu)+Q_{1} \end{gathered}$ | $\mathrm{P}_{0} \mathrm{II}^{2}+\mathrm{Q}_{2}$ |
|  |  |  | $\mathrm{P}_{1} \mathrm{~m}^{2}+\mathrm{Q}_{3}$ |

$P_{1}=C \frac{E}{12\left(1-v^{2}\right)} \int_{r_{1}}^{r_{2}} h^{3}(r) r^{i} d r ; \quad Q_{1}=C \pi K^{2} G \int_{r_{1}}^{r_{2}} h(r) r^{i} d r$

TABLE 2.40

Matrix $\left[\mathbf{m}_{\mathrm{d}}^{\mathbf{1}}\right]$ of the Thick Disc Element-1


$$
P_{i}=C \pi \frac{\rho}{12} \int_{r_{1}}^{r_{2}} h^{3}(r) r^{i} d r
$$

TABLE 2.41
Matrix $\left[\mathbf{k}_{\mathbf{d}}^{\mathbf{s}}\right]$ of the Thick Disc Element-2

| $Q_{-1} \mathrm{~m}^{2}$ | $Q^{\text {m }}$ | $Q_{1} \mathrm{~m}^{2}$ | $Q_{2} \mathrm{~m}^{2}$ |
| :---: | :---: | :---: | :---: |
|  | $Q_{1}\left(1+\mathrm{m}^{2}\right)$ | $Q_{2}\left(2+m^{2}\right)$ | $Q_{3}\left(3+m^{2}\right)$ |
| $\mathrm{Q}=\mathrm{C} \mathrm{\pi} \mathrm{\kappa}^{2} \int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}} \mathrm{~h}(\mathrm{r}) \mathrm{r}^{\mathrm{i} d r}$ |  | $Q_{3}\left(4+m^{2}\right)$ | $Q_{4}\left(6+m^{2}\right)$ |
|  |  |  | $Q_{5}\left(9+\mathrm{m}^{2}\right)$ |

'TABLE 2.42
Matrix $\left[\mathbf{m}_{\mathbf{d}}^{\mathbf{s}}\right]$ of the Thick Disc Element-2

| $P_{-1} m^{2}$ | $P_{0} m^{2}$ | $P_{1} m^{2}$ | $P_{2} m^{2}$ |
| :---: | :---: | :---: | :---: |
|  | $P_{1}\left(1+m^{2}\right)$ | $P_{2}\left(2+m^{2}\right)$ | $P_{3}\left(3+m^{2}\right)$ |
| $P_{i}=C \pi \frac{p}{12} \int_{2} h^{3}(r) r^{i} d r$ | $P_{3}\left(4+m^{2}\right)$ | $P_{4}\left(6+m^{2}\right)$ |  |

TABLE 2.43

Frequencies in Hz . of a uniform circular plate calculated using Thick Disc Element-l. $\mathrm{a} / \mathrm{b}=0.001 ; \mathrm{b}=37.5 \mathrm{~mm} ; \mathrm{h}=5 \mathrm{~mm} ; \mathrm{E}=22,000 \mathrm{~kg} / \mathrm{mm} 2$; $\rho=7.85$ and $v=0.3$.

| m | n | Number of Elements |  |  |  | Exact* | Thin plate soln. | Experimental. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |  |  |
| 0 | 1 | 6766 | 7837 | 7943 | 7950 | 7949 | 8213 | 7767 |
|  | 2 | 23421 | 30540 | 31222 | 31297 | 31278 | 34848 | 30698 |
|  | 3 | 153450 | 63350 | 65651 | 64310 | 64141 | 79593 |  |
| 1 | 1 | 15050 | 16875 | 17419 | 17440 | 17408 | 18603 | 17012 |
|  | 2 | 55174 | 45134 | 46786 | 46417 | 46246 | 54169 |  |
|  | 3 | 332367 | 97409 | 89537 | 82941 | 82183 | 107708 |  |
| 2 | 0 | 4781 | 4774 | 4765 | 4754 | 4742 | 4754 | 4620 |
|  | 1 | 37746 | 29627 | 28883 | 28797 | 28714 | 32202 | 28117 |
|  | 2 | 119687 | 73842 | 63216 | 62101 | 61901 | 76731 |  |
| 3 | 0 | 11100 | 10855 | 10823 | 10784 | 10738 | 11105 | 10505 |
|  | 1 | 50683 | 43797 | 41635 | 41438 | 41265 | 48046 |  |
|  | 2 | 202583 | 96747 | 80979 | 78333 | 77973 | 101476 |  |

* Calculated using Mindlin's plate theory.

TABLS 2.44

Frequencies in Hz . of a uniform circular plate calculated using Thick Disc Element-2. $a / b=0.001 ; b=37.5 \mathrm{~mm} ; \mathrm{h}=5 \mathrm{~mm} ; \mathrm{E}=22,000 \mathrm{~kg} / \mathrm{mm} 2$; $\rho=7.85$ and $v=0.3$.

| m | n | Number of Elements |  |  |  | Exact* | Thin plate soln. | Experimental |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 4 | 8 |  |  |  |
| 0 |  | 6594 | 7423 | 7948 | 7955 | 7949 | 8213 | 7767 |
|  | $2 '$ | 10341 | 13289 | 29948 | 31297 | 31278 | 34848 | 30698 |
|  |  |  |  | 52618 | 60020 | 64141 | 79593 |  |
| 1 | 1 | 15414 | 16905 | 17457 | 17481 | 17408 | 18603 | 17012 |
|  | 2 | 53869 | 42678 | 46300 | 46387 | 46246 | 54169 |  |
|  | 3 | 321156 | 93328 | 82498 | 82519 | 82183 | 107708 |  |
| 2 | 0 | 4787 | 4785 | 4784 | 4784 | 4742 | 4754 | 4620 |
|  | 1 | 39835 | 29050 | 29011 | 28986 | 28714 | 32202 | 28117 |
|  | 2 | 142438 | 68329 | 62535 | 62276 | 61901 | 76731 |  |
| 3 | 0 | 11139 | 10898 | 10890 | 10889 | 10738 | 11105 | 10505 |
|  | 1 | 52104 | 42738 | 41883 | 41830 | 41265 | 48046 |  |
|  | 2 | 274801 | 87648 | 78990 | 78687 | 77973 | 101476 |  |

* Calculated using Mindlin's plate theory.

TABLE 2.45

The fundamental frequency ( $m=2, n=0$ ) in Hz . of thick uniform plates and rings calculated using Thick Disc Element-l. $\mathrm{E}=30 \times 10^{6} \mathrm{psi} \quad \mathrm{pg}=0.283 \quad \mathrm{v}=0.3$

|  | Dimensions (in) |  |  | Number of Elements |  | Experi- | a | b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0.0 *$ | 6.4375 | 3.5 | 3606 | 3542 | 3524 | 3516 | 3450 |
| Disc | $0.0 *$ | 9.375 | 3.5 | 1862 | 1845 | 1836 | 1831 | 1880 |
| Disc | $0.0 *$ | 5.1875 | 3.5 | 5162 | 5032 | 5009 | 4999 | 5100 |
| Ring | 5.375 | 6.4375 | 3.5 | 1315 | 1303 | 1292 | 1289 | 1350 |
| Ring | 5.375 | 6.4375 | 1.5 | 924 | 923 | 915 | 913 | 920 |
| Ring | 8.3125 | 9.375 | 3.5 | 635 | 632 | 629 | 628 | 640 |
| Ring | 8.3125 | 9.375 | 2.5 | 570 | 568 | 564 | 563 | 575 |

* Small value assumed so that $a / b=0.001$

TABLE 2.46

The fundamental frequency ( $m=2, n=0$ ) in Hz. of thick uniform plates and rings calculated using Thick Disc Element-Z.
e = 30 x 106 psi
$p g=0.283$
$v=0.3$

|  | Dimensions (in) |  |  | Number of Elements |  |  | Experi-- <br> mental |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | a | b | h | 1 | 2 | 4 | 8 |  |
|  | $0.0^{*}$ | 6.4375 | 3.5 | 3630 | 3627 | 3627 | 3627 | 3450 |
| Disc | $0.0^{*}$ | 9.375 | 3.5 | 1872 | 1871 | 1871 | 1871 | 1880 |
| Disc | $0.0^{*}$ | 5.1875 | 3.5 | 5191 | 5188 | 5188 | 5188 | 5100 |
| Ring | 5.375 | 6.4375 | 3.5 | 2237 | 2237 | 2237 | 2237 | 1350 |
| Ring | 5.375 | 6.4375 | 1.5 | 1071 | 1071 | 1071 | 1071 | 920 |
| Ring | 8.3125 | 9.375 | 3.5 | 1075 | 1075 | 1075 | 1075 | 640 |
| Ring | 8.3125 | 9.375 | 2.5 | 793 | 793 | 793 | 793 | 575 |

* Small value assumed so that $a / b=0.001$

TABLE 2.47

Frequencies in Hz . of rings calculatedusing Thick Disc Element-2. $\mathrm{E}=30 \times 106 \mathrm{psi} \quad \rho g=0.283 \quad \mathrm{v}=0.3$


[^5]TABLE 2.48

Frequencies in Hz . of stepped discs. $\mathrm{E}=30 \times 10^{6} \mathrm{psi} \quad \rho g=0.283 \quad \mathrm{v}=0.3$

| m | n | h | Finite <br> Element* | Experimental |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 2.5 | 3093 | 3030 |
| 2 | 0 | 1.5 | 2416 | 2310 |
| 2 | 0 | 0.75 | 1668 | 1600 |

* Five Thick Disc Element-l used.

$$
\text { TABLE } 2.49
$$

Thickness of the turbine disc at various radii.

| Radius <br> (in) | $h$ <br> (in) | | | | | | |
|---|---|---|---|---|---|---|---|
| 7.50 | 1.025 | 6.08 | 0.625 | 4.53 | 0.910 | 2.80 | 1.200 |
| 7.39 | 1.025 | 5.89 | 0.650 | 4.33 | 0.945 | 2.38 | 1.395 |
| 7.25 | 0.790 | 5.70 | 0.680 | 4.12 | $\mathbf{0 . 9 8 0}$ | 2.11 | 1.700 |
| 7.10 | 0.590 | 5.50 | 0.725 | 3.89 | 1.020 | 1.80 | 2.180 |
| 6.95 | 0.480 | 5.30 | 0.770 | 3.66 | 1.050 | 1.38 | 2.220 |
| 6.72 | 0.474 | 5.08 | 0.805 | 3.43 | 1.095 | 0.90 | 2.650 |
| 6.45 | 0.550 | 4.92 | 0.840 | 3.20 | 1.140 |  |  |
| 6.26 | 0.590 | 4.72 | 0.875 | 3.00 | 1.170 |  |  |

TABLE 2.50

Frequencies in Hz . of an actual turbine disc, calculated using thin plate bending annular elements and Thick Disc Element-l.
$E=31.2 \times 106$ psi $\quad \rho g=0.281 \quad v=0.3$

| m | n | Eight thin plate elements | $\begin{aligned} & \text { Number of } \\ & \text { Thick Disc Element-1 } \end{aligned}$ |  |  | Experimental | Percent- * age error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 4 | 6 | 8 |  |  |
| 0 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |  | $\begin{array}{r} 1737 \\ 5590 \\ 11521 \end{array}$ | $\begin{array}{r} 1696 \\ 5585 \\ 11340 \end{array}$ | $\begin{array}{r} 1707 \\ 5618 \\ 11401 \end{array}$ | $\begin{aligned} & 1590 \\ & 5240 \end{aligned}$ | $\begin{aligned} & 7.35 \\ & 7.20 \end{aligned}$ |
| 1 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |  | $\begin{array}{r} 2962 \\ 7714 \\ 14708 \end{array}$ | $\begin{array}{r} 2899 \\ 7710 \\ 14022 \end{array}$ | $\begin{array}{r} 2894 \\ 7632 \\ 13810 \end{array}$ | 2685 | 7.80 |
| 2 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 1177 \\ 5323 \\ 12485 \\ 22565 \end{array}$ | $\begin{array}{r} 1135 \\ 4835 \\ 10471 \\ 18510 \end{array}$ | $\begin{array}{r} 1109 \\ 4749 \\ 10292 \\ 16960 \end{array}$ | $\begin{array}{r} 1114 \\ 4761 \\ 10294 \\ 16927 \end{array}$ | $\begin{aligned} & 1048 \\ & 4392 \end{aligned}$ | $\begin{aligned} & 6.30 \\ & 8.30 \end{aligned}$ |
| 3 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 1805 \\ 7315 \\ 16174 \\ 27903 \end{array}$ | $\begin{array}{r} 1746 \\ 6529 \\ 13205 \\ 23220 \end{array}$ | $\begin{array}{r} 1702 \\ 6389 \\ 12889 \\ 20229 \end{array}$ | $\begin{array}{r} 1711 \\ 6431 \\ 12976 \\ 20307 \end{array}$ | $\begin{aligned} & 1625 \\ & 5926 \end{aligned}$ | $\begin{aligned} & 5.30 \\ & 8.50 \end{aligned}$ |
| 4 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 2668 \\ 9436 \\ 19480 \\ 32542 \end{array}$ | $\begin{array}{r} 2534 \\ 8260 \\ 15923 \\ 26677 \end{array}$ | $\begin{array}{r} 2478 \\ 8089 \\ 15214 \\ 23136 \end{array}$ | $\begin{array}{r} 2482 \\ 8112 \\ 15279 \\ 23264 \end{array}$ | 2357 | 5.30 |
| 5 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 377 \mathrm{~s} \\ 11880 \\ 23001 \\ 37197 \end{array}$ | $\begin{array}{r} 3503 \\ 10121 \\ 18830 \\ 30170 \end{array}$ | $\begin{array}{r} 3436 \\ 9947 \\ 17585 \\ 26055 \end{array}$ | $\begin{array}{r} 3440 \\ 9960 \\ 17618 \\ 26135 \end{array}$ | 3256 | 5.65 |
| 6 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 5118 \\ 14608 \\ 26805 \\ 42203 \end{array}$ | $\begin{array}{r} 4627 \\ 12100 \\ 21797 \\ 34094 \end{array}$ | $\begin{array}{r} 4552 \\ 11919 \\ 20026 \\ 29067 \end{array}$ | $\begin{array}{r} 4556 \\ 11931 \\ 20047 \\ 29100 \end{array}$ | 4298 | 6.00 |
| 7 | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{array}{r} 6683 \\ 17561 \\ 30847 \\ 47610 \end{array}$ | $\begin{array}{r} 5886 \\ 14196 \\ 24737 \\ 38428 \end{array}$ | $\begin{array}{r} 5805 \\ 13971 \\ 22534 \\ 32141 \end{array}$ | $\begin{array}{r} 5810 \\ 13984 \\ 22553 \\ 32151 \end{array}$ | 5460 | 6.40 |

* Error in eight element solution.

TABLE 3.1

Bending stiffness and inertia matrices of a beam element when linear variations in $I$ and $A$ are assumed within the element.


Subscripts 1 and 2 refer to values at node 1 and node 2 of the element respectively.

TABLE 3.2

Torsional stiffness and inertia matrices of a beam element when
linear variations in $K G$ and $J$ are assumed within the element.


Subscripts 1 and 2 refer to values at node 1 and node 2 of the element respectively.

Additional bending stiffness matrix, resulting from uniform rotation $\Omega$, for a uniform beam element for bending in the plane of rotation.


Additional bending stiffness matrix, resulting from uniform rotation $\Omega$, for a uniform beam element for bending out of the plane of rotation.


## TABLE 3.5

Additional stiffness matrix resulting from uniform rotation $\Omega$ for a uniform beam element in torsion.

$\alpha=\frac{\rho J}{2 \ell}\left(\sigma_{1}+\sigma_{2}\right)$
$\beta=-\frac{\rho \Omega^{2} \ell}{6}\left(I \max ^{-1} \min ^{\prime}\right) \cos 26$
$\sigma_{1}=$ stress at node 1 of the element
$\sigma_{2}=$ stress at node 2 of the element

TABLE 3.6

Stiffness and inertia matrices of an uniform Timoshenko beam element of length $\ell$ in Sending.



Frequency coefficients $\lambda$, for the first mode of vibration of a rotating beam for vibration out of plane of rotation, calculated using four beam finite elements.

| R/L | $\Omega^{*}$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0.1 | 0.2 | 0.5 | 1 | 2 | 5 | 10 | 20 | 50 | 100 |
| 0.00 | 3.516 | 3.518 | 3.523 | 3.557 | 3.678 | 4.126 | 6.407 | 11.12 | 21.00 | 51.09 | 101.6 |
| 0.02 | 3.516 | 3.518 | 3.523 | 3.559 | 3.683 | 4.141 | 6.467 | 11.26 | 21.28 | 51.83 | 103.1 |
| 0.05 | 3.516 | 3.518 | 3.523 | 3.560 | 3.689 | 4.164 | 6.556 | 11.36 | 21.70 | 52.91 | 105.3 |
| 0.10 | 3.516 | 3.518 | 3.524 | 3.563 | 3.700 | 4.201 | 6.701 | 11.78 | 22.39 | 54.67 | 108.8 |
| 0.20 | 3.516 | 3.518 | 3.525 | 3.569 | 3.721 | 4.275 | 6.982 | 12.41 | 23.69 | 58.03 | 115.6 |
| 0.50 | 3.516 | 3.519 | 3.527 | 3.585 | 3.784 | 4.489 | 7.764 | 14.12 | 27.23 | 67.04 | 133.7 |
| 1.00 | 3.516 | 3.520 | 3.532 | 3.612 | 3.886 | 4.824 | 8.913 | 16.57 | 32.26 | 79.78 | 159.3 |
| 2.00 | 3.516 | 3.522 | 3.541 | 3.666 | 4.083 | 5.432 | 10.84 | 20.61 | 40.46 | 100.5 | 200.7 |
| 5.00 | 3.516 | 3.529 | 3.567 | 3.823 | 4.622 | 6.936 | 15.20 | 29.55 | 58.51 | 145.8 | 291.4 |

Frequency coefficients $\lambda$, for the second mode of vibration of a rotatfng beam for vibration out of plane of rotation, calculated using four beam finite elements.

| R/L | $\Omega^{\text {\% }}$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0.1 | 0.2 | 0.5 | 1 | 2 | 5 | 10 | 20 | 50 | 100 |
| 0.00 | 22.06 | 22.06 | 22.07 | 22.10 | 22.20 | 22.62 | 25.39 | 23.41 | 54.57 | 125.4 | 246.6 |
| 0.02 | 22.06 | 22.06 | 22.07 | 22.10 | 22.21 | 22.64 | 25.47 | 23.66 | 55.17 | 127.0 | 249.8 |
| 0.05 | 22.06 | 22.06 | 22.07 | 22.10 | 22.21 | 22.66 | 25.60 | 34.04 | 56.07 | 129.3 | 254.6 |
| 0.10 | 22.06 | 22.06 | 22.07 | 22.10 | 22.22 | 22.70 | 25.81 | 34.66 | 57.52 | 133.2 | 262.3 |
| 0.20 | 22.06 | 22.06 | 22.07 | 22.11 | 22.24 | 22.78 | 26.22 | 35.86 | 60.32 | 140.5 | 277.1 |
| 0.50 | 22.06 | 22.06 | 22.07 | 22.12 | 22.30 | 23.00 | 27.42 | 39.23 | 67.97 | 160.4 | 317.1 |
| 1.00 | 22.06 | 22.06 | 22.07 | 22.15 | 22.40 | 23.38 | 29.31 | 44.24 | 78.99 | 188.8 | 374.1 |
| 2.00 | 22.06 | 22.07 | 22.08 | 22.19 | 22.59 | 24.10 | 32.73 | 52.75 | 97.19 | 235.3 | 467.5 |
| 5.00 | 22.06 | 22.07 | 22.11 | 22.34 | 23.16 | 26.16 | 41.24 | 72.23 | 137.7 | 338.0 | 673.6 |

$\stackrel{0}{3}$

| 9901 | 8．2ヵ5 | て｢โદ | 9＊0EI | 55.58 | LS．99 | I $\varepsilon$ • $\varepsilon 9$ | 0ザて9 | てでて9 | 6I＇z9 | 8โ•29 | $00 \cdot 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0゙ワワー | 7＊て8を | て・89］ | ¢．LOT | カを・カレ | $0 \varepsilon \cdot 79$ | TL＊29 | IE29 | 0で29 | 8T「て9 | 8T•29 | $00^{\circ} \mathrm{z}$ |
| て．86s | $5 \cdot 60 \varepsilon$ | ［•075 | 9ع． 68 | ZT•0L | zs．と9 | 2s．29 | $92 \cdot 29$ | 6T＇29 | 8T＇29 | 8L＇29 | 00．${ }^{\text {T }}$ |
| 0＇605 | 6•792 | $\varepsilon \cdot \varepsilon \tau I$ | 9サ・て8 | 68． 19 | $\varepsilon[` ¢ 9$ | で・て9 | サて「で | 6T： 29 | 8T＊ 29 | 8T「29 | 0s． 0 |
| エ・9クワ | 9・をย乙 | L．IIT | 96.14 | 25．99 | $68 \cdot 29$ | $9 \varepsilon \cdot 29$ | てでて9 | 8T「29 | 8L＇ 29 | 8T＇ 29 | Oz．0 |
| $0 \cdot \varepsilon$ ¢ヶ | さ・てzて | s．LOT | $6 \varepsilon^{\circ} 9 \mathrm{~L}$ | 50．99 | ［8．79 | カを「て9 | てて・て9 | $8 \mathrm{~T} \cdot 29$ | 8t•29 | 8T＇29 | OT： 0 |
| COTH | 0.912 | $\varepsilon \cdot S 0 \tau$ | $65 \cdot 5 L$ | ［8．59 | LL＇29 | を¢＇て9 | T2＇29 | 8I＇29 | 8T＊ 29 | 81＊29 | 50.0 |
| て・80力 | $\varepsilon \cdot \tau \tau Z$ | $0 \cdot 70 \tau$ | IT．SL | L9．59 | S L 279 | こと・て9 | Lz＇29 | 8T＊ 29 | 8T＇29 | 81＇29 | 20．0 |
| ［．86\％ | 8．602 | I• ¢OI | $8 L^{\circ}+7$ | 85．¢9 | $\varepsilon L \cdot \tau 9$ | I $\chi^{\prime} 79$ | ［ $7 \times 79$ | 81＊29 | 81＊ 29 | 8T＇79 | 00．0 |
| 001 | 05 | 02 | OT | S | z | I | $5 \cdot 0$ | で0 | ［．0 | 0 | 7／4 |
| ＊${ }^{2}$ |  |  |  |  |  |  |  |  |  |  |  |




Frequency coefficients $\lambda$, for the first mode of vibration of a rotating beam for vibration in the plane of rotation, calculated using four beam finite elements.

| $\mathrm{R} / \mathrm{L}$ | 0 | 0.1 | 0.2 | 0.5 | 1 | 2 | 5 | 10 | 20 | 50 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 3.516 | 3.516 | 3.517 | 3.522 | 3.540 | 3.609 | 4.006 | 4.863 | 6.396 | 10.48 | 17.87 |
| 0.02 | 3.516 | 3.516 | 3.517 | 3.523 | 3.544 | 13.626 | 4.101 | 5.165 | 7.279 | 13.64 | 24.99 |
| 0.05 | 3.516 | 3.517 | 3.518 | 3.525 | 3.551 | 3.652 | 4.240 | 5.588 | 8.432 | 17.32 | 32.89 |
| 0.10 | 3.516 | 3.517 | 3.518 | 3.528 | 3.563 | 3.694 | 4.461 | 6.229 | 10.06 | 22.12 | 42.92 |
| 0.20 | 3.516 | 3.517 | 3.519 | 3.533 | 3.584 | 3.778 | 4.874 | 7.344 | 12.71 | 29.45 | 57.94 |
| 0.50 | 3.516 | 3.518 | 3.522 | 3.550 | 3.649 | 4.019 | 5.940 | 9.963 | 18.48 | 44.66 | 88.74 |
| 1.00 | 3.516 | 3.519 | 3.526 | 3.577 | 3.755 | 4.390 | 7.378 | 13.21 | 25.31 | 62.16 | 123.9 |
| 2.00 | 3.516 | 3.521 | 3.535 | 3.632 | 3.958 | 5.050 | 9.621 | 18.02 | 35.17 | 87.13 | 174.0 |
| 5.00 | 3.516 | 3.528 | 3.562 | 3.590 | 4.512 | 6.641 | 14.36 | 27.80 | 54.99 | 136.9 | 273.7 |

Frequency coefficients $\lambda$, for the second mode of vibration of a rotating beam for vibration in the plane of rotation, calculated using four beam finite elements.

| R/L | $\Omega *$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0.1 | 0.2 | 0.5 | 1 | 2 | 5 | 10 | 20 | 50 | 100 |
| 0.00 | 22.06 | 22.06 | 22.07 | 22.09 | 22.18 | 22.54 | 24.89 | 31.88 | 50.77 | 115.0 | 225.4 |
| 0.02 | 22.06 | 22.06 | 22.07 | 22.09 | 22.18 | 22.55 | 24.97 | 32.15 | 51.42 | 116.7 | 229.0 |
| 0.05 | 22.06 | 22.06 | 22.07 | 22.09 | 22.19 | 22.58 | 25.10 | 32.54 | 52.38 | 119.3 | 234.1 |
| 0.10 | 22.06 | 22.06 | 22.07 | 22.10 | 22.20 | 22.61 | 25.32 | 33.19 | 53.93 | 123.4 | 242.5 |
| 0.20 | 22.06 | 22.06 | 22.07 | 22.10 | 22.22 | 22.69 | 25.74 | 34.44 | 56.91 | 131.3 | 258.4 |
| 0.50 | 22.06 | 22.06 | 22.07 | 22.11 | 22.28 | 22.92 | 26.96 | 37.94 | 64.96 | 152.4 | 300.9 |
| 1.00 | 22.06 | 22.06 | 22.07 | 22.14 | 22.37 | 23.29. | 28.88 | 43.10 | 76.42 | 182.0 | 360.5 |
| 2.00 | 22.06 | 22.06 | 22.08 | 22.19 | 22.57 | 24.02 | 32.35 | 51.80 | 95.11 | 229.9 | 456.7 |
| 5.00 | 22.06 | 22.07 | 22.10 | 22.33 | 23.13 | 26.08 | 40.94 | 71.54 | 136.3 | 334.3 | 666.1 |

Frequency coefficients $\lambda$, for the third mode of vibration of a rotating beam for vibration in the plane of rotation, calculated using four beam finite elements.

| R/L | $\Omega *$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0.1 | 0.2 | 0.5 | 1 | 2 | 5 | 10 | 20 | 50 | 100 |
| 0.00 | 62.18 | 62.18 | 62.18 | 62.21 | 62.31 | 62.70 | 65.39 | 74.11 | 101.2 | 203.7 | 385.4 |
| 0.02 | 62.18 | 62.18 | 62.18 | 62.21 | 62.31 | 62.72 | 65.48 | 74.44 | 102.1 | 206.3 | 390.6 |
| 0.05 | 62.18 | 62.18 | 62.18 | 62.21 | 62.32 | 62.74 | 65.62 | 74.93 | 103.4 | 210.1 | 398.4 |
| 0.10 | $62.18{ }^{\prime}$ | 62.18 | 62.18 | 62.21 | 62.33 | 62.78 | 65.86 | 75.74 | 105.6 | 216.4 | 410.9 |
| 0.20 | 62.18 | 62.18 | 62.18 | 62.22 | 62.35 | 62.86 | 66.33 | 77.32 | 109.9 | 228.2 | $434.8 i$ |
| 0.50 | 62.18 | 62.18 | 62.18 | 62.23 | 62.41 | 63.10 | 67.71 | 81.85 | 121.6 | 260.2 | 499.01 |
| 1.00 | 62.18 | 62.18 | 62.19 | 62.26 | 62.51 | 63.49 | 69.94 | 88.80 | 138.7 | 305.5 | 589.8i |
| 2.00 | 62.18 | 62.18 | 62.20 | 62.31 | 62.71 | 64.27 | 74.17 | 10.1.0 | 167.0 | 379.1 | 737.3i |
| 5.00 | 62.18 | 62.19 | 62.22 | 62.46 | 63.30 | 66.54 | 85.41 | 130.2 | 230.3 | 540.5 | 1061 |

Frequency coefficients $\lambda$ for a vibrating simply supported Timoshenko beam, calculated using the present method.

| N | 1 | 2 | 3 | 4 | 5 | 6 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode No. | Number of degrees of freedom |  |  |  |  |  |  | 4 |

TABLE 3.14

Frequency coefficients $\lambda$ for a vibrating cantilevered Timoshenko beam calculated using the present method.

| $N$ | 1 | 2 | 3 | 4 | 5 | 6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode No. | 3 | 6 | 9 | 12 | 15 | 18 | (128) |
|  | Number of degrees of freedom |  |  |  |  |  |  |
| $\mathbf{1}$ | 3.304 | 3.286 | 3.284 | 3.284 | 3.284 | 3.284 | 3.284 |
| $\mathbf{2}$ | 21.590 | 16.009 | 15.567 | 15.512 | 15.498 | 15.494 | 15.488 |
| $\mathbf{3}$ | 65.361 | 40.490 | 36.650 | 34.821 | 34.482 | 34.382 | 34.301 |
| 4 |  | 82.112 | 59.845 | 57.934 | 55.036 | 54.219 | 53.652 |

TABLE 3.15

Frequency coefficients $\lambda$ for a simply supported Timoshenko beam.

| N |  | 1 | 2 | 4 | Exact <br> (128) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mode No. | Number of degrees of freedom |  |  |  |
|  |  | 4 | 8 | 16 |  |
|  | 1 | 9.45 | 8.672 | 8.646 | 8.645 |
|  | 2 | 30.843 | 28.577 | 27.021 | 26.960 |
|  | 3 |  | 52.198 | 48.041 | 47.680 |
|  | 4 |  | 74.236 | 70.871 | 68.726 |
| N |  | 1 | 2 | 4 | Exact <br> (128) |
|  | Mode No. | Number of degrees of freedom |  |  |  |
|  |  | 2 | 4 | 8 |  |
|  | 1 | 10.620 | 8.831 | 8.688 | 8.645 |
|  | 2 | 48.583 | 39.098 | 28.218 | 26.960 |
|  | 3 |  | 77.010 | 54.073 | 47.680 |
|  | 4 |  | 93.897 | 85.271 | 68.726 |

Frequency coefficients $\lambda$ for a cantilevered Timoshenko beam.

| N |  | 1 | 2 | 4 | $\begin{aligned} & \text { Exact } \\ & \text { (128) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mode No. | Number of degrees of freedom |  |  |  |
|  |  | 4 | 8 | 16 |  |
|  | 1 | 3.297 | 3.285 | 3.284 | 3.284 |
|  | 2 | 19.432 | 15.577 | 15.498 | 15.488 |
|  | 3 |  | 37.005 | 34.403 | 34.301 |
|  | 4 |  | 61.644 | 54.003 | 53.652 |
| N |  | 1 | 2 | 4 | $\begin{aligned} & \text { Exact } \\ & (128) \end{aligned}$ |
|  |  | Number of degrees of freedom |  |  |  |
|  | Mode No. | 2 | 4 | 8 |  |
|  | 1 | 3.322 | 3.294 | 3.286 | 3.284 |
|  | 2 | 26.569 | 16.147 | 15.712 | 15.488 |
|  | 3 |  | 54.494 | 36.515 | 34.301 |
|  | 4 |  | 86.711 | 59.842 | 53.652 |

TABLE'3.17

Frequency coefficients A for retwisted cantilever blades.

| $\frac{d_{b}}{b_{b}}$ | $\delta *$ | n | Number of Elements |  |  |  | Ref. <br> (85) | Ref. <br> (82) | Ref. <br> (84) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2 | 3 | 4 | 5 |  |  |  |
| 2 | $30^{\circ}$ |  |  |  |  |  |  |  |  |
|  |  | 1 | 1.8767 | 1.8770 | 1.8771 | 1.8772 | 1.8774 | 1.87 |  |
|  |  | 2 | 2.6459 | 2.6413 | 2.6398 | 2.6391 | 2.6379 | 2.63 |  |
|  |  | 3 | 4.7325 | 4.7231 | 4.7223 | 4.7230 | 4.7281 | 4.73 |  |
|  |  | 4 | 6.5668 | 6.5806 | 6.5667 | 6.5501 | 6.5535 | 6.55 |  |
| 2 | $60 "$ | 1 | 1.8798 | 1.8822 | 1.8830 | 1.8834 | 1.8843 | 1.88 |  |
|  |  | 2 | 2.6282 | 2.6118 | 2.6065 | 2.6041 | 2.6004 | 2.57 |  |
|  |  | 3 | 4.7868 | 4.7836 | 4.7947 | 4.8017 | 4.8210 | 4.82 |  |
|  |  | 4 | 6.3333 | 6.4186 | 6.3885 | 6.3739 | 6.3587 | 6.35 |  |
| 2 | $90^{\circ}$ | 1 | 1.8841 | 1.8903 | 1.8923 | 1.8932 | 1.8957 | 1.89 |  |
|  |  | 2 | 2.6046 | 2.5698 | 2.5592 | 2.5546 | 2.5485 | 2.54 |  |
|  |  | 3 | 4.8736 | 4.8753 | 4.9040 | 4.9199 | 4.9591 | 4.95 |  |
|  |  | 4 | 6.0617 | 6.2273 | 6.1754 | 6.1543 | 6.1397 | 6.12 |  |
| 4 | 30" | 1 | 1.8769 | 1.8774 | 1.8776 | 1.8777 | 1.8781 |  | 1.87 |
|  |  | 2 | 3.6961 | 3.6566 | 3.6424 | 3.6358 | 3.6245 |  | 3.62 |
|  |  | 3 | 4.7691 | 4.8069 | 4.8282 | 4.8401 | 4.8672 |  | 4.90 |
|  |  | 4 | 8.1375 | 7.7646 | 7.7162 | 7.6912 | 7.6802 |  | 7.70 |
| 8 | $30 "$ | 1 | 1.8770 | 1.8775 | 1.8777 | 1.8779 | 1.8777 |  | 1.87 |
|  |  | 2 | 4.5688 | 4.4123 | 4.3616 | 4.3390 | 4.3066 |  | 4.26 |
|  |  | 3 | 5.3353 | 5.5446 | 5.6404 | 5.6893 | 5.7855 |  | 5.76 |
|  |  | 4 | 8.5350 | 7.8317 | 7.7798 | 7.7583 | 7.7827 |  | 7.75 |
| 16 | 301 | 1 | 1.8770 | 1.8776 | 1.8778 | 1.8779 | 1.8772 | 1.88 |  |
|  |  | 2 | 4.6465 | 4.5229 | 4.4779 | 4.4573 | 4.4432 | 4.42 |  |
|  |  | 3 | 6.7043 | 7.1723 | 7.4609 | 7.5523 | 7.5752 | 7.53 |  |
|  |  | 4 | 19.3475 | 7.9112 | 7.7894 | 7.8206 | 8.2287 | 8.22 |  |

† Results obtained using fivepretwisted beam elements.

* $\delta$ is the total pretwist angle in this case.

Functions $A_{1}$ to $A_{12}$

$$
\begin{array}{ll}
A_{1}(x)=\frac{m}{r} J_{m}(x)-k J_{m+1}(x) & c_{1}=\frac{m(m-1)(1-v)}{r^{2}}-k^{2} \\
A_{2}(x)=\frac{m}{r} Y_{m}(x)-k Y_{m+1}(x) & c_{2}=\frac{m(m-1)(I-v)}{r^{2}}+k^{2} \\
A_{3}(x)=\frac{m}{r} I_{m}(x)+k I_{m+1}(x) & c_{3}=\frac{k(1-v)}{r} \\
A_{4}(x)=\frac{m}{r} K m(x)-k K_{m+1}(x) & c_{4}=\frac{-m k^{2} r^{2}+(1-v)(1-m) m^{2}}{r^{3}} \\
A_{5}(x)=c_{1} J_{m}(x)+c_{2} J_{m+1}(x) & c_{5}=\frac{k^{3} r^{3}+k r(1-v) m^{2}}{r^{3}} \\
A_{6}(x)=c_{1} Y_{m}(x)+c_{3} Y_{m+1}(x) & c_{6}=\frac{m^{2} r^{2}+(1-v)(1-m) m^{2}}{r^{3}} \\
A_{7}(x)=c_{2} I_{m}(x)-c_{3} I_{m+1}(x) & c_{7}=\frac{k^{3} r^{3}-k r(1-v) m^{2}}{r^{3}} \\
A_{8}(x)=c_{2} K m(x)+r_{3} K_{m+1}(x) & \\
A_{9}(x)=c_{4} J_{m}(x)+c_{5} J_{m+1}(x) & \\
A_{10}(x)=c_{4} Y_{m}(x)+c_{5} Y_{m+1}(x) & \\
A_{11}(x)=c_{6} I_{m}(x)+c_{7} I_{m+1}(x) & \\
A_{12}(x)=c_{6} K_{m}(x)-c_{7} K_{m+1}(x) &
\end{array}
$$

TABLE 4.2

Matrix [D]

$-\frac{D}{\Delta_{m}} |$| $P_{1} A_{9}(k b)-Q_{1} A_{10}(k b)$ | $P_{1} A_{5}(k b)-Q_{1} A_{6}(k b)$ |
| ---: | ---: |
| $+R_{1} A_{11}(k b)-S_{1} A_{12}(k b)$ | $+R_{1} A_{7}(k b)-S_{1} A_{8}(k b)$ |
| $\begin{array}{ll}\text { Symmetrical }\end{array}$ | $\begin{array}{r}P_{2} A_{5}(k b)-Q_{2} A_{6}(k b) \\ +R_{2} A_{7}(k b)-S_{2} A_{8}(k b)\end{array}$ |

$$
\begin{aligned}
& F_{I}=\left|\begin{array}{lll}
Y_{m}(k a) & I_{m}(k a) & K_{m}(k a) \\
A_{2}(k a) & A_{3}(k a) & A_{4}(k a) \\
A_{2}(k b) & A_{3}(k b) & A_{4}(k b)
\end{array}\right| Q_{1}=\left|\begin{array}{lll}
J_{m}(k a) & I_{m}(k a) & K_{m}(k a) \\
A_{1}(k a) & A_{3}(k a) & A_{4}(k a) \\
A_{1}(k b) & A_{3}(k b) & A_{4}(k b)
\end{array}\right| \\
& R_{1}=\left|\begin{array}{lll}
J_{m}(k a) & Y_{m}(k a) & K_{m}(k a) \\
A_{1}(k a) & A_{2}(k a) & A_{4}(k a) \\
A_{1}(k b) & A_{2}(k b) & A_{4}(k b)
\end{array}\right| S_{1}=\left|\begin{array}{lll}
J_{m}(k a) & Y_{m}(k a) & I_{m}(k a) \\
A_{1}(k a) & A_{2}(k a) & A_{3}(k a) \\
A_{1}(k b) & A_{2}(k b) & A_{3}(k b)
\end{array}\right| \\
& P_{2}=\left|\begin{array}{lll}
Y_{m}(k a) & I_{m}(k a) & K_{m}(k a) \\
A_{2}(k a) & A_{3}(k a) & A_{4}(k a) \\
Y_{m}(k b) & I_{m}(k b) & K_{m}(k b)
\end{array}\right| Q_{2}=\left|\begin{array}{lll}
J_{m}(k a) & I_{m}(k a) & K_{m}(k a) \\
A_{1}(k a) & A_{3}(k a) & A_{4}(k a) \\
J_{m}(k b) & I_{m}(k b) & K_{m}(k b)
\end{array}\right| \\
& R_{2}=\left|\begin{array}{lll}
J_{m}(k a) & Y_{m}(k a) & K_{m}(k a) \\
A_{1}(k a) & A_{2}(k a) & A_{4}(k a) \\
J_{m}(k b) & Y_{m}(k b) & K_{m}(k b)
\end{array}\right| S_{2}=\left|\begin{array}{lll}
J_{m}(k a) & Y_{m}(k a) & I_{m}(k a) \\
A_{1}(k a) & A_{2}(k a) & A_{3}(k a) \\
J_{m}(k b) & Y_{m}(k b) & I_{m}(k b)
\end{array}\right|
\end{aligned}
$$

$$
\Delta_{m}=\left|\begin{array}{cccc}
J_{m}(k a) & Y_{m}(k a) & I_{m}(k a) & K_{m}(k a) \\
A_{1}(k a) & A_{2}(k a) & A_{3}(k a) & A_{4}(k a) \\
J_{m}(k b) & Y_{m}(k b) & I_{m}(k b) & K_{m}(k b) \\
A_{1}(k b) & A_{2}(k b) & A_{3}(k b) & A_{4}(k b)
\end{array}\right|
$$

TABLE 4.3

Dynamic stiffness matrix $[D R]$ of a thin circular ring.


| E, G | - elastic moduli, |
| :---: | :---: |
| $\mathrm{I}_{z}$ | - moment of inertia about $z$ axis, |
| $\mathrm{K}_{\mathrm{G}}$ | - St. Venant torsion21 stiffness of the ring section, |
| $\mathrm{R}_{0}$ | - centroidal radius of the ring, |
| A | - Area of cross-section of ring, |
| $J_{z}$ | - moment of inertia about $z$ and $x$ axes of ring section, |

Matrix $\left[\mathrm{D}_{\mathrm{b}}\right]$

| $\mathrm{A}_{11} \cos ^{2} \delta$ | $\begin{aligned} & A_{12} \cos ^{2} \delta \\ & +B_{12} \sin ^{2} \delta \end{aligned}$ | $\left(A_{11}-\mathrm{B}_{11}\right) \sin 5 \cos \delta$ | $\left({ }^{(12}-{ }^{-B} 12\right) \sin \delta \cos \delta$ | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & A_{22} \cos ^{2} \delta \\ & +B_{22} \sin ^{2} \delta \end{aligned}$ | $\left({ }_{12}{ }^{-B}{ }_{12}\right) \sin 6 \cos$ | $\left(\mathrm{A}_{22}-\mathrm{B} 22\right) \sin 6 \cos \delta$ | 0 |
| Symmetrical |  | $\begin{gathered} A_{11} \sin ^{2} \delta \\ +B_{11} \cos ^{2} \delta \end{gathered}$ | $\begin{aligned} & A_{12} \sin ^{2} \delta \\ & +B_{12} \cos ^{2} \delta \end{aligned}$ | 0 |
|  |  |  | $\begin{aligned} & A_{22} \sin ^{2} \delta \\ & +B_{22} \cos ^{2} \delta \end{aligned}$ | 0 |
|  |  |  |  | $\mathrm{c}_{11}$ |

$$
\begin{aligned}
& A_{11}=-\mathrm{EI}_{1} \lambda_{1}^{3}\left[\frac{\cos \lambda_{1} \ell \sinh \lambda_{1} \ell+\sin \lambda_{1} \ell \cosh \lambda_{1} \ell}{\cos \lambda_{1} \ell \cosh \lambda_{1} \ell+I}\right. \\
& A_{12}=E_{1} \lambda_{1}^{2}\left[\frac{\sin \lambda_{1} \ell \sinh \lambda_{1} \ell}{\cos \lambda_{1} \ell \cosh \lambda_{1} \ell+1}\right] \\
& A_{22}=E_{1} \lambda_{1}\left[\frac{\cos \lambda_{1} \ell \sinh \lambda_{1} \ell-\sin \lambda_{1} \ell \cosh \lambda_{1} \ell}{\cos \lambda_{1} \ell \cosh \lambda_{1} \ell i-1}\right.
\end{aligned}
$$

Replace $I_{1}$ by $I_{2}$ and $\lambda_{1}$ by $\lambda_{2}$ in the above expressions to obtain $B_{11}, B_{12}$ and $B_{22}$.

$$
c_{11}=G K_{G} \lambda_{3} \cot \lambda_{3} \ell
$$

TABLE 4.5

| Model | Disc Dimensions (in) |  |  | Rim Dimensions (in) |  |  | Blade Dimensions (in) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | a | b | h | $\mathrm{R}_{0}$ | $\mathrm{b}_{\mathrm{r}}$ | ${ }^{\text {d }}$ | $\ell$ | $b_{b}$ | $\mathrm{d}_{6}$ | 2 | $\delta$ |
| I | 1.0 | 5.2 | 0.3 | 5.6 | 0.8 | 0.8 | 5.875 | 0.125 | 1.0 | 36 | $45^{\circ}$ |
| II | 1.0 | 5.2 | 0.3 | 5.6 | 0.8 | 0.8 | 3.025 | 0.125 | 1.0 | 36 | $45^{\circ}$ |
| III* | 3.5 | 17.5 | 0.8 |  | No rim |  | 12.000 | 0.600 | 2.0 | 35 | $50^{\circ}$ |

TABLE 4.6

First six cantilevered blade alone frequencies of models I to III.

| Mode No. | Model I |  | Mode1 II |  | Model III |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \omega^{\mathrm{b}} \\ (\mathrm{~Hz}) \end{gathered}$ | Type | $\begin{gathered} \omega^{b} \\ (\mathrm{~Hz}) \end{gathered}$ | Type | $\begin{gathered} \omega^{\mathrm{b}} \\ (\mathrm{~Hz}) \end{gathered}$ | Type |
| 1 | 116 | $\mathrm{B}_{1}$ | 439 | $\mathrm{B}_{1}$ | 342 | $\mathrm{B}_{1}$ |
| 2 | 729 | $\mathrm{B}_{1}$ | 2427 | T | 1173 | $\mathrm{B}_{2}$ |
| 3 | 931 | $\mathrm{B}_{2}$ | 2750 | $B_{1}$ | 2206 | $B_{1}$ |
| 4 | 1250 | T | 3511 | $\mathrm{B}_{2}$ | 3498 | T |
| 5 | 2042 | ${ }^{\text {B }}$ I | 7281 | T | 6178 | $B_{1}$ |
| 6 | 3749 | T | 7702 | $\mathrm{B}_{1}$ | 7354 | $\mathrm{B}_{2}$ |
| $B_{1}$ - Bending in the $I_{\text {min }}$ direction |  |  |  |  |  |  |
| $\mathrm{B}_{2}$ - Bending in the $\mathrm{I}_{-}$direction |  |  |  |  |  |  |
| T - Torsion |  |  |  |  |  |  |

TABLE 4.7

Calculated and experimental frequencies in Hz . of bladed disc model I.
$E=29 \times 10^{6} \mathrm{psi} \quad \rho g=0.283 \mathrm{lb} / \mathrm{in}^{3} \quad \mathrm{v}=0.3$

| m | lode | Number | disc | blad | lement:s | Exact | Experi- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NO | 1 | 2 | 3 | 4 |  | mental |
| 2 | 1 | 112 | 112 | 112 | 112 | 112 | 113 |
|  |  | 323 | 321 | 320 | 320 | 320 | 326 |
|  | 3 | 1071 | 746 | 743 | 741 | 740 |  |
|  | 4 | 1251 | 1156 | 1153 | 1151 | 1150 | 1123 |
|  | 5 | 1388 | 1293 | 1276 | 1270 | 1263 |  |
|  | 6 | 3851 | 2482 | 2080 | 2072 | 2056 | 2094 |
| 3 | 123456 | 116 | 115 | 115 | 115 | 115 | 115 |
|  |  | 602 | 598 | 589 | 589 | 589 | 581 |
|  |  | 1130 | 750 | 747 | 746 | 745 | 754 |
|  |  | 1370 | 1275 | 1258 | 1252 | 1244 |  |
|  |  | 1782 | 1749 | 1720 | 1715 | 1712 | 1687 |
|  |  | 4619 | 2531 | 2148 | '2144 | 2130 | 2159 |
| 4 | 123456 | 117 | 116 | 116 | 116 | 116 | 116 |
|  |  | 760 | 711 | 708 | 707 | 706 | 695 |
|  |  | 1140 | 778 | 777 | 776 | 776 | 766 |
|  |  | 1374 | 1279 | 1261 | 1255 | 1247 |  |
|  |  | 2727 | 2378 | 2024 | 2013 | 1998 | 2010 |
|  |  | 5724 | 2888 | 2820 | 2814 | 2807 | 2792 |
| 5 | 123456 | 117 | 116 | 116 | 116 | 116 | 116 |
|  |  | 836 | 729 | 726 | 724 | 723 |  |
|  |  | 1145 | 829 | 828 | 828 | 828 |  |
|  |  | 1375 | 1280 | 1262 | 1256 | 1248 |  |
|  |  | 3945 | 2458 | 2051 | 2040 | 2025 | 2041 |
|  |  | 7142 | 3923 | 3843 | 3737 | 3662 | 3610 |
| 6 | 123456 | 117 | 116 | 116 | 116 | 116 | 116 |
|  |  | 876 | 733 | 729 | 727 | 726 |  |
|  |  | 1147 | 862 | 861 | 861 | 861 |  |
|  |  | 1376 | 1280 | 1262 | 1256 | 1248 |  |
|  |  | 5279 | 2473 | 2058 | 2048 | 2033 | 2067 |
|  |  | 8761 | 4457 | 4116 | 3949 | 3738 |  |

TABLE 4.8

Calculated and experimental frequencies in Hz . of bladed disc model II.
$E=29 \times 10^{6} \mathrm{psi} \quad \mathrm{pg}=0.283 \mathrm{lb} / \mathrm{in}^{3} \quad v=0.3$

| m | fode <br> No. | Number of disc and blade element:s |  |  |  | Exact | Experi- <br> nental |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 |  |  |
| -2 | 1 | 347 | 345 | 345 | 345 | 345 | 350 |
|  | 2 | 580 | 577 | 576 | 576 | 576 | 587 |
|  | 3 | 2292 | 2214 | 2207 | 2205 | 2203 | 2112 |
|  | 4 | 2679 | 2493 | 2458 | 2446 | 2430 |  |
|  | 5 | 4308 | 2816 | 2803 | 2797 | 2794 | 2781 |
|  | 6 | 7193 | 4761: | 4705 | 4689 | 4676 | 3958 |
| 3 | 1 | 427 | 426 | 425 | 425 | 425 | 423 |
|  | 2 | 1161 | 1157 | 1156 | 1156 | 1156 | 1157 |
|  | 3 | 2678 | 2493 | 2459 | 2447 | 2431 |  |
|  | 4 | 2981 | 2818 | 2805 | 2800 | 2797 | 2893 |
|  | 5 | 4332 | 2971 | 2968 | 2966 | 2965 |  |
|  | 6 | 7693 | 5671 | 5629 | 5619 | 5610 |  |
| 4 | 1 | 436 | 434 | 434 | 434 | 434 | 436 |
|  | 2 | 1912 | 1880 | 1878 | 1877 | 1876 | 1802 |
|  | 3 | 2685 | 2500 | 2466 | 2454 | 2438 |  |
|  | 4 | 3838 | 2828 | 2816 | 2811 | 2808 |  |
|  | 5 | 4441 | 3936 | 3933 | 3932 | 3931 | 3789 |
|  | 6 | 8558 | 7121 | 6964 | 6945 | 6924 |  |
| 5 | 1 | 439 | 437 | 436 | 436 | 436 | 436 |
|  | 2 | 2494 | 2375 | 2360 | 2355 | 2347 | 2228 |
|  | 3 | 2713 | 2535 | 2509 | 2501 | 2492 |  |
|  | 4 | 4238 | 2859 | 2849 | 2844 | 2842 |  |
|  | 5 | 5410 | 5294 | 5278 | 5273 | 5269 | 5018 |
|  | 6 | 9880 | 8664 | 7645 | 7715 | 7290 |  |
| $\epsilon$ | 1 | 440 | 438 | 437 | 437 | 437 | 436 |
|  | 2 | 2654 | 2472 | 2439 | 2427 | 2412 | 2458 |
|  | 3 | 2936 | 2680 | 2666 | 2661 | 2659 |  |
|  | 4 | 4287 | 2952 | 2946 | 2944 | 2942 |  |
|  | 5 | 7167 | 7061 | 6902 | 6872 | 6827 | 6551 |
|  | 6 | 11691 | 8716 | 7947 | 7713 | 7336 |  |

TABLE 4.9

Calculated and experimental frequencies in Hz . of bladed disc model III $\mathrm{E}=29 \times 10^{6} \mathrm{psi} \quad \rho g=0.283 \mathrm{lb} / \mathrm{in}^{3} \quad v=0.3$

| m | Sode | Number 0 | disc | blade | element:; | Exact | Jager | 120) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. | 1 | 2 | 3 | 4 |  | lated | mental |
| 2 | 1 | 157 | 155 | 154 | 154 | 154 | 154 | 164 |
|  | 2 | 466 | 463 | 463 | 463 | 462 | 450 | 430 |
|  | 3 | 1032 | 1008 | 1005 | 1004 | 1003 | 1005 | 985 |
|  | 4 | 2979 | 2120 | 2107 | 2103 | 2099 | 2040 | 1930 |
|  | 5 | 3860 | 3187 | 3151 | 3138 | 3128 |  |  |
|  | 6 | 4929 | 3610 | 3559 | 3542 | 3519 |  |  |
| 3 | 1 | 226 | 225 | 225 | 225 | 225 | 230 | 237 |
|  | 2 | 522 | 521 | 521 | 521 | 521 | 515 | 490 |
|  | 3 | 1277 | 1267 | 1266 | 1265 | 1264 | 1270 | 1215 |
|  | 4 | 3082 | 2224 | 2214 | 2210 | 2208 | 2145 | 2050 |
|  | 5 | 3866 | 3534 | 3494 | 3479 | 3461 |  |  |
|  | 6 | 5036 | 3760 | 3729 | 3717 | 3706 |  |  |
| 4 | 1 | 275 | 273 | 273 | 273 | 273 | 276 | 280 |
|  | 2 | 598 | 596 | 596 | 596 | 596 | 599 | 585 |
|  | 3 | 1661 | 1579 | 1575 | 1574 | 1573 | 1600 | 1500 |
|  | 4 | 3283 | 2376 | 2370 | 2366 | 2364 | 2275 | 2200 |
|  | 5 | 3885 | 3613 | 3563 | 3545 | 3523 |  |  |
|  | 6 | 5261 | 4422 | 4372 | 4364 | 4358 |  |  |
| 5 | 1 | 304 | 298 | 298 | 298 | 298 |  |  |
|  | 2 | 678 | 667 | 666 | 666 | 666 |  |  |
|  | 3 | 2043 | 1823 | 1814 | 1812 | 1811 |  |  |
|  |  | 3561 | 2621 | 2618 | 2614 | 2611 |  |  |
|  | 5 | 3956 | 3668 | 3617 | 3600 | 3578 |  |  |
|  | 6 | 5734 | 5193 | 5099 | 5088 | 5081 |  |  |
| 6 | 1 | 321 | 313 | 312 | 312 | 312 |  |  |
|  | 2 | 760 | 728 | 726 | 726 | 726 |  |  |
|  | 3 | 2331 | 1957 | 1946 | 1943 | 1941 |  |  |
|  | 4 | 3717 | 2935 | 2924 | 2918 | 2912 |  |  |
|  | 5 | 4174 | 3768 | 3719 | 3702 | 3682 |  |  |
|  | 6 | 6623 | 5928 | 5811 | 5798 | 5786 |  |  |

table 4.10

| $\frac{50}{2}$ |  | $\stackrel{\circ}{\circ}$ | $\stackrel{\square}{\square}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\mathrm{i}}$ | $\stackrel{\circ}{\circ}$ | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{2}{2}$ |  | - | $\stackrel{\sim}{\circ}$ | $\stackrel{\circ}{\dot{N}}$ | $\stackrel{\sim}{0}$ | $\stackrel{\sim}{\circ}$ | $\stackrel{\circ}{-}$ | - |
| $\cdots$ |  | in | 욱 | in | in | in | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |
| N |  | ¢ | \% | $\stackrel{\sim}{0}$ | N | $\stackrel{\infty}{\sim}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |
|  | 0 | $\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & \dot{\circ} \end{aligned}\right.$ | $\stackrel{\infty}{\circ}$ | $\stackrel{\infty}{\circ}$ | $\stackrel{+}{\dot{O}}$ | $\stackrel{1}{0}$ | $\stackrel{\infty}{\circ}$ | $\stackrel{\circ}{\circ}$ |
|  | $0^{\circ}$ | $\stackrel{-}{-}$ | $\stackrel{0}{i}$ | $\stackrel{-}{-}$ | $\stackrel{n}{0}$ | $\stackrel{\dot{i}}{ }$ | $\xrightarrow{\circ}$ | $\stackrel{i}{i}$ |
|  | $\alpha$ | $\bigcirc$ | $\stackrel{+}{\dot{j}}$ | $\begin{aligned} & 0 \\ & \infty \end{aligned}$ | $\stackrel{\bigcirc}{\mathrm{j}}$ | $\stackrel{\bigcirc}{\dot{j}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |
|  | s | $\stackrel{\sim}{\circ}$ | $\stackrel{?}{0}$ | $\stackrel{3}{0}$ | $\stackrel{m}{0}$ | $\stackrel{3}{\circ}$ | $\stackrel{\text { m }}{0}$ | $\stackrel{\sim}{\circ}$ |
|  | - | $\begin{aligned} & 0 \\ & \dot{\infty} \end{aligned}$ | $0$ | $\stackrel{\dot{j}}{\dot{j}}$ | - | $\stackrel{\circ}{\infty}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |
|  | $\cdots$ | $\begin{array}{r} -7 \\ 0 \end{array}$ | $\stackrel{-}{0}$ | $\stackrel{-1}{0}$ | $\stackrel{-}{-1}$ | $\stackrel{-}{\circ}$ | $\stackrel{-}{0}$ | $\stackrel{-}{\circ}$ |
| $\begin{aligned} & \hline \ddot{\omega} \\ & \text { © } \end{aligned}$ |  | - | $\sim$ | $m$ | $\checkmark$ | $\cdots$ | $\bigcirc$ | N |

TABLE 4.11

First four cantilevered blade alone frequencies of cases 1 through 7.
$E=29 \times 10^{6}$ psi $\quad \rho g=0.283 \quad v=0.3$

| Mode <br> No. | Case Number |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | d 7 | 3 |  | 4 |  | 5 |  | 6 |  |
| 1 | 71 | $B_{1}$ | 161 | $\mathrm{B}_{1}$ | 40 | $\mathrm{B}_{1}$ | 80 | $\mathrm{B}_{1}$ | 321 | $B_{1}$ |
| 2 | 447 | $\mathrm{B}_{2}$ | 1007 | $\mathrm{B}_{1}$ | 252 | $\mathrm{B}_{1}$ | 503 | \% | 1198 | T |
| 3 | 799 | T | 1198 | T | 502 | $\mathrm{B}_{2}$ | 1004 | $\mathrm{B}_{2}$ | 2013 | $B_{1}$ |
| 4 | 892 | $B_{2}$ | 2008 | $\mathrm{B}_{2}$ | 599 | T | 1198 | T | 3594 | T |

$B_{1}$ - Bending in the $I_{\min }$ direction $\quad B_{2}$ - Bending in the $I_{-}$direction
T - Torsion

TABLE 4.12

Coupled frequencies in Hz . of cases 1 through 7, calculated by the exact method.
$E=29 \times 10^{6} \mathrm{psi} \quad \rho g=0.283 \mathrm{lb} / \mathrm{in}^{3} \quad v=0.3$

|  | Mode | Case Number |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | $\begin{aligned} & I \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{array}{r} 69 \\ 212 \\ 462 \\ 796 \end{array}$ | $\begin{array}{r} 137 \\ 220 \\ 947 \\ 1054 \end{array}$ | $\begin{array}{r} 40 \\ 186 \\ 262 \\ 597 \end{array}$ | $\begin{array}{r} 79 \\ 210 \\ 510 \\ 880 \end{array}$ | $\begin{array}{r} 130 \\ 375 \\ 901 \\ 1202 \end{array}$ | $\begin{array}{r} 70 \\ 186 \\ 452 \\ 795 \end{array}$ | $\begin{array}{r} 68 \\ 250 \\ 483 \\ 797 \end{array}$ |
| 3 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{array}{r} 71 \\ 348 \\ 469 \\ 798 \end{array}$ | $\begin{array}{r} 155 \\ 402 \\ 1030 \\ 1200 \end{array}$ | $\begin{array}{r} 40 \\ 24.1 \\ 287 \\ 597 \end{array}$ | $\begin{array}{r} 80 \\ 430 \\ 529 \\ 1022 \end{array}$ | $\begin{array}{r} 225 \\ 442 \\ 1193 \\ 1281 \end{array}$ | $\begin{array}{r} 71 \\ 308 \\ 454 \\ 797 \end{array}$ | $\begin{array}{r} 70 \\ 387 \\ 526 \\ 798 \end{array}$ |
| 4 | $\begin{aligned} & I \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{array}{r} 71 \\ 419 \\ 501 \\ 798 \end{array}$ | $\begin{array}{r} 158 \\ 607 \\ 1040 \\ 1201 \end{array}$ | $\begin{array}{r} 40 \\ 248 \\ 327 \\ 598 \end{array}$ | $\begin{array}{r} 80 \\ . \quad 496 \\ 685 \\ 1192 \end{array}$ | $\begin{array}{r} 272 \\ 553 \\ 1205 \\ 1700 \end{array}$ | $\begin{array}{r} 71 \\ 395 \\ 459 \\ 798 \end{array}$ | $\begin{array}{r} 71 \\ 427 \\ 602 \\ 799 \end{array}$ |
| 5 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{array}{r} 71 \\ 437 \\ 554 \\ 798 \end{array}$ | $\begin{array}{r} 159 \\ 784 \\ 1056 \\ 1203 \end{array}$ | $\begin{array}{r} 40 \\ 250 \\ 357 \\ 598 \end{array}$ | $\begin{array}{r} 80 \\ 500 \\ 808 \\ 1197 \end{array}$ | $\begin{array}{r} 291 \\ 680 \\ 1212 \\ 2034 \end{array}$ | $\begin{array}{r} 71 \\ 436 \\ 487 \\ 798 \end{array}$ | $\begin{array}{r} 71 \\ 437 \\ 661 \\ 799 \end{array}$ |
| 6 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{array}{r} 71 \\ 442 \\ 600 \\ 798 \end{array}$ | $\begin{array}{r} 159 \\ 905 \\ 1092 \\ 1208 \end{array}$ | $\begin{array}{r} 40 \\ 251 \\ 378 \\ 598 \end{array}$ | $\begin{array}{r} 80 \\ 502 \\ 267 \\ 1197 \end{array}$ | $\begin{array}{r} 300 \\ 799 \\ 1221 \\ 2054 \end{array}$ | $\begin{array}{r} 71 \\ 443 \\ 531 \\ 798 \end{array}$ | $\begin{array}{r} 71 \\ 441 \\ 703 \\ 799 \end{array}$ |

TABLE 4.13

Frequency ratios $\omega / \omega_{1}^{b}$ of the first four modes of cases 1 through 7.

| m | Mode <br> No. | Case Number |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 4 | 0.9718 | 0.8509 | 1.0000 | 0.9875 | 0.4050 | 0.9859 | 0.9577 |
|  |  | 2.986 | 1.367 | 4.650 | 2.625 | 1.168 | 2.620 | 3.521 |
|  |  | 6.507 | 5.882 | 6.550 | 6.375 | 2.807 | 6.366 | 6.803 |
|  |  | 11.211 | 6.547 | 14.925 | 11.000 | 3.745 | 11.197 | 11.225 |
| 3 | 1 | 1.0000 | 0.9627 | 1.0000 | 1.0000 | 0.7009 | 1.0000 | 0.9859 |
|  | 2 | 4.901 | 2.497 | 6.025 | 5.375 | 1.377 | 4.338 | 5.451 |
|  | 3 | 6.606 | 6.398 | 7.175 | 6.613 | 3.717 | 6.394 | 7.409 |
|  | 4 | 11.239 | 7.453 | 14.950 | 12.775 | 3.991 | 11.225 | 11.239 |
| 4 | 1 | 1.0000 | 0.9814 | 1.0000 | 1.0000 | 0.8474 | 1.000 | 1.0000 |
|  | 2 | 5.901 | 3.770 | 6.200 | 6.200 | 1.723 | 5.563 | 6.014 |
|  | 3 | 7.056 | 6.460 | 8.175 | 8.563 | 3.754 | 6.465 | 8.479 |
|  | 4 | 11.239 | 7.460 | 14.950 | 14.900 | 5.296 | 11.239 | 11.254 |
| 5 | 1 | 1.0000 | 0.9876 | 1.0000 | 1.0000 | 0.9065 | 1.0000 | 1.0000 |
|  | 2 | 6.155 | 4.870 | 6.250 | 6.250 | 2.118 | 6.141 | 6.155 |
|  | 3 | 7.803 | 6.559 | 8.925 | 10.100 | 3.776 | 6.859 | 9.310 |
|  | 4 | 11.239 | 7.472 | 14.950 | 14.963 | 6.337 | 11.239 | 11.254 |
| 6 | 1 | 1.0000 | 0.9876 | 1.0000 | 1.0000 | 0.9346 | 1.0000 | 1.0000 |
|  | 2 | 6.225 | 5.621 | 6.275 | 6.275 | 2.489 | 6.239 | 6.211 |
|  | 3 | 8.451 | 6.783 | 9.450 | 10.838 | 3.804 | 7.479 | 9.901 |
|  | 4 | 11.239 | 7.503 | 14.950 | 14.963 | 6.399 | 11.239 | 13.254 |

TABLE 4.14
Variation of frequencies (in Hz. ) of bladed disc model I with speed of rotation.
$\mathrm{E}=29 \times 10^{6} \mathrm{psi} \quad \rho g=0.283 \mathrm{lb} / \mathrm{in}^{3} \quad \mathrm{v}=0.3$

| m | Mode No. | Speed of rotation in rpm. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 3500 | 7000 |
| 2 | 1 | 112 | 140 | 200 |
|  | 2 | 320 | 327 | 347 |
|  | 3 | 741 | 773 | 858 |
|  | 4 | 1151 | 1158 | 1178 |
|  | 5 | 1270 | 1271 | 1273 |
|  | 6 | 2072 | 2106 | 2205 |
| 3 | 1 | 115 | 145 | 208 |
|  | 2 | 589 | 596 | 612 |
|  | 3 | 746 | 775 | 860 |
|  | 4 | 1252 | 1252 | 1252 |
|  | 5 | 1715 | 1724 | 1750 |
|  | 6 | 2144 | 2174 | 2266 |
| 4 | 1 | 116 | 145 | 209 |
|  | 2 | 707 | 729 | 761 |
|  | 3 | 776 | 791 | 861 |
|  | 4 | 1255 | 1255 | 1255 |
|  | 5 | 2013 | 2045 | 2136 |
|  | 6 | 2814 | 2822 | 2844 |
| 5 | 1 | 116 | 146 | 209 |
|  | 2 | 724 | 756 | 827 |
|  | 3 | 828 | 834 | 866 |
|  | 4 | 1256 | 1256 | 1256 |
|  | 5 | 2040 | 2075 | 2173 |
|  | 6 | 3737 | 3754 | 3761 |
| 6 | 1 | 116 | 146 | 210 |
|  | 2 | 727 | 760 | 848 |
|  | 3 | 861 | 865 | 881 |
|  | 4 | 1256 | 1256 | 1256 |
|  | 5 | 2048 | 2083 | 2182 |
|  | 6 | 3949 | 3955 | 3962 |

TABLE 4.15

Frequencies in Hz . of bladed disc model I calculated including transverse shear and rotary inertia.
$\mathrm{E}=29 \times 10^{6} \mathrm{psi} \quad \mathrm{pg}=0.283 \mathrm{lb} / \mathrm{in}^{3} \quad \mathrm{v}=0.3$

| m | Mode No. | Number of disc and blade elements |  |  | Experiment |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 3 | 4 |  |
| 2 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 112 \\ 332 \\ 744 \\ 1165 \\ 1293 \\ 2481 \end{array}$ | $\begin{array}{r} 112 \\ 328 \\ 740 \\ 1157 \\ 1275 \\ 2076 \end{array}$ | $\begin{array}{r} 112 \\ 327 \\ 739 \\ 1154 \\ 1269 \\ 2063 \end{array}$ | $\begin{array}{r} 113 \\ 326 \\ 1123 \\ 2094 \end{array}$ |
| 3 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 115 \\ 596 \\ 750 \\ 1274 \\ 1734 \\ 2520 \end{array}$ | 115 <br> 592 <br> 744 <br> 1256 <br> 1705 <br> 2140 | $\begin{array}{r} 115 \\ 589 \\ 743 \\ 1250 \\ 1700 \\ 2132 \end{array}$ | 115 <br> 581 <br> 754 <br> 1687 <br> 2159 |
| 4 | $\begin{aligned} & \mathbf{1} \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 116 \\ 710 \\ 772 \\ 1277 \\ 2357 \\ 2823 \end{array}$ | $\begin{array}{r} 116 \\ 705 \\ 768 \\ 1259 \\ 2014 \\ 2744 \end{array}$ | $\begin{array}{r} 116 \\ 703 \\ 766 \\ 1253 \\ 2000 \\ 2738 \end{array}$ | $\begin{array}{r} 116 \\ 695 \\ 766 \\ 2010 \\ 2792 \end{array}$ |
| 5 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 116 \\ 728 \\ 815 \\ 1278 \\ 2445 \\ 3719 \end{array}$ | $\begin{array}{r} 116 \\ 723 \\ 811 \\ 1260 \\ 2043 \\ 3646 \end{array}$ | $\begin{array}{r} 116 \\ 722 \\ 809 \\ 1254 \\ 2029 \\ 3585 \end{array}$ | $\begin{gathered} 116 \\ 2041 \\ 3610 \end{gathered}$ |
| 6 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 116 \\ 731 \\ 843 \\ 1278 \\ 2460 \\ 4342 \end{array}$ | $\begin{array}{r} 116 \\ 727 \\ 839 \\ 1260 \\ 2050 \\ 4075 \end{array}$ | $\begin{array}{r} 116 \\ 725 \\ 838 \\ 1254 \\ 2037 \\ 3939 \end{array}$ | $\begin{gathered} 116 \\ 2067 \end{gathered}$ |

TABLE 4.16

Frequencies in Hz . of bladed disc model II calculated including transverse shear and rotary inertia.
$E=29 \times 10^{6} \mathrm{psi}$
$\rho g=0.283 \mathrm{lb} / \mathrm{in}^{3}$
$v=0.3$

| m | Mode No. | Number of disc and blade elements |  |  | Experimeni |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 3 | 4 |  |
| 2 | 1 | 353 | 351 | 350 | 350 |
|  | 2 | 582 | 579 | 578 | 587 |
|  | 3 | 2360 | 2276 | 2255 | 2112 |
|  | 4 | 2490 | 2455 | 2443 |  |
|  | 5 | 2788 | 2769 | 2763 | 2781 |
|  | 6 | 6428 | 4463 | 4408 | 3958 |
| 3 | 1 | 426 | 425 | 425 | 423 |
|  | 2 | 11.58 | 1152 | 1149 | 1157 |
|  | 3 | 2493 | 2458 | 2446 |  |
|  | 4 | 2783 | 2767 | 2761 | 2893 |
|  | 5 | 3034 | 3006 | 2989 |  |
|  | 6 | 7113 | 5395 | 5347 |  |
| 4 | 1 | 434 | 434 | 433 | 436 |
|  | 2 | 1839 | 1827 | 1820 | 1802 |
|  | 3 | 2501 | 2466 | 2454 |  |
|  | 4 | 2790 | 2773 | 2768 |  |
|  | 5 | 3894 | 3878 | 3868 | 3789 |
|  | 6 | 8132 | 684.9 | 6744 |  |
| 5 | 1 | 436 | 436 | 436 | 436 |
|  | 2 | 2295 | 2273 | 2264 | 2228 |
|  | 3 | 2528 | 2495 | 2484 |  |
|  | 4 | 2801 | 2786 | 2780 |  |
|  | 5 | 5118 | 5080 | 5072 | 5018 |
|  | 6 | 8655 | 7680 | 7653 |  |
| 6 | 1 | 437 | 437 | 437 | 436 |
|  | 2 | 2443 | 2410 | 2399 | 2458 |
|  | 3 | 2631 | 2603 | 2593 |  |
|  | 4 | 2832 | 2817 | 2811 |  |
|  | 5 | 6655 | 6521 | 6493 | 6551 |
|  | 6 | 8709 | 7843 | 7676 |  |

TABLE 4.17

Section properties of tie turbine blade

| Radius | Area <br> (in $^{2}$ ) | $I_{\text {nin }}$ <br> (in $\left.^{4}\right)$ | $I_{\text {max }}$ <br> $\left(\right.$ in $\left.^{4}\right)$ | $\delta$ <br> $\left({ }^{\circ}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 8.182 | 0.1196 | 0.0005994 | 0.007063 | 10.32 |
| 8.780 | 0.0960 | 0.0004300 | 0.005400 | 16.00 |
| 9.390 | 0.0771 | 0.0002736 | 0.003857 | 22.71 |
| 10.050 | 0.0630 | 0.0001700 | 0.002800 | 29.50 |
| 10.720 | 0.0461 | 0.0000822 | 0.002048 | 32.27 |

TABLE 4.18

Calculated and measured frequencies in Hz . of the turbine blade 5 Timoshenko beam elements used in the calculations.
$\mathrm{E}=29.3 \times 10^{6} \mathrm{psi} \quad \mathrm{pg}=0.283 \mathrm{Ib} / \mathrm{in}^{3} \quad \mathrm{v}=0.3$

| Mode No. | Calculated | Experiment |
| :---: | :---: | :---: |
| 1 | 1151 | 1150 |
| 2 | 3553 | 2560 |
| 3 | 5482 |  |
| 4 | 12108 |  |

TABLE 4.19

Dimensions and section properties at nodal points of the finite element model of the turbine.

DISC

| Node | Radius <br> (in) | Thickness <br> (in) |
| :---: | :---: | :---: |
| 1 | 0.900 | 2.650 |
| 2 | 2.380 | 1.395 |
| 3 | 3.430 | 1.095 |
| 4 | 5.700 | 0.680 |
| 5 | 6.950 | 0.480 |
| 6 | 7.390 | 1.025 |
| 7 | 7.836 | 1.025 |

BLADE

| Node | Radius <br> $(\operatorname{In})$ | Area <br> $\left(\right.$ in $\left.^{2}\right)$ | $I_{\min }$ <br> $\left(\right.$ in $\left.^{4}\right)$ | $I_{\max }$ <br> $\left(\right.$ in $\left.^{4}\right)$ | $\delta$ <br> $\left({ }^{\circ}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.836 | 0.1350 | 0.0007400 | 0.007400 | 8.00 |
| 2 | 8.182 | 0.1196 | 0.0005994 | 0.007063 | 10.32 |
| 3 | 8.780 | 0.0960 | 0.0004300 | 0.005400 | 16.00 |
| 4 | 9.380 | 0.0771 | 0.0002736 | 0.003857 | 22.71 |
| 5 | 10.050 | 0.0630 | 0.0001700 | 0.002800 | 29.50 |
| 6 | 10.855 | 0.0435 | 0.0000720 | 0.001900 | 32.30 |

TABLE 4.20

Calculated and experimental frequencies, in $\mathrm{Hz} .$, of the turbine rotor. 6 disc elements and 5 blade elements used in the calculations.
$\mathrm{pg}=0.281$ (disc), $\mathrm{pg}=0.283$ (blade) $\quad \mathrm{v}=0.3 \mathrm{E}$ blade $=29.3 \times 10^{6} \mathrm{psi}$

| m | Mode No. | Calculated |  | Experiment |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{E}_{\mathrm{d}}=31.2 \mathrm{psi}$ $\times 10^{6}$ | $\begin{aligned} \mathrm{E}_{\mathrm{d}}= & 28.4 \mathrm{psi} \\ & \times 10^{6} \end{aligned}$ |  |
| 2 | 1 | 700 | 669 | 618 |
|  | 2 | 1168 | 1166 |  |
| 3 | 1 | 1010 | 974 | 860 |
|  | 2 | 1208 | 1197 | 975 |
| 4 | 1 | 1131 | 1126 | 1044 |
|  | 2 | 1523 | 1466 | 1290 |
| 5 | I | 1143 | 1142 | 1173 |
|  | 2 | 1947 | 1877 | 1563 |
| 6 | 1 | 1146 | 1146 |  |
|  | 2 | 2308 | 2237 | 1871 |

## APPENDIX A

APPLICATION OF THE THIN PLATE BENDING ELEMENTS TO STATIC BENDING ANALYSIS OF CIRCULAR AND ANNULAR PLIATES

## A. 1 INTRODUCTION

The annular and circular thin plate bending elements developed in Chapter 2, although primarily developed for the vibration analysis of turbine discs with radial thickness variations, can be readily applied in the static bending analysis of axisymmetric circular and annular plates.

Here a few examples have been chosen to show the accuracy and use of these elements in such static analysis. When plates with axisymmetric loading are considered, annular and circular elements with $m=0$ are to be used, Loads which are not axisymmetric can also be considered if they can be expanded into Fourier series, In such cases each Fourier component is considered seperately and for the $i^{\text {th }}$ component elements with nodal diameters $m=i$ are used. Required number of' Fourier terms are taken and the individual contributions of deflection etc. are superposed together to get the complete solution of the problem.

## A. 2 NUMERICAL APPLICATIONS


#### Abstract

The first example is the axisymmetric circular plate with radial thickness variation subjected to uniform load $q$, shown in Figure A.1. Annular and circular elements with $m=0$ are used and the load $q$ is replaced by consistent load. The central deflection and bending moments obtained are given in Table A.1, along with exact solutions. Plates with $h_{o} / h_{1}=1.0$ and 1.5 are considered. The same problem is solved by considering annular plates with $a / b=0.001$, and using only annular elements, The results are given in Table A.2. Comparing results of Table $A .1$ and $A, 2$, it is seen that when the plates are approximated by annular plates with very small inner radius the bending moments obtained at the centre are not accurate, whereas they are not much affected at points away from the centre,


The second example chosen is an axisymmetric annular plate with variable thickness shown in Figure A.2. The maximum deflection for this plate with $\mathrm{b} / \mathrm{a}=1.25,2$, and 5 , obtained with models with annular elements are given in Table A. 3 with exact solutions.

[^6]
#### Abstract

in Fourier series and each Fourier component is considered separately. A uniform annular plate fixed at the inner radius $a$ and free at the outer radius $b$, and subjected to a single concentrated load $P$ at a point on the outer boundary as shown in Figure A. 3 is considered. Deflection under the load obtained for this problem using annular elements are given for plates with $a / b=0.5$ in Table A.4 along with exact solutions. Humber of Fourier components taken for the calculations were 11, 21. 51, and 101. The results show that the number of Fourier components taken has more influence on the results than the number of elements used. 01.son and Lindberg (54) have used sector elements to solve this problem and their results are given in Table A. 5.

The next example is a clamped circular plate with a single concentrated load $P$ applied anywhere in the plate, as shown in Figure A.4. The plate is approximated with an annular plate with $a / b=0.001$. The deflection under the load when the first 21 Fourier components of the load are taken are given in Table A. 6 with exact solutions and solutions obtained by Olson and Lindberg (54) using sector elements. The load is applied at $a$ point with radius ratio $c / b=0.5$.


## A. 3 DISCUSSION

```
axisymmetric plates, although sector elements (54,55,56) and
triangular elements (57) can be used in the static bending
analysis, the use of annular and circular elements offer sub-
stantial computational advantages since the number of degrees
of freedom involved are much less than the other cases. At
the same time there is no loss in accuracy. The relative ease
with which radial thickness variation can be taken into account
when annular and circular elements are used is an added advan-
tage. Eventhough a set of problems equal to the number of
Fourier components taken, are to be solved in the case of loads
which are not axisymmetric, still use of these elements offer
computational advantages in terms of storage and time.
 But the application of these elements are limited
only to complete axisymmetric circular and annular plates.
```



Figure A. 1 Circular plate with radial linear thickness variation.


Figure A. 2 Annular plate with radial. Iinear thickness variation.


Figure A. 3 Uniform annular plate loaded with a concentrated load at the outer boundary.


Figure A. 4 Uniform circular plate loaded with a concentrated load anywhere on the plate.

TABLE A. 1

Deflections and bending moments of simply supported plates under uniform pressure $q$, modelled with one circular and several annular thin plate bending elements.

| $\begin{aligned} & \mathrm{h}_{\mathrm{o}} \\ & \mathrm{i} \end{aligned}$ |  | r | Number of elements |  |  |  | $\begin{aligned} & \text { Exact } \\ & \text { (124) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2 | 4 | 8 | 16 |  |
| 1 | $\mathrm{w}_{\text {max }} \frac{\mathrm{Eh}_{0}^{3}}{}{ }_{\mathrm{qb}}{ }^{4}$ | 0 | 0.7391 | 0.7383 | 0.7383 | 0.7383 | 0.738 |
|  | $\mathrm{M}_{\mathrm{r}} / \mathrm{qb}{ }^{2}$ | $b / 2$ | $\begin{aligned} & 0.2147 \\ & 0.1599 \end{aligned}$ | $\begin{aligned} & 0.2060 \\ & 0.1543 \end{aligned}$ | $\begin{aligned} & 0.2038 \\ & 0.1528 \end{aligned}$ | $\begin{aligned} & 0.2033 \\ & 0.1525 \end{aligned}$ | $\begin{aligned} & 0.203 \\ & 0.152 \end{aligned}$ |
|  | $\mathrm{M}_{\mathrm{t}} / \mathrm{qb}{ }^{2}$ | 0 <br> b/2 <br> b | $\begin{aligned} & 0.2147 \\ & 0.1775 \\ & 0.0955 \end{aligned}$ | $\begin{aligned} & 0.2060 \\ & 0.1763 \\ & 0.0942 \end{aligned}$ | $\begin{aligned} & 0.2038 \\ & 0.1759 \\ & 0.0939 \end{aligned}$ | $\begin{aligned} & 0.2033 \\ & 0.1758 \\ & 0.0938 \end{aligned}$ | $\begin{aligned} & 0.203 \\ & 0.176 \\ & 0.094 \end{aligned}$ |
| 1.5 | $\mathrm{w}_{\text {max }} \frac{\mathrm{Eh}^{3}}{\mathrm{qb}^{4}}$ | 0 | 1.2660 | 1.2660 | 1.2660 | 1.2660 | 1.260 |
|  | $\mathrm{M}_{\mathrm{r}} / \mathrm{qb}{ }^{2}$ | 0 <br> b/2 | $\begin{aligned} & 0.2689 \\ & 0.1927 \end{aligned}$ | $\begin{aligned} & 0.2593 \\ & 0.1799 \end{aligned}$ | $\begin{aligned} & 0.2577 \\ & 0.1772 \end{aligned}$ | $\begin{aligned} & 0.2574 \\ & 0.1766 \end{aligned}$ | $\begin{aligned} & 0.257 \\ & 0.176 \end{aligned}$ |
|  |  | 0 | 0.2689 | 0.2593 | 0.2577 | 0.2574 | 0.257 |
|  | $\mathrm{M}_{\mathrm{t}} / \mathrm{qb}^{2}$ | $\begin{gathered} b / 2 \\ b \end{gathered}$ | $\begin{aligned} & 0.1760 \\ & 0.0588 \end{aligned}$ | 0.1730 0.0556 | 0.1724 0.0545 | 0.1722 0.0541 | $\begin{aligned} & 0.173 \\ & 0.054 \end{aligned}$ |

TABLE A. 2

Deflections and bending moments of simply supported plates under uniform pressure $q$, modelled with annular thin plate bending elements only with $a / b=0.001$.

| $\frac{\mathrm{h}_{0}}{\mathrm{~h}}$ |  | r | Number of elements |  |  |  | Exact <br> (124) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2 | 4 | 8 | 16 |  |
| 1 | $\mathrm{w}_{\text {max }} \frac{\mathrm{Eh}}{0}{ }_{\mathrm{q} \mathrm{b}^{4}}$ | 0 | 0.7389 $-\quad-$ | 0.7384 | 0.7383 | 0.7383 | 0.738 |
|  | $M_{x} / q b^{2}$ | 0 | 0.1639 | 0.2111 | 0.2191 | 0.2220 | 0.203 |
|  |  | b/2 | 0.1595 | 0.1542 | 0.1527 | 0.1524 | 0.152 |
|  | $M_{t} / q b^{2}$ | 0 | 0.0073 | 0.2275 | 0.2709 | 0.2935 | 0.203 |
|  |  | b/2 | 0.1774 | 0.1762 | 0.1759 | 0.1758 | 0.176 |
|  |  | b | 0.0955 | 0.0942 | 0.0939 | 0.0938 | 0.094 |
| 1.5 | $w_{\max } \frac{E h^{3}}{}$ | 0 | $1.2650$ | 1.2650 | 1.2650 | 1.2650 | 1.260 |
|  | $M_{r} / \mathrm{qb}^{2}$ | 0 | 0.2202 | 0.2713 | 0.2783 | 0.2814 | 0.257 |
|  |  | b/2 | 0.1925 | 0.1797 | 0.1771 | 0.1765 | 0.176 |
|  | $M_{t} / q b^{2}$ | 0 | 0.0693 | 0.3099 | 0.3478 | 0.3731 | 0.257 |
|  |  | b/2 | 0.1758 | 0.1729 | 0.1723 | 0.1721 | 0.173 |
|  |  | b | 0.0588 | 0.0556 | 0.0544 | 0.0541 | 0.054 |

table A． 3

| 918.0 | 0067 28.0 | 006T98＊0 | 00808 ${ }^{\circ} 0$ | 0092ヶら・0 | 002802＊0 | $00 \cdot 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $9090{ }^{\circ}$ | $089090 \cdot 0$ | 0T9090＊0 | 0 08090＊0 | OSZLSO＊ | 0LL6EO＊ 0 | $00^{\circ} 2$ |
| $7 \angle 100^{\circ}$ 。 | ： $68 \angle T 00 \cdot 0$ | $6 \varepsilon \angle T 00^{\circ} 0$ | $68 \angle T 00^{\circ} 0$ | $\varepsilon \varepsilon \angle T 00^{\circ} 0$ | 2591000 | $S Z^{\prime} \tau$ |
| $\begin{aligned} & (\nvdash ट I) \\ & 70 e x_{\square} \end{aligned}$ | 9 I | 8 | 7 | Z | I | $8 / q$ |
|  |  |  |  |  |  |  |

TABLE A. 4

Deflection coefficient $W_{\max } D / P$ for a uniform annular plate with a single concentrated load, calculated using thin plate bending annular elements.

| n* | Number of Elements |  |  |  | Exact(124) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 4 | 8 | 16 |  |
| 11 | 0.047737 | 0.047785 | 0.047789 | 0.047789 |  |
| 21 | 0.049910 | 0.049960 | 0.049964 | 0.049965 |  |
| 51 | 0.050537 | 0.050591 | 0.050595 | 0.050596 |  |
| 101 | 0.050616 | 0.050682 | 0.050687 | 0.050688 |  |

TABLE A. 5

Deflection coefficient $W_{\max } D / P$ for a uniform annular plate with a single concentrated load, calculated using sector elements (54).

| Sector Element <br> Grids | N.D.F. | $\mathbf{w}_{\text {max }}$ D/P | Exact <br> (124) |
| :---: | :---: | :---: | :---: |
| $1 \times 6$ | 19 | 0.050896 |  |
| $2 \times 12$ | 74 | 0.051372 | 0.050718 |
| $3 \times 18$ | 165 | 0.051027 |  |
| $4 \times 24$ | 292 | 0.050885 |  |

TABLE A. 6

Deflection coefficient $w ~ D / P$ of a uniform circular plate with a single concentrated load $P$ applied any where in the plate. $c / b=0.5$

| Number <br> of <br> E1.ements | N.D.F. | $n^{*}$ | $\mathrm{wD} / \mathrm{P}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 2 |  | 21 | 0.0104559 |  |
| 4 | 10 | 21 | 0.0109955 | Finite element |
| 8 | 18 | 21 | 0.0111291 |  |
| 12 | 26 | 21 | 0.0111483 | 0.0111906 |
| $2 \times 4 *$ | 18 | - | 0.0113155 |  |
| $4 \times 6 *$ | 63 | - | 0.0112715 |  |
| $6 \times 8 *$ | 133 | - | 0.0109738 |  |

* Sector element grid (54)
$n^{*}$ - number of Fourier terms

APPENDIX B

VIBRATION OF CIRCULAR AND ANNULAR PLATES WITH
TRANSVERSE SHEAR AND ROTARY INERTIA

## B. 1 INTRODUCTION

Based on Mindlin's Plate theory (62), which takes into account transverse shear and rotary inertia, Callahan (66), and Bakshi and Callahan (67) have derived frequency determinants for circular and annular plates with various boundary conditions. These determinants can be used in the calculation of natural frequencies of moderately thick circular and annular plates. A brief summary of the theory as applied to annular plates is given here with the frequency determinant of a free-free annular plate.
B. 2 MINDLIN'S PLATE THEORY

When transverse shear and rotary inertia are considered, the governing differential equations, in polar coordinates, of a vibrating plate is

$$
\begin{aligned}
& \qquad-\frac{\partial^{2} W_{i}}{\partial r^{2}}-\frac{1}{r} \frac{\partial w_{i}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} W_{i}}{\partial \xi^{2}}+\delta_{i} w_{i}=0 \quad \text { (B.1) } \\
& (\mathbf{i}=1,2,3 .) \\
& \text { where } W_{1} \text { and } W_{2} \text { are component parts' of the total deflection } w ;
\end{aligned}
$$

and $w_{3}$ is a potential function giving rise to twist about normal to plate; and

$$
\begin{align*}
& \left.\delta \hat{1}, 2=\frac{1}{2} \delta^{\theta}\left\{(R+S) \pm 1(R-S)^{2}+4 \delta_{0}^{-4}\right] \frac{1}{2}\right\} \\
& \delta_{3}^{2}=2\left(R \delta_{0}^{4}-S^{-1}\right) /(1-v)  \tag{B.2}\\
& \delta_{0}^{4}=\rho \omega^{2} h / D \\
& R=h^{2} / 12 ; \quad S \\
& R=D / K^{2} G h ; D=E h^{3} / 12\left(1-v^{2}\right)
\end{align*}
$$

E, G, $V$ are the Young's modulus, the shear modulus and Poisson's ratio, respectively, and $\kappa^{2}=\pi^{2} / 12$

Now,

$$
\begin{align*}
& w=w_{1}+w_{2} \\
& \psi_{r}=\left(\sigma_{1}-1\right) \frac{\partial w_{1}}{\partial r}+\left(\sigma_{2}-1\right) \frac{\partial w_{2}}{\partial r}+\frac{1}{r} \frac{\partial W_{3}}{\partial \xi} \\
& \psi_{\xi}=\left(\sigma_{1}-1\right) \frac{1}{r} \frac{\partial w_{1}}{\partial \xi}+\left(\sigma_{2}-1\right) \frac{1}{r} \frac{\partial w_{n}}{\partial \xi} \quad \frac{\partial w_{3}}{\partial r^{-}} \tag{B.3}
\end{align*}
$$

where

$$
\sigma_{1}, \sigma_{2}=\left(\delta_{2}^{2}, \delta_{1}^{2}\right)\left(\mathrm{R} \delta_{0}^{4} \cdot-\mathrm{S}^{-1}\right)^{-1}
$$

The above equations give the deflection and rotations of the plate, and the plate stresses are given by the following relations.

$$
\begin{align*}
& M_{r}=D\left[\frac{\partial \psi_{r}}{\partial r}+\frac{\nu}{r}\left(\psi_{r}+\frac{\partial \psi_{\xi}}{\partial \xi}\right)\right] \\
& M_{\xi}=D\left[\frac{1}{r}\left(\psi_{r}+\frac{\partial \psi_{\xi}}{\partial \xi}\right)+v \frac{\partial \psi_{r}}{\partial r}\right. \\
& \left.M_{r \xi}=\frac{D}{2}(1-v) I \frac{1}{r}\left(\frac{\partial \psi_{r}}{\partial \xi}-\psi_{\xi}\right)+\frac{\partial \psi_{\xi}}{\partial r}\right]  \tag{B.4}\\
& Q_{r}=k^{2} G h\left(\psi_{r}+\frac{\partial W}{\partial r}\right) \\
& \mathbf{Q}=k^{2} G h\left(\psi_{\xi}+\frac{1}{r} \frac{\partial W}{\partial \xi}\right)
\end{align*}
$$

Now, $\delta^{2}$ is always positive for positive values of $\omega$; but $\delta_{2}^{2}$ and $\delta_{3}^{2}$ are positive only when $\omega<\omega$, where $\bar{\omega}$ is the frequency of the first thickness shear mode of an infinite plate, and is given by, $\bar{\omega}=\pi(\mathrm{G} . / \rho)^{1 / 2} / \mathrm{h}$

Hence, the most general solutions of Equations (B.1), for an annular plate when $\omega<\bar{\omega}$ are

$$
\begin{align*}
& w_{1}=\sum_{m=0}^{\infty}\left\{a_{m}^{1} J_{m}\left(r \delta_{1}\right) 4 b_{m}^{1} Y_{m}\left(r \delta_{1}\right)\right\}(\cos m \xi+\sin m \xi) \\
& w_{2}=\sum_{m=0}^{\infty}\left\{a_{m}^{2} I_{m}\left(r \delta_{2}^{\prime}\right)+b_{m}^{2} K_{m}\left(r \delta_{2}^{\prime}\right)\right\}(\cos m \xi+\sin m \xi) \\
& w_{3}=\sum_{m=0}^{\infty}\left\{a_{m}^{3} \operatorname{Im}\left(r \delta_{3}^{\prime}\right)+b_{m}^{3} K_{m}\left(r \delta_{3}^{\prime}\right)\right\}(\cos m \xi+\sin m \xi) \tag{В.5}
\end{align*}
$$

where $a_{m}^{i}, \quad b_{m}^{i}(i=1,2,3)$ are arbitrary constants,

$$
J_{m}, Y_{m}, I_{m}, \text { and } K_{m} \text { are Bessel functions of order } m,
$$

$$
\underset{2}{\left(\delta^{\prime}\right)^{2}=\left|\left(\delta_{2}\right)^{2}\right| ; \quad\left(\delta_{3}^{\prime}\right)^{2}=\left|\left(\delta_{3}\right)^{2}\right| .|c| c \mid}
$$

Substituting (B.5) into (B.4) we arrive at expressions for
the plate stress components involving the six arbitrary constants
$a_{m}^{i}, \quad b_{m}^{i} \quad(i=1,2,3).$,
B. 3 ANNULAR PLATE WITH FREE BOUNDARIES

Let us consider an annular plate with both boundaries
free, as an example. Then on both boundaries where $r=a$ and $\mathrm{r}=\mathrm{b}$.

$$
\begin{equation*}
Q_{r}=M_{r \xi}=M_{r}=0 \tag{B.6}
\end{equation*}
$$

Now,

$$
\begin{align*}
Q_{r}= & a_{m}^{1} A_{m}^{1}\left(\delta_{1} r\right)+b_{m}^{1} B_{m}^{1}\left(\delta_{1} r\right)+a_{m}^{2} A_{m}^{2}\left(\delta_{2}^{1} r\right)+b_{m}^{2} B_{m}^{2}\left(\delta_{2}^{1} r\right) \\
& a_{m}^{3} A_{m}^{3}\left(\delta_{3}^{\prime} r\right)+b_{m}^{3} B_{m}^{3}\left(\delta_{3}^{\prime} r\right) \\
M_{r \xi}= & a_{m}^{1} C_{m}^{1}\left(\delta_{1} r\right)+b_{m}^{1} D_{m}^{1}\left(\delta_{1} r\right)+a_{m}^{2} C_{m}^{2}\left(\delta_{2}^{1} r\right)+b_{m}^{2} D_{m}^{2}\left(\delta_{2}^{1} r\right) \\
& a_{m}^{1} C_{m}^{1}\left(\delta_{3}^{1} r\right)+b_{m}^{1} D_{m}^{1}\left(\delta_{3}^{\prime} r\right) \\
M_{r}= & a_{m}^{1} E_{m}^{1}\left(\delta_{1} r\right)+b_{m}^{1} F_{m}^{1}\left(\delta_{1} r\right)+a_{m}^{2} E_{m}^{2}\left(\delta_{2}^{1} r\right)+b_{m}^{2} F_{m}^{2}\left(\delta_{2}^{\prime} r\right)
\end{align*}
$$

Where the expressions $A_{m}^{i}, \quad \mathrm{Bm}^{\frac{1}{2}}$, etc., $(i=1,2,3)$ are combnations of Bessel functions and are given in Table B.l.

When the above expressions are equated to zero when $r=a$ and $r=b$, satisfying boundary conditions (B.6), we get a set of homogeneous simultaneous equations. Nontrivial solution of these is obtained by equating to zero the following determinant.

(B. 8

Por other boundary conditions similar determinants
are readily derived. Similar procedure is followed when a circular plate is considered. This problem has been treated by Callahan (66).

```
The natural frequencies of the plate are obtained by systematic searching of values of \(\boldsymbol{\omega}\) which make the value of the appropriate frequency determinant corresponding to the required boundary conditions, zero.
```


## TABLE B. 1

$$
\begin{aligned}
& A_{m}^{1}(x)=\sigma_{1} J_{m}^{\prime}(x) k^{2} G h \quad B_{m}^{I}(x)=\sigma_{1} Y_{m}^{\prime}(x) k^{2} G h \\
& A_{m}^{2}(x)=\sigma_{1} I_{m}^{\prime}(x) \kappa^{2} G h \quad B_{m}^{2}(x)=\sigma_{1} K_{m}^{\prime}(x) \kappa^{2} G h \\
& A_{m}^{3}(x)=-\frac{m}{r} I_{m}(x) k^{2} G h \quad B^{3}(x)=-\frac{m}{r} K_{m}(x) k^{2} G h \\
& C_{m}^{I}(x)=\left[\left(\sigma_{1}-I\right)\left\{\frac{m}{r} J_{m}^{\prime}(x)-\frac{m}{x^{2}} J_{\mathrm{m}}(x)\right\}\right](1-v) D \\
& C_{m}^{2}(x)=\left[\left(\sigma_{2}-1\right)\left\{\frac{m}{r} I_{m}^{\prime}(x)-r^{\frac{m}{m}}(x)\right\}\right](1-v) D \\
& C_{m}^{3}(x)=-\frac{1}{2}\left[I_{m}^{\prime \prime}(x)-\frac{1}{r} I_{m}^{\prime}(x)+\frac{m^{2}}{r^{2}} I_{m}(x)\right](1-v) D \\
& D_{m}^{1}(x)=\left[\left(\sigma_{1}-1\right)\left\{\frac{m}{r} Y_{m}^{\prime}(x)-\frac{m}{r^{2}} Y_{m}(x)\right\}\right](1-u) D \\
& D_{m}^{2}(x)=\left[\left(\sigma_{2}-1\right)\left\{\frac{m}{r} K_{m}^{\prime}(x)-\frac{m}{r^{2}} m^{K}(x)\right\}\right](1-v) D \\
& D_{m}^{3}(x)=-\frac{1}{2}\left[K_{m}^{\prime \prime}(x)-\frac{1}{r} K_{m}^{\prime}(x)+\frac{m^{2}}{r^{2}} K_{m}(x)\right](1-u) D \\
& E_{m}^{1}(x)=\left[\left(\sigma_{1}-1\right)\left\{J_{m}^{\prime \prime}(x)+\frac{\nu}{r} J_{m}^{\prime}(x)-\frac{v_{m}^{2}}{r^{2}} J_{m}(x)\right\}\right] D \\
& E_{m}^{2}(x)=\left[\left(\sigma_{2}-1\right)\left\{I_{m}^{\prime \prime}(x)+\frac{\nu}{r} I_{m}^{\prime}(x) \cdots V_{m}^{2}(x)\right\}\right] \quad D \\
& E_{m}^{3}(x)=\left[-\frac{m}{r} I_{m}^{\prime}(x)+\frac{\underline{m}}{r^{2}} I_{m}(x)\right](1-v) D \\
& \mathrm{~F}_{\mathrm{m}}^{1}(\mathrm{x})=\left[\left(\sigma_{1}-1\right)\left\{\mathrm{Y}_{\mathrm{m}}^{\prime \prime}(\mathrm{x})+\frac{\nu}{\mathrm{r}} \mathrm{Y}_{\mathrm{m}}^{\prime}(\mathrm{x})-\frac{v_{m}^{2}}{\mathrm{r}^{2}} Y_{\mathrm{m}}(\mathrm{x})\right\}\right] \mathrm{D} \\
& F_{m}^{2}(x)=\left[\left(\sigma_{2}-1\right)\left\{K_{m}^{\prime \prime}(x)+\frac{\nu}{r} K_{m}^{\prime}(x)-\frac{v m^{2}}{r^{2}} K_{m}(x)\right\}\right] D \\
& \mathrm{~F}_{\mathrm{m}}^{3}(\mathrm{x})=\left[-\frac{\mathrm{m}}{\mathrm{r}} \mathrm{~K} ;(\mathrm{x})+\frac{\mathrm{m}}{\mathrm{r}^{2}} \mathrm{~K}_{\mathrm{m}}(\mathrm{x})\right](1-\mathrm{v}) \mathrm{D}
\end{aligned}
$$

## APPENDIX C

FINITE ELEMENT ANALYSIS OF THICK RECTANGULAR PLATES

IN BENDING

## C.1. INTRODUCTION

```
 Pryor and Barber (125) have developed a twenty degree
of freedom rectangular element for the bending analysis of
rectangular plates including the effects of transverse shear.
In'the formulation of this element, in addition to the total
deflection w and rotations }\mp@subsup{\phi}{\mathbf{x}}{}\mathrm{ and }\mp@subsup{\phi}{Y}{}\mathrm{ normally considered
in plate bending, the average transverse shear strains }\mp@subsup{\overline{\gamma}}{\mathbf{x}}{
and}\mp@subsup{\overline{\gamma}}{y}{}\mathrm{ are taken as the additional degrees of freedom.
Numerical results presented demonstrate good agreement with
Reissner theory, and a substantial improvement over previous
formulations (133,134).
In the exact analysis of problems based on Reissner theory, Salarno and Goldberg (135) have separated the contributions due to bending and transverse shear. Such an alternative approach, when used in the finite element formulation, offers significant computational advantages. Following this approach, a (\(1 ? \times 12\)) shear stiffness matrix is derived which is used
```

$\qquad$
seperately to yield the transverse shear effects.

Since the notations used here are different from those used elsewhere in this work, a separate list is given at the end of this Appendix.

## C.2. FINITE ELEMENT FORMUIATION

The governing equations of the Reissner theory give the following relations for the stress resultants, (124),

$$
\begin{align*}
& M_{x}=D\left[\frac{\partial \phi}{\partial x}+v \frac{\partial \phi}{\partial y}+\frac{v k}{2 G h} q\right] \\
& M_{Y}=D\left[\frac{\partial \phi}{\partial y}+v \frac{\partial \phi}{\partial x}+\frac{v k}{2 G h} q\right]  \tag{C.1}\\
& M_{x y}=-\frac{D(1-v)}{2}\left[\frac{\partial \phi x}{\partial y}+\frac{\partial \phi}{\partial x}\right]
\end{align*}
$$

where

$$
\begin{equation*}
\phi_{x}=-\frac{\partial w}{\partial x}+k \frac{Q_{x}}{G h} \tag{C.2}
\end{equation*}
$$

$$
\phi_{y}=-\frac{\partial w}{\partial y}+k \frac{Q_{y}}{G h}
$$

Implicit in the theory is the value $k=6 / 5$ accounting for the variation in transverse shear strain across the section. Equations C.l and c.2 together with the equilibrium relations, result in the governing differential Equation

$$
\begin{equation*}
D \nabla^{4} w=q-\frac{h^{2}}{12}\left(\frac{2-v}{1-v}\right) \nabla^{2} q \tag{C.3}
\end{equation*}
$$

This equation has been solved by Salerno and Goldberg
cl35 ), and these exact solutions were used for comparison purposes with the finite element method in reference (125)

In Equations C.I the tenn $\frac{\frac{\nu k}{2 G h}}{2} q$ arises from consideration of the transverse normal stress $\sigma_{z}$. The effect of the stress is not accounted for in the finite element formulation of Barber et al or in the following, Accordingly, dropping this term, but retaining $k=6 / 5$, results in the governing Equation

$$
\begin{equation*}
D \nabla^{4} w=q-\frac{h^{2}}{10}\left(\frac{2}{1-\nu}\right) \nabla^{2} q \tag{C.4}
\end{equation*}
$$

It may be noted that solutions to Equation C. 4 can be obtained by minor modification of the Salerno and Goldberg solutions, and that these modified solutions should be used to assess the finite element method which discounts the effects of transverse normal stress.

In the finite element formulation to be described it is assumed that the contributions of bending and transverse shear to the plate deflection w, may be separated ; thus

$$
\begin{equation*}
w=w^{b}+w^{s} \tag{C.5}
\end{equation*}
$$

Further we assume that that the rotations $\phi_{\mathrm{x}}$ and $\phi_{y}$ can be obtained from the deflection resulting from bending only; thus,

$$
\begin{align*}
& \phi_{\mathrm{x}}=-\frac{\partial \mathrm{w}^{\mathrm{b}}}{\partial \mathrm{x}} \\
& \phi_{\mathrm{y}}=-\frac{\partial_{\mathrm{w}}^{b}}{\partial \mathrm{y}} \tag{c.6}
\end{align*}
$$

The resulting relations for the stress resultants become;

$$
\begin{aligned}
& M_{x}=-D\left[\frac{\partial^{2} w}{\partial x^{2}}+v \frac{\partial^{2} b}{\partial y^{2}}\right] \\
& M_{Y}=-D\left[\frac{\partial^{2} b}{\partial y^{2}}+v \frac{\partial^{2} b}{\partial x^{2}}\right]
\end{aligned}
$$

$$
\begin{align*}
& M_{x y}=D(1-v) \frac{\partial w^{2} b}{\partial x \partial y} \\
& Q_{x}=-\frac{G h}{k} \frac{\partial w^{s}}{\partial x}  \tag{C.7}\\
& Q_{y}=-\frac{G h}{k} \frac{\partial w}{\partial y}
\end{align*}
$$

Thus the bending and twisting moments are these given by classical thin plate theory. The strain energy relations for the deformed plate are then,

$$
\mathrm{U}=\frac{1}{2} \iint\left[\mathrm{u}_{\mathrm{b}}\right]^{\mathrm{T}}[\mathrm{D}]\left[\mathrm{u}_{\mathrm{b}}\right] \mathrm{dx} \mathrm{dy}+\frac{1}{2} \iint\left[\mathrm{u}_{\mathrm{s}}\right]^{\mathrm{T}}[\mathrm{G}]\left[\mathrm{u}_{\mathrm{s}}\right] \mathrm{dx} \quad \mathrm{~d} y
$$

where,

$$
\begin{aligned}
& {\left[u_{b}\right]^{T}=\left[\begin{array}{lll}
w_{x x}^{b} & w_{x x}^{b} & \left.w_{x y}^{b}\right] \\
{[D]=\left[\begin{array}{lll}
D & D \nu & 0 \\
D \nu & D & 0 \\
0 & 0 & 2 D(1-v)
\end{array}\right]}
\end{array} . ; .\right.}
\end{aligned}
$$

$$
\left[u_{s}\right]^{T}=\left[\begin{array}{lll}
w_{x}^{s} & w_{y}^{s} & 1
\end{array}\right.
$$

and
(C.9)
$[G]=\left[\begin{array}{cc}\mathrm{Gh} / \mathrm{k} & 0 \\ & \\ 0 & \mathrm{Gh} / \mathrm{k}\end{array}\right]$

The effects of bending and transverse shear on the deflection are thus uncoupled and the contributions of each may be calculated separately.

Considering bending contributions first, for the rectangular element shown in Figure C.I if we take as deflection function,

$$
\begin{equation*}
w^{b}=\left[1 x y x^{2} x y y^{2} x^{3} x^{2} y x y^{2} y^{3} x^{3} y x y^{3}\right] \tag{C.10}
\end{equation*}
$$

and as generalised co-ordinates the nodal deflection vector,

$$
\begin{equation*}
\left[\bar{w}_{b}\right]^{T}=\left[w_{i}^{b} w_{x i}^{b} w_{y i}^{b}\right] \quad i=1,2,3,4 \tag{C.11}
\end{equation*}
$$

```
there results the well known stiffness matrix for thin plate
bending obtained and studied by many workers (123). Such
elements may be assembled and solved in the usual way to yield
the contribution of bending to the total plate displacement, and
to give stress resultants according to thin plate theory,
 In the same way we take for the transverse shear
deflection,
 w
together with the nodal deflection vector,
 [\mp@subsup{\overline{w}}{S}{\prime}\mp@subsup{]}{}{T}=[\quad\mp@subsup{w}{i}{s}\mp@subsup{w}{xi}{s}\quad\mp@subsup{w}{yi}{s}]
and by substitution in the energy relation for transverse shear, Equation \(C .8\), a (12 x 12) shear stiffness matrix Is obtained for the element, This matrix is given In Table C.l. These shear stiffness matrices may now be assembled and solved in the usual way to yield the contribution of transverse shear to the plate total deflection, and to give the stress resultants \(\mathcal{Q}_{\mathbf{X}}\) and \(\mathrm{Q}_{\mathrm{Y}}\) Equation C. 7 .

The boundary condition constraints to be enforced with the bending element contribution are those normally considered.

In the shear stiffness contribution the following will apply for the edge condition

For an edge \(\mathrm{x}=\) constant,

Clamped and Simply supported
\[
w^{s} \quad-0 \quad ; \quad w_{x}^{s} \neq \dot{0} \quad \text { and } \quad w_{y}^{s}=0
\]
(C.14)
and
Free
\[
\mathrm{w}^{\mathbf{s}} \neq 0 ; \quad \mathrm{w}_{\mathrm{x}}^{\mathrm{s}}=0 \quad \text { and } \mathrm{w}_{\mathrm{Y}}^{\mathbf{s}}=0
\]

\begin{abstract}
Before examining the numerical application of this proposed method, two significant computational advantages will be noted, which result from separating the effects of bending and shear, First for a given finite element mesh two sets of simultaneous equations must be solved, corresponding to the assembled matrices obtained from the (12 x 12) bending and (12 x 12) shear element matrices. However these resulting sets of equations are of much lower order than that which must be stored and solved
\end{abstract}
```

using the (20 x 20) finite element formulation of reference (125 ).
For example, a 6 x 6 mesh used to solve a simply supported quarter
plate system will involve two (147 x 147) matrices by the method
described here, compared with a single (245 x245) matrix using
the method of reference (12F substantial advantages in computing time and storage are evident with the present method. Secondly, the deflection of the plate can be written, (135 ), as

```
\[
\begin{equation*}
\dot{w}_{\max }=\left[a+\beta(h / a)^{2}\right] q^{4} / \operatorname{ELn}^{3} \tag{C.15}
\end{equation*}
\]
in which the coefficient a derives from classical thin plate theory, while \(\beta\) gives the additional deflection resulting from transverse shear. Thus for a given aspect ratio (b/a) of the plate, it is necessary to calculate \(\boldsymbol{\alpha}\) and \(\boldsymbol{\beta}\) for one thickness only; the effect of transverse shear in a plate of identical aspect ratio, but differing (h/a) ratio is then readily obtained from Equation C.15.
c.3. NUMERICAL APPLICATIONS

To examine the accuracy and convergence of the method, the central deflection of a uniform thickness, uniformly loaded, simply- supported square plate has been calculated for various finite element meshes. Using symmetry the model comprised a quarter plate system having N elements per side, where N was
```

varied from 1 to 6. The value k = 6/5 was used, and thus the Solution to Equation C.4 obtained by modifying those obtained in reference (135) have been used to compare with the finite element results. The calculatedvalues of the coefficients $\alpha$ and $\beta$, Equation C.15, are given in Tables C.2 and C. 3 in Table C.2 a consistent load formulation has been used, while in Table C. 3 lumping of the distributed load at the nodes has been used. Good agreement with the exact values is obtained. Convergence of the shear contribution with a consistent load formulation is extremely rapid, and indicates that the use of precision bending elements would be most profitable to increase the accuracy of the bending conribution. With lumped loading of the nodes, convergence of the shear contribution is much slower, but it is interesting to note that the bending contribution is indeed improved for this particular bending element.
In Table C.4 the deflection coefficient for a uniform sjmply supported square plate of various thicknesses is given, and compared with the results given in reference (125) exact values, obtained from Equation 3 in reference (135) this case a $6 \times 6$ finite element mesh has been used for the quarter plate system, and the value $k=1$ suggested in reference employed. Again agreement between the various solutions is good, but it is worth noting once more the advantages in computing time and storage, and in the use of' Equation C. 15 for different thickness when assessing the proposed method.

```

\section*{C. 4 NOTATION}
\begin{tabular}{|c|c|}
\hline [a], [b] & - vectors of constants; \\
\hline \multirow[t]{2}{*}{b , s} & - subscripts and superscripts denoting bending \\
\hline & and shear; \\
\hline D & - flexural rigidity of the plate; \\
\hline E & - modulus of elasticity of material; \\
\hline G & - shear modulus of material; \\
\hline h & -- thickness of plate; \\
\hline \multirow[t]{2}{*}{k} & - constant denoting resistance of section to \\
\hline & warping; \\
\hline \(M_{x}, M_{y}, M_{x y}\) & - moment stress resultants; \\
\hline \(Q_{x}, Q_{y}\) & - transverse shear stress resultants; \\
\hline 4 & - transverse uniform distributed pressure; \\
\hline U & - strain energy; \\
\hline w & - total deflection of plate; \\
\hline \(w^{\text {b }}\) & - deflection of plate due to bending; \\
\hline ws & - deflection of plate due to transverse shear; \\
\hline [\(\mathrm{w}_{\mathrm{b}}\)] & - nodal displacements due to bending; \\
\hline \(\left[\bar{w}_{s}\right]\) & - nodal displacements due to transverse shear; \\
\hline \multirow[t]{2}{*}{\(\mathrm{x}, \mathrm{y}, \mathrm{z}\)} & - coordinates'of plate element; subscripts \\
\hline & denoting partial differentials; \\
\hline \(\alpha\), \(\beta\) & - deflection coefficients due to bending and \\
\hline & transverse shear; \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\bar{\gamma}_{X}, \bar{\gamma}_{y}\) & - average transverse shear strains; \\
\(\nabla^{2}\) & \(=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} ;\) \\
\(\mathbf{v}\) & - Poisson's ratio; \\
\(\sigma_{z}\) & - normal stress in the \(z\) direction; \\
\(\phi_{y}, \phi_{y}\) & - total rotations of sections \(x=\) constant \\
& and \(y=\) constant.
\end{tabular}

Figure C.I Rectangular plate shear deformation element.
Shear stiffness matrix for a rectangular element.

TABLE C. 2

Coefficients w max \(\mathrm{Eh}^{3} / \mathrm{qa}{ }^{4}\) for central deflection of a uniformly loaded simply supported square plate. \(v=0.3 \mathrm{k}=\mathrm{m} / 5\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{N} & \multirow[t]{2}{*}{\begin{tabular}{l}
Classical Theory \\
a
\end{tabular}} & \multirow[t]{2}{*}{Reissner Theory Eqn. C. 4 \(\beta\)} & \multicolumn{4}{|c|}{Finite Element (consistent load)} \\
\hline & & & a & \% error & \(\beta\) & \% error \\
\hline 1 & & & 0.05529 & 24.6 & 0.2259 & -1.7 \\
\hline 2 & & & 0.04726 & 6.5 & 0.2300 & 0.0 \\
\hline 3 & & & 0.04566 & 2.9 & 0.2299 & 0.0 \\
\hline 4 & & & 0.04509 & 1.6 & 0.2299 & 0.0 \\
\hline 5 & & & 0.04483 & 1.0 & 0.2299 & 0.0 \\
\hline 6 & & & 0.04469 & 0.7 & 0.2299 & 0.0 \\
\hline
\end{tabular}

TABLE C. 2

Coefficients \(w \max ^{3} / \mathrm{qa}{ }^{4}\) for central deflection of a uniformly loaded simply supported square plate. \(v=0.3 \mathrm{k}=\mathrm{m} / 5\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{N} & \multirow[t]{2}{*}{\begin{tabular}{l}
Classical Theory \\
a
\end{tabular}} & \multirow[t]{2}{*}{Reissner Theory Eqn. C. 4 \(\beta\)} & \multicolumn{4}{|c|}{Finite Element (consistent load)} \\
\hline & & & a & \% error & \(\beta\) & \% error \\
\hline 1 & & & 0.05529 & 24.6 & 0.2259 & -1.7 \\
\hline 2 & & & 0.04726 & 6.5 & 0.2300 & 0.0 \\
\hline 3 & & & 0.04566 & 2.9 & 0.2299 & 0.0 \\
\hline 4 & & & 0.04509 & 1.6 & 0.2299 & 0.0 \\
\hline 5 & & & 0.04483 & 1.0 & 0.2299 & 0.0 \\
\hline 6 & & & 0.04469 & 0.7 & 0.2299 & 0.0 \\
\hline
\end{tabular}

TABLE C. 3

Coefficients \(W_{\text {max }} E h^{3 / q a 4}\) for central deflection of a uniformly loaded simply supported square plate. \(\quad \nu=0.3 \quad \mathrm{k}=6 / 5\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{N} & \multirow[t]{2}{*}{\begin{tabular}{l}
Classical Theory \\
\(\alpha\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Zeissner \\
Theory \\
iqn. C. 4 \\
\(\beta\)
\end{tabular}} & \multicolumn{4}{|c|}{\begin{tabular}{l}
Finite Element \\
(Lumped load)
\end{tabular}} \\
\hline & & & a & \% error & \(\beta\) & \% error \\
\hline 1 & & & 0.03763 & -15.2 & 0.2226 & -3.2 \\
\hline 2 & & & 0.04302 & \(-3.0\) & 0.2161. & -6.0 \\
\hline 3 & & & 0.04378 & - 1.3 & 0.2230 & -3.0 \\
\hline 4 & & & 0.04404 & -0.7 & 0.2259 & -1.7 \\
\hline 5 & & & 0.04416 & -0.5 & 0.2273 & -1.1 \\
\hline 6 & & & 0.04422 & \(-0.3\) & 0.2281 & -0.8 \\
\hline
\end{tabular}

TABLE C. 4

Coefficients \(w_{m a x} E h 3 / q a^{4}\) for central deflection of a uniformly loaded simply supported square plate. \(v=0.3\) \(k=1.0\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{h/a} & \multirow[t]{3}{*}{Reissner Theory (135)} & \multicolumn{3}{|c|}{Finite Element} \\
\hline & & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Pryor et al } \\
(125)
\end{gathered}
\]} & \multicolumn{2}{|r|}{Present Method} \\
\hline & & & Const. Load & Lumped Load \\
\hline 0.01 & 0.04439 & 0.04423 & 0.04471 & 0.04424 \\
\hline 0.05 & 0.04486 & 0.04469 & 0.04517 & 0.04470 \\
\hline 0.10 & 0.04632 & 0.04612 & 0.04660 & 0.04612 \\
\hline 0.15 & 0.04876 & 0.04852 & 0.04900 & 0.04850 \\
\hline 0.20 & 0.05217 & 0.05186 & 0.05235 & 0.05182 \\
\hline 0.25 & 0.05656 & 0.05617 & 0.05666 & 0.05610 \\
\hline
\end{tabular}

\section*{APPENDIX D}

\section*{DETAILS OF COMPUTER PROGRAMS}

\section*{D. 1 INTRODUCTION}

\begin{abstract}
For numerical calculations several FORTRAN programs were written and most of the calculations in this investigation can be done with one of the programs described here. Several options, which facilitate the use of these programs either for the analysis of the entire rotor system or the component parts, are given. Furthermore these programs can be easily modified to meet particular requirements. Complete listings of the programs are given in section D.4. Brief description of the programs along with the definition of input and output variables are given below. Use of the various options are explained.
\end{abstract}
D. 2 FORTRAN PROGRAM FOR THE ANALYSIS OF ROTORS OF SIMPLE GEOMETRY - PROGRAM-1
D.2.1 General Description

This program was written for the numerical calculations involved in the exact method of analysis of rotors, described in chapter 4, section 4.3. Hence the use of this

```

finite element analysis. Thus this program is mainly used for
refining and assessing the accuracy and convergence of the
finite element results.
The following procedure is followed. First, a range is specified within which the exact frequency is expected to lie. Then the approximate frequency corresponding to a particular mode of vibration is read in. The iterations are performed with a small step size, within the range. When a change of sign of the value of the frequency determinant is noticed, it is checked whether there was a jump from either side of infinities. If this did not happen, then the step size is cut down and the iterations continued until the allowable step size is reached. If a jump had taken place then the iterations are simply continued until change of sign is again noticed. This procedure is repeated for other modes.

```

A flow diagram of the program is given in Figure D.2, which shows how the input data is provided and how the iterations are performed. The notation used in this flow diagram are explained below in section D.2.2 along with the variables used in the program.

\section*{D.2.2 Input and Output Variables}

Brief descriptions of the input and output variables used in PROGRAM-1 are given below in their order of appearance
in the program. Corresponding symbols used in the flow diagrams are given immediately following these variables where applicable.

Input and related variables.
\begin{tabular}{|c|c|c|}
\hline ALL & & ```
- allowable error in the value of Bessel functio
 given as a factor.
``` \\
\hline \multicolumn{2}{|l|}{FAC (N)} & - N! (factorial N). \\
\hline FI(N) & & - function \(Q(N)=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{N}\) \\
\hline SM & S & - initial step size. \\
\hline \multirow[t]{2}{*}{AL \(¢ \mathrm{~W}\)} & \(\alpha\) & - factor used to get the final allowable step \\
\hline & & size where the iteration is stopped. \\
\hline \multirow[t]{2}{*}{XXX} & x & - factor used to multiply the approximate \\
\hline & & frequency to get starting value. \\
\hline \multirow[t]{3}{*}{YYY} & \(y\) & - factor used to multiply the approximate \\
\hline & & frequency to get the final value beyond which \\
\hline & & iterations are not carried out. \\
\hline NDS & \(\mathrm{m}_{\mathrm{s}}\) & - starting value of nodal diameters. \\
\hline ND & \(m e\) & m final value of nodal diameters. \\
\hline \multirow[t]{2}{*}{NC} & \(\mathrm{n}_{\mathrm{r}}\) & - required number of frequencies in each nodal \\
\hline & & diameter case. \\
\hline IRNG & \(i_{\text {R }}\) & - rim option. \\
\hline ED & \(\mathrm{E}_{\mathrm{d}}\) & - Youngs modulus of disc material. \\
\hline EB & \(E_{b}\) & - Youngs modulus of blade material. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(R \emptyset D\) & \(\rho_{\text {d }}\) & - mass density of disc material. \\
\hline R \(\emptyset\) в & \(\rho_{b}\) & - mass density of blade material. \\
\hline PRD & \(\nu_{d}\) & - Poisson's ratio of disc material. \\
\hline PRB & \(v_{b}\) & - Poisson's ratio of blade material. \\
\hline RDI & a & - inner radius of disc. \\
\hline \(\mathrm{RD} \varnothing\) & b & - outer radius of disc. \\
\hline TD & h & - thickness of disc. \\
\hline BB & \(\mathrm{b}_{\mathrm{b}}\) & - width of blade. \\
\hline BD & \(\mathrm{d}_{\mathrm{b}}\) & - depth of blade \\
\hline BL & \(\ell\) & - length of blade. \\
\hline BANG & \(\delta\) & - blade stagger angle. \\
\hline 2 & 2 & - number of blades in the rotor, \\
\hline ER & \(E_{r}\) & - Youngs modulus of rim material. \\
\hline R \(\phi\) R & \(P_{r}\) & - mass density of the rim material. \\
\hline PRR & \({ }^{\mathrm{v}} \mathrm{r}\) & - Poisson's ratio of the rim material. \\
\hline RR & \(\mathrm{R}_{0}\) & - the rim centroidal radius. \\
\hline RJ & \(\mathrm{K}_{\mathrm{G}}\) & - St. Venant torsional stiffness of the rim section. \\
\hline RIZ & \(\mathrm{I}_{z z}\) & - moment of inertia of the rim section about Oz axis. \\
\hline RLX & \(\mathrm{I}_{\mathrm{xx}}\) & - moment of inertia of the rim section about Oxaxis. \\
\hline EI & \(e_{1}\) & - distance between the inner boundary and the centroid of the rim, \\
\hline E2 & \(\mathrm{e}_{2}\) & - distance between the centroid and the outer boundary of the rim. \\
\hline RA & \(A_{r}\) & - area of cross-section of the rim. \\
\hline AFR(, ) & \(\omega_{a}\) & - approximate frequencies of the rotor. \\
\hline
\end{tabular}

Output variables
\begin{tabular}{lll} 
M & \(m\) & - number of nodal diameters. \\
\(N\) & \(n\) & - mode number. \\
FF & \(\omega_{\mathbf{t}}\) & - trial value of the frequency. \\
NIT & \(\mathbf{i}\) & - number of iterations. \\
\(\operatorname{AFR}()\), & \(\omega_{\mathbf{r}}\) & - refined frequencies.
\end{tabular}
D.2.3 Subroutines Used In PROGRAM-1

The subroutines and functions used in PROGRAM-l are
given below.
(1) Main program.

MAIN-1
(2) Subroutines used to obtain disc dynamic stiffness matrix.

EXTDSK
DETERM
(3) Functions used for the computation of the values of Bessel functions.

XJN

XIN
XYN
XKN
FACT
PHI
```

D.3 FORTRAN PROGRAMS FOR THE ANALYSIS OF ROTORS OF GENERAL
GEOMETRY - PROGRAM-2 and PROGRAM-3
D.3.1 General Description

```
    For the stress and vibration analysis of rotors of
general geometry two programs, PROGRAM-2 and PROGRAM-3, were
written. Roth of these are based on the finite element method
of analysis of the rotor described in chapter 4. The effects of
transverse shear and rotary inertia are not considered in
PROGRAM-Z, whereas these effects are considered in PROGRAM-3.
Also in the latter the rim of the rotor, if present, is consi-
dered to be a part of the disc.
    In both these programs all the necessary input
statements are included so that input data closely describing
rotors of general geometry can be fed in. The materials of the
disc, rim and blades may be of different materials. The programs
are featured with several options which allow the user to either
consider the entire rotor or the parts. Also the effect of
rotation and temperature gradient can be included when they are
thought necessary.

The meaning and use of the various options available in these programs are given below. The symbols used here are the same used in the programs. A flow diagram is given in

Figure D.3, showing how the input data are provided and the symbols used in this diagram are explained along with those used in the programs in section D.3.3.
D.3.2 Options Available In PROGRAM-2 AND PROGRAM-3
(1) IøPT - General option.
value description

1 Vibration of the disc alone is considered.

2 Vibration of the blade alone is considered.
3 Vibration of the bladed disc is considered.
4 Stress analysis of the disc alone is considered.
(2) IRNG - Rim option
value description
0 No rim present.
1 A rim is present.
(3) ITED - Disc thermal gradient option
\begin{tabular}{cc} 
value & description \\
0 & No temperature gradient present. \\
1 & Temperature gradient present.
\end{tabular}
(4) ISTB - Blade initial stress option.
\begin{tabular}{cc} 
value & description \\
0 & Blade has no initial stresses. \\
1 & Blade has initial stresses.
\end{tabular}
```

(5) IEDE - Blade general option.
value description
1 Vibration of a single blade in the principal
directions and in torsion are considered
seperately.
2 The coupled bending-bending vibration of a
pretwisted blade is considered.
3 The vibration of a single or group of blades
with or without initial stresses is considered.
D.3.3 Input and Output Variables
Brief descriptions of the input and output variables
used in PROGRAM-2 and PROGRAM-3 are given below, in the order of
their appearance in the programs. Corresponding symbols usedin
the flow diagrams are given immediately following these variables
where applicable.
Variables used in PROGRAM-2 and PROGRAM-3
I\emptysetPT i - general option.
IRNG \quad\mp@subsup{\mathbf{I}}{R}{\prime} - rim option.
NF n - number of frequencies to be calculated for each
diametral node configuration.
\emptysetMGA \Omega - speed of rotation in rad./sec.

```
\begin{tabular}{|c|c|c|}
\hline ND & \(\mathrm{m}_{\mathrm{e}}\) & - final value of nodal diameters. \\
\hline MDS & \(\mathrm{m}_{\mathrm{S}}\) & - starting value of nodal diameters. \\
\hline NDE & \(\mathrm{N}_{\mathrm{d}}\) & - number of disc elements. \\
\hline ITED & id & - temperature option of the disc \\
\hline ED & \(\mathrm{E}_{\mathrm{d}}\) & - Young's modulus of the disc material. \\
\hline \(R \emptyset \mathrm{D}\) & \(\rho \mathrm{d}\) & - mass density of the disc material. \\
\hline PRD & \(v_{d}\) & - Poisson's ratio of the disc material. \\
\hline ALD & \(\alpha_{d}\) & - coefficient of thermal expansion of the disc material. \\
\hline SRI & \(\sigma_{a}\) & - radial stress at the inner boundary of the disc. \\
\hline SR \(\emptyset\) & \(\sigma_{\mathrm{b}}\) & - radial stress at the outer boundary of the disc. \\
\hline NTD & & - number of degrees of freedom in the disc. \\
\hline R(I) & r(i) & - the radii at the inner and outer boundaries of \\
\hline & & all the disc elements' taken in increasing order. \\
\hline T ( I ) & h(i) & - the thicknesses at the inner and outer boundaries \\
\hline & & of all the disc elements taken in increasing order. \\
\hline TE(I) & T (i) & - values of temperature at the inner and outer boun- \\
\hline & & daries of all the disc elements taken in increas- \\
\hline & & ing order. \\
\hline NBE & \(\mathrm{N}_{\mathrm{b}}\) & - number of blade elements. \\
\hline NB & Z & - number of blades present. \\
\hline ISTB & ib & - blade initial stress option. \\
\hline IBDE & \(i_{b}\) & - blade general option. \\
\hline NSB & & - number of stations in the blade. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline NTB & & number of degrees of freedom in the blade. \\
\hline EB & \(\mathrm{E}_{\mathrm{b}}\) & - Young's modulus of blade material. \\
\hline \(R \emptyset B\) & \(\rho_{b}\) & - mass density of blade material. \\
\hline PRB & \(v_{b}\) & - Poisson's ratio of blade material. \\
\hline BX (I) & \(x(i)\) & - distancees of stations in the blade from the root. \\
\hline BB (I) & \(I_{1}(\mathrm{i})\) & - \(I_{m}\) in of the blade at the stations considered. \\
\hline \(\mathrm{BD}(\mathrm{I})\) & \(I_{2}(\mathrm{i})\) & - \(I_{\text {max }}\) of the blade at the stations considered. \\
\hline ARA (I) & A (i) & - area of cross-section of blade at the stations. \\
\hline BKG (I) & \(K_{G}(i)\) & ```
- St. Venant's torsional stiffness of the blade
    section at the stations.
``` \\
\hline ANG (I) & \(\delta(\mathrm{i})\) & - pretwist angles at the stations. \\
\hline SIG (I) & \(\sigma(\mathrm{i})\) & - initial stresses in the blade at the stations. \\
\hline ER & \(E_{r}\) & - Young's modulus of rim material. \\
\hline \(R \emptyset R\) & or & - mass density of rim material. \\
\hline PRR & \(v_{r}\) & - Poisson's ratio of rim material.. \\
\hline ALR & \(\alpha_{r}\) & - coefficient of thermal expansion of rim material. \\
\hline RRI & \(\mathrm{R}_{i}\) & - inner radius of rim. \\
\hline \(R \mathrm{R} \emptyset\) & \(\mathrm{R}_{0}\) & - outer radius of rim. \\
\hline RTI & \[
t_{i}
\] & - thickness of rim at inner radius. \\
\hline RT \(\varnothing\) & to & - thickness of rim at outer radius. \\
\hline RTEI & \(\mathrm{T}_{i}\) & - temperature at inner radius of rim. \\
\hline RTE \(\emptyset\) & \(\mathrm{T}_{0}\) & - temperature at outer radius of rim. \\
\hline
\end{tabular}

Additional variables used in PROGRAM-2 alone.

El \(\quad \mathbf{e}_{1}\) - distance from inner boundary to centroid of rim.
E2 \(\quad \mathbf{e}_{2} \quad\) - distance from centroid to outer boundary of rim.
\begin{tabular}{lll}
RIZ & \(I_{z}\) & - moment of inertia about \(O z\) axis of rim section. \\
RIX & \(I_{X}\) & - moment of inertia about \(O x\) axis of rim section. \\
RJ & \(K_{G}\) & - St. Venant's torsional stiffness of rim section.
\end{tabular}

Additional variables used in PROGRAM-3 alone.
\begin{tabular}{ll}
SCD & \(k_{d}=1 / k^{2}\), where \(k^{2}\) is shear constant of disC. \\
SCR & \(k_{r}=1 / k^{2}\), where \(k^{2}\) is shear constant of rim. \\
SCB & \(k_{b}=1 / k\), where \(k\) is shear constant of blade.
\end{tabular}
D.3.4 Subroutines used in PROGRAM-Z and PROGRAM-3.

The subroutines used in PROGRAM-2 and PROGRAM-3 are divided in to the following sections.
(1) Main programs.
(2) Subroutine calculating the blade subsystem matrices.
(3) Subroutine calculating the disc subsystem matrices.
(4) Subroutine assembling the subsystem matrices in to the system matrices.
(5) Subroutine calculating the stresses in the disc.
(6) Subroutines used to solve the eigenvalue problem.
(7) General purpose subroutines.

Sections (1) to (4) are different for the two programs, whereas sections (5) to (7) are the same for both the programs. The subroutines used in these sections are given below.
\begin{tabular}{clll}
Section & PROGRAM-1 & & PROGRAM-2 \\
1 & MAIN2 & & MAIN3 \\
2 & BLADE & & THKBDE \\
\(\mathbf{3}\) & DISC & & THKDSC \\
4 & SYSTEM & & THKSYS \\
\(\mathbf{5}\) & & INLSTR & \\
\(\mathbf{6}\) & & EIGVAL & \\
& & MAX & \\
& & QUICK & \\
& & INVT & \\
& & ASMBLE & \\
& & SYSLOD & \\
& & REDUCE & \\
& & & MRIMUL \\
& & &
\end{tabular}

Figure D.l Variation of the value of the frequency determinant with increasing values of trial values of \(\boldsymbol{\omega}\)

Figure D. 2 Flow diagram for PROGRAM-1.

Figure D. 3 Flow diagram for PROGRAM-2 and PROGRAM-3, showing how the input data is provided.

\section*{D.4.1 Subroutines used in PROGRAM-1}
```

    **********************************************************
    *
        *
    * MAIN-1 -- MAIN PRDGRAM QF PRDGRAM-1
    * *
    ******************************************************
    * THIS PRQGRAM REFINES TIE APPRQXIMATE FREQUENCIES *
    * ØF A BLADED ROTQR USING THE 'EXACT IAETHOD' *
    * THE DIMENSIONS OF ALL THE ARRAYS ARE FIXED AND NQ *
    * CHANGES ARE NECESSARY AT ANY TIME:,
    ******************************************************
    DIMENSION S (2,2),C (2,2)
    DIMENSICN AFR(0/10,10)
    COMMCN PI,PRD,ED,TD,AK,BK,RDI,RDO,CDL,FCC
    CQINON/ENE/FAC(O/60),FI (O/60),ALL.
    ALL=0.1E-10
    ******************************************************
    * CALCULATE AND STCRE THE VALUES ØF FACTERIALS AND *
    * THE PHI FUNCTIQNFQR VALUES OF N FROM 0 TO 55, *
    *******************************************************
        DQ 18 I=0,55
        FAC(I)=FACT(I)
        18FI(I)=P!II(I)
        16 CONT INUE
        PRINT }
        NOP=0
        ******************************************************
        * READ IN VALUES CF INITIAL STEP SIZE AND FACTGRS
        * FOR FINAL STE? SIZE AIJD RANGE
        ******************************************************
        READ 10,SM,ALCY,XYX,YYY
        PRINT10,SM,ALEV,XXX,YYY
        ******************************************************
        * READ I N IT IAL AND FIMAL NUMBERS DF NSDAL DIAMETERS *
        * TO BE CENSIDE?ED, T:IE NUMBE? DF FREQUENCIES TE BE *
        * CALCULATED AIvD RING \emptysetPTICN
        *
        ******************************************************
        READ 11,NDS,IJD,NC,IRNG
        PRINT11,NDS,ND,NC,IRNG
    ```
```

C ***********************************************************
C * READ IN VALUES QFTHE DISC AND BLADE ELASTIC * C CONSTANTSAND D INENSIONS N
C
IF(IRNG.EQ.O)GOTQ 19
C **********************************************************


```
 READ 12,ED,ES
 PRINT12,ED,EB
 READ 12,!OD,R0B
 PRINT12,ROD,ROB
 READ 10,PRD,PRB
 PRINT10,PRD,PR3
 READ 10,RDI,RDO,TD
 PRINT10,RDI,RDD,TD
 R E A D 10,BB,BD,BL,BANG,Z
 PRINT10,BB,BD,3L,3ANG,Z
 RRR=RDO
 El=0.0
 E2 =0.0
 * IF RIM IS P`ESENT, READ IN THE VALUES OF THE 'RIM *
 ** ELASTIC CQNSTANTS AND DIMEMSIONS
 .*
 **
 READ 12,ER,FRR,PRR
 PRINT12,ER,RQR,PRZ
 READ 10,RR,RJ,RIZ,RIX,EI,E2,RA
 PRINT10,RR,RJ,RIZ,RIX,E1,E2,RA
 RRR =RR+E2
 Al =1.0/RR
 A2=A1*ill
 A3=A1*A2
 A4=A1*A3
 A5=A!*A4
 GR=0.5*ER/(1.0+PRR)
19 CONTINUE
 **
 READ IN THE V A L U E S OFThEAPPPミDXINATEFREQUENCY*
 * VALUES =gR THE SPECIFIED VAL'JES OFIODALDIAMETER*
 **
 READ 6, ((AFR(I,J), j=1,NC),I=NDS,ND)
 PRINTG,((AF?(I,J), J=1,NC),I=NDS,ND)
 x2=1.0/RRR/R员
 PI = 3.141592653589793
 CCC=2.0*P1
 B1X=3D*33*33*33/12.0
 BIY=3B*BD*BD*3D/12.0
 BJ=33*3B*33*3D*(1./3.-.21*BB/2D*(1.-3B/BD*BB/3D*3D/BD*BB/2D/12.0;
 CD=SGRT (SGRT (12.0*RGD*(1.0-PRD*PRD)/ED/TD/TD))
 CX=SQRT (SNST (12.0*R03/ER/35/BR))
 CY=SORT (SORT (12.0*RE3/ES/BD/BD))
 CT=SQRT (2.0*ROB*(1.0+?RZ)/EB)
 BA=BANG }\timesP1/180.
 SNA= SIN(3A)
```

$\operatorname{CSA}=\operatorname{CES}(3 \mathrm{~A})$
RSNA $=E 2 * S N A$
$\operatorname{RCSA}=E 2 * C S A$
SAS $=$ SNA $*$ SNA
$\operatorname{CAS}=\mathrm{CSn} \mathrm{C}=\mathrm{CSA}$
S R S =RSNA*RSNA
CRS =?CSA*RCSA
$P Q=0.5 /(1.0+P R B)$
PRINT 3
$M=$ NDS -1
20 CENT INUE
******************************************************

* SELECT THE NUMEER ØF NクDAL DIAMETERS *
****************************************************** $M=M+1$
IF (M.GT.ND) GD TQ 90
PRINT 1
$\mathrm{AN}=\mathrm{M}$
AN2 $=\mathrm{AN} * \mathrm{AN}$
AN4 $=$ AN $2 *$ AN 2
PRINT 5
$\mathrm{F} F=0.0$
$F C C=0.5$
$I F(M \cdot E Q .0) \quad F C C=1.0$
IF (IRING.NE.0) CR $=2.0 * P I * F C C * R R$
$\mathrm{N}=0$
30 CENTINUE
NIT $=0$
$A M=S M$
******************************************************
* SELECT THE NUMBER CF NDDAL CIRCLES
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$
$\mathrm{N}=\mathrm{N}+1$
$\mathrm{XN}=\mathrm{N}$
IF(N.GT.NC) GQ T® 20
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
* set le:er and uppea limits fer iteratien
******************************************************
$\mathrm{FF}=\mathrm{YXX} \times \mathrm{AFA}(\mathrm{B}, \mathrm{N})$
$Z Z Z=Y Y Y * A F R(H, H)$
25 CONTIMUE
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
* SPCIFY STE? SIZE
******************************************************
STEP $=A \mathrm{M}$ !
GO TD 37
33 CONTINUE
$\mathrm{FF}=\mathrm{XXY} \because \mathrm{AFR}(\mathrm{M}, \mathrm{N})$
$\mathrm{AM}=\mathrm{AM} * 0.5$
STEP =AL:
1F(STEP.LT.0.0.5) GC TØ 30
37 CENTINUE

```
**********************************, * SPECIFY TYE ALLQVABLE STEP SIZE TO END ITERATIQN * ** ALLOW = ALOU* *N
KK=1
KKK=1
40 CONTINUE
\(F F=F F+S T E P\)
52 CQNT INUE
**
* START ITERATING
**
NIT \(=\) NIT +1
IF (NIT.GT.500)GOTD. 30
\(N Q P=N Q P+1\)
\(X Y=F F\)
1F('FF.GT.ZZZ) GQT@ 33
\(F R=F \bar{F} * C C C\)
SFR= SQRT(FR).
\(C D L=C D * S F Q\)
\(A K=C D L * ? D I\)
\(\mathrm{BK}=\mathrm{CDL} * \mathrm{PDQ}\)
**
* CCMPUTE THE DYIVAMIC STIFFNESS CQEFFICIENTS FQR
* THE DISC
**** \(* *\)
CALL EXTDSK (C,M)
**
* CeMPUTE THE DYNAMIC STIFFNESS CQEFFICIENTSFDR *
* ARRAY QF bLADES
**
\(\mathrm{CXL}=\mathrm{CX} * \mathrm{~S} \overline{\mathrm{~F}} \Omega\)
\(C Y L=C Y * S F R\)
\(C T L=C T * F R\)
\(C X R=C X L * B L\)
\(C Y R=C Y L * 3 L\)
\(C T R=C T L * S L\)
\(S N X=S I N(C X R)\)
SNY= SIV(CVR)
\(C S Y=C Q S(C X R)\)
\(C S Y=C \boxtimes S(C Y R)\)
SNT= SIN(CTR)
CST= C0S(CTR)
S:AX=S LNI: (CX. \()\)
SHY=S INH(C.YR)
CHX=COS: (CXR)
CHY \(=\) COSH(CYR)
\(D X=E S * Z * F C C * B I X /(C S X * C H X+1.0)\)
\(D \dot{Y}=E B * Z * F C C * B I Y /(C S Y * C H Y+1.0)\)
\(P X=-D X * C X L * C X L * C X L *(C S X * S H X+S N X * C H X)\)
\(P Y=-D Y * C Y L * C Y L * C Y L *(C S Y * S H Y+S N Y * C H Y)\)
\(R X=D X * C X L * C X L * S N X * S H X\)
\(R Y=D Y * C Y L * C Y L * S N Y * S R Y\)
\(T X=D X * C X L *(C S X * S H X-S N X * C H X)\)
```


## 45 CENTINUE

DO $50 \mathrm{I}=1,2$
Dø $50 \quad J=1,2$
$50 \mathrm{~S}(\mathrm{I}, \mathrm{J})=0.0$
******************************************************

* CRMBINE THE SUBSYSTEM MATRICES TO GET THE SYSTEM *
* DYNamic Stiffness matrix
******************************************************
$\mathrm{AZ}=\mathrm{SAS} * \mathrm{PX}+\mathrm{CAS} * P \mathrm{Y}+\mathrm{AN} 2 * \mathrm{~K} 2 * A T+\mathrm{RMA}$
$B Z=-E 2 * S A S * P Y-E 2 * C A S * P Y+S A S * R Y+C A S * R Y+R M B-A N 2 * X 2 * A T * E 2$
$C Z=S R S * P X+C R S * P Y+S A S * T X+C A S * T Y-2.0 * E 2 * S A S * R X$
. 2 . O $* E 2 * C A S * R Y+R M C+A N 2 * X 2 * A T * E 2 * E 2$
$S(1,1)=C(1,1)+A Z$
$S(1,2)=C(1,2)-E 1 * A Z+B Z$
$S(2,2)=C(2,2)+E 1 * E 1 * A Z-2 \cdot 0 * E 1 * B Z+C Z$
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
* CALCULATE THE VALUE CFTHE FREQUENCY DETERMI NANT *
******************************************************
$\operatorname{DET}=S(1,1) * S(2,2)-S(1,2) * S(1,2)$
IF(KK.EQ. 19 G OTO 75
******************************************************
* CHECK IF VALUE efDETERMINANT CHANGES SIGN
$A A A=A B S(P V)+A B S(D E T 9$
$B B B=A B S C P V+D E T 9$
IF (AAA. NE. $3 \mathrm{BB} 9 \mathrm{KKK}=2$
$D I F=A B S(\dot{P} \ddot{V})+A B S(D E T)$
$75 \mathrm{PV}=\mathrm{DET}$
$\mathrm{KK}=2$
IF CKKK.EQ. 19 GQTQ 40
IF (STEP.LT.AM) GE TE 80
FF=FF-STEP
DIFA $=$ DIF
STEP=ALLOA
$\mathrm{KK}=1$
$K K K=1$
$\mathrm{G} \varnothing \mathrm{T} \quad 52$
$80 \mathrm{DIFB}=\mathrm{DIF}$

```
C **
C * CHECK IF VALUE gF DETEMINANT JUMPS FROMDNE E N D T0*
C
C
 * The other endof infinity
 **
 IF(DIFA.LT.DIFB)GD TO 25
 AFR(M,IJ)=FF

 * PRINT GUT THE RESULTS UHEN SAT ISFACTABY *
 PRINT 15,M,N,FF,NIT
 GOT0 3 0
 9 0 CENTINUE

 * PRINT EUT SUMMARY QF ALL THE RESULTS *
 D0 95 IJK=1,5
 PRINT 3
 PRINTIO,RDI,RDD,TD
 IF(IRNG.NE.O) PRINT10,RR,RA,E1,E2
 2
 PRINT 10,BB,BD,3L,BANG,BN
 95 PRINT 2,((AFR(I,J),J=1,NC),I=NDS,ND)
 GET0 16
103 CALL EXIT
 FORHAT (/////)
 FgRMAT (/6F12.4)
 FGGMAT(1H1,5X,' EXACT SOLUTIZN--FREQUNCIES IN CPS.'//)
 5 FRRMAT(3X,46HNODAL DI A MODE NO FREQUENCIES ITERATIONS)
 6 FQRLAT(6F10.4)
 7 FORMAT(1HI,5X,'VIBRATIGNQF BLADED DISC -- EXACT SQLUTION'
 0//5X,'INPUT DATA' //)
 10 FERMAT (8F10.3) i
 11 FgRHAT(1615)
 12 FORMAT (4F20.9)
 15 FORMAT (/2 (6X,13),3X,F13.4,110)
 END
```

```
 SUBRGUTINE DETERM(AA,N,D)
 **
 * THIS SUBR&JTINE EVALUATES THE VALUE D QF THE
 * DETERHI NANT&F ARRAY AA (N,N).
 * BEFORE ENTE?ING THE SUBROUTINE DEFINE ALL THE *
 * ELEMENTS 厄F ARRAY AA
 DIHENSION AA(4,4),A(4,4)
 DQ 200 I=1,N
 DO 200 J=1,N
200 A(I,J)=AA(I,J)
 D=1.
 K=1
 1 CONTINUE
 , KK=K+1
 IS =K
 IT=K
 B= ABS (A(K,K))
 DO 2 I =K,N
 DE 2 J=K,N
 IF(ABS (A(I,J))-B)2,2,21
21 IS=I
 IT=J
 B=ABS(A(I,J))
 2 CONT INUE
 IF (IS-K)3,3,31
31 D O 32 J=K,N
 C=A(IS,J)
 A(IS,J)=A(K,J)
32 A(K,J)=-C
 3 CONTINUE
 IF(IT-K)4,4,41
4|DC 4 2 I=KsN
 C=A(I,IT)
 A(I,IT)=A(I,K)
 42 A(I,K)=-C
 4 CQNTINUE
 D=A(K,K)*D
 IF(A(K,K))5,71,5
 5 CENT INUE
 DO 6 J=KK,N
 A(K,J)=A(K, J)/A(K,K)
 -D\emptyset 6 I=KK,N
 W=A (I,K)*A (K,J)
 A(I,J)=A(I,J)-W
 6
 CONTINUE
 K=KK
 IF(K-N)1,70,1
 70 D=A(N,N)*D
 71 RETURN
 END
```

SUBROUTINE EXTDSK(C,M)
******************************************************

* THIS SUBADUTINE CALCULATES THE EXACT STIFFNESS *

MARIX C(2,2) OF AN UNIFE.M. DISC,

* INNER BQUNDARY AND FREE AT THE QUTER BOUNDARY

DIMENSION $\mathrm{A}(4,4), \mathrm{C}(2,2)$
CQMMEN PI, PR, ED,TD, AK, BK, RDI, RDÉ, CDL, FCC
$\mathrm{L}=\mathrm{M}+1$
$D=T D * T D * T D / 12.0 /(1.0-P R * P R) * E D$
$A 2=C D L * C D L$
$\mathrm{A} 3=\mathrm{A} 2 * \mathrm{CDL}$
******************************************************

* CALCULATE AND STgRE ALL THE BESSEL FUNCTIONS TQ
* BE USED LATER
******************************************************
AUM=XUN (M, AK)
$B J M=X J N(M, B K)$
AJL $=X J N(L, A K)$
$3 J L=X J N(L, B K)$
$A Y M=X Y N(H, A K, A J M)$
$B Y M=X Y N(M, B K, B J M)$
$A Y L=X Y N(L, A K, A J L)$
$B Y L=X Y N(L, B K, B J L)$
AIM $=\mathrm{KIN}(\mathrm{H}, \mathrm{AK})$
BIM=XIN ( $\mathrm{M}, \mathrm{BK}$ )
$A I L=X I N(L, A K)$
$B I L=X I N(L, B K)$
AKM=XKN ( $\mathrm{H}, \mathrm{AK}, \mathrm{AI} \mathrm{K}$ )
$B K M=X K N(M r B K, B I M)$
$\mathrm{AKL}=\mathrm{XKN}(L, A K, A I L)$
$B K L=X K N(L, B K, B I L)$
$A M=M$
$A M 2=A M * A M$
RI2=RDI*RDI
RI3=RI2*RDI
$R 02=R D O * R D E$
$\mathrm{R} 03=\mathrm{RE} 2 \times \mathrm{RD} 0$
$A X=A M / R D I$
$B X=A M / R D Z$.
$B Y=A M *(A K-1) *.(1 .-P R) / R C 2-A 2$
$B Z=A M *(A M-1 \cdot) *(1--P R) / R E 2+A Z$
$A A=C D L *(1 .-P R) / R D I$
$B 3=C D L *(1 .-P B) / R D B$
AN1 $=A X * A U M-C D L * A J L$
AN2 $=A X * A Y M-C D L * A Y L$
AN3 $=A X * A I: 1+C D L * A I L$
AN4 $=A X * A K M-C D L * A K L$
$B N I=B X * B N M-C D L * B L L$
$3 N 2=5 X * B Y M-C D L * B Y L$
BN3 $=3 \times * 3 I M+C D L * B I L$
BN4 $=B X * B K M-C D L * B K L$
, $B N 5=B Y * 3 J \dot{N}+3 B * B J L$.
$3 N 6=3 Y * B Y M+3 B * B Y L$
$\mathrm{BN} 7=\mathrm{BZ} * \mathrm{BIM}-\mathrm{BB} * \mathrm{BIL}$

```
```

BN8=B2*BKM+BB*B:KL

```
```

BN8=B2*BKM+BB*B:KL
BP=(-AM*A2*RO2+(1.-PR)* (1.-AM)*AM2)/R03
BP=(-AM*A2*RO2+(1.-PR)* (1.-AM)*AM2)/R03
BQ=(AM*A2*RQ2+(1--PR)*(1.-AM)*AMQ)/RO3
BQ=(AM*A2*RQ2+(1--PR)*(1.-AM)*AMQ)/RO3
BR=(A3*ii03 +CDL*RDO*(1--PR)*AM2)/RD3
BR=(A3*ii03 +CDL*RDO*(1--PR)*AM2)/RD3
BS=(A3*RO3-CDL*RDO*(1-PR)*AN2)/R03
BS=(A3*RO3-CDL*RDO*(1-PR)*AN2)/R03
BN23=5P*3UL{+3R*3JL
BN23=5P*3UL{+3R*3JL
BN24=BP*BYM+3R*BYL
BN24=BP*BYM+3R*BYL
BN25=30*BIM+3S*3IL
BN25=30*BIM+3S*3IL
BN26=30*B1K!-BS *3RL

```
BN26=30*B1K!-BS *3RL
```

```
**
```

******************************************************

* CALCULATE ANDSTGRE THE VALUES DFTHEDETERMINANTS*
* CALCULATE ANDSTGRE THE VALUES DFTHEDETERMINANTS*
* APPEARING IN THE DYNAMIC STXFFIJESS MATRIX OF_DISC *'
* APPEARING IN THE DYNAMIC STXFFIJESS MATRIX OF_DISC *'
******************************************************
******************************************************
A(1,1)=ACl!
A(1,1)=ACl!
A(1,2)=AY!
A(1,2)=AY!
A(1,3)=AIM
A(1,3)=AIM
A(1,4)=AKK
A(1,4)=AKK
A(2,1)=AN1
A(2,1)=AN1
A(2,2)=AN2
A(2,2)=AN2
A (2,3)=AN3
A (2,3)=AN3
A (2,4)=AN4
A (2,4)=AN4
A(3,1)=EJM
A(3,1)=EJM
A(3,2)=BYM
A(3,2)=BYM
A (3,3)=BIM
A (3,3)=BIM
A (3,4)=BKM
A (3,4)=BKM
A(4,1)=3N1
A(4,1)=3N1
A(4,2)=BN2
A(4,2)=BN2
A(4,3)=EN3
A(4,3)=EN3
A(4,4)=3:N4
A(4,4)=3:N4
CALL DETERM(A,4,DM)
CALL DETERM(A,4,DM)
A (1,1)=AYM
A (1,1)=AYM
A(1,2)=AIM
A(1,2)=AIM
A(1,3)=AKM
A(1,3)=AKM
A (2,1)=AN2
A (2,1)=AN2
A(2,2)=AN3
A(2,2)=AN3
A(2,3)=AN4
A(2,3)=AN4
A(3,1)=BYI1
A(3,1)=BYI1
A(3,2)=3IM
A(3,2)=3IM
A(3,3)=BKM
A(3,3)=BKM
CALL DETERM(A, 3, DNPA)
CALL DETERM(A, 3, DNPA)
A(1,1)=AUH
A(1,1)=AUH
f(2,1)=ANVI
f(2,1)=ANVI
A(3,1 )=BJM
A(3,1 )=BJM
CALL DETERM(A, 3, DMP:3)
CALL DETERM(A, 3, DMP:3)
A (1,2)=AYM
A (1,2)=AYM
A(2,2)=AN2
A(2,2)=AN2
A(3,2)=BYM
A(3,2)=BYM
CALL DETERM(A, 3,DI:PC)
CALL DETERM(A, 3,DI:PC)
A(1,3)=nIM
A(1,3)=nIM
A(2,3)=A1:3
A(2,3)=A1:3
A(3,3 ) =BIM
A(3,3 ) =BIM
C A L L DETERM(A, 3,DMPD).

```
C A L L DETERM(A, 3,DMPD).
```

$A(1,1)=A Y M$
$A(1,2)=A I M$
$\mathrm{A}(1,3)=\mathrm{AKM}$
A $(2,1)=A 1: 2$
$A(2,2)=A N 3$
$A(2,3)=A N 4$
$A(3,1)=B N 2$
$A(3,2)=$ BN 3
$A(3,3)=B N 4$
CALL $\operatorname{DETERM}(A, 3, D M S A)$
$A(1,1)=A J M$
$\mathrm{A}(2,1)=\mathrm{AN}$ !
$A(3,1)=B N 1$
C A L L DETERM(A,3,DMSB)
$A(1,2)=A Y M$
$A(2,2)=A N 2$
$A(3,2)=\mathrm{BN} 2$
CALL DETERM (A, $3, \operatorname{DMSC}$ )
. $\mathrm{A}(1,3)=\mathrm{AIM}$
$A(2,3)=$ AN 3
$A(3,3)=B N 3$
CALL DETERM (A, 3, DMSD)
C $* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$
C * CALCULATE THE VALUES ©F THE ELEMENTS QFTHE DISC *

* DYNailic Stiffness matrix
$* * * * * * * * * * * * * * * * * * * * * * * * * * *$
CENST $=-\mathrm{D} / \mathrm{DM} \mathrm{M}$ ? $\mathrm{I} * \mathrm{RDC}+2.0 * \mathrm{FCC}$
$C(1,1)=C 2 N S T *(D M S A * B N 23-D M S B * B N 24+D M S C * E N 25-D M S D * B N 26)$
$C(1,2)=C 2 N S T *(D N P A * B N 23-D M P B * D N 24+D M P C * B N 25-D N P D * B N 26)$
$C(2,2)=C 015 T *(D M P A * B N 5-D M P 3 * B N 6+D M P C * B N 7-D M P D * B N 8)$
RETURN
END

FUNCTICN PHI (N)
C. $\quad$. $4 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$
$\mathrm{C} . \quad * \mathrm{PHI}(\mathrm{N})=1+1 / 2+1 / 3+\ldots 1 / \mathrm{N} \quad *$
$\mathrm{C} \quad * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
$P H I=0.0$
IF (N.EQ.O) RETURN
DO $10 \quad I=1, N$
$X I=I$
$10 \mathrm{PHI}=\mathrm{PHI}+1.0 / \mathrm{XI}$
RETURN
END

## FUNCTIEN FACT (N)

$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$
$*$ THIS FUNCTIQN CALCULATES FACTQRIAL N
****************************************************** FACT=1.O
IF (N.EQ.O) RETURN
DO $10 \quad I=1, N$
$A I=I$
1b $\mathrm{FACT}=\mathrm{FACT} * \mathrm{AI}$
RETURN
'END

FUNCTIGN XIN(N, X) .
1.

*     * OF THE PIRST KIND PARAVETER X *
****************************************************** COMMEN/ENE/FAC (0/60) ,FI (0/60), ALL $X I N=0.0$
$K=-1$
$10 K=K+1$
$X X=(X / 2.0) * *(N+2 * K) / F A C(K) / F A C(N+K)$. $X I N=X I N+X X$
$A L L Q H=A B S(X I N) * A L L \quad \rightarrow$ IF (ABS (XX).GT.ALLCW) GQ TD 10 RETURN
END

FUNCTIGN XJN(N,X)
******************************************************

* TIIS FUNCTION CALCULATES 3ESSEL FUNCTION OF THE
* FIRST KIND QF INTEGER ORDER N AND REAL PAPAMETER X*
******************************************************
COMMOON/QNE/FAC (0/60),FI (0/60) ,ALL
$X J N=0.0$
$\mathrm{K}=-1$
$10 \mathrm{~K}=\mathrm{K}+1$
$X X=(X / 2.0) * *(N+2 * K) / F A C(K) / F A C(N+K)$
$X J N=X J N+X X *(-1.0) * * K$
$A L L Q N=A B S(X J N) * A L L$
IF (ABS (XX).GT ALLON) GQ TO 10
RETUMN
END

FUNCTION XYN (N, X, XJNX)
*************文****************************************

* THISFUNCTION CALCULATES BESSELFUNCTIONOFSECCND*
* KIND OF INTEGER ORDER N AND REAL PARAMETER X
* XJNX IS THE EESSEL FUNCTIOUDF THE SAME TYPE AND *
* SHCULD BE DEFIUED BEFORE ENTERING
******************************************************
COMMEN/DNE/EAC (O/60) ,FI (0/60) , ALL
$P I=3.141592653589793$
$\mathrm{EC}=0.577215664901533$
$X Y N=2.0 / P I *(L Q G(X / 2.0)+E C) * X J N X \quad 1$
$X X=0.0$
IF (N.EQ.O)GD TO 15
$\mathrm{NN}=\mathrm{N}-1$
DO $\quad 10 \quad I=0, N N$
$10 X X=X X+F A C(1-1-1) *(X * 0.5) * *(2 * I-N) / F A C(I)$
$X Y N=X Y N-(1.0 / P I) * X X$
15 CONTINUE
$\mathrm{K}=-1$
IF (N.EQ.O) $\quad k=0$
$20 \mathrm{~K}=\mathrm{K}+1$
$Y Y=1.0 / P I *(-1.0) * * K *(F I(K)+F I(N+K)) *(0.5 * X) * *(2 * K+N) / F A C(K)$
/FAC(N+K)
$X Y N=X Y N-Y Y$
ALLQW=ABS(XYN) *ALL
IF (ABS (YY).GT.ALLOV) GO TG 20
RETURN
END

FUNCTIEN XKN(N,X,XINX)
******************************************************

* THIS FUNCTI®N CALCULATES IGDDIFIED BESSEL FUNCTION*
$\dot{*} \quad \emptyset F$ THE SECEND KIND $\partial F$ INTEGER ØRDER N AND REAL *
* PARAMETER X *
* XINX IS THE BESSEL FUNCT I $Q$ NOF THE SAME TYPE AND * * SHOULD 2E DEFINED BEFORE ENTERING
******************************************************
CQMIICN/ONE/FAC (0/60),FI (0/60), ALL
$\mathrm{EC}=0.577215664901533$
$X 1 \Omega N=(-1.0) * *(N+1) *(10 G(X * 0.5)+E C) * X I N X$
$\mathrm{xx}=0.0$
IF (N.EQ.O) GO TR 15
$\mathrm{NN}=\mathrm{N}-1$
DO $101=0$, NN
$10 X X=X X+(-1.0) * * I * F A C(N-I-1) *(X * 0.5) * *(2 * I-N) / F A C(I)$
$X K N=X K N+0.5 * \lambda X$
15 C 2 NTINUE
$K=-1$
$I F(N \cdot E Q \cdot O) \quad K=0$
$20 \mathrm{~K}=\mathrm{K}+1$
$Y Y=0.5 *(-1.0) * * N *(0.5 * X) * *(N+2 * K) *(F I(K)+F I(K+N)) / F A C(K) / F A C(N+K)$
$X H N=X K N+Y Y$
ALLO: =A3S(XKN) *ALL
IF (ABS (YY).GT.ALLEN)GD TO 20
RETURN
END
D.4.2 Subroutines úsed in PROGRAM-2



READ $10,(B D(I), I=1, N S B)$
PRINT10,(BD(I), $1=1, N S 3)$
READ 10, (BKG(I), I=1,NSB)
PRINT10, (3KC(I), I=1,NSB)
READ $10,($ ARA $(I), I=1, N S B)$
PRINT10,(ARA(I), I=1,NSB)
$\operatorname{READ} 10,(\operatorname{ANG}(\mathrm{I}), I=1, \mathrm{NS} 3)$
PRINT10, (AIJG (I) , I = $1, \mathrm{NSB}$ )
IF (ISTB.EQ.I) READ 6, (SIG(I),I=1,NSB)
IF (ISTE.EQ.1) PRINTG, (SIG(I),I=1,NSB)
70 IF (IRNG.EQ.0) GQ TO 80
******************************************************

* If RIM is paesent, Read The RImmaterialprgper-*
* TiES, Dimensions, AND ELASTIC prgperties *
******************************************************
READ 6, ER,ROR,PRR
PRINTG, ER, RøR, PRR
R E A D 10.RRI,RRZ,RTI,RTD,RTEI, RTE
PRINT10,RRI,RRO,RTI,RTE,RTEI,RTE
READ $10, E 1, E 2, R I Z, R I X, R U, R A$
PRINT10,E1,E2,RIZ,RIX,RU,RA
$T(N P D+1)=R T I$
$T(N P D+2)=R T C$
$T E(N P D+1)=R T E I$
TE (NPD + 2) =RTED
$R(N P D+1)=R R I$
$R(N P D+2)=R R E$
80 CDNTINUE
PI $=3.14159265358979$
$\mathrm{C} O N S T=0.5 / \mathrm{PI}$
S $1=1 . / 3$.
$S_{2}=1.16$.
$S 3=1.17$.
$54=1.19$.
GO T6(95, 85, 85,95), I QPT
85 CENTINUE
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$
* Calculate blade subsystein st iffiness and kass *
* matrices and sture then
******************************************************
CALL ELADE (SKB, SMB, BX, $3 \mathrm{~B}, \mathrm{BD}, \mathrm{ANG}, \mathrm{SIG}, \mathrm{ARA}, 3 \mathrm{KG}, \mathrm{NBE}, 13 \mathrm{DE}, \mathrm{MS} 2)$
GE TE (95,90,95), IOPT
90 CONTINUE
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$
* compute blade frequencies according te the blade*
* gereral opt 1 bns
******************************************************
IF (IRNG.NE.O)GE T"2 102
I $\mathrm{JK}=1$
$M=0$
IF (13DE.NE.1) GC5 TD 94
Dø $911=3,2$ *NSB
$11=1-2$

De $91 \mathrm{~J}=3,2$ *NSB
$\mathrm{JJ}=\mathrm{J}-2$
$S K(I I, J J)=S: K 3(I, J)$
$91 \operatorname{SM}(I I, J J)=\operatorname{SN} 3(1, J)$
$\mathrm{N} 1=2 * \mathrm{NSB}-2$
PRINT 1

- CALL EIGVAL (SK,SM,D,F,FR,B,C,X,ERR,B7,B8,B9,IJK,NI,MS.1) DC $92 I=2 * N S 3+3,4 * N S B$
II=I-2-2*NSB
DO $92 \mathrm{~J}=2 * \mathrm{NSB}+3,4 *$ NSB
J $j=J-2-2 \times$ NS:
$S K(I I, J J)=S K B(I, J)$
$92 \operatorname{SM}(I I, J J)=\operatorname{SMB}(I, J)$
PRINT 2
CALL EIGUAL(SK,SM, D, F,FR,B,C, X,ERR, B7, B8, B9, IJK,N1, MS1)
DO $93 \mathrm{I}=4 *$ IJS3 +2 , NTB
II = I-1-4*NSB
DO $93 J=4 * N S 3+2$, NT3
$J J=J-1-4 * N S B$
SK $(11, J J)=S K 3(1, J)$
$93 \operatorname{SM}(I I, J J)=\operatorname{SMB}(I, J)$
$N 1=N S B-1$
PRINT 4
CALL EIGVAL (SK,SM,D,F,FR,B,C,X,ERR,B7,BE, $39, I J K, N 1, M S 1)$ GQT0 15
94 IF(IBDE.NE.2)G@TE 97
NM=NT3
DC $1951=\mathrm{N} 3 \mathrm{E}, 1,-1$
$\mathrm{II}=5$ *I
CALL REDUCE (SiKS, NM, I I, 1, MS2)
CALL REDUCE (SMB,NM,II,1,MS2)
NM $=1 \mathrm{NM}-1$
-195 CENT INUE
DO $96 I=5,4 * N S B$
$I I=I-4$
DE $96 \quad J=5,4$ *NSB
$J J=J-4$
SK(II, JU) $=5 K 3(I, J)$
$96 \operatorname{SM}(I I, J J)=S 1: 3(1, J)$
$\mathrm{NI}=4 * \mathrm{NS} 3-4$
PRINT 5
GO TE 99
9'7 Conit imue
- 30 981=6,NT3

II = I-5
D0 $98 \mathrm{~J}=6, \mathrm{NT} 3$
J J = J-5
SK(II, JJ) $=$ SKB (I, J)
(98 SN(II, JJ) $=\operatorname{SMS}(I, J)$
$N I=N T B-5$
PRINT 7
99 CALL EIGUAL(SK,SM,D,F,FR,B,C,X,ERR,B7,B\&,B9,IJK,NI,MSI) GeTo 15

```
-95 CONTINUE
 CK=2.0*PI*ED/(1.0-PRD*PRD)
 CP=2.0*PI*RQD*&MGA*OMGA
 CT=2.0*PI*ED*ALD/(1.0-PRD)
C
C
C
C
C
 READ 10,SRO
 PRINT10,SRQ
 STR=RQR*RA*QMGA*&MGA*(RRI +EI)*(RRI +EI)+SRG*(RRI*EI)
 NTD=2
 NT=NTD+NTB-5 ,
 105 CONTINUE,
 I JK=1
 M=MDS-1
 IF(IQPT.EQ.3) Z=NS
 100 CDNTINUE
 **
 * S ELECT NUMBE?CFNGDALDIAMETERS
 M=M+1
 PRINT 3,M
 FAC=1.O
 IF(M.EG.0) FAC=2.0
 IF(IOPT.NE.2) CKD=FAC*PI*ED/(1.0-PRD*PRD)/12.0
 IF(IQPT.NE.2) CIMD=FAC*PI*SQD
 IF(IRNG.EQ. 1) CKR=FAC*PI* (RRI+EI)
 IF:IRNG.EG. 1)CNR=FAC*PI* (RRI +EI)
 IF(IOPT.NE.1) CC=Z*FAC/2.0
 IF(IGPT.NE.2) CCC=FAC*PI
 AN=11
 AM2=A I:*AM
 AM4=AN2*AM2
 AMG=A:O4*ANR2
 IF(IEPT.NE.2) AISPR=AM2*PRD
 DQ 110 I=1,NT
 DO 110 J=1,NT
 SK(1,J)=0.0
 110S:I(I,J)=0.0
 **
 * . CALCULATE DISC SUBSYSTEM STIFFNESS AND MASS
 * MATRICES ANDSTERETHEN
 **
 CALL DISC(SK,SM,R,T,SGR,SGT,NSD,MSI)
```

```
-C
 ***水
```



```
 c * THE SUBSYSTEHMATR ICES
 C ***
 CALL SYSTEM (SK,SM,SKB,SMB,NTD,NTB,MS1,MS2)
 C ***
 C * APPLY BOUNDASYCGNDIT IONS
 C ***********************;!.a*********************************
 CALL REDUCE(SK,NT,1,2,MS1)
 CALL REDUCE(SM,NT,1,2,MS1)
 N1=NT-2
 C C **
 C * S\emptysetLUE THE EIGEN VALUE PAZBLEN AND GET THE SYSTEM*
c * FREQUENCIES
c ***
 CALL EIGUAL(SK,SM,D,F,FR,B,C,X,ERR,B7,B8,B9,IJK,N1,MS 1)
 IF(M.LT.ND)G0TG 100
 G\emptyset TO 15
 `'200 CALL EXIT
 1FGRMAT(1H1,5X,'BLADE SENDING FREQUENCIESINI-MINDIRECTIQN'//)
 2 FQRMAT(1HI, S?:, 'BLADE BENDING FREQUENCIES INI-MAXDIRECTION'//)
 3 FERMAT (///26HNUMBER OF NODAL DIAMETERS=,12///)
 4FGRNAT (1H1,5K,'BLADE TERTIRNAL FREQUENCIES'//)
 5 FERMAT (1H1,5X,'TNISTED BLADE BENDING FPEQUENCIES'//)
 6FERHAT (4F20.10)
 7 FQRmat (1 Hl,5X,'BLADE FREQUENCIES MITH INITIAL STRESSES'//>
 10 FORMAT (8F10.7)
 11 FERMAT (/8E13.6)
 12FERMAT(1615)
 END
```

SUBRDUT INE BLADE (SKB, SMB, BX, BB, BD, ANG,SIG, ARA, BKG, NBE, IBDE,L)

C * THIS SURRGUTINE CALCULATES THE BLADE SUBSYSTEM

* Stiffness matrix shb (l,L) and mass matrix Smb(l,L)*
* TRANSVERSE SHEAR AND RGTARY INERTIA ARE IGNERED *
* ADDITIロNAL STIFFNESS DUE TØ INITIAL STRESSES CAN *
* ALSO BE INCLUDED
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$
DIMENSION $\operatorname{SKB}(L, L), \operatorname{SMB}(L, L), \operatorname{EK}(10,10), \operatorname{EM}(10,10)$
DIMENSION R $(10,10), B(10,10), C(10,10), D(10,10)$
DIHENSION $B X(L), B B(L), B D(L), A N G(L), S I G(L), A R A(L), B K G(L)$
C $\because M M E N / O P T$ I QN/IOPT,IRNG, PTHD, ITED,ITHB, ISTB
$C O M M O N / F Q U R / P I, E D, E R, E B, R Q D, R O R, R \emptyset B, A L D, A L R, P R D, P R R, P R B$
C $O M M O N / F I U E / S R I, S R Q, Q M G A$
$\mathrm{RX}(\mathrm{I}, \mathrm{AI})=\mathrm{ALFS} * \mathrm{~A}, \mathrm{LFA} * X X(\mathrm{I}+1, \mathrm{AI}+1.0)+(\mathrm{ALFS} * \mathrm{BETA}+\mathrm{BETS} * A L F A) *$
$. X X(I+2, A I+2.0)+B E T S * B E T A * X X(I+3, A I+3.0)$
$S X(I, A I)=R Q B * Q M G A * Z M G A *(A L F A * X X(I+1, A I+1.0)+B E T A * X X(I+2, A I+2.0))$
$X X(I, A I)=(B X 2 * * I-B X I * * I) / A I$.
$\mathrm{NTB}=5 *(\mathrm{NBE}+1)$
Dø 10 I=1, NTB
DO $10 \mathrm{~J}=1$, NTB
$S K B(I, J)=0.0$
PRINT 1
$\mathrm{K}=0$
2OC®NT INUE
D8 $15.1=1,10$
D0 $15 \mathrm{~J}=1,10$
$B(I, J)=0.0$
$E K(I, J)=0.0$
$\operatorname{EM}(I, J)=0.0$
$15 \mathrm{R}(1, \mathrm{~J})=0.0$

* SELECT THE NUMBER K OF THE ELEMENT AND GET THE
* VALUES efsection prgperties gf the blade at
* ENDS ©F THE ELEMENT.
******************************************************
$K=\mathrm{K}+1$
$K P 1=\mathrm{K}+1$
$B \times 1=B X(K)$
$B \times 2=B X(K P 1)$
PRINT 2,K,BXI,BY2
ARA $1=\operatorname{ARA}(K)$
$A R A 2=A R A(K P 1)$
ANG $1=A N G(K)$
ANG2 $=\operatorname{ANG}(K P 1)$
$\mathrm{BA}=0 \cdot 5 *(\mathrm{ANG} 1+\mathrm{ANG} 2)$
$\mathrm{SN}=\mathrm{SIN}(\mathrm{BA} / 180 \cdot 0 * \mathrm{PI})$
$C S=\operatorname{CoS}(B A / 180.0 * P I)$

```
 GB=0:5*EB/(1.0+PRB)
 BMI1=33(K)
 BM12=33(%P1)
 BMXI=BD(K)
 BMX2=3D(KP1)
 BJI=3KG(K)
 BJ2=3KG(KP1)
 EL=BYC-2\times1
 XK1=EM*BMI 1 /EL/EL/EL
 XK2=ES*3H12/EL/EL/EL
 YK1=ES*SUK1/EL/FLL/EL
 YK2=EЗ*BM员/EL/EL/EL
 ZK1=G3*3J1/2.0/EL
 ZK2=GB*3J2/2.0/EL
 XMI=ROS*ARA1*EL/420.0
 XM2=RCB*ARA2*EL/420 .0
 ZM1=203*(BMI 1+BKY1)*EL/12.0
 ZM2=ROB*(BMI2+BMK2)*EL/12.0
 **
**
\(R(1,1)=C S\)
\(R(2,2)=C 5\)
\(R(3,6)=C S\).
\(R(4,7)=C S\)
\(R(5,3)=C S\)
\(R(6,4)=C S\)
\(R(7,8)=C S\)
\(R(8,9)=C S\)
\(R(1,3)=S N\)
\(R(2,4)=5 N\)
\(R(3,8)=S N\)
\(R(4,9)=S N\)
\(P(5,1)=-S N\)
\(R(6,2)=-5 N\)
\(R(7,6)=-S N\)
\(R(8,7)=-5 N\)
\(R(9,5)=1.0\)
P(10,10)=1.0
**
* CALCULATE TKE ELEMENT ST I FFNESS MAT? IX EK
\(\operatorname{EK}(1,1)=6.0 * X K 1+6.0 * K K 2\)
EK \((1,2)=-2.0 * E L * K 1-4.0 * E L * Y K 2\)
\(E K(1,3)=-6.0 * Y K 1-6.0 * X K 2\)
EK(1,4)=-4.0*EL*NK1-2.0*EL*スK2
\(E K(2,2)=E L * E L * X K 1+3.0 * E L * E L * K K 2\)
\(E K(2,3)=2.0 * E L * X K 1+4 \cdot 0 * E L * X K 2\)
\(\operatorname{EK}(2,4)=E L * E L * X K 1+E L * E L * X K 2\)
\(E K(3,3)=6.0 * K 1 K I+6.0 * K 12\)
\(E K(3,4)=4 \cdot 0 * E L * K K 1+2.0 * E L * K K \dot{2}\)
\(E K(4,4)=3.0 * E L * E L *: K 1+E L * E L * X K 2\)
\(E K(5,5)=6.0 * Y K 1+6.0 * Y K 2\)
```

$\operatorname{EK}(5,6)=-2.0 * E L * Y K 1-4.0 * E L * Y K 2$
$\operatorname{EK}(5,7)=-6.0 * Y K 1-6.0 * Y K 2$
$\operatorname{EK}(5,8)=-4.0 * E L * Y K 1-2.0 * E L * Y K 2$
$E K(6,6)=E L * E L * Y K 1+3.0 * E L * E L * Y K 2$
$\operatorname{EK}(6,7)=2.0 * E L * Y K 1+4.0 * E L * Y K 2$
$E K(6,8)=E L * E L * Y K I+E L * E L * Y K 2$
$\operatorname{EK}(7,7)=6.0 * Y K I+5.0 * Y: K 2$
$E K(7,8)=4.0 * E L * Y K 1+2.0 * E L * Y K 2$
$E K(8,8)=3.0 * E L * E L * Y K 1+E L * E L * Y K 2$
$\operatorname{EK}(9,9)=Z K 1+Z K 2$
$\operatorname{EK}(9,10)=-2 K 1-2 K 2$
$\operatorname{EK}(10,13)=2 K 1+2 K 2$
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$

* 'Calculate tie element mass matrix em
******************************************************
- $\operatorname{EM}(1,1)=36.0 * \mathrm{MM} 1+120.0 * \mathrm{SM}_{2}$
$\operatorname{EM}(1,2)=-7 \cdot 0 * E L * Y M 1-15 \cdot 0 * E L * X M 2$
$E M(1,3)=27 \cdot 0 * X M 1+27.0 * X_{2}$
$\operatorname{EM}(1,4)=6 \cdot 0 * E L * X M 1+7 \cdot 0 * E L * X M 2$
$E M(2,2)=1.5 * E L * E L * M M 1+2.5 * E L * E L * X M 2$
$\operatorname{EM}(2,3)=-7 \cdot 0 * E L * X M 1-6.0 * E L * M 2$
$\operatorname{EM}(2,4)=-1 \cdot 5 * E L * E L * X M 1-1 \cdot 5 * E L * E L * X M 2$
$\operatorname{EM}(3,3)=120.0 * X M 1+36.0 * X M 2$
$E M(3,4)=15.0 * E L * M M+7.0 * E L * X M 2$
$\operatorname{EM}(4,4)=2 \cdot 5 * E L * E L * M M 1+1 \cdot 5 * E L * E L * X M 2$
$\operatorname{EM}(5,5)=35 \cdot 0 * X: 1+120 \cdot 0 * X M 2$
$\operatorname{EM}(5,6)=-7.0 * E L * X A 1-15.0 * E L * X M 2$
$\operatorname{EM}(5,7)=27.0 * M 1+27.0 * K 2$
$\operatorname{EM}(5, \varepsilon)=6.0 * E L * X M 1+7.0 * E L * X M 2$
EM $(6,6)=1 \cdot 5 * E L * E L * X M 1+2 \cdot 5 * E L * E L * X M 2$
$\operatorname{EM}(6,7)=-7 \cdot 0 * E L * M M 1-6.0 * E L * M 2$
$\operatorname{EM}(6,8)=-1.5 * E L * E L * K M 1-1.5 * E L * E L * X M 2$
$\operatorname{EM}(7,7)=120 \cdot 0 * \mathrm{KM1}+36 \cdot 0 * \mathrm{XM} 2$
$E M(7,8)=15.0 * E L * M 11+7.0 * E L * X M 2$
$\operatorname{EM}(8,8)=2.5 * E L * E L * X M 1+1.5 * E L * E L * X M 2$
$\operatorname{EN}(9,9)=3.0 * 2 \mathrm{~K}$ i-Z? 12
$\operatorname{EM}(9,10)=2 M 1+2 M 2$
Et. $1(10,10)=2 \mathrm{M} 1+3.0 * 2 \mathrm{Mi}$
DC $30 \quad \mathrm{I}=1,9$
$11=1+1$
DO $30 \mathrm{~J}=\mathrm{II}, 10$
$E R(J, I)=E R(I, J)$
$30 \operatorname{EH}(\mathrm{~J}, 1)=\mathrm{ER}(\mathrm{I}, \mathrm{J})$
** $* * * * * * * * * * * * * * * * * * * * * * * * *: ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$
* stere the elevent matrices inte the blade system *
* matrices in tiee apprgpainte positiens accerding to*
* the blade general eptibn
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
IF (ITDE.NE.1) GC TE 32
$K K=2 *(K-1)$
CALL ASKBLE(SKB,EK,KK,KK,1,4,10,L)
CALL ASM3LE(S:A3, EH, KK, KK, 1, 4, 10,L)
$K R=2 *(M 3 E+1)+2 *(K-1)$
CALL AS:ABLE (SHB, EK, KK,KK,5,8,10,L)
CALL ASHBLE (SMB, EM, $K K, K K, 5,8,10,1)$

```
KK=4*(NBE+1)+I?-1
CALL ASKBLE(S:K3,EK,KK,:KK,9,10,10,L)
CALL ASMSLE(SHO,EH,KK,1KR,9,10,10,L)
IF(K.LT.NSE)G@TE 2 0
RETURN
 2 CONTINUE
 CALL TRIMUL(R,EK,C,D,10,10,10,10,10)
 CALL TRIMJL(R,EH,C,D,10, 10,10,10,10)
 1F(15TB.EQ.O) GO TO 50
 **
 * CALCULATE THE'3'MATR IX
 *
 \dot{*}
 B(1,1)=1.0
 B(1,2)=3\times1
 B(1,3)=3\times1*3\times1
 B(1,4)=3\times1*B}\times1*5\times
 B(2,2)=-1.0
 B(2,3)=-2.0*3\times1
 B(2,4)=-3.0*B\times1*B\times1
 B(6,1)=1.0
 B}(6,2)=3\times
 B}(6,3)=B\times2*3\times
 B (6,4)=3\times2*3\times2*3\times2
 B (7,2)=-1.0
 B(7,3)=-2.0*3\times2
 B (7,4)= -3.0*3\times2*BX2
 B(5,9)=1 .0
 B(5,10)=3\times1
 B(10,9)=1.0
 B(10,10)=B\times2
 D0 25 I=1,2
 DC 25 J=1,4
 B(I+2,J+4)=B(I,J)
 25 B(I+7,J+4)=B(I+5,J)
 CALL INUT (B,10,10)

 * CALCULATE ADDITIENAL STIFFNESS VALUES IF INITIAL *
 * STRESSES ATE PRESENT

 SIGI=SIG(:N)
 SIG2=SIG(1P1)
 ALFS=(3X2*SIGI-3X1*SIG2)/EL
 BETS = (SIG?-SIG1 >/EL
 ALFA=(3M2*ARA1-EX1*ARA? >/EL
 BETA=(A.A\Omega2-ARA1)/EL
 ALIU=(3Y2*31I1-3N1*31412)/EL
 BETU=(BMI2-B:111)/EL
 ALIU=(3X2*BNX1-BX1*BNX2 >/EL
 BETM=(3NK2-BMN1)/EL
 Dg 35 I=1,10
 DC 35 J=1,10
35.}R(I,J)=0.
 R(1,1)=-5x(0,0.0)
 R(1,2)=-5x(1,1.0)
```

$R(1,3)=-S \times(2,2.0)$
$R(1,4)=-5 \times(3,3.0)$
$R(2,2)=2 \times(0,0.0)-5 \times(2,2.0)$
$R(2,3)=2.0 * 2 \times(1,1.0)-5 \times(3,3.0)$
$R(2,4)=3.0 * 2 \times(2,2.0)-5 \times(4,4.0)$
$R(3,3)=4.0 * 3 \times(2,2.0)-5 \times(4,4.0)$
$R(3,4)=6.0 * 3 \times(3,3.0)-5 \times(5,5.0)$
$R(4,4)=9.0 \times 2 \times(4,4.0)-5 \times(6,6.0)$
$R(6,6)=3 \times(0,0.0)$
$R(6,7)=2.0 * P X(1,1.0)$
$R(6,8)=3.0 \times R \times(2,2.0)$
$R(7,7)=4.0 * R \times(2,2.0)$
$P(7,8)=6.0 * 2 \times(3,3.0)$
$R(8,8)=9.0 * 2 \times(4,4.0)$
$R(9,9)=-2 C B * G M G A * C L G A * C E S(2.0 * B A) *((A L F U+A L F U) * K X(1,1.0)+B E T V+$

- BETU)*XX(2,2.0))
$R(9,10)=-R 0 B * Q M G A * Q M G A * C D S(2.0 * B A) *((A L F U+A L F U) * X X(2,2.0)+3 E T M+$ - BETU) *XX (3,3.0))
$R(10,10)=-R C B * C M G A * Q M G A * C D S(2 \cdot * B A) *((A L F W+A L F U) * X X(3,3.0)+B E T M+$
- BETU)*XX(4,4.0))
- ALFS*ALFU*XX(1,1.0)+(ALFS*BETU+BETS*ALFJ)*XX(2,2.0)
- $+(\operatorname{BETS} * 3 E T J) * \mathrm{XX}(3,3.0)$

DO $40 \mathrm{I}=1,9$
$I I=I+1$
DC $40 \mathrm{~J}=\mathrm{I} 1,10$
$40 R(J, I)=R(I, U)$
CALL TRIMUL(B,R,C,D,10,10,10,10,10)
$D C \quad 45 \quad I=1,10$
DO '45 J=1,10
$45 \operatorname{EK}(I, J)=E K(I, J)+R(I, U)$
$50 \mathrm{KK}=5 *(\mathrm{~K}-1)$
CALL AS:BLE(SMB, ER,KK,KK,I,10, 10, L)
CALL ASMBLE (S:GB, EM, $K K, K K, 1,10,10, L)$
IF (K.LT.NBE) GO TD 20
RETUSN
1 FQRMAT (1H1,//5X,'BLADE DINENSIRNS'//)
2 Feanat ( $5 \times, 15,8 \mathrm{~F}$ 8.3/)
3 FQRMAT(5E13.5)
END

| C |  | ****************************************************** |
| :---: | :---: | :---: |
| c |  | this subiadutine calculates the element stiffness * |
| c |  | * and las matrices and steres the values into the * |
| c |  | * Disc subsystem mataices Sk(L,L)AND Sm(L,L) * |
| C |  | * the additignal stiffness coefficiants due to * |
| c |  | * INITIAL StRESSES SRR(L) AND STT(L) ARE ALSO |
| C' |  | * CALCULATED AND ADDED TO THE RENDING STIFFNESS. * |
| C |  | * Shear deformatiens and retary inertia are ignzred.** |
| C |  | * While entering the subrdutine zerd all the terns * |
| C |  | * Øf the matrices Sk And SM. INITIALISE ALL the * |
| c |  | * TERMS Øf THE RADIUS AND THICKNESS UECTOPS R AND T.* |
| C |  | ****************************************************** |
|  |  | DIMENSIEN SM(L,L), SM(L,L),R(L), T (L) |
|  |  | DIMENSIDIS SRR(L), STT (L) , ES (4,4) |
|  |  | DIMENSICN EK(4, 4), EM $(4,4), B(4,4), C(4,4), D(4,4)$ |
|  |  | COMMON/OPTION/IDPT, IRNG, ITHD, ITED, ITHB, ISTB |
|  |  | CEMMON/CNE/AM, P2, P I , P3 * |
|  |  |  |
|  |  | CQMMDN/FRUR/PI, ED, ER, EB, RGD, ROR, RGB, ALD, ALR, PRD, PRR, PRB |
|  |  | K=0 |
|  |  | $N=N S-1$ |
|  |  | $\mathrm{PR}=\mathrm{PRD}$ |
|  | 30 | CONTINUE |
| C |  | ****************************************************** |
| c |  | * SELECT THE NUMBES K OF THE ELEMENT * |
| c |  | ****************************************************** |
|  |  | $\mathrm{K}=\mathrm{K}+1$ |
|  |  | $\mathrm{Kl}=2 * \mathrm{~K}-1$ |
|  |  | $\mathrm{K} 2=2 * \mathrm{~K}$ |
| C |  | ****************************************************** |
| C |  | * GET THE VALUES OF RADIUS AND THICKNESS AT Nedes * |
| C |  | ****************************************************** |
|  |  | $\mathrm{RI}=\mathrm{R}(\mathrm{Kl})$ |
|  |  | $\mathrm{R} 2=\mathrm{R}$ ( K 2 ) |
|  |  | $T 1=T(K 1)$ |
|  |  | T2 $=T(\mathrm{~K} 2)$ |
|  |  | DO $40 \quad \mathrm{l}=1,4$ |
|  |  | D® $40 \mathrm{~J}=1,4$ |
|  |  | $B(I, J)=0.0$ |
|  |  | $\operatorname{EK}(1, J)=0.0$ |
|  | 40 | $\operatorname{EM}(1, J)=0.0$ |
|  |  | DD=R2-R1 |
|  |  | D1 $=$ DD*DD |
|  |  | D2 $=$ D $1 *$ DD |
|  |  | ALFA $=(R 2 * T 1-R 1 * T 2) / D D$ |
|  |  | BETA $=(T 2-T 1) / D D$ |
|  |  |  |
|  |  | $\mathrm{X} 2=\mathrm{ALFA} * A L F A * B E T A * C K D$ |
|  |  | $X 3=A L F A * B E T A * B E T A * C K D$ |
|  |  | $X 4=B E T A * B E T A * B E T A * C K D$ |

```
**
C * CALCULATE THE 'B' MATRIX *
C
\(\mathrm{B}(1,1)=\mathrm{R} 2 * \mathrm{R} 2 *(\mathrm{R} 2-3 . * \mathrm{R} 1) / \mathrm{D} 2\)
\(B(1,3)=R 1 * R 1 *(3 * * R 2-R 1) / D 2\)
\(B(1,2)=R 1 * R 2 * R 2 / D 1\)
\(B(1,4)=\operatorname{Ri} * R 1 * R 2 / D 1\)
\(B(2,1)=6 . \times 21 \times R 2 / D 2\)
\(B(2,3)=-B(2,1)\)
\(B(2,2)=-R 2 *(2.0 * R 1+R 2) / D 1\)
\(B(2,4)=-R 1 *(R 1+2 \cdot 0 * R 2) / D 1\)
\(B(3,1)=-3 \cdot *(R 1+R 2) / D C\)
\(B(3,3)=-B(3,1)\)
\(B(3,2)=(R 1+2 \cdot * R 2) / D 1\)
\(B(3,4)=(2, * R 1+R 2) / D 1\)
\(B(4,1)=2 \cdot / D 2\)
\(B(4,3)=-3(4,1)\)
\(B(4,2)=-1.0 / D 1\)
\(B(4,4)=B(4,2)\)
\(A 1=R 1 * R 2\)
\(\mathrm{A} 2=\mathrm{Al} \quad * \mathrm{~A} 1\)
A3 \(=\) R2-R1
A4 \(=\mathrm{R} 2 * \mathrm{a} 2-\mathrm{R} 1 * * 2\)
A5 \(=R 2 * * 3-21 * * 3\)
\(A 6=R 2 * * 4-R 1 * * 4\)
\(A 7=R 2 * * 5-R 1 * * 5\)
\(A 8=R 2 * * 6-R 1 * * 6\)
A9 9 R2**7-21**7
\(\mathrm{A} 10=\mathrm{R} 2 * * 8-\mathrm{R} \mid * * 8\)
A11 \(1=R 2 * * 9-R 1 * * 9\)
A12=R2**10-R1**10
\(C 5=A L O G \quad(B 2 / R 1)\)
\(E 1=X 1 * \cdot 5 * A 4 / A 2+X 2 * 3 \cdot * A 3 / A 1+X 3 * 3 \cdot * C 5+X 4 * A 3\)
\(E 2=X 1 * A 3 / A 1+X 2 * 3 \cdot * C 5+X 3 * 3 \cdot * A 3+\therefore 4 * \cdot 5 * A 4\)
\(\mathrm{E} 3=\mathrm{X} 1 * \mathrm{C} 5+\mathrm{X} 2 * 3 \cdot * \mathrm{~A} 3+\mathrm{X} 3 * 1.5 * \mathrm{~A} 4+\mathrm{X} 4 * S 1 * A 5\)
\(E 4=X 1 * A 3+\times 2 * 1.5 * A 4+X 3 * A 5+X 4 * \cdot 25 * A 6\)
\(E 5=X 1 * \cdot 5 * A 4+X 2 * A 5+x 3 * .75 * A 6+X 4 * \cdot 2 * A 7\)
\(E 6=X 1 * 51 * A 5+X 2 * .75 * A 6+X 3 * .6 * A 7+X 4 * 52 * A 8\)
\(\mathrm{E} 7=\mathrm{XI} * \cdot 25 * A 6+\mathrm{X} 2 * \cdot 6 * A 7+X 3 * \cdot 5 * A 8+\times 4 * 53 * A 9\)
**
* CALCULATE THE 'SMALLK' MATRIX

EK(1,1)=E1*(P1+2.*P2-2.*P3)
\(E K(1,2)=E 2 *(P 1-P 2)\)
\(E K(2,1)=E K(1,2)\)
\(E K(1,3)=53 *(P 1-4 \cdot * ? 2)\)
EK \((3,1)=E K(1,3)\)
\(E K(1,4)=E 4 *(P 1-7 \cdot * P 2-2 \cdot * P 3)\)
\(E K(4,1)=E K(1,4)\)
\(E K(2,2)=E 3 *(P 1-2 \cdot * P 2+1 \cdot)\)
\(E K(2,3)=E 4 *(P 1-3 \cdot * P 2-2 \cdot * P 3+2 \cdot * P R+2 \cdot)\)
\(E K(3,2)=E K(2,3)\)
\(E K(2,4)=E 5 *(P \mid-4 \cdot * P 2+3 \cdot-6 \cdot * P 3+6 \cdot * P R)\)
\(\operatorname{EK}(4,2)=E K(2,4)\)
\(E K(3,3)=E 5 *(P 1-2 . * P 2+8 .-6 . * P 3+8 \cdot * P R)\)
\(E K(3,4)=E 6 *(P 1-P 2+18, \cdots 12 * * 3+18 \cdot * P R)\)
\(\operatorname{EK}(4,3)=E K(3,4)\)
\(E K(4,4)=E 7 *(P 1+2 \cdot * P 2+45 \cdot-20 \cdot * P 3+36 \cdot * P R)\)
\(\mathrm{CA}=(R 2 * S R R(K 1)-R!* S R R(K 2)) / D D\)
\(D A=(S R R(K 2)-S R Q(K 1)) / D D\)
\(E E=(R \hat{C} * S T T(1 / 2)-\mathrm{P} 1 * S T T(K 2)) / D D\)
\(\mathrm{FF}=(\mathrm{STT}(\mathrm{S} 2)-\mathrm{STT}(\mathrm{K} 1)) / \mathrm{DD}\)
\(\mathrm{X} 1=\mathrm{CCC} * \mathrm{ALFA} * E E * P 2\)
\(\therefore 2=C C C * P 2 *(A L F A * F F+B E T A * E E)\)
\(\mathrm{X} 3=\mathrm{CCC} * \mathrm{BETA} * F F * P 2\)
\(\mathrm{El}=\mathrm{X} 1 * \mathrm{C} 5+\mathrm{X} 2 * \mathrm{~A} 3+0.5 * 33 * \mathrm{~A} 4\)
\(\mathrm{E} 2=\mathrm{X} 1 * \mathrm{~A} 3 * 0.5 * \mathrm{X} 2 * \mathrm{~A} 4+\mathrm{S} 1 * \mathrm{X} 3 * \mathrm{~A} 5\)
\(E 3=0.5 * \times 1 * A 4+51 * X 2 * A .5+0.25 * X 3 * A 6\)
\(E 4=51 * \times 1 * A 5+0.25 * \times 2 * A 6+0.2 * \times 3 * A 7\)
\(E 5=0.25 * X 1 * A 5+0.2 * X 2 * A 7+52 * X 3 * A B\)
\(E 6=0.2 * X 1 * A 7+52 * X 2 * A 8+53 * X 3 * A 9\)
\(E 7=52 * \times 1 * A 8+S 3 * X 2 * A 9+0.125 * \times 3 * A 10\)
\(\mathrm{XI}=\mathrm{CCC} \times \mathrm{ALFA} * \mathrm{CA}\)
\(\mathrm{X} 2=\mathrm{CCC} *(\mathrm{ALFA} * \mathrm{DA}+B E T A * C A)\)
\(X 3=C C C * B E T A * D A\)
\(F 1=0.5 * X 1 * A 4+51 * K 2 * A 5+0.25 * \times 3 * A 6\)
\(\mathrm{F} 2=51 * \mathrm{Xi}\) *A \(5+0.25 * \mathrm{X} 2 * \mathrm{~A} 6+0.2 * \mathrm{Y} 3 * \mathrm{~A} 7\)
\(F 3=0.25 * X 1 * A 6+0.2 * K 2 * A 7+52 * \times 3 * A 8\)
\(\mathrm{F} 4=0.2 * \mathrm{X} 1 * \mathrm{~A} 7+52 * \mathrm{X} 2 * \mathrm{~A} 8+53 * \mathrm{X} 3 * \mathrm{~A} 9\)
\(F 5=52 * \times 1 * A 8+53 * \times 2 * A 9+0.125 * X 3 * A 10\)
**
* CALCULATE ADditi@nalstiffnessfor initial Stress *
**
\(\operatorname{ES}(1,1)=E 1\)
\(\operatorname{ES}(1,2)=E 2\)
\(E S(1,3)=E 3\)
\(E S(1,4)=E 4\)
\(E S(2,2)=E 3+F 1\)
\(E S(2,3)=E 4+2.0 * F 2\)
\(E S(2,4)=E 5+3 \cdot 0 * F 3\)
\(E S(3,3)=E 5+4 \cdot 0 * E 3\)
\(\operatorname{ES}(3,4)=E 6+6.0 * F 4\)
\(E S(4,4)=E 7+9.0 * F 5\)
\(E S(2,1)=E S(1,2)\)
\(\operatorname{ES}(3,1)=E S(1,3)\)
\(\operatorname{ES}(3,2)=E S(2,3)\)
\(\operatorname{ES}(4,1)=E S(1,4)\)
\(\operatorname{ES}(4,2)=E S(2,4)\)
\(\operatorname{ES}(4,3)=\operatorname{ES}(3,4)\)
DC \(45 \quad \mathrm{I}=1,4\)
DC \(45 \mathrm{~J}=1,4\)
\(45 \operatorname{EK}(I, J)=\operatorname{EK}(1, J)+E S(I, J)\)
ALFA=ALFA*CND
BETA=SETA*CTAD
**
* Calculate the'shallm'matoix
**
EM(I, I) =ALFA*. \(5 * A 4+B E T A * S 1 * A 5\)
\(\operatorname{EM}(1,2)=A L F A * S 1 * n 5+B E T A * \cdot 25 * n 6\)
```

    EM(1,3) =ALFA*.25*A6+BETA*.2*A7
    EM(1,4)=RLFA*.2*AT+BETA*S2*A8
    EM(2,1)=EM(1,2)
    EM(2,2)=E:A(1,3)
    EM(2,3)=EM(1,4)
    EN(2,4)=ALFA*S2*A8+BETA*S3*A9
    EM(3,1)=EM(1,3)
    EM(3,2)=EM(2,3)
    EM(3,3)=EM(2,4)
    EM(3,4)=ALFA*S3*A9+BETA*.125*A10
    EM(4,1)=EM(1,4)
    EM(4,2)=EM(2,4)
    EM(4,3)=EM(3,4)
    EM(4,4)=ALFA*.125*A10+BETA*S4*A11
    **********************************************************
    C * CALCULATE THE STIFFNESS AND MASS MATRICES 
    ***********************************************************
CALL TRIMUL(B,EK,C,D,4,4,4,4,4)
CALL TRIMUL(B,EM,C,D,4,4,4,4,4)
KK=2*(K-1)
************************************************************

* put the element matrices intg Subsystem matrices
**********************************************************
CALL ASMBLE(SK,EK,KR,SK,1,4,4,L)
CALL ASMBLE(SM,EM,KK,KK,1,4,4,L)
*********************************************************
C * G\emptyset BACK AND REPEAT CALCULATIONS FOR ØTHER ELEMENTS*
C
IF(K-N)30,50,50
50 CONTINUE
RETURN
END

```

SUBROUTINE SYSTEM(SK,SM,SKB,SMB,NTD,NTB,L,LL)
**
* T H I S SUBROUT INE ASSEMBLEES THE STIFFNESS AND IIASS * * mataices ef the thaee sui systens into the systen * * matrices . the matrices ak(2,2)andrm(2,2)df the* * RimSUZSYSTEMARE CALCULATED EEfRREASSEMBLING. * * THE DISC SUBSYSTEAMATRICES SK(L,L) A N D Sh(L,L)*
* AREThenself used as systemmatrices.
* befdre entering the subroutine initialise all the *.
* TERES 6 F \(T\) H E SUBSYSTEM MATRICES SK, SM, SKB, AMD SMB.*
**
- DIMENSIDN SK(L,L),SM(L, L),SMB(LL,LL),SHB(LL,LL)

DIMEISION DK (10,10), DK(10,10),T(10,10),C(10,10),D(10,10)
DIMENSICN RK \((2,2), R M(2,2), C R(2,2), D R(2,2), T T(2,2)\)
COMMON/QPTIGN/IOPT,IRNG,ITHD,ITED,ITHB,ISTB
COMMZN/ENE/AM, AH2, AM4, AMPR
CQMMEN/TVD/S1,S2,S3,S4,CKD,CKR,CMD, CMR,CC,CCC,CK,CP,CT COMMON/THRE/ZDI, RDO, RRI, RRD, RTI, RTD,E1,E2,RIZ,RIX,RJ,RA,STR CGMMEN/F RUR/PI, ED, ER,ES,RQD,RGR,ROB,ALD,ALR,PRD, PRR, PRB
IF (IEPT.EQ.1) GO TO 35
\(R R=R R D\)
IF (IRNG.EQ.0) RR=RDD
D O \(101=1,10\)
DE IO \(\mathrm{J}=1,10\)
\(\operatorname{DK}(I, J)=\operatorname{skB}(I, J)\)
\(\operatorname{DM}(I, J)=\operatorname{SMB}(I, J) \quad ;\)
\(10 \mathrm{~T}(I, J)=0.0\)
**
* APPLY THE COUSTBAINT C®NDITIENS TØ THE BLADE *
* SUBSYSTEM Matrices. , *
**
\(T(3,1)=1.0\)
\(T(3,2)=-E 1-E 2\)
\(T(4,2)=1.0\)
\(T(5,1)=-A M / R P\)
\(T(5,2)=A: / R R *(E 1+E 2)\)
\(T(6,3)=1.0\)
\(T(7,4)=1.0\)
\(T(8 ; 5)=1.0\)
\(T(9,6)=1.0\)
\(T(10,7)=1.0\)
CALL TZIKUL(T,DK,C,D,10,7,10, 10,10)
CALL TEIEUL(T,DK, C, D, 10; \(7,10,10,10\))
D0 \(15 \quad 1=1,10\)
DC \(15 \quad \mathrm{~J}=1,10\)
\(C(I, J)=\operatorname{Sin} 3(1, J)\)
15 DC \(I, J)=\sin 3(1, J)\)
DO 20 I= 1.7
\(I I=I+3\)
DD \(20 \quad \mathrm{~J}=1,7\)
\(\mathrm{JJ}=\mathrm{J}+3\)
\(\operatorname{SKB}(I I, J J)=\operatorname{DK}(I, J)\)
\(20 \operatorname{SHB}(11, J J)=\operatorname{DH}(I, J)\)
```

********:**************************************************
c * ASSEISLE THE DISC AND BLADE MATRICES INT0 THE *

* ASSEMBLE THE DISC AND BLADE MATRICES INT0 THE ..... *

```******************************************************
 D0 30 I=4,NTB
 II=I+NTD-5
 D5 30 J=4,NTB
 JJ= J+NTD-5
 SK(II,JJ)=SK(II,UU)+CC*SKB(I,J)
 30 SM(II,JJ)=5M(II,JU)+CC*SHB(I,J)
 DO. 35I=1, 10
 DO 35 J=1,10
 SKB(I,J)=C(I,J)
 Sm3(I,J)=D(I,J)
35 CONT INUE
 IF(IRNG.EQ.0)GZ TO 50
 **
 * CALCULATE THE RIM MATRICES
 *
 **
 AI=1 .0/(RRI+EL)
 A2=A1*Al
 A}3=A2*A
 A4=A3*A1
 AR=0.5*(RRD-RPI)*(RTD+RTI)
 GR=0.5*ER/(1.0+PRR)
 RK(1,1)=CIRR*(ER*RIZ+GR*RJ/AM2)*AM4*A4 +AM2*A2*STR*CKR
 RK(1,2)=CKR*(ER*RIZ+GR*RJ)*AM2*A3
 RK(2,1)=RK(1,2)
 RK(2,2)=CKR*(ER*RIZ+AM2*GR*RJ)*A2
 RM(1,1)=CMR*RGR*(RA+RIZ*AM2*A2)
 RM(1,2)=0.0
 RM(2,1)=0.0
 RM(2,2)=CMR*R@R. *(RIX+RIZ)
 TT (1,1)=1.0
 TT (1,2)=-E1
 TT (2,1)=0.0
 TT (2,2)=1.0
 CALL TRIMUL(TT,RK,CR,DR,2,2,2,2,2)
 CALL TRIMUL(TT,BM,CR,DR,2,2,2,2,2)
 **
 * ASSEMBLE THE R I M MATRICESIITD T H E SYSTEMMATEICES*
 **
 DO 40 I=1,2
 II=NTD-2+I
 DC 40 J=1,2
 JJ=NTD-2+J
 SK(II,JJ)=SK(II,JU)+RK(I,J)
40 SM(II,JJ)=SM(II,JU)+RM(I,J)
SO RETURN
 2 F0RMat (5X,15,5E13.6/)
 E N D
```

```
 **
 * READ SPEED CF R&TATION CF TIIE RDTDR IN RAD./SEC. *
 **
 BEAD 6,OHGA
 PRIITTÓ,CNGA
 G0.TO(20,50,20,21),IC?T
 **
 * READ FINAL AND STALTING VALUES·OF NDDAL DIAIAETEZSS *
 **
20 AEAD 12,ND,NDS
 PRINT 12,ND,MDS
 **
 * READ NUMBER QF DISC.ELEINENTS, DISC QPTIONS, DISC *
 * MATERIAL PRQPERTIES AIJD BQUiNDARY LEADING. *
 **
21 READ 12,IDDE,ITED
 PRINT12,NDE,ITED
 READ 6,ED,ROD,PSD,ALD,SCD
 PRIMTS,ED,RED,PRD,ALD,SCD
 READ 10,S:I,SRE
 PRINT10,SRI,SRQ
 NSD=NDE+1
 NPD =2*NDE
 NTD=4*INSD
 IF(IFNG.NE.O) NTD=4*(NSD+1)
 **
 * PEAD DISC DIMENSICNS . *
 **
 READ 10,(R(I),I=1, OPD)
 PRINT10,(R(I),I=1,NPD)
 READ 10,(T (I), I=1,NPD)
 PRINT10,(T(I),I=1,NPD)
 RDI=?(1)
 RDG=R(NPD)
 IF(ITED.EQ.0) GQ TC 4Q
 **
 * READ TEMPERATURE GRADIENT.GF THE DISC
 **
 READ 10,(TE (I),I=1,NPD)
 PRINT10,(TE(I),I=1,NDD)
 49GE TO(70,50,50,70), I&PT
 50 CDNTINUE
 **
 * アEAD !UVGER %F 3LADE ELEIDITS, NUMBEP BF DLALES, *
 * AND 3L\capDE gPTIENS
 **
 READ 12,NBE,N3,IST3, IBLE
 PRIIT12,USE,WE,IST3,I3DE
 NS:3=1N:E+1
 NTB=7*1153
 **
 * READ BLADE IINTERIAL PROPERTIES *
 **
 READ 6,53,RSD,P\Omega3,SC!
 PAINTÓ,EB, ROB,DRB,SCB
```

```
 **
 * READ BLADED ITIEHSIGNS
 **
 READ 10,(3X(I),I=1,NSS)
 PRINT10, (3X(I), I=1,NSB)
 READ 10,(53(1),I=1,11S3)
 PRINT10,(133(1),I=1,NS3)
 R E A D 10,(3D(I),I=1,NSB).
 PRINT1O,(3D(I),I=1,NSB)
 R E A D 10,(ARA(I),I=1,NSB)
 PRINT10,(ARA(I),I=1,NSB)
 R E A D 10,(3ING(I),I=1,NSB)
 PRINT10,(BKG(I),I=1,NSE)
 READ 10,(ANG(I),I=1,NSB)
 PRINT10,(ANG(I),I=1,NSB)
 IF(ISTB.EO.1) READ 6,(SIG(I),I=1,NSB)
 IF(ISTB.EQ.1) ?RINT6,(SIG(I),I=1,NSB)
 ‘70 IF(IZNG.EQ.O) GO TO &O
 **
 * IF RIM I S PRESENT, READ.THE RIM MATERIAL PSDPER- *
 * TIES, DIMENSICIS AND ELASTIC PRDPERT IES *
 **
 READ 6, ER,RCR,PR?,ALR,S CR
 PRINTG,ER,RCR,PRR,ALR,SC?
 READ 10,RRI,RRO,RTI,RTE,RTEI, RTE3
 PRINT10,RAI,RRE,RTI,RTQ,RTEI,RTEQ
 T (NPD+1)=RTI
 T(NPD+2)=RTC
 TE(NPD+1)=?TEI
 TE(NOD+2)=RTEQ
 R(NPD+1)=.3.31
 R(NPD+2)=R:2Q
 80 CENTINUE
 PI=3.14159265358979
 CENST=0.5/PI
 S1=1./3.
 S2=1./ó.
 S3=1./7.
 S4=1.19.
 GR TC(95,85,85,95),IEPT
 &5 CONTIME

 * CALCULATE BLADE SU3SYSTEIS ST IFENESS AND MASS *
 * MATFICES A!D STG:E THE:
 **
```



```
 G2 T0(95,90,95),I记T
 90 CONTIMJE
 IF(IRNG.I:E.0) GO TG 95
 **
 * COIPDUTE bladefrequencies accordinuto tue B L A D E *
 * G ENERAL OPT I ENS
 **
 IJKK=1
 I}=
```

1F(IBDE.NE.1)GE TO 94
DO $91 \mathrm{I}=3,3$ *VS3-1
$I I=1-2$
DO $91 \mathrm{~J}=3,3$ *NSB-1
$\mathrm{JJ}=\mathrm{J}-2$
SK(II, JJ) $=5 \mathrm{SK}(1, J)$
$91 \operatorname{SH}(I I, J \dot{)}=S \mathrm{SB}(I, J)$
$\mathrm{Nl}=3 * \mathrm{NS} 3-3$
PRINT 1
CALL EIGUAL (SK,SM,D,F,FR,B,C,X,ERR,B7,B8,E9,IJK,N1,NS1)
DC $92 \mathrm{I}=3 * \mathrm{NSE}+3,6 * \mathrm{NSB}-1$
$I I=1-2-3 * N S B$
D\& 92 J=3*11SB+3,6*NS3-1
$\mathrm{JJ}=\mathrm{J}-2-3$ *NS 3
SK(II, JU) $=5 K 3(I, J)$
$92 \operatorname{SM}(I I, J J)=\operatorname{SMB}(I, J)$
PRINT 2
CALL EIGUAL (SK, SM, D, F,FR, B, C, X,ERR, B7, B8, B9, INK,N', MS 1)
Dø $93 \mathrm{I}=6 * \mathrm{NS} 3+2$, NTB
$11=1-1-6 * N S B$
DE $93 \mathrm{~J}=6 * \mathrm{NS} 3+2$, NTB
JJ=J-1-6*NS3
$\operatorname{SKC}(1, J, J)=5 K 3(1, J)$
93 SM(II,JU)=SNB(I,J)
$\mathrm{N} 1=\mathrm{NS} 3-1$
C A L L EIGUAL (SK,SK,D,F,FR,B,C,X,ERR,B7,B8,B9,IJK,N1,MS1)
GD TO 15
94 IF(IBDE.NE.2) GO TØO7
N: =NTB
DO $195 \mathrm{I}=\mathrm{N} 3 \mathrm{E}, 1,-1$
II=7*I
CALL REDUCE (SKB, NM, II, 1, $1: S 2$ )
CALL REDUCE(S:3,NM,II,1,MS2)
$\mathrm{NH}=\mathrm{NM}-1$
195 CONTIMJE
CALL REDUCE (S:K3,NK: 6 *NSB-3,1, HS2)
CALL REDUCE (SMB,NM, $6 * N S B-3,1, M S 2$ )
CALL REDUCE(SM3,:M-1, $4,2,1152)$
CALL : $E$ EUCE (S:LD, NM-1, $4,2,1: S 2$ )
CALL BEDUCE (S: 3, N: $1:-3,2,1: 52$ )
'CALL REDUCE(SMB, MA-3,1,2,NS)
$\mathrm{N} 1=\mathrm{INM}-6$
PRINT 5
GOTE 99
97 CひNTINE
NH=NTS
CALL REDUCE(SKS,Ni, $7 * N S B-1, \quad 1, \mathrm{NS} 2)$
CALL 3 EDUCE(S:H3, $1: 1,7 * N S 3-1,1,14 S ?)$
CALL REDUCE (S: 3 , iN:-1,7*NSB-4,1, MS2)

CALL REDUCE (SKB, NM-2,4,2, MS2)
CALL REDUCE(S: $3, \mathrm{NH}-2,4,2, \mathrm{MS} 2)$
CALL REDUCE (SM3,NM-4,1,2,NS2)
CALL REDUCE (SMB, NH-4, $1,2,1 \mathrm{iS} 2$ )

```
 N 1 =NM-6
 PRINT 7
 99 CALL EIGVAL(SKB,SMB,D,F,FR,B,C,X,ERR,B7, 38,B9,IJK,N1,MS2)
 G& TC 15
 95 CENTINUE
 CK=2.0*PI*ED;(1.0-PRD*PRD) *
 CP=2.0*P1*RDD*OLGA*ORGA
 CT=2.0*PI*ED*ALD/(1.0-PRD)-

 * CAlCUlate the initiAl streSSES in the disC due to *
 * rgtatign, temperature gradient and dther boundary *
 * LgadingS

 CALL INLSTR(SK,R,T,TE,M,P,SGR,SGT,NSD,NSI)
 IF(IOPT.EQ.4) CALL EXIT
 NT =NTD
 IF(IQPT.EQ.3) NT=NTD+NTB-S
 I JK=1
 M=MDS-1
 IF(IEPT.EQ.3) Z=NB . s
 100 CDNTINUE
 *************************水水水杖***********************
 * SELECT NUNBE? OF_ MODAL DIAMETERS ' *
 **
 M=M+1
 PRINT 3.M
 FRC-1.0
 IF(M.EO.O) FAC=2.0
 CKD=FAC*PI*ED/(1.0-PRD*PRD)/12.0
 CMD=FAC*?I*?OD
 IF(IRNG.EQ.1) CKR=FAC*PI*ER/(1.0-PRR*PRP)/12.0
 IF(IRNG.ER.1) C1HR=FAC*PI*RDR
 IF(IDPT.EQ.3) CC=Z*FAC/2.0
 CCC=FAC*PI
 CSD=0.5*PI *FAC*ED/SCD/(1.0+PRD)
 IF(IRNG.NE.0) CSR=0.5*PI*FAC*ER/SCR/(1.0+PRR)
 A::=1
 AM2 =AM*AM
 AM4=AM2*AM2
 AM6 =AI:4*AM2
 AMP: =AF:2 *PRD
 D0 105 I=1,NT
 DE 10.5 J=1,NT
 SK(I,J)=0.0
 105 SM(I;J)=0.0
 **
 * Calculate disc suBSYSTEI: StiffilESS AND KaSS
 * MATRICES AND STCRE THEL:

 CALL THKDSC(SK,SN,R,T,SGR,SGT,NSD,HS1).
```

```
C
C
C
 * GET THESYSTEMSTIFFNESS A N D MASSMATRICESFREM
 * The subsystevmatri CES

 IF(IOPT.EQ.3) CALL TMHSYS(SK,SM,S:KB,SNB,
 -CC,RDO,MT3,MTD,NTB,MS1,MS2)

 * APPLY BOUNDA:3 C ENDITI CNS

 CALL REDUCE(SK,NT,NT-1,1,MS1)
 CALL REDUCE (SM,NT,NT-1,1,MS1)
 IF(IDPT.EQ.1)GRTE 110
 CALL REDUCE(SK,NT-1,NT-4,1,MSI)
 CALL REDUCE(SM,NT-1,NT-4, 1,MS1)
 CALL MEDUCE(SK,NT-2,1,2,MS1)
 C A L L REDUCE(SK,NT-2,1,2,NS1)
 NI=NT-4
 GOTD 120
 110 C0NTINUE
 C A L L REDUCE(SK,NT-1,3,1,MS1)**
 CALL REDUCE(SM,NT-1,3,1,MS1)
 NI=NT-2
 120 ContIINe

 * SOLUE THE EIGENVALUE pRgBLEMANJ GET THE SYSTEM *
 * FREQUENCIES *
 **
 CALL EIGUAL(SK,SM,D,F,FR,B,C,X,ERR,B7,B3,39,IJK,N1,NS1)
 IF(M.LT.ND)G&T0 100
 GOTO 15
 200 CALL EXIT
 FQRHAT(1H1,5%,'BLADE BENDING FREQUENCIES INI-MINDIPECTICN'//)
 FQRMAT(1H!,5X,'BLADE BENDING FREQUENCIES IN I-MAX DIRECTIGN'//)
 FQRHAT (///, 27HNUMBE? OF NEDAL DIAMETERS =, I3//)
 FERMAT (1 H1,5X,' BLADE TCRT I CNALFREQUENCI ES '//)
 FQRMAT(1H1,5X,'TUISTED BLADE 3ENDING FREQUENCIES'//)
 F0RNaT(4F20.10)
 FgRNAT(11:1,5X,' BLADE FREQUENCIESTITHINIT IAL STRESSES '//)
 FERHAT(&F10.6)
 FERMAT(/8E13.6)
 FCRMat(16:5)
 END
```

- 

```
 SUBRQUT INE TMKSDE (SKB,SMB, 3R, 33,3D, ANG,SIG,ARA, BKG,NBE,IBDE,L)

 ** this subreut ine cnlculatesthe blade subsysten **
 * Stiffness Matrix S:B(l,L) aivd masS matrix Sib(l,l)*
 * transverse shearandmgtary inert ia ade included *
 * additichalstiffness due te initial StresSes can*
 * ALSO BE INCLCDED
 **
 DINENSIDNSKB(L,L),SMB(L,L),EK(14,14),EK(14, 14)
 DIMENSIONR(14,14),3(14,14),C(14,14),D(14, 14)
 DIMENSICH BY(L),BB(L),BD(L),ANG(L),SIG(L)
 COMHON/FRUR/PI,ED,ER,EB,ROD,ROR,ROB,ALD,ALR,PRD,PRR,PRB,SCB
 COHMON/FIVE/SRI,SRC,GHGA
 RX(I,AI)=ALFS*ALFA*XX(I+1,AI+1.0)+(ALFS*SETA+BETS*ALFA)*
 . XX(I*2,AI+2.0)+BETS*BETA*XX(I+3,AI+3.0)
 SX(I,AI)=R2B*OLGA*OSGA*(ALFA*XX(I+1,AI+1.0)+ZETA*YX(I +2,AI+2.0))
 XS(I,AI)=YYY*(ALFA*YX(I+1,AI+1.0)+2ETA*XX(I+2,AI+2.0))
 XR(I,AI)=XXX*(AL*MX(I+1,AI+1.0)+BE*XX(I+2,AI+2.0))
 XX(I,AI)=(BX2**I-3XI**I)/AI
 NTB=7*(NBE+1)
 DC 10 I=1,NTB
 DE 10 J=1,NTB
 SK3(I,J)=0.0
 la }\operatorname{SMB}(1,J)=0.
 PRINT 1
 K=0
 20CENT INUE
 D0 15 I=1,14
 D0 15 J=1,14
 B(I, U)=0.0
 EK(I,J)=0.0
 EN(I,U)=0.0
 15R(I,U)=0.0
 **
 * S ELE CT THENMMBERKRFTMEELEIVENT AND GET TME
 * UALUES*OF SECTIGNPREPEPTIES OF THE BLADE AT TEE *
 * ENDS DFTHEELEMENT
 **
 K=K+1
 KP 1=R+1
 3X1=3X(K)
 BK2=3\times(KP 1)
 ARA1 =A:A(K)
 ARAO=ARA(KP1)
 ANG 1=ANG(K)
 ANG2=ANG (KP1)
 PRINT 2,K,3:1, 3:2
 SIGI=SIG(R)
 SIG2=SIG(KP1)
 BA=0.5*(ANG1+ANGG2)
```

```
 SN=S1H(BA/180.0*PI)
 CS=C0S(3A/180.0*PI)
GB=0.5*ES/(1 . 0+PRD)
 B1111=B3(K)
 B1:12=BE(KP1)
 BMK1=3D (IO
 BMY2=BD(MP1)
 BJ 1=BKKG(K)
 B J2=3KG(KP1)
 EL=BY2-3X1
ALFS=(3X2*SIGI-BX1*SIG2)/EL
 BETS=(SIG2-SIG1)/EL
 ALFA=(BX2*ARA1-BX1*ARA2)/EL
 BETA= (ARA2-ARA1)/EL-
 ALFJ=(3\times2*3U1-3\times1*BJ2)/EL
 BETJ=(3U2-BJ!)/EL
 ALIU=(BX2*3MI1-EXI*BMI2 >/EL
 BEIU=(BMI2-BMII >/EL
 ALIU=(3X2*BMY1-BX1*BMX2)/EL ,
 BEID=(BI4X2-3MX1)/EL
 **
 * calculate the ' 3' matrix
 **
 B(1,1)=1.0
 B}(1,2)=B\times
 B(1,3)=3\times1*B\times1
 B (1,4)=B\times1*3\times1*BX1
 B(2,2)=-1.0
 B(2,3)=-2.0*3\times1
 B(2,4)=-3.0*3\times1*3\times1
 B(2,5)=1.0
 B(2,6)=3\times1
 B(3,5)=1.0
 B}(3,6)=B\times
 B(4,1)=1.0
 B(4,2)=3\times2
 B(4,3)=3\times2 * 3 %2
 B (4,4)=3\times2*3\times2*B\times2
 B(5,2)=-1.0
 B(5,3)=-2.0*3\times2
 B(5,4)=-3.0*3\times2*3\times2
 B(5,5)=1.O
 B(5,6)=3\times2
 B(6,5)=1.0
 B(6,5)=3\times2
 DC 25 I=1,6
 II= I +6
 DO 25 J=1,6
 JJ= J+6
25 B(II,JJ)=3(I,J)
 B(13,13)=1.0
 B(13,14)=3\times1
 B(14,13)=1.0
 B (14,14)=BY2
 CALL InUT (3,14,14)
```

```

 * calculate tue retatlen matrix !
 **
 R(1,1)=CS
 R(2,2)=CS
 R(3,3)=CS
 R(4,8)=C5
 R(5,9)=CS
 R(6,10)=CS
 R(7,4)=CS
 R(8,5)=CS
 R(9,6)=CS
 R(10,11)=CS
 R(10,11)=CS
 R(11,12)=CS
 R(12,13)=CS
 R(1,4)=SN
 R(2,5)=SN
 R(3,6)=SN
 R(4,11)=SN
 R(5,12)=SN
 R(6,13)=SN
 R(7,1)=-SN
 R(8,2)=-SN
 R(9,3)=-SN
 R(10,8)=-SN
 R(1 1,9)=-SN
 R(12,IO)=-SN
 R(13,7)=1.0
 R(14,14)=1 .0
 **
 * CALCULATE THE ELEIEITT STIFFNESS MATRIX EK
 KKK=0
 AL=ALIU
 BE=SEIU
 I=0
 J=O
 XXX=EB
 YYY=GB/SCB
30 CQUT INUE
 KKK=KKK+1
 ER(I+3, J+3)=4.0*NR(0,0.0)
 EK(I+3,J+4)=12.0*\becauseR(1,1.0)
 EK(I+3,J+6)=-2.0*\R(0,0.0)
 EK(I+4,J+4)=36.0*N.2(2,2.0)
 EK(I+4,J+6)=-6.0*XR(1,1.0)
 EK(I+5,U+5)=XS (0,0.0).
 EK(I+5,U+6)=KS(1,1.0)
 EK(I+6, j+6)=XR(0,0.0)+YS (2,2.0)
 IF(KKK.EQ.2)GETG 3 5
 I=6
 J=5
```

```
 AL=ALIV
BE=BEIW
G0 T0 30
35 CONTINUE
EK(14,14)=GB*(ALFJ*XX(1,1.0)+3ETJ*KX(2,2.0))
**
C * CALCULATE THE ELEMENT MASS MATPIX EM
 **
 KMKK=0
 I=0
 J=O
 AL=ALIU
 BE=3EIU
 XXX=RCB
 YYY=ROB
40 CONTINUE
 KKK=KKKK+1
 EM(I+1,J+1)=YS(0,0.0)
 EM(I+1,J+2)=NS (1,1.0)
 EM(I+1,J+3)=\S (2,2.0)
 EM(I+1,J+4)=XS (3,3.0)
 EM(I+2, J+2)=XS(2,2.0)+XP(0,0.0)
 EM(1+2,J+3)=XS(3,3.0)+2.0*XR(1,1.0)
 EM(1+2,J+4)=KS(4,4.0)+3.0*MR(2,2.0)
 EM(1+2,J+5)=-रR(0,0.0)
 EM(I+2,j+5)=-XR(1,1.0)
 EM(I+3,J+3)=XS(4,4.0)+4.0*XR(2,2.0)
 EM(I+3,J+4)=XS(5,5.0)+6.0*XR(3,3.0)
 EM(I+3,U+5)=-2.0*KR(1,1.0)
 EM(1+3,J+6)=-2.0*NR(2,2,0)
 EM(I+4,J+4)=XS(6,6.0)+9.0*XR(4,4.0)
 EM(I+4,J+5)=-3.0*KR(2,2.0)
 EM(I+4,j+6)=-3.0*NR(3,3.0)
 EM(I+5,J+5)=XR(0,0.0)
 EM(I+5,J+6)=Y\Omega(1,1.0)
 EM(I+6,J+6)=XR(2,2.0)
 IF(KiKK.EQ.2) GO TQ 45
 AL=AL IW
 BE=BEI|
 I=6
 J=6
 G@ T0 40
45 CENTIIGUE
 AL=(ALIU+ALIU)*ROB
 BE=(BEIU+3EI!)*?OS
 EIM(13,13)=AL*NX(1,1.0)+3E*XX(2,2.0)
 EN(13,14)=AL*XX(2,2.0)+BE*XX(3,3.0)
 EM(14,14)=AL*NX(3,3.0)+3E*NX(4,4.0)
 DC 5 0 I=1,13
 II=I+1
 D0 50 J=11,14
 EK(JPI)=ER(I, J)
50 EM(J,I)=EM(I,J)
```

CALL TRIMUL (B,EK, C, D, 14, 14, 14, 14, 14)
CALL TRIMIL (B, EM, C, D, 14, 14, 14, 14, 14)

$B(7,14)=B \times 1$
$B(8,1)=1.0$
B $(8,2)=3 \times 2$
$\mathrm{B}(8,3)=5 \times 2 * B \times 2$
$\mathrm{B}(8,4)=3 \times 2 \mathrm{aBX} 2 * 3 \times 2$
$B(9,2)=-1.0$
$B(9,3)=-2.0 * 3 \times 2$. . . .
$B(9,4)=-3.0 * 2 \times 2 * 3 \times 2$
$B(9,5)=1$. 0
$B(9,6)=3 \times 2$
$B(10,5)=1.0$
$B(10,6)=3 \times 2$
B-f $-11,7)=1.0$
$B(11,8)=3 \times 2$
$B(11,9)=5 \times 2 * B \times 2$
$B(11,10)=E \times 2 * B \times 2 * B \times 2$
$B(12,8)=-1.0$
$B(12,9)=-2.0 * B \times 2$
$B(12,10)=-3.0 * 3 \times 2 * 3 \times 2$.
$B(12,11)=1.0$
$B(12,12)=3 \times 2$
$B(13,11)=1.0$
$B(13,12)=3 \times 2$
$B(14,13)=1.0$
$B(14,14)=3 \times 2$
$R(1,1)=-S X(0,0.0)$
$R(1,2)=-S X(1,1.0)$
$R(1,3)=-S \times(2,2.0)$
$R(1,4)=-5 \times(3,3.0)$
$R(2,2)=R X(0,0.0)-S X(2,2.0)$
$R(2,3)=2.0 * \operatorname{RX}(1,1 \quad .0)-S X(3 r 3.0)$
$R(2,4)=3.0 * R \times(2,2.0)-S X(4,4.0)$
$R(3,3)=4.0 * R Y(2,2.0)-5 \times(4,4.0)$
$R(3,4)=6.0 * 2 \times(3,3.0)-5 X(5,5.0)$
$R(4,4)=9.0 * 2 \times(4,4.0)-5 \times(6,6.0)$
$R(8,8)=R \times(0,0.0)$
$R(8,9)=2.0 * R \times(1,1.0)$
$R(8,10)=3.0 * 3 \times(2,2.0)$
$R(9,9)=4.0 * 2 \times(2,2.0)$
$R(9,10)=6.0 * R \times(3,3.0)$
$R(10,10)=9.0 * R \times(4,4.0)$
$R(13,13)=-26 B * B M G A * R M G A * C O S(2.0 * B A) *((A L F Y+A L F U) * X X(1,1.0)$

$R(13,14)=-3 C E * C H G A B E G A * C B S(2 \cdot * B A) *((A L F V+A L F U) * X X(2,2.0)+(2 E T Y+$

- BETU) *XX (3.3.0))
$R(14,14)=-3 G 3 * \because G A * Q G A * C G S(2 \cdot * B A) *((A L F M+A L F U) * X X(3,3.0)+(B E T U+$ BETU $) \times$ スX ( $4,4 \cdot 0)$ )
- +ALFS *ALFJ*RX(1,1.0) +(ALFS*BETJ+BETS*ALFJ)*RX(2,2.0)

CALL TAIMUL(B, R, C,D,14,14,14,14,14)
D0 $80 \mathrm{I}=1,14$
DC $80 \quad \mathrm{~J}=1,14$
$\operatorname{EK}(I, J)=\operatorname{EK}(I, J)+R(I, J)$
80 Cb:NT INUE

```
KK=7*(K-1)
CALL ASHBLE(SKB,EK,KK,KK, 1, 14,14,L)
CALLAS:OSLE(SIM, EM,KK,KK,1,14,14,L)
IF(K.LT.NBE)GE TO 20
RETURN
FGRMAT(1H1,//5X,'BLADE DIMENSIGNS'//)
FORMAT (5X,I5,8F8.3/)
3 FORMAT (7E13.5)
END
```

```
**
* THISSUBRCUTINE CALCULATES THEELEI解T STIFFNESS *
SUBROUTINE THKDSC(SR,SM,R,T,SRR,STT,NSD,L)
 * AND rASSriATRICESANDSTGRESTHE VALUES INTO TEE *
 DISC SUBSYSTEMMATRICES SK(L,L) AND SM(L,L.)
 * THE ADDITIGNAL STIFFNESS CEEFFICIENTS DUE T0
 * INITIAL STRESSESSRR(L) AND STT(L) ARE ALSO
 * CALCULATED AND ADDED TOTHEBENDING STIFFNESS . *
 * TRANSVERSE SHEARANDROTARYINERT IA ARE INCLUDED.*
 * before entering the subreutilve ZERO ALL THE terms*
 * OF THE MATRICESSK AND SM. INITIALISE ALL THE
 * TERNS QFTHE RADIUS ANDTHICISNESS VECTOR R AND T. *

 DIMENSICN SK(L,L),SM(L,L),R(L),T(L)
 DIMENSIEN STR(L),STT (L),ES(8,8)
 DIMENSIGN EK(8,8), EM(8,8),B(8,8),C(8,8),D(8,8)
 CELNMN/OPTIQN/IOPT,IRNG, ITHD,ITED, ITH3, ISTB
 CQMMON/DNE/AK,P2,P1,P3
 COMMZN/TWQ/S1,S2,S3,54,CKD,CKR,CMD,CMR,CC,CCC,CKK,CP,CT,CSD,CSR
 C ØMMON/FØUR/PI, ED,ER,EB,RQD,RQR,RQB,ALD,ALR,DRD,PRR,PRB,SCB
 K=0
 NS-NSD'
 IF(IRNG.EQ.1)NS=NSD+1
 N=NS-1
 PR=PRD
 CK=CKD
 CM=CMD
 CS=CSD
 30 CONT INUE
 **
 * SELECT THEMUMBERK\ellF THE ELEMENT
 **
 K=K+1
 Kl=2*K-1
 K2=2*K
 **
 GET THE VALUES ØF 'RADIUS ANDTHICKNESS AT NQDES *
 **
 R1=R(K1)
 R2=3(K2)
 T1=T (K1)
 T2=T(K2)
 D0 40 I=1,8
 DO 40 J=1,8
 B(I,J)=0.0
 EK(I,J)=0.0
40 EN(I,J)=0.0
 IF(K.NE.NSD) GOTO 42
 PR=PRR
```

```
P3=PRR*P2
CK=CKR
CM=CMR
CS=CS?
42 C&NTINUE
DD=?2-31
D 1=DD*DD
D2 = D1*DD
ALFA=(R2*T1-R1*T2)/DD
BETA= (T2-T1)/DD
XI=ALFA*ALFA*ALFA*CK
X.2=ALFA*ALFA*BETA*CK
X3=ALFA*BETA*BETA*CK
X4=3ETA*BETA*BETA*C:K
C. ***
C

B(1,1)=1.0
B(1,2)=21
B (1,3)=R1*R1
B(1,4)=? \ | | | | | |
B(2,2)=-1.0
B(2,3)=-2.0*?,1
B(2,4)=-3.0*?1*R1
B (2,5)=1.0
B (2,6)=R1
B(3,5)=1.0
B(3,6)=R1
B(4,7)=1.0
B(4,8)=21
B(5,1)=1.0
B(5,2)={2
B(5,3)={2*R2
B(5,4)=R2*R2*R2
B(6,2)=-1.0
B(6,3)=-2.0*R2
B(6,4)=-3.0*R2*R2
B(6,5)=1.0
B(6,6)=R2
B(7,5)=1.0
B(7,6)={2
B(8,7)=1.0
B(8,8)=?32
CALL INUT (5,8,8)
C ***
C * CALCULATE THE SMALIK'MATRIX
C **
AI=\Omega|*R2
A2=A1*Al
A3 =R2-R1
A4=R2**2-31**2
A5=R2**3-R1 **3
A6=?2**4-!?!**4
A7=R2**5-R1***5
```

```
 A8=R2**6-R1**6
 A9=R2**7-R1**7
 A10=R2**8-R1**8
 Al 1=R2**9-R1**9
 A12=R2**10-R1**10
 C5=AL0G (R2/R1)
 E1=X1*.5*A4/A2+X2*3.*A3/A1 + X 3*3.*C5 +X4*A3
 E2 =X1*A 3/A1+X2*3.*C5+X3*3.*A3 +X4*.5*A4
 E S = X1*C5 +X2*3.*A3+X3*1.5*A4+X4*S1*A5
 E4=X1*A3 +X2*!.5*A4 + Y 3*A5 X4 *. 25*A6
 E.5 =X1*.5*A.4+X2*A5 +X3*.75*A6+X4*.2*A7
E6=X1 *S1 *A5+X2*.75*A6+X3*.6*A7+X4*S2*A8
 E7=X1*.25*A6+X2*.6*A7+X3*.5*A8+X4*S3*A9
 EK(1,1)=E1*(P1+2.*P2-2.*P3)
 EK(1,2)=E2*(P1-P2)
 EK(1,3)=E3*(P1-4.*P2)
 EK(1,4)=E4*(P1-7.*P2-2.*P3)
 EK(2,2)=E3*(P1-2.*P2+1.)
 EK(2,3)=E4*(P1-3.*P2-2.*P3+2.*PR+2.)
 EK(2,4)=E5*(P1-4.*P2+3.-6.*P3+6.*PR)
 EK(3,3)=E5*(P1-2.*P2+8.-6.*P3+8.*PR)
 EK(3,4)=E6*(P1-P2+18.-12.*P3+18.*PR)
 EK(4,4)=E7*(P1+2.*P2+45.-20.*P3+36.*PR)
 EK(1,5)=E2*(2.0*P2-P3)
 EK(1,6)=E3*2.0*P2
 EK(I,7)=E2*(P2*AM-AM*PR+AM)
 EK (1,8)=E3*P2*AM
 EK(2,5)=E3*(P2-1.0)
 EK(2,6)=E4*(P2+P3-PR-1.0)
 EK(2,7)=E.3*(P2*AM-AM)
 EK(2,8)=E4*(P2*AM-AM)
 EK(3,5)=E4*(P3-2.0*PR-2.0)
 EK(3,6)=E5*(2.0*P3-4.0*PR-4.0)
 EK(3,7)=E4*(P2*AM-AM*PR-3.0*AM)
 EK(3,8)=E5*(P2*AN-2.0*AM*PR-2.0*AM)
 EK(4,5)=E5*(2.0*P3-P2-6.0*PR-3.0)
 EK(4,6)=E6*(3.0*P3-P2-9.0*PR-9.0)
 EK(4,7)=E5*(P2*AM-5.0*AM-4.0*AM*PR)
 EK(4,8)=E6*(P2*AM-6.0*AM*PR-3.0*AM)
 EK(5,5)=E3*(1.0-0.5*P3+0.5*P2)
 EK(5,6)=E4*(1.0+PR-0.5*P3+0.5*P2)
 EK(5,7)=E3*(1.5*AM-0.5*AM*PR)
 EK(5,8)=E4*AH
 EK(6,6)=E5*(2.0+2.0*PR-0.5*P3+0.5*P2)
 EK(6,7)=E4*(1.5*AK+0.5*AM*PR)
 EK(6,8)=E5*(AM+AN*PR)
 EK(7,7)=E3*(P2+0.5-0.5*PR)
EK(7,8)=E4*P2
 EK(8, &)=E5*P2
 Xl =ALFA*CS
 X2=BETA*CS
 El =X1*0.5*A4+X2*S 1 *A5
 E2=X1*S 1 *A5 +X2*0.25*A6
```

```
E3=x!*0.25*A6 +X2*0.2*A7
ER(5,5)=EK(5,5)+E1
EK(5,6)=EK(5,6)+E2
EK(6,6)=EK(6,6)+E3
EK(7,7)=EK(7,7)+E!
EK(7,8)=EK}=[(7,8)+E
EK(8,8)=EK(8,8)+E3

* CALCULATE ADDITIDNAL STIFFNESS For inItIAL STRESS *
**
CA=(R2*SRR(K1)-RI*SRR(K2))/DD
DA=(SAR(K2)-SRR(K1))/DD
EE=(R2*STT(K1)-R1*STT (K2))/DD
FF=(STT(K2)-STT(K1))/DD
XI=CCC*ALFA*EE*P2
X2=CCC *P2*(ALFA*FF+3ETA*EE)
X3=CCC*SETA*FF*P2
E1=X1*C5+X2*A3+0.5*X3*A4
E2 = X1*A3+0.5*X2*A4+51*X3*A5
E3=0.5* X1*A4+51*X2*A5+0.25*R3*A6
E4=S 1*X1*A5 +0.25*X2 *A6+0.2*X3*A7
E5=0.25*X1*A6+0.2*X2*A7+52* X3*A8
E6=0.2*X1*A7+S2*Y.2*A8+S3*X3*A9
E7=S2*X1*A8+53*X2*A9+0.125*X3*A10
X1=CCC*ALFP*CA
X2=CCC*(ALFA*DA+BETA*CA)
X3=CCC *BETA *DA
F1=0.5*X1*A.4 +S 1 * X2*A5+0.25* X3*A5
F2 =S 1 *X1*A5+0.25*X2*A6+0.2*M3*A7
F3=0.25*X1*AG+0.2* K2*A7+S2*K3*A8
F4=0.2*X1*A7+S2*X2*A8+53*X3*A9
F5=S2*X1*A8+S3*X2*A9+0.125*X3*A10
ES (1, 1)=E1
ES (1,2)=E2
ES (1,3)=E3
ES (1,4)=E4
ES (2,2)=E3+F1
ES (2,3)=E4+2.0*F2
ES (2,4)=E5+3.0*F3
ES (3,3)=E5+4.0*F3
ES (3,4) = E6 +6.0*F4
ES (4,4)=E7+9.0*F5
**
* CALCULATE THE 'SMALL II' MATRIK

XI=CM/12.0*ALFA*ALFA*ALFA
X2=CM/12.0*ALFA*ALFA*SETA*3.0
X3=CM/12.0*ALFA*BETA*BETA*3.0
X4=CM/12.0*BETA*BETA*SETA
ALFA=ALFA*CM
BETA=BETA*CM
EM(1,1)=ALFA*.5*A4+BETA*S1*A5
EM(1,2)=ALFA*S1*A5+BETA*.25*A6
```


## $\stackrel{A}{6}$




云动

$c$




0
0
0
0
0
0
0




125
$.12 \times X$


## 

$$
\begin{aligned}
& 0+\underset{\sim}{+}+\underset{\sim}{*} \\
& \underset{\sim}{\sim} \underset{\sim}{\sim}
\end{aligned}
$$



SUBRGUTINE THKSYS (SK,SM,SKB,SMB,CC,RDQ,RRE,NTD,NTB,L,LL)
******************************************************

* THIS SUBㄹCUT INE ASSEMBLESTRE STIFFNESS AND MASS*
* MATRICES ØF THE TVO SUB SYSTEMSINTETHESYSTEH
* MATR ICES. THE DISC SUBSYSTEMSMATRICESSK(L,L) AND**
* SM(L,L) ARE THEMSELF USED AS SYSTEM MATRICES.
* befgre entering the subroutine initialise all the *
* TERNS QF THESUBSYSTEM MATRICES SK, SM, SKB, AND SMB* ****************************************************** DIMENSIGN SK(L,L),SM(L,L),SKB(LL,LL);SMB(LL,LL) DIMENSIRNDK $(14,14)$, DM $(14,14), T(14,14), C(14,14), D(14,14)$ CØMMON/OPTI ©N/ I CPT,IRNG,ITHD,ITED,ITHB,ISTB COMMON/ONE/AM,AM2, AM4, AMPR.
$R R=R D C$
IF(IRNG.NE.O) RR=RR $\varnothing$
DO $10 \mathrm{I}=1,14$
DO $10 \mathrm{~J}=1,14$
$D K(I, J)=S K B(I, J)$
$D M(I, J)=S M B(I, J)$
$10 \mathrm{~T}(\mathrm{I}, \mathrm{J})=0.0$
******************************************************
* APPLY THE CONSTRAI NT CZNDITIGNSTD THE BLADE
* SUBSYSTEMMATR T CES
******************************************************
$\mathrm{T}(3,5)=1.0$
$T(4,1)=1.0$
$T(5,2)=1.0$
$T(6,3)=1.0$
$T(7,1)=-A M / R R$
$T(7,4)=1.0$
$T(8,6)=1.0$
$T(9,7)=1.0$
$: T(10,8)=1.0$
$T(11,9)=1.0$
$T(12,10)=1.0$
$T(13,11)=1.0$
$T(14,12)=1.0$
CALL TRINUL(T,DK,C,D, 141 12, 14, 14,14)
CALL TRINUL(T,DM,C,D,14,12,14,14,14)
Dす 15 I=1, 14
DO $15 \mathrm{~J}=1,14$
$C(I, J)=\operatorname{SKB}(I, J)$
$15 \mathrm{D}(\mathrm{I}, \mathrm{J})=\operatorname{SMB}(I, J)$
DJ $20 \quad I=1,12$
$11=1+2$
DO $20 \mathrm{~J}=1,12$

```
 JJ=J+2
 SKB(II,JJ)=DK(I,J)
 20 SMB(II,UJ)=DM(I,J)
 * ASSEMBLE THE DISC AND BLADE MATRICES INTO THE
 * SYSTEM liatRICES
 **
 DO 30I=3,NTB
 II=I+NTD-6
 DO 30 J=3,NTB
 JJ=J+NTD-6
 SK(II,JJ)=SK(II,JJ)+CC*SKB(I,J)
30 SM(II,JU)=SM(II,JJ)+CC*SMB(I,J)
 DO 35 I =1,14
 DO 35 J=1,14
 SKB(I,J)=C(I,J)
35SMB(I,J)=D(I,J)
 RETURN
 END
```

C
D.4.4 Subroutines Used Bothin PROGRAM-2 and PROGRAM-3

		SUBROUTINE INLSTR (SK,R,T,TE,V,P,SGR,SGT,NSD,MS)
c		* rhis supreut ine calculates radial and tangential
C		* Stresses sgr (l) And sgT(L) at the nedalpgintsef*
C		* An axisymataicnen uniformdisc with orvitmout *
C		* A Rim due tounifgrmbotation. And axisymmetric
C		* temperatues gradient te(l)
C		* while entering the subreutine initialise all the*
C		* terms ef the radius vectorpr(L), the thickness
C		* vector t (L), and the temperature vecterte ll
C		*******************************************************
		DIMENSION SK(MS,MS), M(MS), P(MS), R(MS), T (MS), TE (MS)
		DIMENSIEN SGR(MS), SGT (MS)
		DIMENSIEN EK $(4,4), 3(4,4), \mathrm{C}(4,4), \mathrm{D}(4,4), \mathrm{EP}(4), \operatorname{EE}(4)$
		C EMMEN/OPTIEN/IOPT,IRNG,ITHD,ITED,ITHB, ISTB
		C OLKCN/FQUR/PI, ED, ER, EB, RØD,RER,RDB, ALD, ALR, PRD, PRR, PRB
		CQMMEN/FIUE/SRI, SRQ
		NS $=$ NSD
		IF (IRNG - EQ.1) $N S=N S D+1$
		$\mathrm{NN}=2 * \mathrm{NS}$
		DC $20 \mathrm{I}=1$, Ni
		$P(I)=0.0$
		D0 $20 \mathrm{~J}=1$, NN
	20	$\operatorname{SK}(\mathrm{I}, \mathrm{J})=0.0$
		PRINT 3
		$\mathrm{K}=0$
		$\mathrm{N}=\mathrm{NS}-1$
		PR-PRD
	30	Continue
C		******************************************************
C		* SELECT THE NUMBERK OF THE ELEMENT
C		
		$\mathrm{K}=\mathrm{K}+1$
		IF (K.EQ .NSD) PS = PRR
		$\mathrm{Kl}=2 * \mathrm{I}<-1$
		$\mathrm{K} 2=2 * \mathrm{~K}$
c		*****************************************************
C		* GET THE VAlues @f RadiUS AND THICKNESS AT NODES *
C		*******************************************************
		$\mathrm{RI}=\mathrm{R}(\mathrm{Kl})$
		$R 2=R(K 2)$
		$\mathrm{T} 1=\mathrm{T}(\mathrm{K1})$
		$\mathrm{T} 2=\mathrm{T}(\mathrm{K2})$
		KK=2*(K-1)

```
DO 40 I=1,4
DO 40 J=1,4
B(I,J)=0.0
40 EK(I,J)=0.0
DD=R2-R1
D!=DD*DD
D2=D1*DD
ALFA=(R2*T 1-R 1*T2)/(R2-R 1)
BETA=(T2-T1)/(R2-R!)
Xl =ALFA*CK
X2 = BETA*CK
IF(K.EQ.NSD) Y1 =X1*ER/ED*(1.0-PRD*PRD)/(1.0-PRR*PRR)
IF(K.EQ.NSD) X2=X2*ER/ED*(1.0-PRD*PRD)/(1.0-PRR*PRR)
B(1,1)=?2*R2*(R2-3.*R1)/D2
B(1,3)=R1*R1*(3.*R2-R1)/D2
B(1,2)=-R1*R2*R2/D1
B(1,4)=-R1*R1*R2/D1
B(2,1)=6.*R1*R2/D2
B}(2,3)=-B(2,1
B(2,2)=R2*(2.0*R1+32)/DI
B(2,4)=R|*(RI+2.0*R2)/DI
B(3,1)=-3.*(R1+R2)/D2
B(3,3)=-3(3,1)
B (3,2)=-(R1+2.*R2)/D1
B (3,4)=-(2.*R1+R2)/D1
B(4,1)= 2./D2
B(4,3)=-B(4,1)
B(4,2)= 1.0/D1
B(4,4)=B(4,2)
A1=R.1*?2
A2=Al*A1
A3=R2-R1
A4=R2**2-R1**2
A5=R2**3-R1**3
A6=R2**4-R1**4
A7=R2**5-R1**5
A8=R2**6-R1**5
A9=R2**7-R1**7
C5=ALQG(R2/R1)
El=X1*C5+Y2*A3
E2 =X 1 *A3+X2*0.5*A4
E3=X1*0.50*A4+X2*S1*A5
E4=X1*S1*A5+.X2*0.25*A6
E5=X1*0.25*A6+ X2*0.2*A7
E6=X1*0.2*A7+X2*S2*A8
E7=X1*S2*A8+X2*S3*A9
**
* CALCULATE THE SMALL'SMALL K' M A T R I X
EK(1,1)=E1
EK(1,2)=E2*(1.0+PN)
EK(1,3)=E3*(1.0+2.0*PR)
EK(1.4)=E4*(1.0+3.0*PR)
EK(2,2)=E.3*(2.0+2.0*PR)
EK(2,3)=E4*(3.0+3.0*PR)
```

```
 EK(2,4)=E5*(4.0+4.0*PR)
 EK(3,3)=E5*(5.0+4.0*PR)
 EK(3,4)=E6*(7.0+5.0*PR)
 EK(4,4)=E7*(10.0+6.0*PR)
 EK(2,1) =EK(1,2)
 EK(3,1)=EK(1,3)
 EK(4,1)=EK(1,4)
 EK(3,2)=EK(2,3)
 EK(4,2)=EK(2,4)
 EK(4,3)=EK(3,4)
 Y 1=ALFA*CP
 Y2=BETA*CP
 IF(K.EQ.NSD) Y1=Y1*R@R/ROD
 IF(K.EQ.NSD) Y2=Y2*ROR/ROD
C **
C
 EP(1)=EP(1)+21*A3+Z2*0.5*A4+Z3*S1*A5
 EP(2)=EP(2)+21*A4+22*2.0*S1*A5+Z3*0.5*A6
 EP(3)=EP(3)+21*A5+22*0.75*A6+23*0.6*A7
 EP(4)=EP(4)+21*AS+22*0.8*A7+23*2.0*SI *AS
 GOTG43
 42 CDNTIIJJE
 PRINT 2,K,R1,R2,T1,T2
 43 DO 45 I=1,4
 DO 45 J=1,4
 45C(I,J)=3(J,I)
 **
 * CALCULATE LOADUECTERAIND STIFFNESS MATRIX
 **
 CALL MATMUL(C,E?,EE,4,4,4,1,4)
 CALL TRIMUL(B,EK,C,D,4,4,4,4,4)
```

```
C
C
C
 * PUT the ElemEnt matrices inte suzsystem matrices *
```



```
 . CALL ASMBLE(SK,EK, KK, KK, 1,4,4,MS)
 CALL SYSLED(P,EE,KK,4,4,MS)
 **
C . * GOBACK AND REPEAT CALCULATIONS FOR GTHER ELEMENTS*
C. **
 IF(K-N) 30,50,50
 50 CENT INUE
 P(1)=P(1)+5RI
 P(NN-1)=P(NN-1)+SRD
 CALL INUT (SK, NN,MS)
 CALL MATMUL(SK,?,W,NN,NN,NN,1,MS)
 **
 * CALCULATE STRESSES AT NODES &F EACH ELEmENT *
 **
 PRINT 1
 DO 60 K=1,N
 E=ED &
 PR=?RD
 ALFA=ALD
 IF(K.EQ.NSD) E=ER
 IF(K,EQ.NSD) PR=PRR
 IF (K.EQ.NSD) ALFA=ALR
 CS=E/(1.0-PR*P?)
 Kl=2*K-1
 K2=kl+1
 K3=K2+1
 K4= K3+1
 SGR(K1)=CS*(N(K2)+PR*W(K1)/R(K1))
 SGR(K2)=CS*(V(K4)+PR*U(K3)/R(K2))
 SGT(K1)=CS*(N(K1)/R(K1)+PR*N(K2))
 SGT (K2) =CS*(S(K3)/R(K2)+PR*!N(K4))
 IF(ITED.EQ.O) GOT0 60
 SGR(K1) =SGR(K1)-CS*ALFA*TE (K1)*(1.0+PR)
 SGR(K2)=SGR(K2)-CS*ALFA*TE(K2)*(1.0+PR)
 SGT(K1)=SGT(Kl)-CS*ALFA*TE(K1)*(1.0+PR)
 SGT (K2)=SGT.(K2)-CS*ALFA*TE(K2)*(1.0+PP)
60 PRIMT 2,K,SGR(K1),SGR(K2),SGT(K1),SGT(K2)
 RETURN
 1FgRmat (1 H1,//5X,' STRESSES IN THE DISC '//2X,'ELEMENT
 . RADial STRESS
 2 FCRMAT (/2X,15,5E13.5)
 3 FBRMAT (1H1,/5%,'DISC DIMENSIENS'//)
 5 FgRmat (4E13.6)
 10 FER:SAT (2X,5E13.6)
 END
```

```
 SUBROUTINE EIGUAL(SK,SM,D,F,FR,B,C,X,E足B7,BB,BS,IJK,N1,L)
 水水水林*
 * THIS SUBZUUTINE SOLVES THE EIGEN VALUE PROBLEM
 * RELATE3 TO THE UIBRATIQNPRQBLEMCGNSIDERED. *
 * SK(L,L) AND SM(L,L) ARE THE STIFFNESS AND MASS *
 * matri ceseg THE VIBRATING SYSTEN AND these SHOULD *
 * BE DEFINED BEFQRE ENTERING THE SUBROUTINE. ALL THE*
 * OTHER ARRAYSANDVECTGRSNEEDNOT BE DEFINED.
 * IJK - THE POS IT IQNCF THE ELEMENTGF T HE MODAL
 * VECTORWIICH IS KEPT AS UNITY UHILEITERATING.
 * Nl - SIZE RF THE ARRAYS SK AND SM * *
 * L - DIMENSICN GIVEN T\varnothing SK AND SM *
 DIMENSICN SK(L,L),SM(L,L),D(L,L),F(L,L),B(L),C(L),X(L),ER(L)
 DIMENSIEN B7(L),38(L),39(L),FP(20,10)
 COMNON/SIX/CONST,MrKK
 ALLQW=0.0000000 1
 MA=M+1
 IF(N1.LT.KK) KK=N1
 **
 * FGRM THE DYNAMICSTIFFNESS MATRIX D(L,L)
 **
 CALL INUT(SK,N1,L)
 CALL MATMUL(SK,SM,D,N1,N1,N1,N1,L)
 **
 * SPECIFY MAXIMUM NUMBER GFITERATIONSBEYONDVHICH*
 * ITERAT IQNSHQULD BE STOPPED
 **
 MI=95
 DO 30 I=1,N1
 X(I)=1.0
 30C(I)=1.0
 MM =0
 150 MM=MM+1
 NI =o
 LN=7
 LL=LN
 **
 * S T A R T ITERATIGN
 **
 50 NI=NI+1
 IN=LLL+1
 NN=ML+1
 41 DC 31 I=1,N1
 B(I)=0.0
 D0 31 K=1,N1
 31 B(I)=B(I)+D(I,K)*C(K)

 * EVERY SEVENTHITEPATIGNGETQ THE QUICKRQUTINE
 * AivD REFINE THEASSUMEDVECTGR'
 **
 IF(NI-LL)51,52,53
 53 IF(NI-ML)51,54,55
55 1F(NI-NN)51,56,51
```

52 DO $44 \mathrm{I}=\mathrm{I}, \mathrm{N} \mathrm{I}$
$B 7(I)=B(I)$
$44 \mathrm{C}(\mathrm{I})=\mathrm{B}(\mathrm{I})$
GETE 50
54 DQ $45 \mathrm{I}=1$, N1
$B 8(I)=B(I)$
$45 \mathrm{C}(\mathrm{I})=\mathrm{B}(\mathrm{I})$
GO TO 50
$56 \quad \mathrm{D} 日 \quad 46 \quad \mathrm{I}=1, \mathrm{~N}$
$B 9(I)=3(I)$
46 CQNTINUE
60 CALL $\operatorname{MAX}(B, B M A X, M 1, N 1, L)$
$B(M 1)=0.0$
61 CALL MAX (3, BMAX,M2,N1,L)
62 CALL QUICK(B7,B8,B9,C,X,N1,M1,M2,L)
$L L=L L+L N$
GOT0 50
$51 \cdot \mathrm{BMAX}=\mathrm{A} 3 \mathrm{~S}(\mathrm{~B}(\mathrm{IJK}) 9$
$90 \mathrm{D} \emptyset 32 \mathrm{I}=1$, N 1 $B(I)=B(I) / B M A X$
$32 \mathrm{ER}(\mathrm{I})=\mathrm{B}(\mathrm{I})-\mathrm{C}(\mathrm{I})$
320 CALL MAX (ER, ERMAX,M3,N1,L)
****************************************************** * Check cenvergence

## *

****************************************************** $\operatorname{ERMAX}=2.0 * \operatorname{ERMAX} /(\operatorname{ABS}(B(139)+A B S(C(M 3)) 9$ IF (ERMAX.LT.ALLEN) GETG 42
43 DD $49 \mathrm{I}=1, \mathrm{NI}$
$49 \mathrm{C}(\mathrm{I})=\mathrm{B}(\mathrm{I})$ IF(NI-M1)50,50,42
42 Continue
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$

* PRINTCUTfrequency Value and the mgdaluecter * $* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
PRINT 80, M, NI
FREQ $=C E N S T / S Q R T(B M A X)$
FRCMA,MN9=FREO
PRINT 81,FREQ
PRINT83
PRINT84, (B(I),I=1,N19
DO $65 I=1, \mathrm{~N} 1$
$C(I)=0.0$
DO $65 \mathrm{~K}=1, \mathrm{~N}$ !
$65 \mathrm{C}(\mathrm{I} 9-\mathrm{C}(\mathrm{I})+3(\mathrm{~K}) * S \mathrm{M}(\mathrm{K}, \mathrm{I})$
ALFA=0.0
DØ $66 \mathrm{I}=1$, NI
$66 \mathrm{ALFA}=\mathrm{ALFA}+\mathrm{C}(\mathrm{I}) * \mathrm{~B}(\mathrm{I})$
BETA=5QRT (ALFA9
DG $67 \mathrm{I}=1, \mathrm{NI}$
$67 \mathrm{~B} 7(\mathrm{I})=\mathrm{B}(\mathrm{I}) / \mathrm{BETA}$

IF (MM-KK)59, 100, 100
$59 \mathrm{DO} 68 \mathrm{I}=1, \mathrm{~N} 1$
Dロ $68 \quad \mathrm{~J}=1, \mathrm{~N} 1$
$F(I, J)=0.0$
$68 F(I, J)=F(I, J)+B(I) * C(J)$
$G=B M A X / A L F A$
C
C $\quad *$ FORI THE NE';! DYNAMIC STIFFNESS MATRIX
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
DO $69 \mathrm{I}=1, \mathrm{Nl}$
DQ $69 \mathrm{~J}=1, \mathrm{~N} 1$
$69 \mathrm{D}(\mathrm{I}, \mathrm{J})=\mathrm{D}(\mathrm{I}, \mathrm{J})-\mathrm{G} * F(I, J)$
D@ $95 I=1, N 1$
$95 \mathrm{C}(1)=\mathrm{X}(1)$
GO TO 150
100 RETURN
80 FØRMAT (5X, MQDE MUMBER $=$ ' ' I $2,4 X$, 'ITERATIØNS =', I $3 /$ )
\$1 FQRMAT (5X, FREGUENCY IN $1: 2=$ ? $514.8 /$ )
83 FGRMAT (208, MODAL UECTDS'/)
84 FQRMAT (/5X,5E13.6)
END

## SUBROUTINE INVT (A,N,L)

C
****************************************************垵*
C

* this subrcutil:e inverts the matsixa(n,N) and
* stgres the inverse in the same matrix

DIMENSICN A (L,L), INDEX (100,2)
$15=1$
D0 $108 \mathrm{I}=1, \mathrm{~N}$
$108 \operatorname{INDEX}(1,1)=0$
$I I=0$
109 AMAX $=-1$.
DO $1101=1, \mathrm{~N}$
$\operatorname{IF}(\operatorname{INDEX}(I, 1)) 110,111,110$
lil D $112 \mathrm{~J}=\mathrm{l}, \mathrm{N}$
IF(INDEX(J,1))112,113,112
113 TEMP=ABS (A(1,J))
IF (TEMP-ANAX)112,112, 114
114 IRON = I
ICDL=J
AMAY:=TEMP
112 CØNT INUE
110 CØNTINUE
$15=1 S+1$
10 FgRMAT (I6,E13.6)
IF (AMAX) $225,115,116$
$116 \operatorname{INDEX}(I C Q L, 1)=1 R O W$
IF(IRON-ICOL) 119,118,119
119 D $\emptyset 120 \mathrm{~J}=\mathrm{l}, \mathrm{N}$
TEMP $=A(I R D N, J)$
$A(I R O W, J)=A(I C D L, J)$
120 A(ICDL,J) $=$ TEMP
$I I=1 I+1$
INDEX(II,2)=ICEL
118 PIVOT=A(ICOL,ICRL)
$A(I C O L, I C D L)=1$.
PIVDT $=1 . / P I V D T$
D O $121 \quad \mathrm{~J}=\mathrm{I}, \mathrm{N}$
121 A(ICQL,J)=A(ICOL, J)*PIV®T
DE $122 \mathrm{I}=1$, N
IF(I-ICOL) 123,122,123
12; TEMP=A(I; IC@L)
$A(I, I C O L)=0$.
D $0124 \mathrm{~J}=1, \mathrm{~N}$
124 A(I,J) $=A(I, J)-A(I C D L, J) * T E M P$
122 CONTINUE
GO T0 109
125 ICCL=INDEX(11,2)
IROW=INDEX(ICQL,I)
DO $126 \mathrm{I}=1, \mathrm{~N}$
TEMP=A(1,1ROU)
$A(I, I R \varnothing 1)=A(I, I C(L)$
$126 \mathrm{~A}(\mathrm{I}, \mathrm{IC}(\mathrm{L})=\mathrm{TEMP}$
II=II-I
225 IF(II)125,127,125
115 PRINT 150
150 FQRHAT (1HO, 10HZERD PIVOT,/)
1'27 CgNTINUE
RETURN
END

SUBROUTINE $\operatorname{HAX}(A, Z, H, N, L)$

```
C **
C * TMIS SUZROUTINE FINDS QUT THE AESQLUTE MAXIMUM *
C •* Z AND PQSITION M QF THE ELEMENTS QF THE VECTGR
 * A(N)
 **
 DIMENSION A(L)
 1 Z=ABS(A(1))
 M=1
 DD 2 I=2,N
 Y=ABS (A(I))
 IF(Y-Z)2,2,3
 3 Z=Y
 M=I
 GGNTINUE
 4 ~ R E T U R N
 END
```

    SUBREUTINE QUICK(B7,B8,B9, \(A, B, N, M 1, M 2, I)\)
    ******************************************************
    * THIS SUBROUTIUEREFINES THE MODALUECTgRFQR QUICK *
    * CENVERGENCE
    ******************************************************
    DIMENSIQN B7(L), BS(L),B9(L),A(L),B(L)
    \(D R=B E(M 1) * 37(M 2)-B 7(M 1) * B 8(M 2)\)
    $2 A 1=(39(M 1) * 38(142)-B 8(M 1) * B 9(142) / D R$
$A 2=(B 9(11) * B 7(1.12)-37(M 1) * B 9(12)) / D R$
$A 3=0.5 * S Q R T(A 2 * * 2-4 \cdot * A 1)$
$3 C l=0.5 * A 2+A .3$
$\mathrm{C} 2=0.5 * \mathrm{~A} 2-A 3$
DO $10 \quad I=1$, V
$A(I)=39(I)-C 2 * B 8(I)$
$10 B(I)=39(I)-C 1 * B 8(I)$
11 RETURN
EIJD
SUBREUTINE MATMUL ( $A, B, C, M A, N A, M B, M B, L$ )
* $\dot{*} * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$
* THISSUBRDUTINEMULTIPLIES THE MATRICES A ANDB B *
* ANDTHE RESULTING liATRIX IS STORED IN THE ARRAY C *
* MA - NUMBER CFROWS IN MATRIX A
* NA - NUMbER CF CCLUENS I N MAT!IX A
* ni - nunber ef rovs in matr i x b
* NB - Nuiber ef cgluivis in matrix b
BIIIE:ASION A (L,L), B(L,L), C (L,L)
DQ $5 \quad I=1, \mathrm{MA}$
DO $5 \quad J=1, N B$
$C(I, J)=0.0$
DO $5 K=1, N A$
$5 \quad C(I, J)=C(I, J)+A(I, K) * B(K, J)$
6 RETURN
END

```
 SUBROUTINE TRIMUL (A,B,C,D,MA,NA,MB,NB,L)

 * THIS SUBREUT INE PREMULTIPLIES THE lIATRIX B BY THE *
 * TRANSDOSE BF A AND THEN PQSTMULTIPLIES THE PRODUCT*
 * BY THE MATEIX A A:vD GIVES THE RESULTING MATRIX *
 * STORED IN THE ARRAY B ITSELF
 * MA - UUMBER af ROUS IN MATRIX A
 NA - WU:IBER OF COLUMNS IN MATRIX A'*
 * MB - NUMBER OF RQNS IN MATRIX B *
 * NB - NUMBER gF COLUMNS IN MAT卫IX B *
 **
 DIVENSIGIT A(L,L),B(L,L),C(L,L),D(L,L)
 DD 10 I=!,MA
 DD 10 J=1,NA
10C(U,I)=A(I,J)
 CA L L MATMUL(C,B,D,NA,MA,MB,NB,L)
 C A L L MATMUL(D,A,B,NA,NB,MA,NA,L)
 RETURN
 END
 SUBROUTINE REDUCE(A,N,L,K,M)
 **
 * THIS SUBRQUTINE REDUCES THE SIZE OF THE ARRAY A
 * FROM (N X N) TO (N-K X N-K) BY SCZRING OUT *
 * ROWS AND CQLUMNSFROM L TQL+K
 **
 DIMENSIGN A(M,M)
 NM1 =N-K
 DO 10 I=L,NM1
 DO 10 J=1,N
 II=I+K
10 A(I,J)=A(II,J)
 DE 20 I=1,N
 DQ 20 J=L,NM1
 JJ=J+K
20 A(I,J)=A(I_JJ)
 RETURN
 END
```

SUBRCUTINE ASMBLE ( $A, B, H, N, K S, K, L L, L)$
****************************************************** * THIS SUBRQUTINE ASSEMBLES THE ELEMENT MATRIX . * B(LL,LL) INTQ THE SYSTEM MATRIX A(L,L) DIMENSIGN A(L,L),B(LL,LL)
DO $10 \quad \mathrm{I}=\mathrm{KS}, \mathrm{K}$
$M M=1 I+I-K S+1$
DO $10 \mathrm{~J}=\mathrm{KK}, \mathrm{K}$
$N N=N+J-K S+1$
IO $A(M M, N N)==A(M, N N)+B(1, J)$ RETURN
END

SUBRQロUTINE SYSLOD (A,B,M,NN,LL,L)
****************************************************** * THIS SUBRQUTINE ASS:ISLES THE ELEMENT LOAD VECTG? * * B(LL) INTE THE SYSTEM LDAD VECTOR A(L)
$* * * * * * * * * * * * * * * * * * * *$
DIMENSIDN A(L) 3 (LL)
$D O 10 \quad I=1, N N$
$M \mathrm{M}=\mathrm{M}+\mathrm{I}$
$10 \mathrm{~A}(M)=\mathrm{A}(\mathrm{M})+\mathrm{B}(\mathrm{I})$
RETURIJ
END


[^0]:    For this asymmetric problem the finite element method
    is of considerable interest, and some work has been published on

[^1]:    The above limitations of a beam model become particularly evident with low aspect ratio blading, which is increasingly

[^2]:    * The choice of $\cos m \xi$ in the deflection function can be justified noting that the exact solution for an axdsymmetric plate is of the form $w=f(r) \cos m \xi$

[^3]:    ** Note that $T(r)$ is the change in temperature from a stress free temperature state.

[^4]:    For rotors of more general geometry, a finite element method is developed, in section 4.4 , which utilizes the annular

[^5]:    * Calculated using Mindlin's plate theory.

[^6]:    Axisymmetric plates with nonsymmetric loads can also be considered, As already mentioned these loads are expanded

