APPLICATION OF THE FINITE ELEMENT METHOD

TO THE VIBRATION ANALYSIS OF AXIAL FLOW TURBINES

by

G. Jeyaraj Wilson

B.E. (Civil), Madras University, India, 1966
M.E. (Struct.), Indian Institute of Science,
Bangalore, India, 1968

A thesis submitted to the Faculty of Graduate Studies
in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Mechanical Engineering.

Carleton University

Ottawa, Ontario

October, 1972
The undersigned hereby recommend to the Faculty of Graduate Studies, Carleton University, acceptance of this thesis, "Application of the Finite Element Method to the Vibration Analysis of Axial Flow Turbines," submitted by G. Jeyaraj Wilson, in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering.

[Signatures]
Dean of the Faculty of Engineering
Supervisor
External Examiner
The undersigned hereby recommend to the Faculty of Graduate Studies, Carleton University, acceptance of this thesis, "Application of the Finite Element Method to the Vibration Analysis of Axial Flow Turbines," submitted by G. Jeyaraj Wilson, in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering.

Dean of the Faculty of Engineering

Supervisor

External Examiner
ABSTRACT

The finite element method is applied to the vibration analysis of axial flow turbine rotors.

Using the axi-symmetric properties of the configuration of such rotors, several new finite elements are developed to describe the bending and stretching of thin or moderately thick circular plates, and which are characterised by only four or eight degrees of freedom. These elements incorporate the 'desired number of' diametral nodes in their dynamic deflection functions, and allow for any specified thickness variation in the radial direction. In addition, the effects of in-plane stresses, which might arise from rotation or radial temperature gradient, and the effects of transverse shear and rotary inertia in moderately thick plates, are readily accounted for. The accuracy and convergence of these elements is demonstrated by numerical comparison with both exact and experimental data for discs.

Making the assumption that blade dynamic loadings on the rim of a vibrating blade-disc system are continuously distributed, a method of coupling blade and disc vibration is formulated. For non-rotating configurations of simple geometry an exact solution for the coupled blade-disc frequencies and mode shapes is developed.
For configurations more representative of practical turbine rotors a finite element model is detailed; this model takes into account arbitrary disc profile and in-plane stresses, taper and twist in the blades, and allows for transverse shear and rotary inertia in both disc and blades where this is thought necessary. Numerical calculations are presented which demonstrate the convergence and accuracy of this finite element model on predicting the natural frequencies of both simple and complex bladed rotors.

Considerable effort has been made to make the computer programs developed for the numerical calculations in this work of practical usefulness to the designer. Thus these are given in some detail, and feature several options which allow flexibility to calculate disc stresses, disc alone vibration, blade alone vibration, and coupled blade-disc vibration frequencies; in the vibration analysis options are available to include effects of in-plane stresses due to rotation or thermal gradient, transverse shear, and rotary inertia.
ACKNOWLEDGEMENTS

The author wishes to express his deep sense of gratitude and sincere appreciation to Professor J. Kirkhope for his valuable guidance and the many suggestions throughout the course of this investigation, and for painstakingly reading the manuscript and suggesting its improvement.

The author is grateful to Dr. E. K. Armstrong, Head of Vibration Engineering, Rolls-Royce (1971) Limited, for providing experimental data on an actual turbine rotor. Very special thanks are due to Mr. R. W. Harris, senior undergraduate student at Carleton University (1969-70), for obtaining experimental results for the bladed disc models.

This work was supported by the National Research Council of Canada through Operating Grant A-7283.

Finally, the author will be forever grateful to his wife, Jeya, for her help and patient understanding during the preparation of this thesis.
CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

CONTENTS

LIST OF PRINCIPAL SYMBOLS

LIST OF FIGURES

CHAPTER 1. INTRODUCTION
 1.1. PRELIMINARY
 1.2. REVIEW OF LITERATURE
 1.2.1. Stress Analysis of Turbine Discs
 1.2.2. Vibration Analysis of Turbine Discs
 1.2.3. Vibration Analysis of Axial Flow Turbine Blades
 1.2.4. Coupled Blade-Disc Vibration
 1.3. OBJECT OF THE PRESENT INVESTIGATION

CHAPTER 2. VIBRATION ANALYSIS OF AXIAL FLOW TURBINE DISCS
 2.1. INTRODUCTION
 2.2. ANNULAR AND CIRCULAR THIN PLATE BENDING ELEMENTS
 2.2.1. Element Geometry and Deflection Functions
 2.2.2. Element Stiffness and Inertia Matrices
2.2.3. Application to Thin Plate Vibration Problems 42

2.3. THE EFFECT OF IN-PLANE STRESSES ON THE VIBRATION OF THIN DISCS 46

2.3.1. Additional Stiffness Matrix for the Annular Element due to In-Plane Stresses 47

2.3.2. Plane Stress Finite Element for Thin Discs 49

2.3.3. Numerical Applications 59

2.4. THE EFFECT OF TRANSVERSE SHEAR AND ROTARY INERTIA ON THE VIBRATION OF MODERATELY THICK DISCS 62

2.4.1. Annular Plate Bending Finite Elements Including Transverse Shear and Rotary Inertia 65

2.4.2. Numerical Applications 72

CHAPTER 3. VIBRATION ANALYSIS OF AXIAL FLOW TURBINE BLADES 75

3.1. INTRODUCTION 75

3.2. MODELLING OF BLADE SEGMENTS USING AVAILABLE BEAM FINITE ELEMENTS 76

3.3. EFFECT OF ROTATION 78

3.4. EFFECT OF TRANSVERSE SHEAR AND ROTARY INERTIA 82

3.5. VIBRATION ANALYSIS OF PRETWISTED BLADES 87

3.6. NUMERICAL APPLICATIONS 91
CHAPTER 4. ANALYSIS OF COUPLED BLADE-DISC VIBRATION IN AXIAL FLOW TURBINES

4.1. INTRODUCTION 94
4.2. METHOD OF ANALYSIS 95
4.2.1. System Configuration and Deflections 95
4.2.2. Dynamic Stiffness of the Subsystems 100
4.2.3. Dynamic Coupling of the Subsystems 102
4.3. EXACT SOLUTION OF NON-ROTATING ROTORS OF SIMPLE GEOMETRY 104
4.3.1. Dynamic Stiffness of the Disc 104
4.3.2. Dynamic Stiffness of the Rim 108
4.3.3. Dynamic Stiffness of the Blade Array 108
4.3.4. Dynamic Stiffness of the Disc-Rim-Blade System 110
4.4. FINITE ELEMENT SOLUTION OF ROTORS OF GENERAL GEOMETRY 111
4.4.1. Dynamic Stiffness of the Disc-Rim-Blade System Neglecting Transverse Shear and Rotary Inertia 111
4.4.2. Dynamic Stiffness of the Disc-Rim-Blade System Including Transverse Shear and Rotary Inertia 113
4.5. NUMERICAL APPLICATIONS 115
4.5.1. Comparision of Exact and Finite Element Solutions for Simple Nonrotating Rotors 115
4.5.2. The Effect of System Parameters on the Frequencies of Simple Nonrotating Rotors 118
4.5.3. The Effect of Rotation on the Frequencies of Simple Rotors 120
4.5.4. The Effect of Transverse Shear and Rotary Inertia on the Frequencies of Simple Rotors 121
4.5.5. Calculated and Measured Frequencies of a Complex Turbine Rotor 122

CHAPTER 5. SUMMARY AND CONCLUSIONS 124

REFERENCES 128

FIGURES 141

TABLES 176

APPENDIX A APPLICATION OF THE THIN PLATE BENDING ELEMENTS TO STATIC BENDING ANALYSIS OF CIRCULAR AND ANNULAR PLATES 258
A.1. INTRODUCTION 258
A.2. NUMERICAL APPLICATIONS 259
A.3. DISCUSSION 260

APPENDIX B VIBRATION OF CIRCULAR AND ANNULAR PLATES WITH TRANSVERSE SHEAR AND ROTARY INERTIA 270
B.1. INTRODUCTION 270
B.2. MINDLIN'S PLATE THEORY 270
APPENDIX C FINITE ELEMENT ANALYSIS OF THICK RECTANGULAR PLATES IN BENDING

APPENDIX D DETAILS OF COMPUTER PROGRAMS

FORTRAN PROGRAM FOR THE ANALYSIS OF ROTORS OF SIMPLE GEOMETRY - PROGRAM-1

FORTRAN PROGRAMS FOR THE ANALYSIS OF ROTORS OF GENERAL GEOMETRY - PROGRAM-2 and PROGRAM-3
D.4.3. Subroutines Used in PROGRAM-3 340

D.4.4. Subroutines Used Both in PROGRAM-2 and PROGRAM-3 361
LIST OF PRINCIPAL SYMBOLS

\[\begin{align*}
 a & : \text{inner radius of turbine disc;} \\
 A & : \text{area of cross-section of rim; blade;} \\
 a_1 & : \text{constants in assumed deflection functions;} \\
 \beta & : \text{outer radius of turbine disc;} \\
 b_b & : \text{thickness of uniform blade;} \\
 b_r & : \text{breadth of rim;} \\
 c & : \text{constant used to define variation of } \sigma_r; \\
 d & : \text{constant used to define variation of } \sigma_r; \\
 d_b & : \text{chord of uniform blade;} \\
 d_r & : \text{depth of rim;} \\
 D & : \text{flexural rigidity of disc;} \\
 e & : \text{constant used to define variation of } \sigma_x; \\
 e_1 & : \text{distance from the inner boundary to centroid of rim;} \\
 e_2 & : \text{distance from centroid to outer boundary of rim;} \\
 E & : \text{Young's modulus;} \\
 E & : \text{energy;} \\
 f & : \text{constant used to define variation of } \sigma_x; \\
 F(r) & : \text{centrifugal force;} \\
 h(r) & : \text{thickness of turbine disc at radius } r; \\
 h_0 & : \text{thickness at the centre of the disc;} \\
\end{align*} \]
I - moment of inertia of blade section;
J - polar moment of inertia of blade section;
k - shear constant used in Timoshenko beam;
k = (ρhw²/D)¹/²
KC - St. Venant torsional stiffness of the blade cross-section;
L - length of blade element; length of blade;
L - length of blade;
m - number of nodal diameters;
Mr - radial bending moment;
Mr0 - twisting moment;
n - number of nodal circles;
N - number of finite elements used in a model;
p - radial stress coefficient;
Pᵢ - integrals appearing in stiffness or inertia matrices;
q - tangential stress coefficient;
Qᵢ - integrals appearing in stiffness or inertia matrices;
r - radial distance;
R - radius at the root of the blade;
R0 - radius to the centre of gravity of the blade;
Rᵢ - integrals appearing in the element matrices;
R₀ - centroidal radius of rim;
Sᵢ - integrals appearing in the element matrices;
t - time in seconds;
T - kinetic energy;
\(T(r) \) - temperature at radius \(r \);

\(u \) - radial displacement at the middle plane of the disc;

\(U \) - strain energy;

\(v \) - deflection of the blade along the tangential direction;

\(v^* \) - deflection of the blade along the \(I_{\text{min}} \) direction;

\(w \) - axial deflection of the disc, rim and blade;

\(w^* \) - deflection of the blade along the \(I_{\text{max}} \) direction;

\(Z \) - number of blades in the rotor;

\(a \) - constant defining thickness variation of element;

\(\alpha^* \) - coefficient of thermal expansion;

\(\beta \) - constant defining thickness variation of element;

\(\gamma_v \) - additional rotation due to transverse shear in the tangential direction;

\(\gamma_v^* \) - additional rotation due to transverse shear in the \(T_{\text{min}} \) direction;

\(\gamma_w \) - additional rotation due to transverse shear in the axial direction;

\(\gamma_w^* \) - additional rotation due to transverse shear in the \(I_{\text{max}} \) direction;

\(\delta \) - stagger angle;

\(e_r \) - radial strain in the middle plane of the disc;

\(e_\zeta \) - tangential strain in the middle plane of the disc;

\(\theta \) - radial rotation;
\[T(r) \] - temperature at radius \(r \);
\[u \] - radial displacement at the middle plane of the disc;
\[U \] - strain energy;
\[v \] - deflection of the blade along the tangential direction;
\[v^* \] - deflection of the blade along the \(I_{\min} \) direction;
\[w \] - axial deflection of the disc, rim and blade;
\[\omega^* \] - deflection of the blade along the \(I_{\max} \) direction;
\[Z \] - number of blades in the rotor;

\(z \) - constant defining thickness variation of element;
\(a^* \) - coefficient of thermal expansion;
\(\beta \) - constant defining thickness variation of element;
\[\gamma_v \] - additional rotation due to transverse shear in the tangential direction;
\[\gamma_v^* \] - additional rotation due to transverse shear in the \(I_{\min} \) direction;
\[\gamma_w \] - additional rotation due to transverse shear in the axial direction;
\[\gamma_w^* \] - additional rotation due to transverse shear in the \(I_{\max} \) direction;
\[\delta \] - stagger angle;
\[e_r \] - radial strain in the middle plane of the disc;
\[e_\xi \] - tangential strain in the middle plane of the disc;
\[\theta \] - radial rotation;
\(\theta^* \) - rotation of blade in the \(I_{min} \) direction;
\(\lambda \) - nondimensional frequency parameter;
\(\lambda_1 = (\omega^2 \rho / EI_1)^{1/4}; \)
\(\lambda_2 = (\omega^2 \rho / EI_2)^{1/4}; \)
\(\lambda_3 = (J/GR_0)^{1/2}; \)
\(\mu \) - radius of gyration of a rectangular blade section in a principal direction;
\(\nu \) - Poisson's ratio;
\(\xi \) - angle in radians measured from the reference antinode;
\(\rho \) - mass density of material;
\(\sigma_0 \) - shrinkfit pressure at the hub;
\(\sigma_r \) - radial stress in the middle plane of the disc;
\(\sigma_x \) - stress along the length of the blade;
\(\sigma_t \) - tangential stress in the middle plane of the disc;
\(\phi \) - angle of twist of the blade;
\(\psi \) - tangential rotation of the blade;
\(\psi^* \) - rotation of blade in the \(I_{min} \) direction;
\(\omega \) - circular frequency in radians/second;
\(\Omega \) - angular velocity of rotor in radians/second;
\(\Omega^* \) - nondimensional rotation of a uniform blade.

\(\{f_c\} \) - consistent load vector resulting from rotation;
\(\{f_t\} \) - consistent load vector resulting from temperature gradient;
\(\{q_b\} \) - blade element displacement vector;
\{q_{\xi}\} - blade element displacement vector along the principal directions;
\{q_{B}\} - blade subsystem displacement vector;
\{q_{d}\} - disc element displacement vector;
\{q_{o}\} - circular disc element displacement vector;
\{q_{D}\} - disc subsystem displacement vector;
\{q_{R}\} - rim subsystem displacement vector;
\{q_{S}\} - rotor system displacement vector;
\{Q_{B}\} - blade subsystem load vector;
\{Q_{D}\} - disc subsystem load vector;
\{Q_{R}\} - rim subsystem load vector;
\{Q_{S}\} - rotor system load vector;

\[B_{d}^{a}\] - 'B' matrix of rotating blade element;
\[B_{d}^{t}\] - 'B' matrix of thin plate elements;
\[B_{d}^{c}\] - 'B' matrix of Thick Disc Elements;
\[B_{d}^{o}\] - 'B' matrix of thin plate circular elements;
\[C\] - diagonal matrix with diagonal terms cos m\xi
\[D_{B}\] - dynamic stiffness matrix of the blade subsystem;
\[D_{D}\] - dynamic stiffness matrix of the disc subsystem;
\[D_{R}\] - dynamic stiffness matrix of the rim subsystem;
\[D_{S}\] - dynamic stiffness matrix of the rotor system;
\[E\] - a matrix;
\[k_{b}^{a}\] - 'k' matrix of a rotating blade element;
\[k_{d}\] - 'k' matrix of thin plate bending annular element;
\([k_d^a]\) - 'k' matrix of the thin plate bending element resulting from rotation;

\([k_d^1]\) - 'k' matrix of the Thick Disc Elements;

\([k_d^o]\) - 'k' matrix of the thin plate bending circular element;

\([k_d^p]\) - 'k' matrix of the plane stress annular element;

\([k_d^o]\) - 'k' matrix of the thin plate bending circular element resulting from rotation;

\([k_p^o]\) - 'k' matrix of the plane stress circular element;

\([k_t^a]\) - 'k' matrix of a blade torsional element due to rotation;

\([k_t^a]\) - 'k' matrix of a blade bending element due to rotation, for bending in the plane of rotation;

\([k_w^a]\) - 'k' matrix of a blade bending element due to rotation, for bending out of plane of rotation;

\([K_b]\) - blade element stiffness matrix;

\([\bar{K}_b^a]\) - additional stiffness matrix due to rotation of the blade element;

\([\bar{K}_t^a]\) - blade element torsional stiffness matrix;

\([\bar{K}_b^v]\) - blade element stiffness matrix for bending in the \(I_{\min}\) direction;

\([\bar{K}_b^w]\) - blade element stiffness matrix for bending in the \(I_{\max}\) direction;

\([\bar{K}_b^\theta]\) - blade element stiffness matrix corresponding to deflections along the principal directions;

\([K_B]\) - blade subsystem stiffness matrix;

\([K_d]\) - thin plate bending element stiffness matrix;

\([K_d^o]\) - disc subsystem stiffness matrix;

\([K_d^a]\) - additional stiffness matrix due to in-plane stresses of the thin plate bending annular element;
- plane stress annular element stiffness matrix;
- Thick Disc Element stiffness matrix;
- thin plate bending circular element stiffness matrix;
- additional stiffness matrix due to in-plane stresses of the thin plate bending circular element;
- plane stress circular element stiffness matrix;
- rim subsystem stiffness matrix;
- rotor system stiffness matrix;
- 'm' matrix of the thin plate bending annular element;
- 'm' matrix of the Thick Disc Elements;
- 'm' matrix of the thin plate bending circular element;
- blade element inertia matrix;
- blade torsional element inertia matrix;
- blade element inertia matrix for bending in the direction;
- blade element inertia matrix for bending in the direction;
- blade element inertia matrix corresponding to deflections along the principal directions;
- blade subsystem inertia matrix;
- thin plate bending element inertia matrix;
- disc subsystem inertia matrix;
- Thick Disc Element inertia matrix;
- thin plate bending circular element inertia matrix;
- rim subsystem inertia matrix;
- rotor system inertia matrix;
- rotation matrix;
LIST OF FIGURES

1.1 Effect of disc stiffness on the coupled blade-disc frequencies. 141
1.2 Interference diagram. 142

2.1 Thin plate bending annular element with two nodal diameters and linear thickness variation. 143
2.2 Thin plate bending circular element with two nodal diameters and linear thickness variation. 144
2.3 Modelled circular plate. 145
2.4 Percentage absolute error in the first six frequency coefficients of a simply supported circular plate. 146
2.5 Modelled circular disc with parabolic thickness variation. 147
2.6 Plane stress annular element. 148
2.7 Radial and tangential stress coefficients for a uniform rotating disc, calculated using the plane stress annular element. 149
2.8 Variation of harmonic excitation frequencies with rotational speed of a thin annular plate. 150
2.9 Thick Disc Element-1 with two nodal diameters and associated degrees of freedom. 151
2.10 Thick Disc Element-2 with two nodal diameters and associated degrees of freedom. 152
2.11 Stepped circular disc and five element finite element model. 153
2.12 A practical turbine disc and its finite element models. 154
3.1 Blade element with associated degrees of freedom. 155
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Blade element with associated degrees of freedom when transverse shear is considered.</td>
</tr>
<tr>
<td>3.3</td>
<td>Pretwisted blade modelled with two straight beam elements.</td>
</tr>
<tr>
<td>3.4</td>
<td>Relationships between distortions along the principal directions and the coordinate system chosen.</td>
</tr>
<tr>
<td>3.5</td>
<td>Variation of the first two frequencies of a rotating beam with speed of rotation.</td>
</tr>
<tr>
<td>3.6</td>
<td>Percentage error versus degrees of freedom of Timoshenko beam elements, simply supported beam.</td>
</tr>
<tr>
<td>3.7</td>
<td>Percentage error versus degrees of freedom of Timoshenko beam, cantilever beam.</td>
</tr>
<tr>
<td>4.1</td>
<td>Bladed disc with two nodal diameters.</td>
</tr>
<tr>
<td>4.2</td>
<td>Rim deflections and forces.</td>
</tr>
<tr>
<td>4.3</td>
<td>Bladed disc system configuration and deflections.</td>
</tr>
<tr>
<td>4.4</td>
<td>Bladed disc system configuration and deflections when transverse shear is considered.</td>
</tr>
<tr>
<td>4.5</td>
<td>Sand pattern illustrating mode shapes of vibrating bladed disc models.</td>
</tr>
<tr>
<td>4.6</td>
<td>Variation of the first six coupled bladed disc frequencies with nodal diameters, Model I.</td>
</tr>
<tr>
<td>4.7</td>
<td>Variation of the first six coupled bladed disc frequencies with nodal diameters, Model II.</td>
</tr>
<tr>
<td>4.8</td>
<td>Influence of R/b ratio on the first coupled bladed disc frequency.</td>
</tr>
<tr>
<td>4.9</td>
<td>Influence of blade aspect ratio on the first coupled bladed disc frequency.</td>
</tr>
<tr>
<td>4.10</td>
<td>Influence of blade stagger angle on the first coupled bladed disc frequency.</td>
</tr>
<tr>
<td>4.11</td>
<td>Influence of R/b ratio on the higher coupled frequencies.</td>
</tr>
</tbody>
</table>
4.12 Influence of blade aspect ratio on higher coupled frequencies.

4.13 Influence of stagger angle on the higher coupled frequencies.

4.14 Details at blade disc attachment of the turbine rotor.
1.1 PRELIMINARY

The stress and vibration analysis of almost every part of a gas turbine is of major concern to the designer. The bladed disc, which transmits torque from the blades to the shaft of the engine, constitutes an important part of the turbine. The problem of optimizing the disc configuration becomes more significant with the ever increasing demand for higher power and lighter weight of the gas turbine. The continuing emphasis on longer life together with reliable and safe operation in severe environments requires greater accuracy and speed in the mechanical analysis of the various parts of the turbine, especially the bladed disc.

The objective of present day structural design is to arrive at the most efficient structure, subjected to certain constraint conditions, for the specified load and temperature environment. In the design of the bladed disc certain geometrical restrictions may be imposed on the profile of the disc by its functional aspects as well as the geometry of other parts.
of the turbine. In addition, certain behavioural constraints, such as keeping the lowest natural frequency of the disc above some specified limit, may also be imposed. Hence, the design of the bladed rotor will normally require the accurate analysis of several trial profiles until the satisfactory one is reached. It is therefore essential that the designer has available simple, reliable and accurate methods of analysis.

In a turbine disc, in addition to the stresses resulting from bending, torsion and temperature gradient, very high stresses develop due to the centrifugal forces at high speeds. These stresses constitute the major portion of the total stresses and are not reduced by the thickening of the disc. Consequently the material unavoidably works at its limit, and hence the accuracy required on the predictions of these stresses is very high. Structural vibrations of the rotor, which might be torsional, or radial, but which are most predominantly axial, may also produce high stresses and lead to fatigue failures which are not understood on the basis of high steady stresses alone. In order to avoid strong resonant vibrations within the operating range of the machine, it is essential that the designer should be able to predict accurately the natural frequencies of the rotating bladed rotor.
The complexity of the system makes it impossible to consider the entire system with all its generalities, for the analysis. In general the component parts of the rotor are analysed separately, and even so making several simplifying assumptions to facilitate the analysis. Invariably both the disc and the loading are considered to be axisymmetric while analysing the stresses. When the vibration of the bladed-rotor is examined, the problem is simplified, in most cases, by assuming either rigid blades attached to a flexible vibrating disc, or, more commonly, flexible vibrating blades attached to a rigid disc.

The stress analysis of typical rotating discs for axial flow rotors is quite well understood, and reliable methods for calculation of steady stresses from rotation and thermal loading are available. Determination of steady stresses in the blade is also generally satisfactory, although there remain problems with highly twisted low aspect ratio configurations.

On the other hand, the determination of the vibratory behaviour of bladed rotors is less well defined. The effects of transverse shear and rotary inertia are generally neglected, leading to substantial discrepancies with experimental data in many rotors. More important, both experimental and theoretical studies indicate that coupling between the blades and the disc
cannot be neglected. It is now increasingly recognized that the significant vibration of many axial flow turbines involves combined participation by both blades and disc. This coupling between blades and disc can substantially modify the natural frequencies of the system (1), is thought to strongly influence the distribution of vibratory stresses in the blades (2-5), and can lead in some instances to aeroelastic instability (6).

A recent example of fatigue failure of turbine rotor blades resulting from coupling between blade and disc vibration is described by Morgan et al (7). Fatigue cracks were found either in the top serration of the fir tree roots or in the blade form starting at the trailing edge near the root. The resonance of the first flapwise mode (1F) with sixth order excitation was thought to be the most probable cause. Modifications were made both to the blade fixings and to stiffen the disc which proved successful.

Figure 1.1, taken from the above mentioned reference, illustrates the influence of disc flexibility on the frequencies of the coupled blade-disc system, especially the first "flapwise" (1F) and the first "edgewise" (1E) modes. Here these two sets of frequencies, obtained experimentally, are plotted against engine speed and engine excitation order, for two different rotors, one
with a thick disc (solid line), and the other with a thin disc (broken line). These rotors had the same blades. As seen from the figure, when the disc is thick, disc flexibility has very little effect on the system frequencies. The reduction in frequencies with speed of rotation is probably due to reduction of elastic modulus with temperature and some disc effect. In the operating range of 6000 to 8000 rpm, we have only a few resonances for this rotor. The 1F modes of the blade are excited only with engine orders 6 and 7, and the 1E modes with engine orders 10, 11, and 12. But when the disc is thin, within the operating range we have a large number of resonances. In this case we have the 1F modes with engine orders 2 to 7, and the 1E modes with engine orders 9 to 12. Thus the authors state that, "identification of the failure mode was difficult," because of the many resonances present. It should also be noted that, when the disc is thin, the 1E mode excited by engine order 8 lies just above the operating range. Since eight combustors were present in the engine, engine order 8 was particularly significant.

In summary, while the designer has available reliable methods for determining steady stresses in axial flow turbines, methods of determining the vibratory behaviour are much less adequate. Any realistic vibratory analysis of practical rotors should consider the effects of centrifugal and thermal stresses, the effects of transverse shear and rotary inertia and the effects
of dynamic coupling between the vibrating blades and the vibrating disc. It is on these aspects of the vibratory behaviour of turbine discs, that the work described below is focussed.

1.2 REVIEW OF LITERATURE

Much work has been published describing typical stress and vibration problems encountered with axial flow turbine and compressor rotors. The publications of Shannon (8), Blackwell (9), Armstrong and Stevenson (10), Armstrong and Williams (11), Waldren et al (12), Goatham et al (13), and Petricone and Sisto (14), and NASA Technical Report TR R-54 (15) give excellent background and references to the problems encountered with aircraft power plant.

1.2.1 Stress Analysis of Turbine Discs

Much of the published work on the stress analysis of turbine discs deals with plane stress solutions, and three dimensional treatments are sparse. The reason for this is that when the thickness of the disc is small compared to the radius, the variation of the tangential and radial stresses over the thickness can be neglected and, taking mean values, satisfactory two dimensional approximations can be made.
Exact solutions with this plane stress approximation are available for several non-uniform profiles. Comprehensive reviews of early exact solutions of the problem are given in the classic works of Stodola (16) and Biezeno and Grammel (17). Several disc profiles such as exponential, hyperbolic, and conical radial thickness variation have been considered.

More recently Manna (18) has also treated several unconventional profiles where the thickness can be represented as

$$h = h_0 \left[1 - \left(\frac{r}{b} \right)^{2/q} \right]^p$$

(1.1)

where h_0 is the thickness at the axis of rotation and b is the outer radius of the disc, q is a positive integer and p is greater than 2. Such an expression leads to a remarkably wide range of profiles, and is amenable to exact solution in terms of hypergeometric series.

Of the numerical methods which have been developed, Donath (19) first devised an approximate method where the actual disc is replaced by a model consisting of a series of rings of uniform thickness; and further improvement of this method was made by Grammel (17).

Manson (20,21) and others (22) have also replaced the disc by a series of uniform thickness rings, and solved the governing differential equations by finite difference methods.
This approach has formed the basis of the most widely used techniques for stress analysis of practical axial flow turbine discs. Further developments by Manson (23) extended the method to include elasto-plastic behaviour of the disc material, and, of course, these methods readily allow for both centrifugal inertia forces and radial thermal gradients.

Several other techniques have also been employed for numerical solution of the plane stress problem. Mote (24) has used stress functions with undetermined constants which are adjusted to satisfy the thermal and inplane boundary conditions. Bogdanoff et al (25) have calculated the stresses in a disc by numerical integration of the plane stress equations of classical elasticity theory. Soo (26) has used a matrix technique for this problem.

In recent years, requirements for increased analysis accuracy and the use of relatively thick disc profiles has focussed attention on the three dimensional stress distribution present. The axial stress, neglected in thin disc analysis, can have a substantial effect on disc burst speed. Haigh and Murdoch (27) have considered axially symmetrical turbine wheels of appreciable thickness for which the thin disc theory gives only approximate results. Their analysts is based on three dimensional equilibrium
Radial flow rotors, while not of immediate concern in this work, are increasingly used and present most difficult problems in analysing the three dimensional stress distribution present. Such rotors are generally of asymmetric profile. Kobayashi and Trumpler (28) have developed a solution for the three dimensional stress analysis of such asymmetric discs. First the plane strain problem of a long rotating cylinder is considered. Then the surface tractions acting on a disc cut off from this cylinder are eliminated by a relaxation procedure employing Southwell stress functions. The solutions are obtained numerically using a digital computer. Only centrifugal forces are considered, and extension of this method for the calculation of thermal stress in the disc is outlined; Swansson (29) has used the two dimensional approach of Schilhansl (30) for the above problem and his results agree well with those of Kohayashi and Trumpler (28) for certain cases. Thurgood (31) has suggested further improvements of this method and has studied the effect of including axial deflection in the analysis; which he found, to have significant effect on the stress distribution in the disc.

For this asymmetric problem the finite element method is of considerable interest, and some work has been published on
this problem, Stordahl and Christensen (32) have treated the problem as axisymmetric and analysed the impeller using a finite element method, Chan and Hendrywood (33) have developed and used ring shaped elements of triangular cross-section in the analysis of radial flow impellers.

Besides the various numerical methods used, photoelastic analysis has also been used in the stress analysis of rotating discs (34-37).

1.2.2 Vibration Analysis of Turbine Discs

The vibration of turbine discs and of circular or annular plates is characterised by modes having integer numbers of nodal diameters and circumferential nodal circles. Much of the early work on plates and discs is summarised in the texts by Prescott (38) and Stodola (16).

The vibration of rotating discs has been quite well understood since the classic work of Campbell (39) and Stodola (16). This vibration is also found to comprise wave patterns involving integer numbers of nodal diameters and nodal circles, these patterns rotating forwards or backwards in the disc. The angular velocities of these waves in the discs are:

- forward wave \(f_m / \) m revs./second
- backward wave \(-f_m / \) m revs./second
where f_m is the frequency in cycles/second of the mode with m nodal diameters. If now the disc rotates with angular velocity Ω revs./second, then relative to a stationary observer we have:

- forward wave $\Omega + f_m / m$ revs./second
- backward wave $\Omega - f_m / m$ revs./second

The work of Campbell and Stodola established that the dangerous condition of operation was such that the backward wave is stationary in space,

$$\Omega - f_m / m = 0 \quad \text{or} \quad f_m = m \Omega$$

Thus a mode with m nodal diameters is strongly excited by the mth order of rotational speed.

The mechanism by which only the backward wave is significant is complicated, and perhaps not yet completely understood. Tobias and Arnold (40,41) are generally credited with the most rational explanation to date, and they concluded that unavoidable dynamic imperfections of the disc can account for the phenomenon. The major task of the designer is to avoid the dangerous resonant condition where the backward wave is stationary in space. This involves the accurate prediction of the natural frequencies of the disc; these frequencies, while mainly dependent on thin disc elastic and inertia properties
can be substantially modified by in-plane stresses and transverse shear and rotary inertia.

Exact solutions for constant thickness, thin circular and annular plates are given in the excellent monograph by McLeod and Bishop (42). Vogel and Skinner (43) have given numerical data for the calculation of the natural frequencies of uniform circular and annular plates with various boundary conditions. Leissa (44) has collected most of the available numerical data on this problem.

Exact solutions for thin plates of variable thickness are quite limited. Conway (45) has investigated the transverse vibrations of some variable thickness plates when Poisson's ratio is given particular values. Harris (46) has developed an exact solution for the free vibration of circular plates with parabolic thickness variations.

The transverse vibration of a circular plate of uniform thickness rotating about its axis with constant angular velocity has been studied by Lamb and Southwell (47,48). They have separated the effect of rotation and have solved the vibration problem of the membrane disc. When both plate flexural stiffness and membrane forces are operative, the following relationship is used to get the natural frequencies of the disc
\[
\omega^2 = \omega_1^2 + \omega_2^2
\]

where \(\omega\) is the lower bound of the combined frequency of the rotating disc, \(\omega_1\) is the frequency of the membrane disc where the plate flexural stiffness is neglected, and \(\omega_2\) is the frequency of the stationary disc in which membrane stresses are absent.

Ghosh (49) has extended this approach to plates of variable thickness. Eversman (50) has outlined a solution to this problem when both membrane stresses and disc bending stiffness are considered together.

For the vibration analysis of discs having general thickness profile several numerical methods have been used. References to Prescott (38), Stodola (16), and Biezeno and Grammel (17) gives a good summary of early numerical methods based on the assumption of very simple deflection shapes for the disc. Perhaps the most successful and widely adopted numerical method is due to Ehrich (51), who derived a transfer matrix approach. The arbitrary disc is replaced by a number of annular strips of constant thickness. Every alternate strip is considered to be massless, but to have the local elastic properties of the actual disc. The intermediate strips are considered to have the local inertial properties but no elasticity. The effect of in-plane stresses resulting from rotation is also accounted for. The natural frequencies of the
disc are found by a trial and iterative procedure using the residual determinants derived for various boundary conditions.

Among the other numerical methods which have been used, Mote (24) and Soo (26) have used Rayleigh-Ritz procedure. Bleich (52) has used the collocation method, for the vibration analysis of circular discs.

Several workers have recently applied the finite element method to the problem. Anderson et al (53) have suggested the use of triangular elements for the vibration analysis of uniform annular plates. Olson and Lindberg (54) have developed and used circular and annular sector elements for the analysis of uniform circular and annular plates, Sawko and Merriman (55) and Singh and Ramaswamy (56) have developed sector elements with sixteen and twenty degrees of freedom respectively and have applied these elements in the static analysis of plates only. Chernuka et al (57) have used a high precision triangular element with one curved side for the static analysis of plates with curved boundaries. This element is described by eighteen degrees of freedom, and probably represents the most refined description for plates with curved boundaries which has been reported so far. It should be noted that none of these finite element approaches makes use of the axisymmetric properties of a complete circular
disc, and all result in a mathematical model which is described by a large number of degrees of freedom.

When thick discs are considered, frequencies calculated using thin plate theory differ substantially from experimental values. Three dimensional elasticity solutions should be used in such situations \((58,59)\). For the analysis of moderately thick discs and for the higher modes of relatively thin discs, plate theories which take into account effects of transverse shear and rotary inertia can be used. It is well known that both these effects serve to decrease the computed frequencies because of additional flexibility and increased inertia.

Reissner \((60)\) extended the classical thin plate theory to include transverse shear deformation for the static analysis of plates. A consistent theory for the dynamic behaviour of plates, including rotary inertia and transverse shear was then developed by Uflyand \((61)\), followed by Mindlin \((62)\), who derived the basic sixth order system of partial differential equations of motion along with potential and kinetic energy functions for this problem. He has also given a consistent set of equations relating moments and transverse shears to transverse deflection and bending rotations, Mindlin and Deresiewicz \((63)\) have further developed and applied this theory,
Moderately thick circular plates have been analysed by several investigators. Deresiewicz and Mindlin (64, 65) have considered the symmetrical vibration of circular plates. Callahan (66) used the Mindlin theory to derive characteristic determinants corresponding to eight separate sets of continuous boundary conditions for circular and elliptical plates. Bakshi and Callahan (67) have derived similar determinants for the vibration analysis of circular rings (annular plates). Onoe and Yano (68) have followed a different approach to this problem which they claim is applicable to the higher order vibrations of circular plates.

Very few numerical methods have been suggested for this problem, Pestel and Leckie (69) have derived transfer matrices for annular strips, which are used to model circular and annular discs, including transverse shear and rotary inertia. This is essentially an improvement of Ehrich's lumped mass model. Clough and Felippa (70) have incorporated a simple shear distortion mechanism into their refined quadrilateral finite element which they have used in the static analysis of circular plates including transverse shear.

No published work is available, to the knowledge of the author, on the vibration analysis of variable thickness discs where effects of transverse shear and rotary inertia are also included in the analysis; also no one has considered the effects of in-plane stresses together with transverse shear and rotary inertia even when the disc is uniform.
In contrast to the many theoretical results published on the vibration of turbine discs and circular plates, it is surprising how little experimental data has been published in the literature. Campbell (39) in his classic work obtained experimentally frequencies and mode shapes of steam turbine rotors and has studied the effect of rotation on the frequencies. Peterson (71) has tested annular and circular discs of both uniform and stepped sections in connection with the study of gear vibration. Recently French (72) has described experimentally observed vibration of gas turbine compressor discs. This paper does not appear to have been published in any Journal, however. Mote and Nieh (73) have investigated theoretically and experimentally the relationship between the state of disc membrane stress, critical rotation speed and the frequency spectrum in radially symmetric, uniform thickness, disc problems. Onoe and Yano (68) have obtained experimentally several frequencies of relatively small but thick circular discs, used in mechanical filters, and compared these with their analysis method.

1.2.3 Vibration Analysis of Axial Flow Turbine Blades

Much work has been published on the vibration analysis of axial flow turbine blades and a fairly complete review of the problems and various analytical methods used is given by Dokainish and Rawtani (74). Practical turbine blades have an aerofoil
cross-section and possess, in addition to camber and longitudinal taper, a pretwist to allow for the variation in tangential velocity along the span of the blade. Since all these factors complicate the analysis, in practice, many simplifying assumptions are usually made in the analysis. In most of the analytical methods suggested for the analysis, the blades are idealized to behave as beams having radial variation in section properties and pretwist.

Attachment to the disc in the case of "firtree" or "dovetail" slots is generally considered rigid (i.e., a cantilever beam) or by means of springs which represent, in some manner, the finite flexibility of the fixing. In the case of pin attachments, the rotational constraint about the axis of the pin is relaxed (13).

In many cases coupling between bending and twisting of the blade resulting from non-coincidence of the centroid and shear centre of the aerofoil section is ignored. There are difficulties in determining the shear centre of an aerofoil section. Bending-torsion coupling can also result from the fact that the blade aerofoil at the root is not in a plane parallel to the axis of rotation; this effect cannot be accounted for with a beam model.

Considerable difficulty arises in determining the torsional stiffness. This comprises three contributions.

(a) The St. Venant torsional stiffness,
(b) Additional stiffness due to pretwist,

(c) Additional stiffness due to restrained warping at the root or at shrouds.

While determination of contribution (b) is complicated, this effect has been included in most refined blade models. The contribution (c) is particularly difficult to obtain even when complete warping restraint is assumed, and this effect has generally been neglected, or at best accounted for by some "effective shortening" of the blade.

The effects of transverse shear and rotary inertia on blade frequencies have generally been neglected, This is somewhat justified, because the limitations previously mentioned above generally result in unacceptable errors long before the effects of shear and rotary inertia become significant.

Beam type models have been successfully used for high aspect ratio, thin, compressor blades, and somewhat less successfully for high aspect ratio turbine blades. Calculated frequencies of engineering accuracy are usually limited to the first three or so modes of vibration.

The above limitations of a beam model become particularly evident with low aspect ratio blading, which is increasingly
used, and the solution to such problems probably will require modeling the blade as a curved shell of varying thickness and curvature. Notwithstanding this, beam type models of turbine and compressor blades are still widely used.

In its simplest form the axial flow turbine blade is considered to be a tapered beam of rectangular cross-section without pretwist. Pinney (75) has given an exact solution, for the frequencies and mode shapes, for beams with certain types of taper. Perhaps the most widely adopted numerical method, for nonuniform beams, is the lumped mass method of Myklestad (76). Leckfe and Lindberg (77) were the first to develop the beam flexure finite element and to demonstrate its accuracy compared to other conventional lumped parameter methods. Later Lindberg (78) and Archer (79) developed finite elements for the analysis of tapered beams. Carnegie and Thomas (80) have given a method of analysis of cantilever beams of constant thickness and linear taper in breadth.

Even when a rectangular section is assumed for the blade, pretwisting couples bending in the two principal directions, Rosard (81) has investigated such coupled vibration of blades. In this analysis the blade is divided into a number of segments; the mass and elasticity are concentrated at stations,
and a transfer matrix method is developed.

The bending vibrations of a pretwisted beam lead to two fourth order differential equations. A method of solving these two coupled equations is given by Troesch et al (82). Carnegie (83) has used Rayleigh's energy method to calculate the first frequency in bending of a pretwisted cantilever beam. The static deflection curve is used in the analysis. Slyper (84) has used the Stodola method for this problem. Dokumaci et al (85) have used the finite element technique with matrix displacement type analysis, for the determination of the bending frequencies of a pretwisted cantilever beam. They have derived the stiffness and mass matrices for a pretwisted beam element of rectangular cross-section. Natural frequencies and mode shapes are obtained from the resulting eigenvalue problem.

When the aerofoil section of the blade is considered the torsional vibration is also coupled with the bending vibration of the blade. Mandelson and Gendler (86,87) have suggested a method of analysis for the problem using the concept of station functions. Houbolt and Brooks (88) have derived the differential equations of the coupled bending-torsion vibration of twisted nonuniform blades. Dunham (89) has derived the equations of motion in a twisted coordinate system following the blade length and has used them for the determination of the first natural
frequency. Carnegie (80) has used the Rayleigh method to find an expression for the calculation of the fundamental frequency of the blade.

Perhaps the most careful and complete treatment of the problem is that by Montoya (90) who has derived the governing differential equations for the vibration analysis of twisted blades of aerofoil section, including coupling between bending and torsion. Effect of rotation on both bending and torsion are also considered. Runge-Kutta numerical procedure is followed to solve the problem and the differential equations are converted into ten first order equations. Assuming unit values to each of the unknowns at the fixed end, corresponding values are found at the free end and are combined linearly, resulting in a set of equations. The boundary conditions at the free end require the determinant of these equations to vanish when the correct frequency value is assumed. Results obtained when twist and torsional coupling are neglected are compared with those obtained when these effects are considered; and it is shown that these effects should not be ignored.

When a rotating blade is considered, the additional stiffness due to the centrifugal forces should be considered. The centrifugal forces induce several additional coupling terms in the already complicated equations of motion. The effect of rotation
on the bending frequencies has been considered by Sutherland (91) by using a Myklestad type tabular method of analysis. Plunkett (92) has developed matrix equations governing transverse vibration of a rotating cantilever beam. Bending vibrations in a plane inclined at any general angle to the plane of rotation has been investigated by Lo et al (93). They have also observed that the equations of motion contain a nonlinear term resulting from the Coriolis acceleration (94). Equations of motion for a rotating cantilever blade using Hamilton's principle have been derived by Carnegie (95).

Jarrett and Warner (96) and Targoff (97) have solved the problem of a rotating twisted blade idealizing the blade by a lumped mass system. Isakson and Eisley (98,99) have also used Myklestad type analysis for calculating the bending frequencies of pretwisted rotating beams. The effect of rotation on the torsional frequencies has been investigated by Bogdanoff and Horner (100,101) and by Brady and Targoff (102). Karupka and Baumanis (103) have derived the field equations for coupled bending-torsion vibrations of a rotating blade using Carnegie's formulation of the Lagrange equations of motion. Cowper (104) has developed a computer program to calculate the shear centre of any arbitrary cross-section.

When the blades are thick, the classical Bernoulli-Euler beam theory for bending vibrations is known to give higher
values of computed frequencies. In such cases transverse shear and rotary inertia should be included in the analysis. Rayleigh improved the classical theory considering rotary inertia of the cross-section of the beam. Timoshenko extended the theory to include the effects of transverse shear deformation. Prescott (38) and Volterra (105) have developed various Timoshenko type beam models. Huang (106) has given solutions of Timoshenko equations for a cantilever beam of rectangular cross-section. Carnegie and Thomas (107) have used the finite difference method for the bending vibration analysis of pretwisted cantilevers including the effects of transverse shear and rotary inertia.

Among the other published work connected with blade vibration; Gere (108) has derived differential equations, for the torsional vibrations of beams of thin walled open cross-section for which the shear centre and centroid coincide, including the effects of warping of the cross-section. Grinstein (109) has studied the complex nodal patterns of turbine blades; impeller vanes and discs, Ellington (110) has derived frequency equations for the modes of vibration of turbine blades laced at their tips. Pearson (111) and Sabatiuk and Sfsto (112) have discussed the aero-dynamics of turbine blade vibration.

As mentioned earlier beam type models are not applicable to low aspect ratio blades. Such blades are generally treated either as plates (113) or as shells (114).
1.2.4 Coupled Blade-Disc Vibration

The existence of coupling between the blades and disc and its influence on the natural frequencies of bladed rotors has been demonstrated by both experimental and theoretical studies. With a bladed disc it is found that similar concepts to that of the unbladed disc apply; the rotor oscillates in a coupled blade-disc mode characterised by diametral and circular nodes. The blades being constrained in the disc at the rim, will vibrate in 'bending motion at diametral anti-nodes, in torsional motion at nodes, and in combined bending-torsion elsewhere. The circular nodes may lie in the disc, but will more often be located in the blades. This whole pattern may rotate as in the disc alone case, and again the dangerous resonant vibration condition corresponds to an m nodal diameter mode exited by the m\(^{th}\) order of rotational speed.

The general features of the resonant conditions in a typical rotor may be illustrated in a Campbell or interference diagram, Figure 1.2. In this diagram are shown the resonances predicted assuming rigid blades on a flexible disc, and flexible blades on a rigid disc. For the former assumption the resonances occur when the m\(^{th}\) order of rotational speed is equal to the frequency of the disc mode with m nodal diameters. For the
latter assumption the resonances occur whenever the various rotational excitation frequencies are equal to a blade natural frequency. The resonances of the combined blade disc system are modified as shown. These resonances again occur when an m nodal diameter mode is excited by the m-th engine order, and it is seen that the resulting motion degenerates to essentially disc vibration with rigid blades at low engine order excitation and high speed, and to blade vibration with a rigid disc at high engine excitation and low speed.

The early work reported on the problem is based on very simplified models. Ellington and McCallion (115) have investigated the effect of elastic coupling, through the rim of the disc, on the frequencies of bending vibration using a simplified model. In this model the effect of twist, taper and obliquity is neglected and the blades are replaced by uniform blades fixed to the rim at their roots and vibrating in a plane parallel to the plane of the disc. For the analysis three adjacent blades are assumed to be parallel to each other and the portion of the rim joining them is taken as a straight continuous beam. A relationship between three slopes of the beam at the root of three adjacent blades are established and is used in the calculation of the natural frequencies.

Johnson and Bishop (116) have also examined an idealized
bladed rotor consisting of identical mass-spring elements to represent the blades, connected to a rigid free mass which represents the disc. They examine the principal modes of such a model and outline methods for determining the receptances (dynamic flexibility) of the system.

Wagner (2) extended this simplified model, representing each blade by a single degree of freedom system which has the same natural frequency and damping factor as that of a particular mode of the blade. These subsystems are attached to a common ring representing the disc.

Capriz (117) has developed equations for the analysis of the interaction between the disc and blades. Using available numerical methods, "a number of cases of practical interest have been studied," but, "comparison with experimental results has put in evidence discrepancies when modes with large numbers of nodal diameters were considered." No numerical results are presented in the paper and the paper does not appear to have been published in a Journal.

The first extensive investigations of the problem appear to be due to Armstrong (118). Armstrong et al (1,119) studied the problem by experimental investigation. Armstrong carried out experimental tests on model rotors with uniform
discs and uniform untwisted blades attached to the disc at varying stagger angles. Based on approximate receptance relations, he developed a theoretical method for the analysis of the coupled system and was able to predict satisfactorily the frequencies of the lower coupled modes of his models. The analysis was restricted to simple model configurations for which receptance relations could be easily obtained. The application to practical rotors was outlined.

At about the same time as Armstrong's work, Jager (120) developed a numerical method to predict the coupled system frequencies and mode shapes, using a transfer matrix technique based on a lumped mass model of the disc suggested by Ehrich (51) and a conventional lumped mass model of the blades treated as twisted beams. This method was therefore directly applicable to practical rotors of varying geometry, and included the stiffening effects resulting from rotation. This method has been adopted by several aircraft engine companies.

Dye (3) and Ewins (4, 5) have studied the effects of detuning upon the vibration characteristics of bladed discs, in particular the variation in blade stresses which can result when the blades do not have identical frequencies. They concluded that this effect can result in a variation of vibratory stress from blade to blade by a factor as high as 1.25 approximately.
Carta (6) describes an aeroelastic instability condition which is governed by strong coupling between bending and torsion of the blades resulting from disc or shroud dynamic coupling. This flutter condition is highly dependent on the coupled blade-disc: shroud mode shape, which must be accurately determined. He assumes such mode shapes are available from a Jager type calculation (120), and successfully predicts the instability for a number of bladed rotors.

Finally, a paper by Stargardter (121), which also appears not to have been published in a Journal, describes qualitative results obtained by vibrating rubber models at low rotational speeds. He describes the physical phenomena well, and presents some interesting photographs showing clearly the motions involved with bladed rotors.

1.3 OBJECT OF THE PRESENT INVESTIGATION

Since exact solutions of rotating discs are restricted to certain simple geometry and boundary conditions, numerical procedures must be adopted for the analysis of practical turbine discs and bladed rotors of general geometry. Although transfer matrix techniques have been applied to these problems by Ehrich (51) and Jager (120), these methods have two disadvantages. First,
the use of mass lumping in the mathematical model of the system requires a large number of stations to be considered in both disc and blades if good accuracy is required, particularly for higher modes of vibration. Secondly, the natural frequencies are obtained by iterating with the frequency of vibration as a variable, and seeking the zeros of a frequency determinant. These results in a requirement for substantial computing time and storage, and not infrequently, the numerical conditioning difficulties with higher modes which arise in transfer matrix methods.

A more profitable approach would be to use the finite element technique which has now become firmly established as a powerful method of analysis. This method allows refinements over the other numerical procedures and when applied to the vibration analysis results in an algebraic eigenvalue problem.

Although the circular and annular sector finite elements developed by Olson and Lindberg (54) and even triangular elements may be used in the vibration analysis of circular and annular discs, the use of these elements results in an eigenvalue problem of considerable magnitude. Inclusion of thickness variation and the effects of rotation etc., in these elements would be quite involved. Hence, it is desirable to develop simpler elements, particularly suitable for the vibration analysis of turbine discs, and which take advantage of the nature and geometry of the problem.
The main objective of this investigation, therefore, is to develop finite elements of annular geometry, in which radial thickness variation, the effects of in-plane stresses, and the effects of rotary inertia and transverse shear can be easily introduced, and to examine the behaviour of these elements in the analysis of simple and complex discs and bladed rotors.

Attention is to be focussed on developing methods of vibration analysis of rotating discs of general profile and bladed discs representative of practical turbine stages. Although reliable and efficient methods are available for the stress analysis of turbine discs, a plane stress finite element method compatible with the vibration analysis is developed. In the analysis of the bladed rotors, only a simplified model is to be assumed for the blades and the investigation emphasises the study of the coupling between the disc and blade motions. A thorough treatment of the blades in the light of the many complicating factors involved would require substantial amount of additional work and hence is not attempted here.
2.1 INTRODUCTION

In this chapter a finite element model which will adequately represent a turbine disc having general thickness profile is developed for the vibration analysis of axial flow turbine discs. The disc is idealized to be both axisymmetric and symmetric about the middle plane. But, any general radial thickness profile is satisfactorily described by the model. Stiffening effects of in-plane stresses resulting from centrifugal and thermal loading and other boundary loadings, such as shrinkfit pressure at the hub, and blade loading at the rim are taken into account. This method of analysis which is based on thin plate theory, is then further extended to include the effects of transverse shear and rotary inertia, so that the method can be used in the analysis of moderately thick discs.

Detailed analysis of stress distribution across the thickness of the disc is not attempted; rather, a plane stress finite element method for computing the average stresses at the middle plane of the disc is developed. While this plane stress
finite element model has little advantage in accuracy or efficiency over the extensively used finite difference schemes (20, 21), it has the one advantage here of being completely compatible with the analysis developed for the flexural vibration of the disc, since many of the matrix relations and operations are identical.

In section 2.2 thin plate bending finite elements having annular and circular geometry and radially varying thickness and which are particularly suitable for the vibration of thin discs are developed (122). Compared with other available finite elements for this type of problem, these new elements are described by a remarkably small number of degrees of freedom. The annular element has four degrees of freedom, while the circular element has only two or three. This is achieved by including the number of diametral nodes in the chosen displacement function for the element, and in effect this results in separate solutions for each diametral mode configuration.

In section 2.3 matrix expressions are derived which allow for the additional stiffness resulting from in-plane stresses in a thin disc. These assume that the in-plane stress distribution is known, i.e., precalculated by some means or other. In this work a plane stress annular finite element is developed and used to calculate the stress distribution; this appears to be new and could
be readily extended to handle buckling problems of discs.

Finally, in section 2.4, two new methods of incorporating the effects of transverse shear and rotary inertia are developed, which will allow accurate analysis of moderately thick discs.

The convergence and accuracy of the finite element models are in each case critically examined by comparison with exact solutions, where available, and with experimental data, for both static and vibration problems.

2.2 ANNULAR AND CIRCULAR THIN PLATE BENDING ELEMENTS

2.2.1 Element Geometry and Deflection Functions

Figures 2.1 and 2.2 show the annular and circular thin plate bending finite elements with their associated degrees of freedom and diametral nodes. The annular element is bounded by two concentric circles and the circular element by a single circle. Any required number of diametral nodes is incorporated in the elements as follows.

Once the lateral deflection \bar{w} and the radial slope $\bar{\theta}$ at any antinode, where ξ is taken to be zero, are specified, the deflection and slope at any other point at an angle ξ from some reference antinode can be expressed as, $\bar{w} \cos m\xi$ and
where \(m \) is the number of diametral nodes. Hence

a suitable deflection function for \(w \), the lateral deflection of the disc along the radial direction and an antinode, only remains to be chosen.

Irrespective of the number of diametral nodes, the annular element has four degrees of freedom. These are \(\bar{w}_1, \bar{w}_2, \bar{\theta}_1, \) and \(\bar{\theta}_2 \) as shown in Figure 2.1, where \(\theta \) is defined as \(\theta = \frac{\partial w}{\partial r} \). For the circular element, as shown in Figure 2.2, the number of degrees of freedom vary with the number of diametral nodes. It should be observed that when \(m \) is zero \(\bar{w}_1 \) is zero, when \(m \) is odd \(\bar{w}_1 \) is zero and when \(m \) is even both \(\bar{w}_1 \) and \(\bar{\theta}_1 \) are zero. This indicates that while a single deflection function can be assumed for the annular element, three different deflection functions are to be assumed for the circular element, one for \(m = 0 \), another for \(m = 1, 3, 5, \ldots \) and a third one for \(m = 2, 4, 6, \ldots \) However, no suitable function could be found for the second case excepting when \(m = 1 \).

The following deflection functions are found suitable for the different cases mentioned.

for the annular element;

\[
\bar{w}(r,\xi) = (a_1 + a_2 r + a_3 r^2 + a_4 r^3) \cos m_\xi \tag{2.1}
\]

\[
w(r,\xi) = (a_1 + a_2 r r^2 + a_3 r^3) \tag{2.2}
\]

* The choice of \(\cos m_\xi \) in the deflection function can be justified noting that the exact solution for an axisymmetric plate is of the form \(\bar{w} = f(r) \cos m_\xi \)
for the circular element with $m = 0$;

$$w(r, \xi) = (a_1 r + a_2 r^2 + a_3 r^3) \cos \xi$$

(2.3)

for the circular element with $m = 1$;

$$w(r, \xi) = (a_1 r^2 + a_2 r^3) \cos m\xi$$

(2.4)

for the circular element with $m = 2, 4, 6, \ldots$ where $w(r, \xi)$ is the lateral deflection of a point on the middle surface of the plate at radius r and angle ξ measured from the reference antinode. The relationship of the deflection functions to those normally used for a beam element is evident. The deflection functions for the circular element are chosen considering the following conditions. For the circular element with $m = 0$ it is necessary to include the rigid body translation, and with $m = 1$ it is necessary to include the rigid body rotation about a diameter. The difficulty with $m = 3, 5, 7, \ldots$ arises from the need to retain the linear rotation term, but at the same time ensure that the circumferential curvature remains finite when $r = 0$. This is not possible with the simple form of deflection function chosen.

2.2.2 Element Stiffness and Inertia Matrices

The stiffness and inertia matrices of the annular element and the three different circular elements are obtained by substituting the assumed deflection functions into the strain energy and kinetic energy expressions of the elements and following
well known procedures (123). For the thin plate annular element the strain energy is given by (124),

$$U = \frac{1}{2} \int_0^r \int_1^r \{\chi\}^T \{V\} \{\chi\} r \, dr \, d\xi \tag{2.5}$$

where

$$\{V\} = \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & 1 - \nu \end{bmatrix} \tag{2.6}$$

and

$$\{\chi\} = \begin{bmatrix} -\frac{\partial^2 w}{\partial r^2} \\ -\frac{1}{\alpha r} \frac{\partial w}{\partial r} - \frac{1}{r^2} \frac{\partial^2 w}{\partial \xi^2} \\ \frac{2}{r} \frac{\partial^2 w}{\partial \alpha \partial \xi} - \frac{2}{r^2} \frac{\partial w}{\partial \xi} \end{bmatrix} \tag{2.7}$$

Substituting (2.1) for w in (2.7)

$$\{\chi\} = [E] [B_d] [\overline{q_d}] \cos m\xi \tag{2.8}$$

where

$$[\overline{q_d}]^T = [\overline{\sigma}_1 \overline{\sigma}_2 \overline{\tau}_1 \overline{\tau}_2] ; \quad \theta = -\frac{\partial w}{\partial r} \tag{2.9}$$
and

\[
[E] = \begin{bmatrix}
0 & 0 & -2 & -6r \\
\frac{m^2}{r^2} & \frac{1}{r} (m^2 - 1) & (m^2 - 2) & r (m^2 - 3) \\
-\frac{2m}{r^2} \tan \eta & 0 & 2m \tan \eta & 4mr \tan \eta \\
\end{bmatrix}
\]

(2.10)

The matrix \(B_d \) is given in Table 2.1. Substituting (2.8) in (2.5)

\[
U = \frac{12\pi}{20} \int_1^r \int \Delta (\vec{q}_d)^T [B_d]^T [E]^T [V] [E] [B_d] \vec{q}_d \\
\quad \cdot r \cos^2 \eta \, dr \, d\xi
\]

(2.11)

Therefore the stiffness matrix is given by

\[
[K_d] = \int_1^r \int \Delta [B_d]^T [E]^T [V] [E] [B_d] \cdot r \cos^2 \eta \, dr \, d\xi
\]

(2.12)

or,

\[
[K_d] = [B_d]^T [k_d] [B_d]
\]

(2.13)

where

\[
[k_d] = \int_1^r \int \Delta [E]^T [V] [E] \cdot r \cos^2 \eta \, dr \, d\xi
\]

(2.14)

The matrix \([k_d] \) is given in Table 2.2.
The kinetic energy of the annular element is given by

\[T = \frac{1}{2} \int_{\rho \ h(r) \ \left(\frac{3\omega}{\partial t} \right)^2 \ r \ dr \ d\xi } \quad (2.15) \]

Substituting (2.1) in (2.15)

\[T = \frac{1}{2} \int_{\rho \ h(r) \ \left(q_d \right)^T \ [B_d]^T \ \{s\}^T \ {\{s\}}^T \ [B_d] \ r \ \cos^2 m\xi \ dr \ d\xi } \quad (2.16) \]

Where

\(\{s\} = [1 \ r \ r^2 \ r^3]; \) and the dot denotes time derivative.

Therefore the inertia matrix is given by

\[[M_d] = \frac{2\pi \ r^2}{r} \ \rho \ h(r) \ \int_{0}^{2\pi} \ r \ \cos^2 m\xi \ dr \ d\xi } \quad (2.17) \]

or,

\[[M_d] = [B_d]^T \ [m_d] \ [B_d] \quad (2.18) \]

where

\[[m_d] = \oint_{0}^{2\pi} \ r \ h(r) \ \left(\{s\}^T \ {\{s\}}^T \ r \ \cos^2 m\xi \ dr \ d\xi } \quad (2.19) \]

The matrix \([m_d] \) is given in Table 2.3.

In Tables 2.2 and 2.3 the integrals \(p_i \) and \(Q_i \) are given by
\[P_i = C \frac{E}{12(1-\nu^2)} \int_{r_1}^{r_2} r^3 h^3(r) \, dr \]

(2.20)

and

\[Q_i = C \int_{r_1}^{r_2} h(r) \, r^4 \, dr \]

(2.21)

where

\[C = \begin{cases} 2 & \text{when } m = 0 \\ 1 & \text{when } m \neq 1 \end{cases} \]

(2.22)

The values of \(P_i \) and \(Q_i \) depend on the function assumed for \(h(r) \). Any desired function can be assumed. If linear thickness variation within the element is assumed, then

\[h(r) = a + \beta r \]

(2.23)

where

\[a = \frac{h_1 r_2 - h_2 r_1}{r_2 - r_1}, \quad \text{and} \quad \beta = \frac{h_2 - h_1}{r_2 - r_1} \]

(2.24)

If parabolic thickness variation within the element is assumed, then

\[h(r) = a + \beta r^2 \]

(2.25)

where

\[a = \frac{h_1 r_2^2 - h_2 r_1^2}{r_2^2 - r_1^2}, \quad \text{and} \quad \beta = \frac{h_2 - h_1}{r_2^2 - r_1^2} \]

(2.26)

The two cases above require the thickness to be known only at the inner and outer boundaries of the element. Any other desired expressions for \(h(r) \) can be assumed and the corresponding values of \(P_i \) and \(Q_i \) evaluated.
The stiffness and inertia matrices of the thin plate circular elements are derived in a similar manner and these are given by

\[
[K_d^0] = [B_d^0]^T [k_d^0] [B_d^0]
\]

and

\[
[M_d^0] = [B_d^0]^T [m_d^0] [B_d^0]
\] (2.27)

The matrices \([k_d^0], [m_d^0]\), and \([m_d^0]\) and the corresponding deflection vector \(\{q_d^0\}\) are given in Tables 2.4 to 2.6, for the three different circular elements. Here again the integrals \(P_1\) and \(Q_1\) are evaluated assuming desired functions for \(h(r)\).

These element stiffness matrices \([K_d]\) and inertia matrices \([M_d]\) can be assembled by conventional methods to get the disc system stiffness matrix \([K_d]\) and inertia matrix \([M_d]\), for a model of the disc comprising several elements. The dynamic stiffness relation for the disc becomes;

\[
\{q_d\} = \{ K_d \} \omega^2 \{ M_d \} \{ q_d \}
\] (2.28)

where \(\{q_d\}\) is the disc deflection vector and \(\{q_d\}\) is the vector of corresponding generalised forces. For free vibration of the disc all the terms of \(\{q_d\}\) are zero, and Equation 2.28 becomes an algebraic eigen value problem which is solved to yield the natural frequencies and mode shapes of the disc. Such a
calculation would be repeated for each diametral mode configuration.

In static problems the inertia matrix $[\mathbf{D}_d]$ disappears and $\{q_d\}$ is the vector of external generalised forces at the nodes of the finite element model of the disc.

Displacement boundary conditions only are applied by deleting the appropriate rows and columns of the stiffness and inertia matrices of the disc.

2.2.3 Application to Thin Plate Vibration Problems

The convergence properties and accuracy of the finite elements developed above for the vibration of thin plates are examined by comparing the nondimensional frequency parameter

$$\lambda = \frac{\omega b^2 \sqrt{\frac{D_o}{h_0^2}}}{\sigma_{pp}}$$

obtained, with available exact solutions. h_0 and D_o are the thickness and the flexural rigidity of the plates considered. When a variable thickness plate is considered, these are the values at the centre of the plate.

For a first example, complete circular plates having uniform thickness are considered. When these plates are modelled with several annular elements and one circular element at the centre as shown in Figure 2.3, the results are restricted to modes with $m = 0, 1, 2, 4, 6, \text{ etc.}$, only because of the difficulty in choosing a suitable deflection function for the circular
element with odd values of m other than unity. The solutions obtained for plates with simply supported, clamped and free outer boundaries are given in Tables 2.7 to 2.9, in which m and n are the diametral and circular node numbers respectively. These plates can also be modelled by approximating the complete plate by an annular plate having a very small central hole as shown in Figure 2.3. Only annular elements are used in this case and hence results are obtained for any value of m. The results obtained with a radius ratio $a/b = 0.001$ for the three cases considered above are given in Tables 2.10 to 2.12 along with available exact solutions of complete circular plates. Comparing results from Tables 2.7 to 2.12 it is seen that the presence of the central hole has only very small effect and in practical problems the use of annular elements alone would be satisfactory.

Convergence of the solution with number of elements is seen to be extremely rapid in all cases and monotonic from above as would be expected. Frequencies of engineering accuracy are obtained with very few elements; thus the use of number of elements $N = (\text{Number of modes desired} - 1)$ will in all cases give frequencies accurate to approximately 2% or better.

In Figure 2.4 the percentage absolute error in the first six frequencies of the simply supported plate, calculated
using annular elements alone, are plotted against number of elements used in the model.

(B) As a second example, annular plates of uniform thickness are considered. These are modelled with the annular elements only. Results obtained for plates with radius ratios $a/b = 0.1$ and 0.5 are given in Tables 2.13 to 2.18 together with the available exact solutions. The remarks made in (A) above regarding convergence and accuracy of the solution also clearly hold for these examples.

(C) The third example chosen is that of a complete free circular plate having parabolic variation in thickness,

$$h(r) = b_o \left(1 - \left(\frac{r}{b}\right)^2\right),$$

as shown in Figure 2.5, and for which exact solutions have been obtained by Harris (46), when the plate is free along the outer boundary. The plate is approximated by considering an annular plate with $a/b = 0.001$ and using only the annular elements with parabolic thickness variation. The results are presented in Table 2.19. The effect of using elements with linear thickness variation instead of parabolic thickness variation within the element is also studied and the results are given in Table 2.20.

Comparing results of Table 2.19 and 2.20 it will be noted that convergence is rapid with either model, but that while
the model using parabolic thickness elements converges monotonically and is an upper bound solution as expected, the convergence of the model using linear elements, where an approximation of the geometry is made, is from below, at least for the first mode, and is not monotonic for the higher modes. Convergence and accuracy of the finite element solution with true thickness modelling is quite remarkable.

(D) In a final example, the efficiency of the procedure using annular elements can be judged by comparison with results obtained using sector elements. Such a comparison is made for a uniform free plate in Table (2.21). Olson and Lindberg (54) model the plate with a grid of three sector elements radially, and 12 circumferentially. Using symmetry their resulting model has 55 degrees of freedom. The results obtained with the 3 x 12 grid of sector elements are compared with those obtained using two and four annular element models. It is seen that the use of only two annular elements, resulting in only six degrees of freedom, gives more accurate results than the use of sector elements. Moreover the identification of the particular modes is easier with the annular element. The sector element model yields two values of frequency for the (2,0) and (5,0) modes; these solutions appear to be associated with nodal diameters in the vibrating plate passing through nodes in the grid mesh, and passing between the nodes in the grid mesh respectively.
It should be pointed out that the use of annular elements will involve solution of the eigen value problem once for each nodal diameter configuration. Notwithstanding this there remains considerable saving in storage and computer time requirements. In addition the use of the sector elements is ofcourse not restricted to complete annular and circular plates, unlike the annular and circular elements.

Apart from these examples, where vibration problems are considered, the elements developed here may be applied to static problems also, by superposing the solutions obtained by expressing the applied load in it's Fourier components. The results of several such studies are briefly described in Appendix A.

2.3 THE EFFECT OF IN-PLANE STRESSES ON THE VIBRATION OF THIN DISCS

The stiffening effect of centrifugal and thermal stresses is significant in practical rotors, and must be taken into account in any realistic analysis. If centrifugal stresses only are considered, these are proportional to the square of the rotational speed, and additional stif'fness terms may be derived which will also be proportional to the square of the rotational speed. Thermal stresses, however, have no relationship with the rotational speed. This suggests that a method of including both
effects should be formulated assuming that stresses in the rotor are already known.

In section 2.3.1 a stiffness matrix is derived which is dependent on the in-plane stresses present in the disc. This matrix simply adds to the basic elastic matrix equation to give the total stiffness matrix of the element. The radial and tangential stress values used in this additional stiffness matrix may be obtained by any method, but in section 2.3.2 a plane stress annular finite element is derived which is used to calculate these stresses in this work. This has the advantage here being compatible with the annular bending element, and many of the matrix relations and operations are seen to be identical.

The accuracy and convergence of first the method of stress analysis and second the resulting stiffening effect on the disc vibration, is examined with several numerical examples in section 2.3.3.

2.3.1 Additional Stiffness Matrix for the Annular Element due to In-Plane Stresses

When in-plane radial stress σ_r and tangential stress σ_θ are present at the middle plane of the annular thin plate element, the following additional terms arise in the strain energy
equation (124), of the annular element, Figure 2.1,

\[u = \frac{1}{2} \int_0^{2\pi} \int_{r_1}^{r_2} \left(\frac{\partial \sigma_r}{\partial r} \right)^2 + \frac{\sigma_r}{r^2} \left(\frac{\partial^2 \sigma_r}{\partial \zeta^2} \right)^2 h(r) r \, dr \, d\zeta \]

(2.29)

Assuming the deflection function, Equation 2.1, as before, and substituting in the above strain energy expression, additional stiffness coefficients for the annular element are readily derived corresponding to the deflection vector,

\[\begin{bmatrix} q_d \end{bmatrix}^T = \begin{bmatrix} \bar{w}_1 & \bar{\theta}_1 & \bar{w}_2 & \bar{\theta}_2 \end{bmatrix} \]

(2.30)

The additional stiffness matrix is

\[[k_d^a] = [B_d]^T [k_d^a] [B_d] \]

(2.31)

where the matrices \([B_d]\) and \([k_d^a]\) are given in Tables 2.1 and 2.2.

The integrals \(R_i\) and \(S_i\) appearing in the elements of the matrix \([k_d^a]\) are given by

\[R_i = C \int_{r_1}^{r_2} r h(r) \sigma_r(r) \, dr \]

(2.32)

\[S_i = C \int_{r_1}^{r_2} r^2 h(r) \sigma_r(r) \, dr \]

(2.33)

It is convenient to assume linear variations, within the element, of \(h(r)\), \(\sigma_r(r)\), and \(\sigma_\zeta(r)\) requiring that the values need only be known at the nodal points.
assuming

\[h(r) = a + Br; \quad \sigma_r(r) = c + dr; \quad \text{and} \quad \sigma_\xi(r) = e + fr \] \tag{2.34}

then

\[\alpha = (h_1 r_2 - h_2 r_1) / (r_2 - r_1); \quad \beta = (h_2 - h_1) / (r_2 - r_1) \]

\[c = (\sigma_{r1} r_2 - \sigma_{r2} r_1) / (r_2 - r_1); \quad d = (\sigma_{r2} - \sigma_{r1}) / (r_2 - r_1) \]

\[e = (\sigma_{\xi1} r_2 - \sigma_{\xi2} r_1) / (r_2 - r_1); \quad f = (\sigma_{\xi2} - \sigma_{\xi1}) / (r_2 - r_1) \] \tag{2.35}

and

\[R_i = C_{\alpha} \int_{r_1}^{r_2} r^\alpha (a + Br) (c + dr) \, dr \] \tag{2.36}

\[S_i = C_{\alpha} \int_{r_1}^{r_2} r^\alpha (a + Br) (e + fr) \, dr \] \tag{2.37}

2.3.2 Plane Stress Finite Element For Thin Discs

When a disc rotates at speed, very high radial and tangential stresses are generally produced by the centrifugal inertia force. The presence of radial temperature gradient can substantially modify the total stress distribution and in extreme cases has been known to result in buckling at the rim. Shrinkfit pressure at the hub, in certain cases, can also modify the centrifugal stress distribution. The result of all these effects produces an in-plane stress distribution in the disc,
which changes the flexural stiffness of the disc. The variation of these stresses across the thickness of the disc is generally ignored in axial flow rotors.

By taking advantage of the axisymmetric nature of the problem, plane stress finite elements of annular and circular geometry are developed below for use in the stress analysis of discs. These elements incorporate radial thickness variation. Consistent load vectors (123) are used to replace the continuously distributed centrifugal and thermal loading, or any other axisymmetric external loading on either boundary.

Consider the axisymmetric stretching of an annular element with inner radius \(r_1 \) and outer radius \(r_2 \) and radially varying thickness \(h(r) \). The geometry and deflections of the element are shown in Figure 2.6. The strain energy in the element is given by (124),

\[
U = \frac{1}{2} \frac{2\pi}{(1 - \nu^2)} \int_{r_1}^{r_2} \frac{r}{E} \left(\varepsilon_r^2 + \varepsilon_\xi^2 + 2\varepsilon_r \varepsilon_\xi \right) r \, dr
\]

The radial and tangential strains in this case are

\[
\varepsilon_r = \frac{du}{dr}; \quad \text{and} \quad \varepsilon_\xi = \frac{u}{r}
\]

where \(u \) is the radial displacement. Substituting the deflection function

\[
u(r) = a_1 + a_2 r + a_3 r^2 + a_4 r^3
\]
in the strain energy expression and following standard procedure
we arrive at the following expression for the stiffness matrix
for the element,

\[[K_d^P] = [B_d]^T [k_d^P] [B_d] \]

(2.41)
corresponding to the deflection vector

\[\{q_d\}^T = [u_1 \ \theta_1 \ u_2 \ \theta_2] \]

(2.42)
where

\[\theta = - \frac{du}{dr} = - r \]

The matrices \([B_d]\) and \([k_d^P]\) are given in Tables 2.1 and 2.30.
The integrals \(Q_i\) in Table 2.30 are given by

\[Q_i = \frac{2\pi E}{\nu^2} \int h(r) r^2 \, dr \]

(2.43)
If linear thickness variation within the element is assumed, then

\[h(r) = \alpha + \beta r \]

(2.44)
where

\[\alpha = \frac{h_1 r_2 - h_2 r_1}{r_2 - r_1} \quad \text{and} \quad \beta = \frac{h_2 - h_1}{r_2 - r_1} \]

(2.45)
then,

\[Q_i = - \frac{2\pi E}{\nu^2} \frac{r_2}{r_1} \int (\alpha + \beta r) r^2 \, dr \]

(2.46)
When \(r_1 = 0 \), the geometry of the element becomes

circular. In this case \(u_1 = 0 \) and the element has only three
degrees of freedom, and

\[\{q_d\}^T = [0_1 \ u_2 \ 0_2] \] \hspace{1cm} (2.47)

By assuming the deflection function

\[u(r) = a_1 r + a_2 r^2 + a_3 r^3 \] \hspace{1cm} (2.48)

the stiffness matrix of the element becomes,

\[[k_{do}^P] = [B_o]^T [k_{do}^P] [B_o] \] \hspace{1cm} (2.49)

The matrices \([B_o]\) and \([k_{do}^P]\) are given in Tables 2.4 and 2.31.

The integrals \(Q_{io}\) in Table 2.31 are given by

\[Q_{io} = \frac{2\pi E}{1 - \nu^2} \int_0^r h(r) \ r^4 \ dr \] \hspace{1cm} (2.50)

Again when linear thickness variation is assumed within this element

\[h(r) = \alpha + \beta r \] \hspace{1cm} (2.51)

where

\[\alpha = h_1 \text{ and } \beta = (h_1 - h_0)/r \]

then

\[Q_{io} = \frac{2\pi E}{1 - \nu^2} \int_0^r (\alpha + \beta r) \ r^4 \ dr \] \hspace{1cm} (2.52)

The element stiffness matrices \([k_{do}^P]\) can be assembled by conventional methods to get the disc system stiffness matrix \([K_D^P]\). Now, the equilibrium condition requires the following relation to be satisfied;

\[\{Q_d\} = [K_D^P] \{q_d\} \] \hspace{1cm} (2.53)
where \(\{q_p\} \) is the vector of generalised nodal forces and \(\{q_b\} \) is the vector of unknown nodal displacements.

Only displacement boundary conditions should be applied by deleting rows and columns in \([k_p]\) corresponding to displacements which are zero. Often the turbine disc is considered to be free at either boundary while analysing the stresses in the disc; here \([k_p]\) is not reduced. The simultaneous equations given by the relation (2.53) may be solved by conventional procedures; if matrix inversion is followed then,

\[
\{q_p\} = [k_p]^{-1} \{q_b\}
\]

Thus all the nodal displacements are obtained.

The load vector \(\{q_p\} \) comprises several contributions. Thus the following should be considered.

(a) Rim loading resulting from blades should be added at the appropriate position of the vector. \(\{q_p\} \). If the number of blades present is \(Z \), each with mass \(m_b \) and centre of gravity at radius \(R_g \) and if the rotational speed is \(\Omega \ \text{rad./sec.} \), then this loading is \(Zm_b\Omega^2 R_g \).

(b) Shrinkfit pressure at the hub results in some loading at the inner radius \(a \) and is given by \(2\pi a \sigma_o h(a) \), where \(\sigma_o \) is the shrinkfit pressure and \(h(a) \) the thickness at radius \(a \).
(c) Distributed centrifugal loading.

(d) Distributed thermal gradient loading.

For (c) and (d) equivalent consistent vectors of nodal forces are obtained by equating work done by the hypothetical nodal forces to work done by distributed centrifugal and thermal loading.

Consider the distributed centrifugal inertia loading first. When the disc is rotating with constant angular velocity \(\Omega \), by equating the work done by the hypothetical nodal forces to the work done by the centrifugal force in the annular element, we obtain

\[
\{q_d\}^T \{f_c\} = \int_{r_1}^{r_2} \int F(r) u(r) \, dr \, dr
\]

where

\[
\{q_d\}^T = [u_1 \, \theta_1 \, u_2 \, \theta_2] \quad (2.55)
\]

\[
\{f_c\} = \text{consistent vector of nodal loads.}
\]

\[
F(r) = \rho \Omega^2 r^2 h(r) \, dr
\]

(2.56)

(2.57)

\[
F(r) = \rho \Omega^2 r^2 h(r) \, dr
\]

(2.56)

(2.57)

Substituting for \(F(r) \) and \(u(r) \) in (2.55)

\[
\{f_c\} = [\mathbf{B}_d]^T \{q_d\}
\]

(2.58)

(2.59)

where

\[
\{g\}^T = [g_2 \, g_3 \, g_4 \, g_5]
\]

(2.60)
When linear thickness variation within the element is assumed, then
\[h(r) = a + \beta r \]
(2.62)
and
\[a = \frac{h_2 r_2 - h_1 r_1}{r_2 - r_1} \quad \text{and} \quad \beta = \frac{h_2 - h_1}{r_2 - r_1} \]
(2.63)
then
\[g_1 = 2\pi\rho \Omega^2 \frac{r_2^2}{r_1} (a + \beta r) r \frac{dr}{r} \]
(2.64)

When the disc is subjected to axisymmetrical radial temperature gradient the thermal loading is replaced by the consistent vector given below. For the annular element,
\[
\begin{bmatrix}
\sigma_r \\
\sigma_\theta \\
\end{bmatrix}
= \frac{E}{1 - \nu^2}
\begin{bmatrix}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1}{1 - \nu} \\
\end{bmatrix}
\begin{bmatrix}
\varepsilon_r \\
\varepsilon_\theta \\
\end{bmatrix}
- \frac{E\alpha}{1 - \nu} T(r)
\begin{bmatrix}
1 \\
1 \\
1 \\
\end{bmatrix}
\]
(2.65)
where

\(\alpha^* \) = coefficient of thermal expansion of the material of the disc.

\(T(r) \) = temperature at any radius \(r \).

Equating the work done by the temperature gradient to that by the consistent load vector \(\{ f_t \} \)

\[
\int_0^r \int_0^1 \frac{E}{1 - \nu^2} \left\{ q_d \right\}^T \left[B_d \right]^T \left[E \right]^T \left[\frac{1}{1} \right] \left[\frac{1}{1} \right] \left[E \right] \left[B_d \right] \left\{ q_d \right\} \, \frac{r^2}{\ln(1 - \nu)} \, dr \, d\xi
\]

\[\quad - \frac{E}{1 - \nu} \alpha^* T(r) \left[B_d \right]^T \left[E \right]^T \left[\frac{1}{1} \right] \left[E \right] \left[B_d \right] \, h(r) \, r \, dr \, d\xi\]

\[= \left\{ q_d \right\}^T \left[K_d^p \right] \left\{ q_d \right\} - \left\{ q_d \right\}^T \left\{ f_t \right\} \quad (2.67)\]

Now,

\[\left[K_d^p \right] = \frac{E}{1 - \nu^2} \int_0^r \int_0^1 \frac{r^2}{\ln(1 - \nu)} \left[B_d \right]^T \left[E \right]^T \left[\frac{1}{1} \right] \left[\frac{1}{1} \right] \left[E \right] \left[B_d \right] \, h(r) \, r \, dr \, d\xi \]

Therefore

\[\left\{ f_t \right\} = \frac{2\pi \alpha^*}{1 - \nu} \left[B_d \right]^T \int_0^1 \frac{h(r)}{r} \, T(r) \left[E \right]^T \left[\frac{1}{1} \right] \, r \, dr \, d\xi \]

\[= \left[B_d \right]^T \{ g \} \quad (2.69)\]

where

\[\{ g \} = \left[\varepsilon_0 \, \varepsilon_1 \, \varepsilon_2 \, \varepsilon_3 \right] \quad (2.70)\]

and

\[\varepsilon_1 = \frac{2\pi \alpha^*}{1 - \nu} \int h(r) \, T(r) \, r^2 \, dr \quad (2.71)\]

**Note that \(T(r) \) is the change in temperature from a stress free temperature state.
When linear thickness and temperature variations within the element are assumed, then

\[h(r) = a + \beta r \] \hspace{1cm} (2.72)

where

\[\alpha = \frac{h_2 r_2 - h_1 r_1}{r_2 - r_1} \quad \text{and} \quad \beta = \frac{h_2 - h_1}{r_2 - r_1} \] \hspace{1cm} (2.73)

and

\[T(r) = c + d r \] \hspace{1cm} (2.74)

where

\[c = \frac{T_2 r_2 - T_1 r_1}{r_2 - r_1} \quad \text{and} \quad d = \frac{T_2 - T_1}{r_2 - r_1} \] \hspace{1cm} (2.75)

and therefore,

\[g_i = \frac{2\pi a}{1 - \nu} \int_{r_1}^{r_2} (\alpha + \beta r)(c + d r) r^i \, dr \] \hspace{1cm} (2.76)

As already mentioned the load vector \(\{Q_d\} \) comprises of the above individual contributions where applicable. Now Equation 2.54 can be solved to obtain the system displacement vector. The stresses are then calculated as follows. In the case of axisymmetric stretching of the disc the shearing stress \(\tau_{r \xi} \) is zero and hence the stress strain relationship becomes,

\[
\begin{bmatrix}
\sigma_r \\
\sigma_\xi \\
\sigma_\theta
\end{bmatrix} = \frac{E}{1 - \nu^2} \begin{bmatrix}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\varepsilon_r \\
\varepsilon_\xi \\
\varepsilon_\theta
\end{bmatrix} - \frac{E a \alpha T(r)}{1 - \nu} \begin{bmatrix}
1 \\
\nu \\
0
\end{bmatrix} \] \hspace{1cm} (2.77)

The last term on the right hand side of the above equation
vanishes if there is no temperature gradient. Now the strain vector can be expressed in terms of the assumed deflection function; which in effect gives a relationship between strain and the nodal displacements.

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_z
\end{bmatrix} = \begin{bmatrix}
du \\
\frac{du}{dr}
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 2r & 3r^2 \\
\frac{1}{r} & 1 & r & r^2
\end{bmatrix} \begin{bmatrix}
[B_d] \\
\{q_d\}
\end{bmatrix}
\]

The above relationship together with Equation 2.77 can be used to get the stresses \(\sigma_r \) and \(\sigma_\xi \) at any radius \(r \). In such a situation \(\{q_d\} \) is the deflection vector of the element inside which the point in question lies.

Generally we are interested in the stresses at the nodal points of the model only, and the following procedure should be followed. Consider an element between nodes \(i \) and \(i+1 \).

The deflection vector of this element is

\[
\{q_d\}^T = \begin{bmatrix}
u_i & \theta_i & u_{i+1} & \theta_{i+1}
\end{bmatrix}
\]

This vector is obtained from the system deflection vector \(\{q_d\} \).

Now, making use of the relationships (2.77) and (2.78), we get

\[
\begin{bmatrix}
\sigma_{ri} \\
\sigma_{\xi i} \\
\sigma_{ri+1} \\
\sigma_{\xi i+1}
\end{bmatrix} = \frac{E}{1-\nu^2} \begin{bmatrix}
1 & \nu & 0 & 0 \\
\nu & 1 & 0 & 0 \\
0 & 0 & 1 & \nu \\
0 & 0 & \nu & 1
\end{bmatrix} \begin{bmatrix}
0 & 1 & 2r_i & 3r^2_i \\
\frac{1}{r_i} & 1 & r_i & r^2_i \\
0 & 1 & 2r_{i+1} & 3r^2_{i+1} \\
\frac{1}{r_{i+1}} & 1 & r_{i+1} & r^2_{i+1}
\end{bmatrix} \begin{bmatrix}
[B_d] \\
\{q_d\} - \begin{bmatrix}
\varepsilon_x \\
\varepsilon_z
\end{bmatrix} \\
\{T_i\}
\end{bmatrix}
\]

\[(2.80)\]
When there is no temperature gradient in the disc the last term in the above equation vanishes. These same stresses can be found using the deflection vectors of the adjacent elements also. Note that in this case the stresses at a node are uniquely defined since both u and du/dr happen to be degrees of freedom chosen; thus there will not be any difference in the values calculated using adjacent elements.

2.3.3 Numerical Applications

The convergence properties and accuracy of the plane stress annular element developed are first examined by comparing with exact solutions the values of stresses calculated using these elements. Both centrifugal and thermal loading are considered. The accuracy of the use of the additional stiffness coefficients derived for the vibration of rotating discs is then assessed by comparing frequency values calculated with these coefficients and the thin plate annular elements, with exact and experimental values.

First uniform annular discs with the extreme value of $a/b = 0.001$ and the more typical value 0.2, rotating with uniform angular velocity Ω were considered. Radial stress coefficients $p = (a_{r}/\rho \Omega^{2}b^{2}) \times 10^{4}$ and tangential stress coefficients $q = (a_{\zeta}/\rho \Omega^{2}b^{2}) \times 10^{4}$ were calculated for these discs with the plane
stress annular elements, and these are given in Tables 2.25 to 2.28 along with exact solutions. From these results it is seen that when a/b is very small, 0.001, the finite element results are in error at the inner boundary and are unacceptable. However, at points away from the inner boundary, agreement between finite element and exact solutions is good. For such cases it is necessary to use many elements, e.g., 8 or 16 elements, in Tables 2.25 and 2.26, and to disregard the stress value obtained at the inner boundary. When the value of a/b is increased to 0.2, the finite element results at the inner boundary also become very much closer to the exact values, Tables 2.27 and 2.28. In both cases convergence is rapid and results with engineering accuracy are obtained with four to eight elements. In Figure 2.7, the stress coefficients p 'and q calculated, for a disc with $a/b = 0.2$, using plane stress annular elements are compared with exact solutions graphically.

For a second example, an annular disc with $a/b = 0.2$ and hyperbolic radial thickness variation (17), $h(r) = h(b)/r^4$, when $i = 1$, rotating with uniform angular velocity Ω was considered. The stress coefficients p and q obtained with plane stress annular elements with linear thickness variation are given in Tables 2.29 and 2.30 along with exact solutions. Agreement between finite element and exact solutions is good and convergence is rapid with increasing number of elements.
Next, temperature stresses in two uniform annular discs with \(a/b = 0.001\) and 0.2 were considered. The discs were subjected to radially varying temperature gradient, \(T(r) = T(b) \frac{r}{b}\). Radial stress coefficients \(p = \left(\sigma_r / E * T(b)\right) \times 10^6\) and tangential stress coefficients \(q = \left(\sigma_\theta / E \alpha * T(b)\right) \times 10^4\), calculated with the plane stress annular elements, are given in Tables 2.31 to 2.34, along with exact solutions. Remarks made under (A) above, regarding accuracy and convergence of results, hold for these cases also.

The stresses obtained using plane stress elements are now used as initial in-plane stresses in the vibration analysis of rotating discs. Ignoring bending stiffness of the disc and considering only the stiffness due to the initial stresses, frequency coefficients \(\lambda = \left(\frac{\omega_1}{\Omega}\right)^2\) of the membrane disc, where \(\omega_1\) is the natural frequency of the membrane disc and \(\Omega\), the speed of rotation, were calculated. The values of \(\lambda\) obtained, for a centrally clamped disc, are given in Table 2.35 along with the exact values given by Lamb and Southwell (47). These values were also calculated taking exact stress values at nodal points and are given in Table 2.36. A value of \(a/b = 0.001\) was assumed to facilitate modelling the disc with annular elements only. In both cases linear variations of the stresses within the element were assumed. In either case the membrane frequencies are calculated within 3% or better using only four elements.
Finally, the variation of the natural frequencies with speed of rotation of a thin annular disc with \(a/b = 0.5 \), \(b = 8.0 \, \text{in.} \) and \(h = 0.04 \, \text{in.} \) was studied. Both the disc bending stiffness and the additional stiffness resulting from centrifugal stresses were considered together. Natural frequencies \(\omega_{mn} \) of this disc rotating at 0, 1000, ..., 4000 rpm, calculated using eight thin plate bending and plane stress annular elements are given in Table 2.37. Convergence of results with increasing number of elements, for 3000 rpm, are shown in Table 2.38. The relationship between the natural frequencies \(\omega_{mn} \) of a rotating disc and the harmonic excitation frequency \(\zeta \) is given by (73)

\[
\zeta = \omega_{mn} \pm m \Omega
\]

(2.81)

where \(m \) is the number of nodal diameters and \(\Omega \) is the speed of rotation of the disc. Mote and Nieh (73) have measured experimentally values of \(\zeta \) for this disc. In Figure 2.8 values of \(\zeta \) obtained from finite element results have been plotted against rpm, for the first mode of diametral nodes 0 to 5. The calculated frequencies lie very close to the experimental points showing excellent agreement between these results.

2.4 THE EFFECT OF TRANSVERSE SHEAR AND ROTARY INERTIA ON THE VIBRATION OF MODERATELY THICK DISCS

Computed frequencies using thin plate theory are always found to be higher than the experimentally measured ones when thick
discs and the higher modes of relatively thin discs are considered. An improved plate theory, which considers transverse shear and rotary inertia, would result in satisfactory analysis when the discs are moderately thick. The effect of transverse shear is to produce additional rotation and deflection; and that of rotary inertia is to increase the inertia. Thus both these effects serve to decrease the computed frequencies.

A coefficient κ^2, known as shear coefficient, is introduced to take into account the shear stress distribution across the depth of the plate. Mindlin (62) has used a value $\kappa^2 = \pi^2/12$, which is close to the normally used value of $5/6$ for rectangular section Timoshenko beam. When moderately thick uniform circular and annular plates are considered the frequency determinants derived by Callahan (66) and Bakshi and Callahan (67) can be used; however, as mentioned previously, there is no simple exact solution for thick discs of varying thickness.

In this section, a finite element approach is described which can readily be used in the analysis of discs with radial thickness variation. Two new finite elements, both of annular geometry and having radial thickness taper, are developed. These elements require additional degrees of freedom to take into account transverse shear effects. The efficiency of these elements is examined by comparing calculated frequency values with experimental values published by other investigators. For uniform discs,
the exact values are computed using Mindlin's theory for comparison with finite element results. These exact values use the method of Bakshi and Callahan (67). Since their paper contains many typographical errors the frequency determinant resulting for a free annular plate is given along with a brief summary of Mindlin's equations in Appendix B.

In the finite element analysis of moderately thick turbine discs, additional strain energy due to transverse shear and additional kinetic energy due to rotary inertia must be taken into account in obtaining the element matrices. For an annular element, the complete strain energy and kinetic energy expressions are given below when these additional energies are included (62).

\[
U = \frac{1}{2} \int_0^{2\pi} \int_{r_1}^{r_2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \{x_b \} \begin{bmatrix} \frac{1}{\rho} & 0 \\ 0 & \frac{1}{\rho} \end{bmatrix} \{x_b \} r \, dr \, \text{d} \xi
\]

\[
+ \frac{1}{2} \int_0^{2\pi} \int_{r_1}^{r_2} k^2 G h(r) \{x_a \}^T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \{x_a \} r \, dr \, \text{d} \xi
\]

where

\[
\begin{bmatrix} \gamma_r \\ \{x_r \} \\ \gamma_\xi \\ \{x_\xi \} \end{bmatrix} = \begin{bmatrix} \gamma_r \\ \gamma_\xi \end{bmatrix}
\]
and

\[
\{ \chi_b \} = \begin{bmatrix}
\frac{\partial \psi_r}{\partial r} \\
\frac{\psi_r}{r} + \frac{1}{r} \frac{\partial \psi_\xi}{\partial \xi} \\
\frac{1}{r} \frac{\partial \psi_r}{\partial \xi} - \frac{\psi_\xi}{r} + \frac{\partial \psi_\xi}{\partial r}
\end{bmatrix}
\] (2.84)

and

\[
T = \frac{1}{2} \int_0^{r_2} \int_0^{r_1} \rho h(r) \left(\frac{\partial \omega}{\partial t} \right)^2 r \, dr \, d\xi
\]

\[
+ \frac{1}{2} \int_0^{r_2} \int_0^{r_1} \rho h^2(r) \left(\frac{\partial \psi_r}{\partial \xi} \right)^2 + \left(\frac{\partial \psi_\xi}{\partial \xi} \right)^2 \, J \, r \, dr \, d\xi
\] (2.85)

where

\[
\psi_r = - \frac{\partial \omega}{\partial r} + Y_r \quad ; \quad \psi_\xi = - \frac{1}{r} \frac{\partial \omega}{\partial \xi} + Y_\xi
\] (2.86)

and, \(Y_r \) and \(Y_\xi \) are the additional radial and circumferential rotations resulting from transverse shear.

2.4.1 Annular Plate Bending Finite Elements Including Transverse Shear And Rotary Inertia.

(A) Thick Disc Element-1

In this case, in addition to the total deflections \(\bar{\psi} \) and radial rotations \(\bar{\psi}_r \) along an antinode at either boundary of
the annular element, the radial and tangential shear rotations \(\bar{\gamma}_r \) and \(\bar{\gamma}_\xi \) are taken as additional degrees of freedom. Figure 2.9 shows this element with two nodal diameters and the degrees of freedom considered, hence, the deflection vector, which has eight degrees of freedom, is

\[
\{q_d\}^T = [\bar{w}_1 \quad \bar{\psi}_r1 \quad \bar{\gamma}_r1 \quad \bar{\gamma}_\xi1 \quad \bar{w}_2 \quad \bar{\psi}_r2 \quad \bar{\gamma}_r2 \quad \bar{\gamma}_\xi2]
\] \((2.87) \)

This formulation of the element configuration follows closely that of Pryor et al. (125), who recently examined the static loading solutions for thick plates using rectangular finite elements. Now, assuming the deflection functions

\[
\begin{align*}
\psi(r,\zeta) &= (a_1 + a_2 r + a_3 r^2 + a_4 r^3) \cos m\zeta \\
\bar{\gamma}_r(r,\zeta) &= (a_5 + a_6 r) \cos m\zeta \\
\bar{\gamma}_\xi(r,\zeta) &= (a_7 + a_8 r) \sin m\zeta
\end{align*}
\] \((2.88) \)

and substituting these into the energy equations, Equations 2.82 and 2.85, we obtain the stiffness and inertia matrices of the element as

\[
[k_d^t] = [B_d^t]^T [k_d^t] [B_d^t]
\]

and

\[
[m_d^t] = [B_d^t]^T [m_d^t] [B_d^t]
\] \((2.89) \)
where

$$[b^t_d]^{-1} =
\begin{bmatrix}
1 & r_1 & r_1^p & r_1^3 \\
0 & -1 & -2r_1 & -3r_1^2 \\
0 & 0 & 0 & 1 \\
0 & -1 & -2r_2 & -3r_2^2 \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

and

$$[k_d^t] =
\begin{bmatrix}
[k_d] & [k_d^1] \\
[k_d^1]^T & [k_d^2]
\end{bmatrix}
$$

(2.91)

The matrix $[k_d]$ is the same matrix of the thin plate bending annular element developed in section 2.2.2 and is given in Table 2.2. The matrices $[k_d^1]$ and $[k_d^2]$ are given in Table 2.39, where

$$P_1 = C \pi \frac{E}{12(1-\nu^2)} \int_{r_1}^{r_2} h^3(r) r^4 dr; \quad Q_1 = C \pi Gk^2 \int_{r_1}^{r_2} h(r) r^4 dr
$$

(2.92)

$$I_{m_d^t} =
\begin{bmatrix}
[I_{m_d}] & [0] \\
[0] & [0]
\end{bmatrix}
+ I_{m_d^1}
$$

(2.93)
where
\[
[b_d^t]^{-1} = \begin{bmatrix}
1 & r_1 & r_1^2 & r_1^3 & 0 & 0 & 0 & 0 \\
0 & -1 & -2r_1 & -3r_1^2 & 1 & r_1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & r_1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & r_1 & 0 \\
1 & r_2 & r_2^2 & r_2^3 & 0 & 0 & 0 & 0 \\
0 & -1 & -2r_2 & -3r_2^2 & 1 & r_2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & r_2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & r_2 & 0
\end{bmatrix}
\]
(2.90)

and

\[
[k_d^t] = \begin{bmatrix}
[k_d] & [k_d^1] \\
[k_d^1]^T & [k_d^2]
\end{bmatrix}
\]
(2.91)

The matrix \([k_d]\) is the same matrix of the thin plate bending
annular element developed in section 2.2.2 and is given in Table 2.2.
The matrices \([k_d^1]\) and \([k_d^2]\) are given in Table 2.39, where

\[
p_1 = C\pi \frac{E}{12(1-v^2)} \int \frac{r_2}{r_1} h^3(r) r^4 dr; \quad Q_1 = C\pi G\xi^2 \int \frac{r_2}{r_1} h(r) r^4 dr
\]
(2.92)

\[
[m_d^t] = \begin{bmatrix}
[m_d] & [0] \\
[0] & [0]
\end{bmatrix} + [m_d^1]
\]
(2.93)
where \([n_d] \) is the same matrix of the thin plate bending annular element, developed in section 2.2.2, and is given in Table 2.3. The matrix \([n_d] \) is given in Table 2.40, where

\[
P_1 = C \omega \frac{r_2}{12} \int \frac{h^3(r)}{r_1} dr
\]

(2.94)

Linear thickness variation can be assumed within the element in evaluating the integrals, Equations 2.92 and 2.94.

When this element is used the following boundary conditions should be satisfied.

- Simply supported boundary \(\bar{w} = 0 \)
- Clamped boundary \(\bar{w} = 0; \bar{\psi}_r = 0 \)
- Free boundary \(\bar{\gamma}_r = 0 \)

(B) Thick Disc Element-2

An alternative method of considering the effects of transverse shear and rotary inertia is to treat separately the deformations due to bending and transverse shear. The efficiency of this approach was first examined in the static bending analysis of thick rectangular plates and this work is described with some detail in Appendix C. It is demonstrated that this approach has considerable advantages for static problems (126). Below, this method of analysis is applied to the vibration
analysis of moderately thick circular plates. An annular plate bending element with eight degrees of freedom is developed. In this element, in addition to the deflections and rotations due to bending, those due to transverse shear are taken to be the additional degrees of freedom.

In the formulation of this finite element, the contributions of bending and transverse shear are separated, thus

\[w = w^b + w^s \] \hspace{1cm} (2.95)

and further it is assumed that the rotations \(\psi_r \) and \(\psi_\xi \) are due to bending alone.

\[\psi_r = -\frac{\partial w^b}{\partial r} \quad \text{and} \quad \psi_\xi = -\frac{1}{r} \frac{\partial w^b}{\partial \xi} \] \hspace{1cm} (2.96)

Then the rotations \(\gamma_r \) and \(\gamma_\xi \) are due to shear deformation alone.

\[\gamma_r = -\frac{\partial w^s}{\partial r} \quad \text{and} \quad \gamma_\xi = -\frac{1}{r} \frac{\partial w^s}{\partial \xi} \] \hspace{1cm} (2.97)

Taking these shear deflections and rotations in addition to those due to bending as degrees of freedom, the deflection vector of the element is

\[
\begin{bmatrix}
\{q_d^b\} \\
\{q_d^s\}
\end{bmatrix}
\] \hspace{1cm} (2.98)
where
\[
\begin{bmatrix}
\begin{array}{c}
\ddot{q}^b_d \\
\ddot{q}^s_d
\end{array}
\end{bmatrix} =
\begin{bmatrix}
\ddot{w}^b_r \\
\ddot{w}^s_r \\
\ddot{\psi}^b_r \\
\ddot{\psi}^s_r
\end{bmatrix}
\]
and
\[
\begin{bmatrix}
\begin{array}{c}
\ddot{q}^s_d \\
\ddot{q}^b_d
\end{array}
\end{bmatrix} =
\begin{bmatrix}
\ddot{w}^s_r \\
\ddot{w}^b_r \\
\ddot{\psi}^s_r \\
\ddot{\psi}^b_r
\end{bmatrix}
\]

Figure 2.10 shows this element with two nodal diameters and the degrees of freedom. Assuming the deflection functions,
\[
\begin{align*}
w^b(r, \xi) &= (a_1 + a_2 r + a_3 r^2 + a_4 r^3) \cos m\xi \\
w^s(r, \xi) &= (a_5 \frac{f a r - 1 - a r^2}{b} + a_6 r^3) \cos m\xi
\end{align*}
\]
and substituting in the energy expressions, Equations 2.82 and 2.85, we obtain the stiffness and inertia matrices.
\[
\begin{align*}
[k^t_d] &= [s^t_d]^T [k^t_d] [s^t_d] \\
[m^t_d] &= [s^t_d]^T [m^t_d] [k^t_d]
\end{align*}
\]
where
\[
[s^t_d] =
\begin{bmatrix}
[B^s_d] & [0] \\
[0] & [B^b_d]
\end{bmatrix}
\]
and
\[
[k^t_d] =
\begin{bmatrix}
[k^s_d] & [0] \\
[0] & [k^b_d]
\end{bmatrix}
\]
where the matrices $[B_d]$ and $[k_d]$ are the same as those of the annular thin plate bending element, developed in section 2.2.2, and are given in Tables 2.1 and 2.2. The matrix $[k^s_d]$ is given in Table 2.4.1, where

$$Q_d = C_\pi \int_{r_1}^{r_2} h(r) r^2 \, dr$$

(2.103)

and

$$[m^s_d] = \begin{bmatrix} [m_d] & [m_d] \\ [m_d] & [m_d] \end{bmatrix} + \begin{bmatrix} [m^r_d] & [0] \\ [0] & [0] \end{bmatrix}$$

(2.104)

where the matrix $[m_d]$ is the same as that of the thin plate bending annular element, developed in section 2.2.2, and is given in Table 2.3. The matrix $[m^r_d]$ is given in Table 2.4.2, where

$$P_1 = C_\pi \int_{r_1}^{r_2} \frac{b^3}{12} h(r) r^4 \, dr$$

(2.105)

When this element is used the following boundary conditions should be satisfied.

- Simply supported boundary
 $$\bar{w} = 0; \quad \bar{\omega} = 0$$

- Clamped boundary
 $$\bar{w} = 0; \quad \bar{\psi} = 0; \quad \bar{\psi'} = 0$$

- Free boundary
 $$\bar{Y}_r = 0$$
2.4.2 Numerical Applications

The efficiency and convergence properties of these two thick disc elements are now examined by comparing frequency values computed using these elements with experimental data, for both uniform and nonuniform discs. In the case of uniform discs, the exact values are also calculated using Mindlin's theory for comparison.

(A) The first example is a small circular disc 75 mm in diameter and 5 mm thick, for which some of the experimental frequencies are given by Onoe and Yano (68). A small hole is assumed at the centre of the disc with \(a/b = 0.001\). Frequencies calculated using both thick disc elements are given in Tables 2.43 and 2.44, along with exact and experimental values. Modes of vibration with \(m = 0\) to 3 are considered. Comparison of results in Tables 2.43 and 2.44 shows little difference between results of Element-1 and Element-2; and both results compare well with exact and experimental data. The disc was completely free and therefore free body modes exist for \(m = 0\) and 1. In these cases convergence is from below, at least for the first mode. In all the other cases—convergence is from above, as would be expected, and is rapid.

(B) A number of fairly thick discs and rings were chosen as the second example. The dimensions of these discs and rings
are given in Tables 2.45 and 2.46 along with the first frequency
\((m=2, n=0)\) values calculated using these thick disc elements.
Experimental results are given by Peterson (71) for all these cases. Comparision of results in Tables 2.45 and 2.46 shows
that when complete discs are considered both the elements
perform well and calculated and experimental results are close.
But in the case of rings Element-1 gives good results whereas
there is a large difference between calculated and experimental
values with Element-2. Practically there is no convergence with
this element. Such poor performance of Element-2 may be due to
the difficulty in imposing correct boundary conditions when this
element is used,

(C) As the third example two rings with different thick
nesses were chosen. Experimental results for these rings for
\(m = 2\) and \(n = 0\) are given by Rao(127); and are originally due to
Peterson (71). Only Element-1 is used in this case and the
calculated frequencies are given in Table 2.47 along with exact
and experimental results. The dimensions of these rings are
also given in Table 2.47. Agreement between the calculated and
experimental results is good.

(D) Discs with stepped section and fillets were examined
next. Three such discs were considered. Except the web thickness
other dimensions are the same, Figure 2.11. Only one frequency
$(m=2, \ n=0)$ in each case was calculated and are given in Table 2.48 along with experimental values. Agreement between calculated and experimental values is good. These discs were modelled with five elements as shown in Figure 2.11.

The final example chosen is a practical turbine disc. The dimensions, material constants and experimentally measured frequencies for this disc were provided by Dr. E. K. Armstrong of Rolls-Royce (1971) Ltd. The profile of this disc is given in Figure 2.12, and the thickness at various radial distances are given in Table 2.49. This disc was modelled with 4, 6 and 8 elements using Element-1, and the mass of castellations present at the end of the disc was lumped at the outer boundary. Finite element results are given along with experimental frequencies in Table 2.50. Frequencies calculated using 8 thin plate elements also are given for comparison. Values calculated with thick disc elements are in much closer agreement with the experimental results. It is also perhaps worth noting that the error between calculated frequencies, with 8 elements, and experimental values is consistently 6% to 8% high; this suggests the possibility that the nominal modulus of elasticity used may be in error.
CHAPTER 3

VIBRATION ANALYSIS OF AXIAL FLOW TURBINE BLADES

3.1 INTRODUCTION

Since the purpose of this investigation has more emphasis on the coupling effect between the disc and the array of blades in a bladed disc, a refined analysis of the blade is not attempted here. Much work has been published on this area, as was noted in the literature survey in chapter 1, and several methods of analysis of blade alone case are available. Such methods consider the blade with its aerofoil section and most of the other complicating factors such as camber, pretwist, longitudinal taper, root flexibility etc.

In this investigation the blade is idealized to behave as a beam having arbitrary variations in section properties and pretwist along its span. It is assumed that the centroidal and flexural axes coincide, ie the shear centre coincides with the centroid and there is no coupling between bending and torsion within the blade.

In section 3.2 an idealization of a blade segment using available beam finite elements is outlined. The effect of
and the presence of other stresses in the blade modifies substantially the natural frequencies of the blade. Therefore, in section 3.3, additional stiffness coefficients resulting from these effects are derived to be included in the bending and torsional stiffness matrices of the element chosen. In section 3.4 a new beam bending finite element with six degrees of freedom is developed; where transverse shear and rotary inertia effects are taken into account. Finally in section 3.5, the method of analysis of pretwisted blades is described.

Numerical results showing the effects of rotation, transverse shear and rotary inertia and pretwist are given along with other available solutions.

3.2 MODELLING OF BLADE SEGMENTS USING AVAILABLE BEAM FINITE ELEMENTS

Figure 3.1 shows a nonuniform blade element with the coordinate system chosen. Oz is the engine axis and Oy and Ox are the tangential and radial directions respectively. The minor principal axis Oz* of the blade cross-section is inclined at an angle θ to the engine axis Oz. When this blade element is considered to behave according to Euler-Bernoulli beam theory, well known beam finite elements described by several authors (78,79) can be used. In such cases, the element has four degrees of freedom in each principal direction in bending and two in
torsion. These are, as shown in Figure 3.1, $\psi_1^*, \psi_2^*, \psi_3^*$ and ψ_2^* in bending along the minor principal direction, $\psi_1^*, \psi_2^*, \psi_3^*$ and θ_2^* in bending along the major principal direction and θ_1^* and ϕ_2^* in torsion. Since there is no coupling between bending in the principal directions and between bending and torsion, the element matrices are not coupled. Therefore corresponding to the displacement vector,

$$\{q^*_b\}^T = [\psi_1^* \psi_2^* \psi_2^* \psi_1^* \psi_2^* \psi_2^* \theta_1^* \phi_1^* \phi_2^*]$$

the element stiffness and inertia matrices are given by

$$[K^*_b] = \begin{bmatrix} [K^*_b^V] & [0] & [0] \\ [0] & [K^*_b^W] & [0] \\ [0] & [0] & [K^*_b^T] \end{bmatrix}$$

(3.2)

$$[M^*_b] = \begin{bmatrix} [M^*_b^V] & [0] & [0] \\ [0] & [M^*_b^W] & [0] \\ [0] & [0] & [M^*_b^T] \end{bmatrix}$$

(3.3)

where ψ^* and θ^* are defined as

$$\psi^* = -\frac{\partial \kappa^*}{\partial x} \quad \text{and} \quad \theta^* = -\frac{\partial \omega^*}{\partial x}$$

(3.3)

$[K^*_b^V]$ and $[M^*_b^W]$ are the bending stiffness and inertia matrices along the minor principal direction, $[K^*_b^V]$ and $[M^*_b^W]$ are the
bending stiffness and inertia matrices along the major principal direction and \([K^t_b]\) and \([M^t_b]\) are the torsional stiffness and inertia matrices. Matrices \([K^v_b]\) and \([M^v_b]\) are identical and can be defined by the matrix \([K^c_b]\) in which appropriate values of moment of inertia corresponding to the required direction should be used. Matrices \([M^v_b]\) and \([M^v_b]\) are the same when rotary inertia is ignored and can be defined by the matrix \([M^c_b]\).

In Tables 3.1 and 3.2 matrices \([K^c_b]\), \([M^c_b]\), \([K^t_b]\) and \([M^t_b]\) are given for a beam element when linear variations of the moment of inertia \(I\), the area of cross-section \(A\), the torsional stiffness \(K_g\), and the polar moment of inertia \(J\) are assumed.

3.3 EFFECT OF ROTATION

The additional terms arising in the energy expression of a blade element rotating with angular velocity \(\Omega\) are given by (90)

\[
U = \frac{1}{2} \int_{x_1}^{x_2} \sigma_x \left(\frac{\partial \psi}{\partial x} \right)^2 + \left(\frac{\partial \psi}{\partial x} \right)^2 \, dx - \frac{1}{2} \rho \Omega^2 \int_{x_1}^{x_2} (\psi')^2 \, dx
+ \frac{1}{2} \int_{x_1}^{x_2} J \left(\frac{\partial \psi}{\partial x} \right)^2 \, dx - \frac{\rho \Omega^2}{2} \int_{x_1}^{x_2} (I_{max} - I_{min}) (\phi')^2 \cos 2\theta \, dx
\]

(3.4)

where \(\sigma_x\) is the stress along the length of the blade resulting
from rotation. It should be noted that since \(Oz \) is the engine axis and \(Oy \) the tangential direction, the deflections \(w \) and \(v \) are perpendicular and parallel to the plane of rotation. Assuming the deflection functions,

\[
v(x) = a_1 + a_2x + a_3x^2 + a_4x^3
\]

\[
w(x) = a_5 + a_6x + a_7x^2 + a_8x^3
\]

\[
\phi(x) = a_9 + a_{10}x
\] \hspace{1cm} (3.5)

which are used to derive the basic beam matrices given in Tables 3.1 and 3.2, and substituting in the above strain energy equation we arrive at the additional stiffness matrix corresponding to the deflection vector

\[
\{q_b\}^T = [v_1 \psi_1 w_1 \theta_1 \phi_1 v_2 \psi_2 w_2 \theta_2 \phi_2] \hspace{1cm} (3.6)
\]

as

\[
{[k_b^a]} = {[k_b^a]}^T [k_b^a] [k_b^a]
\] \hspace{1cm} (3.7)
where

\[
[a_b^a]^{-1} = \begin{bmatrix}
1 & x_1 & x_1^2 & x_1^3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & -2x_1 & -3x & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & x_1 & x_1^2 & x_1^3 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -2x_1 & -3x & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & x_1 \\
1 & x_2 & x_2^2 & x_2^3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & -2x_2 & -3x & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & x_2 & x_2^2 & x_2^3 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -2x_2 & -3x & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & x_2
\end{bmatrix}
\tag{3.8}
\]

and

\[
[k_b^a] = \begin{bmatrix}
[k_v^a] & [0] & [0] \\
[0] & [k_w^a] & [0] \\
[0] & [0] & [k_l^a]
\end{bmatrix}
\tag{3.9}
\]

where the matrices $[k_v^a]$, $[k_w^a]$ and $[k_l^a]$ are given below.

\[
[k_v^a] = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 2R_1 & 3R_2 \\
0 & 2R_1 & 4R_2 & 6R_3 \\
0 & 3R_2 & 6R_3 & 9R_4
\end{bmatrix}
\tag{3.10}
\]
In the above matrices

\[
[k_w^s] = \begin{bmatrix}
S_0 & S_1 & S_2 & S_3 \\
S_1 & R_0 + S_2 & 2R_1 + S_3 & 3R_2 + S_4 \\
S_2 & 2R_1 + S_3 & 4R_2 + S_4 & 6R_3 + S_5 \\
S_3 & 3R_2 + S_4 & 6R_3 + S_5 & 9R_4 + S_6
\end{bmatrix}
\] \tag{3.11}

\[
[k_L^s] = \begin{bmatrix}
S_0 & S_1 \\
S_1 & R_0 + S_2
\end{bmatrix}
\] \tag{3.13}

where

\[
R_i = \int \sigma \, A \, x \, dx \\
S_i = -\rho \, \Omega^2 \int \, x \, dx
\] \tag{3.12}

\[
[J] = \begin{bmatrix}
J_1 \\
R_1 \\
S_1
\end{bmatrix}
\]

It is perhaps worth noting that the deflection vector \{q_b\} given by Equation 3.6 is different from \{q^*_b\} given by Equation 3.1. The bending displacements and rotations in vector \{q_b\} are measured along the engine axis Oz and tangential direction Oy, whereas those in vector \{q^*_b\} are measured along the
principal directions Oz^* and Oy^*. The torsional displacements in both cases are the same and are along the Ox axis. Since the angle δ between these two sets of coordinates vary along the length of the blade the individual element matrices given by Equation 3.2 should be transformed to the Oz-Oy coordinates before adding the additional stiffness coefficients derived in this section. This transformation is discussed in some detail in section 3.5.

In evaluating the integrals given by Equations 3.12 and 3.14 linear variations in I, A, σ_X and J can be assumed within the element. For a uniform beam element the additional stiffness matrices for bending parallel and perpendicular to the plane of rotation and for torsion are given in Tables 3.3 to 3.5, in closed form.

3.4 EFFECT OF TRANSVERSE SHEAR AND ROTARY INERTIA

In this section a new beam bending finite element which is compatible with the Thick Disc Element-1, developed in chapter 2, section 2.4.1, is developed. In the development of this element transverse shear and rotary inertia are included, and in addition to the transverse deflection and rotation the additional rotation due to transverse shear is also taken as a degree of freedom in each node. Thus the element has six degrees of freedom.
Although two other Timoshenko beam finite element models developed by Archer (77) and Kapur (128) are available, these are not compatible with the annular Thick Disc Element-1 and thus these are not used here. It turns out, in fact, that the beam element derived hereunder is a marginal improvement in terms of convergence over those of Archer and Kapur.

Figure 3.2 shows a nonuniform blade element with the coordinate system chosen. Here again the minor principal axis Oz* is inclined to the engine axis Oz at angle θ. The degrees of freedom of the element along the principal directions are shown in Figure 3.2. The rotations ψ^* and ψ^* in this case are defined as

$$\psi^* = -\frac{3\psi^*}{2} + \psi^*$$ and $$\theta^* = -\frac{3\theta^*}{2} + \psi^*$$

(3.15)

where ψ^* and ψ^* are the additional rotations due to transverse shear corresponding to the minor and major principal directions.

Since, in our case, there is no coupling between bending in the two principal directions, the bending stiffness matrices $[K^b_v]$ and $[K^b_b]$ and the inertia matrices $[M^b_v]$ and $[M^b_b]$ are similar to each other except that in each case corresponding values of section properties are used. Hence the stiffness and mass matrices for the minor principal direction
only are derived here.

The strain energy and the kinetic energy in an element of the blade, shown in Figure 3.2, for the \(I_{\text{min}} \) direction, when transverse shear and rotary inertia are also considered, are

\[
\begin{align*}
\psi &= \frac{1}{2} \int_{x_1}^{x_2} \frac{1}{EI_{\text{min}}} (\frac{\partial \psi^*}{\partial x})^2 \, dx + \frac{1}{2} \int_{x_1}^{x_2} \frac{1}{kGA} (\gamma_v^*)^2 \, dx \\
\gamma^*_v &= \text{rotation due to shear,} \\
k &= \text{shear constant,} \\
A &= \text{area of cross-section of blade}
\end{align*}
\]

and

\[
\begin{align*}
T &= \frac{1}{2} \int_{x_1}^{x_2} \rho A \left(\frac{\partial \psi^*}{\partial t}\right)^2 \, dx + \frac{1}{2} \int_{x_1}^{x_2} \rho I_{\text{min}} \left(\frac{\partial \gamma_v^*}{\partial t}\right)^2 \, dx
\end{align*}
\] (3.17)

Assuming the deflection functions

\[
\begin{align*}
\psi(x) &= a_1 + a_2 x + a_3 x^2 + a_4 x^3 \\
\gamma_v^*(x) &= a_5 + a_6 x
\end{align*}
\] (3.18)

† In view of difficulty in calculating \(k \) for an aerofoil section a value of \(5/6 \) corresponding to a rectangular section is used.
and substituting in Equations 3.16 and 3.17, we arrive at the stiffness and inertia matrices of the element for the I_{min} direction as

$$[K_b^V] = [B_b]^T [k_b^V] [B_b]$$

and

$$[M_b^V] = [B_b]^T [m_b^V] [B_b]$$

corresponding to the deflection vector

$$\{q_b^*\}^T = [v_1^* \ \psi_1^* \ \gamma_1^* \ v_2^* \ \psi_2^* \ \gamma_2^*]$$

$$[B_b]^{-1} = \begin{bmatrix}
1 & x_1 & x_2 & x_3 & 0 & 0 \\
0 & -1 & -2x_1 & -3x_2 & 1 & x_1 \\
0 & 0 & 0 & 0 & 1 & x_1 \\
1 & x_2 & x_2 & x_3 & 0 & 0 \\
0 & -1 & -2x_2 & -3x_2 & 1 & x_2 \\
0 & 0 & 0 & 0 & 1 & x_2 \\
\end{bmatrix}$$ \quad (3.21)

$$[k_b^V] = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
4R_0 & 12R_1 & 0 & -2R_0 \\
36R_2 & 0 & -6R_1 \\
S_0 & S_1 & R_0 + S_2 \\
\end{bmatrix}$$ \quad (3.22)
In the above matrix
\[
R_1 = \int x^2 x_1^1 x_1^1 dx \quad \text{and} \quad S_i = \int x_2 x_1^1 x_1^1 dx
\]
(3.23)

and

\[
[v^b] = \begin{bmatrix}
S_0 & S_1 & S_2 & S_3 & 0 & 0 \\
R_0 + S_2 & 2R_1 + S_3 & 3R_2 + S_4 & -R_0 & -R_1 \\
4R_2 + S_4 & 6R_3 + S_5 & -2R_1 & -2R_2 \\
9R_4 + S_6 & -3R_2 & -3R_3 \\
-3R_4 & -3R_5 & -3R_6 & -3R_7 & -3R_8 \\
\end{bmatrix}
\]

Symmetrical

(3.24)

In the above matrix
\[
R_1 = \int \rho I_{\text{min}} x_1^1 dx \quad \text{and} \quad S_i = \int \rho A x_1^1 dx
\]
(3.25)

The stiffness and inertia matrices of the element for the I_{max} direction are derived similarly and are given by

\[
[k^b] = [B^b]^T [k^w] [B^b]
\]

and

\[
[m^b] = [B^b]^T [m^w] [B^b]
\]

(3.26)
The matrices $[B_b^W]$ and $[M_b^W]$ are given by Equations 3.22 and 3.24 when I_{min} is replaced by I_{max}.

Linear variations within the element of the area A, I_{min}, I_{max}, K_C and J of the blade section can be assumed requiring the values to be known only at the nodes. For an element of uniform section the stiffness and mass matrices are given in closed form in Tables 3.6, where I is either I_{min} or I_{max} depending on the direction considered. L is the length of the element, and μ is the radius of gyration for the particular direction considered.

The following displacement boundary conditions should be applied when this element is used. For the I_{min} direction:

- Simply supported edge $v^* = 0$
- Clamped edge $v^* = 0$; $\psi^* = 0$
- Free edge $\psi^* = 0$

3.5 VIBRATION ANALYSIS OF PRETWISTED BLADES

When the blade is pretwisted it is modelled with straight elements staggered (inclined) at an angle δ to the engine axis. For any particular element δ is the average pretwist angles of the actual blade measured at the two nodes of the element. Figure 3.3 shows a pretwisted blade and the finite element model with two straight elements.

In this case the individual element stiffness and inertia matrices $[K_b^\delta]$ and $[M_b^\delta]$, given by Equation 3.2, which correspond to the deflection vector $\{q_b^\delta\}$ whose elements are measured along the element principal directions, should be
transformed to the engine axis (Oz-Oy coordinates). This requires a rotation matrix \([R]\) relating \(\{q^*_b\}\) and \(\{q_b\}\)

\[
\{q^*_b\} = [R] \{q_b\}
\] \hspace{1cm} (3.27)

Making use of the above relationship the stiffness and inertia matrices corresponding to the deflection vector \(\{q_b\}\) are given by

\[
[K_b] = [R]^T [K^*_b] [R]
\]

and

\[
[M_b] = [R]^T [M^*_b] [R]
\] \hspace{1cm} (3.28)

Once this transformation is done the element matrices can be assembled to get the blade system matrices \([K_b]\) and \([M_b]\). Additional stiffness coefficients resulting from rotation should be added to these matrices only after this transformation.

Figure 3.4 gives the relationships between coordinates appearing in the displacement vectors \(\{q^*_b\}\) and \(\{q_b\}\). Making use of these relationships the rotation matrix \([R]\) is obtained. When transverse shear and rotary inertia are ignored the relationship between the deflection vectors \(\{q^*_b\}\) and \(\{q_b\}\) becomes
\[
\begin{array}{c|ccccc}
V_1 & c & 0 & s & 0 & 0 \\
\psi_1^+ & 0 & c & 0 & s & 0 \\
V_2^+ & 0 & 0 & 0 & 0 & c \\
\phi_2^+ & 0 & 0 & 0 & 0 & s \\
\phi_1 & -s & 0 & c & 0 & 0 \\
\phi_2 & 0 & -s & 0 & c & 0 \\
\phi_1 & 0 & 0 & 0 & 0 & 1 \\
\phi_2 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

where

\[
c = \cos \delta \quad \text{and} \quad s = \sin \delta
\]

or

\[
\{q_b^*\} = [R] \cdot \{q_b\}
\]
Rearrangement of variables in $\{q_b\}$ is carried out to facilitate assembling the complete blade matrices. When transverse shear and rotary inertia are included in the analysis, then

\[
\begin{bmatrix}
\mathbf{V}^1 \\
\mathbf{V}_1 \\
\mathbf{V}_2 \\
\mathbf{W}_1 \\
\mathbf{W}_2 \\
\mathbf{W}_3 \\
\mathbf{W}_4 \\
\end{bmatrix}
\begin{bmatrix}
c & 0 & 0 & s & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &\vdots \\
0 & c & 0 & 0 & s & 0 & 0 & 0 & 0 & 0 & 0 & 0 &\vdots \\
0 & 0 & c & 0 & 0 & s & 0 & 0 & 0 & 0 & 0 &\vdots \\
0 & 0 & 0 & 0 & 0 & 0 & c & 0 & 0 & s & 0 & 0 &\vdots \\
0 & 0 & 0 & 0 & 0 & 0 & c & 0 & 0 & s & 0 & 0 &\vdots \\
0 & 0 & 0 & 0 & 0 & 0 & c & 0 & 0 & s & 0 & 0 &\vdots \\
-s & 0 & 0 & c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &\vdots \\
0 & -s & 0 & 0 & c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &\vdots \\
0 & 0 & -s & 0 & 0 & c & 0 & 0 & 0 & 0 & 0 & 0 & 0 &\vdots \\
0 & 0 & 0 & 0 & 0 & 0 & -s & 0 & 0 & c & 0 & 0 & 0 &\vdots \\
0 & 0 & 0 & 0 & 0 & 0 & -s & 0 & 0 & c & 0 & 0 & 0 &\vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -s & 0 & 0 & c & 0 & 0 &\vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 &\vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &\vdots \\
\end{bmatrix}
\begin{bmatrix}
\mathbf{V}^1 \\
\mathbf{V}_1 \\
\mathbf{V}_2 \\
\mathbf{W}_1 \\
\mathbf{W}_2 \\
\mathbf{W}_3 \\
\mathbf{W}_4 \\
\end{bmatrix}
\]

(3.30)
where
\[c = \cos \delta \quad \text{and} \quad s = \sin \delta \]
or
\[\{q_b^*\} = [R] \{q_b\} \]

3.6 NUMERICAL APPLICATIONS

Numerical results are presented, in this section, which show the effects of rotation, transverse shear and rotary inertia and pretwist on the natural frequencies of uniform rectangular blades.

(A) First, the variation of the first three nondimensional frequencies \(A = \sqrt{\frac{\pi AL^2}{EL}} \) of a uniform rectangular blade with the nondimensional rotation \(\Omega^* = \sqrt{\frac{\pi AL^2}{EL}} \), and the influence of \(R/L \) ratio, where \(R \) is the radius at the root and \(L \) is the length of the blade, on these frequencies, were studied. Values of \(\lambda \) for vibration (a) out of plane of rotation and (b) in the plane of rotation, calculated using four elements, are given in Tables 3.7 to 3.12. In these calculations, the additional stiffness coefficients given in Tables 3.3 and 3.4 are added to the beam bending stiffness matrix.

Boyce (129) has calculated upper and lower bounds of \(\lambda \) for vibration out of plane of rotation for a few values
of R/L ratios. In Figure 3.5, values of λ calculated with four elements have been plotted against the nondimensional rotation Ω^* for the value of R/L = 0.1. Only the first two modes of vibration are considered. The upper and lower bounds given by Boyce for this case lie close to the finite element curves.

(B) Next, the effect of transverse shear and rotary inertia on the natural frequencies of a uniform rectangular beam was studied using the new Timoshenko beam finite element developed in section 3.4. A value of $k = 0.667$ was used and the ratio u/L, where u is the radius of gyration and L the length of the beam, was chosen to be 0.08. Nondimensional frequency parameter $\lambda = \sqrt{\frac{\omega^2 PA^2 h}{EI}}$ for a simply supported beam and a cantilever beam, computed using 1 to 6 element models are given in Tables 3.13 and 3.14 along with exact solutions. These results demonstrate the accuracy and convergence of the elements used. Results obtained by Kapur (128) and Archer (79) are also given for comparison in Tables 3.15 and 3.16. In Figures 3.6 and 3.7 percentage error versus number of degrees of freedom have been plotted for these three beam models.

(C) Finally, the efficiency of modelling twisted blades using untwisted beam elements was studied. Dokumaci et al (85) have used beam elements in which pretwist is incorporated, for this problem. They have computed frequency parameters $\lambda^h = \frac{\omega^2 PA^2 h}{EI_{\text{min}}}$.
for uniform rectangular twisted beams. Here values calculated using untwisted beam elements are compared with those of Dokumaci et al and those given by Anliker and Troesch (82) and Slyper (84). It is seen from the results in Table 3.17, that when the number of elements is increased the results converge rapidly to those given by Dokumaci et al indicating that in practical problems use of untwisted beam elements in modelling twisted blades would be satisfactory, thus avoiding the additional complication involved in formulating the beam element which incorporates pretwist.
4.1 INTRODUCTION

The vibration of a bladed rotor is found to be similar to that of an unbladed disc. The rotor oscillates in a coupled blade-disc mode which is also characterised by diametral and circular nodes, Figure 4.1. The blades, being constrained in the disc at the rim, will vibrate in bending motion at diametral antinodes, in torsional motion at nodes, and in combined bending-torsion elsewhere, Figure 4.2. The circular nodes may lie in the disc, but will more commonly be located in the blades.

A method of analysis is developed in section 4.2 for bladed rotors with a large number of identical blades. The blade loading on the rim are assumed to be continuously distributed around the rim. With this assumption, formulation of an exact method of analysis is possible for rotors of nonrotating simple configurations. This method utilizes the exact dynamic stiffness coefficients for the disc, rim and the blade, and is detailed in section 4.3.

For rotors of more general geometry, a finite element method is developed, in section 4.4, which utilizes the annular
plate bending element for the disc and the conventional beam element for the blades. This method includes the effect of a rim and torsional distortions in the blades, which are ignored by other investigators (118,120). Effects of rotation, temperature, gradient and other in-plane stresses are also considered. The method is then extended to include transverse shear and rotary inertia both in the disc and blades.

A number of numerical studies are presented, in section 4.5, which examine critically the accuracy and convergence of the calculated solutions by comparison with experimental data for bladed rotors of simple and complex geometry.

4.2 METHOD OF ANALYSIS

4.2.1 System Configuration And Deflections

Figure 4.3 shows the idealized model of the rotor and for analysis purposes the rotor is considered as three distinct subsystems.

(1) The disc web described by thin plate theory,
(2) The disc rim treated as a solid compact ring,
(3) The array of blades, each of which is considered to behave as a beam described by Euler-Bernoulli theory.

Ignoring torsional vibration of the system about the oz axis and
considering only the **flexural** vibration, the coordinates shown in Figure 4.3 are assumed to describe the distortions of the subsystems.

Considering stations $1, 2, \ldots, i$ in the disc as shown in Figure 4.3 the deflection vector for the disc is written as

\[
[q_\text{D}(\xi)] = \begin{bmatrix}
v_1(\xi) \\
v_2(\xi) \\
\vdots \\
v_i(\xi) \\
\theta_1(\xi) \\
\theta_2(\xi) \\
\vdots \\
\theta_i(\xi)
\end{bmatrix}
\] (4.1)

Considering only the centroidal distortions of the rim, the deflection vector for the rim is written as

\[
[q_\text{R}(\xi)] = \begin{bmatrix}
v_j(\xi) \\
\theta_j(\xi)
\end{bmatrix}
\] (4.2)

For the blade with stations $k, k+1, \ldots$ the deflection vector is written as
Consider the system vibrating with m nodal diameters. If ξ is the angle measured from a reference diametral antinode, then for

\[
\begin{align*}
\psi_k(\xi) &= v_k(\xi) \\
\omega_k(\xi) &= \omega_k(\xi) \\
\gamma_k(\xi) &= \gamma_k(\xi) \\
\epsilon_k(\xi) &= \epsilon_k(\xi)
\end{align*}
\]
the disc subsystem,
\[
\{q_D(\zeta)\} = \begin{bmatrix} w_1 \\ \theta_1 \\ \vdots \\ \vdots \\ w_j \\ \theta_j \end{bmatrix} \cos m\zeta = \{q_D\} \cos m\zeta \quad (4.4)
\]

where \(w_1, \theta_1, \ldots\) etc are the amplitudes of vibration at the reference antinode. Similarly for the rim
\[
\{q_R(\zeta)\} = \begin{bmatrix} w_j \\ \theta_j \end{bmatrix} \cos m\zeta = \{q_R\} \cos m\zeta \quad (4.5)
\]

The blades are assumed to be fixed to the rim and are thus constrained to retain their orientation at the root. The flexural axes are assumed to coincide with the centroidal axis and hence there is no coupling between bending and torsion within the blade. Then a blade at an antinode is displaced in bending only as shown in Figure 4.2. However because of blade stagger, or in general, because of the pretwist in the blade, bending may take place in both axial and tangential planes. A blade at a node is displaced in torsion only. Blades at any other angular locations experience both bending and torsion. Thus the deflections of a blade at an angle may be written as \(\cdot\).
\[\{q_B(x)\} = \begin{bmatrix} v_k \cos m_\xi \\ \psi_k \cos m_\xi \\ \vdots \\ v_k \cos m_\xi \\ \phi_k \cos m_\xi \\ \vdots \\ \phi_k \sin m_\xi \end{bmatrix} = [R] \{q_B\} \quad (4.6) \]

where

\[[R] = \begin{bmatrix} [C] & [0] & [0] \\ [0] & [C] & [0] \\ [0] & [0] & [S] \end{bmatrix} \quad (4.7) \]

where \([C]\) and \([S]\) are diagonal matrices with diagonal terms \(\cos m_\xi\) and \(\sin m_\xi\) respectively, and \(v_k, \psi_k, \ldots, v_k, \phi_k, \ldots\) are the bending amplitudes of the blade at the reference diametral antinode, while \(\phi_k, \ldots\) are the twisting amplitudes of the blade at a diametral node.
4.2.2 Dynamic Stiffness Of The Subsystems

The individual dynamic stiffness matrices are directly used for the disc and rim subsystems. Thus,

\[
[D_D] = [K_D] - \omega^2 [M_D]
\]

and

\[
[D_R] = [K_R] - \omega^2 [M_R]
\]

where \([D_D],[K_D]\) and \([M_D]\) are the dynamic stiffness, stiffness and mass matrices respectively of the disc corresponding to the deflection vector \(\{q_D\}\) and \([D_R],[K_R]\) and \([M_R]\) are the corresponding matrices for the rim with respect to the deflection vector \(\{q_R\}\).

The dynamic stiffness matrix \([D_r]\) for the vibrating array of blades may be obtained from the stiffness and mass matrices \([K_B]\) and \([M_B]\) of a single blade in the following manner, provided we assume sufficient number of identical blades to be present on the rotor, such that the resulting loading on the rim can be considered to be continuously distributed in a sinusoidal pattern around the rotor as shown in Figure 4.2. This condition is likely to be satisfied in typical rotors vibrating-in modes involving low numbers of nodal diameters.

The dynamic stiffness relation for a blade vibrating at a frequency \(\omega\) and located at a polar angle \(\xi\) from the reference
antinode is

\[
\{ Q_b(\xi) \} = \left[[K_B] - \omega^2 [M_B] \right] \{ q_b(\xi) \}
\] (4.9)

where \(\{ q_b(\xi) \} \) is defined by Equation 4.3 and \(\{ Q_b(\xi) \} \) is the corresponding force vector. It should be noted that matrices \([K_B]\) and \([M_B]\) are independent of \(\xi \).

Assuming that the blade loading on the rotor to be continuously distributed, the total energy, strain energy and kinetic energy, of the vibrating blades between the angles \(\xi \) and \(\xi + d\xi \) is

\[
dE = \frac{1}{2} \left(\frac{Z}{2\pi} \right) \{ q_b(\xi) \}^T \left[[K_B] - \omega^2 [M_B] \right] \{ q_b(\xi) \} d\xi
\]

where \(Z \) is the number of blades in the rotor. Substituting for \(\{ q_b \} \) from Equation 4.6

\[
dE = \frac{1}{2} \left(\frac{Z}{2\pi} \right) \{ \overline{q}_B \}^T \left[[R] \right]^T \left[[K_B] - \omega^2 [M_B] \right] \{ R \} \{ q_b \} d\xi
\]

Integrating between the limits \(\xi = 0 \) and \(\xi = 2\pi \) we get the total energy

\[
E = \frac{1}{2} C \frac{Z}{2} \{ \overline{q}_B \}^T \left[[K_B] - \omega^2 [M_B] \right] \{ \overline{q}_B \}
\] (4.10)

where

\[
C = 2 \text{ if } m = 0; \text{ and } C = 1 \text{ if } m \geq 1
\]

Hence the required dynamic stiffness matrix of the vibrating array
of blades corresponding to the deflection vector \(\mathbf{\tau}_B \) is

\[
[D_B] = C \frac{2}{Z} \left[[K_B] - \omega^2[M_B] \right]
\]
(4.11)

4.2.3 Dynamic Coupling Of The Subsystems

The dynamic stiffness relation for the complete rotor system is obtained by combining the individual relations for the disc, rim and blade subsystems, taking into account the compatibility requirements at their boundaries.

The torsion of the blade at the root, \(\phi_k(\xi) \), is related to the axial deflection \(w_k(\xi) \); thus

\[
\phi_k(\xi) = \frac{1}{R} \frac{\partial}{\partial \xi} \{ w_k(\xi) \}
\]

\[
= -\frac{m}{R} \frac{w_k}{m \xi} \sin m \xi
\]

Therefore

\[
\mathbf{\tau}_k = -\frac{m}{R} \overline{w}_k
\]

(4.12)

where \(R \) is the radius of the blade-rim attachment.

The remaining relations ensure compatibility between the three subsystems and hence depend on the nature of blade fixing. With the commonly used dovetail or fir-tree attachment cantilever blades can be assumed and in such cases the following, relations hold.
\[\begin{align*}
\bar{w}_1 &= \bar{v}_j + e_1 \bar{\theta}_j \\
\bar{\theta}_1 &= \bar{\theta}_j = \bar{\theta}_k \\
\bar{w}_k &= \bar{v}_j - e_2 \bar{\theta}_j \\
\bar{v}_k &= 0 \\
\bar{\theta}_k &= 0
\end{align*} \]

where \(e_1 \) and \(e_2 \) are the distances from the rim centroidal axis to the disc-rim junction and blade-rim junction respectively, Figure 4.3. Considering such cantilever blades all the coordinates at stations \(j \) and \(k \) can be conveniently described in terms of \(\bar{w}_1 \) and \(\bar{\theta}_1 \) with the following transformation relations.

\[
\begin{bmatrix}
\bar{w}_j \\
\bar{\theta}_j \\
\bar{w}_k \\
\bar{\theta}_k \\
\bar{w}_k \\
\bar{\theta}_k
\end{bmatrix} =
\begin{bmatrix}
1 & -e_1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & (e_1+e_2) & 0 & 0 \\
0 & 0 & 0 & 1 & -\frac{m}{R} & 0 \\
0 & 0 & 0 & 0 & \frac{m}{R} & (e_1+e_2)
\end{bmatrix}
\]

This relationship is sufficient to allow assembly of the dynamic stiffness matrix of the coupled blade-rim-disc system.
4.3 EXACT SOLUTION OF NON-ROTATING ROTORS OF SIMPLE GEOMETRY

When non-rotating rotors with uniform disc and uniform blades are considered, exact dynamic stiffness matrices for the disc, rim and blades can be derived. This resulting solutions are exact in so far as thin plate theory, Euler-Bernoulli beam theory and the assumption of continuous blade loading hold true and are useful in examining the accuracy and convergence of the finite element solutions.

In such cases the disc dynamic matrix \([D_{p}]\) need be derived with respect to only the axial deflection \(\vec{w}_1\) and the radial slope \(\vec{\theta}_1\) at the outer boundary along the reference anti-node. Thus the disc deflection vector has only two generalised coordinates.

\[
\begin{bmatrix}
\vec{q}_D \\
\vec{w}_D
\end{bmatrix} = \begin{bmatrix}
\vec{w}_1 \\
\vec{\theta}_1
\end{bmatrix}
\] \((4.14)\)

The derivation of the \((2 \times 2)\) dynamic stiffness matrix for a uniform annular disc with its inner boundary fixed and the outer boundary free is given below. Similar matrices for other boundary conditions at the inner boundary can be readily derived.

4.3.1 Dynamic Stiffness Of The Disc

The deflections \(w_1(\xi)\) and \(\theta_1(\xi)\) have associated forces, corresponding to sinusoidal distributions of shear force
and bending moment around the rotor, and which may be related to
the deflections by a dynamic stiffness matrix for the case of a
uniform thickness disc, either by inversion of the corresponding
receptance matrix relation given by McLeod and Bishop (42), or
directly as follows.

Consider a thin annular disc, of uniform thickness h,
clammed at the inner radius a, and subjected to transverse shear
force $V_i \cos m_\xi e^{i\omega t}$ and radial bending moment $M_i \cos m_\xi e^{i\omega t}$
around the outer radius b. The governing differential equation is,

$$v^h w(r,\xi) + \frac{\partial}{\partial r} \left(\frac{3}{2} \frac{\partial^2}{\partial r^2} \{ w(r,\xi) \} \right) = 0$$

(4.15)

where $w(r,\xi)$ is the transverse deflection, ρ is the material
mass density, and D is the flexural rigidity.

For the case being considered the solution of this
equation is

$$w(r,\xi) = [P_{\chi m} (kr) + Q_{\chi m} (kr) + R_{\xi m} (kr) + S_{\chi m} (kr)] \cos m_\xi$$

$$= W(r) \cos m_\xi$$

(4.16)

where

ω - vibratory frequency in rad./second,
$W(r)$ - amplitude at an antinode,
J_m, Y_m - Bessel functions of first and second kind of
integer order m.
\[I_m K_m \] are modified Bessel functions of first and second kind of integer order \(m \)

\[k = \left(\frac{\rho h \omega^2}{D} \right)^{1/4} \]

Using the sign convention established in Figure 4.3

\[\theta = - \frac{3\omega}{\partial r} \]

\[Mr = - D \left[\frac{3\omega}{\partial r^2} + \nu \left(\frac{1}{r} \frac{3\omega}{\partial r} + \frac{1}{r^2} \frac{3\omega}{\partial \xi^2} \right) \right] \]

\[M_r = D(1-\nu) \left[\frac{1}{r} \frac{3\omega}{\partial r^2} - \frac{1}{r^2} \frac{3\omega}{\partial r} \right] \]

\[Q_r = - D \left[\frac{3\omega}{\partial r^3} + \frac{1}{r} \frac{3\omega}{\partial r^2} - \frac{1}{r^2} \frac{3\omega}{\partial r} \right. \]

\[\left. + \frac{1}{r} \frac{3\omega}{\partial r} \frac{3\omega}{\partial \xi^2} + \frac{2}{r^3} \frac{3\omega}{\partial \xi^2} \right] \]

\[V = Q_r - \frac{1}{r} \frac{\partial}{\partial \xi} M_r \]

Substituting for \(w(r, \xi) \) from Equation 4.16,

\[\theta(r, \xi) = - \left[PA_1(kr) + QA_2(kr) + RA_3(kr) + SA_4(kr) \right] \cos m\xi \]

\[= \bar{\theta}(r) \cos m\xi \]

\[M_r(r, \xi) = - \left[PA_5(kr) + QA_6(kr) + RA_7(kr) + SA_8(kr) \right] \cos m\xi \]

\[= \bar{M}_r(r) \cos m\xi \]
\[V(r, \xi) = -D \left[PA_9(kr) + QA_{10}(kr) + RA_{11}(kr) + SA_{12}(kr) \right] \cos m\xi \]

\[= \overline{V}(r) \cos m\xi \quad (4.18) \]

where \(A_1 \) through \(A_{12} \) are linear combinations of the Bessel functions of order \(m \) and \(m-1 \), given in Table 4.1. Applying the boundary conditions

\[w(a, \xi) = 0 \quad \theta(a, \xi) = 0 \]
\[w(b, \xi) = \omega_1(\xi) \quad \theta(b, \xi) = \theta_1(\xi) \]
\[V(b, \xi) = \nu_1(\xi) \quad M_r(b, \xi) = M_{r1}(\xi) \]

and using Equations 4.16 and 4.18 gives,

\[
\begin{bmatrix}
\nu_1(\xi) \\
M_1(\xi)
\end{bmatrix}
= [D]
\begin{bmatrix}
\omega_1(\xi) \\
\theta_1(\xi)
\end{bmatrix}
\cos m\xi
\quad (4.19)
\]

where \([D]\) is the matrix given in Table 4.2.

Consider a unit displacement vector \[\begin{bmatrix} \nu_1 \\ \theta_1 \end{bmatrix} \] is imposed at the reference antinode, at the outer boundary, then following standard procedure the associated force vector will be,

\[
\begin{bmatrix}
\nu_1 \\
M_1
\end{bmatrix}
= \frac{2\pi}{\int [D] \begin{bmatrix} \nu_1 \\ \theta_1 \end{bmatrix} \cos^2 m\xi \ d\xi}
\quad (4.20)
\]
where

\[C = 2 \text{ if } m = 0 \quad \text{and} \quad C = 1 \text{ if } m \geq 1 \]

Thus the required dynamic stiffness matrix is given by

\[[D_D] = Cn \ [D] \tag{4.21} \]

4.3.2 Dynamic Stiffness Of The Rim

The formulation of the exact dynamic stiffness relation for the rim, treated as a thin ring is well known (130). For a thin ring vibrating at frequency \(\omega \) with \(m \) nodal diameters, when shear deformation and rotary inertia are neglected, it takes the form,

\[
\begin{bmatrix}
\frac{\bar{V}_j}{\bar{N}_j} \\
\frac{\bar{V}_j}{\bar{R}_j}
\end{bmatrix} = [D_R] \begin{bmatrix}
\frac{\bar{V}_j}{\bar{N}_j} \\
\frac{\bar{V}_j}{\bar{R}_j}
\end{bmatrix} \tag{4.22}
\]

where \([D_R]\) is the dynamic stiffness matrix of the ring and is given in Table 4.3.

4.3.3 Dynamic Stiffness Of The Blade Array

When we consider uniform untwisted blades, the dynamic stiffness relation for a single blade vibrating with frequency \(\omega \)
and located at an angle ξ from the reference antinode is

$$\{Q_k\} = [D_b] \{q_k\} \tag{4.23}$$

where

$$\{q_k\} = \begin{bmatrix} v_k \\ \psi_k \\ w_k \\ \theta_k \\ \phi_k \end{bmatrix}$$

and the matrix $[D_b]$ is given in Table 4.4.

In Table 4.4,

- E, G - elastic moduli,
- I_1, I_2 - principal minimum and maximum second moment of area of the blade cross-section respectively,
- δ - stagger angle; angle between the engine axis Oz and the I_{\min} direction, Figure 3.1
- K_G - St. Venant torsional stiffness of the blade cross-section,

and

$$\lambda_1 = \left(\frac{\mu^2 \phi}{EI_1} \right)^{1/4}$$

$$\lambda_2 = \left(\frac{\mu^2 \phi}{EI_2} \right)^{1/4}$$
\[\lambda_3 = \left(\frac{J}{GK_C} \right)^{1/2} \]

- \(\rho \) - mass density of blade material,
- \(J \) - mass polar moment of inertia of blade section,
- \(L \) - length of blade.

The matrix \([D_B]\) is of size \((5 \times 5)\), since only the five displacements at the root of the blade are involved. This matrix is readily obtained from the receptance relations tabulated for a free-free beam, (131), transformed from local principal axes, through stagger angle \(\delta \) to the coordinate system used here.

From Equation 4.11, the dynamic stiffness matrix for the array of blades is obtained by multiplying that of a single blade by \(C \frac{Z}{2} \), where \(Z \) is the number of blades in the rotor. Hence the dynamic stiffness matrix for the array of blades is

\[[D_B] = C \frac{Z}{2} [D_b] \] (4.24)

4.3.4 Dynamic Stiffness Of The Disc-Rim-Blade System

The dynamic stiffness matrix for the complete rotor system is obtained by combining the individual matrices for the disc, rim and blades, taking into account the compatibility relations given by Equation 4.13. The result is a \((2 \times 2)\) dynamic stiffness relationship involving only the deflections \(\mathbf{v}_1 \) and \(\mathbf{\theta}_1 \). A non-trivial solution is obtained when the determinant of this
matrix is zero, and corresponds to the natural frequencies of the system. For numerical calculations the zeros of the determinant are sought by iterating with the frequency ω as the variable.

4.4 FINITE ELEMENT SOLUTION OF ROTORS OF GENERAL GEOMETRY

For rotors of general geometry with arbitrary discs and pretwisted nonuniform blades numerical procedures are adopted to obtain the subsystem dynamic stiffness matrices $[D_D]$ and $[D_B]$ of the disc and the array of blades respectively. The annular plate bending finite elements developed in chapter-2 can be readily used here.

4.4.1 Dynamic Stiffness Of The Disc-Rim-Blade System Neglecting Transverse Shear And Rotary Inertia

The method of analysis described here utilizes the finite element models developed for the disc and blade in section 2.2 and 3.2. Thus the matrices $[K_D]$ and $[M_D]$ of the disc subsystem appearing in Equation 2.28 are directly used in the dynamic stiffness relation

$$\begin{align*}
\{\ddot{q}_D\}' &= [K_D] - \omega^2[M_D] \{\ddot{q}_D\} \\
&= [D_D] \{\ddot{q}_D\}
\end{align*}$$

(4.25)
matrix is zero, and corresponds to the natural frequencies of the system. For numerical calculations the zeros of the determinant are sought by iterating with the frequency ω as the variable.

4.4 FINITE ELEMENT SOLUTION OF ROTORS OF GENERAL GEOMETRY

For rotors of general geometry with arbitrary discs and pretwisted nonuniform blades numerical procedures are adopted to obtain the subsystem dynamic stiffness matrices $[D_D]$ and $[D_B]$ of the disc and the array of blades respectively. The annular plate bending finite elements developed in chapter 2 can be readily used here.

4.4.1 Dynamic Stiffness Of The Disc-Rim-Blade System Neglecting Transverse Shear And Rotary Inertia

The method of analysis described here utilizes the finite element models developed for the disc and blade in section 2.2 and 3.2. Thus the matrices $[K_D]$ and $[M_D]$ of the disc subsystem appearing in Equation 2.28 are directly used in the dynamic stiffness relation

$$\{\ddot{\bar{q}}_D\} = \left[[K_D] - \omega^2 [M_D] \right] \{\bar{q}_D\}$$

$$= [D_D] \{\bar{q}_D\} \quad (4.25)$$
Similarly for the array of blades matrices \([K_B]\) and \([M_B]\) from Equation 3.2 are used here, thus,

\[
\begin{align*}
\{q_B\} &= C\pi \frac{Z}{2} \left[[K_B] - \omega^2 [M_B] \right] \{q_B\} \\
&= [D_B] \{q_B\}
\end{align*}
\]

(4.26)

In this analysis, the stations 1, 2, ..., \(i\) considered in section 4.2.1 are the finite element nodes in the disc subsystem and hence the disc deflection vector \(\{q_D\}\) is given by Equation 4.4. Similarly the stations \(k, k+1, \ldots\) considered in section 4.2.1 are the finite element nodes in any of the blades and hence the blade subsystem deflection vector \(\{q_B\}\) is given by Equation 4.6.

The number of degrees of freedom in each of these subsystems depend on the number of elements used in each case. The constraint conditions given by Equation 4.13, now gives the relationships between the degrees of freedom at nodes \(i, j\) and \(k\), where \(j\) is the centroid of the rim. In this analysis, for the rim, the dynamic stiffness relation given by Equation 4.22 is used. The subsystems are coupled satisfying the relations given by Equation 4.13 and the following dynamic stiffness relation for the entire system is obtained.

\[
\{q_s\} = \left[[K_S] - \omega^2 [M_S] \right] \{q_s\}
\]

(4.27)
When free vibration of the system is considered Equation 4.27 reduces to an algebraic eigen value problem, which may be solved by any of the standard procedures. It should be noted that, here, as in the disc alone vibration problem, a set of eigen value problems result, one for each diametral mode configuration.

The use of the annular element for the disc makes it possible to effectively model discs with any arbitrary radial profile. Moreover, the initial in-plane stresses resulting from rotation and radial temperature gradient and other loading can be computed and their effect on the vibration frequencies of the system can be taken into account. Similarly variation in section properties of the blades, pretwist in the blades, and the effect of in-plane stresses in the blades are readily included.

4.4.2 Dynamic Stiffness Of The Disc-Rim-Blade System Including Transverse Shear And Rotary Inertia

In practical rotors the disc is moderately thick and the use of methods based on thin plate theory may not result in satisfactory analysis. Therefore, the finite element method of analysis developed is now extended to include transverse shear and rotary inertia, both in the disc and blades.

This analysis is very similar to the one described in section 4.4.1 above for bladed rotors, except, now the rim,
if present is considered to be a part of the disc. Hence, the whole rotor system is divided into two subsystems.

(1) The disc and rim subsystem described by Mindlin's plate theory,

(2) The array of blades, each of which is considered to behave as a beam described by Timoshenko beam theory.

The annular Thick Disk Element-1, developed in chapter 2, section 2.4, is used to model the disc and rim. The blades are modelled with the Timoshenko beam element described in chapter 3, section 3.4. Hence each station in the disc has four degrees of freedom and at station i these are, Figure 4.4,

$$\{q_i\}^T = [\begin{array}{c} \vec{u}_i \\ \vec{\phi}_i \\ \vec{\gamma}_{ri} \\ \vec{\xi}_i \end{array} \] \quad (4.28)$$

Each station in the blade has seven degrees of freedom and at station k these are,

$$\{q_k\}^T = [\begin{array}{c} \vec{v}_k \\ \vec{\psi}_k \\ \vec{\gamma}_{vk} \\ \vec{w}_k \\ \vec{\theta}_k \\ \vec{\gamma}_{wk} \\ \vec{\phi}_k \end{array} \] \quad (4.29)$$

When the subsystems are connected together, the following relationships between the degrees of freedom at stations i and k exist, and these should be satisfied.
where R is the radius at the root of the blade.

4.5 NUMERICAL APPLICATIONS

4.5.1 Comparison Of Exact And Finite Element Solutions For Simple Nonrotating Rotors

The validity and accuracy of the analysis developed in sections 4.3 and 4.4 have been assessed by comparing numerical results of the coupled frequencies with experimental data on three simple nonrotating bladed disc models. For the first two models experimental data were obtained by Mr. R. W. Harris, a senior undergraduate student at Carleton University. The third model is that used by Jager (120).

All these models are of mild steel and comprise uniform thickness annular discs clamped at the inner radius and uniform
untwisted rectangular blades cantilevered at the outer boundary of the disc or rim. The blades are set at a stagger angle $\delta = 45^\circ$ in models I and II, and at $\delta = 50^\circ$ in model III. The dimensions and other details of these models are given in Table 4.5. A rim is present in models I and II, but absent in III. The first six cantilevered blade alone frequencies of these models are given in Table 4.6. For models I and II experimental measurements of frequency were made by exciting the models using an electromagnet. A barium titanate accelerometer probe was used to detect resonance and to identify mode shapes. Figure 4.5 illustrates the vibrating bladed disc models with sand pattern showing nodal diameters.

Coupled system frequencies of these three models were calculated by finite element models comprising various numbers of elements. These frequencies were also calculated using the exact method. As already mentioned, these values are exact in so far the assumption of continuous blade loadings on the rim is valid. Also certain tolerances on the value of the determinant, which should otherwise be zero, were necessary. The results of the finite element analysis should converge to the exact values as the number of elements are increased.

The numerical results for models I and II are given in Tables 4.7 and 4.8 along with experimental results. It is seen that agreement between finite element, exact and measured frequencies is excellent, and indeed that just two blade elements and two disc elements yield the first three to four modes for any
untwisted rectangular blades cantilevered at the outer boundary of the disc or rim. The blades are set at a stagger angle \(\delta = 45^\circ \) in models I and II, and at \(\delta = 50^\circ \) in model III. The dimensions and other details of these models are given in Table 4.5. A rim is present in models I and II, but absent in III. The first six cantilevered blade alone frequencies of these models are given in Table 4.6. For models I and III experimental measurements of frequency were made by exciting the models using an electromagnet. A barium titanate accelerometer probe was used to detect resonance and to identify mode shapes. Figure 4.5 illustrates the vibrating bladed disc models with sand pattern showing nodal diameters.

Coupled system frequencies of the three models were calculated by finite element models comprising various numbers of elements. These frequencies were also calculated using the exact method. As already mentioned, these values are exact in so far the assumption of continuous blade loadings on the rim is valid. Also certain tolerances on the value of the determinant, which should otherwise be zero, were necessary. The results of the finite element analysis should converge to the exact values as the number of elements are increased.

The numerical results for models I and I-II are given in Tables 4.7 and 4.8 along with experimental results. It is seen that agreement between finite element, exact and measured frequencies is excellent, and indeed that just two blade elements and two disc elements yield the first three to four modes for any
given nodal diameter configuration, with engineering accuracy for these models. Convergence of finite element solution is rapid and monotonic from above as expected.

The first six coupled system frequencies are plotted against increasing number of nodal diameters in Figures 4.6 and 4.7 for models I and II. As the number of nodal diameters increases, the combined frequencies should degenerate to the cantilevered blade alone frequencies and this is seen to be the case from these graphs.

In model III, which was used by Jager, no rim was present, so that the blades overhung the disc at the point of attachment. In Table 4.9 the numerical and experimental frequencies given by Jager are compared with the finite element and exact solutions. Jager's numerical model comprised ten lumped masses in the disc and ten lumped masses in the blades. Again it is seen that good agreement is obtained between the various frequencies; more important the efficiency of the finite element model is significantly better than that of the lumped mass model. The increasing divergence between calculated and measured values for the higher modes may result from the incomplete attachment of blades to disc, since the blade chord is much greater than the thickness of the disc.
4.5.2 The Effect Of System Parameters On The Frequencies Of Simple Nonrotating Rotors

It would be useful, as in most of the other engineering problems, to nondimensionalize the system frequencies of the bladed disc. In view of the unusually large number of parameters involved this is extremely difficult. Alternatively the variation of the frequencies with respect to a selected number of parameters, which would give some qualitative insight to the problem, may be studied. These parameters may be chosen to suit particular situations.

As an example, the effects of the following three parameters on the frequencies of a bladed disc are studied. The parameters considered are,

(1) \(\frac{L}{b} \) ratio, where \(L \) is the length of the blade and \(b \) is the outer radius of the disc,

(2) blade aspect ratio \(\frac{L}{d_b} \), where \(d_b \) is the chord of the blade

(3) stagger angle \(\theta \).

Seven different cases of the model were studied. In all these cases the model comprises of an uniform disc with constant inner radius and thickness. The blades, which are uniform and untwisted, are cantilevered at the outer boundary of the disc with a stagger angle. In order to minimise the number of parameters
the rim is omitted. The thickness to chord ratio is fixed at 8%, which is typical of compressor blading. Only the outer radius \(b \) of the disc, the length \(L \) of the blade and the stagger angle \(\delta \) are changed independently. The number of blades in the model depends on the chord of the blade. The various dimensions of the model for the seven cases considered are given in Table 4.10, and the first four cantilevered blade alone frequencies in Table 4.11.

In all these cases the first four system frequencies were calculated with the exact method for \(m = 2 \) to 6. These frequencies \(\omega \) are divided by the first blade alone frequency \(\omega_1 \) and the ratio \(\frac{\omega}{\omega_1} \) are given in Table 4.13. Figures 4.8 to 4.10 show the variation of the first system frequency and Figures 4.11 to 4.13 the next three frequencies with respect to the three system parameters chosen.

From Figures 4.8 and 4.11 it is seen that when the value of \(a \) is low, in other words when the blades are shorter compared to disc radius, the system frequencies are very low compared to the blade alone frequencies, at lower numbers of diametral nodes, and the vibration is controlled by the disc. These frequencies increase in their values with increasing number of diametral nodes and converge to the blade frequencies. Therefore the influence of disc is considerable when short blades are used, especially at lower values of \(m \).
From Figures 4.9 and 4.12 it is seen that when the blade aspect ratio is lower the system frequencies are lower than the blade alone frequencies. In all the three cases considered the first blade frequencies are in bending in the I_{min} direction. Therefore with increasing number of nodal diameters the system frequencies converge to the first blade alone frequencies. But the higher modes of vibration of the blades in the three cases are different nature. Hence convergence of system frequencies are to the individual blade frequencies in each case.

From Figures 4.10 and 4.13 it is seen that for the first mode of vibration the system frequencies are lower for lower values of δ, the stagger angle. But for the higher modes this is reversed and the system frequencies are higher for lower values of δ. In the case of first, second, and fourth modes, where the blade frequencies are bending frequencies, the system frequencies converge rapidly to the blade alone frequencies with increasing values of m. But in the case of the third mode, where the blade frequency is a torsional frequency, convergence is slow with increasing value of m.

4.5.3 The Effect Of Rotation On The Frequencies Of Simple Rotor

When the bladed disc is rotating at speed, the centrifugal stresses developed both in the disc and the blades increase the stiffness of the entire system and the natural frequencies of
the bladed disc are substantially modified.

In the finite element analysis of the bladed disc the effect of rotation can be readily included, since additional stiffness coefficients for the disc and blade elements are available. The stresses in the disc are calculated including the blade loading at the rim. The frequencies of bladed disc model I were calculated neglecting transverse shear and rotary inertia, but adding the centrifugal stiffening effect when the bladed disc was considered rotating at 3500 rpm and 7000 rpm, which are typical speeds of rotors of similar dimensions; unfortunately no experimental or other numerical results are available to compare the results. These results are given in Table 4.14, along with the results of the stationary bladed disc. Comparison of results in Table 4.14 shows that variations in the frequencies are considerable at lower modes of vibration for each diametral node configuration, whereas frequencies of higher modes are not affected much.

4.5.4 The Effect Of Transverse Shear And Rotary Inertia On The Frequencies Of Simple Rotors

The finite element method of analysis outlined in section 4.4.2, which includes transverse shear and rotary inertia was applied in the analysis of bladed disc models I and II. The first six frequencies of each of the diametral node configuration,
m = 2 to 6, obtained are given in Tables 4.15 and 4.16. These results should be expected to be lower than those in Tables 4.7 and 4.8, which were obtained neglecting transverse shear and rotary inertia in the analysis. Comparision of results in these tables show this to be true except in the case of a few lower modes when m = 2. This discrepancy is thought to be due to the difference in the models assumed for the rim. In the earlier case the rim is treated as a thin ring with constant radial slope from the inner to the outer boundaries. In the second case the rim is assumed to be a part of the disc and hence its radial slope can vary across the rim.

4.5.5 Calculated And Measured Frequencies Of A Complex Turbine Rotor

The finite element method of analysis developed for bladed discs was also used to calculate the natural frequencies of a complex turbine rotor. Experimental results and other data for this rotor were provided by Dr. Armstrong of Rolls Royce (1971) Ltd. The disc of the rotor is the same analysed in chapter 2, section 2.4.2. The dimensions of the disc are given in Table 2.49. Other details of the rotor are given in Figure 4.14. Section properties of the blades are given in Table 4.17.

Since the computed frequencies of the disc alone were satisfactory only when transverse shear and rotary inertia were included in the analysis, here also these effects were considered.
The blades of the rotor are of aerofoil section and have pretwist and other complicating factors, and therefore the Timoshenko beam finite element model used in the analysis should not be expected to give accurate results for the blades. No torsional stiffness data was made available for this aerofoil section; thus the effect of blade torsion is necessarily neglected. The cantilevered blade alone frequencies calculated with five Timoshenko beam elements are given in Table 4.18. As expected only the first computed frequency agrees closely with the experimental value.

The rotor was modelled with 6 Thick Disc Element-1 and 5 Timoshenko beam elements. In both cases linear variations of section properties within the element were assumed. Details of the finite element model are given in Table 4.19. As mentioned earlier, the error in most of the disc computed frequencies is almost constant and is around 7%. This may be due to a higher value of Youngs modulus E assumed in the calculations. Therefore here the coupled frequencies were calculated using two different values for E_{disc}. These results are given in Table 4.20 along with experimental values. The first frequencies of each diametral node configuration are in fairly good agreement with the experimental results, Deviations in the second frequencies should be due to the inadequacy of the blade model. Use of an improved blade model should improve the results considerably.
CHAPTER 5

SUMMARY AND CONCLUSIONS

In this investigation of the application of the finite element method to the vibration analysis of axial flow turbines, the following important novel techniques have been evolved.

(1) New finite elements for the flexure of complete thin and moderately thick circular and annular plates (discs) have been derived, and critically examined for static and vibration problems.

(2) The formulation of these new disc elements has been extended to include the effects of in-plane stresses such as might result from rotation or thermal gradient. This aspect of the work is also new.

(3) A novel method of coupling blade bending and torsional vibration with disc flexural vibration has been formulated, which is particularly effective when combined with the refined modelling offered by the finite element method.

(4) An exact solution for coupled vibration of bladed rotors having simple geometry has been obtained.
The significant advantages of these developments are

(1) By making use of the axisymmetric properties of the problem, the resulting mathematical model is described by a very small number of degrees of freedom compared with other finite element techniques, with corresponding savings in computer storage and time.

(2) The finite element method itself is known to demonstrate higher accuracy compared with conventional lumped mass models, due to a more correct description of the inertia properties.

(3) A very refined mathematical model results, since incorporation of varying thickness in these new elements is readily achieved. With other available finite element models, eg. sector elements, incorporation of thickness variation is difficult – indeed formidable.

(4) The formulation of the vibration problem for the disc or the bladed disc results in an algebraic eigenvalue problem, and avoids the numerical difficulties which often arise in the transfer matrix methods with higher modes which have close frequencies.
The accuracy and convergence of the methods developed have been critically examined by comparison with exact and/or experimental data in all cases, and the results obtained demonstrate the reliability and potential of these methods. In general these comparisons show excellent agreement. The exception, unfortunately, is the calculations carried out for the one complex (real) turbine rotor, for which some experimental data was available, and which gave somewhat indifferent results. In this case the blade model was clearly inadequate, and by comparison with the precision demonstrated on other test cases, it must be admitted that the disc alone results are also disappointing. In fairness, it should be pointed out that these experimental data were obtained on a single test, and may not be representative of the nominal disc frequencies.' A standard deviation in test results, amounting to 5% to 7% of the mean measured frequencies is not unusual for bladed turbine discs. In the authors opinion, this particular comparison, while disappointing, underlines the following further work necessary to clearly evaluate and improve the precision of the present bladed disc model:

(1) A need for further careful assessment of the calculated frequencies by comparison with experimental data on various complex rotors.
(2) A need for further refinement of the blade model, to include, as a first step, coupling between bending and torsional vibration within the blade (shear centre effect).
REFERENCES

(23) Manson, S. S.,

(24) Mote, C. D., Jr.

(25) Bogdanoff, J. L., et al.,

(26) Soo, P. P.,

(27) Haigh, R. E., and Murdoch, M. L.,

(28) Kobayashi, A. S., and Trumpler, P. R.,

(29) Swansson, N. S.,

(30) Schilhansl, M. J.,

(31) Thurgood, D. A.,

(32) Stordahl, H., and Christensen, H.,

(33) Chun, A. S. L., and Henrywood, R. R.,
(34) Fessler, H.,

(35) Guernsey, R.,

(36) Fessler, H., and Thorpe, T. E.,

(37) Thurgood, D. A.,

(38) Prescott, J.,

(39) Campbell, W.,

(40) Tobias, S. A., and Arnold, R. N.,

(41) Tobias, S. A.,

(42) McLeod, A. J., and Bishop, R. E. D.,

(43) Vogel, S. M., and Skinner, D. W.,

(44) Leissa, A. W.,

(57) Chernuka, M.W., et al.,

(58) Srinivas, S., et al.,

(59) Potter, D. S., and Leedham, C. D.,

(60) Reissner, E.,

(61) Uflyand, Y. S.,

(62) Mindlin, R. D.,

(63) Mindlin, R. D., and Deresiewicz, H.,

(64) Deresiewicz, H., and Mindlin, R. D.,

(65) Deresiewicz, H.,

(66) Callahan, W. R.,

(67) Bakshi, J. S., and Callahan, W. R.,

(79) Archer, J. S.,

(80) Carnegie, W., and Thomas, J.,

(81) Rosard, D. D.,

(82) Anliker, M., and Troesch, B. A.,

(83) Carnegie, W.,

(84) Slyper, H. A.,

(85) Dokumaci, E., et al.,

(86) Mendelison, A., and Gendler, S.,

(87) Mendelison, A., and Gendler, S.,

(88) Houbolt, J. C., and Brooks; G. W.,

(89) Dunham, J.,
(90) Montoya, J.,

(91) Sutherland, R. L.,

(92) Plunkett, R.,

(93) Lo, H., et al.,

(94) Lo, H.,

(95) Carnegie, W.,

(96) Jarrett, G.W., and Warner, P. C.,

(97) Targoff, W.,

(98) Isakson, G., and Eisley, J.G.,

(99) Isakson, G., and Eisley, J. G.,

(100) Bogdanoff, J. L.,
(101) Bogdanoff, J. L., and Horner, J. T.,

(102) Brady, W. G., and Targoff, W. P.,
"Uncoupled Torsional Vibrations of a Thin, Twisted, Rotating

(103) Krupka, R. M., and Baumanis, A. M.,
"Bending-Bending Mode of a Rotating Tapered Twisted Turbo-
machine Blade Including Rotary Inertia and Shear Deform-
ation," Trans. ASME, J. Eng. Ind., Vol. 91, no. 4, 1969,
pp. 1017-1024.

(104) Cowper, G.R.,
"A Computer Programme for Calculating Shear Centres and
Est., N.R.C., Ottawa, Canada, March 1966.

(105) Volterra, E.,
"Second Approximations of Method of Internal Constraint

(106) Huang, T. C.,
"Effect of Rotary Inertia and Shear on the Vibration of
Beams Treated by Approximate Methods of Ritz and Galerkin,"

(107) Carnegie, W., and Thomas, J.,
"The Effects of Shear Deformation and Rotary Inertia on
the Lateral Frequencies of Cantilever Beams in Bending,"

(108) Gere, J. M.,
"Torsional Vibrations of Beams of Thin-Walled Open Section,"

(109) Grinsted, B.,

(110) Ellington, J. P., and McCallion, H.,

(111) Pearson, H.,
"The Aerodynamics of Compressor Blade Vibration," Engine-
(112) Sabatiuk, A., and Sisto, F.,
"A Survey of Aerodynamic Excitation Problems in Turbo-

(113) Rawtani, S., and Dokainish, M. A.,
"Vibration Analysis of Pretwisted Cantilever Plates,"

(114) Olson, M. D., and Lindberg, G. M.,

(115) Ellington, J. P., and McCallion, H.,
"Blade Frequency of Turbines; Effect of Disc Elasticity,"

(116) Johnson, D. C., and Bishop, B.E.D.,

(117) Capriz, G.,

(118) Armstrong, E. K.,

(119) Armstrong, E. K.,

(120) Jager, B.,
"Eigenfrequenzen einer Scheibe mit Verwundenen Schaufen,'

(121) Stargardter, H.,

(122) Kirkhope, J., and Wilson, G. J.,
(123) Zienkiewicz, O. C., and Cheung, Y. K.,

(124) Timoshenko, S. P., and Woinowsky-Krieger, S.,

(125) Pryor, C. W., Barber, R. M., and Frederick, D.,
"Finite Element Bending Analysis of Reissner Plates,"

(126) Wilson, G. J., and Kirkhope, J.,

(127) Rao, S. S.,
"Effects of Transverse Shear and Rotary Inertia on the Coupled Twist-Bending Vibrations of Circular Rings,"

(128) Kapur, K. K.,

(129) Boyce, W. E.,

(130) Kirkhope, J.,

(131) Bishop, R. E. D., and Johnson, D. C.,

(132) Kirkhope, J., and Wilson, G. J.,

(133) Herrman, L. R.,
(134) Smith, I. M.,

(135) Salerno, V. L., and Goldberg, M. A.,

(136) Cowper, G. R., et al.,
Figure 1.1 Effect of disc stiffness on the coupled blade-disc frequencies.
Rigid Blades, $m = 2, 3, \ldots$

Rigid Disc

Coupled Blade-Disc Frequencies.

Engine Speed in rpm

Figure 1.2 Interference diagram.
Figure 2.1 Thin plate bending annular element with two nodal diameters and linear thickness variation.
Figure 2.2 Thin plate bending circular element with two nodal diameters and linear thickness variation.
Figure 2.3 Modelled circular plate. (a) With one circular element and two annular elements. (b) With a small central hole and three annular elements.
Figure 2.4 Percentage absolute error in the first six frequency coefficients of a simply supported circular plate modelled with thin plate bending annular elements.
Figure 2.5 Modelled circular disc with parabolic thickness variation.
(a) Elements with parabolic thickness variation used.
(b) Elements with linear thickness variation used.
Figure 2.6 Plane stress annular element.
Figure 2.7 Radial and tangential stress coefficients for a uniform rotating disc, calculated using the plane stress annular element.
Figure 2.8 Variation of harmonic excitation frequencies with rotational speed of a thin annular plate.
Figure 2.9 Thick Disc Element-1 with two nodal diameters and associated degrees of freedom.
Figure 2.10 Thick Disc Element-2 with two nodal diameters and associated degrees of freedom.
Figure 2.11 Stepped circular disc and five element finite element model.
Figure 2.12 A practical turbine disc and its finite element models.
Figure 3.1 Blade element with associated degrees of freedom.
Figure 3.2 Blade element with associated degrees of freedom when transverse shear is considered.
Figure 3.3 Pretwisted blade modelled with two straight beam elements.
\[v^* = v \cos \delta + w \sin \delta \]

\[w^* = -v \sin \delta + w \cos \delta \]

\[\psi^* = \psi \cos \delta + \theta \sin \delta \]

\[\theta^* = -\psi \sin \delta + \theta \cos \delta \]

\[\gamma^*_v = \gamma_v \cos \delta + \gamma_w \sin \delta \]

\[\gamma^*_w = -\gamma_v \sin \delta + \gamma_w \cos \delta \]

Figure 3.4 Relationships between distortions along the principal directions and the coordinate system chosen.
Figure 3.5 Variation of the first two frequencies of a rotating beam with speed of rotation - vibration out of plane of rotation.
Figure 3.6 Percentage error versus degrees of freedom of Timoshenko beam elements.
Figure 3.7 Percentage error versus degrees of freedom of Timoshenko beam elements.
Figure 4.1 Bladed disc with two nodal diameters.
Figure 4.2 Rim deflections and forces. (a) \textit{undeflected} position. (b) rim deflections. (c) blade shear force and bending moment. (d) blade torsional moment.
Figure 4.3 Bladed disc system configuration and deflections.
Figure 4.3 Bladed disc system configuration and deflections.
Figure 4.4 Bladed disc system configuration and deflections when transverse shear is also included.
Figure 4.5 Sand pattern illustrating mode shapes of vibrating bladed disc models.
Figure 4.6 Variation of the first six coupled bladed disc frequencies with nodal diameters, Model I.
Figure 4.7 Variation of the first six coupled bladed disc frequencies with nodal diameters, Model II.
Figure 4.8 Influence of \(R/b \) ratio on the first coupled bladed disc frequency.
Figure 4.9 Influence of blade aspect ratio on the first coupled bladed disc frequency.
Figure 4.10 Influence of blade stagger angle on the first coupled bladed disc frequency.
Figure 4.11 Influence of R/b ratio on the higher coupled frequencies.
Figure 4.12 Influence of blade aspect ratio on higher coupled frequencies.
Figure 4.13 Influence of stagger angle on the higher coupled frequencies.
Number of castellations = 113

Number of blades = 113

Figure 4.14 Details at the blade disc attachment of the turbine rotor.
TABLE 2.1

Matrix $\{B_{d}\}$

<table>
<thead>
<tr>
<th>Term</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{r_2^2}{(r_2 - r_1)^3}$</td>
<td>$\frac{r_1 r_2}{(r_2 - r_1)}$</td>
</tr>
<tr>
<td>$\frac{r_1^2}{(r_2 - r_1)^2}$</td>
<td>$\frac{r_1^2 (3r_2 - r_1)}{(r_2 - r_1)^3}$</td>
</tr>
<tr>
<td>$\frac{r_1^2}{(r_2 - r_1)^2}$</td>
<td>$\frac{r_1 r_2}{r_2 - r_1}$</td>
</tr>
<tr>
<td>$\frac{6r_1 r_2}{(r_2 - r_1)^3}$</td>
<td>$\frac{r_2 (2r_1 + r_2)}{(r_2 - r_1)^2}$</td>
</tr>
<tr>
<td>$\frac{r_1}{(r_2 - r_1)^3}$</td>
<td>$\frac{6r_1 r_2}{(r_2 - r_1)^3}$</td>
</tr>
<tr>
<td>$\frac{r_1 (r_1 + r_2)}{(r_2 - r_1)^3}$</td>
<td>$\frac{r_1 (2r_1 + r_2)}{(r_2 - r_1)^2}$</td>
</tr>
<tr>
<td>$\frac{r_1}{(r_2 - r_1)^3}$</td>
<td>$\frac{r_1 (r_1 + r_2)}{(r_2 - r_1)^3}$</td>
</tr>
<tr>
<td>$\frac{2}{(r_2 - r_1)^3}$</td>
<td>$\frac{1}{(r_2 - r_1)^2}$</td>
</tr>
<tr>
<td>$\frac{2}{(r_2 - r_1)^3}$</td>
<td>$\frac{2}{(r_2 - r_1)^3}$</td>
</tr>
<tr>
<td>$\frac{1}{(r_2 - r_1)^2}$</td>
<td>$\frac{1}{(r_2 - r_1)^2}$</td>
</tr>
</tbody>
</table>
TABLE 2.2
Matrix \([kd]\) of the thin plate bending annular element.

<table>
<thead>
<tr>
<th>(P_{-3}(m^4+2m^2-2vm^2))</th>
<th>(P_{-2}(m^4-m^2))</th>
<th>(P_{-1}(m^4-4m^2-2vm^2))</th>
<th>(P_0(m^4-7m^2-2vm^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{-1}(m^4-2m^2+1))</td>
<td></td>
<td>(P_{-1}(m^4-3m^2-2vm^2+2v+2))</td>
<td>(P_{-1}(m^4-4m^2-6vm^2+6v+3))</td>
</tr>
<tr>
<td>symmetrical</td>
<td></td>
<td>(P_1(m^4-4m^2-6vm^2+8v+8))</td>
<td>(P_2(m^4-m^2-12vm^2+18v+18))</td>
</tr>
<tr>
<td></td>
<td>(P_{-1}(m^4-4m^2+2vm^2+2v+2))</td>
<td>(P_1(m^4-4m^2-6vm^2+6v+3))</td>
<td>(P_3(m^4+2m^2-20vm^2+36v+45))</td>
</tr>
</tbody>
</table>

\[P_i = \frac{C_{np}}{12(1-v^2)} \int h^3(r)r^i dr \]

TABLE 2.3
Matrix \([md]\) of the thin plate bending annular element.

<table>
<thead>
<tr>
<th>(Q_1)</th>
<th>(Q_2)</th>
<th>(Q_3)</th>
<th>(Q_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_3)</td>
<td>(Q_4)</td>
<td>(Q_5)</td>
<td></td>
</tr>
<tr>
<td>Symmetrical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[Q_i = C_{np} \int h(r)r^i dr \]

\[r_2 \]

\[r_1 \]

\[Q_6 \]

\[Q_7 \]
TABLE 2.4

The deflection vector \(\{q_d^0\} \) and the matrices \([B_d^0]\), \([k_d^0]\) and \([m_d^0]\) of the thin plate bending circular element with \(m = 0 \).

\[
\{q_d^0\}^T = \begin{bmatrix} \bar{w}_1 & \bar{w}_2 & \bar{\theta}_2 \end{bmatrix}
\]

\[
[B_d] = \begin{bmatrix}
1 & 0 & 0 \\
-\frac{3}{r_2} & \frac{1}{r_2} & \frac{3}{r_2} \\
\frac{2}{r_2} & -\frac{1}{r_2} & -\frac{2}{r_2}
\end{bmatrix}
\]

\[
[k_d^0] = \begin{bmatrix}
0 & 0 & 0 \\
0 & P_1(8\nu+8) & P_2(18\nu+18) \\
0 & P_2(18\nu+18) & P_3(36\nu+45)
\end{bmatrix}
\]

\[
[m_d^0] = \begin{bmatrix}
Q_1 & Q_2 & Q_4 \\
Q_2 & Q_5 & Q_6 \\
Q_4 & Q_6 & Q_7
\end{bmatrix}
\]

\[
P_i = 2\pi \frac{E}{12(1-\nu^2)} \frac{r_2}{\int h^3(r)r \, dr} ; \quad Q_i = 2\pi \frac{r_2}{\int \rho h(r)r \, dr}
\]
TABLE 2.5

The deflection vector \(\{q_d^0\} \) and the matrices \([B_d^0], [k_d^0] \) and \([m_d^0] \) of the thin plate bending circular element with \(m = 1 \).

\[
\{q_d^0\}^T = \begin{bmatrix} 0 & \ -2 \ & 0 \end{bmatrix}
\]

\[
[B_d^0] = \begin{bmatrix}
-1 & 0 & 0 \\
\frac{2}{r_2} & -\frac{3}{r_2} & \frac{1}{r_2} \\
-\frac{1}{r_2} & -\frac{2}{r_2} & -\frac{1}{r_2}
\end{bmatrix}
\]

\[
[k_d^0] = \begin{bmatrix}
0 & 0 & 0 \\
0 & P_1(7+2v) & P_2(18+6v) \\
0 & P_2(18+6v) & P_3(48+16v)
\end{bmatrix}
\]

\[
[m_d^0] = \begin{bmatrix}
Q_3 & Q_4 & Q_5 \\
Q_4 & Q_5 & Q_6 \\
Q_5 & Q_6 & Q_7
\end{bmatrix}
\]

\[
P_1 = \frac{\pi E}{12(1-v^2)} \int_0^{r_2} \frac{r^2}{h^3(r)} r^4 dr ; \quad Q_1 = \frac{r_2}{\pi} \int_0^{r_2} \rho h(r) r^4 dr
\]
The deflection vector \(\{q_d^0\} \) and the matrices \([b_d^0], [k_d^0] \) and \([m_d^0] \) of the thin plate bending circular element with \(m = 2, 4, 6, \ldots \)

\[
\{q_d^0\}^T = \begin{bmatrix} \bar{w}_1 & \bar{\theta}_2 \end{bmatrix}
\]

\[
[b_d^0] = \begin{bmatrix}
\frac{2}{r_2} & \frac{1}{r_2} \\
\frac{2}{r_2} & -\frac{1}{r_2}
\end{bmatrix}
\]

\[
[k_d^0] = \begin{bmatrix}
\tilde{P}_1 (m^4 - 2m^2 + 6m^2v - 1) & \tilde{P}_2 (m^4 - 2m^2 + 6m^2v - 18) \\
\tilde{P}_2 (m^4 - 2m^2 + 6m^2v - 18) & \tilde{P}_3 (m^4 + 2m^2 + 20m^2v + 36)
\end{bmatrix}
\]

\[
[m_d^0] = \begin{bmatrix}
Q_5 \\
Q_6 \\
Q_7
\end{bmatrix}
\]

\[
P_1 = \frac{\pi E}{12(1-\nu^2)} \int_0^{r_2} r^4 h^3(r) r^4 \, dr ; \quad Q_1 = \frac{\pi}{\mu} \int_0^{r_2} \frac{r^4}{r^4} \, dr
\]
TABLE 2.7
Non-dimensional frequency λ of a uniform thickness circular plate; simply supported at the outer boundary, calculated using thin plate bending circular and annular elements. $\nu = 0.33$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact (42)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>4.99</td>
<td>4.98</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>39.66</td>
<td>30.20</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>85.78</td>
<td>74.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>188.33</td>
<td>143.28</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>14.68</td>
<td>13.96</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>60.27</td>
<td>52.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>121.75</td>
<td>104.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>219.32</td>
<td>193.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.62</td>
<td>25.85</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>60.27</td>
<td>77.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>121.75</td>
<td>137.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>219.32</td>
<td>237.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.62</td>
<td>25.85</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>68.07</td>
<td>58.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>145.01</td>
<td>122.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>252.82</td>
<td>217.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>334.98</td>
<td>311.50</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>140.55</td>
<td>101.30</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>201.62</td>
<td>187.65</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>475.62</td>
<td>303.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>452.45</td>
<td>415.34</td>
</tr>
</tbody>
</table>
TABLE 2.8

Non-dimensional frequency λ of a uniform thickness circular plate; clamped at the outer boundary, calculated using thin plate bending circular and annular elements. $v = 0.33$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact (42)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10.25</td>
<td>10.22</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>40.25</td>
<td>39.84</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>115.15</td>
<td>90.12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>161.71</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>23.66</td>
<td>21.33</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>66.58</td>
<td>61.10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>166.07</td>
<td>121.69</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>218.37</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>35.21</td>
<td>34.91</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>101.94</td>
<td>85.21</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>156.19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>273.86</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>74.46</td>
<td>69.83</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>211.83</td>
<td>141.22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>245.65</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>388.00</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>128.22</td>
<td>114.77</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>437.52</td>
<td>210.92</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>345.70</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>518.53</td>
</tr>
<tr>
<td>m</td>
<td>n</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>9.06</td>
<td>9.07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35.81</td>
<td>38.39</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>76.63</td>
<td>88.14</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>183.79</td>
<td>156.49</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>20.41</td>
<td>20.52</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>63.72</td>
<td>60.11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>138.10</td>
<td>120.01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>278.11</td>
<td>214.48</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5.27</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>48.83</td>
<td>35.34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>94.95</td>
<td>84.91</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>250.66</td>
<td>154.72</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>21.86</td>
<td>21.53</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>88.75</td>
<td>75.43</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>183.58</td>
<td>142.66</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>297.69</td>
<td>242.91</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>47.19</td>
<td>46.92</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>171.67</td>
<td>126.29</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>263.69</td>
<td>213.50</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>494.18</td>
<td>339.32</td>
</tr>
</tbody>
</table>
TABLE 2.9

Non-dimensional frequency λ of a uniform thickness circular plate, free at the outer boundary, calculated using thin plate bending circular and annular elements. $\nu = 0.33$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact (42)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>9.06</td>
<td>9.07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35.81</td>
<td>38.39</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>76.63</td>
<td>88.14</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>183.79</td>
<td>156.49</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>20.41</td>
<td>20.52</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>63.72</td>
<td>60.11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>138.10</td>
<td>120.01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>278.11</td>
<td>214.48</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5.27</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>48.83</td>
<td>35.34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>94.95</td>
<td>84.91</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>250.66</td>
<td>154.72</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>21.86</td>
<td>21.54</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>88.75</td>
<td>75.43</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>183.58</td>
<td>142.66</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>297.69</td>
<td>242.91</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>47.19</td>
<td>46.92</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>171.67</td>
<td>126.29</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>263.69</td>
<td>213.50</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>494.18</td>
<td>339.32</td>
</tr>
</tbody>
</table>
TABLE 2.10

Non-dimensional frequency λ of a uniform thickness annular plate, simply supported at the outer boundary, calculated using thin plate bending annular elements. $v = 0.33$ $a/b = 0.001$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>4.49</td>
<td>4.98</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>38.80</td>
<td>30.39</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>176.23</td>
<td>85.68</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>185.98</td>
<td>143.22</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>14.68</td>
<td>13.96</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>60.27</td>
<td>52.18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>145.10</td>
<td>121.70</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>219.33</td>
<td>193.29</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>30.29</td>
<td>25.84</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>165.30</td>
<td>77.63</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>435.67</td>
<td>177.93</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>516.70</td>
<td>234.47</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>44.05</td>
<td>41.08</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>381.80</td>
<td>106.88</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>907.25</td>
<td>200.24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1176.41</td>
<td>284.08</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>65.46</td>
<td>58.41</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>686.25</td>
<td>142.49</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1564.80</td>
<td>244.90</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2102.24</td>
<td>334.48</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>94.73</td>
<td>78.36</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1077.49</td>
<td>172.75</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2409.66</td>
<td>325.78</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3290.88</td>
<td>389.94</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>131.44</td>
<td>101.16</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1555.46</td>
<td>201.56</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3441.95</td>
<td>438.60</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4742.59</td>
<td>451.86</td>
</tr>
</tbody>
</table>
TABLE 2.11
Non-dimensional frequency λ of a uniform thickness annular plate, clamped at the outer boundary, calculated using thin plate bending annular elements. $\nu = 0.33 \quad a/b = 0.001$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>10.24</td>
<td>10.22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>40.24</td>
<td>39.88</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>114.49</td>
<td>90.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>528.76</td>
<td>161.66</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>23.66</td>
<td>21.27</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>66.56</td>
<td>61.10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>165.85</td>
<td>121.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>218.23</td>
<td>199.91</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>103.70</td>
<td>34.91</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>101.58</td>
<td>85.20</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>493.31</td>
<td>156.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>273.81</td>
<td>244.08</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>248.69</td>
<td>53.47</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>138.14</td>
<td>112.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1135.96</td>
<td>199.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>329.13</td>
<td>291.10</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>450.40</td>
<td>74.35</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>200.97</td>
<td>141.21</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2033.55</td>
<td>245.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>386.85</td>
<td>340.89</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>709.10</td>
<td>98.65</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>289.64</td>
<td>174.19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3185.06</td>
<td>294.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>447.69</td>
<td>393.53</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1024.98</td>
<td>127.91</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>401.81</td>
<td>210.87</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4591.14</td>
<td>3451.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>517.78</td>
<td>448.93</td>
</tr>
</tbody>
</table>
TABLE 2.12

Non-dimensional frequency λ of a uniform thickness annular plate, free at the outer boundary, calculated using thin plate bending annular elements. $v = 0.33 \quad a/b = 0.001$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact (42)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>9.07</td>
<td>9.07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35.72</td>
<td>38.38</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>76.84</td>
<td>88.15</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>167.47</td>
<td>156.41</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>20.56</td>
<td>20.51</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>62.75</td>
<td>59.88</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>129.74</td>
<td>119.18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>278.12</td>
<td>198.74</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5.27</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>47.21</td>
<td>35.28</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>191.86</td>
<td>84.42</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>245.65</td>
<td>153.64</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>12.51</td>
<td>12.25</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>63.01</td>
<td>53.02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>430.99</td>
<td>111.99</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>265.01</td>
<td>191.14</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>21.84</td>
<td>21.53</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>86.26</td>
<td>73.39</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>770.95</td>
<td>142.46</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>294.05</td>
<td>231.60</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>33.26</td>
<td>33.07</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>119.00</td>
<td>96.53</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1208.66</td>
<td>175.75</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>355.21</td>
<td>274.96</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>47.09</td>
<td>46.83</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>160.85</td>
<td>122.41</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1743.73</td>
<td>211.81</td>
</tr>
<tr>
<td></td>
<td>3'</td>
<td>458.67</td>
<td>321.17</td>
</tr>
</tbody>
</table>
TABLE 2.13

Non-dimensional frequency λ of a uniform thickness annular plate, simply supported at the outer boundary, calculated using thin plate bending annular elements. $v = 0.3$ $a/b = 0.1$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact (λ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4.91</td>
<td>4.85</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33.43</td>
<td>29.52</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>95.77</td>
<td>75.36</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>176.72</td>
<td>145.31</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>14.39</td>
<td>13.88</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>58.65</td>
<td>48.19</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>162.37</td>
<td>102.03</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>214.36</td>
<td>178.39</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>27.95</td>
<td>25.40</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>83.68</td>
<td>69.46</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>332.49</td>
<td>133.84</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>258.08</td>
<td>231.03</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>43.41</td>
<td>39.96</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>128.17</td>
<td>94.81</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>589.09</td>
<td>171.41</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>325.32</td>
<td>280.64</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>60.38</td>
<td>56.88</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>192.81</td>
<td>122.32</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>932.38</td>
<td>213.07</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>447.93</td>
<td>329.02</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>80.96</td>
<td>76.27</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>275.54</td>
<td>152.58</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1371.87</td>
<td>256.92</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>614.90</td>
<td>380.85</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>105.94</td>
<td>98.10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>375.82</td>
<td>185.86</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1907.00</td>
<td>818.49</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>437.80</td>
</tr>
</tbody>
</table>
TABLE 2.14

Non-dimensional frequency A of a uniform thickness annular plate, clamped at the outer boundary, calculated using thin plate bending annular elements. $v = 0.3$ $a/b = 0.1$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact (43)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 4 8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10.27 10.21 10.17 10.16</td>
<td>10.16 39.49</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>51.68 39.87 39.65 39.54</td>
<td>90.38</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>105.67 91.27 90.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>253.03 166.21 164.71</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>22.64 21.31 21.21 21.20</td>
<td>21.15 59.98</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>126.95 63.14 60.39 60.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>144.28 119.30 117.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>332.77 197.84 193.43</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>45.15 34.70 34.56 34.54</td>
<td>34.53 83.44</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>283.22 93.09 83.84 83.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>201.48 153.20 151.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>559.97 256.34 238.98</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>83.44 51.89 51.05 50.99</td>
<td>51.06</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>514.65 127.73 111.49 110.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>292.84 191.92 189.60 189.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>899.12 316.16 288.33</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>134.84 72.30 69.77 69.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>829.15 165.91 141.00 140.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>425.51 236.25 229.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1350.27 373.64 339.67</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>199.05 95.89 90.95 90.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1229.88 212.79 173.04 171.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>594.00 284.83 272.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1919.23 432.54 392.52</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>276.34 122.80 114.58 114.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1718.04 270.79 208.30 206.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>796.02 336.24 316.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2609.34 495.64 447.84</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2.15

Non-dimensional frequency λ of a uniform thickness annular plate, free at the outer boundary, calculated using thin plate bending annular elements. $v = 0.3$ \hspace{1cm} $a/b = 0.1$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>8.83</td>
<td>8.79</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35.44</td>
<td>38.18</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>89.89</td>
<td>89.62</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>112.25</td>
<td>159.96</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>20.50</td>
<td>20.42</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>61.02</td>
<td>59.39</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>133.17</td>
<td>117.80</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>175.70</td>
<td>195.53</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5.31</td>
<td>5.30</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>39.38</td>
<td>34.99</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>110.10</td>
<td>89.63</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>351.47</td>
<td>183.34</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>12.49</td>
<td>12.44</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>61.62</td>
<td>53.24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>152.80</td>
<td>121.36</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>611.61</td>
<td>253.48</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>21.98</td>
<td>21.85</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>83.26</td>
<td>74.45</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>218.44</td>
<td>155.88</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>965.55</td>
<td>310.02</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>33.69</td>
<td>33.52</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>106.91</td>
<td>98.36</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>305.23</td>
<td>196.83</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1416.29</td>
<td>345.78</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>47.57</td>
<td>47.43</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>134.62</td>
<td>124.92</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>411.76</td>
<td>243.63</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1965.22</td>
<td>382.73</td>
</tr>
</tbody>
</table>
TABLE 2.16

Non-dimensional frequency λ of a uniform thickness annular plate, simply supported at the outer boundary, calculated using thin plate bending annular elements. $\nu = 0.3$ $a/b = 0.5$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>5.09</td>
<td>5.08</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>74.42</td>
<td>66.02</td>
</tr>
<tr>
<td>2</td>
<td>274.06</td>
<td>228.44</td>
<td>204.83</td>
</tr>
<tr>
<td>3</td>
<td>459.05</td>
<td>427.62</td>
<td>421.60</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11.71</td>
<td>11.61</td>
</tr>
<tr>
<td>2</td>
<td>277.19</td>
<td>231.35</td>
<td>207.98</td>
</tr>
<tr>
<td>3</td>
<td>460.64</td>
<td>430.40</td>
<td>424.37</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>22.78</td>
<td>22.40</td>
</tr>
<tr>
<td>2</td>
<td>286.58</td>
<td>239.98</td>
<td>217.30</td>
</tr>
<tr>
<td>3</td>
<td>465.36</td>
<td>438.75</td>
<td>432.63</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>36.54</td>
<td>35.70</td>
</tr>
<tr>
<td>2</td>
<td>302.30</td>
<td>254.09</td>
<td>232.36</td>
</tr>
<tr>
<td>3</td>
<td>473.10</td>
<td>452.60</td>
<td>446.25</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>53.47</td>
<td>52.10</td>
</tr>
<tr>
<td>2</td>
<td>324.39</td>
<td>273.35</td>
<td>252.62</td>
</tr>
<tr>
<td>3</td>
<td>483.74</td>
<td>471.84</td>
<td>465.02</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>73.64</td>
<td>71.70</td>
</tr>
<tr>
<td>2</td>
<td>352.82</td>
<td>297.38</td>
<td>277.52</td>
</tr>
<tr>
<td>3</td>
<td>497.26</td>
<td>496.29</td>
<td>488.67</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>96.74</td>
<td>94.27</td>
</tr>
<tr>
<td>2</td>
<td>387.69</td>
<td>325.87</td>
<td>306.67</td>
</tr>
<tr>
<td>3</td>
<td>513.25</td>
<td>525.77</td>
<td>516.93</td>
</tr>
</tbody>
</table>
Non-dimensional frequency λ of a uniform thickness annular plate, clamped at the outer boundary, calculated using thin plate bending annular elements. $v = 0.3$ $a/b = 0.5$

<table>
<thead>
<tr>
<th>m</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>Exact</td>
<td>(43)</td>
</tr>
<tr>
<td>0</td>
<td>17.76</td>
<td>17.24</td>
<td>17.72</td>
<td>17.72</td>
<td>17.68</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>131.10</td>
<td>93.68</td>
<td>93.94</td>
<td>93.85</td>
<td>93.85</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>289.62</td>
<td>253.96</td>
<td>252.34</td>
<td>252.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>736.51</td>
<td>495.48</td>
<td>490.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>22.21</td>
<td>22.05</td>
<td>22.02</td>
<td>22.02</td>
<td>21.98</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>135.43</td>
<td>97.19</td>
<td>97.48</td>
<td>97.38</td>
<td>97.32</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>292.39</td>
<td>256.85</td>
<td>255.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>739.88</td>
<td>498.04</td>
<td>492.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>33.04</td>
<td>32.22</td>
<td>32.12</td>
<td>32.12</td>
<td>32.05</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>148.12</td>
<td>107.35</td>
<td>107.63</td>
<td>107.50</td>
<td>107.56</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>300.69</td>
<td>265.44</td>
<td>263.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>750.00</td>
<td>505.72</td>
<td>500.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>48.17</td>
<td>45.99</td>
<td>45.83</td>
<td>45.81</td>
<td>45.77</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>168.39</td>
<td>123.29</td>
<td>123.27</td>
<td>123.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>314.38</td>
<td>279.52</td>
<td>277.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>766.86</td>
<td>518.54</td>
<td>513.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>67.49</td>
<td>63.24</td>
<td>63.04</td>
<td>63.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>195.41</td>
<td>144.11</td>
<td>143.36</td>
<td>143.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>333.30</td>
<td>298.73</td>
<td>296.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>790.50</td>
<td>536.49</td>
<td>531.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>91.22</td>
<td>84.04</td>
<td>83.84</td>
<td>83.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>228.61</td>
<td>169.35</td>
<td>167.45</td>
<td>167.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>357.37</td>
<td>322.67</td>
<td>320.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>820.76</td>
<td>559.54</td>
<td>553.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>119.40</td>
<td>108.21</td>
<td>107.99</td>
<td>107.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>267.79</td>
<td>198.88</td>
<td>195.61</td>
<td>195.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>386.26</td>
<td>350.98</td>
<td>348.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>858.16</td>
<td>587.64</td>
<td>581.22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Non-dimensional frequency λ of a uniform thickness annular plate, free at the outer boundary, calculated using thin plate bending annular elements, $v = 0.3$, $a/b = 0.5$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>(43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>9.32</td>
<td>9.31</td>
<td>9.31</td>
<td>9.32</td>
<td>9.32</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>85.79</td>
<td>91.97</td>
<td>92.29</td>
<td>92.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>280.03</td>
<td>250.86</td>
<td>249.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>330.95</td>
<td>477.12</td>
<td>486.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>17.17</td>
<td>17.20</td>
<td>17.20</td>
<td>17.18</td>
<td>17.18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>95.92</td>
<td>96.34</td>
<td>96.27</td>
<td>96.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>273.85</td>
<td>253.73</td>
<td>252.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>597.97</td>
<td>492.03</td>
<td>490.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4.27</td>
<td>4.27</td>
<td>4.27</td>
<td>4.27</td>
<td>4.28</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>31.50</td>
<td>31.21</td>
<td>31.12</td>
<td>31.12</td>
<td>31.06</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>123.79</td>
<td>107.60</td>
<td>107.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>360.23</td>
<td>294.55</td>
<td>283.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>11.43</td>
<td>11.43</td>
<td>11.43</td>
<td>11.43</td>
<td>11.43</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>48.40</td>
<td>47.66</td>
<td>47.48</td>
<td>47.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>141.73</td>
<td>125.26</td>
<td>124.87</td>
<td>124.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>394.27</td>
<td>309.17</td>
<td>279.35</td>
<td>277.75</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>21.08</td>
<td>21.07</td>
<td>21.07</td>
<td>21.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>68.40</td>
<td>66.99</td>
<td>66.75</td>
<td>66.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>164.96</td>
<td>147.74</td>
<td>146.75</td>
<td>146.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>414.03</td>
<td>329.17</td>
<td>300.40</td>
<td>298.57</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>33.00</td>
<td>32.99</td>
<td>32.98</td>
<td>32.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>91.96</td>
<td>89.66</td>
<td>89.41</td>
<td>89.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>192.72</td>
<td>174.59</td>
<td>172.68</td>
<td>172.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>439.56</td>
<td>354.26</td>
<td>326.35</td>
<td>324.20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>47.10</td>
<td>47.09</td>
<td>47.07</td>
<td>47.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>119.19</td>
<td>115.74</td>
<td>115.52</td>
<td>115.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>224.70</td>
<td>202.69</td>
<td>202.61</td>
<td>202.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>471.07</td>
<td>384.23</td>
<td>356.73</td>
<td>354.23</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2.19

Non-dimensional frequency λ of a free circular plate with parabolic thickness variation, modelled with parabolic thickness variation annular thin plate bending elements. $v = 0.3$, $a/b = 0.001$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>9.55</td>
<td>9.67</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20.16</td>
<td>29.26</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>42.07</td>
<td>54.79</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>17.80</td>
<td>17.80</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>42.27</td>
<td>41.93</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>71.12</td>
<td>74.99</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5.80</td>
<td>5.80</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>26.65</td>
<td>25.98</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>225.72</td>
<td>55.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44.97</td>
<td>36.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>537.80</td>
<td>75.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>157.18</td>
<td>109.24</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>10.04</td>
<td>10.04</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.04</td>
<td>10.04</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.04</td>
<td>10.04</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.04</td>
<td>10.04</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10.04</td>
<td>10.04</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>10.04</td>
<td>10.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>14.64</td>
<td>14.26</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>42.72</td>
<td>42.10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>220.04</td>
<td>128.16</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>18.50</td>
<td>18.34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>52.04</td>
<td>50.78</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>115.19</td>
<td>91.72</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>314.87</td>
<td>150.22</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>22.70</td>
<td>22.47</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>62.57</td>
<td>58.50</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>138.97</td>
<td>104.83</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>436.97</td>
<td>174.69</td>
</tr>
</tbody>
</table>
TABLE 2.20
Non-dimensional frequency λ of a free circular plate with parabolic thickness variation, modelled with linear thickness variation annular thin plate bending elements. $v = 0.3 \quad a/b = 0.001$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact (46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>9.33</td>
<td>9.67</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18.11</td>
<td>29.78</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>41.22</td>
<td>57.64</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>16.98</td>
<td>17.80</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>38.56</td>
<td>41.81</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>67.72</td>
<td>73.69</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4.73</td>
<td>5.80</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>19.32</td>
<td>25.87</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>24.55</td>
<td>51.80</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>123.58</td>
<td>89.61</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>7.14</td>
<td>10.04</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>36.79</td>
<td>33.92</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>593.60</td>
<td>65.92</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>153.19</td>
<td>105.91</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>10.12</td>
<td>14.20</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>64.37</td>
<td>41.95</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1074.67</td>
<td>77.95</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2122.26</td>
<td>121.49</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>14.25</td>
<td>18.33</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100.74</td>
<td>49.97</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1690.57</td>
<td>89.99</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1690.57</td>
<td>137.96</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>19.57</td>
<td>22.44</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>145.52</td>
<td>57.98</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2442.14</td>
<td>101.76</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>145.52</td>
<td>153.98</td>
</tr>
</tbody>
</table>
TABLE 2.21

Comparison of non-dimensional frequency λ for a uniform free plate, calculated using sector elements (54), and thin plate bending annular elements. $\nu = 0.33$

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>3×12 grid sector elements</th>
<th>Annular elements $a/b = 0.001$</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D.O.F. = 55</td>
<td>$N=2$ D.O.F. = 6</td>
<td>$N=4$ D.O.F. = 10 (42)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>8.98</td>
<td>9.07</td>
<td>9.07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>38.12</td>
<td>35.72</td>
<td>38.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.40</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>20.24</td>
<td>20.56</td>
<td>20.52</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>62.75</td>
<td>59.75</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5.91; 5.94</td>
<td>5.26</td>
<td>5.24</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>36.01</td>
<td>35.33</td>
<td>35.50</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>12.98</td>
<td>12.26</td>
<td>12.25</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>54.28</td>
<td>53.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53.00</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>23.02</td>
<td>21.54</td>
<td>21.50</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>75.32</td>
<td>73.45</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>34.18; 34.44</td>
<td>33.11</td>
<td>33.10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>98.89</td>
<td>96.69</td>
<td>96.43</td>
</tr>
</tbody>
</table>
TABLE 2.22

Matrix $[k^a_d]$ of the thin plate bending annular element

<table>
<thead>
<tr>
<th>$m^2 S_{-1}$</th>
<th>$m^2 S_0$</th>
<th>$m^2 S_1$</th>
<th>$m^2 S_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_1 + m^2 S_1$</td>
<td>$2R_2 + m^2 S_2$</td>
<td>$3R_3 + m^2 S_3$</td>
<td></td>
</tr>
</tbody>
</table>

Symmetrical

$$R_x = \frac{1}{r} \int r^2 h(r) \sigma_x(r) \, dr$$

$$S_x = \frac{1}{r} \int r^2 h(r) \sigma_y(r) \, dr$$

TABLE 2.23

Matrix $[k^p_d]$ of the plane stress annular element

<table>
<thead>
<tr>
<th>Q_{-1}</th>
<th>$(1 + \nu) , Q_0$</th>
<th>$(1 + 2\nu) , Q_1$</th>
<th>$(1 + 3\nu) , Q_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2(1 + \nu) , Q_1$</td>
<td>$3(1 + \nu) , Q_2$</td>
<td>$4(1 + \nu) , Q_3$</td>
</tr>
</tbody>
</table>

Symmetrical

$$Q_1 = \frac{2\pi E}{1-\nu^2} \int_{r_1}^{r_2} \frac{r^2}{r_1} h(r) \, r^4 \, dr$$
TABLE 2.24

Matrix \([k_d^P]\) of the plane stress circular element

\[
\begin{array}{ccc}
2(1 + \nu) Q_1 & 3(1 + \nu) Q_2 & 4(1 + \nu) Q_3 \\
\text{Symmetrical} & .(5 + 4\nu) Q_3 & (7 + 5\nu) Q_4 \\
& & (10 + 6\nu) Q_5
\end{array}
\]

\[Q_4 = \frac{2E}{1-\nu^2} \int_0^{r_2} h(r) r^4 \, dr\]
TABLE 2.25

Radial stress coefficients $p = \left(\frac{\sigma}{\rho \Omega^2 b^2} \right) \times 10^h$ for a uniform annular disc rotating with constant angular velocity Ω. $a/b = 0.001 \quad v = 0.3$

<table>
<thead>
<tr>
<th>r/b</th>
<th>Number of elements</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0.001</td>
<td>4428</td>
<td>4475</td>
</tr>
<tr>
<td>0.063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.251</td>
<td>3864</td>
<td>3865</td>
</tr>
<tr>
<td>0.313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.501</td>
<td>3091</td>
<td>3091</td>
</tr>
<tr>
<td>0.563</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.625</td>
<td>2512</td>
<td>2512</td>
</tr>
<tr>
<td>0.688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.750</td>
<td>1803</td>
<td>1803</td>
</tr>
<tr>
<td>0.813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.875</td>
<td>966</td>
<td>966</td>
</tr>
<tr>
<td>0.938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE 2.26

Tangential stress coefficients $q = \left(\frac{Q}{p} \frac{\Omega^2 b^2}{n^2} \right) x 10^4$ for a uniform annular disc rotating with constant angular velocity Ω. $a/b = 0.001 \quad \nu = 0.3$

<table>
<thead>
<tr>
<th>r/b</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>5153</td>
<td>5332</td>
<td>5594</td>
<td>5960</td>
<td>6473</td>
<td>8250</td>
</tr>
<tr>
<td>0.063</td>
<td></td>
<td></td>
<td></td>
<td>4114</td>
<td>4116</td>
<td></td>
</tr>
<tr>
<td>0.126</td>
<td></td>
<td></td>
<td></td>
<td>4087</td>
<td>4087</td>
<td>4088</td>
</tr>
<tr>
<td>0.188</td>
<td></td>
<td></td>
<td></td>
<td>4041</td>
<td>4041</td>
<td></td>
</tr>
<tr>
<td>0.251</td>
<td></td>
<td>3975</td>
<td>3976</td>
<td>3976</td>
<td>3976</td>
<td></td>
</tr>
<tr>
<td>0.313</td>
<td></td>
<td>3892</td>
<td>3892</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.376</td>
<td></td>
<td>3790</td>
<td>3790</td>
<td>3790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.438</td>
<td></td>
<td>3669</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.501</td>
<td>3530</td>
<td>3530</td>
<td>3530</td>
<td>3530</td>
<td>3530</td>
<td></td>
</tr>
<tr>
<td>0.563</td>
<td></td>
<td></td>
<td></td>
<td>3372</td>
<td>3372</td>
<td></td>
</tr>
<tr>
<td>0.625</td>
<td></td>
<td></td>
<td>3196</td>
<td>3196</td>
<td>3196</td>
<td></td>
</tr>
<tr>
<td>0.688</td>
<td></td>
<td></td>
<td>3001</td>
<td>3001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.750</td>
<td>2788</td>
<td>2788</td>
<td>2788</td>
<td>2788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.813</td>
<td></td>
<td></td>
<td></td>
<td>2556</td>
<td>2556</td>
<td></td>
</tr>
<tr>
<td>0.875</td>
<td></td>
<td></td>
<td>2306</td>
<td>2306</td>
<td>2306</td>
<td></td>
</tr>
<tr>
<td>0.938</td>
<td></td>
<td></td>
<td>2037</td>
<td>2037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
</tr>
</tbody>
</table>
Radial stress coefficients \(p = \left(\sigma_r / \rho \Omega^2 b^2 \right) \times 10^4 \) for a uniform, annular disc rotating with constant angular velocity \(\Omega \) and \(a/b = 0.2 \quad v = 0.3 \).

<table>
<thead>
<tr>
<th>(\tau/b)</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>2023</td>
<td>965</td>
<td>316</td>
<td>77</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>0.25</td>
<td>2023</td>
<td>965</td>
<td>316</td>
<td>77</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>0.30</td>
<td>2074</td>
<td>2084</td>
<td>2085</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>2437</td>
<td>2438</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>2555</td>
<td>2593</td>
<td>2598</td>
<td>2599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>2594</td>
<td>2599</td>
<td>2599</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>2497</td>
<td>2497</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>2247</td>
<td>2335</td>
<td>2346</td>
<td>2347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>1932</td>
<td>1932</td>
<td>1932</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>1676</td>
<td>1676</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>1392</td>
<td>1392</td>
<td>1392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>1081</td>
<td>1081</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>745</td>
<td>745</td>
<td>745</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>384</td>
<td>384</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>-314</td>
<td>-41</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.95</td>
<td>-314</td>
<td>-41</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.00</td>
<td>-314</td>
<td>-41</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE 2.28

Tangential stress coefficients \(q = \left(\frac{\sigma_t}{p} \Omega^2 b^2 \right) \times 10^4 \) for a uniform annular disc rotating with constant angular velocity \(\Omega \)

\(a/b = 0.2 \) \(\nu = 0.3 \)

<table>
<thead>
<tr>
<th>(r/b)</th>
<th>Number of elements</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td></td>
<td>8736</td>
<td>8579</td>
<td>8413</td>
<td>8343</td>
<td>8324</td>
<td>8320</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6781</td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5907</td>
</tr>
<tr>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5346</td>
</tr>
<tr>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4931</td>
<td>4940</td>
<td>4941</td>
</tr>
<tr>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4624</td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4356</td>
<td>4356</td>
<td>4356</td>
</tr>
<tr>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4117</td>
</tr>
<tr>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td>3869</td>
<td>3890</td>
<td>3893</td>
<td>3893</td>
</tr>
<tr>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3677</td>
</tr>
<tr>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3463</td>
<td>3463</td>
<td>3463</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3247</td>
</tr>
<tr>
<td>0.80</td>
<td></td>
<td></td>
<td>3027</td>
<td>3027</td>
<td>3028</td>
<td>3028</td>
<td>3028</td>
</tr>
<tr>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2802</td>
</tr>
<tr>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2570</td>
</tr>
<tr>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2329</td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td>1978</td>
<td>2066</td>
<td>2079</td>
<td>2680</td>
<td>2080</td>
<td>2080</td>
</tr>
</tbody>
</table>
TABLE 2.29

Radial stress coefficients $p = \left(\frac{\sigma_r}{\rho a^2 b^2} \right) \times 10^4$ for an annular disc with hyperbolic radial thickness variation rotating with constant angular velocity Ω. $a/b = 0.2, \nu = 0.3$

<table>
<thead>
<tr>
<th>r/b</th>
<th>Number of elements</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td></td>
<td>1105</td>
<td>507</td>
<td>167</td>
<td>41</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>883</td>
<td>880</td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
<td>1427</td>
<td>1423</td>
<td>1420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td></td>
<td>2003</td>
<td>1999</td>
<td>1992</td>
<td>1988</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td></td>
<td></td>
<td>2121</td>
<td>2117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td></td>
<td></td>
<td>2184</td>
<td>2176</td>
<td>2173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td>2107</td>
<td>2127</td>
<td>2113</td>
<td>2107</td>
<td>2105</td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td>1995</td>
<td>1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td>1840</td>
<td>1836</td>
<td>1834</td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td>1632</td>
<td>1631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td>1398</td>
<td>1389</td>
<td>1386</td>
<td>1385</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1099</td>
<td>1098</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>773</td>
<td>772</td>
<td>771</td>
</tr>
<tr>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>405</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2.30

Tangential stress coefficients $q = \left(\frac{q_0}{\rho a^2 b^2} \right) \times 10^b$ for an annular disc with hyperbolic radial thickness variation rotating with constant angular velocity Ω. $a/b = 0.2$, $\nu = 0.3$

<table>
<thead>
<tr>
<th>r/b</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>5783</td>
<td>4979</td>
<td>4912</td>
<td>4951</td>
<td>4974</td>
<td>4985</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4070</td>
<td>4079</td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3582</td>
<td>3602</td>
</tr>
<tr>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3334</td>
<td>3340</td>
</tr>
<tr>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3103</td>
<td>3150</td>
</tr>
<tr>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2934</td>
<td>2944</td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2853</td>
<td>2856</td>
</tr>
<tr>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2638</td>
<td>2724</td>
</tr>
<tr>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2751</td>
<td>2759</td>
</tr>
<tr>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2537</td>
<td>2543</td>
</tr>
<tr>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2416</td>
<td>2418</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2248</td>
<td>2266</td>
</tr>
<tr>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2272</td>
<td>2274</td>
</tr>
<tr>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2111</td>
<td>2113</td>
</tr>
<tr>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1927</td>
<td>1932</td>
</tr>
<tr>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1735</td>
<td>1737</td>
</tr>
<tr>
<td>1.00</td>
<td>1403</td>
<td>1449</td>
<td>1499</td>
<td>1514</td>
<td>1519</td>
<td>1520</td>
</tr>
</tbody>
</table>
Radial stress coefficients \(p = \left(\frac{\sigma_r}{Ea} \right) \times 0.4 \) for a uniform annular disc with linear temperature gradient. \(a/b = 0.001 \quad \nu = 0.3 \)

<table>
<thead>
<tr>
<th>(r/b)</th>
<th>Number of elements</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>3575 3612 3662 3717 3755</td>
<td>0</td>
</tr>
<tr>
<td>0.063</td>
<td>3112</td>
<td>3121</td>
</tr>
<tr>
<td>0.126</td>
<td>2910 2912</td>
<td>2914</td>
</tr>
<tr>
<td>0.188</td>
<td>2705</td>
<td>2706</td>
</tr>
<tr>
<td>0.251</td>
<td>2496 2497</td>
<td>2498</td>
</tr>
<tr>
<td>0.313</td>
<td>2289</td>
<td>2289</td>
</tr>
<tr>
<td>0.376</td>
<td>2081</td>
<td>2081</td>
</tr>
<tr>
<td>0.438</td>
<td>1873</td>
<td>1873</td>
</tr>
<tr>
<td>0.501</td>
<td>1664 1665</td>
<td>1665</td>
</tr>
<tr>
<td>0.563</td>
<td>1457</td>
<td>1457</td>
</tr>
<tr>
<td>0.625</td>
<td>1249</td>
<td>1249</td>
</tr>
<tr>
<td>0.688</td>
<td>1041</td>
<td>1041</td>
</tr>
<tr>
<td>0.750</td>
<td>833 833</td>
<td>833</td>
</tr>
<tr>
<td>0.813</td>
<td>624</td>
<td>624</td>
</tr>
<tr>
<td>0.875</td>
<td>416 416</td>
<td>416</td>
</tr>
<tr>
<td>0.938</td>
<td>208 208</td>
<td>208</td>
</tr>
<tr>
<td>1.000</td>
<td>-1 0 0</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE 2.32

Tangential stress coefficients $q = \left(\frac{\sigma_x}{E_a^x} T(b) \right) \times 10^4$ for a
uniform annular disc with linear temperature gradient.
$a/b = 0.001 \quad v = 0.3$

<table>
<thead>
<tr>
<th>r/b</th>
<th>Number of elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0.001</td>
<td>4157</td>
</tr>
<tr>
<td>0.063</td>
<td>2909</td>
</tr>
<tr>
<td>0.126</td>
<td>2494</td>
</tr>
<tr>
<td>0.188</td>
<td>2078</td>
</tr>
<tr>
<td>0.251</td>
<td>1661</td>
</tr>
<tr>
<td>0.313</td>
<td>1245</td>
</tr>
<tr>
<td>0.376</td>
<td>829</td>
</tr>
<tr>
<td>0.438</td>
<td>413</td>
</tr>
<tr>
<td>0.501</td>
<td>-4</td>
</tr>
<tr>
<td>0.563</td>
<td>-420</td>
</tr>
<tr>
<td>0.625</td>
<td>-836</td>
</tr>
<tr>
<td>0.688</td>
<td>-1252</td>
</tr>
<tr>
<td>0.750</td>
<td>-1668</td>
</tr>
<tr>
<td>0.813</td>
<td>-2085</td>
</tr>
<tr>
<td>0.875</td>
<td>-2501</td>
</tr>
<tr>
<td>0.938</td>
<td>-2917</td>
</tr>
<tr>
<td>1.000</td>
<td>-3333</td>
</tr>
</tbody>
</table>
TABLE 2.33

Radial stress coefficients $p = \left(\frac{\sigma_r}{Ea^*} T(b) \right) \times 10^6$ for a uniform annular disc with linear temperature gradient. $a/b = 0.2 \quad \nu = 0.3$

<table>
<thead>
<tr>
<th>r/b</th>
<th>Number of elements</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0.02</td>
<td>1362</td>
<td>650</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>-212</td>
<td>-28</td>
</tr>
</tbody>
</table>
TABLE 2.34

Tangential stress coefficients \(q = \left(\frac{\sigma_x}{Ea^* T(b)} \right) \times 10^6 \) for a uniform annular disc with linear temperature gradient. \(a/b = 0.2 \quad \nu = 0.3 \)

<table>
<thead>
<tr>
<th>(a/b)</th>
<th>Number of elements</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td></td>
<td>5169</td>
<td>5063</td>
<td>4951</td>
<td>4904</td>
<td>4892</td>
<td>4889</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
<td>3555</td>
<td>3556</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
<td>2677</td>
<td>2679</td>
<td>2679</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td></td>
<td></td>
<td>2018</td>
<td>2818</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td></td>
<td>1466</td>
<td>1471</td>
<td>1472</td>
<td>1472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td></td>
<td></td>
<td>993</td>
<td>993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td></td>
<td>555</td>
<td>556</td>
<td>556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td></td>
<td></td>
<td>145</td>
<td>145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td></td>
<td>-263</td>
<td>-249</td>
<td>-247</td>
<td>-247</td>
<td>-247</td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td></td>
<td></td>
<td>-626</td>
<td>-626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td></td>
<td>-996</td>
<td>-996</td>
<td>-996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
<td>-1358</td>
<td>-1358</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td></td>
<td>-1716</td>
<td>-171.5</td>
<td>-1715</td>
<td>-1715</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td></td>
<td></td>
<td>-2068</td>
<td>-2068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td></td>
<td>-2418</td>
<td>-2418</td>
<td>-2418</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td></td>
<td></td>
<td>-2766</td>
<td>-2766</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td>-3180</td>
<td>-3120</td>
<td>-3112</td>
<td>-3111</td>
<td>-3111</td>
<td>-3111</td>
</tr>
</tbody>
</table>
Frequency coefficients λ for a centrally clamped circular membrane disc when stresses calculated using finite elements are used at the nodes of the finite element model and linear variations of stresses are taken within the elements. \(\nu = 0.3 \) \(a/b = 0.001 \)

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Number of elements</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.8624</td>
<td>0.9799</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.188</td>
<td>5.343</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>29.685</td>
<td>25.370</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1.941</td>
<td>2.197</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7.098</td>
<td>7.885</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17.498</td>
<td>18.061</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>37.994</td>
<td>31.284</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3.391</td>
<td>3.752</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>12.294</td>
<td>10.880</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>23.219</td>
<td>22.290</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>54.763</td>
<td>38.116</td>
</tr>
</tbody>
</table>

\(m \) and \(n \) are the mode numbers.
TABLE 2.36

Frequency coefficients \(\lambda \) for a centrally clamped circular membrane disc when exact stresses are used at the nodes of the finite element model and linear variations of stresses are taken within the elements. \(\nu = 0.3 \) \(a/b = 0.001 \)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>Number of elements</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.791</td>
<td>0.998</td>
</tr>
<tr>
<td>1</td>
<td>3.843</td>
<td>5.905</td>
<td>5.95</td>
</tr>
<tr>
<td>2</td>
<td>13.185</td>
<td>14.038</td>
<td>14.20</td>
</tr>
<tr>
<td>3</td>
<td>29.281</td>
<td>25.429</td>
<td>25.75</td>
</tr>
<tr>
<td>1</td>
<td>1.803</td>
<td>2.340</td>
<td>2.35</td>
</tr>
<tr>
<td>2</td>
<td>6.317</td>
<td>8.848</td>
<td>8.95</td>
</tr>
<tr>
<td>3</td>
<td>17.148</td>
<td>18.556</td>
<td>18.85</td>
</tr>
<tr>
<td>2</td>
<td>36.493</td>
<td>31.538</td>
<td>32.05</td>
</tr>
<tr>
<td>1</td>
<td>3.187</td>
<td>4.030</td>
<td>4.05</td>
</tr>
<tr>
<td>2</td>
<td>10.742</td>
<td>12.144</td>
<td>12.30</td>
</tr>
<tr>
<td>3</td>
<td>22.883</td>
<td>23.466</td>
<td>23.85</td>
</tr>
<tr>
<td>3</td>
<td>51.045</td>
<td>38.122</td>
<td>38.70</td>
</tr>
</tbody>
</table>
TABLE 2.37

Frequencies in Hz. of a rotating annular disc, calculated using 8 thin plate bending annular elements, and the variation with speed of rotation.
\(a/b = 0.5, b = 8.0 \text{ in.}, h = 0.04 \text{ in.}, E = 30 \times 10^6 \text{ psi}, \rho_g = 0.283 \text{ lb/in}^3, \nu = 0.3 \)

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Speed of rotation in rpm.</th>
<th>0</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>79</td>
<td>81</td>
<td>86</td>
<td>93</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>515</td>
<td>517</td>
<td>522</td>
<td>530</td>
<td>541</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1477</td>
<td>1479</td>
<td>1483</td>
<td>1491</td>
<td>1502</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2917</td>
<td>2919</td>
<td>2923</td>
<td>2931</td>
<td>2942</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>81</td>
<td>83</td>
<td>91</td>
<td>102</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>525</td>
<td>527</td>
<td>533</td>
<td>542</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1488</td>
<td>1489</td>
<td>1494</td>
<td>1502</td>
<td>1514</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2928</td>
<td>2930</td>
<td>2934</td>
<td>2942</td>
<td>2953</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>89</td>
<td>94</td>
<td>108</td>
<td>127</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>556</td>
<td>558</td>
<td>566</td>
<td>578</td>
<td>594</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1519</td>
<td>1521</td>
<td>1527</td>
<td>1537</td>
<td>1550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2961</td>
<td>2963</td>
<td>2968</td>
<td>2977</td>
<td>2989</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>112</td>
<td>119</td>
<td>140</td>
<td>168</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>607</td>
<td>610</td>
<td>620</td>
<td>636</td>
<td>659</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1573</td>
<td>1575</td>
<td>1582</td>
<td>1594</td>
<td>1610</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3016</td>
<td>3018</td>
<td>3024</td>
<td>3034</td>
<td>3048</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>155</td>
<td>164</td>
<td>188</td>
<td>222</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>679</td>
<td>683</td>
<td>696</td>
<td>717</td>
<td>746</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1648</td>
<td>1651</td>
<td>1660</td>
<td>1674</td>
<td>1694</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3094</td>
<td>3096</td>
<td>3103</td>
<td>3115</td>
<td>3131</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>216</td>
<td>226</td>
<td>252</td>
<td>291</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>772</td>
<td>777</td>
<td>793</td>
<td>819</td>
<td>854</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1746</td>
<td>1750</td>
<td>1760</td>
<td>1778</td>
<td>1802</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3194</td>
<td>3197</td>
<td>3205</td>
<td>3218</td>
<td>3237</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2.38

Frequencies in Hz. of a uniform annular disc rotating with 3000 rpm, calculated using thin plate bending annular elements.

\(a/b = 0.5, \quad b = 8.0 \text{ in.}, \quad h = 0.04 \text{ in.}, \quad E = 30 \times 10^6 \text{ psi}, \quad \rho g = 0.283 \text{ lb/in}^3, \quad \nu = 0.3. \)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>(2)</th>
<th>(4)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>91</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>535</td>
<td>530</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1844</td>
<td>1502</td>
<td>1491</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5500</td>
<td>2976</td>
<td>2931</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>548</td>
<td>542</td>
<td>542</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1854</td>
<td>1514</td>
<td>1502</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5508</td>
<td>2987</td>
<td>2942</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>126</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>584</td>
<td>578</td>
<td>578</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1833</td>
<td>1548</td>
<td>1537</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5533</td>
<td>3021</td>
<td>2977</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>167</td>
<td>167</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>643</td>
<td>637</td>
<td>636</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1933</td>
<td>1605</td>
<td>1594</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5573</td>
<td>3078</td>
<td>3034</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>222</td>
<td>222</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>723</td>
<td>718</td>
<td>717</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2003</td>
<td>1686</td>
<td>1674</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5630</td>
<td>3158</td>
<td>3115</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>291</td>
<td>291</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>825</td>
<td>820</td>
<td>819</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2093</td>
<td>1790</td>
<td>1778</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5703</td>
<td>3261</td>
<td>3218</td>
</tr>
</tbody>
</table>
Matrices $[k^1_d]$ and $[k^2_d]$ of the Thick Disc Element-

\[\begin{array}{|c|c|c|c|} \hline
P_{-2m^2(2-v)} & P_{-1m^2} & P_{-2m^2(m^2-v+1)} & P_{-1m^3} \\
\hline
P_{-1}(m^2-1) & P_0(m^2+m^2v-\nu-1) & P_{-1m^2(m^2-1)} & P_{0m}(m^2-1) \\
\hline
P_0(m^2v-2\nu-2) & P_12(m^2v-2\nu-2) & P_{0m}(m^2-3\nu-3) & P_{1m}(m^2-2\nu-2) \\
\hline
P_{1}(2m^2\nu-m^2-6\nu-3) & P_{2}(3m^2\nu-m^2-9\nu-9) & P_{1m}(m^2-5-4\nu) & P_{2m}(m^2-6\nu-3) \\
\hline
\end{array} \]

\[\begin{array}{|c|c|c|c|} \hline
P_{-\frac{1}{2}m^2(m^2-\nu)v+2+Q_1} & P_{\frac{1}{2}m^2(m^2-\nu)v+\nu+1+Q_2} & P_{-\frac{1}{2}m^2(m^2-\nu)v+4\nu+4+Q_3} & P_{0m} \\
\hline
P_{\frac{1}{2}m^2(m^2-\nu)v+4\nu+4+Q_3} & P_{\frac{1}{2}m^2(3+\nu)} & P_{1m}(1+\nu) \\
\hline
\text{Symmetrical} & P_{-\frac{1}{2}m^2(2m^2+1)-\nu+Q_1} & P_{0m^2+Q_2} & P_{1m^2+Q_3} \\
\hline
\end{array} \]

\[P_1 = C \pi \frac{E}{12(1-\nu^2)} \int_\mathbf{r}_1^\mathbf{r}_2 r^2 h^3(r) r^4 \text{d}r, \quad Q_1 = C \pi \kappa^2 G \int_\mathbf{r}_1^\mathbf{r}_2 h(r) r^4 \text{d}r \]
Matrix \([p] \) of the Thick Disc Element

\[
\begin{array}{cccccc}
P_0 & P_1 & P_2 & P_3 & P_4 \\
-1 & 0 & 0 & 0 & 0 \\
-2 & -1 & 0 & 0 & 0 \\
-2 & -2 & 0 & 0 & 0 \\
-3 & -3 & -1 & 0 & 0 \\
-3 & -2 & -2 & 0 & 0 \\
-2 & -1 & -3 & -1 & 0 \\
-2 & 0 & -2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
TABLE 2.41

Matrix $[k_d^m]$ of the Thick Disc Element-2

<table>
<thead>
<tr>
<th>$Q_{-1} m^2$</th>
<th>$Q_0 m^2$</th>
<th>$Q_1 m^2$</th>
<th>$Q_2 m^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_1 (1+m^2)$</td>
<td>$Q_2 (2+m^2)$</td>
<td>$Q_3 (3+m^2)$</td>
<td>$Q_4 (4+m^2)$</td>
</tr>
<tr>
<td>$Q_3 (4+m^2)$</td>
<td>$Q_4 (6+m^2)$</td>
<td>$Q_5 (9+m^2)$</td>
<td></td>
</tr>
</tbody>
</table>

\[Q = C \pi^2 \int_{r_1}^{r_2} h(r) r^4 dr \]

TABLE 2.42

Matrix $[m_d^m]$ of the Thick Disc Element-2

<table>
<thead>
<tr>
<th>$P_{-1} m^2$</th>
<th>$P_0 m^2$</th>
<th>$P_1 m^2$</th>
<th>$P_2 m^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1 (1+m^2)$</td>
<td>$P_2 (2+m^2)$</td>
<td>$P_3 (3+m^2)$</td>
<td>$P_4 (6+m^2)$</td>
</tr>
<tr>
<td>$P_3 (4+m^2)$</td>
<td>$P_4 (6+m^2)$</td>
<td>$P_5 (9+m^2)$</td>
<td></td>
</tr>
</tbody>
</table>

\[P_1 = C \pi \frac{n}{12} \int_{r_1}^{r_2} h^3(r) r^4 dr \]
TABLE 2.43

Frequencies in Hz. of a uniform circular plate calculated using Thick Disc Element-l. \(a/b = 0.001; \ b = 37.5 \text{ mm}; \ h = 5 \text{ mm}; \ E = 22,000 \text{ kg/mm}^2; \ \rho = 7.85 \) and \(\nu = 0.3 \).

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>(1)</th>
<th>(2)</th>
<th>(4)</th>
<th>(8)</th>
<th>Exact*</th>
<th>Thin plate soln.</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>6766</td>
<td>7837</td>
<td>7943</td>
<td>7950</td>
<td>7949</td>
<td>8213</td>
<td>7767</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>23421</td>
<td>30540</td>
<td>31222</td>
<td>31297</td>
<td>31278</td>
<td>34848</td>
<td>30698</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>153450</td>
<td>63350</td>
<td>65651</td>
<td>64310</td>
<td>64141</td>
<td>79593</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15050</td>
<td>16875</td>
<td>17419</td>
<td>17440</td>
<td>17408</td>
<td>18603</td>
<td>17012</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>55174</td>
<td>45134</td>
<td>46786</td>
<td>46417</td>
<td>46246</td>
<td>54169</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>332367</td>
<td>97409</td>
<td>89537</td>
<td>82941</td>
<td>82183</td>
<td>107708</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>4781</td>
<td>4774</td>
<td>4765</td>
<td>4754</td>
<td>4742</td>
<td>4754</td>
<td>4620</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>37746</td>
<td>29627</td>
<td>28883</td>
<td>28797</td>
<td>28714</td>
<td>32202</td>
<td>28117</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>119687</td>
<td>73842</td>
<td>63216</td>
<td>62101</td>
<td>61901</td>
<td>76731</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>11100</td>
<td>10855</td>
<td>10823</td>
<td>10784</td>
<td>10738</td>
<td>11105</td>
<td>10505</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>202583</td>
<td>96747</td>
<td>80979</td>
<td>78333</td>
<td>77973</td>
<td>101476</td>
<td></td>
</tr>
</tbody>
</table>

* Calculated using Mindlin's plate theory.
TABLE 2.44

Frequencies in Hz. of a uniform circular plate calculated using Thick Disc Element-2. \(a/b = 0.001\); \(b = 37.5\) mm; \(h = 5\) mm; \(E = 22,000\) kg/mm²; \(\rho = 7.85\) and \(v = 0.3\).

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>Number of Elements</th>
<th>Thin plate soln.</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>6594</td>
<td>7949</td>
<td>8213</td>
</tr>
<tr>
<td></td>
<td>2'</td>
<td>10341</td>
<td>7949</td>
<td>8213</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>52618</td>
<td>64141</td>
<td>79593</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15414</td>
<td>17408</td>
<td>18603</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>53869</td>
<td>46246</td>
<td>54169</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>321156</td>
<td>82183</td>
<td>107708</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4787</td>
<td>4742</td>
<td>4754</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>39835</td>
<td>28714</td>
<td>32202</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>142438</td>
<td>61901</td>
<td>76731</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>11139</td>
<td>10738</td>
<td>11105</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>52104</td>
<td>41265</td>
<td>48046</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>274801</td>
<td>77973</td>
<td>101476</td>
</tr>
</tbody>
</table>

* Calculated using Mindlin's plate theory.
The fundamental frequency \((m = 2, n = 0)\) in Hz. of thick uniform plates and rings calculated using Thick Disc Element-
\(E = 30 \times 10^6 \text{ psi} \quad \rho g = 0.283 \quad \nu = 0.3\)

<table>
<thead>
<tr>
<th>Dimensions(in)</th>
<th>Number of Elements</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>h</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Disc</td>
<td>0.0*</td>
<td>6.4375</td>
</tr>
<tr>
<td>Disc</td>
<td>0.0*</td>
<td>9.375</td>
</tr>
<tr>
<td>Disc</td>
<td>0.0*</td>
<td>5.1875</td>
</tr>
<tr>
<td>Ring</td>
<td>5.375</td>
<td>6.4375</td>
</tr>
<tr>
<td>Ring</td>
<td>5.375</td>
<td>6.4375</td>
</tr>
<tr>
<td>Ring</td>
<td>8.3125</td>
<td>9.375</td>
</tr>
<tr>
<td>Ring</td>
<td>8.3125</td>
<td>9.375</td>
</tr>
</tbody>
</table>

* Small value assumed so that \(a/b = 0.001\)
The fundamental frequency \((m = 2, \ n = 0)\) in Hz. of thick uniform plates and rings calculated using Thick Disc Element-Z.

\(E = 30 \times 10^6 \text{ psi} \quad \rho_g = 0.283 \quad \nu = 0.3\)

<table>
<thead>
<tr>
<th></th>
<th>Dimensions (in)</th>
<th>Number of Elements</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>h</td>
</tr>
<tr>
<td>Disc</td>
<td>0.0*</td>
<td>6.4375</td>
<td>3.5</td>
</tr>
<tr>
<td>Disc</td>
<td>0.0*</td>
<td>9.375</td>
<td>3.5</td>
</tr>
<tr>
<td>Disc</td>
<td>0.0*</td>
<td>5.1875</td>
<td>3.5</td>
</tr>
<tr>
<td>Ring</td>
<td>5.375</td>
<td>6.4375</td>
<td>3.5</td>
</tr>
<tr>
<td>Ring</td>
<td>5.375</td>
<td>6.4375</td>
<td>1.5</td>
</tr>
<tr>
<td>Ring</td>
<td>8.3125</td>
<td>9.375</td>
<td>3.5</td>
</tr>
<tr>
<td>Ring</td>
<td>8.3125</td>
<td>9.375</td>
<td>2.5</td>
</tr>
</tbody>
</table>

* Small value assumed so that \(a/b = 0.001\)
TABLE 2.47

Frequencies in Hz. of rings calculated using Thick Disc Element-2. E = 30 x 106 psi \(\rho_g = 0.283 \) \(v = 0.3 \)

<table>
<thead>
<tr>
<th>Dimension(in)</th>
<th>Number of Elements</th>
<th>Exact*</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>m (n)</td>
<td>a (b) (h)</td>
<td>1 2 4 8</td>
<td></td>
</tr>
<tr>
<td>2 0</td>
<td>0.6215 5.1875</td>
<td>709 709 703 701</td>
<td>799 720</td>
</tr>
<tr>
<td>3 0</td>
<td></td>
<td>1964 1963 1953 1950</td>
<td>2089 2000</td>
</tr>
<tr>
<td>2 0</td>
<td>1.5 4.121 5.1875</td>
<td>1453 1450 1436 1432</td>
<td>1429 1470</td>
</tr>
<tr>
<td>3 0</td>
<td></td>
<td>4001 3996 3970 3962</td>
<td>3954 4050</td>
</tr>
<tr>
<td>2 0</td>
<td>2.5 5.1875</td>
<td>1a67 1a55 1a57 1a52</td>
<td>1a62 1a53</td>
</tr>
<tr>
<td>3 0</td>
<td></td>
<td>5020 4997 4949 4934</td>
<td>4923</td>
</tr>
<tr>
<td>2 0</td>
<td>3.5 5.1875</td>
<td>1978 1951 1929 1922</td>
<td>1918 1980</td>
</tr>
<tr>
<td>3 0</td>
<td></td>
<td>5088 5030 4964 4943</td>
<td>4930</td>
</tr>
<tr>
<td>2 0</td>
<td>3.625 5.1875</td>
<td>444 444 441 44c 44c</td>
<td>448 435</td>
</tr>
<tr>
<td>3 0</td>
<td>1238</td>
<td>1238 1233 1231 1231</td>
<td>1307 1250</td>
</tr>
<tr>
<td>2 0</td>
<td>4.375 6.4375</td>
<td>924 923 915 913 912</td>
<td>912 920</td>
</tr>
<tr>
<td>3 0</td>
<td>2610</td>
<td>2607 2593 2586 2586</td>
<td>2586</td>
</tr>
<tr>
<td>2 0</td>
<td>5.15 6.4375</td>
<td>1215 1210 1201 1198 1198</td>
<td>1195</td>
</tr>
<tr>
<td>3 0</td>
<td>3420</td>
<td>3410 3385 3377 3377</td>
<td>3371</td>
</tr>
<tr>
<td>2 0</td>
<td>6.5 6.4375</td>
<td>1315 1303 1292 1285 1286</td>
<td>1286</td>
</tr>
<tr>
<td>3 0</td>
<td>3566</td>
<td>3538 3504 3494 3487</td>
<td>3487</td>
</tr>
</tbody>
</table>

* Calculated using Mindlin's plate theory.
TABLE 2.48

Frequencies in Hz. of stepped discs.

\[E = 30 \times 10^6 \text{ psi} \quad \rho_g = 0.283 \quad \nu = 0.3 \]

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>h</th>
<th>Finite Element*</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2.5</td>
<td>3093</td>
<td>3030</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1.5</td>
<td>2416</td>
<td>2310</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.75</td>
<td>1668</td>
<td>1600</td>
</tr>
</tbody>
</table>

* Five Thick Disc Element-1 used.

TABLE 2.49

Thickness of the turbine disc at various radii.

<table>
<thead>
<tr>
<th>Radius (in)</th>
<th>h (in)</th>
<th>Radius (in)</th>
<th>h (in)</th>
<th>Radius (in)</th>
<th>h (in)</th>
<th>Radius (in)</th>
<th>h (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.50</td>
<td>1.025</td>
<td>6.08</td>
<td>0.625</td>
<td>4.53</td>
<td>0.910</td>
<td>2.80</td>
<td>1.200</td>
</tr>
<tr>
<td>7.39</td>
<td>1.025</td>
<td>5.89</td>
<td>0.650</td>
<td>4.33</td>
<td>0.945</td>
<td>2.38</td>
<td>1.395</td>
</tr>
<tr>
<td>7.25</td>
<td>0.790</td>
<td>5.70</td>
<td>0.680</td>
<td>4.12</td>
<td>0.980</td>
<td>2.11</td>
<td>1.700</td>
</tr>
<tr>
<td>7.10</td>
<td>0.590</td>
<td>5.50</td>
<td>0.725</td>
<td>3.89</td>
<td>1.020</td>
<td>1.80</td>
<td>2.180</td>
</tr>
<tr>
<td>6.95</td>
<td>0.480</td>
<td>5.30</td>
<td>0.770</td>
<td>3.66</td>
<td>1.050</td>
<td>1.38</td>
<td>2.220</td>
</tr>
<tr>
<td>6.72</td>
<td>0.474</td>
<td>5.08</td>
<td>0.805</td>
<td>3.43</td>
<td>1.095</td>
<td>0.90</td>
<td>2.650</td>
</tr>
<tr>
<td>6.45</td>
<td>0.550</td>
<td>4.92</td>
<td>0.840</td>
<td>3.20</td>
<td>1.140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.26</td>
<td>0.590</td>
<td>4.72</td>
<td>0.875</td>
<td>3.00</td>
<td>1.170</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2.50

Frequencies in Hz of an actual turbine disc, calculated using thin plate bending annular elements and Thick Disc Element-1.
\(E = 31.2 \times 10^6 \text{ psi} \quad \rho g = 0.281 \quad v = 0.3\)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>Eight thin plate elements</th>
<th>Number of Thick Disc Element-1</th>
<th>Experimental</th>
<th>Percent- * age error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td>1737</td>
<td>1696</td>
<td>1707</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>5590</td>
<td>5585</td>
<td>5618</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>11521</td>
<td>11340</td>
<td>11401</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>2962</td>
<td>2899</td>
<td>2894</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>7714</td>
<td>7710</td>
<td>7632</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>14708</td>
<td>14022</td>
<td>13810</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td>1177</td>
<td>1135</td>
<td>1114</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>5323</td>
<td>4835</td>
<td>4761</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>12485</td>
<td>10471</td>
<td>10294</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>22565</td>
<td>18510</td>
<td>16927</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
<td>1805</td>
<td>1746</td>
<td>1711</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>7315</td>
<td>6529</td>
<td>6431</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>16174</td>
<td>13205</td>
<td>12976</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>27903</td>
<td>23220</td>
<td>23071</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
<td>2668</td>
<td>2534</td>
<td>2482</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>9436</td>
<td>8260</td>
<td>8112</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>19480</td>
<td>15923</td>
<td>15279</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>32542</td>
<td>26677</td>
<td>23264</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td>377s</td>
<td>3503</td>
<td>3440</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>11880</td>
<td>10121</td>
<td>9960</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>23001</td>
<td>18830</td>
<td>17618</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>37197</td>
<td>30170</td>
<td>26135</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td>5118</td>
<td>4627</td>
<td>4556</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>14608</td>
<td>12100</td>
<td>11931</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>26805</td>
<td>21797</td>
<td>20047</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>42203</td>
<td>34094</td>
<td>29100</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
<td>6683</td>
<td>5886</td>
<td>5810</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>17561</td>
<td>14196</td>
<td>13984</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>30847</td>
<td>24737</td>
<td>22553</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>47610</td>
<td>38428</td>
<td>32151</td>
</tr>
</tbody>
</table>

* Error in eight element solution.
TABLE 3.1

Bending stiffness and inertia matrices of a beam element when linear variations in I and A are assumed within the element.

<table>
<thead>
<tr>
<th></th>
<th>(6(1+\alpha))</th>
<th>(-2L(1+2\alpha))</th>
<th>(-6(1+\alpha))</th>
<th>(-2L(2+\alpha))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{EI_1}{L^3})</td>
<td>(L^2(1+3\alpha))</td>
<td>(2L(1+2\alpha))</td>
<td>(\frac{L^2}{3}(1+\alpha))</td>
<td></td>
</tr>
<tr>
<td>(\alpha = \frac{I_2}{I_1})</td>
<td></td>
<td>6(1+\alpha)</td>
<td>2L(2+\alpha)</td>
<td>(\frac{L^2}{3}(3+\alpha))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(36+120\beta)</th>
<th>(-\frac{L}{2}(7+15\beta))</th>
<th>(27(1+\beta))</th>
<th>(\frac{L}{2}(6+7\beta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\rho A_1 L}{420})</td>
<td>(\frac{L^2}{2}(3+5\beta))</td>
<td>(-\frac{L}{2}(7+6\beta))</td>
<td>(-\frac{3}{2}L^2(1+\beta))</td>
<td></td>
</tr>
<tr>
<td>(\beta = \frac{A_2}{A_1})</td>
<td></td>
<td>120+36\beta</td>
<td>(L(15+7\beta))</td>
<td>(\frac{L^2}{2}(5+3\beta))</td>
</tr>
</tbody>
</table>

Subscripts 1 and 2 refer to values at node 1 and node 2 of the element respectively.
TABLE 3.2

Torsional stiffness and inertia matrices of a beam element when linear variations in KG and J are assumed within the element.

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>$\frac{G}{2\pi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{G1} + K_{G2}$</td>
<td></td>
<td>$-(K_{G1} + K_{G2})$</td>
</tr>
<tr>
<td>$-(K_{G1} + K_{G2})$</td>
<td>$K_{G1} + K_{G2}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\frac{J}{12}$</th>
<th>$\frac{J}{12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3J_1 + J_2$</td>
<td>$J_1 + J_2$</td>
<td>$J_1 + 3J_2$</td>
</tr>
<tr>
<td>$J_1 + J_2$</td>
<td>$J_1 + J_2$</td>
<td>$J_1 + 3J_2$</td>
</tr>
</tbody>
</table>

Subscripts 1 and 2 refer to values at node 1 and node 2 of the element respectively.
TABLE 3.3

Additional bending stiffness matrix, resulting from uniform rotation Ω, for a uniform beam element for bending in the plane of rotation.

\[
\begin{array}{cccc}
(504\sigma_1 + 252(\sigma_2 - \sigma_1)) & (-42\sigma_1 - 42(\sigma_2 - \sigma_1)) & (-504\sigma_1 - 252(\sigma_2 - \sigma_1)) & (-42\sigma_1 + 13\alpha)\ell \\
+156\alpha) & & & \\
(56\sigma_1 + 14(\sigma_2 - \sigma_1)) & (42\sigma_1 + 42(\sigma_2 - \sigma_1)) & (-14\sigma_1 - 7(\sigma_2 - \sigma_1)) & (-3\alpha)\ell^2 \\
+4\alpha)\ell^2 & (-13\alpha)\ell & & \\
\frac{\lambda}{420\ell} & & & \\
\alpha = \frac{\ell^2 \rho \Omega^2}{420\ell} & & & \\
\sigma_1 = \text{stress at node 1 of element} & & & \\
\sigma_2 = \text{stress at node 2 of element} & & & \\
\text{Symmetrical} & & & \\
\end{array}
\]
Additional bending stiffness matrix, resulting from uniform rotation Ω, for a uniform beam element for bending out of the plane of rotation.

<table>
<thead>
<tr>
<th>Term</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$504\sigma_1 + 252(\sigma_2 - \sigma_1)$</td>
<td>$\frac{A}{420\ell}$</td>
</tr>
<tr>
<td>$-42\sigma_1 - 42(\sigma_2 - \sigma_1)\ell$</td>
<td>$\sigma_1 = \text{stress at node 1}$</td>
</tr>
<tr>
<td>$504\sigma_1 - 252(\sigma_2 - \sigma_1)$</td>
<td>$\sigma_2 = \text{stress at node 2}$</td>
</tr>
<tr>
<td>$-42\sigma_1 \ell$</td>
<td>Symmetrical</td>
</tr>
</tbody>
</table>

Where σ_1 and σ_2 are the stresses at nodes 1 and 2, respectively.
TABLE 3.5

Additional stiffness matrix resulting from uniform rotation Ω for a uniform beam element in torsion.

<table>
<thead>
<tr>
<th>$a + 2\beta$</th>
<th>$-a + 2\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-a + 2\beta$</td>
<td>$a + 2\beta$</td>
</tr>
</tbody>
</table>

\[
\alpha = \frac{EJ}{2\xi} (\sigma_1 + \sigma_2)
\]

\[
\beta = -\frac{a\Omega^2}{6} (I_{\max}^{-1} - I_{\min}^{-1}) \cos 2\theta
\]

σ_1 = stress at node 1 of the element

σ_2 = stress at node 2 of the element
TABLE 3.6

Stiffness and inertia matrices of an uniform Timoshenko beam element of length \(l \) in Sending.

<table>
<thead>
<tr>
<th>(\alpha) = (\frac{G A l^2}{E I})</th>
<th>(\beta) = (\frac{(\frac{4}{3} l)^2}{l^2})</th>
<th>(\mu = \text{radius of gyration})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetrical</td>
<td>Symmetrical</td>
<td>Symmetrical</td>
</tr>
</tbody>
</table>
| 12 | \(6l \) | 6
| 12 | \(6l \) | 6
| 12 | \(6l \) | 6
| \(4a^2 \) | 3\(l^2 \) | -6
| \((3+\frac{3}{3})a^2 \) | -6
| 12 | -6
| \(6l \) | -6
| \(6l \) | -6
| \(2l^2 \) | \(3\mu^2 \) | \((3+\frac{3}{3})l^2 \) | | | | |
| \(156 \) | \((\frac{2}{2}+ \frac{4}{2})l \) | \((\frac{2/2+4}{2})l^2 \) | \((\frac{2}{2}+ \frac{4}{2})l \) | \((\frac{2}{2}+ \frac{4}{2})l^2 \) | \((\frac{2}{2}+ \frac{4}{2})l \) | \((\frac{2}{2}+ \frac{4}{2})l^2 \) |
| \(54 \) | \((\frac{4}{2}+ \frac{5/2}{2})l \) | \((\frac{4}{2}+ \frac{5/2}{2})l^2 \) | \((\frac{4}{2}+ \frac{5/2}{2})l \) | \((\frac{4}{2}+ \frac{5/2}{2})l^2 \) | \((\frac{4}{2}+ \frac{5/2}{2})l \) | \((\frac{4}{2}+ \frac{5/2}{2})l^2 \) |
TABLE 3.7

Frequency coefficients λ, for the first mode of vibration of a rotating beam for vibration out of plane of rotation, calculated using four beam finite elements.

<table>
<thead>
<tr>
<th>R/L</th>
<th>n^A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>0.00</td>
<td>3.516</td>
</tr>
<tr>
<td>0.02</td>
<td>3.516</td>
</tr>
<tr>
<td>0.05</td>
<td>3.516</td>
</tr>
<tr>
<td>0.10</td>
<td>3.516</td>
</tr>
<tr>
<td>0.20</td>
<td>3.516</td>
</tr>
<tr>
<td>0.50</td>
<td>3.516</td>
</tr>
<tr>
<td>1.00</td>
<td>3.516</td>
</tr>
<tr>
<td>2.00</td>
<td>3.516</td>
</tr>
<tr>
<td>5.00</td>
<td>3.516</td>
</tr>
</tbody>
</table>
TABLE 3.8

Frequency coefficients λ, for the second mode of vibration of a rotating beam for vibration out of plane of rotation, calculated using four beam finite elements.

<table>
<thead>
<tr>
<th>R/L</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>22.06</td>
<td>22.06</td>
<td>22.07</td>
<td>22.10</td>
<td>22.20</td>
<td>22.62</td>
<td>25.39</td>
<td>23.41</td>
<td>54.57</td>
<td>125.4</td>
<td>246.6</td>
</tr>
<tr>
<td>0.02</td>
<td>22.06</td>
<td>22.06</td>
<td>22.07</td>
<td>22.10</td>
<td>22.21</td>
<td>22.64</td>
<td>25.47</td>
<td>23.66</td>
<td>55.17</td>
<td>127.0</td>
<td>249.8</td>
</tr>
<tr>
<td>0.05</td>
<td>22.06</td>
<td>22.06</td>
<td>22.07</td>
<td>22.10</td>
<td>22.21</td>
<td>22.66</td>
<td>25.60</td>
<td>34.04</td>
<td>56.07</td>
<td>129.3</td>
<td>254.6</td>
</tr>
<tr>
<td>0.10</td>
<td>22.06</td>
<td>22.06</td>
<td>22.07</td>
<td>22.10</td>
<td>22.22</td>
<td>22.70</td>
<td>25.81</td>
<td>34.66</td>
<td>57.52</td>
<td>133.2</td>
<td>262.3</td>
</tr>
<tr>
<td>0.20</td>
<td>22.06</td>
<td>22.06</td>
<td>22.07</td>
<td>22.11</td>
<td>22.24</td>
<td>22.78</td>
<td>26.22</td>
<td>35.86</td>
<td>60.32</td>
<td>140.5</td>
<td>277.1</td>
</tr>
<tr>
<td>0.50</td>
<td>22.06</td>
<td>22.06</td>
<td>22.07</td>
<td>22.12</td>
<td>22.30</td>
<td>23.00</td>
<td>27.42</td>
<td>39.23</td>
<td>67.97</td>
<td>160.4</td>
<td>317.1</td>
</tr>
<tr>
<td>1.00</td>
<td>22.06</td>
<td>22.06</td>
<td>22.07</td>
<td>22.15</td>
<td>22.40</td>
<td>23.36</td>
<td>29.31</td>
<td>44.24</td>
<td>78.99</td>
<td>188.8</td>
<td>374.1</td>
</tr>
<tr>
<td>2.00</td>
<td>22.06</td>
<td>22.07</td>
<td>22.08</td>
<td>22.19</td>
<td>22.59</td>
<td>24.10</td>
<td>32.73</td>
<td>52.75</td>
<td>97.19</td>
<td>235.7</td>
<td>467.5</td>
</tr>
<tr>
<td>5.00</td>
<td>22.06</td>
<td>22.07</td>
<td>22.11</td>
<td>22.34</td>
<td>23.16</td>
<td>26.16</td>
<td>41.24</td>
<td>72.23</td>
<td>137.7</td>
<td>338.0</td>
<td>673.6</td>
</tr>
<tr>
<td>R/L</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>0.00</td>
<td>3.516</td>
<td>3.516</td>
<td>3.517</td>
<td>3.522</td>
<td>3.540</td>
<td>3.609</td>
<td>4.006</td>
<td>4.863</td>
<td>6.396</td>
<td>10.48</td>
<td>17.87</td>
</tr>
<tr>
<td>0.05</td>
<td>3.516</td>
<td>3.517</td>
<td>3.518</td>
<td>3.525</td>
<td>3.551</td>
<td>3.652</td>
<td>4.240</td>
<td>5.588</td>
<td>8.432</td>
<td>17.32</td>
<td>32.89</td>
</tr>
<tr>
<td>0.10</td>
<td>3.516</td>
<td>3.517</td>
<td>3.518</td>
<td>3.528</td>
<td>3.563</td>
<td>3.694</td>
<td>4.461</td>
<td>6.229</td>
<td>10.06</td>
<td>22.12</td>
<td>42.92</td>
</tr>
<tr>
<td>0.20</td>
<td>3.516</td>
<td>3.517</td>
<td>3.519</td>
<td>3.533</td>
<td>3.584</td>
<td>3.778</td>
<td>4.874</td>
<td>7.344</td>
<td>12.71</td>
<td>29.45</td>
<td>57.94</td>
</tr>
<tr>
<td>0.50</td>
<td>3.516</td>
<td>3.518</td>
<td>3.522</td>
<td>3.550</td>
<td>3.649</td>
<td>4.019</td>
<td>5.940</td>
<td>9.963</td>
<td>18.48</td>
<td>44.66</td>
<td>88.74</td>
</tr>
<tr>
<td>2.00</td>
<td>3.516</td>
<td>3.521</td>
<td>3.535</td>
<td>3.632</td>
<td>3.958</td>
<td>5.050</td>
<td>9.621</td>
<td>18.02</td>
<td>35.17</td>
<td>87.13</td>
<td>174.0</td>
</tr>
</tbody>
</table>
TABLE 3.11

Frequency coefficients λ, for the second mode of vibration of a rotating beam for vibration in the plane of rotation, calculated using four beam finite elements.

<table>
<thead>
<tr>
<th>R/L</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>22.06</td>
<td>22.09</td>
<td>22.18</td>
<td>22.54</td>
<td>24.89</td>
<td>31.88</td>
<td>50.77</td>
<td>115.0</td>
<td>225.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>22.06</td>
<td>22.09</td>
<td>22.18</td>
<td>22.55</td>
<td>24.97</td>
<td>32.15</td>
<td>51.42</td>
<td>116.7</td>
<td>229.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>22.06</td>
<td>22.09</td>
<td>22.19</td>
<td>22.58</td>
<td>25.10</td>
<td>32.54</td>
<td>52.38</td>
<td>119.3</td>
<td>234.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>22.06</td>
<td>22.10</td>
<td>22.20</td>
<td>22.61</td>
<td>25.32</td>
<td>33.19</td>
<td>53.93</td>
<td>123.4</td>
<td>242.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>22.06</td>
<td>22.10</td>
<td>22.22</td>
<td>22.69</td>
<td>25.74</td>
<td>34.44</td>
<td>56.91</td>
<td>131.3</td>
<td>258.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>22.06</td>
<td>22.11</td>
<td>22.28</td>
<td>22.92</td>
<td>26.96</td>
<td>37.94</td>
<td>64.96</td>
<td>152.4</td>
<td>300.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>22.06</td>
<td>22.14</td>
<td>22.37</td>
<td>23.29</td>
<td>28.88</td>
<td>43.10</td>
<td>76.42</td>
<td>182.0</td>
<td>360.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>22.06</td>
<td>22.19</td>
<td>22.57</td>
<td>24.02</td>
<td>32.35</td>
<td>51.80</td>
<td>95.11</td>
<td>229.9</td>
<td>456.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>22.06</td>
<td>22.33</td>
<td>23.13</td>
<td>26.08</td>
<td>40.94</td>
<td>71.54</td>
<td>136.3</td>
<td>334.3</td>
<td>666.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3.12

Frequency coefficients λ_3, for the third mode of vibration of a rotating beam for vibration in the plane of rotation, calculated using four beam finite elements.

<table>
<thead>
<tr>
<th>R/L</th>
<th>ω^* 0</th>
<th>ω^* 0.1</th>
<th>ω^* 0.2</th>
<th>ω^* 0.5</th>
<th>ω^* 1</th>
<th>ω^* 2</th>
<th>ω^* 5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>62.18</td>
<td>62.18</td>
<td>62.18</td>
<td>62.21</td>
<td>62.31</td>
<td>62.70</td>
<td>65.39</td>
<td>74.11</td>
<td>101.2</td>
<td>203.7</td>
<td>385.4</td>
</tr>
<tr>
<td>0.02</td>
<td>62.18</td>
<td>62.18</td>
<td>62.21</td>
<td>62.31</td>
<td>62.72</td>
<td>65.48</td>
<td>74.44</td>
<td>102.1</td>
<td>206.3</td>
<td>390.6</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>62.18</td>
<td>62.18</td>
<td>62.21</td>
<td>62.32</td>
<td>62.74</td>
<td>65.62</td>
<td>74.93</td>
<td>103.4</td>
<td>210.1</td>
<td>398.4</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>62.18</td>
<td>62.18</td>
<td>62.21</td>
<td>62.33</td>
<td>62.78</td>
<td>65.86</td>
<td>75.74</td>
<td>105.6</td>
<td>216.4</td>
<td>410.9</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>62.18</td>
<td>62.18</td>
<td>62.22</td>
<td>62.35</td>
<td>62.86</td>
<td>66.33</td>
<td>77.32</td>
<td>109.9</td>
<td>228.2</td>
<td>434.8</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>62.18</td>
<td>62.18</td>
<td>62.23</td>
<td>62.41</td>
<td>63.10</td>
<td>67.71</td>
<td>81.85</td>
<td>121.6</td>
<td>260.2</td>
<td>499.0</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>62.18</td>
<td>62.18</td>
<td>62.26</td>
<td>62.51</td>
<td>63.49</td>
<td>69.94</td>
<td>88.80</td>
<td>138.7</td>
<td>305.5</td>
<td>589.8</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>62.18</td>
<td>62.18</td>
<td>62.31</td>
<td>62.71</td>
<td>64.27</td>
<td>74.17</td>
<td>101.0</td>
<td>167.0</td>
<td>379.1</td>
<td>737.3</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>62.18</td>
<td>62.19</td>
<td>62.46</td>
<td>63.30</td>
<td>66.54</td>
<td>85.41</td>
<td>130.2</td>
<td>230.3</td>
<td>540.5</td>
<td>1061</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3.13

Frequency coefficients λ for a vibrating simply supported Timoshenko beam, calculated using the present method.

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>Number of degrees of freedom</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.405</td>
<td>8.645</td>
</tr>
<tr>
<td>2</td>
<td>27.508</td>
<td>26.960</td>
</tr>
<tr>
<td>3</td>
<td>49.701</td>
<td>47.680</td>
</tr>
<tr>
<td>4</td>
<td>78.145</td>
<td>68.726</td>
</tr>
</tbody>
</table>

TABLE 3.14

Frequency coefficients λ for a vibrating cantilevered Timoshenko beam calculated using the present method.

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>Number of degrees of freedom</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.304</td>
<td>3.284</td>
</tr>
<tr>
<td>2</td>
<td>21.590</td>
<td>15.498</td>
</tr>
<tr>
<td>3</td>
<td>65.361</td>
<td>34.301</td>
</tr>
<tr>
<td>4</td>
<td>82.112</td>
<td>53.652</td>
</tr>
</tbody>
</table>
TABLE 3.15

Frequency coefficients λ for a simply supported Timoshenko beam.

<table>
<thead>
<tr>
<th>N</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>Exact (128)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of degrees of freedom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode No.</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9.45</td>
<td>8.672</td>
<td>8.646</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>30.843</td>
<td>28.577</td>
<td>27.021</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>52.198</td>
<td>48.041</td>
<td>47.680</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>74.236</td>
<td>70.871</td>
<td>68.726</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>Exact (128)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of degrees of freedom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode No.</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10.620</td>
<td>8.831</td>
<td>8.688</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>48.583</td>
<td>39.098</td>
<td>28.218</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>77.010</td>
<td>54.073</td>
<td>47.680</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>93.897</td>
<td>85.271</td>
<td>68.726</td>
</tr>
</tbody>
</table>
TABLE 3.16

Frequency coefficients λ for a cantilevered Timoshenko beam.

<table>
<thead>
<tr>
<th>N</th>
<th>Mode No.</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>Exact (128)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>19.432</td>
<td>15.577</td>
<td>15.498</td>
<td>15.488</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>37.005</td>
<td>34.403</td>
<td>34.301</td>
<td>34.301</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>61.644</td>
<td>54.003</td>
<td>53.652</td>
<td>53.652</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Mode No.</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>Exact (128)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Archer$ (79)</td>
<td>1</td>
<td>3.322</td>
<td>3.294</td>
<td>3.286</td>
<td>3.284</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>26.569</td>
<td>16.147</td>
<td>15.712</td>
<td>15.488</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>54.494</td>
<td>36.515</td>
<td>34.301</td>
<td>34.301</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>86.711</td>
<td>59.842</td>
<td>53.652</td>
<td>53.652</td>
</tr>
</tbody>
</table>
Frequency coefficients \(A \) for retwisted cantilever blades.

<table>
<thead>
<tr>
<th>(\frac{d_b}{b_b})</th>
<th>(\delta^*)</th>
<th>(n)</th>
<th>Ref. 2</th>
<th>Ref. 3</th>
<th>Ref. 4</th>
<th>Ref. 5</th>
<th>(85)</th>
<th>(82)</th>
<th>(84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>30°</td>
<td>1</td>
<td>1.8767</td>
<td>1.8770</td>
<td>1.8771</td>
<td>1.8772</td>
<td>1.8774</td>
<td>1.8774</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2.6459</td>
<td>2.6413</td>
<td>2.6398</td>
<td>2.6391</td>
<td>2.6379</td>
<td>2.6379</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4.7325</td>
<td>4.7231</td>
<td>4.7223</td>
<td>4.7230</td>
<td>4.7281</td>
<td>4.7281</td>
<td>4.73</td>
</tr>
<tr>
<td>2</td>
<td>60°</td>
<td>1</td>
<td>1.8798</td>
<td>1.8822</td>
<td>1.8830</td>
<td>1.8834</td>
<td>1.8843</td>
<td>1.8843</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2.6282</td>
<td>2.6118</td>
<td>2.6065</td>
<td>2.6041</td>
<td>2.6004</td>
<td>2.6004</td>
<td>2.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4.7668</td>
<td>4.7836</td>
<td>4.7947</td>
<td>4.8017</td>
<td>4.8210</td>
<td>4.8210</td>
<td>4.82</td>
</tr>
<tr>
<td>2</td>
<td>90°</td>
<td>1</td>
<td>1.8841</td>
<td>1.8903</td>
<td>1.8923</td>
<td>1.8932</td>
<td>1.8957</td>
<td>1.8957</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2.6046</td>
<td>2.5698</td>
<td>2.5592</td>
<td>2.5546</td>
<td>2.5485</td>
<td>2.5485</td>
<td>2.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4.8736</td>
<td>4.8753</td>
<td>4.9040</td>
<td>4.9199</td>
<td>4.9591</td>
<td>4.9591</td>
<td>4.95</td>
</tr>
<tr>
<td>4</td>
<td>30°</td>
<td>1</td>
<td>1.8769</td>
<td>1.8774</td>
<td>1.8776</td>
<td>1.8777</td>
<td>1.8781</td>
<td>1.8781</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>8.1375</td>
<td>7.7646</td>
<td>7.7162</td>
<td>7.6912</td>
<td>7.6802</td>
<td>7.6802</td>
<td>7.70</td>
</tr>
<tr>
<td>8</td>
<td>30°</td>
<td>1</td>
<td>1.8770</td>
<td>1.8773</td>
<td>1.8777</td>
<td>1.8779</td>
<td>1.8777</td>
<td>1.8777</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5.3353</td>
<td>5.5464</td>
<td>5.6404</td>
<td>5.6893</td>
<td>5.7855</td>
<td>5.7855</td>
<td>5.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>8.5350</td>
<td>7.8317</td>
<td>7.7978</td>
<td>7.7583</td>
<td>7.8272</td>
<td>7.8272</td>
<td>7.75</td>
</tr>
<tr>
<td>16</td>
<td>30°</td>
<td>1</td>
<td>1.8770</td>
<td>1.8778</td>
<td>1.8778</td>
<td>1.8779</td>
<td>1.8772</td>
<td>1.8772</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.7043</td>
<td>7.1723</td>
<td>7.4609</td>
<td>7.5523</td>
<td>7.5752</td>
<td>7.5752</td>
<td>7.53</td>
</tr>
</tbody>
</table>

† Results obtained using five pretwisted beam elements.

* \(\delta \) is the total pretwist angle in this case.
TABLE 4.1

Functions A_1 to A_{12}

\[
A_1(x) = \frac{m}{r} J_m(x) - k J_{m+1}(x)
\]

\[
A_2(x) = \frac{m}{r} Y_m(x) - k Y_{m+1}(x)
\]

\[
A_3(x) = \frac{m}{r} I_m(x) + k I_{m+1}(x)
\]

\[
A_4(x) = \frac{m}{r} K_m(x) - k K_{m+1}(x)
\]

\[
A_5(x) = c_1 J_m(x) + c_2 J_{m+1}(x)
\]

\[
A_6(x) = c_1 Y_m(x) + c_3 Y_{m+1}(x)
\]

\[
A_7(x) = c_1 I_m(x) + c_3 I_{m+1}(x)
\]

\[
A_8(x) = c_2 K_m(x) + c_3 K_{m+1}(x)
\]

\[
A_9(x) = c_4 J_m(x) + c_5 J_{m+1}(x)
\]

\[
A_{10}(x) = c_4 Y_m(x) + c_5 Y_{m+1}(x)
\]

\[
A_{11}(x) = c_6 I_m(x) + c_7 I_{m+1}(x)
\]

\[
A_{12}(x) = c_6 K_m(x) - c_7 K_{m+1}(x)
\]

\[
c_1 = \frac{m(m-1) (1-v)}{r^2} - k^2
\]

\[
c_2 = \frac{m(m-1) (1-v)}{r^2} + k^2
\]

\[
c_3 = \frac{k(1-v)}{r}
\]

\[
c_4 = \frac{-mk^2 r^2 + (1-v) (1-m) \frac{m^2}{r^3}}
\]

\[
c_5 = \frac{k^3 r^3 + kr(1-v) \frac{m^2}{r^3}}
\]

\[
c_6 = \frac{mk^2 r^2 + (1-v) (1-m) \frac{m^2}{r^3}}
\]

\[
c_7 = \frac{k^3 r^3 - kr(1-v) \frac{m^2}{r^3}}
\]
TABLE 4.2

Matrix $[D]$

<table>
<thead>
<tr>
<th>$P_1 A_9 (kb)$</th>
<th>$Q_1 A_{10} (kb)$</th>
<th>$P_1 A_5 (kb)$</th>
<th>$Q_1 A_6 (kb)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+ R_1 A_{11} (kb)$</td>
<td>$- S_1 A_{12} (kb)$</td>
<td>$+ R_1 A_7 (kb)$</td>
<td>$- S_1 A_8 (kb)$</td>
</tr>
</tbody>
</table>

Symmetrical

| $P_1 = \begin{bmatrix} Y_m (ka) & I_m (ka) & K_m (ka) \\ A_2 (ka) & A_3 (ka) & A_4 (ka) \\ A_2 (kb) & A_3 (kb) & A_4 (kb) \end{bmatrix}$ | $Q_1 = \begin{bmatrix} J_m (ka) & I_m (ka) & K_m (ka) \\ A_1 (ka) & A_3 (ka) & A_4 (ka) \\ A_1 (kb) & A_3 (kb) & A_4 (kb) \end{bmatrix}$ |
| $R_1 = \begin{bmatrix} J_m (ka) & Y_m (ka) & K_m (ka) \\ A_1 (ka) & A_2 (ka) & A_4 (ka) \\ A_1 (kb) & A_2 (kb) & A_4 (kb) \end{bmatrix}$ | $S_1 = \begin{bmatrix} J_m (ka) & Y_m (ka) & I_m (ka) \\ A_1 (ka) & A_2 (ka) & A_3 (ka) \\ A_1 (kb) & A_2 (kb) & A_3 (kb) \end{bmatrix}$ |

| $P_2 = \begin{bmatrix} Y_m (ka) & I_m (ka) & K_m (ka) \\ A_2 (ka) & A_3 (ka) & A_4 (ka) \\ A_m (kb) & I_m (kb) & K_m (kb) \end{bmatrix}$ | $Q_2 = \begin{bmatrix} J_m (ka) & I_m (ka) & K_m (ka) \\ A_1 (ka) & A_3 (ka) & A_4 (ka) \\ J_m (kb) & I_m (kb) & K_m (kb) \end{bmatrix}$ |
| $R_2 = \begin{bmatrix} J_m (ka) & Y_m (ka) & K_m (ka) \\ A_1 (ka) & A_2 (ka) & A_4 (ka) \\ J_m (kb) & Y_m (kb) & K_m (kb) \end{bmatrix}$ | $S_2 = \begin{bmatrix} J_m (ka) & Y_m (ka) & I_m (ka) \\ A_1 (ka) & A_2 (ka) & A_3 (ka) \\ J_m (kb) & Y_m (kb) & I_m (kb) \end{bmatrix}$ |
TABLE 4.2 (Continued)

\[A_m = \begin{bmatrix}
J_m(ka) & Y_m(ka) & I_m(ka) & K_m(ka) \\
A_1(ka) & A_2(ka) & A_3(ka) & A_4(ka) \\
J_m(kb) & Y_m(kb) & I_m(kb) & K_m(kb) \\
A_1(kb) & A_2(kb) & A_3(kb) & A_4(kb)
\end{bmatrix} \]
TABLE 4.3

Dynamic stiffness matrix $[DR]$ of a thin circular ring.

$$
\begin{array}{c|c}
\begin{align*}
(\varepsilon I_z + \frac{G K_G}{m^2} \frac{m^4}{R_0^4}) & (\varepsilon I_z + G K_G) \frac{m^2}{R_0^2} \\
-\omega^2 \left(A + J_z \frac{m^2}{R_0^2} \right) & \frac{(\varepsilon I_z + m^2 G K_G)}{R_0^2}
\end{align*}
\end{array}
\right|

\begin{align*}
\xi & = R_0 \rho \\
\text{Symmetrical} & \\
- & \omega^2 J_x
\end{align*}

\begin{align*}
E, G & \quad \text{elastic moduli,} \\
I_z & \quad \text{moment of inertia about } z \text{ axis,} \\
K_G & \quad \text{St. Venant torsion stiffness of the ring section,} \\
R_0 & \quad \text{centroidal radius of the ring,} \\
A & \quad \text{Area of cross-section of ring,} \\
J_z, J_x & \quad \text{moment of inertia about } z \text{ and } x \text{ axes of ring section,}
\end{align*}
TABLE 4.4

Matrix $[D_b]$

<table>
<thead>
<tr>
<th>$A_{11} \cos^2 \delta$</th>
<th>$A_{12} \cos^2 \delta$</th>
<th>$(A_{11}-B_{11}) \sin \delta \cos \delta$</th>
<th>$(A_{12}-B_{12}) \sin \delta \cos \delta$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{22} \cos^2 \delta$</td>
<td>$A_{21} \cos^2 \delta$</td>
<td>$(A_{12}-B_{12}) \sin \delta (A_{22}-B_{22}) \sin \delta \cos \delta$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$A_{11} \sin^2 \delta$</td>
<td>$A_{12} \sin^2 \delta$</td>
<td>$A_{11} \sin^2 \delta$</td>
<td>$A_{12} \sin^2 \delta$</td>
<td>0</td>
</tr>
<tr>
<td>$A_{22} \sin^2 \delta$</td>
<td>$A_{21} \sin^2 \delta$</td>
<td>$A_{22} \sin^2 \delta$</td>
<td>$A_{21} \sin^2 \delta$</td>
<td>C_{11}</td>
</tr>
</tbody>
</table>

Symmetrical

$A_{11} = - EI_1 \lambda_1^2 \left[\frac{\cos \lambda_1 \sin \lambda_1 \ell + \sin \lambda_1 \ell \cosh \lambda_1 \ell}{\cos \lambda_1 \ell \cosh \lambda_1 \ell + 1} \right]$

$A_{12} = EI_1 \lambda_1^2 \left[\frac{\sin \lambda_1 \sin \lambda_1 \ell}{\cos \lambda_1 \ell \cosh \lambda_1 \ell + 1} \right]$

$A_{22} = EI_1 \lambda_1 \left[\frac{\cos \lambda_1 \sin \lambda_1 \ell - \sin \lambda_1 \ell \cosh \lambda_1 \ell}{\cosh \lambda_1 \ell \cosh \lambda_1 \ell + 1} \right]$

Replace I_1 by I_2 and λ_1 by λ_2 in the above expressions to obtain B_{11}, B_{12}, and B_{22}.

$C_{11} = Gk \lambda_3^2 \cot \lambda_3 \ell$
Table 4.5

Dimensions and other details of bladed disc models I to III.

<table>
<thead>
<tr>
<th>Model</th>
<th>Disc Dimensions (in)</th>
<th>Rim Dimensions (in)</th>
<th>Blade Dimensions (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>h</td>
</tr>
<tr>
<td>I</td>
<td>1.0</td>
<td>5.2</td>
<td>0.3</td>
</tr>
<tr>
<td>II</td>
<td>1.0</td>
<td>5.2</td>
<td>0.3</td>
</tr>
<tr>
<td>III*</td>
<td>3.5</td>
<td>17.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>

* All dimensions are in cm.
First six cantilevered blade alone frequencies of models I to III.

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ω^b (Hz)</td>
<td>Type</td>
<td>ω^b (Hz)</td>
</tr>
<tr>
<td>1</td>
<td>116</td>
<td>B_1</td>
<td>439</td>
</tr>
<tr>
<td>2</td>
<td>729</td>
<td>B_1</td>
<td>2427</td>
</tr>
<tr>
<td>3</td>
<td>931</td>
<td>B_2</td>
<td>2750</td>
</tr>
<tr>
<td>4</td>
<td>1250</td>
<td>T</td>
<td>3511</td>
</tr>
<tr>
<td>5</td>
<td>2042</td>
<td>B_1</td>
<td>7281</td>
</tr>
<tr>
<td>6</td>
<td>3749</td>
<td>T</td>
<td>7702</td>
</tr>
</tbody>
</table>

B_1 - Bending in the I_{min} direction

B_2 - Bending in the I_{max} direction

T - Torsion
TABLE 4.7

Calculated and experimental frequencies in Hz. of bladed disc model I.

\[E = 29 \times 10^6 \text{ psi} \quad \rho_g = 0.283 \text{ lb/in}^3 \quad \nu = 0.3 \]

<table>
<thead>
<tr>
<th>Mode Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Exact</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>323</td>
<td>321</td>
<td>320</td>
<td>320</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1071</td>
<td>746</td>
<td>743</td>
<td>741</td>
<td>740</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1251</td>
<td>1156</td>
<td>1153</td>
<td>1151</td>
<td>1150</td>
<td>1123</td>
</tr>
<tr>
<td>5</td>
<td>1388</td>
<td>1293</td>
<td>1276</td>
<td>1270</td>
<td>1263</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3851</td>
<td>2482</td>
<td>2080</td>
<td>2072</td>
<td>2056</td>
<td>2094</td>
</tr>
<tr>
<td>1</td>
<td>116</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>602</td>
<td>598</td>
<td>589</td>
<td>589</td>
<td>589</td>
<td>581</td>
</tr>
<tr>
<td>3</td>
<td>1130</td>
<td>750</td>
<td>747</td>
<td>746</td>
<td>745</td>
<td>754</td>
</tr>
<tr>
<td>4</td>
<td>1370</td>
<td>1275</td>
<td>1258</td>
<td>1252</td>
<td>1244</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1782</td>
<td>1749</td>
<td>1720</td>
<td>1715</td>
<td>1712</td>
<td>1687</td>
</tr>
<tr>
<td>6</td>
<td>4619</td>
<td>2531</td>
<td>2148</td>
<td>2144</td>
<td>2130</td>
<td>2159</td>
</tr>
<tr>
<td>1</td>
<td>117</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>760</td>
<td>711</td>
<td>708</td>
<td>707</td>
<td>706</td>
<td>695</td>
</tr>
<tr>
<td>3</td>
<td>1140</td>
<td>778</td>
<td>777</td>
<td>776</td>
<td>776</td>
<td>766</td>
</tr>
<tr>
<td>4</td>
<td>1374</td>
<td>1279</td>
<td>1261</td>
<td>1255</td>
<td>1247</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2727</td>
<td>2378</td>
<td>2024</td>
<td>2013</td>
<td>1998</td>
<td>2010</td>
</tr>
<tr>
<td>6</td>
<td>5724</td>
<td>2888</td>
<td>2820</td>
<td>2814</td>
<td>2807</td>
<td>2792</td>
</tr>
<tr>
<td>1</td>
<td>117</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td>2</td>
<td>836</td>
<td>729</td>
<td>726</td>
<td>724</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1145</td>
<td>829</td>
<td>828</td>
<td>828</td>
<td>828</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1375</td>
<td>1280</td>
<td>1262</td>
<td>1256</td>
<td>1248</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3945</td>
<td>2458</td>
<td>2051</td>
<td>2040</td>
<td>2025</td>
<td>2041</td>
</tr>
<tr>
<td>6</td>
<td>7142</td>
<td>3923</td>
<td>3843</td>
<td>3737</td>
<td>3662</td>
<td>3610</td>
</tr>
<tr>
<td>1</td>
<td>117</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td>2</td>
<td>876</td>
<td>733</td>
<td>729</td>
<td>727</td>
<td>726</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1147</td>
<td>862</td>
<td>861</td>
<td>861</td>
<td>861</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1376</td>
<td>1280</td>
<td>1262</td>
<td>1256</td>
<td>1248</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5279</td>
<td>2473</td>
<td>2058</td>
<td>2048</td>
<td>2033</td>
<td>2067</td>
</tr>
<tr>
<td>6</td>
<td>8761</td>
<td>4457</td>
<td>4116</td>
<td>3949</td>
<td>3738</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4.8

Calculated and experimental frequencies in Hz. of bladed disc model II.

\[E = 29 \times 10^6 \text{ psi} \quad \rho_g = 0.283 \text{ lb/in}^3 \quad \nu = 0.3 \]

<table>
<thead>
<tr>
<th>m</th>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Exact</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>347</td>
<td>345</td>
<td>345</td>
<td>345</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>580</td>
<td>577</td>
<td>576</td>
<td>576</td>
<td>576</td>
<td>587</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2292</td>
<td>2214</td>
<td>2207</td>
<td>2205</td>
<td>2203</td>
<td>2112</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2679</td>
<td>2493</td>
<td>2458</td>
<td>2446</td>
<td>2430</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4308</td>
<td>2816</td>
<td>2803</td>
<td>2797</td>
<td>2794</td>
<td>2781</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7193</td>
<td>4761</td>
<td>4705</td>
<td>4689</td>
<td>4676</td>
<td>3958</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>427</td>
<td>426</td>
<td>425</td>
<td>425</td>
<td>425</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1161</td>
<td>1157</td>
<td>1156</td>
<td>1156</td>
<td>1156</td>
<td>1157</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2678</td>
<td>2493</td>
<td>2459</td>
<td>2447</td>
<td>2431</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2981</td>
<td>2818</td>
<td>2805</td>
<td>2800</td>
<td>2797</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4332</td>
<td>2971</td>
<td>2968</td>
<td>2966</td>
<td>2965</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7693</td>
<td>5671</td>
<td>5629</td>
<td>5619</td>
<td>5610</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>436</td>
<td>434</td>
<td>434</td>
<td>434</td>
<td>434</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1912</td>
<td>1880</td>
<td>1878</td>
<td>1877</td>
<td>1876</td>
<td>1802</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2685</td>
<td>2500</td>
<td>2466</td>
<td>2454</td>
<td>2438</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3838</td>
<td>2828</td>
<td>2816</td>
<td>2811</td>
<td>2808</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4411</td>
<td>3936</td>
<td>3933</td>
<td>3932</td>
<td>3931</td>
<td>3789</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8558</td>
<td>7121</td>
<td>6964</td>
<td>6945</td>
<td>6924</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>439</td>
<td>437</td>
<td>436</td>
<td>436</td>
<td>436</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2494</td>
<td>2375</td>
<td>2360</td>
<td>2355</td>
<td>2347</td>
<td>2228</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2713</td>
<td>2535</td>
<td>2509</td>
<td>2501</td>
<td>2492</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4238</td>
<td>2859</td>
<td>2849</td>
<td>2844</td>
<td>2842</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5410</td>
<td>5294</td>
<td>5278</td>
<td>5273</td>
<td>5269</td>
<td>5018</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9880</td>
<td>8664</td>
<td>7645</td>
<td>7715</td>
<td>7290</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>440</td>
<td>438</td>
<td>437</td>
<td>437</td>
<td>437</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2654</td>
<td>2472</td>
<td>2439</td>
<td>2427</td>
<td>2412</td>
<td>2458</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2936</td>
<td>2680</td>
<td>2666</td>
<td>2661</td>
<td>2659</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4287</td>
<td>2952</td>
<td>2946</td>
<td>2944</td>
<td>2942</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7167</td>
<td>7061</td>
<td>6902</td>
<td>6872</td>
<td>6827</td>
<td>6551</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>11691</td>
<td>8716</td>
<td>7947</td>
<td>7713</td>
<td>7336</td>
<td></td>
</tr>
</tbody>
</table>
Calculated and experimental frequencies in Hz. of bladed disc model III

\[E = 29 \times 10^6 \text{ psi} \quad \rho g = 0.283 \text{ lb/in}^3 \quad \nu = 0.3 \]

<table>
<thead>
<tr>
<th>Mode</th>
<th>Number of disc and blade elements:</th>
<th>Exact</th>
<th>Jager Calculated</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. 1 2 3 4</td>
<td>154</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>2 157 155 154 154 154</td>
<td>154</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>2 466 463 463 463 462 450</td>
<td>450</td>
<td>450</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>3 1032 1008 1005 1004 1003 1005</td>
<td>1005</td>
<td>1005</td>
<td>985</td>
</tr>
<tr>
<td></td>
<td>3 2979 2120 2107 2103 2099 2041</td>
<td>2041</td>
<td>2040</td>
<td>1930</td>
</tr>
<tr>
<td></td>
<td>3 3860 3187 3151 3138 3128</td>
<td>3128</td>
<td>3128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 4929 3610 3559 3542 3513</td>
<td>3513</td>
<td>3513</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 1 2 3 4</td>
<td>225</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>3 522 521 521 521 521 515</td>
<td>515</td>
<td>515</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>3 1277 1267 1266 1265 1264 1270</td>
<td>1270</td>
<td>1270</td>
<td>1215</td>
</tr>
<tr>
<td></td>
<td>3 3082 2224 2214 2210 2208 2145</td>
<td>2145</td>
<td>2145</td>
<td>2050</td>
</tr>
<tr>
<td></td>
<td>3 3866 3534 3494 3479 3461</td>
<td>3461</td>
<td>3461</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 5036 3760 3729 3717 3706</td>
<td>3706</td>
<td>3706</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 1 2 3 4</td>
<td>225</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>3 598 596 596 596 596 599</td>
<td>599</td>
<td>599</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>3 1661 1579 1575 1574 1573 1573</td>
<td>1573</td>
<td>1573</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>3 3283 2376 2370 2366 2364 2275</td>
<td>2275</td>
<td>2275</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>3 3885 3613 3563 3545 3523</td>
<td>3523</td>
<td>3523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 5261 4422 4372 4364 4358</td>
<td>4358</td>
<td>4358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 1 2 3 4</td>
<td>273</td>
<td>273</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>3 598 596 596 596 596 599</td>
<td>599</td>
<td>599</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>3 1661 1579 1575 1574 1573 1573</td>
<td>1573</td>
<td>1573</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>3 3283 2376 2370 2366 2364 2275</td>
<td>2275</td>
<td>2275</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>3 3885 3613 3563 3545 3523</td>
<td>3523</td>
<td>3523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 5261 4422 4372 4364 4358</td>
<td>4358</td>
<td>4358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1 2 3 4</td>
<td>273</td>
<td>273</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>4 598 596 596 596 596 599</td>
<td>599</td>
<td>599</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>4 1661 1579 1575 1574 1573 1573</td>
<td>1573</td>
<td>1573</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>4 3283 2376 2370 2366 2364 2275</td>
<td>2275</td>
<td>2275</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>4 3885 3613 3563 3545 3523</td>
<td>3523</td>
<td>3523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 5261 4422 4372 4364 4358</td>
<td>4358</td>
<td>4358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1 2 3 4</td>
<td>273</td>
<td>273</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>4 598 596 596 596 596 599</td>
<td>599</td>
<td>599</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>4 1661 1579 1575 1574 1573 1573</td>
<td>1573</td>
<td>1573</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>4 3283 2376 2370 2366 2364 2275</td>
<td>2275</td>
<td>2275</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>4 3885 3613 3563 3545 3523</td>
<td>3523</td>
<td>3523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 5261 4422 4372 4364 4358</td>
<td>4358</td>
<td>4358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1 2 3 4</td>
<td>273</td>
<td>273</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>4 598 596 596 596 596 599</td>
<td>599</td>
<td>599</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>4 1661 1579 1575 1574 1573 1573</td>
<td>1573</td>
<td>1573</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>4 3283 2376 2370 2366 2364 2275</td>
<td>2275</td>
<td>2275</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>4 3885 3613 3563 3545 3523</td>
<td>3523</td>
<td>3523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 5261 4422 4372 4364 4358</td>
<td>4358</td>
<td>4358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1 2 3 4</td>
<td>273</td>
<td>273</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>4 598 596 596 596 596 599</td>
<td>599</td>
<td>599</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>4 1661 1579 1575 1574 1573 1573</td>
<td>1573</td>
<td>1573</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>4 3283 2376 2370 2366 2364 2275</td>
<td>2275</td>
<td>2275</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>4 3885 3613 3563 3545 3523</td>
<td>3523</td>
<td>3523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 5261 4422 4372 4364 4358</td>
<td>4358</td>
<td>4358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1 2 3 4</td>
<td>273</td>
<td>273</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>4 598 596 596 596 596 599</td>
<td>599</td>
<td>599</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>4 1661 1579 1575 1574 1573 1573</td>
<td>1573</td>
<td>1573</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>4 3283 2376 2370 2366 2364 2275</td>
<td>2275</td>
<td>2275</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>4 3885 3613 3563 3545 3523</td>
<td>3523</td>
<td>3523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 5261 4422 4372 4364 4358</td>
<td>4358</td>
<td>4358</td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>Disc Dimensions (in)</td>
<td>Blade Dimensions (in)</td>
<td>Z</td>
<td>δ</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>0.1 6.0 0.3</td>
<td>6.0 1.0 0.08</td>
<td>36</td>
<td>45°</td>
</tr>
<tr>
<td>2</td>
<td>0.1 8.0 0.3</td>
<td>4.0 1.0 0.08</td>
<td>36</td>
<td>45°</td>
</tr>
<tr>
<td>3</td>
<td>0.1 4.0 0.3</td>
<td>8.0 1.0 0.08</td>
<td>36</td>
<td>45°</td>
</tr>
<tr>
<td>4</td>
<td>0.1 8.0 0.3</td>
<td>4.0 0.5 0.04</td>
<td>72</td>
<td>45°</td>
</tr>
<tr>
<td>5</td>
<td>0.1 8.0 0.3</td>
<td>4.0 2.0 0.16</td>
<td>18</td>
<td>45°</td>
</tr>
<tr>
<td>6</td>
<td>0.1 6.0 0.3</td>
<td>6.0 1.0 0.08</td>
<td>36</td>
<td>30°</td>
</tr>
<tr>
<td>7</td>
<td>0.1 6.0 0.3</td>
<td>6.0 1.0 0.08</td>
<td>36</td>
<td>60°</td>
</tr>
</tbody>
</table>
TABLE 4.11

First four cantilevered blade alone frequencies of cases 1 through 7.

\[E = 29 \times 10^6 \text{ psi} \quad \rho_g = 0.283 \quad v = 0.3 \]

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>Case Number</th>
<th>1, 2 and 7</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>71 (B_1)</td>
<td>161 (B_1)</td>
<td>40 (B_1)</td>
<td>80 (B_1)</td>
<td>321 (B_1)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>447 (B_2)</td>
<td>1007 (B_1)</td>
<td>252 (B_1)</td>
<td>503 %</td>
<td>1198 (T)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>799 (T)</td>
<td>1198 (T)</td>
<td>502 (B_2)</td>
<td>1004 (B_2)</td>
<td>2013 (B_2)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>892 (B_2)</td>
<td>2008 (B_2)</td>
<td>599 (T)</td>
<td>1198 (T)</td>
<td>3594 (T)</td>
</tr>
</tbody>
</table>

\(B_1 \) - Bending in the \(I_{min} \) direction
\(B_2 \) - Bending in the \(I_{max} \) direction
\(T \) - Torsion
TABLE 4.12

Coupled frequencies in Hz. of cases 1 through 7, calculated by the exact method.

\[E = 29 \times 10^6 \text{ psi} \quad \rho g = 0.283 \text{ lb/in}^3 \quad \nu = 0.3 \]

<table>
<thead>
<tr>
<th>m</th>
<th>Mode</th>
<th>Case Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>796</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>796</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>798</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>469</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>798</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>501</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>554</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>798</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>798</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m</th>
<th>Mode</th>
<th>Case Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>947</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1054</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>947</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>597</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>262</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>597</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>510</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>901</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1202</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>901</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>795</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>452</td>
</tr>
</tbody>
</table>
TABLE 4.13

Frequency ratios ω_i/ω_1 of the first four modes of cases 1 through 7.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Case Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>2.986</td>
</tr>
<tr>
<td>3</td>
<td>1.0000</td>
</tr>
<tr>
<td>4</td>
<td>1.0000</td>
</tr>
<tr>
<td>5</td>
<td>1.0000</td>
</tr>
<tr>
<td>6</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>6.225</td>
</tr>
</tbody>
</table>
TABLE 4.14

Variation of frequencies (in Hz.) of bladed disc model I with speed of rotation.

\[E = 29 \times 10^6 \text{ psi} \quad \rho g = 0.283 \text{ lb/in}^3 \quad v = 0.3 \]

<table>
<thead>
<tr>
<th>Mode</th>
<th>Speed of rotation in rpm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>2</td>
<td>320</td>
</tr>
<tr>
<td>3</td>
<td>741</td>
</tr>
<tr>
<td>4</td>
<td>1151</td>
</tr>
<tr>
<td>5</td>
<td>1270</td>
</tr>
<tr>
<td>6</td>
<td>2072</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>115</td>
</tr>
<tr>
<td>2</td>
<td>589</td>
</tr>
<tr>
<td>3</td>
<td>746</td>
</tr>
<tr>
<td>4</td>
<td>1252</td>
</tr>
<tr>
<td>5</td>
<td>1712</td>
</tr>
<tr>
<td>6</td>
<td>2144</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>116</td>
</tr>
<tr>
<td>2</td>
<td>707</td>
</tr>
<tr>
<td>3</td>
<td>776</td>
</tr>
<tr>
<td>4</td>
<td>1255</td>
</tr>
<tr>
<td>5</td>
<td>2043</td>
</tr>
<tr>
<td>6</td>
<td>2814</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>116</td>
</tr>
<tr>
<td>2</td>
<td>724</td>
</tr>
<tr>
<td>3</td>
<td>828</td>
</tr>
<tr>
<td>4</td>
<td>1256</td>
</tr>
<tr>
<td>5</td>
<td>2040</td>
</tr>
<tr>
<td>6</td>
<td>3737</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>116</td>
</tr>
<tr>
<td>2</td>
<td>727</td>
</tr>
<tr>
<td>3</td>
<td>861</td>
</tr>
<tr>
<td>4</td>
<td>1256</td>
</tr>
<tr>
<td>5</td>
<td>2048</td>
</tr>
<tr>
<td>6</td>
<td>3949</td>
</tr>
</tbody>
</table>
Frequencies in Hz. of bladed disc model I calculated including transverse shear and rotary inertia.

\[E = 29 \times 10^6 \text{ psi} \quad \rho g = 0.283 \text{ lb/in}^3 \quad \nu = 0.3 \]

<table>
<thead>
<tr>
<th>m</th>
<th>Mode No.</th>
<th>Number of disc blade elements</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>332</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>744</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1165</td>
<td>1157</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1293</td>
<td>1275</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2481</td>
<td>2076</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>596</td>
<td>592</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>750</td>
<td>744</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1274</td>
<td>1256</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1734</td>
<td>1705</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2520</td>
<td>2140</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>710</td>
<td>705</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>772</td>
<td>768</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1277</td>
<td>1259</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2357</td>
<td>2014</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2823</td>
<td>2744</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>728</td>
<td>723</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>815</td>
<td>811</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1278</td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2445</td>
<td>2043</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3719</td>
<td>3646</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>731</td>
<td>727</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>843</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1278</td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2460</td>
<td>2050</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4342</td>
<td>4075</td>
</tr>
</tbody>
</table>
TABLE 4.16

Frequencies in Hz. of bladed disc model II calculated including transverse shear and rotary inertia.

\[E = 29 \times 10^6 \text{ psi} \quad \rho_g = 0.283 \text{ lb/in}^3 \quad \nu = 0.3 \]

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>Number of disc and blade elements</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>353</td>
<td>351</td>
</tr>
<tr>
<td>2</td>
<td>582</td>
<td>579</td>
</tr>
<tr>
<td>3</td>
<td>2360</td>
<td>2276</td>
</tr>
<tr>
<td>4</td>
<td>2490</td>
<td>2455</td>
</tr>
<tr>
<td>5</td>
<td>2788</td>
<td>2769</td>
</tr>
<tr>
<td>6</td>
<td>6428</td>
<td>4463</td>
</tr>
<tr>
<td></td>
<td>426</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>11.58</td>
<td>1152</td>
</tr>
<tr>
<td></td>
<td>2493</td>
<td>2458</td>
</tr>
<tr>
<td></td>
<td>2783</td>
<td>2767</td>
</tr>
<tr>
<td></td>
<td>3034</td>
<td>3006</td>
</tr>
<tr>
<td></td>
<td>7113</td>
<td>5395</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>434</td>
</tr>
<tr>
<td></td>
<td>1839</td>
<td>1827</td>
</tr>
<tr>
<td></td>
<td>2501</td>
<td>2466</td>
</tr>
<tr>
<td></td>
<td>2790</td>
<td>2773</td>
</tr>
<tr>
<td></td>
<td>3894</td>
<td>3878</td>
</tr>
<tr>
<td></td>
<td>8132</td>
<td>684.3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>2295</td>
<td>2273</td>
</tr>
<tr>
<td></td>
<td>2528</td>
<td>2495</td>
</tr>
<tr>
<td></td>
<td>2801</td>
<td>2786</td>
</tr>
<tr>
<td></td>
<td>5118</td>
<td>5080</td>
</tr>
<tr>
<td></td>
<td>8655</td>
<td>7680</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>2443</td>
<td>2410</td>
</tr>
<tr>
<td></td>
<td>2631</td>
<td>2603</td>
</tr>
<tr>
<td></td>
<td>2832</td>
<td>2817</td>
</tr>
<tr>
<td></td>
<td>6655</td>
<td>6521</td>
</tr>
<tr>
<td></td>
<td>8709</td>
<td>7843</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>2443</td>
<td>2410</td>
</tr>
<tr>
<td></td>
<td>2631</td>
<td>2603</td>
</tr>
<tr>
<td></td>
<td>2832</td>
<td>2817</td>
</tr>
<tr>
<td></td>
<td>6655</td>
<td>6521</td>
</tr>
<tr>
<td></td>
<td>8709</td>
<td>7843</td>
</tr>
</tbody>
</table>
TABLE 4.17

Section properties of the turbine blade

<table>
<thead>
<tr>
<th>Radius (in)</th>
<th>Area (in²)</th>
<th>(I_{\text{min}}) (in⁴)</th>
<th>(I_{\text{max}}) (in⁴)</th>
<th>(\delta) (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.182</td>
<td>0.1196</td>
<td>0.0005994</td>
<td>0.007063</td>
<td>10.32</td>
</tr>
<tr>
<td>8.780</td>
<td>0.0960</td>
<td>0.0004300</td>
<td>0.005400</td>
<td>16.00</td>
</tr>
<tr>
<td>9.390</td>
<td>0.0771</td>
<td>0.0002736</td>
<td>0.003857</td>
<td>22.71</td>
</tr>
<tr>
<td>10.050</td>
<td>0.0630</td>
<td>0.0001700</td>
<td>0.002800</td>
<td>29.50</td>
</tr>
<tr>
<td>10.720</td>
<td>0.0461</td>
<td>0.0000822</td>
<td>0.002048</td>
<td>32.27</td>
</tr>
</tbody>
</table>

TABLE 4.18

Calculated and measured frequencies in Hz. of the turbine blade

5 Timoshenko beam elements used in the calculations.

\[E = 29.3 \times 10^6 \text{ psi} \quad \rho_g = 0.283 \text{ lb/in}^3 \quad \nu = 0.3 \]

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>Calculated</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1151</td>
<td>1150</td>
</tr>
<tr>
<td>2</td>
<td>3553</td>
<td>2560</td>
</tr>
<tr>
<td>3</td>
<td>5482</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12108</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4.19

Dimensions and section properties at nodal points of the finite element model of the turbine.

DISC

<table>
<thead>
<tr>
<th>Node</th>
<th>Radius (in)</th>
<th>Thickness (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.900</td>
<td>2.650</td>
</tr>
<tr>
<td>2</td>
<td>2.380</td>
<td>1.395</td>
</tr>
<tr>
<td>3</td>
<td>3.430</td>
<td>1.095</td>
</tr>
<tr>
<td>4</td>
<td>5.700</td>
<td>0.680</td>
</tr>
<tr>
<td>5</td>
<td>6.950</td>
<td>0.480</td>
</tr>
<tr>
<td>6</td>
<td>7.390</td>
<td>1.025</td>
</tr>
<tr>
<td>7</td>
<td>7.836</td>
<td>1.025</td>
</tr>
</tbody>
</table>

BLADE

<table>
<thead>
<tr>
<th>Node</th>
<th>Radius (in)</th>
<th>Area (in^2)</th>
<th>I_{min} (in^4)</th>
<th>I_{max} (in^4)</th>
<th>δ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.836</td>
<td>0.1350</td>
<td>0.0007400</td>
<td>0.007400</td>
<td>8.00</td>
</tr>
<tr>
<td>2</td>
<td>8.182</td>
<td>0.1196</td>
<td>0.0005994</td>
<td>0.007063</td>
<td>10.32</td>
</tr>
<tr>
<td>3</td>
<td>8.780</td>
<td>0.0960</td>
<td>0.0004300</td>
<td>0.005400</td>
<td>16.00</td>
</tr>
<tr>
<td>4</td>
<td>9.380</td>
<td>0.0771</td>
<td>0.0002736</td>
<td>0.003857</td>
<td>22.71</td>
</tr>
<tr>
<td>5</td>
<td>10.050</td>
<td>0.0630</td>
<td>0.0001700</td>
<td>0.002800</td>
<td>29.50</td>
</tr>
<tr>
<td>6</td>
<td>10.855</td>
<td>0.0435</td>
<td>0.0000720</td>
<td>0.001900</td>
<td>32.30</td>
</tr>
</tbody>
</table>
TABLE 4.20

Calculated and experimental frequencies, in Hz., of the turbine rotor. 6 disc elements and 5 blade elements used in the calculations.

\[\nu = 0.3 \quad E_{\text{blade}} = 29.3 \times 10^6 \text{ psi} \]

<table>
<thead>
<tr>
<th></th>
<th>Mode No.</th>
<th>Calculated</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(E_d = 31.2 \text{ psi} \times 10^6)</td>
<td>(E_d = 28.4 \text{ psi} \times 10^6)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>700</td>
<td>669</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1168</td>
<td>1166</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1010</td>
<td>974</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1208</td>
<td>1197</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1131</td>
<td>1126</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1523</td>
<td>1466</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1143</td>
<td>1142</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1947</td>
<td>1877</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1146</td>
<td>1146</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2308</td>
<td>2237</td>
</tr>
</tbody>
</table>
A.1 INTRODUCTION

The annular and circular thin plate bending elements developed in Chapter 2, although primarily developed for the vibration analysis of turbine discs with radial thickness variations, can be readily applied in the static bending analysis of axisymmetric circular and annular plates.

Here a few examples have been chosen to show the accuracy and use of these elements in such static analysis. When plates with axisymmetric loading are considered, annular and circular elements with $m = 0$ are to be used. Loads which are not axisymmetric can also be considered if they can be expanded into Fourier series. In such cases each Fourier component is considered separately and for the i^{th} component elements with nodal diameters $m = i$ are used. Required number of Fourier terms are taken and the individual contributions of deflection etc. are superposed together to get the complete solution of the problem.
A.2 NUMERICAL APPLICATIONS

The first example is the axisymmetric circular plate with radial thickness variation subjected to uniform load q, shown in Figure A.1. Annular and circular elements with $m = 0$ are used and the load q is replaced by consistent load. The central deflection and bending moments obtained are given in Table A.1, along with exact solutions. Plates with $h_0/h_1 = 1.0$ and 1.5 are considered. The same problem is solved by considering annular plates with $a/b = 0.001$, and using only annular elements. The results are given in Table A.2. Comparing results of Table A.1 and A.2, it is seen that when the plates are approximated by annular plates with very small inner radius the bending moments obtained at the centre are not accurate, whereas they are not much affected at points away from the centre.

The second example chosen is an axisymmetric annular plate with variable thickness shown in Figure A.2. The maximum deflection for this plate with $b/a = 1.25$, 2, and 5, obtained with models with annular elements are given in Table A.3 with exact solutions.

Axisymmetric plates with nonsymmetric loads can also be considered. As already mentioned these loads are expanded
in Fourier series and each Fourier component is considered separately. A uniform annular plate fixed at the inner radius a and free at the outer radius b, and subjected to a single concentrated load P at a point on the outer boundary as shown in Figure A.3 is considered. Deflection under the load obtained for this problem using annular elements are given for plates with a/b = 0.5 in Table A.4 along with exact solutions. The results show that the number of Fourier components taken has more influence on the results than the number of elements used. Olson and Lindberg (54) have used sector elements to solve this problem and their results are given in Table A.5.

The next example is a clamped circular plate with a single concentrated load P applied anywhere in the plate, as shown in Figure A.4. The plate is approximated with an annular plate with a/b = 0.001. The deflection under the load when the first 21 Fourier components of the load are taken are given in Table A.6 with exact solutions and solutions obtained by Olson and Lindberg (54) using sector elements. The load is applied at a point with radius ratio c/b = 0.5.

A.3 DISCUSSION

The numerical examples considered show that for
axisymmetric plates, although sector elements \((54,55,56)\) and triangular elements \((57)\) can be used in the static bending analysis, the use of annular and circular elements offer substantial computational advantages since the number of degrees of freedom involved are much less than the other cases. At the same time there is no loss in accuracy. The relative ease with which radial thickness variation can be taken into account when annular and circular elements are used is an added advantage. Eventhough a set of problems equal to the number of Fourier components taken, are to be solved in the case of loads which are not axisymmetric, still use of these elements offer computational advantages in terms of storage and time.

But the application of these elements are limited only to complete axisymmetric circular and annular plates.
Figure A.1 Circular plate with radial linear thickness variation.

Figure A.2 Annular plate with radial linear thickness variation.
Figure A.3 Uniform annular plate loaded with a concentrated load at the outer boundary.
Figure A.4 Uniform circular plate loaded with a concentrated load anywhere on the plate.
Deflections and bending moments of simply supported plates under uniform pressure \(q \), modelled with one circular and several annular thin plate bending elements.

<table>
<thead>
<tr>
<th>(h_0)</th>
<th>(\frac{Eh_0^3}{W_{\text{max}}qb^4})</th>
<th>(\frac{M_t}{qb^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>(r)</td>
<td>()</td>
<td>(2)</td>
<td>(4)</td>
<td>(8)</td>
<td>(16)</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(1)</td>
<td>0</td>
<td>0.7391</td>
<td>0.7383</td>
<td>0.7383</td>
<td>0.7383</td>
<td>0.7383</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>0</td>
<td>0.2147</td>
<td>0.2060</td>
<td>0.2038</td>
<td>0.2033</td>
<td>0.2033</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>0.1599</td>
<td>0.1543</td>
<td>0.1528</td>
<td>0.1525</td>
<td>0.1525</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(b/2)</td>
<td>0</td>
<td>0.2147</td>
<td>0.2060</td>
<td>0.2038</td>
<td>0.2033</td>
<td>0.2033</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>0.1775</td>
<td>0.1763</td>
<td>0.1759</td>
<td>0.1758</td>
<td>0.1758</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>0.0955</td>
<td>0.0942</td>
<td>0.0939</td>
<td>0.0938</td>
<td>0.0938</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(b)</td>
<td>0</td>
<td>1.2660</td>
<td>1.2660</td>
<td>1.2660</td>
<td>1.2660</td>
<td>1.2660</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(1.5)</td>
<td>0</td>
<td>0.2689</td>
<td>0.2593</td>
<td>0.2577</td>
<td>0.2574</td>
<td>0.2574</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>0.1927</td>
<td>0.1799</td>
<td>0.1772</td>
<td>0.1766</td>
<td>0.1766</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>0.0588</td>
<td>0.0556</td>
<td>0.0545</td>
<td>0.0541</td>
<td>0.0541</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>
TABLE A.2

Deflections and bending moments of simply supported plates under uniform pressure q, modelled with annular thin plate bending elements only with $a/b = 0.001$.

<table>
<thead>
<tr>
<th>h_0 / h</th>
<th>r</th>
<th>Number of elements</th>
<th>Eh_0^3</th>
<th>W_{max}</th>
<th>$M_r / q b^2$</th>
<th>$M_t / q b^2$</th>
<th>Exact (124)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where Eh_0^3 / W_{max} and $M_r / q b^2$ and $M_t / q b^2$ are the deflection and moment terms respectively, and h_0 / h is the thickness ratio of the plate.
TABLE A.3

Deflection coefficients $w_{max} \frac{Eh^3}{pD^2}$ of an annular disc of varying thickness (Figure A.2).

<table>
<thead>
<tr>
<th>b/a</th>
<th>Number of elements</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>1.25</td>
<td>0.01652</td>
<td>0.001733</td>
<td>0.001739</td>
<td>0.001739</td>
<td>0.001739</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>0.039770</td>
<td>0.057250</td>
<td>0.060320</td>
<td>0.060610</td>
<td>0.060630</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>0.238200</td>
<td>0.542600</td>
<td>0.780800</td>
<td>0.861900</td>
<td>0.874900</td>
<td></td>
</tr>
</tbody>
</table>
TABLE A.4

Deflection coefficient w_{max} D/P for a uniform annular plate with a single concentrated load, calculated using thin plate bending annular elements.

<table>
<thead>
<tr>
<th>n^*</th>
<th>Number of Elements</th>
<th>Exact (124)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>0.047737</td>
<td>0.047785</td>
</tr>
<tr>
<td>21</td>
<td>0.049910</td>
<td>0.049960</td>
</tr>
<tr>
<td>51</td>
<td>0.050537</td>
<td>0.050591</td>
</tr>
<tr>
<td>101</td>
<td>0.050616</td>
<td>0.050682</td>
</tr>
</tbody>
</table>

n^* = number of Fourier terms

TABLE A.5

Deflection coefficient w_{max} D/P for a uniform annular plate with a single concentrated load, calculated using sector elements (54).

<table>
<thead>
<tr>
<th>Sector Element Grids</th>
<th>N.D.P.</th>
<th>w_{max} D/P</th>
<th>Exact (124)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x6</td>
<td>19</td>
<td>0.050896</td>
<td></td>
</tr>
<tr>
<td>2x12</td>
<td>74</td>
<td>0.051372</td>
<td></td>
</tr>
<tr>
<td>3x18</td>
<td>165</td>
<td>0.051027</td>
<td>0.050718</td>
</tr>
<tr>
<td>4x24</td>
<td>292</td>
<td>0.050885</td>
<td></td>
</tr>
</tbody>
</table>
Deflection coefficient \(w \) D/P of a uniform circular plate with a single concentrated load \(P \) applied anywhere in the plate. \(c/b = 0.5 \)

<table>
<thead>
<tr>
<th>Number of Elements</th>
<th>N.D.P.</th>
<th>(n^*)</th>
<th>(wD/P) Finite element</th>
<th>Exact (124)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>21</td>
<td>0.0104559</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>21</td>
<td>0.0109955</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>21</td>
<td>0.0111291</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>21</td>
<td>0.0111483</td>
<td>0.0111906</td>
</tr>
<tr>
<td>2x4*</td>
<td>18</td>
<td>-</td>
<td>0.0113155</td>
<td></td>
</tr>
<tr>
<td>4x6*</td>
<td>63</td>
<td>-</td>
<td>0.0112715</td>
<td></td>
</tr>
<tr>
<td>6x8*</td>
<td>133</td>
<td>-</td>
<td>0.0109738</td>
<td></td>
</tr>
</tbody>
</table>

* Sector element grid (54)

\(n^* \) = number of Fourier terms
APPENDIX B

VIBRATION OF CIRCULAR AND ANNULAR PLATES WITH TRANSVERSE SHEAR AND ROTARY INERTIA

B.1 INTRODUCTION

Based on Mindlin's Plate theory (62), which takes into account transverse shear and rotary inertia, Callahan (66), and Bakshi and Callahan (67) have derived frequency determinants for circular and annular plates with various boundary conditions. These determinants can be used in the calculation of natural frequencies of moderately thick circular and annular plates. A brief summary of the theory as applied to annular plates is given here with the frequency determinant of a free-free annular plate.

B.2 MINDLIN'S PLATE THEORY

When transverse shear and rotary inertia are considered, the governing differential equations, in polar coordinates, of a vibrating plate is

\[
\frac{\partial^2 w_i}{\partial r^2} + \frac{1}{r} \frac{\partial w_i}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w_i}{\partial \theta^2} + \delta_i w_i = 0 \tag{B.1}
\]

where \(w_1 \) and \(w_2 \) are component parts of the total deflection \(w \);
and w_3 is a potential function giving rise to twist about normal to plate; and

$$\delta_{1,2} = \frac{1}{2} \delta^h \left\{ \frac{1}{R + S} \pm \frac{1}{R - S} \right\}^2 + \frac{\delta^{-4}_o}{2}$$

$$\delta^2_3 = 2(R\delta^h_o - S^{-1}) / (1 - \nu)$$

$$\delta^h_o = \frac{\rho \omega^2 h}{D}$$

$$R = \frac{h^2}{12} ; \quad S = \frac{D}{\kappa^2 G h} ; D = \frac{E h^3}{12(1 - \nu^2)}$$

E, G, ν are the Young's modulus, the shear modulus and Poisson's ratio, respectively, and $\kappa^2 = \kappa^2/12$

Now,

$$w = w_1 + w_2$$

$$\psi_r = (\sigma_1 - 1) \frac{\partial w_1}{\partial r} + (\sigma_2 - 1) \frac{\partial w_2}{\partial r} + \frac{1}{r} \frac{\partial w_3}{\partial \xi}$$

$$\psi_\xi = (\sigma_1 - 1) \frac{1}{r} \frac{\partial w_1}{\partial \xi} + (\sigma_2 - 1) \frac{1}{r} \frac{\partial w_2}{\partial \xi} + \frac{3}{r^2} \frac{\partial w_3}{\partial r}$$

where

$$\sigma_1, \sigma_2 = (\delta^2_2, \delta^7_1) \left(\frac{1}{R \delta^h_o - S^{-1}} \right)^{-1}$$

The above equations give the deflection and rotations of the plate, and the plate stresses are given by the following relations.
\[M_r = D \left[\frac{2}{r} \frac{\partial \psi_r}{\partial r} + \frac{\nu}{r} \left(\psi_r + \frac{\partial \psi_x}{\partial \xi} \right) \right] \]

\[M_\xi = D \left[\frac{1}{r} \left(\psi_r + \frac{\partial \psi_x}{\partial \xi} \right) + \nu \frac{\partial \psi_r}{\partial r} \right] \]

\[M_{r\xi} = D \left[\frac{1}{2} \left(1 - \nu \right) \left[\frac{1}{r} \left(\frac{\partial \psi_x}{\partial \xi} - \psi_x \right) + \frac{\partial \psi_r}{\partial r} \right] \right] \]

\[Q_r = \kappa^2 \frac{Gh}{(r - \delta)^2} \left(\psi_r + \frac{\partial \psi_x}{\partial \xi} \right) \]

\[Q_\xi = \kappa^2 \frac{Gh}{(r - \delta)^2} \left(\psi_x + \frac{\partial \psi_r}{\partial r} \right) \]

Now, \(\delta_1^2 \) is always positive for positive values of \(\omega \); but \(\delta_2^2 \) and \(\delta_3^2 \) are positive only when \(\omega < \overline{\omega} \), where \(\overline{\omega} \) is the frequency of the first thickness shear mode of an infinite plate, and is given by, \(\overline{\omega} = \pi (G / \rho) 1/2 / h \).

Hence, the most general solutions of Equations (B.1), for an annular plate when \(\omega < \overline{\omega} \), are

\[v_1 = \sum_{m=0}^{\infty} \left\{ a_m^1 J_m (r \delta_1^1) + b_m^1 Y_m (r \delta_1^1) \right\} \left(\cos m\xi + \sin m\zeta \right) \]

\[v_2 = \sum_{m=0}^{\infty} \left\{ a_m^2 I_m (r \delta_2^2) + b_m^2 K_m (r \delta_2^2) \right\} \left(\cos m\xi + \sin m\zeta \right) \]

\[v_3 = \sum_{m=0}^{\infty} \left\{ a_m^3 \sin (r \delta_3^3) + b_m^3 K_m (r \delta_3^3) \right\} \left(\cos m\xi + \sin m\zeta \right) \]

where \(a_m^i, b_m^i \) \((i = 1,2,3.)\) are arbitrary constants,

\[J_m^i, Y_m^i, I_m^i, \text{ and } K_m^i \text{ are Bessel functions of order } m, \]
\[(\delta_1')^2 = \left| (\delta_2')^2 \right; \quad (\delta_3')^2 = \left| (\delta_3')^2 \right|\]

Substituting (B.5) into (B.4) we arrive at expressions for the plate stress components involving the six arbitrary constants \(a_m^i, b_m^i (i = 1, 2, 3).\)

B.3 Annular Plate with Free Boundaries

Let us consider an annular plate with both boundaries free, as an example. Then on both boundaries where \(r = a\) and \(r = b\),

\[
Q_r = M_{\theta r} = M_r = 0 \quad \text{(B.6)}
\]

Now,

\[
Q_r = a_m^1 A_m^1 (\delta_1) + b_m^1 B_m^1 (\delta_2) + a_m^2 A_m^2 (\delta_2') + b_m^2 B_m^2 (\delta_2')
\]

\[
M_{\theta r} = a_m^3 A_m^3 (\delta_3') + b_m^3 B_m^3 (\delta_3')
\]

\[
M_r = a_m^1 C_m^1 (\delta_1') + b_m^1 D_m^1 (\delta_1') + a_m^2 C_m^2 (\delta_2') + b_m^2 D_m^2 (\delta_2')
\]

\[
M_{\theta r} = a_m^3 C_m^3 (\delta_3') + b_m^3 D_m^3 (\delta_3')
\]

\[\text{(B.7)}\]
Where the expressions \(A^i_m, B^i_m, \) etc., \(i = 1,2,3 \) are combinations of Bessel functions and are given in Table B.1.

When the above expressions are equated to zero when \(r = a \) and \(r = b \), satisfying boundary conditions (B.6), we get a set of homogeneous simultaneous equations. Nontrivial solution of these is obtained by equating to zero the following determinant.

\[
\begin{vmatrix}
A^1_m(\delta_1 a) & B^1_m(\delta_1 a) & A^2_m(\delta_1 a) & B^2_m(\delta_1 a) & A^3_m(\delta_1 a) & B^3_m(\delta_1 a) \\
A^1_m(\delta_1 b) & B^1_m(\delta_1 b) & A^2_m(\delta_1 b) & B^2_m(\delta_1 b) & A^3_m(\delta_1 b) & B^3_m(\delta_1 b) \\
C^1_m(\delta_1 a) & D^1_m(\delta_1 a) & C^2_m(\delta_1 a) & D^2_m(\delta_1 a) & C^3_m(\delta_1 a) & D^3_m(\delta_1 a) \\
C^1_m(\delta_1 b) & D^1_m(\delta_1 b) & C^2_m(\delta_1 b) & D^2_m(\delta_1 b) & C^3_m(\delta_1 b) & D^3_m(\delta_1 b) \\
E^1_m(\delta_1 a) & F^1_m(\delta_1 a) & E^2_m(\delta_1 a) & F^2_m(\delta_1 a) & E^3_m(\delta_1 a) & F^3_m(\delta_1 a) \\
E^1_m(\delta_1 b) & F^1_m(\delta_1 b) & E^2_m(\delta_1 b) & F^2_m(\delta_1 b) & E^3_m(\delta_1 b) & F^3_m(\delta_1 b)
\end{vmatrix} = 0
\]

(B.8)

For other boundary conditions similar determinants are readily derived. Similar procedure is followed when a circular plate is considered. This problem has been treated by Callahan (66).
The natural frequencies of the plate are obtained by systematic searching of values of \(\omega \) which make the value of the appropriate frequency determinant corresponding to the required boundary conditions, zero.
TABLE B.1

\[
\begin{align*}
A_m^1(x) &= \sigma_1 J_m'(x) \kappa^2 \Gamma_h \\
B_m^1(x) &= \sigma_1 Y_m'(x) \kappa^2 \Gamma_h \\
A_m^2(x) &= \sigma_1 I_m'(x) \kappa^2 \Gamma_h \\
B_m^2(x) &= \sigma_1 K_m'(x) \kappa^2 \Gamma_h \\
A_m^3(x) &= -\frac{m}{r} r_m(x) \kappa^2 \Gamma_h \\
B_m^3(x) &= -\frac{m}{r} K_m(x) \kappa^2 \Gamma_h \\
C_m^1(x) &= [(\sigma_1 - 1) \{ \frac{m}{r} J_m'(x) - \frac{m}{r^2} J_m(x) \}] (1-v) D \\
C_m^2(x) &= [(\sigma_2 - 1) \{ \frac{m}{r} I_m'(x) - \frac{m}{r^2} I_m(x) \}] (1-v) D \\
C_m^3(x) &= -\frac{1}{2} \{ \Gamma_m''(x) - \frac{1}{r} \Gamma_m'(x) + \frac{m^2}{r^2} \Gamma_m(x) \} (1-v) D \\
D_m^1(x) &= [(\sigma_1 - 1) \{ \frac{m}{r} Y_m'(x) - \frac{m}{r^2} Y_m(x) \}] (1-u) D \\
D_m^2(x) &= [(\sigma_2 - 1) \{ \frac{m}{r} K_m'(x) - \frac{m}{r^2} K_m(x) \}] (1-u) D \\
D_m^3(x) &= -\frac{1}{2} \{ \Gamma'_m(x) - \frac{1}{r} \Gamma_m(x) + \frac{m^2}{r^2} \Gamma_m(x) \} (1-u) D \\
E_m^1(x) &= [(\sigma_1 - 1) \{ \frac{r}{r^2} J_m(x) + \frac{r}{r^2} J_m(x) \}] D \\
E_m^2(x) &= [(\sigma_2 - 1) \{ \frac{r}{r^2} I_m(x) + \frac{r}{r^2} I_m(x) \}] D \\
E_m^3(x) &= [-\frac{m}{r} I_m(x) + \frac{m}{r^2} I_m(x)] (1-v) D \\
F_m^1(x) &= [(\sigma_1 - 1) \{ Y_m(x) + \frac{r}{r^2} Y_m(x) \}] D \\
F_m^2(x) &= [(\sigma_2 - 1) \{ K_m(x) + \frac{r}{r^2} K_m(x) \}] D \\
F_m^3(x) &= [-\frac{m}{r} K_m(x) + \frac{m}{r^2} K_m(x)] (1-v) D
\end{align*}
\]
APPENDIX C

FINITE ELEMENT ANALYSIS OF THICK RECTANGULAR PLATES IN BENDING

C.1. INTRODUCTION

Pryor and Barber (125) have developed a twenty degree of freedom rectangular element for the bending analysis of rectangular plates including the effects of transverse shear. In the formulation of this element, in addition to the total deflection w and rotations ϕ_x and ϕ_y normally considered in plate bending, the average transverse shear strains $\bar{\gamma}_x$ and $\bar{\gamma}_y$ are taken as the additional degrees of freedom. Numerical results presented demonstrate good agreement with Reissner theory, and a substantial improvement over previous formulations (133,134).

In the exact analysis of problems based on Reissner theory, Salarno and Goldberg (135) have separated the contributions due to bending and transverse shear. Such an alternative approach, when used in the finite element formulation, offers significant computational advantages. Following this approach, a (12×12) shear stiffness matrix is derived which is used
separately to yield the transverse shear effects.

Since the notations used here are different from those used elsewhere in this work, a separate list is given at the end of this Appendix.

C.2. FINITE ELEMENT FORMULATION

The governing equations of the Reissner theory give the following relations for the stress resultants, (124),

\[
M_x = D \left[\frac{\partial^2 \phi_x}{\partial x^2} + \nu \frac{\partial^2 \phi_y}{\partial y^2} + \frac{\nu k}{2Gh} v \right]
\]
\[
M_y = D \left[\frac{\partial^2 \phi_y}{\partial y^2} + \nu \frac{\partial^2 \phi_x}{\partial x^2} + \frac{\nu k}{2Gh} v \right]
\]
\[
M_{xy} = -\frac{D(1-\nu)}{2} \left[\frac{\partial^2 \phi_x}{\partial y^2} + \frac{\partial^2 \phi_y}{\partial x^2} \right]
\]

where

\[
\phi_x = -\frac{\partial \sigma_x}{\partial x} + k \frac{Q_x}{Gh}
\]
\[
\phi_y = -\frac{\partial \sigma_y}{\partial y} + k \frac{Q_y}{Gh}
\]

(C.2)
Implicit in the theory is the value \(k = \frac{6}{5} \) accounting for the variation in transverse shear strain across the section. Equations C.1 and C.2 together with the equilibrium relations, result in the governing differential Equation

\[
DV^h w = q - \frac{H^2}{12} \left(\frac{2 - v}{1 - v} \right) \psi^2 q
\]

(C.3)

This equation has been solved by Salerno and Goldberg (135), and these exact solutions were used for comparison purposes with the finite element method in reference (125).

In Equations C.1 the term \(\frac{\nu k}{2H} q \) arises from consideration of the transverse normal stress \(\sigma_z \). The effect of the stress is not accounted for in the finite element formulation of Barber et al or in the following. Accordingly, dropping this term, but retaining \(k = \frac{6}{5} \), results in the governing Equation

\[
DV^h w = q - \frac{H}{10} \left(\frac{2}{1 - v} \right) \psi^2 q
\]

(C.4)
It may be noted that solutions to Equation C.4 can be obtained by minor modification of the Salerno and Goldberg solutions, and that these modified solutions should be used to assess the finite element method which discounts the effects of transverse normal stress.

In the finite element formulation to be described it is assumed that the contributions of bending and transverse shear to the plate deflection \(w \), may be separated; thus

\[
 w = w^b + w^\sigma
\] \hspace{1cm} (C.5)

Further we assume that the rotations \(\phi_x \) and \(\phi_y \) can be obtained from the deflection resulting from bending only; thus,

\[
 \phi_x = -\frac{\partial w}{\partial x} \hspace{1cm} (C.6)
\]

\[
 \phi_y = -\frac{\partial w}{\partial y}
\]

The resulting relations for the stress resultants become:

\[
 M_x = -D \left[\frac{3}{2} \frac{b}{a^2} \frac{\partial^2 w}{\partial x^2} + \nu \frac{3}{2} \frac{b}{a^2} \frac{\partial^2 w}{\partial y^2} \right]
\]

\[
 M_y = -D \left[\frac{3}{2} \frac{b}{a^2} \frac{\partial^2 w}{\partial y^2} + \nu \frac{3}{2} \frac{b}{a^2} \frac{\partial^2 w}{\partial x^2} \right]
\]
Thus the bending and twisting moments are these given by classical thin plate theory. The strain energy relations for the deformed plate are then,

\[M_{xy} = D \,(1-\nu) \frac{\partial^2 w}{\partial x \partial y} \]

\[Q_x = - \frac{Gh}{k} \frac{\partial u_x}{\partial x} \quad (C.7) \]

\[Q_y = - \frac{Gh}{k} \frac{\partial u_y}{\partial y} \]

\[U = \frac{1}{2} \int \int [u_b]^T \{D\} \{u_b\} \, dx \, dy + \frac{1}{2} \int \int [u_b]^T \{G\} [u_b] \, dx \, dy \quad (C.8) \]

where,

\[[u_b]^T = \begin{bmatrix} v_{xx}^b & v_{xx}^b & v_{xy}^b \end{bmatrix} \]

\[[D] = \begin{bmatrix} D & D\nu & 0 \\ D\nu & D & 0 \\ 0 & 0 & 2D(1-\nu) \end{bmatrix} \]
The effects of bending and transverse shear on the deflection are thus uncoupled and the contributions of each may be calculated separately.

Considering bending contributions first, for the rectangular element shown in Figure C.1 if we take as deflection function,

\[w^b = [1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3, x^3y, xy^3] \] \((C.10) \)

and as generalised co-ordinates the nodal deflection vector,

\[[\bar{\nu}_b]^T = [w^b_i, w^b_{x_i}, w^b_{y_i}] \quad i = 1, 2, 3, 4 \] \((C.11) \)
there results the well known stiffness matrix for thin plate bending obtained and studied by many workers (123). Such elements may be assembled and solved in the usual way to yield the contribution of bending to the total plate displacement, and to give stress resultants according to thin plate theory.

In the same way we take for the transverse shear deflection,

\[w^s = \begin{bmatrix} 1 & x & y & x^2 & xy & y^2 & x^3 & x^2y & xy^2 & y^3 & x^3y & xy^3 \end{bmatrix} \begin{bmatrix} b \end{bmatrix} \] (C.12)

together with the nodal deflection vector,

\[\begin{bmatrix} w^s_{i1} \\ w^s_{i2} \\ w^s_{i3} \end{bmatrix} = \begin{bmatrix} 1 & x & y & x^2 & xy & y^2 & x^3 & x^2y & xy^2 & y^3 & x^3y & xy^3 \end{bmatrix} \begin{bmatrix} b_i \end{bmatrix} \] (i = 1, 2, 3, 4)

and by substitution in the energy relation for transverse shear, Equation C.8, a (12 x 12) shear stiffness matrix is obtained for the element. This matrix is given in Table C.1. These shear stiffness matrices may now be assembled and solved in the usual way to yield the contribution of transverse shear to the plate total deflection, and to give the stress resultants \(Q_x \) and \(Q_y \) Equation C.7.

The boundary condition constraints to be enforced with the bending element contribution are those normally considered.
In the shear stiffness contribution the following will apply for the edge condition

For an edge $x = \text{constant}$,

Clamped and Simply supported

$w^s = 0; \quad w^s_x \neq 0 \quad \text{and} \quad v^s_y = 0$

(C.14)

and

Free

$w^s \neq 0; \quad w^s_x = 0 \quad \text{and} \quad v^s_y = 0$.

Before examining the numerical application of this proposed method, two significant computational advantages will be noted, which result from separating the effects of bending and shear. First for a given finite element mesh two sets of simultaneous equations must be solved, corresponding to the assembled matrices obtained from the (12×12) bending and (12×12) shear element matrices. However these resulting sets of equations are of much lower order than that which must be stored and solved.
using the (20 x 20) finite element formulation of reference (125).

For example, a 6 x 6 mesh used to solve a simply supported quarter plate system will involve two (147 x 147) matrices by the method described here, compared with a single (245 x 245) matrix using the method of reference (125). Substantial advantages in computing time and storage are evident with the present method. Secondly, the deflection of the plate can be written, (135), as

$$w_{max} = [a + \beta \frac{(h/a)^2}{qa^4/Eh^3}]$$

in which the coefficient $$a$$ derives from classical thin plate theory, while $$\beta$$ gives the additional deflection resulting from transverse shear. Thus for a given aspect ratio $$(b/a)$$ of the plate, it is necessary to calculate $$a$$ and $$\beta$$ for one thickness only; the effect of transverse shear in a plate of identical aspect ratio, but differing $$(h/a)$$ ratio is then readily obtained from Equation C.15.

c.3. NUMERICAL APPLICATIONS

To examine the accuracy and convergence of the method, the central deflection of a uniform thickness, uniformly loaded, simply-supported square plate has been calculated for various finite element meshes. Using symmetry the model comprised a quarter plate system having N elements per side, where N was
varied from 1 to 6. The value $k = 6/5$ was used, and thus the Solution to Equation C.4 obtained by modifying those obtained in reference (135) have been used to compare with the finite element results. The calculated values of the coefficients α and β, Equation C.15, are given in Tables C.2 and C.3 in Table C.2 a consistent load formulation has been used, while in Table C.3 lumping of the distributed load at the nodes has been used. Good agreement with the exact values is obtained. Convergence of the shear contribution with a consistent load formulation is extremely rapid, and indicates that the use of precision bending elements would be most profitable to increase the accuracy of the bending contribution. With lumped loading of the nodes, convergence of the shear contribution is much slower, but it is interesting to note that the bending contribution is indeed improved for this particular bending element.

In Table C.4 the deflection coefficient for a uniform simply supported square plate of various thicknesses is given, and compared with the results given in reference (125) exact values, obtained from Equation 3 in reference (135) this case a 6 x 6 finite element mesh has been used for the quarter plate system, and the value $k = 1$ suggested in reference employed. Again agreement between the various solutions is good, but it is worth noting once more the advantages in computing time and storage, and in the use of Equation C.15 for different thickness when assessing the proposed method.
C.4 NOTATION

\[[a], [b] \] - vectors of constants;
\[b, s \] - subscripts and superscripts denoting bending and shear;
\[D \] - flexural rigidity of the plate;
\[E \] - modulus of elasticity of material;
\[G \] - shear modulus of material;
\[h \] - thickness of plate;
\[k \] - constant denoting resistance of section to warping;
\[M_x, M_y, M_{xy} \] - moment stress resultants;
\[Q_x, Q_y \] - transverse shear stress resultants;
\[q \] - transverse uniform distributed pressure;
\[U \] - strain energy;
\[w \] - total deflection of plate;
\[\omega^b \] - deflection of plate due to bending;
\[\omega^s \] - deflection of plate due to transverse shear;
\[[\omega_b] \] - nodal displacements due to bending;
\[[\omega_s] \] - nodal displacements due to transverse shear;
\[x, y, z \] - coordinates of plate element; subscripts denoting partial differentials;
\[\alpha, \beta \] - deflection coefficients due to bending and transverse shear;.
- \bar{\gamma}_x, \bar{\gamma}_y - \text{average transverse shear strains;}

\varphi^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2};

\nu - \text{Poisson's ratio;}

\sigma_z - \text{normal stress in the z direction;}

\phi_x, \phi_y - \text{total rotations of sections } x = \text{constant}

\text{and } y = \text{constant.}
Figure C.1 Rectangular plate shear deformation element.
<table>
<thead>
<tr>
<th></th>
<th>552 (1+P)</th>
<th>6 (7+11P)</th>
<th>4 (14+3P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (11+7P)</td>
<td>0</td>
<td>4 (3+14P)</td>
<td></td>
</tr>
<tr>
<td>12 (-46+17P)</td>
<td>3 (-14+21P)</td>
<td>3 (-22+7P)</td>
<td>552 (14P)</td>
</tr>
<tr>
<td>3 (14-13P)</td>
<td>- (14+9P)</td>
<td>0</td>
<td>-6 (7+11P)</td>
</tr>
<tr>
<td>3 (-22+7P)</td>
<td>0</td>
<td>4 (-3+7P)</td>
<td>6 (11+7P)</td>
</tr>
<tr>
<td>-204 (1+P)</td>
<td>-3 (7+13P)</td>
<td>-3 (13+7P)</td>
<td>12 (17-46P)</td>
</tr>
<tr>
<td>3 (7+13P)</td>
<td>-7+9P</td>
<td>0</td>
<td>3 (-7+22P)</td>
</tr>
<tr>
<td>3 (13+7P)</td>
<td>0</td>
<td>9-7P</td>
<td>3 (-13+44P)</td>
</tr>
<tr>
<td>12 (17-46P)</td>
<td>3 (7-22P)</td>
<td>3 (13-14P)</td>
<td>-204 (1+P)</td>
</tr>
<tr>
<td>3 (7-22P)</td>
<td>4 (7-3P)</td>
<td>0</td>
<td>-3 (7+13P)</td>
</tr>
<tr>
<td>3 (-13+14P)</td>
<td>0</td>
<td>- (9+44P)</td>
<td>3 (13+7P)</td>
</tr>
</tbody>
</table>

*Symmetric

\[P = (a'b)^2 \]
TABLE C.2

Coefficients $w_{max} \frac{h^3}{na^4}$ for central deflection of a uniformly loaded simply supported square plate. $v = 0.3$, $k = G/5$

<table>
<thead>
<tr>
<th>N</th>
<th>Classical Theory Eqn. C.4</th>
<th>Reissner Theory</th>
<th>Finite Element (consistent load)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>β</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>0.05529</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>0.04726</td>
</tr>
<tr>
<td>3</td>
<td>0.04437</td>
<td>0.2299</td>
<td>0.04566</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>0.04509</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>0.04483</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>0.04469</td>
</tr>
</tbody>
</table>
Coefficients $w_{\text{max}} \frac{r^3}{n_1 a^4}$ for central deflection of a uniformly loaded simply supported square plate. $v = 0.3 \ k = G/5$

<table>
<thead>
<tr>
<th>N</th>
<th>Classical Theory</th>
<th>Reissner Theory Eqn. C.4</th>
<th>Finite Element (consistent load)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>β</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>0.05529</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>0.04726</td>
</tr>
<tr>
<td>3</td>
<td>0.04437</td>
<td>0.2299</td>
<td>0.04566</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>0.04509</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>0.04483</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>0.04469</td>
</tr>
</tbody>
</table>
TABLE C.3

Coefficients \(w_{max} \frac{Eh^3}{qa^4} \) for central deflection of a uniformly loaded simply supported square plate. \(v = 0.3 \) \(k = \frac{6}{5} \)

<table>
<thead>
<tr>
<th>N</th>
<th>Classical Theory</th>
<th>Reissner Theory Eqn. C.4</th>
<th>Finite Element (Lumped load)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\alpha)</td>
<td>(\beta)</td>
<td>(a) % error</td>
</tr>
<tr>
<td>1</td>
<td>0.04437</td>
<td>0.2299</td>
<td>0.03763 -15.2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>0.04302 -3.0</td>
</tr>
<tr>
<td>3</td>
<td>0.04437</td>
<td>0.2299</td>
<td>0.04378 -1.3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>0.04404 -0.7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>0.04416 -0.5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>0.04422 -0.3</td>
</tr>
</tbody>
</table>
TABLE C.4

Coefficients $w_{\text{max}} \frac{Eh^3}{qa^4}$ for central deflection of a uniformly loaded simply supported square plate. $\nu = 0.3$ $k = 1.0$

<table>
<thead>
<tr>
<th>h/a</th>
<th>Reissner Theory (135)</th>
<th>Pryor et al (125)</th>
<th>Finite Element Present Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Const. Load</td>
</tr>
<tr>
<td>0.01</td>
<td>0.04439</td>
<td>0.0442</td>
<td>0.04471</td>
</tr>
<tr>
<td>0.05</td>
<td>0.04486</td>
<td>0.04469</td>
<td>0.04517</td>
</tr>
<tr>
<td>0.10</td>
<td>0.04632</td>
<td>0.04612</td>
<td>0.04660</td>
</tr>
<tr>
<td>0.15</td>
<td>0.04876</td>
<td>0.04852</td>
<td>0.04900</td>
</tr>
<tr>
<td>0.20</td>
<td>0.05217</td>
<td>0.05186</td>
<td>0.05235</td>
</tr>
<tr>
<td>0.25</td>
<td>0.05656</td>
<td>0.05617</td>
<td>0.05666</td>
</tr>
</tbody>
</table>
APPENDIX D

DETAILS OF COMPUTER PROGRAMS

D.1 INTRODUCTION

For numerical calculations several FORTRAN programs were written and most of the calculations in this investigation can be done with one of the programs described here. Several options, which facilitate the use of these programs either for the analysis of the entire rotor system or the component parts, are given. Furthermore these programs can be easily modified to meet particular requirements. Complete listings of the programs are given in section D.4. Brief description of the programs along with the definition of input and output variables are given below. Use of the various options are explained.

D.2 FORTRAN PROGRAM FOR THE ANALYSIS OF ROTORS OF SIMPLE GEOMETRY - PROGRAM-1

D.2.1 General Description

This program was written for the numerical calculations involved in the exact method of analysis of rotors, described in chapter 4, section 4.3. Hence the use of this
program is restricted to rotors of simple geometry. In this program a systematic iterative search is made for the values of the natural frequency ω of the system which makes the value of the frequency determinant of the system to be zero. Of course, a specified amount of tolerance is allowed on this condition.

In principle the value of ω can be initiated with zero, as the starting value, and the iteration continued with some specified step size until a change of sign in the value of the determinant is noticed. Then the step size may be reduced and this procedure repeated until a very small step size is reached. But this procedure requires considerable amount of computer time if the initial step size is small. For that reason if the initial step size is increased, it is very likely that some of the natural frequency values are missed. This happens because of the complex behaviour of the value of the frequency determinant with the change of ω. As seen in Figure D.1, the value of the determinant some times jumps from $-\infty$ to $+\infty$ and again changes sign within a very small increment of ω. Since the elements of the determinant contain combinations of trigonometric, hyperbolic and Bessel functions it is impossible to foresee such jumps.

Because of the above reasons this program is made to utilize approximate frequency values of the rotor obtained from
finite element analysis. Thus this program is mainly used for refining and assessing the accuracy and convergence of the finite element results.

The following procedure is followed. First, a range is specified within which the exact frequency is expected to lie. Then the approximate frequency corresponding to a particular mode of vibration is read in. The iterations are performed with a small step size, within the range. When a change of sign of the value of the frequency determinant is noticed, it is checked whether there was a jump from either side of infinities. If this did not happen, then the step size is cut down and the iterations continued until the allowable step size is reached. If a jump had taken place then the iterations are simply continued until change of sign is again noticed. This procedure is repeated for other modes.

A flow diagram of the program is given in Figure D.2, which shows how the input data is provided and how the iterations are performed. The notation used in this flow diagram are explained below in section D.2.2 along with the variables used in the program.

D.2.2 Input and Output Variables

Brief descriptions of the input and output variables used in PROGRAM-1 are given below in their order of appearance
in the program. Corresponding symbols used in the flow diagrams are given immediately following these variables where applicable.

Input and related variables.

ALL - allowable error in the value of Bessel functions given as a factor.

FAC(N) - N! (factorial N).

FI(N) - function $Q(N) = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{N}$

SM S - initial step size.

ALGd α - factor used to get the final allowable step size where the iteration is stopped.

XXX x - factor used to multiply the approximate frequency to get starting value.

YYY y - factor used to multiply the approximate frequency to get the final value beyond which iterations are not carried out.

NDS ms - starting value of nodal diameters.

ND me - final value of nodal diameters.

NC nr - required number of frequencies in each nodal diameter case.

IRNG i_R - rim option.

ED Ed - Young's modulus of disc material.

EB Eb - Young's modulus of blade material.
ROD \(\rho_d \) - mass density of disc material.
RDB \(\rho_b \) - mass density of blade material.
PRD \(\nu_d \) - Poisson's ratio of disc material.
PRB \(\nu_b \) - Poisson's ratio of blade material.
RDI \(a \) - inner radius of disc.
RD\(\phi \) \(b \) - outer radius of disc.
TD \(h \) - thickness of disc.
BB \(b_b \) - width of blade.
BD \(d_b \) - depth of blade.
BL \(\ell \) - length of blade.
BANG \(\delta \) - blade stagger angle.
Z \(\ell \) - number of blades in the rotor.
ER \(E_r \) - Youngs modulus of rim material.
RRR \(\rho_r \) - mass density of the rim material.
PRR \(\nu_r \) - Poisson's ratio of the rim material.
RR \(R_0 \) - the rim centroidal radius.
RJ \(K_C \) - St. Venant torsional stiffness of the rim section.
RIZ \(I_{zz} \) - moment of inertia of the rim section about Oz axis.
RLX \(I_{xx} \) - moment of inertia of the rim section about Ox axis.
E1 \(e_1 \) - distance between the inner boundary and the centroid of the rim.
E2 \(e_2 \) - distance between the centroid and the outer boundary of the rim.
RA \(A_r \) - area of cross-section of the rim.
AFR(,) \(\omega_a \) - approximate frequencies of the rotor.
Output variables

\[
\begin{align*}
M & \quad m \quad \text{number of nodal diameters.} \\
N & \quad n \quad \text{mode number.} \\
\omega_t & \quad \omega_t \quad \text{trial value of the frequency.} \\
\text{NIT} & \quad i \quad \text{number of iterations.} \\
\text{AFR}(,) & \quad \omega_r \quad \text{refined frequencies.}
\end{align*}
\]

D.2.3 Subroutines Used In PROGRAM-1

The subroutines and functions used in PROGRAM-1 are given below.

(1) Main program.

MAIN-1

(2) Subroutines used to obtain disc dynamic stiffness matrix.

EXTDSK

DETERM

(3) Functions used for the computation of the values of Bessel functions.

XJN

XIN

XYN

XKN

FACT

PHI
D.3 FORTRAN PROGRAMS FOR THE ANALYSIS OF ROTORS OF GENERAL GEOMETRY - PROGRAM-2 and PROGRAM-3

D.3.1 General Description

For the stress and vibration analysis of rotors of general geometry two programs, PROGRAM-2 and PROGRAM-3, were written. Both of these are based on the finite element method of analysis of the rotor described in chapter 4. The effects of transverse shear and rotary inertia are not considered in PROGRAM-2, whereas these effects are considered in PROGRAM-3. Also in the latter the rim of the rotor, if present, is considered to be a part of the disc.

In both these programs all the necessary input statements are included so that input data closely describing rotors of general geometry can be fed in. The materials of the disc, rim and blades may be of different materials. The programs are featured with several options which allow the user to either consider the entire rotor or the parts. Also the effect of rotation and temperature gradient can be included when they are thought necessary.

The meaning and use of the various options available in these programs are given below. The symbols used here are the same used in the programs. A flow diagram is given in
Figure D.3, showing how the input data are provided and the symbols used in this diagram are explained along with those used in the programs in section D.3.3.

D.3.2 Options Available In PROGRAM-2 AND PROGRAM-3

1. **I0PT** - General option.

<table>
<thead>
<tr>
<th>value</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vibration of the disc alone is considered.</td>
</tr>
<tr>
<td>2</td>
<td>Vibration of the blade alone is considered.</td>
</tr>
<tr>
<td>3</td>
<td>Vibration of the bladed disc is considered.</td>
</tr>
<tr>
<td>4</td>
<td>Stress analysis of the disc alone is considered.</td>
</tr>
</tbody>
</table>

2. **IRNG** - Rim option

<table>
<thead>
<tr>
<th>value</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No rim present.</td>
</tr>
<tr>
<td>1</td>
<td>A rim is present.</td>
</tr>
</tbody>
</table>

3. **ITED** - Disc thermal gradient option

<table>
<thead>
<tr>
<th>value</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No temperature gradient present.</td>
</tr>
<tr>
<td>1</td>
<td>Temperature gradient present.</td>
</tr>
</tbody>
</table>

4. **ISTB** - Blade initial stress option.

<table>
<thead>
<tr>
<th>value</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Blade has no initial stresses.</td>
</tr>
<tr>
<td>1</td>
<td>Blade has initial stresses.</td>
</tr>
</tbody>
</table>
(5) IEDE - Blade general option.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vibration of a single blade in the principal directions and in torsion are considered separately.</td>
</tr>
<tr>
<td>2</td>
<td>The coupled bending-bending vibration of a pretwisted blade is considered.</td>
</tr>
<tr>
<td>3</td>
<td>The vibration of a single or group of blades with or without initial stresses is considered.</td>
</tr>
</tbody>
</table>

D.3.3 Input and Output Variables

Brief descriptions of the input and output variables used in PROGRAM-2 and PROGRAM-3 are given below, in the order of their appearance in the programs. Corresponding symbols used in the flow diagrams are given immediately following these variables where applicable.

Variables used in PROGRAM-2 and PROGRAM-3

- **IOP** i - general option.
- **IRNG** R - rim option.
- **NF** n - number of frequencies to be calculated for each diametral node configuration.
- **OMGA** Ω - speed of rotation in rad./sec.
ND \(m_e \) - final value of nodal diameters.
MDS \(m_s \) - starting value of nodal diameters.
NDE \(N_d \) - number of disc elements.
ITED \(t_d \) - temperature option of the disc.
ED \(E_d \) - Young's modulus of the disc material.
R\(\rho \)D \(\rho_d \) - mass density of the disc material.
PRD \(\nu_d \) - Poisson's ratio of the disc material.
ALD \(\alpha_d \) - coefficient of thermal expansion of the disc material.
SRI \(\sigma_a \) - radial stress at the inner boundary of the disc.
SK\(\phi \) \(\sigma_b \) - radial stress at the outer boundary of the disc.
NTD - number of degrees of freedom in the disc.
R(I) \(r(i) \) - the radii at the inner and outer boundaries of all the disc elements' taken in increasing order.
T(I) \(h(i) \) - the thicknesses at the inner and outer boundaries of all the disc elements taken in increasing order.
TE(I) \(T(i) \) - values of temperature at the inner and outer boundaries of all the disc elements taken in increasing order.
NBE \(N_b \) - number of blade elements.
NB \(Z \) - number of blades present.
ISTB \(i_b \) - blade initial stress option.
IBDE \(i_b \) - blade general option.
NSB - number of stations in the blade.
NTB - number of degrees of freedom in the blade.

EB E_b - Young's modulus of blade material.

RØB ρ_b - mass density of blade material.

PRB ν_b - Poisson's ratio of blade material.

EX(I) $x^{(i)}$ - distances of stations in the blade from the root.

BB(I) $I_1^{(i)}$ - I_{min} of the blade at the stations considered.

BD(I) $I_2^{(i)}$ - I_{max} of the blade at the stations considered.

ARA(I) $A^{(i)}$ - area of cross-section of blade at the stations.

BKG(I) $K_{\text{BG}}^{(i)}$ - St. Venant's torsional stiffness of the blade section at the stations.

ANG(I) $\delta^{(i)}$ - pretwist angles at the stations.

SIG(I) $\sigma^{(i)}$ - initial stresses in the blade at the stations.

ER E_r - Young's modulus of rim material.

RØR ρ_r - mass density of rim material.

PRR ν_r - Poisson's ratio of rim material.

ALR α_r - coefficient of thermal expansion of rim material.

RRI R_i - inner radius of rim.

RRØ R_o - outer radius of rim.

RTI t_i - thickness of rim at inner radius.

RTØ t_o - thickness of rim at outer radius.

RTEI T_i - temperature at inner radius of rim.

RTEØ T_o - temperature at outer radius of rim.

Additional variables used in PROGRAM-2 alone.

El e_1 - distance from inner boundary to centroid of rim.

E2 e_2 - distance from centroid to outer boundary of rim.
RIZ \(I_z \) = moment of inertia about Oz axis of rim section.

RIX \(I_x \) = moment of inertia about Ox axis of rim section.

RJ \(K_G \) = St. Venant's torsional stiffness of rim section.

Additional variables used in PROGRAM-3 alone.

SCD \(k_d \) = \(1/\kappa^2 \), where \(\kappa^2 \) is shear constant of disc.

SCR \(k_r \) = \(1/\kappa^2 \), where \(\kappa^2 \) is shear constant of rim.

SCB \(k_b \) = \(1/k \), where \(k \) is shear constant of blade.

D.3.4 Subroutines used in PROGRAM-2 and PROGRAM-3.

The subroutines used in PROGRAM-2 and PROGRAM-3 are divided into the following sections.

1. Main programs.
2. Subroutine calculating the blade subsystem matrices.
3. Subroutine calculating the disc subsystem matrices.
4. Subroutine assembling the subsystem matrices into the system matrices.
5. Subroutine calculating the stresses in the disc.
6. Subroutines used to solve the eigenvalue problem.
7. General purpose subroutines.

Sections (1) to (4) are different for the two programs, whereas sections (5) to (7) are the same for both the programs. The subroutines used in these sections are given below.
<table>
<thead>
<tr>
<th>Section</th>
<th>PROGRAM-1</th>
<th>PROGRAM-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MAIN2</td>
<td>MAIN3</td>
</tr>
<tr>
<td>2</td>
<td>BLADE</td>
<td>THKBDE</td>
</tr>
<tr>
<td>3</td>
<td>DISC</td>
<td>THKDSC</td>
</tr>
<tr>
<td>4</td>
<td>SYSTEM</td>
<td>THKSYS</td>
</tr>
<tr>
<td>5</td>
<td>INLSTR</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EIGVAL, MAX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QUICK, INVT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASMABLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSLOD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REDUCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRIMUL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATMUL</td>
<td></td>
</tr>
</tbody>
</table>
Figure D.1 Variation of the value of the frequency determinant with increasing values of trial values of ω.

Δ - value of frequency determinant.
Figure D.2 Flow diagram for PROGRAM-1.
Figure D.3 Flow diagram for PROGRAM-2 and PROGRAM-3, showing how the input data is provided.
D.4 PROGRAM LISTING

D.4.1 Subroutines used in PROGRAM-1

```
C * ***********************************************************************
C * MAIN-1 -- MAIN PROGRAM OF PROGRAM-1
C * ***********************************************************************
C * THIS PROGRAM REFINES THE APPROXIMATE FREQUENCIES
C * OF A BLADED ROTOR USING THE 'EXACT METHOD'
C * THE DIMENSIONS OF ALL THE ARRAYS ARE FIXED AND NO
C * CHANGES ARE NECESSARY AT ANY TIME',
C * ***********************************************************************
DIMENSION S(2,2),C(2,2)
COMMON PI,PRD,ED,TD,AK,BK,RDI,RD0,CDL,FCC
COMMON/ONE/FACT(0/60),FI(0/60),ALL,0.1E-10
C * CALCULATE AND STORE THE VALUES OF FACTORIALS AND *
C * THE PHI FUNCTION FOR VALUES OF N FROM 0 TO 55 *
D0 16 I=0,55
18 FI(I)=FACT(I)
16 CONTINUE
PRINT 7
N0P=0
C * ***********************************************************************
C * READ IN VALUES OF INITIAL STEP SIZE AND FACTORS *
C * FOR FINAL STEP SIZE AND RANGE *
C * ***********************************************************************
READ IO,SM,ALC,Y,XXX,YYY
PRINT IO,SM,ALC,Y,XXX,YYY
C * READ INITIAL AND FINAL NUMBERS OF NODEAL DIAMETERS *
C * TO BE CONSIDERED, THE NUMBER OF FREQUENCIES TO BE *
C * CALCULATED AND RING OPTION *
C ***********************************************************************
READ II,NDS,ND,NC,IRNG
PRINT II,NDS,ND,NC,IRNG
```
READ IN VALUES OF THE DISC AND BLADE ELASTIC CONSTANTS AND DIMENSIONS

READ 12, ED, E3
PRINT 12, ED, E3
READ 12, RD, RC9
PRINT 12, RD, RC9
READ 10, PRD, PR3
PRINTIQ, PRD, PR3
READ 10, RD1, RD0, TD
PRINTIQ, RD1, RD0, TD
READ 10, BB, BD, BL, BANG, Z
PRINT 10, BB, BD, BL, BANG, Z
RRR = R00
E1 = 0.0
E2 = 0.0
IF (RING.EQ.0) GOTO 19

READ IN VALUES OF THE RIM ELASTIC CONSTANTS AND DIMENSIONS

READ 12, ER, RR, PRR
PRINT 12, ER, RR, PRR
READ 10, RR, RJ, RIZ, RIX, E1, E2, RA
PRINT 10, RR, RJ, RIZ, RIX, E1, E2, RA
RRR = RRR + E2
A1 = 1.0 / RR
A2 = A1 * H1
A3 = A1 * A2
A4 = A1 * A3
A5 = A1 * A4
GR = 0.5 * ER / (1.0 + PRR)

CONTINUE

READ IN THE VALUES OF THE APPROPRIATE FREQUENCY

READ 6, ((AFR(I, J), I=1, ND), I=1, NS, ND)
PRINT 6, ((AFR(I, J), I=1, NS, J=1, ND))
x2 = 1.0 / RR / RR
P1 = 3.141592653589793
CCC = 2.0 * P1
B1X = 30 * BB / 3B / 3B / 12.0
B1Y = 3I * BD / BD / 3D / 12.0
BD = 3B + 3B + 3B + 3B / (1.0 + 21 * BB / BD + 1.0 / BB / BB / BB / BB / BB / BD / BD / BD / 12.0)
CD = SQRT (SQRT (12.0 * BD / (1.0 - PRD / PRR) / ED / TD / TD))
CX = SQRT (SQRT (12.0 / NS / ND / BB / BD / BD))
CY = SQRT (SQRT (12.0 / NS / ED / BD / BD))
CT = SQRT (2.0 * R0B * (1.0 / R03 / EB))
BA = BANG * P1 / 180.0
SMA = SIN (3A)
CSA = CCS(3A)
RSNA = E2 * SNA
RCSA = E2 * CSA
SAS = SNA * SNA
CSA = CSA + CSA
RS = RSNA + RSNA
CRS = RCSA * RCSA
PR = 0.5 / (1.0 + PR3)
PRINT 3
M = NDS - 1
20 CONTINUE
'C
' *** SELECT THE NUMBER OF NODAL DIAMETERS ***
'C
M = M + 1
IF (M .GT. ND) GO TO 90
PRINT 1
AN = M
AN2 = AN * AN
AN4 = AN2 * AN2
PRINT 5
IF (FF .EQ. 0.0) FCC = 0.5
IF (IR .EQ. 0.0) CR = 2.0 * PI * FCC * RR
N = 0
30 CONTINUE
NIT = 0
AN = SM
'C
' *** SELECT THE NUMBER OF NODAL CIRCLES ***
'C
N = N + 1
XN = N
IF (N .GT. NC) GO TO 20
'C
' *** SET LOWER AND UPPER LIMITS FOR ITERATION ***
'C
FF = XXX * AFR (M, N)
ZZZ = YYY * AFR (M, N)
25 CONTINUE
'C
' *** SPECIFY STEP SIZE ***
'C
STEP = AM
GO TO 37
33 CONTINUE
FF = XXX * AFR (M, N)
AM = AM * 0.5
STEP = AM
IF (STEP .LT. 0.05) GO TO 30
37 CONTINUE
*** ********** * SPECIFY THE ALLOWABLE STEP SIZE TO END ITERATION * ***
ALLOW=ALLOW*XN
KK=1
KXX=1
40 CONTINUE
FF=FF+STEP
52 CONTINUE

* START ITERATING
* ***********************
NIT=NIT+1
IF(NIT.GT.500)G0 TO 30
N0P=N0P+1
XY=FF
IF(FF.GT.2.2) G0 TO 33
FR=FF*C0C
SFR=SQRT(FR),
CDL=CD*SFR
AK=CDL*RD1
BK=CDL*RD2

* COMPUTE THE DYNAMIC STIFFNESS COEFFICIENTS FOR *
* THE DISC
* ***********************
CALL EXTDSK(C,M)

* COMPUTE THE DYNAMIC STIFFNESS COEFFICIENTS FOR *
* ARRAY OF BLADES
* ***********************
CXL=CX*SFR
CYL=CY*SFR
CTL=CT*FR
CXR=CXL*SL
CYR=CYL*SL
CTR=CTL*SL
SNX= SIN(CXR)
SNY= SIN(CYR)
CSX= COS(CXR)
CSY= COS(CYR)
SNT= SIN(CTR)
CST= COS(CTR)
SHX=S INH(CYR)
SHY=S INH(CYR)
CHX=CGS(CXR)
CHY=CGS(CYR)

DX=EB*Z+FCC*BIX/(CSX*CHX+1.0)
DY=EB*Z+FCC*DIY/(CSY*CHY+1.0)
PX=-DX*CXL*CXL*CXL*(CSX*SHX+SNX*CHX)
PY=-DY*CYL*CYL*CYL*(CSY*SHY+SNY*CHY)
RX=DX*CXL*CXL*SNX*SHX
RY=DX*CYL*CYL*SNY*SHY
TX=DX*CXL*(CSX*SHX-SNX*CHX)
TY=CYL*(CSY*SHY-SNY*CHY)
AT=-PO*BJ+CTL*5NT/CST*Z*FCC*EB
RMA=0.0
RNB=0.0
RMC=0.0
IF(IRV3.EQ.0.0) GOTO 45
C
* IF A RIM IS PRESENT COMPUTE THE DYNAMIC STIFFNESS *
C
* C0EFFICIENTS FOR THE RIM *
C
*********** ****************************
C
RMA=CR*ER*RIZ+GR*AN2*AN4*RA*FR*FR*R0R*(RA
C+RIZ*A2)
RNB=CR*ER*RIZ+GR*AN2*A3
RMC=CR*ER*RIZ+AN2*GR*RJ*A2*FR*FR*R0R*(RIZ+RIZ)
C
CONTINUE
DO 50 I=1,2
DO 50 J=1,2
C
S(I,J)=0.0
C
* CON3INE THE SUBSYSTEM MATRICES TO GET THE SYSTEM *
C
* DYNAMIC STIFFNESS MATRIX *
C
*********** ****************************
C
AZ=SAS*PX+CAS*PY+AN2*X2*AT+RMA
BZ=E2*SAS*PX-E2*CAS*PY+SA5*RY+RNB-AN2*X2*AT+E2
CZ=5PS*X*CRS*PY+SA5*TX+CAS*TY-2*0*E2*SA5*RX
D2*0*E2*SAS*RY+RMC+AN2*X2*AT+E2*E2
S(1,1)=C(1,1)+AZ
S(1,2)=C(1,2)+E1*AZ+BZ
S(2,2)=C(2,2)+E1*AZ+2*0*E1*BZ+CZ
C
* CALCULATE THE VALUE OF THE FREQUENCY DETERMINANT *
C
*********** ****************************
C
DET=S(1,1)*S(2,2)-S(1,2)*S(1,2)
IF(KK.EQ.19) GOTO 75
C
* CHECK IF VALUE OF DETERMINANT CHANGES SIGN *
C
*********** ****************************
C
AAA=ABS(PV)+ABS(DET)
BBB=ABS(PV)-ABS(DET)
IF(AAA.NE.BBB) KKK=2
DIF=ABS(PV)+ABS(DET)
C
75 PV=DET
C
KK=2
IF(KK.EQ.19) GOTO 40
IF(STEPLT.AM) GOTO 80
C
FF=FF-STEP
DIFA=DIF
STEP=ALL0
KK=1
KKK=1
GOTO 52
C
80 DIFB=DIF
* *
* CHECK IF VALUE OF DETERMINANT JUMPS FROM ONE END TO *
* THE OTHER END OF INFINITY
* *
IF (DIFA .LT. DIFB) G0 T O 2 5
A F R M (I , J) = F P
* PRINT OUT THE RESULTS WHEN SAT IS FACTORY
* *
PRINT 1 5 , M , N , F F , N I T
G O T O 3 0
9 0 C O N T I N U E
* *
* PRINT OUT SUMMARY OF ALL THE RESULTS
* *
D0 9 5 I J K = 1 . 5
PRINT 3
PRINT1 0 , R D I , R D 2 , T D
IF (I R N G . N E . 0) PRINT1 0 , R R , R A , E 1 , E 2
PRINT1 0 , R S , R D , B L , D A N G , B N
9 5 PRINT 2 , ((A F R (I , J) , J = 1 , N C) , I = N D S , N D)
G O T O 1 6
1 0 3 C A L L E X I T
1 F O R M A T (// / /)
2 F O R M A T (# F 1 2 . 4)
3 F O R M A T (H 1 1 . 5 X , ' E X A C T S O L U T I O N - - F R E Q U E N C I E S I N C P S . ' / /)
6 F O R M A T (6 F 1 0 . 4)
7 F O R M A T (H 1 1 . 5 X , ' D I S C R E S T I O N O F B L A D E D D I S C -- E X A C T S O L U T I O N '
'/ / X , ' I N P U T D A T A ' / /)
1 0 F O R M A T (6 F 1 0 . 3)
1 1 F O R M A T (1 6 1 5)
1 2 F O R M A T (4 F 2 0 . 9)
1 5 F O R M A T (/ 2 (6 X , 1 3) , 3 X , F 1 3 . 4 , 1 1 0)
E N D
***SUBROUTINE DETERM(AA, M, D)**

* THIS SUBROUTINE EVALUATES THE VALUE D OF THE *
* DETERMINANT OF ARRAY AA (N,N). *
* BEFORE ENTERING THE SUBROUTINE DEFINE ALL THE *
* ELEMENTS OF ARRAY AA *

DIMENSION AA(M,M), A(4,4)

200 A(I,J)=AA(I,J)
D=1
K=1
1 CONTINUE
.IK=K+1
.IS=K
.IT=K
B=ABS(A(K,K))
DO 2 I=K,N
DO 2 J=K,N
IF (ABS(A(I,J))<B) 2,2,21.
21 IS=I
.IJ=J
.B=ABS(A(I,J))
2 CONTINUE
IF (IS-K) 3,3,31
31 DO 32 J=K,N
.C=A(IS,J)
.A(IS,J)=A(K,J)
3 CONTINUE
IF (IT-K) 4,4,41
41 DO 42 I=K,N
.C=A(I,IT)
.A(I,IT)=A(I,K)
42.A(K,K)=-C
4 CONTINUE
D=A(K,K)*D
IF (A(K,K)) 5,71,5
5 CONTINUE
.DO 6 J=KK,N
.A(K,J)=A(K,J)/A(K,K)
.DO 6 I=KK,N
.W=A(I,K)*A(K,J)
.A(I,J)=A(I,J)-W
6 CONTINUE
.K=KK
IF (K-N) 1,70,1
70 D=A(N,N)*D
71 RETURN
END
SUBROUTINE EXTDSK(C,M)
C ******** THIS SUBROUTINE CALCULATES THE EXACT STIFFNESS ********
C * MATRIX C(2,2) OF AN UNIFORM DISC, CLAMPED AT THE *
C * INNER BOUNDARY AND FREE AT THE OUTER BOUNDARY *
C ***
DIMENSION A(4,4),C(2,2)
COMMON P1,PR,ED,TD,AK,BK,RDI,RD0,CDL,FCC
L=M+1
D=TD*TD*TD/12.0/(1.0-PR*PR)*ED
A2=CDL*CDL
A3 =A2*CDL
C ***
C * CALCULATE AND STORE ALL THE BESSEL FUNCTIONS TO *
C * BE USED LATER *
C ***

A0N=XIN(N,AK)
A0N=XIN(N,BK)
AJL=XJN(L,AK)
AJL=XJN(L,BK)
AYM=XYN(M,AK,AJM)
BYM=XYN(N,DK,BJM)
AYL=XYN(L,AK,AJL)
BYL=XYN(L,BK,BJL)

AI=N=XIN(I,AK)
BIM=XIN(M,BK)
AIL=XIN(L,AK)
BIL=XIN(L,BK)

AI=M=M
AM2 =AM*AM
R12=RDI*RDI
R13=R12*RDI
R02=RD0*RDC
R03=R02*RD0
AX=A0/RDI
BX=AX/RD0
BY=AN*(AN-1.)*(1.-PR)/R02-A2
BZ=AN*(AN-1.)*(1.-PR)/R02+A2
AA=CDL*(1.-PR)/RD1
BB=CDL*(1.-PR)/RD0
AN1=AX*AJM*CDL*AUL
AN2=AX*AYM*CDL*AYL
AN3=AX*A1M*CDL*A1L
AN4=AX*A1M*CDL*A1L
BNN=BX+BJM*CDL*BUL
BN2=BY*BNM*CDL*BYL
BN3=BY*BNM*CDL*BUL
BN4=BY*BNM*CDL*BUL
BN5=BY*BNM*BB*BUL
BN6=BY*BNM*BB*BYL
BN7=BY*BNM*BB*BYL
CALCULATE AND STORE THE VALUES OF THE DETERMINANTS

APPEARING IN THE DYNAMIC-STIFFNESS MATRIX OF DISC

**

\[
\begin{align*}
BN8 &= B2 \cdot BKM \cdot BS \cdot BKL \\
BP &= \{-AN \cdot A2 \cdot RO2 \cdot (1 \cdot -PR) \cdot (1 \cdot -AN) \cdot AM2 \} / RO3 \\
BQ &= (AK \cdot A2 \cdot RO2 \cdot (1 \cdot -PR) \cdot (1 \cdot -AN) \cdot AM2) / RO3 \\
BR &= (A3 \cdot A03 \cdot CDL \cdot RD2 \cdot (1 \cdot -PR) \cdot AM2) / RO3 \\
BN23 &= BP \cdot B3JM \cdot B3 \cdot B3L \\
BN24 &= BP \cdot BYM \cdot BF \cdot BYL \\
BN25 &= BS \cdot BIM \cdot BS \cdot BIL \\
BN26 &= BS \cdot BKM \cdot BS \cdot BKL \\
\end{align*}
\]

**
A(1,1) = AYN
A(1,2) = AI2
A(1,3) = AN3
A(2,1) = AN2
A(2,2) = AN4
A(2,3) = BN2
A(3,1) = BN3
A(3,2) = BN4
CALL DETERM(A, 3, DMSA)
A(1,1) = AYN
A(2,1) = AN1
A(3,1) = BN1
CALL DETERM(A, 3, DMSB)
A(1,2) = AYN
A(2,2) = AN2
A(3,2) = BN2
CALL DETERM(A, 3, DMSC)
A(1,3) = AN1
A(2,3) = AN3
A(3,3) = BN3
CALL DETERM(A, 3, DMSD)

**
* CALCULATE THE VALUES OF THE ELEMENTS OF THE DISC *
* DYNAMIC STIFFNESS MATRIX *
**
CONST = D/DK + 1.0 + FCC
C(1,1) = CONST * (DMSA * BN22 + DMSB * BN24 + DSCC * BN25 - DMSD * BN26)
C(2,2) = CONST * (DMPA * BN22 + DMPB * BN24 + DNPC * BN25 - DMPD * BN26)
C(2,2) = CONST * (DMPA * BN22 + DMPB * BN24 + DNPC * BN25 - DMPD * BN26)
RETURN
END
FUNCTION PHI(N)

* PHI(N)=1+1/2+1/3+...+1/N

PHI=0.0
IF(N.EQ.0) RETURN
DO 10 I=1,N
 XI=1
10 PHI=PHI+1.0/XI
RETURN
END

FUNCTION FACT(N)

* THIS FUNCTION CALCULATES FACTORIAL N

FACT=1.0
IF(N.EQ.0) RETURN
DO 10 I=1,N
 AI=1
10 FACT=FACT*AI
RETURN
END
FUNCTION XIN(N,X)
* THIS FUNCTION CALCULATES MODIFIED BESSEL FUNCTION
* OF THE FIRST KIND OF INTEGER ORDER N AND REAL
PARAMETER X *

C0MMON/ONE/FAC(0/60),F1(0/60),ALL
XIN=0.0
K=-1
10 K=K+1
XX=(X/2.0)**(N+2*K)/FAC(K)/FAC(N+K)
XIN=XIN+XX
ALL0Y=ABS(XIN)*ALL
IF(ABS(XX).GT.ALL0Y) GO TO 10
RETURN
END

FUNCTION XJN(N,X)
* THIS FUNCTION CALCULATES BESSEL FUNCTION OF THE
* FIRST KIND OF INTEGER ORDER N AND REAL PARAMETER X *

C0MMON/ONE/FAC(0/60),F1(0/60),ALL
XJN=0.0
K=-1
10 K=K+1
XX=(X/2.0)**(N+2*K)/FAC(K)/FAC(N+K)
XJN=XJN+XX*(-1.0)**K
ALL0Y=ABS(XJN)*ALL
IF(ABS(XX).GT.ALL0Y) GO TO 10
RETURN
END
FUNCTION XYN(N,X,XJNX)

* THIS FUNCTION CALCULATES BESSEL FUNCTION OF SECOND KIND OF INTEGER ORDER N AND REAL PARAMETER X *
* XJNX IS THE BESSEL FUNCTION OF THE SAME TYPE AND *
* SHOULD BE DEFINED BEFORE ENTERING *

PREPARE/ONE/FAC(0/60),F1(0/60),ALL

PI=3.141592653589793

EC=0.577215664901533

XYN=2.0/PI*(LOG(X/2.0)+EC)*XJNX

XX=0.0

IF(N.EQ.0)GO TO 15

NN=N-1

DO 10 I=0,NN

10 XX=XX+FAC(N-I-1)*(X*0.5)**(2*I-N)/FAC(I)

XX=XYN-XYN-(1.0/PI)*XX

CONTINUE

K=-1

IF(N.EQ.0)K=0

20 K=K+1

YY=1.0/PI*(-1.0)**K*(F1(K)+F1(N+K))*(0.5*X)**(2*K+N)/FAC(K)

/FAC(N+K)

XYN=XYN-YY

ALLOW=ABS(YY)*ALL

IF(AABS(YY)>ALL)GO TO 20

RETURN

END

FUNCTION XYN(N,X,XINX)

* THIS FUNCTION CALCULATES MODIFIED BESSEL FUNCTION *
* OF THE SECOND KIND OF INTEGER ORDER N AND *
* PARAMETER X *
* XINX IS THE BESSEL FUNCTION OF THE SAME TYPE AND *
* SHOULD BE DEFINED BEFORE ENTERING *

PREPARE/ONE/FAC(0/60),F1(0/60),ALL

XKN=-(1.0)**(N+1)*(LOG(X*0.5)+EC)*XJNX

XX=0.0

IF(N.EQ.0)GO TO 15

NN=N-1

DG 10 I=0,NN

10 XX=XX+FAC(N-I-1)*(X*0.5)**(2*I-N)/FAC(I)

XKN=XKN+0.5*XX

CONTINUE

K=-1

IF(N.EQ.0)K=0

20 K=K+1

YY=0.5*(-1.0)**N*(0.5*X)**(N+2*K)*(F1(K)+F1(K+2))/FAC(K)/FAC(N+K)

XKN=XKN+YY

ALLOW=ABS(XKN)*ALL

IF(AABS(YY)>ALLOW)GO TO 20

RETURN

END
D.4.2 Subroutines used in PROGRAM-2

* MAIN2 -- MAIN PROGRAM OF PROGRAM2

* THIS IS A GENERAL PROGRAM TO BE USED IN THE
* ANALYSIS OF BLADED ROTORS. TRANSVERSE SHEAR AND
* ROTARY INERTIA ARE IGNORED BOTH IN THE DISC AND
* THE BLADES. OPTIONS FACILITATING THE USE OF THIS
* PROGRAM FOR THE VIBRATION ANALYSIS OF EITHER THE
* ENTIRE ROTOR SYSTEM OR ITS COMPONENT PARTS MAY BE
* SPECIFIED. VARIABLE DIMENSIONS ARE USED REQUIRING
* THE CHANGING OF THE DIMENSIONS ONLY IN THE MAIN
* PROGRAM AT ANY TIME AND SPECIFYING THE APPROPRIATE
* VALUES OF MS1 AND MS2.

** DIMENSIONS **
DIMENSION S(24,24), SM(24,24), SM3(30,30), SM3(30,30)
DIMENSION R(24), T(24), TE(24), V(24), P(24)
DIMENSION BB(24), BD(24), BX(24), SXG(24), ANG(24), ARA(24), BKG(24)
DIMENSION SSR(24), SGT(24)
DIMENSION D(24,24), F(24,24), B(24), C(24), X(24)
DIMENSION ERR(24), E(24), B(24), B9(24), FR(20,10)
COMMON/OPTION/IOPT, IENG, ITD, ITDR, IT3
COMMON/VNE/AN, AN2, AN4, AMPR
COMMON/TVS/SA, SB, SC, CD, CA, CM, CR, CC, CH, CP, CT
COMMON/TIRE/RD, RP, RL, RT, R1, R2, R3, R4, R5, MA, STR
COMMON/FIVE/SR1, SR2, SNGA
COMMON/SIX/CONST, K, NF
EQUIVALENCE (SH, F)
MS1 = 24
MS2 = 30

CONTINUE

* READ GENERAL OPTION, RIN OPTION, AND NUMBER OF
* FREQUENCIES REQUIRED FOR EACH DIAMETRAL NODE.

READ 12, IOPT, IENG, NF
PRINT12, IOPT, IENG, NF

* READ SPEED OF ROTATION OF THE ROTOR IN RAD./SEC.

READ 6, OMGA
PRINT6, OMGA
I

324.

G0 TO(20,50,20,21),10PT

C

C "* READ FINAL AND STARTING VALUES OF NODAL DIAMETERS *

C

20 READ 10,JND,ND5

PRINT10,JND,ND5

C

C * READ NUMBER OF DISC ELEMENTS, DISC OPTIONS, DISC *

C • MATERIAL PROPERTIES AND BOUNDARY LOADINGS. *

C

C

21READ 12,NDE,ITED

PRINT 12,NDE,ITED

READ 6,ED,RCD,PRD,ALD

PRINT 6,ED,RCD,PRD,ALD

READ 10,SR1,SR0

PRINT10,SR1,SR0

NSD=NDE+1

NPD=2*NDE

NTD=2+NSD

C

C * READ DISC DIMENSIONS*

C

C

READ 10,(R(I),I=1,NPD)

PRINT10,(R(I),I=1,NPD)

READ 10,(T(I),I=1,NPD)

PRINT10,(T(I),I=1,NPD)

RDI=R(I)

RO0=R(NPD)

IF(ITED.EQ.0)G0 TO 49

READ 10,(TE(I),I=1,NPD)

PRINT10,(TE(I),I=1,NPD)

49 G0 TO(70,50,50,70),10PT

50 CONTINUE

C

C * READ NUMBER OF BLADE ELEMENTS, NUMBER OF BLADES, *

C • AND BLADE OPTIONS. *

C

C

READ 12,HBE,ND,ISTD,ISDE

PRINT12,HBE,ND,ISTD,ISDE

NSD=NBE+1

NTD=5+NSD

C

C * READ BLADE MATERIAL PROPERTIES*

C

C

READ 6,ED,RCD,PRD

PRINT6,ED,RCD,PRD

C

C * READ BLADE DIMENSIONS *

C

C

READ 10,(BX(I),I=1,NSB)

PRINT10,(BX(I),I=1,NSB)

READ 10,(BB(I),I=1,NSB)

PRINT10,(BB(I),I=1,NSB)
READ 10, (BD(I), I=1, NS2)
PRINT 10, (BD(I), I=1, NS2)
READ 10, (BKG(I), I=1, NSB)
PRINT 10, (BKG(I), I=1, NSB)
READ 10, (ARA(I), I=1, NS3)
PRINT 10, (ARA(I), I=1, NS3)
READ 10, (ANG(I), I=1, NS3)
PRINT 10, (ANG(I), I=1, NSB)
IF (IST3.EQ.1) READ 6, (SIG(I), I=1, NSB)
IF (IST3.EQ.1) PRINT 6, (SIG(I), I=1, NSB)
70 IF (I5.B.EQ.0) GO TO 80
 IF (RIM IS PRESENT, READ THE RIM MATERIAL PROPERTIES)
 * TIES, DIMENSIONS, AND ELASTIC PROPERTIES
 READ 6, ERROR, PRR
 PRINT 6, ERROR, PRR
READ 10, RI, RRI, RRA, RT, RT, RTE, RTE
PRINT 10, RI, RRI, RRA, RT, RT, RTE, RTE
READ 10, E1, E2, R1, RRA, RA
PRINT 10, E1, E2, R1, RRA, RA
T(NPD+1)=RT1
T(NPD+2)=RT2
TE(NPD+1)=RTE1
TE(NPD+2)=RTE2
R(NPD+1)=RRI
R(NPD+2)=RRR
80 CONTINUE
PI=3.14159265358979
CONST=0.5/P1
S1=1/3.
S2=1/6.
S3=1/7.
S4=1/9.
GO TO (95, 95, 95, 95), I0PT
85 CONTINUE
 * CALCULATE BLADE SUBSYSTEM STIFFNESS AND MASS
 * MATRICES AND STORE THEM
 CALL BLADE (3K3, S1, B3, B3, ANG, SIG, ARA, BKG, NBE, I3DE, NS)
 GO TO (95, 95, 95, 95), I0PT
90 CONTINUE
 * COMPUTE BLADE FREQUENCIES ACCORDING TO THE BLADE
 * GENERATE LPSMS
 IF (I3DE.NE.0) GO TO 102
 1JK=1
 N=0
 IF (I3DE.NE.1) GO TO 94
 DO 91 I=3,2*NS3
 91 I=1-2
D0 91 J=3,2*NSB
JJ= J-2
SK(I,J,J)=SK3(I,J)
91 SN(I,J,J)=SK3(I,J)
N1=2*NSB-2
PRINT 1
CALL EIGVAL(SK,SM,D,F,FR,B,C,X,ERR,B7,B8,B9,IJK,N1,MS1)
D0 92 I=2*NSB+3,4*NSB
11=1-2-2*NSB
D0 92 J=2*NSB+3,4*NSB
JJ=J-2-2*NSB
SK(I,J,J)=SKB(I,J)
92 SN(I,J,J)=SK3(I,J)
PRINT 2
CALL EIGVAL(SK,SM,D,F,FR,B,C,X,ERR,B7,B8,B9,IJK,N1,MS1)
D0 93 I=4*NSB+2,NT3
11=1-4*NSB
DO 93 J=4*NSB+2,NT3
JJ=J-1-4*NSB
SK(I,J,J)=SK3(I,J)
93 SK(I,J,J)=SKB(I,J)
N1=NSB-1
PRINT 4
CALL EIGVAL(SK,SM,D,F,FR,B,C,X,ERR,B7,B8,B9,IJK,N1,MS1)
GO TO 15
94 IF(I3DE.NE.2)GO TO 97
N1=NT3
D0 195 I=N3E,1,-1
II=5*I
195 CONTINUE
DO 96 I=5,4*NSB
11=1-4
D0 96 J=5,4*NSB
JJ=J-4
SK(I,J,J)=SK3(I,J)
96 SK(I,J,J)=SKB(I,J)
N1=4*NSB-4
PRINT 5
GO TO 99
97 CONTINUE
30 981=6,NT3
II=1-5
D0 98 J=6,NT3
JJ=J-5
SK(I,J,J)=SK3(I,J)
98 SK(I,J,J)=SKB(I,J)
N1=NT3-5
PRINT 7
99 CALL EIGVAL(SK,SM,D,F,FR,B,C,X,ERR,B7,B8,B9,IJK,N1,MS1)
GO TO 15
95 CONTINUE
CK=2.0*PI*ED/(1.0-PRD*PRD)
CP=2.0*PI*RD*GMGA*GMGA
CT=2.0*PI*ED*ALC/(1.0-PRD)
C
C * CALCULATE THE INITIAL STRESSES IN THE DISC DUE TO *
C * ROTATION, TEMPERATURE GRADIENT, AND OTHER BOUNDARY *
C * LOADINGS *
C
C **
CALL IULSTR(SK,RT,TE,W,P,SGR,SGT,NSD,MSI)
IF(IOPT.EQ.4) GTO 105
NT=NTD
IF(I0PT.EQ.3) NT=NTD+NTB-5
STR=0.5*(SGT(NPF-1)+SGT(NPF))*RA
GOTO 105
102 CONTINUE
READ IO,SR
PRINT IO,SR
STR=RGR+RA*GMGA*GMGA*(RRI+E1)*(RRI+E1)+SR*(RRI+E1)
NTD=2
NT=NTD+NTB-5
105 CONTINUE.
IJK=1
M=MDS-1
IF(I0PT.EQ.3) Z=NS
100 CONTINUE
C
C * SELECT NUMBER OF NODAL DIAMETERS *
C
C **
M=M+1
C
PRINT 3,M
FAC=1.0
IF(K.EQ.0) FAC=2.0
IF(I0PT.NE.2) CHP=FAC*PI*ED/(1.0-PRD*PRD)/12.0
IF(I0PT.NE.2) CHP=FAC*PI*RD
IF(IRH.EQ.1) CKR=FAC*PI*(RRI+E1)
IF(IRH.EQ.1) CKR=FAC*PI*(RRI+E1)
IF(I0PT.NE.1) CC=Z+FAC/2.0
IF(I0PT.NE.2) CCG=FAC*PI
AM=M
AM2=AM*AM
AM4=AM2*AM2
AM6=AM4*AM2
IF(I0PT.NE.2) AMPR=AM2*PRD
D0 110 I=1,NT
DO 110 J=1,NT
SK(I,J)=0.0
110 SH(I,J)=0.0
C
C **
C * CALCULATE DISC SUBSYSTEM STIFFNESS AND MASS *
C * MATRICES AND STIFFEN *
C
C **
CALL DISC(SK,SM,RT,SGR,SGT,NSD,MSI)
C
C**
C GET THE SYSTEM STIFFNESS AND MASS MATRICES FROM
C THE SUBSYSTEM MATRICES
C**
CALL SYSTEM (SX,SM,SK3,SKB,NTD,NTB,MS1,MS2)
C**
C APPLY BOUNDARY CONDITIONS
C**
CALL REDUCE (SK,NT1,2,MS1)
CALL REDUCE (SM,NT1,2,MS1)
N1=NT-2
C**
C SOLVE THE EIGENVALUE PROBLEM AND GET THE SYSTEM FREQUENCIES
C**
IF (M.LT.KD) GO TO 15
100 CALL EXIT
200 CALL EXIT
1 FORMAT (IL5X,'BLADE SENDING FREQUENCIES INI-MINDIRECTION'/)
2 FORMAT (IL5X,'BLADE BENDING FREQUENCIES INI-MAXDIRECTION'/)
3 FORMAT ('/26HNUMBER OF NODAL DIAMETERS=12/)
4 FORMAT (IL5X,'BLADE TORSIONAL FREQUENCIES'/)
5 FORMAT (IL5X,'TWISTED BLADE BENDING FREQUENCIES'/)
6 FORMAT (4F20.10)
7 FORMAT (IL5X,'BLADE FREQUENCIES WITH INITIAL STRESSES'/)
10 FORMAT (6F10.7)
11 FORMAT (8E13.6)
12 FORMAT (1615)
END
SUBROUTINE BLADE(SKB, SMB, BX, BB, BD, ANG, SIG, ARA, BKG, NBE, IBDE, L)

C **
C THIS SUBROUTINE CALCULATES THE BLADE SUBSYSTEM
C
C STIFFNESS MATRIX SKB(L,L) AND MASS MATRIX SMB(L,L)
C TRANSVERSE SHEAR AND ROTARY INERTIA ARE IGNORED
C ADDITIONAL STIFFNESS DUE TO INITIAL STRESSES CAN
C ALSO BE INCLUDED
C **

DIMENSION SKB(L,L), SMB(L,L), EK(10,10), EM(10,10)
DIMENSION R(10,10), B(10,10), C(10,10), D(10,10)

COMMON/R(10,10)/,IRNG, PTHD, INDEX, IFH, NSTB
COMMON/FOUR/P1, ED, ER, EB, R0D, R0R, R0S, ALD, ALR, PRD, PRR, PRB
COMMON/FIVE/SR1, SR0, OMA

RX(I,A1) = ALFS * ALFA * XX(I+1,A1+1.0) + (ALFS * BETA * BETS * ALFA) * XX(I+2,A1+2.0) + BETS * BETA * XX(I+3,A1+3.0)
SX(I,A1) = R0B * OMA * SMA * (ALFA * XX(I+1,A1+1.0) + BETA * XX(I+2,A1+2.0))

XX(I,A1) = (BX2*I-BX1**I)/AI.

NTB=5*(NBE+1)

10 SKB(I,J)=0.0 PRINT 1
 K=0

20 DO 15 I=1, NTB
 DO 15 J=1, NTB
 SKB(I,J)=0.0

15 PRINT 1

K0 = K+1
KP1 = K+1
BX1 = BX(K)
BX2 = BX(KP1)

PRINT 2, K, BX1, BX2

ARA1 = ARA(K)
ARA2 = ARA(KP1)
ANG1 = ANG(K)
ANG2 = ANG(KP1)

BA = 0.5*(ANG1+ANG2)
SN = SIN(BA/180.0*PI)
CS = COS(BA/180.0*PI)
\[
\begin{align*}
GB &= 0.5 * EB / (1.0 + PRB) \\
BM1 &= BB / (EI) \\
BM2 &= 33 * (KP1) \\
BM3 &= BB / (EI) \\
BM4 &= 3D * (KP1) \\
BJ1 &= 3JG / (EI) \\
BJ2 &= 3JG / (KP1) \\
EL &= BY2 - BX1 \\
XK1 &= EB * (EI) / EL \\
XK2 &= EB * (EI) / EL \\
YK1 &= EB * (EI) / EL \\
YK2 &= BM2 * (EI) / EL \\
ZK1 &= GB * (EI) / EL \\
ZK2 &= GB * (EI) / EL \\
XM1 &= RBS * (EI) / EL \\
XM2 &= RBS * (EI) / EL \\
ZM1 &= GB * (EI) / EL \\
ZM2 &= GB * (EI) / EL \\
\end{align*}
\]

C

CALCULATE THE ROTATION MATRIX R

C

CALCULATE THE ELEMENT STIFFNESS MATRIX EK

E

1. \(EK(1,1) = 6.0 * XK1 + 6.0 * XK2 \)
2. \(EK(1,2) = 2.0 * IE * XK1 - 4.0 * IE * XK2 \)
3. \(EK(1,3) = 6.0 * XK1 - 6.0 * XK2 \)
4. \(EK(2,1) = -4.0 * IE * XK2 + 4.0 * IE * XK2 \)
5. \(EK(2,2) = 6.0 * IE * XK1 + 3.0 * IE * EL * XK2 \)
6. \(EK(2,3) = 2.0 * IE * XK1 + 4.0 * IE * XK2 \)
7. \(EK(3,1) = 2.0 * IE * XK1 + 2.0 * IE * XK2 \)
8. \(EK(3,2) = 6.0 * IE * XK1 + 6.0 * IE * XK2 \)
9. \(EK(3,3) = 4.0 * IE * XK1 + 4.0 * IE * XK2 \)
10. \(EK(4,1) = 3.0 * IE * IE * XK1 + 6.0 * IE * XK2 \)
11. \(EK(4,2) = 6.0 * IE * IE * XK1 + 6.0 * IE * XK2 \)
12. \(EK(5,1) = 6.0 * YK1 + 6.0 * YK2 \)
13. \(EK(5,2) = 6.0 * YK1 + 6.0 * YK2 \)
EK(5, 6) = 2.0 * EL * Y1 + 4.0 * EL * Y2
EK(5, 7) = 6.0 * Y1 + 6.0 * Y2
EK(5, 8) = 4.0 * EL + 2.0 * EL * Y1
EK(6, 6) = EL * Y1 + 3.0 * EL * EL * Y2
EK(6, 7) = 2.0 * EL + Y1 + 4.0 * EL * Y2
EK(6, 8) = EL * Y1 + EL * EL * Y2
EK(7, 7) = 6.0 * Y1 + 6.0 * Y2

CALCULATE THE ELEMENT MASS MATRIX EM

STORE THE ELEMENT MATRICES INTO THE BLADE SYSTEM

MATRICES IN THE APPROPRIATE POSITIONS ACCORDING TO

THE BLADE GENERAL OPTION

IF (IBDE, K, 1) GE TC 32

CALL ASHULE (SH, EK, KK, KK, 1, 4, 10, L)
CALL ASHULE (SH, EK, KK, KK, 1, 4, 10, L)
KK = 2 * (K - 1)

CALL ASHULE (SH, EK, KK, KK, 5, 8, 10, L)
CALL ASHULE (SH, EK, KK, KK, 5, 8, 10, L)
CALL ASSEMBLE(SK3, EK, KK, 9, 10, 10, L)
CALL ASSEMBLE(SK3, EK, KK, 9, 10, 10, L)
IF (K.LT.33) GO TO 20
RETURN

3 CONTINUE
CALL TRIMUL(S, EK, C, D, 10, 10, 10, 10, 10)
CALL TRIMUL(S, EK, C, D, 10, 10, 10, 10)
IF (K.EQ.3) GO TO 50

* CALCULATE THE J'3 MATR IX

B(1,1)=1.0
B(1,2)=3XI
B(1,3)=3XI*3XI
B(1,4)=3XI*3XI
B(2,1)=-1.0
B(2,2)=-2.0*3XI
B(2,3)=3.0*3XI*3XI
B(2,4)=3XI*3XI
B(3,1)=3XI
B(3,2)=3XI*3XI
B(3,3)=3XI
B(3,4)=3XI
B(4,1)=3XI
B(4,2)=3XI
B(4,3)=3XI
B(4,4)=3XI
B(5,1)=1.0
B(5,2)=3XI
B(5,3)=3XI
B(5,4)=3XI
B(6,1)=-1.0
B(6,2)=3XI
B(6,3)=3XI
B(6,4)=3XI
B(7,1)=1.0
B(7,2)=3XI
B(7,3)=3XI
B(7,4)=3XI
B(8,1)=-1.0
B(8,2)=3XI
B(8,3)=3XI
B(8,4)=3XI
B(9,1)=1.0
B(9,2)=3XI
B(9,3)=3XI
B(9,4)=3XI
B(10,1)=-1.0
B(10,2)=3XI
B(10,3)=3XI
B(10,4)=3XI

D0 25 I=1,10
D0 25 J=1,10
B(I+2,J+2)=B(I,J)
B(I,1+J+4)=B(I,J)
CALL INVGT(B, 10, 10)

* CALCULATE ADDITIONAL STIFFNESS VALUES IF INITIAL *
* STRESSES ARE PRESENT *

SIG1=SIG(I)
SIG2=SIG(KP)
ALF5=(CX2*C1-3XI*SIG2)/EL
BETA5=(SIG2-CI)/EL
ALF6=(CX2*A1-A1*SIG2)/EL
BETA6=(A1-A1/A1)/EL
ALF7=(CX2*B1-B1*SIG2)/EL
BETA7=(B1-B1/B1)/EL
ALF8=(CX2*E1-E1*SIG2)/EL
BETA8=(E1-E1/E1)/EL
D0 35 I=1,10
D0 35 J=1,10
R(I,J)=0.0
R(I,1)=-5X(0.0,0.0)
R(I,2)=-5X(1.1,0.0)
R(1,3)=SX(2,2.0)
R(1,4)=-SX(3,3.0)
R(2,2)=?X(0,0,0)-SX(2,2.0)
R(2,3)=2.0*RX(1,1.0)-SX(3,3.0)
R(2,4)=3.0*RX(2,2.0)-SX(4,4.0)
R(3,3)=4.0*RX(3,3.0)-SX(5,5.0)
R(3,4)=6.0*RX(3,3.0)-SX(5,5.0)
R(4,3)=9.0*RX(4,4.0)-SX(6,6.0)
R(6,6)=?X(0,0,0)
R(6,7)=2.0*RX(1,1.0)
R(6,8)=3.0*RX(2,2.0)
R(7,7)=4.0*RX(3,3.0)
R(7,8)=6.0*RX(3,3.0)
R(8,8)=9.0*RX(4,4.0)
R(9,9)=-RCS*CGA*CGA*CSC(2.0*BA)*((ALFU+ALFU)*XX(1,1.0)+BETU*
 BETU)*XX(2,2.0)
R(9,10)=-RCS*CGA*CGA*CSC(2.0*BA)*((ALFU+ALFU)*XX(2,2.0)+BETU*
 BETU)*XX(3,3.0)
R(10,10)=RCS*CGA*CGA*CSC(2.0*BA)*((ALFU+ALFU)*XX(3,3.0)+BETU*
 BETU)*XX(4,4.0)
ALFS*ALF*XX(1,1.0)+(ALFS*BETJ+BET5*ALFJ)*XX(2,2.0)
 *(BETS*BETJ)*XX(3,3.0)
DO 40 J=1,9
II=I+1
D0 40 J=II,10
R(J,J)=R(I,J)
CALL TRIMUL(B,R,C,D,10,10,10,10,10)
D0 45 I=1,10
D0 45 J=1,10
45 EX(I,J)=EX(I,J)+R(I,J)
50 KK=5*(K-1)
 CALL ASN3LE(SK3,EX,KK,J,10,10,L)
 IF(XLT.N3E) G0 TO 20
RETURN
1 F0RMAT(111,/'5X,'BLADE DIMENSIONS'/)
2 F0RMAT(5X,15.6F6.3/)
3 F0RMAT(5S13.5)
END
SUBROUTINE DISC(SK, SM, R, T, SRR, STT, NS, L)

** THIS SUBROUTINE CALCULATES THE ELEMENT STIFFNESS *
** AND MASS MATRICES AND STORES THE VALUES INTO THE *
** DISC SUBSYSTEM MATRICES SK(L,L) AND SM(L,L) *
** THE ADDITIONAL STIFFNESS COEFFICIENTS DUE TO *
** INITIAL STRESSES SRR(L) AND STT(L) ARE ALSO *
** CALCULATED AND ADDED TO THE RENDING STIFFNESS. *
** SHEAR DEFORMATIONS AND ROTARY INERTIA ARE IGNORED. *
** WHILE ENTERING THE SUBROUTINE ZERO ALL THE TERMS *
** OF THE MATRICES SK AND SM. INITIALISE ALL THE *
** TERMS OF THE RADIUS AND THICKNESS VECTORS R AND T. *

** DIMENSION SK(L,L), SM(L,L), R(L), T(L)
** DIMENSION SRR(L), STT(L), ES(4,4)
** COMMON/OPTCEN/10PT, IRNG, ITHD, ITED, ITHB, ISTB
** COMMON/TW0/S1, S2, S3, S4, CKD, CRK, CMD, CMR, CC, CC, CK, CP, CT
** COMMON/FOUR/PI, ED, ER, EB, R0D, R0R, R0B, ALD, ALR, PRD, PRR, PRB
** K=0
** N=NS-1
** PR=PRD
** CONTINUE

** SELECT THE NUMBER K OF THE ELEMENT **

** GET THE VALUES OF RADIUS AND THICKNESS AT NODES **

R1=R(K1)
R2=R(K2)
T1=T(K1)
T2=T(K2)
DO 40 I=1,4
DQ 40 J=1,4
B(I,J)=0.0
EX(I,J)=0.0
40

DD=R2-R1
D1=DD+DD
D2=D1+DD
ALFA=(R2*T1-R1*T2)/DD
BETA=(T2-T1)/DD
X1=ALFA*ALFA+ALFA*CKD
X2=ALFA*BETA+ALFA*CKD
X3=ALFA*BETA*BETA+CKD
X4=BETA*BETA*BETA+CKD

C**
* CALCULATE THE 'U' MATRIX
* CALCULATE THE 'SMALL' MATRIX
E(3,4)=E6*(P1-P2+18.*P3+18.*PR)
E(4,3)=EX(3,4)
E(4,4)=E7*(P1+2.*P2+45.-20.*P3+36.*PR)
CA=(R2*SRR(K1))-71*SRR(K2))/DD
DA=(SRR(K2)-SRR(K1))/DD
EE=(R2*SRR(K1)-R1*SRR(K2))/DD
FF=(SRT(K2)-SRT(K1))/DD
X1=CCC+ALFA+EE+P2
X2=CCC+P2*(ALFA+FF+BIETA+EE)
X3=CCC+BIETA+FF+P2
E1=X1*C5+X2*A3+0.5*X3*A4
E2=X1*A3+0.5*X2*A4+51*X3*A5
E3=0.5*X1*A4+51*X2*A5+0.25*X3*A6
E4=S1*X1*A5+0.25*X2*A6+0.2*X3*A7
E5=0.25*X1*A6+0.2*X2*A7+52*X3*A8
E6=0.2*X1*A7+S2*X2*A8+53*X3*A9
E7=S2*X1*A6+53*X2*A9+Q125*X3*A10
X1=CCC+ALFA+CA
X2=CCC+ALFA+DA+BIETA+CA
X3=CCC+ALFA+DA+BIETA+CA
X4=CCC+ALFA+DA+BIETA+CA

CALCULATE ADDITIONAL STIFFNESS FOR INITIAL STRESS

* **CALCULATE THE SMALLER MATRIX**

45
E(1,j)=E(1,j)+E(1,j)
ALFA=ALFA*/CD
BIETA=BIETA*/CD

CALCULATE THE SMALLER MATRIX

CALCULATE THE SMALLER MATRIX
EM(1,3) = ALFA* .25 * A6 + BETA* .2 * A7
EM(1,4) = ALFA* .2 * A7 + BETA* S2 * A8
EM(2,1) = EM(1,2)
EM(2,2) = EM(1,3)
EM(2,3) = EM(1,4)
EM(2,4) = ALFA* S2 * A8 + BETA* S3 * A9
EM(3,1) = EM(1,3)
EM(3,2) = EM(2,3)
EM(3,3) = EM(2,4)
EM(3,4) = ALFA* S3 * A9 + BETA* 1.25 * A10
EM(4,1) = EM(1,4)
EM(4,2) = EM(2,4)
EM(4,3) = EM(3,4)
EM(4,4) = ALFA* 1.25 * A10 + BETA* S4 * A11

**
* CALCULATE THE STIFFNESS AND MASS MATRICES *
**
CALL TRIMUL(B,EK,C,D,4,4,4,4,4)
CALL TRIMUL(B,EM,C,D,4,4,4,4,4)
KK = 2 * (K-1)

**
* PUT THE ELEMENT MATRICES INTO SUBSYSTEM MATRICES *
**
CALL ASMBLE(SK,EK,KK,1,4,4,L)
CALL ASMBLE(SM,EM,KK,1,4,4,L)

**
* GO BACK AND REPEAT CALCULATIONS FOR OTHER ELEMENTS *
**
IF(K>N30,50,50)
50 CONTINUE
RETURN
END
SUBROUTINE SYSTEM(SK, SM, SKB, SMB, NTD, NTB, L, LL)

**

* THIS SUBROUTINE ASSEMBLES THE STIFFNESS AND MASS
* MATRICES OF THE THREE SUBSYSTEMS INTO THE SYSTEM
* MATRICES
* THE MATRICES RK(2,2) AND RM(2,2) OF THE
* RIGID SUBSYSTEM ARE CALCULATED BEFORE ASSEMBLING.
* THE DISCRETE SUBSYSTEM MATRICES SK(L, L) AND SM(L, L)
* ARE THEMSELVES USED AS SYSTEM MATRICES.
* BEFORE ENTERING THE SUBROUTINE INITIALISE ALL THE
* TERMS OF THE SUBSYSTEM MATRICES SK, SM, SKB, AND SMB.
* **

DIMENSION SK(L, L), SM(L, L), SKB(L, L), SMB(L, L), NTD(L, L), NTB(L, L)

DIMENSION DK(10,10), DK(10,10), CK(10,10), DK(10,10)

DIMENSION RK(2,2), RM(2,2), CR(2,2), DR(2,2), TR(2,2)

COMMON/CP100/10PT, IRNG, ITD1, ITD2, IST

COMMON/CIE/AM, AM, AM, AMR

COMMON/DK/O1, S1, S2, S3, S4, CKD, CKR, CND, CDR, CCR, CCCC, CK, CP, CT

COMMON/TI1H/RI, RD, RAI, RAR, RAI, RTS, E1, E2, RIZ, RIX, RJ, RA, STR

COMMON/TV/11, P1, ED, ER, ED, ROR, ROR, ROR, ROR, RD, PRD, PRR, PRB

IF(IRNG.EQ.0.0) GO TO 35

RR=DD0

DO 10 I=1, 10

DK(I, J)=SK3(I, J)

DMC(I, J)=SM3(I, J)

10 T(I, J)=0.0

**

* APPLY THE CONSTRAINT CONDITIONS TO THE BLADE
* SUBSYSTEM MATRICES

**

T(3, 1)=1.0

T(3, 2)=-E1-E2

T(4, 2)=1.0

T(5, 1)=-AM/RR

T(5, 2)=RR*RR*(E1+E2)

T(6, 3)=1.0

T(7, 4)=1.0

T(8, 5)=1.0

T(9, 6)=1.0

T(10, 7)=1.0

CALL TRIMUL(T, DK, C, D, 10, 10, 10, 10)

CALL TRIMUL(T, DK, C, D, 10, 10, 10, 10)

DO 15 I=1, 10

D0 15 J=1, 10

C(I, J)=SK3(I, J)

15 DC(I, J)=SM3(I, J)

DO 20 I=1, 7

D0 20 J=1, 7

DO 20 J=1, 7

SMB(I, J)=DK(I, J)

20 SY3(I, J)=DK(I, J)
C

C **
C * ASSEMBLE THE DISC AND BLADE MATRICES INTO THE SYSTEM MATRICES *
C **
D0 30 1=4,NTB
II=NTD-5
D5 30 J=4,NTB
JJ= J+NTD-5
SK(II, JJ)=SK(II, JJ)+CC*SHB(I, J)
30 SH(I, JJ)=SH(I, JJ)+CC*SHB(I, J)
D0 351=1, 10
DO 35 J=1,10
SKB(I, J) =C(I, J)
35 CONTINUE
IF(ING.EQ.0.0)G2 TO 50

C **
C * CALCULATE THE RIM MATRICES *
C **
A1=1.0/(RRI+EI)
A2=A1*A1
A3 =A2*A2
A4=A3*A1
AR=0.5*(RRO-RRI)*(RT0+RTI)
CR=0.5*ER/(1.0+PRR)
RK(1,1)=CR*(ER*RIZ+GR*RJ/AM2)*AM4*A4+AM2*A2*STR*CR
RK(1,2)=CR*(ER*RIZ+GR*RJ)*AM2*A3
RK(2,1)=RK(1,2)
RK(2,2)=CR*(ER*RIZ+AM2*GR*RJ)*A2
RM(1,1)=CR*RGR*(RA+RIZ*AM2*A2)
RM(1,2)=0.0
RM(2,1)=0.0
RM(2,2) =CR*RGR.* (RIX+RIZ)
TT(1,1)=1.0
TT(1,2)=-EI
TT(2,1)=0.0
TT(2,2)=1.0
CALL TRIMUL(TT,RK,CR,DR,2,2,2,2,2)
CALL TRIMUL(TT, RM, CR, DR, 2, 2, 2, 2, 2)

C **
C * ASSEMBLE THE RIM MATRICES INTO THE SYSTEM MATRICES *
C **
DO 40 1=1,2
II=NTD-2+1
D0 40 J=1,2
JJ=NTD-2+J
SK(II, JJ)=SK(II, JJ)+RK(1, J)
40 SH(I, JJ)=SH(I, JJ)+RK(1, J)
SO RETURN
2 FORMAT(5X,15.5E13.6)/
END
D.4.3 Subroutines used in PROGRAM-3

* MAIN-3 -- MAIN PROGRAM OF PROGRAM3 *

* THIS IS A GENERAL PROGRAM TO BE USED IN THE *
* ANALYSIS OF BLADED ROTORS. TRANSVERSE SHEAR AND *
* ROTARY INSERTIA ARE INCLUDED BOTH IN THE DISC AND *
* BLADES. OPTIONS FACILITATING THE USE OF THIS *
* PROGRAM FOR THE VIBRATION ANALYSIS OF EITHER THE *
* ENTIRE ROTOR SYSTEM OR ITS COMPONENT PARTS MAY BE *
* SPECIFIED. VARIABLE DIMENSIONS ARE USED REQUIRING *
* THE CHANGING OF THE DIMENSIONS ONLY I IN THE MAIN *
* PROGRAM AT ANY TIME AND SPECIFYING THE APPROPRIATE *
* VALUES OF MS1 AND MS2. *

DIMENSION SX(49,49),SK(49,49),SKB(35,35),SHB(35,35)
DIMENSION R(49),TE(49),V(49),P(49)
DIMENSION B3(49),SD(49),SX(49),S1C(49),ANG(49),ARA(49),BKG(49)
DIMENSION SGR(49),SGT(49)
DIMENSION D(49,49),F(49,49),B(49),C(49),X(49)
DIMENSION ERR(49),E7(49),38(49),39(49),FR(20,10)
COMMON/OPTION/ICPT,IRNG,ITUDITED,ITED,ITBK
COMMON/CF/E,CK/C,A:2,ANA,ANPR
COMMON/TY2/S1,S2,S3,S4,CKD,CKR,CKD,CKR,CC,CCC,CK,C,T,CSD,CSR
COMMON/TICE/ID1,RS0,RR1,RR2,RT1,RTC,ITF,IT,IRZ,IRX,IRU
COMMON/FRU/PI,ED,ER,ED,R3,RR3,ALD,ALR,PRD,PRR,PR3,SC3
COMMON/FIVE/SRL,SRG,SRA
COMMON/SIX/CONST,HNF
EQUVALENCE (SK,F)
MS1=49
MS2=35
15 CONTINUE

* READ GENERAL OPTION, RING OPTION, AND NUMBER OF *
* FREQUENCIES REQUIRED FOR EACH DIAMETRAL NODE. *

READ 12, ICPT,IRNG,HNF
PRINT 12, ICPT,IRNG,HNF
C Read speed of rotation of the rotor in rad./sec.
C
READ 6,0,nga
PRINT6,cmga
GO TO (20,50,20,21),10PT
C
C Read final and starting values of normal diameters.
C
READ 12,nd,nds
PRINT12,nd,nds

C Read number of disc elements, disc options, disc
C material properties and boundary loading.

READ 12,nd,nted
PRINT12,nd,nted
READ 6,ed,rd,prd,ald,scd
PRINT6,ed,rd,prd,ald,scd
READ 10,src,src
PRINT10,src,src
nsd=nde+1
npd=2+nde
ntd=4+nsd
IF (1+ng,ne,0) ntd=4*(nsd+1)
C
C Read disc dimensions
C
READ 10,(r(1),i=1,ntd)
PRINT10,(r(1),i=1,ntd)
READ 10,(t(1),i=1,npd)
PRINT10,(t(1),i=1,npd)
rd=r(1)
rd6=r(npd)
IF (nted,ed,0) GO TO 49
C
C Read temperature gradient of the disc
C
READ 10,(te(1),i=1,npd)
PRINT10,(te(1),i=1,npd)
GO TO (70,50,50,70),10PT
C
CONTINUE
C
C Read number of blade elements, number of blades,
C and blade options
C
READ 12,nde,n3,istj,ibde
PRINT12,nde,n3,istj,ibde
nd3=nze+1
ntb=7+ns3
C
C Read blade material properties
C
READ 6,eb,rb,prb,scb
PRINT6,eb,rb,prb,scb
READ BLADED DIMENSIONS

READ 10,(G*X(I),I=1,NSB)
PRINT 10,(G*X(I),I=1,NSB)
READ 10,(G*3(I),I=1,NSB)
PRINT 10,(G*3(I),I=1,NSB)
READ 10,(3D(I),I=1,NSB)
PRINT 10,(3D(I),I=1,NSB)

READ TIES, DIMENSIONS AND ELASTIC PROPERTIES

READ 6,E3,R3,P3,AL3,SC3
PRINT6,E3,R3,P3,AL3,SC3
READ 10,R31,R30,RT1,RT0,RT1,RT0
PRINT10,R31,R30,RT1,RT0,RT1,RT0
T(NPD+1)=RT1
T(NPD+2)=RT0
T(NPD+1)=RT1
T(NPD+2)=RT0
R(NPD+1)=RT1
R(NPD+2)=RT0

CALCULATE BLADE SUBSYSTEM STIFFNESS AND MASS

GALL THK3DE(S3,B3,FX,FD,ANG,SIG,ARA,BNG,NBE,13DE,N32)
G2 T9(95,90,95),10PT

COMPUTE BLADE FREQUENCIES ACCORDING TO THE BLADE

GENERAL OPTIONS

IJK=1
N=0
IF(I3DE.NE.1) G0 TO 94
DO 91 I=3,3*NSB-1
II=I-2
DO 91 J=3,3*NSB-1
JJ=J-2
SK(II, JJ)=SK3(I, J)
91 SH(II, JJ)=SH3(I, J)
N1=3*NSB-3
PRINT 1
CALL EIGVAL(SK, SM, D, F, FR, B, C, X, ERR, B7, B8, B9, IJK, N1, NS1)
DO 92 I=3*NSB+3, 6*NSB-1
II=I-2-3*NSB
DO 92 J=3*NSB+3, 6*NSB-1
JJ=J-2-3*NSB
SK(II, JJ)=SK3(I, J)
SM(I, J)=SH3(I, J)
92 SH(I, J)=SH3(I, J)
N1=NSB-1
CALL EIGVAL(SK, SM, D, F, FR, B, C, X, ERR, B7, B8, B9, IJK, N1, NS1)
DO 93 I=6*NSB+2, 10*NSB-1
II=I-1-6*NSB
DO 93 J=6*NSB+2, 10*NSB-1
JJ=J-1-6*NSB
SK(II, JJ)=SK3(I, J)
SM(I, J)=SH3(I, J)
93 SH(I, J)=SH3(I, J)
N1=NSB-1
CALL EIGVAL(SK, SM, D, F, FR, B, C, X, ERR, B7, B8, B9, IJK, N1, NS1)
IF(I3DE.NE.2) G0 TO 97
NN=NTB
DO 195 I=NSB, I-1
II=I-1
CALL REDUCE(SK2, NN, 11, 1, MS2)
CALL REDUCE(SK3, NN, 11, 1, MS2)
NN=NN-1
195 CONTINUE
CALL REDUCE(SK3, NN, 6*NSB-3, 1, MS2)
CALL REDUCE(SK2, NN, 6*NSB-3, 1, MS2)
CALL REDUCE(SK3, NN, 11, 4, 2, MS2)
CALL REDUCE(SK2, NN, 11, 4, 2, MS2)
CALL REDUCE(SK3, NN, 11, 3, 1, MS2)
N1=NN-6
PRINT 5
G0 TO 99
97 CONTINUE
NN=NTB
CALL REDUCE(SK3, NN, 7*NSB-1, 1, MS2)
CALL REDUCE(SK3, NN, 7*NSB-1, 1, MS2)
CALL REDUCE(SK3, NN, 7*NSB-4, 1, MS2)
CALL REDUCE(SK3, NN, 11, 7*NSB-4, 1, MS2)
CALL REDUCE(SK3, NN, 2, 4, 2, MS2)
CALL REDUCE(SK2, NN, 2, 4, 2, MS2)
CALL REDUCE(SK3, NN, 4, 1, 2, MS2)
CALL REDUCE(SK3, NN, 4, 1, 2, MS2)
C

N 1=NM-6
PRINT 7
CALL EIGVAL(SK,SH3,D,F,FR,B,C,X,ERR,B7,B9,IJK,N1,MS2)
GO TO 15

95 CONTINUE
CH=2.0*PI*ED/(1.0-PRD*PRD)
Cp=2.0*PI*PRD*CMGA*CMGA
CT=2.0*PI*ED*ALD/(1.0-PRD)

* CALCULATE THE INITIAL STRESSES IN THE DISC DUE TO *
* ROTATION, TEMPERATURE GRADIENT AND OTHER BOUNDARY *
* LOADINGS *
CALL INLIST(SK,R,T,TE,V,P,SGR,SGT,NSD,M51)
IF(I0PT.EQ.4) CALL EXIT
NT=NTD
IF(I0PT.EQ.3) NT=NTD+NTB-6
IJK=1
M=NSD+1
IF(I0PT.EQ.3) Z=NB

CONTINUE

* SELECT NUMBER OF NODAL DIAMETERS *
M=M+1
PRINT 3, M
FRC=1.0
IF(H.EQ.0) FAC=2.0
CHD=FAC*PI*ED/(1.0-PRD*PRD)/12.0
CHD=FAC*PI*PRD
IF(1RNG.EQ.1) CHR=FAC*PI*ER/(1.0-PRR*PRR)/12.0
IF(1RNG.EQ.1) CHR=FAC*PI*RDR
IF(I0PT.EQ.3) CC=Z*FAC/2.0
CC=FAC*PI
CSD=0.5*PI*FAC*ED/SCD/(1.0+PRD)
IF(1RNG.NE.0) CSR=0.5*PI*FAC*ER/SCR/(1.0+PRR)
AY=M
AN2=AN2*AN
AM4=AM4*AM2
AM6=AM6*AM2
ANPR=AN2*PRD
DS 105 I=1,NT
DC 10.5 J=1,NT
SK(I,J)=0.0

105 *** DISC SUBSYSTEM STIFFNESS AND MASS ***
* MATRICES AND STORE THEN *
CALL THKDISC(SK,SH,T,SGR,SGT,NSD,M51)

C
C **************************
C * GET THE SYSTEM STIFFNESS AND MASS MATRICES FROM *
C * THE SUBSYSTEM MATRICES *
C **************************
IF(100.E0.3) CALL THKSYS(SK,SMB,SKB,SK3,
CC,RED1,RED2,NTD,NTB,NS1,MS2)
C **************************
C * APPLY BOUNDARY CONDITIONS *
C **************************
CALL REDUCE(SK,NT,NT-1,1,MS1)
CALL REDUCE(SK,NT,NT-1,1,MS1)
IF(100.E0.1) GOTO 110
CALL REDUCE(SK,NT-1,NT-4,1,MS1)
CALL REDUCE(SK,NT-1,NT-4,1,MS1)
CALL REDUCE(SK,NT-2,1,2,MS1)
CALL REDUCE(SK,NT-2,1,2,MS1)
N1=NT-4
GOTO 120
110 CONTINUE
 CALL REDUCE(SK,NT-1,3,1,MS1)
 CALL REDUCE(SK,NT-1,3,1,MS1)
 CALL REDUCE(SK,NT-1,3,1,MS1)
 N1=NT-2
120 CONTINUE
C **************************
C * SOLVE THE EIGENVALUE PROBLEM AND GET THE SYSTEM *
C * FREQUENCIES *
C **************************
CALL EIGVAL(SK,SM,B,F,BR,B3,C,X,ERR,B7,B8,B9,IKL,N1,NS1)
IF(K,LT,ND) GOTO 100
GOTO 15
200 CALL EXIT
1 FORMAT(1H1.5X,'BLADE BENDING FREQUENCIES INI-MINDIRECTION'//)
2 FORMAT(1H1.5X,'BLADE BENDING FREQUENCIES IN I-MAX DIRECTION'//)
3 FORMAT(1H1.5X,'THE NUMBER OF MODAL DIAMETERS =',I3)//
4 FORMAT(1H1.5X,'BLADE TORSIONAL FREQUENCIES'//)
5 FORMAT(1H1.5X,'TWISTED BLADE BENDING FREQUENCIES'//)
6 FORMAT(4F20.10)
7 FORMAT(1H1.5X,'BLADE FREQUENCIES WITH INITIAL STRESSES'//)
10 FORMAT(6F10.6)
11 FORMAT(2E13.6)
12 FORMAT(1615)
END
SUBROUTINE THIN3D (SK3, SKB, BX, BB, BD, ANG, SIG, ARA, BKG, NBE, IBDC, L)
C
C **
C * THIS SUBROUTINE CALCULATES THE BLADE SUBSYSTEM *
C * STIFFNESS MATRIX SKB(L,L) AND MASS MATRIX SKBCL(L)*
C * TRANSVERSE SHEAR AND ROTARY INERTIA ARE INCLUDED * C
C * ADDITIONAL STIFFNESS DUE TO INITIAL STRESSES CAN * C
C * ALSO BE INCLUDED * C
C
C **
C DIMENSION SKB(L,L), SKB(L,L), EK(14,14), EB(14, 14)
C DIMENSION BX(L), BB(L), BB(L), ANG(L), SIG(L)
C COMMON/F000/1, 3F1, EE, RB, R0D, R0R, R03, AL3, ALR, PRD, PR3, PRB, SCB
C COMMON/F00/31, 3F1, 3F3, CGA
C RX(I,AL)-Al*FA*XX(I-1,AL+1.0)+2(ALFS+BETA+BETS*ALFA)*
C XX(I-2,AL+2.0)+3ETS*ALFA*XX(I+3,AL+3.0)
C SX(I,AL)=R0B*CGA*CXGA*(ALFA*XX(I+1,AL+1.0)+BETA*XX(I+2,AL+2.0))
C XP(I,AL)=YYY*(ALFA*XX(I+1,AL+1.0)+BETA*XX(I+2,AL+2.0))
C XR(I,AL)=XXX*(AL*XX(I+1,AL+1.0)+BE*XX(I+2,AL+2.0))
C XX(I,AL) = (BX2**1-BX1**1)/AI
C NT3=7*(NBE+1)
C D0 10 I=1,NT3
C D0 10 J=1,NT3
C SK3(I,J)=0.0
C PRINT 1
C K=0
C 20 CONTINUE
C D0 15 I=1,14
C D0 15 J=1,14
C B(I,J)=0.0
C EK(I,J)=0.0
C EK(I,J)=0.0
C 15 R(I,J)=0.0
C C ****************************
C C * SELECT THE NUMBER OF THE ELEMENT AND GET THE *
C C * VALUES OF SECTION PROPERTIES OF THE BLADE AT THE *
C C * ENDS OF THE ELEMENT
C C ****************************
C K=K+1
C KP=K+1
C BX1=BX(K)
C BX2=BX(KP+1)
C ARA1=AAR1(KP+1)
C ANG1=ANG1(KP+1)
C ANG2=ANG2(KP1)
C SX1=SIG1(KP1)
C SIG2=SIG2(KP1)
C BA=0.5*(ANG1+ANG2)
SN = \sin(3A/160.0*P)
CS = \cos(3A/160.0*P)
GD = 0.5*E3/(1.0+PR)
BK(I) = BKX(I)
BK(I2) = BKX(KP)
BKX = 3D (IO)
BKX2 = 3D(KP)
BJ1 = BKX(K)
BJ2 = BKX(KP)
EL = BX2-3X1
ALFS = (3X2+SIG1-BX1*SIG2)/EL
BETS = (SIG2-SIG1)/EL
ALFA = (BX2+ARA1-BX1*ARA2)/EL
BETA = (ARA2-ARA1)/EL
ALFJ = (BX2+B1-3X1*BJ2)/EL
BETJ = (B1-3J)/EL
ALIU = (BX2*SIG1-BX1*SIG2)/EL
BETU = (SIG2- SIG1)/EL
ALIF = (BX2*SIG1-BX1*SIG2)/EL
BEIF = (SIG2-SIG1)/EL

*********** CALCULATE THE 'S' MATRIX ***********

B(1,1) = 1.0
B(1,2) = BX1
B(1,3) = BX1*BX1
B(1,4) = BX1*3X1
B(2,2) = -1.0
B(2,3) = 2.0*3X1
B(2,4) = -3.0*3X1
B(2,5) = 1.0
B(2,6) = BX1
B(3,5) = 1.0
B(3,6) = BX1
B(4,1) = 1.0
B(4,2) = 3X2
B(4,3) = 3X2+3X2
B(4,4) = 3X2*3X2
B(5,2) = -1.0
B(5,3) = -2.0*3X2
B(5,4) = -3.0*3X2
B(5,5) = 1.0
B(5,6) = BX2
B(6,5) = 1.0
B(6,6) = BX2
DC = 1 = 1, 6
I1 = 1 + 6
DO = 25 J = 1, 6
JJ = J + 6

25 B(I, JJ) = B(I, J)
B(13, 13) = 1.0
B(13, 14) = 3X1
B(14, 13) = 1.0
B(14, 14) = BX2
CALL INV'T(3, 14, 14)
* CALCULATE THE ROTATION MATRIX R

R(1,1) = CS
R(2,2) = CS
R(3,3) = CS
R(4,4) = CS
R(5,5) = CS
R(6,6) = CS
R(7,7) = CS
R(8,8) = CS
R(9,9) = CS
R(10,10) = CS
R(11,11) = CS
R(12,12) = CS
R(13,13) = CS
R(14,14) = CS

* CALCULATE THE ELEMENT STIFFNESS MATRIX EK

EK(1+3, J+3) = 4.0 * XR(0, 0.0)
EK(1+3, J+4) = 12.0 * XR(1, 1.0)
EK(1+3, J+6) = 2.0 * XR(2, 2.0)
EK(1+4, J+3) = 36.0 * XR(0, 2.0)
EK(1+4, J+4) = 6.0 * XR(1, 1.0)
EK(1+4, J+6) = 36.0 * XR(2, 2.0)
EK(1+5, J+5) = XR(0, 0.0)
EK(1+5, J+6) = XR(1, 1.0)
EK(1+6, J+6) = XR(0, 0.0) + XR(2, 2.0)

IF (KKK = 2, 2) GOTO 35
1 = 6
J = 6
35 CONTINUE
EN(14,14) = GB*(ALF*XX(1,1,0)+BEJ*XX(2,2,0))

C **
C * CALCULATE THE ELEMENT MASS MATRIX EM
C **

MMK = 0
I = 0
J = 0
AL = ALIU
BE = BEI
XXX = REB
YYY = REB

40 CONTINUE
MMK = MMK + 1
EM(I+1,J+1) = XS(0,0,0)
EM(I+1,J+2) = XS(1,1,0)
EM(I+1,J+3) = XS(2,2,0)
EM(I+1,J+4) = XS(3,3,0)
EM(I+2,J+2) = XS(2,2,0)+XR(0,0,0)
EM(I+2,J+3) = XS(3,3,0)+2.0*XR(1,1,0)
EM(I+2,J+4) = XS(4,4,0)+3.0*XR(2,2,0)
EM(I+2,J+5) = -XR(0,0,0)
EM(I+2,J+6) = -XR(1,1,0)
EM(I+3,J+3) = XS(4,4,0)+4.0*XR(2,2,0)
EM(I+3,J+4) = XS(5,5,0)+6.0*XR(3,3,0)
EM(I+3,J+5) = -2.0*XR(1,1,0)
EM(I+3,J+6) = -2.0*XR(2,2,0)
EM(I+4,J+4) = XS(6,6,0)+9.0*XR(4,4,0)
EM(I+4,J+5) = -3.0*XR(2,2,0)
EM(I+4,J+6) = -3.0*XR(3,3,0)
EM(I+5,J+5) = -XR(0,0,0)
EM(I+5,J+6) = -XR(1,1,0)
EM(I+6,J+6) = XR(2,2,0)
IF(KKK = 2) G0 TO 45
AL = ALIU
BE = BEI
I = 6
J = 6

45 CONTINUE
AL = (ALIU+ALIU)*REB
BE = (BEI+BEI)*REB
EN(I3,13) = AL*XX(1,1,0)+BE*XX(2,2,0)
EN(I3,14) = AL*XX(2,2,0)+BE*XX(3,3,0)
EN(I4,14) = AL*XX(3,3,0)+BE*XX(4,4,0)
DZ 50 1 = 1,13
II = I + 1
DZ 50 J = II,14
EN(J,J) = EN(I,J)

50 EN(J,J) = EN(I,J)
CALL TRIMUL(B,Ek,C,D,14,14,14,14,14)
CALL TRIMUL(B,Ek,C,D,14,14,14,14)

C ** STORE THE ELEMENT MATRICES INTO THE BLADE SYSTEM **
C ** MATRICES IN THE APPROPRIATE POSITIONS ACCORDING TO **
C ** THE BLADE GENERAL OPTION **

C **
C IF (I3DB*NE.1) GOTO 60
KK=3*(K-1)
CALL ASMBLE(SKB,Ek,KK,KK,1,6,14,L)
CALL ASMBLE(SKB,Ek,KK,KK,1,6,14,L)
KK=3*(NBE+1)+3*(K-1)
CALL ASMBLE(SKB,Ek,KK,KK,7,12,14,L)
CALL ASMBLE(SKB,Ek,KK,KK,7,12,14,L)
KK=6*(NBE+1)+(K-1)
CALL ASMBLE(SKB,Ek,KK,KK,13,14,14,L)
CALL ASMBLE(SKB,Ek,KK,KK,13,14,14,L)
IF(KLT-NBE)GOTO 20
RETURN

60 CONTINUE
CALL TRIMUL(R,Ek,C,D,14,14,14,14,14)
CALL TRIMUL(R,Ek,C,D,14,14,14,14,14)
IF(0XGAE,O)GOT0 80
D5 70 I=1,14
D5 70 J=1,14
B(I,J)=O.O

70 R(I,J)=O.O
C ** CALCULATE ADDITIONAL STIFFNESS VALUES IF INITIAL **
C ** STRESSES ARE PRESENT **
C **
B(1,1)=1.0
B(1,2)=8X1
B(1,3)=8X1*8X1
B(1,4)=8X1*8X1*8X1
B(2,2)=1.0
B(2,3)=8X1
B(2,4)=8X1*8X1
B(2,5)=1.0
B(2,6)=8X1
B(3,5)=1.0
B(3,6)=8X1
B(4,7)=1.0
B(4,8)=8X1
B(4,9)=8X1*8X1
B(4,10)=8X1*8X1*8X1
B(5,8)=1.0
B(5,9)=8X1
B(5,10)=8X1*8X1*8X1
B(5,11)=1.0
B(5,12)=8X1
B(6,11)=1.0
B(6,12)=8X1
B(7,13)=1.0
B(7,14)=BX1
B(8,1)=1.0
B(8,2)=BX2
B(6,3)=3X2+BX2
B(6,4)=3X2+BX2
B(9,2)=-1.0
B(9,3)=-2.0*3X2
B(9,4)=-3.0*3X2+3X2
B(9,5)=1.0
B(9,6)=3X2
B(10,5)=1.0
B(10,6)=BX2
B(11,7)=1.0
B(11,8)=3X2
B(11,9)=3X2+3X2
B(11,10)=BX2+3X2+3X2
B(12,8)=-1.0
B(12,9)=-2.0*3X2
B(12,10)=-3.0*3X2+3X2
B(12,11)=1.0
B(12,12)=3X2
B(13,11)=1.0
B(13,12)=3X2
B(14,13)=1.0
B(14,14)=3X2
R(1,1)=-SX(0,0,0)
R(1,2)=-SX(1,1.0)
R(1,3)=-SX(2,2.0)
R(1,4)=-SX(3,3.0)
R(2,2)=RX(0,0,0)-SX(2,2.0)
R(2,3)=2.0*RX(1,1.0)-SX(3,3.0)
R(2,4)=3.0*RX(2,2.0)-SX(4,4.0)
R(3,3)=4.0*RX(2,2.0)-SX(4,4.0)
R(3,4)=6.0*RX(3,3.0)-SX(5,5.0)
R(4,4)=9.0*RX(4,4.0)-SX(6,6.0)
R(6,6)=RX(0,0,0)
R(6,9)=2.0*RX(1,1.0)
R(6,10)=3.0*RX(2,2.0)
R(9,9)=4.0*RX(2,2.0)
R(9,10)=6.0*RX(3,3.0)
R(10,10)=9.0*RX(4,4.0)
R(13,13)=-R23*CALG(2,2)+((ALFV+ALFU)*XX(111.0)
+BETU+XX(22.0)
R(13,14)=-R23*CALG(2,2)+((ALFV+ALFU)*XX(22.0)+BETU
+BETU)*XX(33.0)
R(14,14)=-R23*CALG(2,2)+((ALFV+ALFU)*XX(33.0)+BETU
+BETU)*XX(44.0)
CALL TRINUL(33.0,C,D,14,14,14,14)
D0 80 I=1,14
D0 80 J=1,14
EK(1,J)=EK(1,J)+R(I,J)
80 CONTINUE
KK=7*(K-1)
CALL ASHIBLE(SK3, EK, KK, 1, 14, 14, L)
CALL ASHIBLE(SK3, EM, KK, 1, 14, 14, L)
IF(K.LT.15E) GE TO 20
RETURN
1 FORMAT(1H1, //5X,'BLADE DIMENSIONS'/)
2 FORMAT(5X,15,6F8.3/)
3 FORMAT(7E13.5)
END
SUBROUTINE TMRSDC

* THIS SUBROUTINE CALCULATES THE ELEMENT STIFFNESS AND MATRICES AND STOres THE VALUES INTO TEE.

* DISC SUBSYSTEM MATRICES SK(L,L) AND SG(L,L) COMPUTE THE ADDITIONAL STIFFNESS COEFFICIENTS DUE TO INITIAL STRESSES, R(L) AND T(L) ARE ALSO CALCULATED AND ADDED TO THE BENDING STIFFNESS.

* TRANSVERSE SHEAR AND ROTARY INERT IA ARE INCLUDED.

* BEFORE ENTERING THE SUBROUTINE ZERO ALL THE TERMS.

* THIS SUBROUTINE USES ZEROS ALL THE TERMS OF THE RADIUS AND THICKNESS VECTOR R AND T.

DIMENSION SK(L,L),SM(L,L),R(L,L),T(L)
DIMENSION SRR(L),STT(L),S65(6,6)
DIMENSION EX(6,6),EM(6,6),B(6,6),C(6,6),D(8,8)
COMMON/EPT(I,EPT,J,IRNG,ITHD,ITED,ITH3,ISTB)
COMMON/CNE/AN,P2,P1,P3
COMMON/TY2/C1,S2,S3,S4,CKD,CKR,CMR,CMC,CCK,CC,CST,CSR
COMMON/FOUR/PI,ED,ER,EB,R3D,R3R,R3B,ALD,ALR,PRD,PRR,PRB,SCB

K=0
NS=NSD+1
1E.(IRNG.EQ.1)NS=NS+1
N=NS-1
PA=PRD
CK=CKD
CN=CMD
CS=CSD
30 CONTINUE

SELECT THE NUMBER OF THE ELEMENT

GET THE VALUES OF RADIUS AND THICKNESS AT NODES

R1=T(K1)
R2=T(K2)
T1=T(K1)
T2=T(K2)
D0 40 I=1,8
D0 40 J=1,8
3(I,J)=0.0
EK(I,J)=0.0
40 EM(I,J)=0.0
IF(K.NE.NSD) GOTO 42
PR=PRD
P3 = PRR * P2
CK = CKR
CM = CKR
CS = CSR

CONTINUE
DD = R2 - R1
D1 = DD * DD
D2 = D1 * DD
ALFA = (R2 * T1 - R1 * T2) / DD
BETA = (T2 - T1) / DD
X1 = ALFA * ALFA * ALFA * CK
X2 = ALFA * ALFA * ALFA * BETA * CK
X3 = ALFA * BETA * BETA * BETA * CK
X4 = BETA * BETA * BETA * BETA * CK

C

*C CALCULATE THE 'B' MATRIX

B(1,1) = 1.0
B(1,2) = R1
B(1,3) = R1 * R1
B(1,4) = R1 * R1 + R1
B(2,2) = -1.0
B(2,3) = -2.0 * R1
B(2,4) = -3.0 * R1 * R1
B(2,5) = 1.0
B(2,6) = R1
B(3,5) = 1.0
B(3,6) = R1
B(4,5) = 1.0
B(4,6) = R1
B(5,5) = 1.0
B(5,6) = R2
B(5,7) = -R1 * R2
B(5,8) = R2 * R2
B(6,2) = -1.0
B(6,3) = -2.0 * R2
B(6,4) = -3.0 * R2 * R2
B(6,5) = 1.0
B(6,6) = R2
B(6,7) = 1.0
B(6,8) = R2

CALL INV (5, 8, 8)

C

*C CALCULATE THE 'SHELL' MATRIX

A1 = R1 * R2
A2 = A1 * A1
A3 = R2 - R1
A4 = R2 * R2 - R1 * R2
A5 = R2 * R2 - R1 * R2
A6 = R2 * R2 - R1 * R2
A7 = R2 * R2 - R1 * R2
A8=R2*6-R1**6
A9=R2**7-R1**7
A10=R2*8-R1**8
A11=R2*9-R1**9
A12=R2*10-R1**10
C5=ALG(R2/R1)
E1=X1*5*A4/A2+X2*3.*A3/A1+X3*3.*C5*X4*A3
E2=X1*A3/A1+X2*3.*C5+X3*3.*A3+X4*5*A4
E3=X1+C5+X2+3.*A3+X3*1.5*A4+X4*A5
E4=X1*A3+X2*1.5*A4+X3*A5+X4*.25*A6
E5=X1+.5*A4+X2*A5+X3*75*A6+X4*+.2*A7
E6=X1*5*A4+X2*75*A6+X3*6*A7+X4*52*A8
E7=X1*25+A6+X2*6*A7+X3*5*A8+X4*53*A9
EK(1,1)=E1*(P1+2.*P2-2.*P3)
EK(1,2)=E2*(P1-P2)
E(1,3)=E3*(P1-1.4.*P2)
E(1,4)=E4*(P1-7.*P2-2.*P3)
E(2,2)=E5*(P1-2.*P2+1.)
E(2,3)=E6*(P1-3.*P2-2.*P3+2.*PR+2.)
E(2,4)=E7*(P1-4.*P2+3.-6.*P3+6.*PR)
E(3,3)=E5*(P1-2.*P2+6.-6.*P3+6.*PR)
E(3,4)=E6*(P1-P2+16.-12.*P3+18.*PR)
E(4,4)=E7*(P1-2.*P2+45.-20.*P3+36.*PR)
E(1,5)=E2*(2.0*P2-P3)
E(1,6)=E3*2.0*P2
E(1,7)=E2*(P2*AN-AM*PR+AM)
E(1,8)=E3*2*P2*AM
E(2,5)=E3*(P2-1.0)
E(2,6)=E4*(P2+P3-PR-1.0)
E(2,7)=E3*(P2-AN*AM)
E(2,8)=E4*(P2-AN-AM)
E(3,5)=E5*(P3-2.0*PR-2.0)
E(3,6)=E5*(2.0*P3-4.0*PR-4.0)
E(3,7)=E4*(P2-AN-AM-PR-3.0*AN)
E(3,8)=E5*(P2-AN-2.0*AM-P2-2.0*AM)
E(4,5)=E5*(2.0*P3-P2-6.0*PR-3.0)
E(4,6)=E6*(3.0*P3-P2-9.0*PR-9.0)
E(4,7)=E5*(P2*AN-5.0*AM-4.0*AN*PR)
E(4,8)=E6*(P2*AN-6.0*AM-PR-3.0*AM)
E(5,5)=E3*(1.0-0.5*P3+0.5*P2)
E(5,6)=E4*(1.0+PR-0.5*P3+0.5*P2)
E(5,7)=E3*(1.5*AM-0.5*AN*PR)
E(5,8)=E4*AN
E(6,6)=E5*(2.0+2.0*PR-0.5*P3+0.5*P2)
E(6,7)=E6*(1.5*AN-0.5*AN*PR)
E(6,8)=E5*(AN*AX*PR)
E(7,7)=E3*(P2+0.5-0.5*PR)
E(7,8)=E4*P2
E(8,8)=E5*P2
X1=ALFA*C5
X2=BETA*C5
E1=X1*0.5*AX+X2*51*A5
E2=X1*5+X2*0.5+X3*A6
\[E_3 = X_1 \times 0.25 \times A_6 + X_2 \times 0.2 \times A_7 \]

\[E_4 (5,5) = E_4 (5,6) \times E_2 \]

\[E_4 (6,6) = E_4 (6,6) \times E_3 \]

\[E_4 (7,7) = E_4 (7,7) \times E_1 \]

\[E_4 (7,8) = E_4 (7,8) \times E_2 \]

\[E_4 (6,6) = E_4 (6,6) \times E_3 \]

CALCULATE ADDITIONAL STIFFNESS FOR INITIAL STRESS

\[CA = (R_3 + SRR (K_1) - R_1 + SRR (K_2)) / DD \]

\[DA = (S_2 - SRR (K_2)) / DD \]

\[EE = (R_2 + STT (K_1) - R_1 + STT (K_2)) / DD \]

\[FF = (STT (K_2) - STT (K_1)) / DD \]

\[X_1 = CA \times A_6 \times A_7 \times A_8 \]

\[X_2 = CA \times A_9 \times A_{10} \]

CALCULATE THE 'SMALL II' MATRIX

\[X_1 = CM / 12.0 \times A_6 \times A_7 \times A_8 \]

\[X_2 = CM / 12.0 \times A_6 \times A_7 \times A_9 \]

\[X_3 = CM / 12.0 \times A_7 \times A_9 \times A_{10} \]

\[ALFA = ALFA + CM \]

\[BETA = BETA + CM \]

\[EM(1,1) = ALFA \times S_1 + BETA \times S_1 \]

\[EM(1,2) = ALFA \times S_1 + BETA \times S_2 \]
CALCULATE THE STIFFNESS AND MASS MATRICES

CALL TRIMUL(B,EK,C,D,8,8,8,8,8)
CALL TRIMUL(D,EM,C,D,8,8,8,8,8)

PUT THE ELEMENT MATRICES INTO SUBSYSTEM MATRICES

\[KK = 4 \times (K - 1) \]

CALL ASMBLE(SK,Ek,KK,1,8,8,L)
CALL ASMBLE(SM,EM,KK,1,8,8,L)

GO BACK AND REPEAT CALCULATIONS FOR OTHER ELEMENTS

IF(K-N)30,50,50

50 CONTINUE
RETURN
END
SUBROUTINE THKSYS(SK, SM, SKB, SMB, CC, RDG, RRO, NTD, NTB, L, LL)

* THIS SUBROUTINE ASSEMBLES THE STIFFNESS AND MASS MATRICES OF THE TWO SUB SYSTEMS INTO THE SYSTEM MATRICES. *

* SH(L, L) ARE THEN SELF USED AS SYSTEM MATRICES. *

* BEFORE ENTERING THE SUBROUTINE INITIALISE ALL THE TERMS OF THE SUBSYSTEM MATRICES SK, SM, SKB, AND SMB. *

DIMENSION SK(L, L), SM(L, L), SKB(L, L), SMB(L, L)

DIMENSION DKJ, DM, T, C(14, 14), D(14, 14)

COMMON/OPT/ ON, ITBD, ITED, ITSH, ISTB

COMMON/ONE/ AM1, AM2, AM4, AMPR

RR = RD0

IF(IRNG .NE. 0) RR = RRO

DO 10 J = 1, 14

DO 10 I = 1, 14

DK(I, J) = SKB(I, J)

DM(I, J) = SMB(I, J)

T(I, J) = 0.0

10

C

APPLY THE CONSTRAINT CONDITIONS TO THE BLADE SUBSYSTEM MATRICES.

C

** CONSTRAINT CONDITIONS **

T(3, 5) = 1.0
T(4, 1) = 1.0
T(5, 2) = 1.0
T(6, 3) = 1.0
T(7, 1) = -AM/R
T(7, 4) = 1.0
T(6, 6) = 1.0
T(9, 7) = 1.0
T(10, 8) = 1.0
T(11, 9) = 1.0
T(12, 10) = 1.0
T(13, 11) = 1.0
T(14, 12) = 1.0

CALL TRIMUL(T, DKJ, C, D, 14, 12, 14, 14)

CALL TRIMUL(T, DM, C, D, 14, 12, 14, 14)

DO 15 I = 1, 14

DO 15 J = 1, 14

C(I, J) = SKB(I, J)

15

D(I, J) = SMB(I, J)

DO 20 I = 1, 12

11 = I + 2

DO 20 J = 1, 12
JJ = J + 2
SKB(II, JJ) = DX(I, J)
20 SMB(II, JJ) = DM(I, J)

C

C

C

C

C

C

DO 30 I = 3, NTB
II = I + NTD - 6
DO 30 J = 3, NTB
JJ = J + NTD - 6
SK(II, JJ) = SK(II, JJ) + CC * SKB(I, J)
30 SMB(II, JJ) = SMB(II, JJ) + CC * SMB(I, J)
DO 35 I = 1, 14
DO 35 J = 1, 14
SKB(I, J) = C(I, J)
35 SMB(I, J) = D(I, J)
RETURN
END
D.4.4 Subroutines Used Both in PROGRAM-2 and PROGRAM-3

SUBROUTINE INISTR(SK,R,T,TE,W,P,SGR,SGT,NSD,NS)

* THIS SUBROUTINE CALCULATES RADIAL AND TANGENTIAL STRESSES SGR(L) AND SGT(L) AT THE NODAL POINTS OF *
* AN AXISYMMETRIC UNIFORM DISC WITH OR WITHOUT A RIM DUE TO UNIFORM ROTATION AND AXISYMMETRIC TEMPERATURE GRADIENT TE(L) *
* WHILE ENTERING THE SUBROUTINE INITIALISE ALL THE TERMS OF THE RADIUS VECTOR(R(L)), THE THICKNESS T(L), AND THE TEMPERATURE VECTOR(TE(L)) *

DIMENSION SK(NS,MS),W(NS),P(NS),R(MS),T(MS),TE(NS)
DIMENSION SGR(IS),SGT(NS)
COMMON/OPTION/IRNG,ITHD,ITED,ITH3,ISTB
COMMON/TW/S1,S2,S3,S4,CKD,CHR,CHD,CHR,CCC,CK,CP,CT
COMMON/FOUR/P1,ED,ER,EB,RD,RSR,ROB,ALD,ALR,PRED,PRB
COMMON/FIVE/SRI,SRG

IF(IRNG.EQ.1) NS=NSD+1
NN=2*NS
D0 20 I=1,NN
P(I)=0.0
D0 20 J=1,NN
20 SK(I,J)=0.0
PRINT 3
K=0
N=NS-1
P=PRD
10 CONTINUE

* SELECT THE NUMBER K OF THE ELEMENT *
K=K+1
IF(K.EQ.NSD) PR=PRR
K1=2*K
K2=2*K

* GET THE VALUES OF RADIUS AND THICKNESS AT NODES *
R1=R(K1)
R2=R(K2)
T1=T(K1)
T2=T(K2)
KK=2*(K-1)
DO 40 I = 1, 4
DO 40 J = 1, 4
B(1, J) = 0.0
40 EK(1, J) = 0.0
DD = R2 - R1
D1 = DD * DD
D2 = D1 * DD
ALFA = (R2 - T1) / (R2 - R1)
X1 = ALFA * CK
X2 = BETA * CK
IF (K.EQ.0) X1 = X1 * ER/ED * (1.0 - PRD*PRD) / (1.0 - PRR*PRR)
IF (K.EQ.3) X2 = X2 * ER/ED * (1.0 - PRD*PRD) / (1.0 - PRR*PRR)
B(1, 1) = R2 - R1
B(1, 2) = R1 * R2 / D1
B(1, 3) = R1 * R2 - R1 / D2
B(1, 4) = R1 * R2 / D1
B(2, 1) = 6.0 * R1 * R2 / D2
B(2, 2) = B(2, 1)
B(2, 3) = R2 * (2.0 * R2 + R2 - 6.0 * R1) / D1
B(2, 4) = R1 * (2.0 * R2 + R2 + 1.0) / D1
B(3, 1) = 3.0 * (R1 + R2) / D2
B(3, 2) = (R1 + R2) / D1
B(3, 3) = 3.0 * (R1 + R2) / D1
B(3, 4) = (R1 + R2) / D1
B(4, 1) = -2.0 / D2
B(4, 2) = 1.0 / D1
B(4, 4) = B(4, 2)
A1 = R1 * R2
A2 = A1 * A1
A3 = R2 - R1
A4 = R2 * R2 - R1 * R2
A5 = R2 + R2 - R1 * R2
A6 = R2 * R2 - R1 * R2
A7 = R2 * R2 - R1 * R2
A8 = R2 * R2 - R1 * R2
A9 = R2 * R2 - R1 * R2
C5 = ALGC(R2/R1)
E1 = X1 * C5 + X2 * A3
E2 = X1 * A3 + X2 * 0.5 * A4
E3 = X1 * 0.5 * A4 + X2 * 0.5 * A5
E4 = X1 * 0.5 * A5 + X2 * 0.25 * A6
E5 = X1 * 0.25 * A6 + X2 * 0.2 * A7
E6 = X1 * 0.2 * A7 + X2 * 0.25 * A8
E7 = X1 * 0.2 * A8 + X2 * 0.5 * A9
C **
C * CALCULATE THE SMALL SMALL K MATRIX
C **
EK(1, 1) = E1
EK(1, 2) = E2 * (1.0 + PR)
EK(1, 3) = E3 * (1.0 + 2.0 * PR)
EK(1, 4) = E4 * (1.0 + 3.0 * PR)
EK(2, 1) = E3 * (2.0 + 2.0 * PR)
EK(2, 3) = E4 * (3.0 + 3.0 * PR)
EK(2, 4) = ES * (4.0 + 4.0 * PR)
EK(3, 3) = ES * (5.0 + 4.0 * PR)
EK(3, 4) = ES * (7.0 + 5.0 * PR)
EK(3, 4) = E7 * (10.0 + 6.0 * PR)
EK(2, 1) = EK(1, 2)
EK(3, 1) = EK(1, 3)
EK(4, 1) = EK(1, 4)
EK(3, 2) = EK(2, 3)
EK(4, 2) = EK(2, 4)
EK(4, 3) = EK(3, 4)
Y1 = ALFA * CP
Y2 = BETA * CP
IF (K.EQ.NS) Y1 = Y1 * BOR / RSD
IF (K.EQ.NSD) Y2 = Y2 * BON / RSD

C **
C | CALCULATE CONSISTENT LOAD VECTOR FOR ROTATION |
C **
C
EP(1) = Y1 * A1 * A5 + Y2 * 0.25 * A6
EP(2) = Y1 * 0.25 * A6 + Y2 * 0.2 * A7
EP(3) = Y1 * 0.25 * A7 + Y2 * 0.25 * A8
EP(4) = Y1 * 0.25 * A8 + Y2 * 0.3 * A9
IF (K.EO.NS) GO TO 40

C **
C | GET THE VALUES OF TEMPERATURE AT NODES |
C **
C
TE1 = TE(K1)
TE2 = TE(K2)
PRINT 2, K, R1, R2, T1, T2, TE1, TE2
ALFT = (R2 - TE1 - R1 * TE2) / DD
BETT = (TE2 - TE1) / DD
Z1 = ALFA * ALFT * CT
Z2 = BETA * BETT * CT
Z3 = ALFA * BETT * CT + BETA * ALFT * CT
IF (K.EQ.NSD) Z1 = Z1 * ER / ED * ALP / ALD
IF (K.EQ.NSD) Z2 = Z2 * ER / ED * ALP / ALD
IF (K.EQ.NSD) Z3 = Z3 * ER / ED * ALP / ALD

C **
C | CALCULATE CONSISTENT LOAD VECTOR FOR TEMPERATURE |
C **
C
EP(1) = EP(1) * Z1 * A3 + Z2 * 0.5 * A4 + Z3 * A5 + S1 * A5 + S2 * 0.5 * A6
EP(2) = EP(2) * Z1 * A4 + Z2 * 0.2 * A5 + Z3 * 0.5 * A6
EP(3) = EP(3) * Z1 * A5 + Z2 * 0.75 * A6 + Z3 * 0.6 * A7
EP(4) = EP(4) * Z1 * A6 + Z2 * 0.7 * A7 + Z3 * 2.0 * S1 * A9

C **
C | CALCULATE LOAD VECTOR AND STIFFNESS MATRIX |
C **
C
CALL MATMUL(C, EP, E5, 4, 4, 4, 1, 4)
CALL TRIMUL(B, E5, C, D, 4, 4, 4, 4)
*** PUT THE ELEMENT MATRICES INTO SUBSYSTEM MATRICES ***

CALL ASSEMBLE(SK,EX,XX,XX,1,4,NS)
CALL SYSLOAD(P,EX,XX,4,NS)

*** GO BACK AND REPEAT CALCULATIONS FOR OTHER ELEMENTS ***

IF(K-NS)>0,50,50
CONTINUE
P(N)=P(N)+S1
P(N1)=P(N1)+S1
CALL INUT(SK,NN,NS)
CALL KATMUL(SK,P,NN,NN,NN,NN,1,NS)

*** CALCULATE STRESSES AT NODES OF EACH ELEMENT ***

PRINT 1
D0 60 K=1,N
E=ED
PR=PRD
ALFA=ALF
IF(K.EQ.NSD) E=ER
IF(K.EQ.NSD) PR=PRR
IF(K.EQ.NSD) ALFA=ALR
CS=E/(1.0-PR*PR)
K1=K+1
K2=K+1
K3=K+1
K4=K+1
SGR(K1)=CS*(V(K2)+PR*V(K1)/R(K1))
SGR(K2)=CS*(V(K4)+PR*V(K3)/R(K2))
SGT(K1)=CS*(V(K1)+PR*V(K1)/R(K1))
SGT(K2)=CS*(V(K2)+PR*V(K2)/R(K2))
IF(1TED.EQ.0) G070 60
SGR(K1)=SGR(K1)+CS*ALFA*TE(K1)*(1.0+PR)
SGR(K2)=SGR(K2)+CS*ALFA*TE(K2)*(1.0+PR)
SGT(K1)=SGT(K1)+CS*ALFA*TE(K1)*(1.0+PR)
SGT(K2)=SGT(K2)+CS*ALFA*TE(K2)*(1.0+PR)
60 PRINT 2,K,SGR(K1),SGR(K2),SGT(K1),SGT(K2)
RETURN
IF K(1)///STRESSES IN THE DISC //ELEMEN
. RADIAL STRESS TANGENTIAL STRESS"
2 FORMAT(2X,5E13.5)
3 FORMAT(2H1,5X,'DISC DIMENSIONS//')
5 FORMAT(4E13.6)
10 FORMAT(2X,5E13.6)
END
SUBROUTINE EIGVAL(SK,SM,D,F,FR,C,X,ER,B7,B8,B9, IJK,N1,L)

* THIS SUBROUTINE SOLVES THE EIGEN VALUE PROBLEM *
* RELATE3 TO THE VIBRATION PROBLEM CONSIDERED. *
* SK(L,L) AND SM(L,L) ARE THE STIFFNESS AND MASS *
* MATRICES OF THE VIBRATING SYSTEM AND THESE SHOULD *
* BE DEFINED BEFORE ENTERING THE SUBROUTINE. ALL THE *
* OTHER ARRAYS AND VECTORS NEED NOT BE DEFINED. *
* IJK = THE POSIT1ON OF THE ELE1MENT OF THE MODAL *
* VECTOR WHICH IS KEPT AS UNITY WHILE ITERATING. *
* N1 = SIZE OF THE ARRAYS SK AND SM *
* L = DIMENSION GIVEN TO SK AND SM *

DIMENSION SK(L,L),SM(L,L),D(L,L),F(L,L),B(L,L),C(L,L),X(L,L),ER(L)
COMMON/B7,B8,B9,FR(/0,10) ALLOCA(0.000000000)

MA=N1+1
IF(N1.LT.KK) KK=N1

FORM THE DYNAMIC STIFFNESS MATRICE D(L,L) *

CALL INVT(SK,N1,L)
CALL MATMUL(SK,SM,D,N1,L,NI,N1,N1,L)

* SPECIFY MAXIMUM NUMBER OF ITERATIONS BEYOND WHICH *
* ITERATION SHOULD BE STOPPED *

MI=95
DO 30 I=1,NI
X(1)=1.0
30 C(1)=1.0
MM=0

DO 150 N1=1,NI
X(1)=1.0
MM=0

IF(N1.LT.KK) KK=N1
NI=NI+1
LN=7
LL=LN

DO 31 K=1,NI
B(1)=0.0
31 B(1)=B(1)+D(1,K)*C(K)

EVERY SEVENTH ITERATION GOES TO THE QUICK ROUTINE *
AND REFINE THE ASSUMED VECTOR *

IF(N1.LT.51,52,53)
53 IF(N1.LT.51,54,55)
55 IF(N1.NE.51,55,56)
DO 44 I=1,NI
 B7(I)=B(I)
44 C(I)=B(I)
GO TO 50
5 D0 45 I=1,NI
 B6(I)=B(I)
45 C(I)=B(I)
GO TO 50
6 D0 46 I=1,NI
 B9(I)=B(I)
46 CONTINUE
50 CALL MAX(B,BMAX,M1,NI,L)
 B(M1)=0.0
51 CALL MAX(C,BMAX,M2,NI,L)
52 CALL QUICK(S7,B8,B9,C,X,NI,M1,M2,L)
 LL=LL+LN
GO TO 50
55 BMAX=ABS(B(IJK))
90 D0 32 I=1,NI
 B(I)=B(I)/BMAX
32 CALL MAX(ER,ERMAX,M3,NI,L)
C ********** CHECK CONVERGENCE **********
C ********** ERMAX=2.0*ERMAX/(ABS(B(M3))+ABS(C(M3)))
IF (ERMAX.LT.ALLER) GO TO 42
43 D0 49 I=1,NI
49 C(I)=B(I)
IF(NI-P;I
GO TO 42
42 CONTINUE
C ********** PRINT OUT FREQUENCY VALUE AND THE MODALVECTOR **********
C ********** PRINT 50,MM,NI
PRINT50,MM,NI
FRM0=CMST7/S2AT(BMAX)
FRMAX/MM9=FRM0
PRINT81,FRM2
PRINT54,3(I),I=1,NI
DO 65 I=1,NI
 C(I)=0.0
DO 65 K=1,NI
65 C I=1,NI
ALFA=0.0
66 ALFA=ALFA+C(I)*SM(K,1)
DO 66 I=1,NI
67 B7(I)=B(I)/BETA
IF(MM-KK>59, 100, 100)
59 DO 68 I=1,N1
 DO 68 J=1,N1
 F(I,J)=0.0
68 F(I,J)=F(I,J)+3(I)+C(J)
C
C
* FORM THE NEW DYNAMIC STIFFNESS MATRIX
C
* *
DO 69 I=1,N1
 DO 69 J=1,N1
 D(I,J)=D(I,J)-G*F(I,J)
95 C(I)=X(I)
 GO TO 150
100 RETURN
80 FORMAT(5X,'MODE NUMBER = ',12X,'ITERATIONS = ',13/)
81 FORMAT(5X,'FREQUENCY IN HZ. = ',E14.8/)
83 FORMAT(20X,'MODAL VECTOR'/)
84 FORMAT(/5X,5E13.6)
END
SUBROUTINE INVT(A,N,L)
*** THIS SUBROUTINE INVERTS THE MATRIX A(N,N) AND STORES THE INVERSE IN THE SAME MATRIX ***
DIMENSION A(L,L),INDEX(100,2)
IS=1
DO 108 I=1,N
108 INDEX(I,1)=0
II=0
109 AMAX=-1.
DO 111 I=1,N
111 IF(INDEX(I,1)>110,I110,110)
DO 113 J=1,N
112 IF(INDEX(J,1)>112,J112,112)
113 TEMP=ABS(A(I,J))
114 IR0V=I
115 ICSR=J
116 AMAX=TEMP
117 CONTINUE
118 INDEX(II,2)=ICOL
119 DO 120 J=1,N
120 I=I+1
121 A(ICGL,J)=A(ICOL,J)*PIV0T
122 IF(I-ICOL>123,122,123)
123 TEMP=A(I,ICOL)
124 DO 125 J=1,N
125 I=I+1
126 A(I,ICCL)=TEMP
127 CONTINUE
GO TO 109
128 IF(I1)125,127,125
130 PRINT 150
130 FORMAT(1HO,1OHZERO PIVOT,/)
SUBROUTINE MAX(A,Z,M,N,L)
C
C ***************ABSOLUTE MAXIMUM***************************
C
C THIS SUBROUTINE FINDS THE ABsolUte MAXIMUM
C
C * AND POSITION M OF THE ELEMENTS OF THE VECTOR
C * A(N)
C
C ***************ABSOLUTE MAXIMUM***************************
D1MEN77ON A(L)
1 Z = ABS(A(I))
M = I
D0 2 I = 2, N
Y = ABS(A(I))
IF(Y < Z), 2, 3
3 Z = Y
M = I
2 CONTINUE
4 RETURN
END

SUBROUTINE QUICK(B7,B8,B9,A,B,N,M,L)
C
C ***************REFINE THE MODAL VECTOR FOR QUICK*
C
C * CONVERGENCE
C
C ***************REFINE THE MODAL VECTOR FOR QUICK*
D1MEN77ON B7(L),B8(L),B9(L),A(L),B(L)
D0 = B8(M) + B7(M) - B7(M) + B8(M)
2 A1 = (B9(M1) + B9(M2) - B8(M1) + B8(M2)) / D0
A2 = (B9(M1) + B9(M2) - B7(M1) + B7(M2)) / D0
A3 = 0.5 * SQRT (A2 ** 2 - 4. * A1)
3 C1 = 0.5 * A2 + A3
C2 = 0.5 * A2 - A3
D0 10 I = 1, N
A(I) = 39(I) - C2 * B8(I)
10 RETURN
END

SUBROUTINE MATHUL(A,B,C,NA,MA,NB,MB,L)
C
C ***************AND THE RESULTING MATRIX IS STORED IN THE ARRAY C*
C
C * MA = NUMBER OF ROWS IN MATRICES A AND B
C * NA = NUMBER OF ROWS IN MATRIX A
C * NB = NUMBER OF COLUMNS IN MATRIX B
C * MB = NUMBER OF COLUMNS IN MATRIX B
C
C ***************AND THE RESULTING MATRIX IS STORED IN THE ARRAY C*
D1MEN77ON A(L,L),B(L,L),C(L,L)
D0 5 I = 1, MA
D0 5 J = 1, NB
C(I, J) = 0.0
D0 5 K = 1, NA
5 C(I, J) = C(I, J) + A(I, K) * B(K, J)
6 RETURN
END
SUBROUTINE TRIMUL(A, B, C, D, MA, NA, MB, NB, L)

* THIS SUBROUTINE PREMULTIPLIES THE MATRIX B BY THE *
* TRANSPOSE OF A AND THEN POSTMULTIPLIES THE PRODUCT *
* BY THE MATRIX A AND GIVES THE RESULTING MATRIX *
* STORED IN THE ARRAY B ITSELF *
* MA = NUMBER OF ROWS IN MATRIX A *
* NA = NUMBER OF COLUMNS IN MATRIX A' *
* MB = NUMBER OF ROWS IN MATRIX B *
* NB = NUMBER OF COLUMNS IN MATRIX B *

DIMENSION A(L,L), B(L,L), C(L,L), D(L,L)
DO 10 I=1, MA
D0 10 J=1, NA
 10 C(J,I)=A(I,J)
CALL MATHUL(C, B, D, MA, NA, MB, NB, L)
CALL MATHUL(D, A, B, MA, NA, MB, NA, L)
RETURN
END

SUBROUTINE REDUCE(A, N, L, K, M)

* THIS SUBROUTINE REDUCES THE SIZE OF THE ARRAY A *
* FROM (N X N) TO (N-K X N-K) BY SCORING OUT *
* ROWS AND COLUMNS FROM L TO L+K *

DIMENSION A(L,N)
NM1=N-K
DO 10 I=1, NM1
D0 10 J=1, N
 10 A(I,J)=A(I+K, J)
DO 20 I=1, N
 DO 20 J=1, NM1
 JJ=J+K
 20 A(I,J)=A(I, JJ)
RETURN
END
SUBROUTINE ASMBLE(A,B,N,KS,K,LL,L)
C
C ***
C * THIS SUBROUTINE ASSEMBLES THE ELEMENT MATRIX *
C * B(LL,LL) INTO THE SYSTEM MATRIX A(LL,LL) *
C ***
D1MENSION A(LL,LL),B(LL,LL)
DO 10 I=KS,K
MM=H+I-KS+1
DO 10 J=KS,K
NN=N+J-KS+1
10 A(MM,NN)=A(MM,NN)+B(I,J)
RETURN
END

SUBROUTINE SYSL0D(A,B,N,NN,LL,L)
C
C ***
C * THIS SUBROUTINE ASSEMBLES THE ELEMENT LOAD VECTOR *
C * B(LL) INTO THE SYSTEM LOAD VECTOR A(LL) *
C ***
D1MENSION A(LL),B(LL)
DO 10 I=1,NN
MM=M+1
10 A(MM)=A(MM)+B(I)
RETURN
END