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ABSTRACT

The finite element method is applied to the vibration

analysis of axial flow turbine rotors.

Using the axi-symmetric properties of the configuration

of such rotors, several new finite elements are developed to

describe the bending and stretching of thin or moderately thick

circular plates, and which are characterised by only four or

eight degrees of freedom. These elements incorporate the 'desired

number .of diametral nodes in their dynamic deflection functions,

and allow for any specified thickness variation in the radial

direction. In addition, the effects of in-plane stresses, which

might arise from rotation or radial temperature gradient, and the

effects of transverse shear and rotary inertia in moderately

thick plates, are readily accounted for. The accuracy and conver-

gence of these elements is demonstrated by numerical comparison

with both exact and experimental data for discs.

Making the assumption that blade dynamic loadings on the

rim of a vibrating blade-disc system are continuously distributed,

a method of coupling blade and disc vibration is formulated. For

non-rotating configurations of simple geometry an exact solution

for the coupled blade-disc frequencies and mode shapes is developed.
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For configurations more representative of practical turbine

rotors a finite element model is detailed; this model takes into

account arbitrary disc profile and in-plane stresses, taper and

twist in the blades, and allows for transverse shear and rotary

inertia in both disc and blades where this is thought necessary.

Numerical calculations are presented which demonstrate the

convergence and accuracy of this finite element model on predict-

ing the natural frequencies of both simple and complex bladed

rotors.

Considerable effort has been made to make the computer

programs developed for the numerical calculations in this work

of practical usefulness to the designer, Thus these are given in

some detail, and feature several options which allow flexibility

to calculate disc stresses, disc alone vibration, blade alone

vibration, and coupled blade-disc vibration frequencies; in the

vibration analysis options are available to include effects of

in-plane stresses due to rotation or thermal gradient, transverse

shear, and rotary inertia.
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CHAPTER1

INTRODUCTION

1.1 PRELIMINARY

The stress and vibration analysis of almost every

part of a gas turbine is of major concern to the designer.

The bladed disc, which transmits torque from the blades to the

shaft of the engine, constitutes an important part of the turbine.

The problem of optimizing the disc configuration becomes more

significant with the ever increasing demand for higher power

and lighter weight of the gas turbine. The continuing emphasis

on longer life together with reliable and safe operation in

severe environments requires greater accuracy and speed in the

mechanical analysis of the various parts of the turbine, espe-

cially the bladed disc.

The objective of present day structural design is to

arrive at the most efficient structure, subjected to certain

constraint conditions, for the specified load and temperature

environment. In the design of the bladed disc certain geomet-

rical restrictions may be imposed on the profile of the disc by

its functional aspects as well as the geometry of other parts
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of the turbine. In addition, certain behavioural constraints,

such as keeping the lowest natural frequency of the disc above

some specified limit, may also be imposed. Hence, the design

of the bladed rotor will normally require the accurate analysis

of several trial profiles until the satisfactory one is reached.

It is therefore essential that the designer has available simple,

reliable and accurate methods of analysis.

In a turbine disc, in addition to the stresses result-

ing from bending, torsion and temperature gradient, very high

stresses develop due to the centrifugal forces at high speeds.

These stresses constitute the major portion of the total stresses

and are not reduced by the thickening of the disc. Consequently

the material unavoidably works at its limit, and hence the accuracy

required on the predictions of these stresses is very high.

Structural vibrations of the rotor, which might be torsional, or

radial,but which are most predominantly axial, may also produce

high stresses and lead to fatigue failures which are not under-

stood on the basis of high steady stresses alone. Inorder to

avoid strong resonant vibrations within the operating range of

the machine, it is essential that the designer should be able to

predict accurately the natural frequencies of the rotating bladed

rotor, .



The complexity of the system makes it impossible to

consider the entire system with all its generalities, for the

analysis. In general the component parts of the rotor are

analysed separately, and evenso making several simplifying

assumptions to facilitate the analysis. Invariably both the

disc and the loading are considered to be axisymmetric while

analysing the stresses. When the vibration of the bladed-

rotor is examined, the problem is simplified, in most cases, by

assuming either rigid blades attached to a flexible vibrating

disc, or, more commonly, flexible vibrating blades attached to a

rigid disc.

The stress analysis of typical rotating discs for

axial flow rotors is quite well understood, and reliable methods

for calculation of steady stresses from rotation and thermal

loading are available. Determination of steady stresses

in the blade is also generally satisfactory, although there

remain problems with highly twisted low aspect ratio configurations.

On the other hand, the determination of the vibratory

behaviour of bladed rotors is less well defined. The effects of

transverse shear and rotary inertia are generally neglected,

leading to substantial discrepancies with experimental data in

many rotors. More important, both experimental and theoretical

studies indicate that coupling between-the blades and the disc



cannot be neglected. It is now increasingly recognized  that the

significant vibration of many axial flow turbines involves combined
.

participation by both blades and disc. This coupling between

blades and disc can substantially modify the natural frequencies

of the system (l), is thought to strongly influence the distri-

bution of vibratory stresses in the blades (2-5), and can lead

in some instances to aeroelastic instability (6).

A recent example of fatigue failure of turbine rotor

blades resulting from coupling between blade and disc vibration

is described by Morgan et al.(7). Fatigue cracks were found

either in the top serration of the fir tree roots or in the blade

form starting at the trailing edge near the root. The resonance

of the first flapwise mode (1F) with sixth orderexcitationwas

thought to be the most probable cause. Modifications were made

both to the blade fixings and to stiffen the disc which proved

successful.

Figure 1.1, taken from the above mentioned reference,

illustrates the influence of disc flexibility on the frequencies

of the coupled blade-disc system, especially the first "flapwise"

(XF) and the first "edgewise" (1E) modes, Here these two sets of

frequencies, obtained experimentally, are plotted against engine

speed and engine excitationorder, for two different rotors, one



with a thick disc (solid line), and the other with a thin disc

(broken line). These rotors had the same blades. As seen from

the figure, when the disc is thick, disc flexibility has very

little effect on the system frequencies. The reduction in fre-

quencies with speed of rotation is probably due to reduction of

elastic modulus with temperature and some disc effect. In the

operating range of 6000 to 8000 rpm, we have only a few resonances

for this rotor. The 1F modes of the blade areexcited only with

engine orders 6 and 7, and the 1E modes with engine orders 10, 11,

and 12. But when the disc is thin, within the operating range

we have a large number of resonances. In this case we have the

1F modes with engine orders 2 to 7, and the 1E modes with engine

orders 9 to 12. Thus the authors state that, "identification of

the failure mode was difficult," because of the many resonances

present. It should also be noted that, when the disc is thin,

the 1E modeexcitedby engine order 8 lies just above the operating

range. Since eight combustors were present in the engine, engine

order 8 was particularly significant.

In summary, while the designer has available reliable

methods for determining steady stresses in axial flow turbines,

methods of determining the vibratory behaviour are much less

adequate. Any realistic vibratory analysis of practical rotors

should consider the effects of centrifugal and thermal stresses,

the effects of transverse shear and rotary inertia and the effects



of dynamic coupling between the vibrating blades and the vibrating

disc. It is on these aspects of the vibratory behaviour of

turbine discs, that the work described below is focussed.

1.2 REVIEW OF LITERATURE

Much work has been published describing typical stress

and vibration problems encountered with axial flow turbine and

compressor rotors. The publications of Shannon (81, Blackwell (91,

Armstrong and Stevenson (lo), Armstrong and Williams (ll),'Waldren

et al (12), Goatham et al (13), and Petricone and Sisto (141, and

NASA Technical Report TR R-54 (15> give excellent background and

references to the problems encountered with aircraft power plant,

1,2.1 Stress Analysis of Turbine Discs

Much of the published work on the stress analysis of

turbine discs deals with plane stress solutions, and three dimensi-

onal treatments are sparse. The reason for this is that when

the thickness of the disc is small compared to the radius, the

variation of the tangential and radial stresses over the thickness

can be neglected and, taking mean values, satisfactory two dimen-

sional approximations can be made.

P. .,.. ..,.
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Exact solutions with this plane stress approximation

are available for several non-uniform profiles. Comprehensive

reviews of early exact solutions of the problem are given in the

classic works of Stodola (16) and Biezeno and Grammel (17).

Several disc profiles suchas exponential, hyperbolic, and conical

radial thickness variation have been considered.

More recently Manna (18) has also treated several

unconventional profiles where the thickness can be represented as

h = ho 1 1 - (r/b.) 2/q JP (1.1)

where h is the thickness at the axis of rotation and b is the
0

outer radius of the disc, q is a positive integer and p is

greater than 2. Such an expression leads to a remarkably wide

range of profiles, and is amenable to exact solution in terms of

hypergeometric series.

Of the numerical methods which have been developed,

Donath (19) first devised an approximate method where the actual

disc is replaced by a model consisting of a series of rings of

uniform thickness; and further improvement of this method was

made by Grammcl (17).

. Hanson (20,21) and others (22) have also replaced the

dtsc by a series of uniform thickness rings, and solved the

governing differential equations by finite difference methods.
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This approach has formed the basis of the most widely used tech-

niques for stress analysis of practical axial flow turbine discs.

Further developments by Manson (23) extended the method to

include elasto-plastic behaviour of the disc material, and, .

ofcourse, these methods readily allow for both centrifugal inertia

forces and radial thermal gradients.

Several other techniques have also been employed for

numerical solution of the plane stress problem. Mote (24) has

used stress functions with undetermined constants which are

adjusted to satisfy the thermal and inplane boundary conditions.

Bogdanoff et al (25) have calculated the stresses in a disc by

numerical integration of the plane stress equations of classical

elasticity theory, Soo (26) has used a matrix technique for this

problem.

In recent years, requirements for increased analysis

accuracy and the use of relatively thick disc profiles has focussed

attention on the three dimensional stress distribution present.

The axial stress, neglected in thin disc analysis,

substantial effect on disc burst speed. Haigh and

have consl.dered axially symmetrical turbine wheels

can have a

Murdoch (27)

of appreciable

thickness for which the thin disc theory gives only approximate

results. Their analysts is based on three dimensional equlibrium
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equations. The solutions are obtained with a

by relaxing the two governing equations using

digital computer

stress functions.

Radial flow rotors, while not of immediate concern in

this work, are increasingly used and present most difficult probl.ems

in analysing the three dimensional stress distribution present.

Such rotors are generally of asymmetric profile. Kobayashi and

Trumpler (28) have developed a solution for the three dimensional

stress analysis of such asymmetric discs. First the plane strain

problem of a long rotating cylinder is considered. Then the

surface tractions acting on a disc cut off from this cylinder are

eliminated by a relaxation procedure employing Southwell stress

functions. The solutions are obtained numerically using a

digital computer. Only centrifugal forces are considered, and

extension of this method for the calculation of thermal stress in

the disc is outlined; Swansson (29) has used the two dimensional

approach of Schilhansl (30) for the above problem and his results

agree well with those of Kohayashi and Trumpler (28) for certain

cases. Thurgood (31) has suggested further improvements of this

method and has studied the effect of including axial deflection

in the analysis; which he found, to have significant effect on the

stress distribution in the disc.

For this asymmetric problem the finite element method

is of considerable interest, and some work has been published on
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this problem, Stordahl and Christensen (32) have treated the

problem as axisymmetric and analysed the impeller using a finite

element method, Chan and Hendrywood (33) have developed and

used ring shaped elements of triangular cross-section in the

analysis of radial flow impellers.

Besides the various numerical methods used, photo-

elastic analysis has also been used in the stress analysis of

rotating discs (34-37).

1.2.2 Vibration Analysis of Turbine Discs

The vibration of turbine discs and of circular or

annular plates is characterised by modes having integer numbers

of nodal diameters and circumferential nodal circles. Much of the

early work on plates and discs is summarised in the texts by

Prescott (38) and Stodola (16).

The vibration of rotating discs has been quite well

understood since the classic work of Campbell (39) and Stodola (16).

This vibration is also found to comprise wave patterns involving

integer numbers of nodal diameters and nodal circles, these patterns

rotating forwards or backwards in the disc. The angular velocities

of these waves in the discs are;
.

forward wave fm/ m revs./second

backward wave - fm/ m revs,/second
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where fm is the frequency in cycles/second of the mode

with m nodal diameters. If now the disc rotates with angular

velocity 0 revs./second, then relative to a stationary obser-

ver we have;

forward wave Sl

backward wave

The work

dangerous condition

c fm/ m revs./second

R - fm/ m revs./second

of Campbell and Stodola established that the

of operation was such that the backward wave

Is stationary in space,

i-.

Thus

mth

s2 T fm/ m = 0 or f =mfl
m

a mode with m nodal diameters is stronglyexcitedby the

order of rotational speed.

The mechanism by which only the backward wave is

significant is complicated, and perhaps not yet completely

understood, Tobias and Arnold (40,41) are generally credited

with the most rational explanation to date, and they concluded

that unavoidable dynamic imperfections of the disc can account

for the phenomenon, The major task of the designer is to avoid

the dangerous resonant condition where the backward wave is

stationary in space, This involves the accurate prediction of

the natural frequencies of the disc; these frequencies, while

mainly dependent on thin disc elastic and rnertia propertfes
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can be substantially modified by in-plane stresses and transverse

shear and rotary inertia.

and

and

for

and

has

annular plates are given in the excellent monograph by McLeod

Bishop (42). Vogel and Skinner (43) have given numerical data

the calculation of the natural frequencies of uniform circular

annular plates with various boundary conditions. Leissa (44)

collected most of theavailablenumerical data on this problem.

Exact solutions for thin plates of variable thickness

are quite limited. Conway (45) has investigated the transverse

Exact solutions forconstant thickness, thin circular

vibrations of some variable thickness pl.ates  when Poisson's ratio

is given particular values. Harris (46) has developed an exact

solution for the free vibration of circular plates with

thickness variations.

The transverse vibration of a circular plate

thickness rotating about its axis with constant angular

parabolic

of uniform
.

velocity

has been studied by Lamb and Southwell (47,48). They have sepa-

rated the effect of rotation and have solved the vibration problem

of the membrane disc. When both' plate flexural  stiffness and

membrane forces are operative, the following relationship is used

to get the natural frequencies of the disc



.2 = al’ + w;

where I.,J is the lower bound of the combined

rotating disc, w is the frequency of the
1

the plate flexural stiffness is neglected,

13

(1.2)

frequency of the

membrane disc where

and w2 is the frequency

of the stationary disc in which membrane stresses are absent.

Ghosh (49) has extended this approach to plates of variable

thickness. Eversman (50) has outlined a solution to this problem

,when bothmembrane  stresses and disc bending stiffness are consi-

dered together.

For the vibration analysis of discs having general

thickness profile several numerical methods have been used. Refe-

rences to Prescott(38), Stodola (16), and Biezeno and Grammel (17)

gives a good summary of early numerical methods based on the

assumption of very simple deflection shapes for the disc, Perhaps

the most successful and widely adopted numerical method is due to

J&rich (Sl), who derived a transfer matrix approach. The arbitrary

disc is replaced by a number of annular strips of constant thick-

ness, Every alternate strip is considered to be massless, but to

have the local elastic properties of the actual disc. The inter-

mediate strips are considered to have the local inertial properties

but no elasticity. The effect of in-plane stresses resulting from

rotation is also accounted for. The natural frequencies of the
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disc are found by a trial and iterative procedure using the

residual determinants derived for various boundary conditions.

Among the other numerical methods which have been used,

Mote (24) and Soo(26) have used Rayleigh-Ritz procedure. Bleich (52)

has used the collocation method, for the vibration analysis of

circular discs.

Several workers have recently applied the finite

element method to the problem. Anderson et al (53) have suggested

the use of triangular elements for the vibration analysis of

uniform annular plates. Olson and Lindberg (54) have developed

and used circular and annular sector elements for the analysis of

uniform circular and annular plates, Sawko and Merriman (55) and

Singh and Ramaswamy (56) have developed'sector elements with

sixteen and twenty degrees of freedom respectively and have

applied these elements in the static analysis of plates only.

Chernuka et al (57) have used a high precision triangular element

with one curved side for the static analysis of plates with curved

boundaries. This element is described by eighteen degrees of

freedom, and probably represents the most refined description for

plates with curved boundaries which has been reported so far.

It should.be noted that none of these finite element approaches

makes use of the axisymmetric properties of a complete circular

.I



15

disc, and all result in a mathematical model which is described

by a large number of degrees of freedom.

When thick discs are considered, frequencies calcu-

lated using thin plate theory differ substantially from experi-

mental values. Three dimensional elasticity solutions should be

used in such situations (58,59). For the analysis of moderately

thick discs and for the higher modes of relatively thin discs,

plate theories which take into account effects of transverse shear

and rotary inertia can be used. It is well known that both these

effects serve to decrease the computed frequencies because of

additional flexibility and increased inertia.

Reissner(60) extended the classical thin plate theory

to include transverse shear deformation for the static analysis

of plates. A consistent theory for the dynamic behaviour of

plates, including rotary inertia and transverse shear was then

developed by Uflyand (61), followed by Mindlin (62), who derived

the basrc sixth order system of partial differential equatfons of

motion along with potential and kinetic energy functions for this

problem. He has also given a consistent set of equations relating

moments and transverse shears to transverse deflectton and bending

rotations, Mindlin and Deresiewicz (63) have further developed

and applied this theory,
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Moderately thick circular plates have been analysed by

several investigators. Deresiewicz and Mindlin (64, 65) have

considered the symmetrical vibration of circular plates. Callahan

(66) used the Mindlin theory to derive characteristic determinants

corresponding to eight separate sets of continuous boundary condi-

tions for circular and eliptical plates. Bakshi and Callahan (67)

have derived similar determinants for the vibration analysis of

circular rings (annular

a different approach to

plates). Onoe and Yano (68) have followed

this problem which they claim is appli-

cable to the higher order vibrations of circular plates.

Yery few numerical methods have been suggested for this

problem, Pestel and Leckie (69) have derfved transfer matrices for

annular strips, which are used to model circular and annular discs,

including transverse shear and rotary inertia. This is essentially

an improvement of Ehrich's lumped mass model. Clough and Felippa

(70) have incorporated a simple shear distortion mechanism into

their refined quadrilateral finite element which they have used in

the static analysis of circular plates including transverse shear.

No published work is available, to the knov:ledge of the

author, on the vibration analysis of variable thickness discs

where effects of transverse shear and rotary inertia are also

included in the analysis; also no one has considered the effects

of in-plane stresses together with transverse shear and rotary

inertia even when the disc is uniform.



17

In contrast to the many theoretical results published

on the vibration of turbine discs and circular plates, it is

surprising how little experimental data has been published in

the literature, Campbell (39) in his classic work obtained experi-

mentally frequencies and mode shapes of steam turbine rotors and

has studied the effect of rotation on the frequencies. Peterson

(71) has tested annular and circular discs of both uniform and

stepped sections in connection with the study of gear vibration.

Recently French (72) has described experimentally observed vibra-

tion of gas turbine compressor discs. This paper does not appear

to have been published in any Journal, however. Mote and Nieh

(73) have investigated theoratically  and experimentally the

relationship between the state of disc membrane stress, critical

rotation speed and the frequency spectrum in radially symmetric,

uniform thickness, disc problems. Onoe and Yano (68) have obtained

experimentally several frequencies of relatively small but thick

circular discs, used in mechanical filters, and compared these

with their analysis method.

1.2.3 Vibration Analysis of Axial Flow Turbine Blades

Much work has been published on the vibration analysis

of axfal flow turbine blades and a fairly complete review of the

problems and various analytical methods used is given by Dokainish

and Rawtani (74). Practical turbine blades have an aerofoil
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cross-section and possess, in addition to camber and longitudinal

taper, a pretwist to allow for the variation in tangential velocity

along the span of the blade. Since all these factors complicate

the analysis, in practice, many simplifying assumptions are usually

made in the analysis. In most of the analytical methods suggested

for the analysis, the blades are idealized to behave as beams

having radial variation in section properties and pretwist.

Attachment to the disc in the case of "firtree" or "dovetail"

slots is generally considered rigid (i.e, a cantilever beam) or

by means of springs which represent, in some manner, the finite

flexibility of the fixing. In the case of pin attachments, the

rotational constraint about the axis of the pin is relaxed (13),

In many cases coupling between bending and twisting

of the blade resulting from non-coincidence of the centroid and

shear centre of the aerofoil section is ignored. There are

difficulties in determining the shear centre of an aerofoil

section. Bending-torsion coupling can also result from the

fact that the blade aerofoil at the root is not in a plane

parallel to the axis of rotation; this effect cannot be accoun-

ted for with a beam model,

. Considerable difficulty arises in determining the

torsional stiffness, This comprises three contributions.

(a} The St. Venant torsional stiffness,
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(b) Additional stiffness due to pretwist,

Cc> Additional stiffness due to restrained warping at the

root or at shrouds.

Vhile determination of contribution (b) is complicated, this effect

has been included in most refined blade models. The contribution

(c) is particularly difficult to obtain even when complete warping

restraint is assumed, and this effect has generally been neglected,

or at best accounted for by some "effective shortening" of the

blade.

The effects of transverse shear and rotary inertia on

blade frequencies have generally been neglected, This is somewhat

justified, because the limitations previously mentioned above

generally result 2n unacceptable errors long before the effects

of shear and rotary inertia become significant.

Beam type models have been successfully used for high

aspect ratio, thin, compressor blades, and somewhat less success-

fully for hfgh aspect ratto turbine blades. Calculated frequencies

of engineering accuracy are usually limited to the first three

or so modes of vibration.

The above limitations of a beam model become particu-

larly evident with low aspect ratio blading, which is increasingly
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used, and the solution to such problems probably will require

modelling the blade as a curved shell of varying thickness and

curvature. Notwithstanding this, beam type models of turbine

and compressor blades are still widely used.

In its simplest form the axial flow turbine blade

is considered to be a tapered beam of rectangular cross-section

without pretwist. Pinney (75) has given an exact solution, for

the frequencies and mode shapes, for beams with certain types

of taper. Perhaps the most widely adopted numerical method,

for nonuniform beams, is the lumped mass method of Myklestad (76).

Leckfe and Lindberg (77) were the first to develop the beam

flexure finite element and to demonstrate its

other conventional lumped parameter methods.

and Archer (79) developed finite elements for

tapered beams. Carnegie and Thomas (80) have

accuracy compared to

Later Lindberg (78)

the analysis of

given a

analysis of cantilever beams of constant thickness and

taper in breadth.

Even when a rectangular section is assumed for the

method of

linear

blade, pretwisting couples bending in the two principal direc-

tions, Rosard (81) has investigated such coupled vibration of

blades, In this analysis the blade is divided into a number of

segments; the mass and elasticity are concentrated at stations,

“.. ,
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and a transfer matrix method is developed.

The bending vibrations of a pretwisted beam lead to two

fourth order differential equations. A method of solving these two

coupled equations is given by Troesch et al (82). Carnegie (83)

has used Rayleigh's energy method to calculate the first frequency

in bending of a pretwisted cantilever beam. The static deflection

curve is used in the analysis. Slyper (84) has used the Stodola

method for this problem, Dokumaci et al (85) have used the finite

element technique with matrix displacement type analysis, for the

determination of the bending frequencies of a pretwisted cantilever

beam. They have derived the stiffness and mass matrices for a

pretwlsted beam element of rectangular cross-section, Natural

frequencies and mode shapes are obtained from the resulting eigen-

value problem,

When the aerofoil section of the blade is considered

the torsional vibration is also coupled with the bending vibration

of the blade, Mandelson and Gendler (86,871 have suggested a

method of analysis for the problem using the concept of station

functions, Houbolt and Brooks (88) have derived the differential

equations of the coupled bending-torsion vibration of twisted

nonuniform blades, Dunham (891 has derived the equations of

motion in a twisted coordrnate system following the blade length

and has used them for the determination of the first natural
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frequency. Carnegie (80) has used the Payleigh method to find an

expression for the calculation of the fundamental frequency of the

blade.

Perhaps the most careful and complete treatment of the

problem is that by Montoya (90) who has derived the governing

differential equations for the vibration analysis of twisted

blades of aerofoil section, including coupling between bending

and torsion. Effect of rotation on both bending and torsion are

also considered. Runge-Kutta numerical procedure is followed to

solve the problem and the differential equations are converted into

ten first order equations. Assuming unit values to each of the

unknowns at the fixed end, corresponding values are found at the

free end and are combined linearly, resulting in a set of equations.

Th_e boundary conditions at the free end require the determinant of

these equations to vanish when the correct frequency value is

assumed. Results obtained when twist and torsional coupling are

neglected are compared with those obtained when these

considered; and it is shown that these effects should

ignored,

effects are

not be

When a rotating blade is considered, the additional

strffness due to the centrifugal forces should be considered. The

centrifugal forces induce several additional coupling terms 'In the

already complicated equations of motion. The effect of rotation
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on the bending frequencies has been considered by Sutherland (91)

by using a Myklestad type tabular method of analysis. Plunkett

(92) has developed matrix equations governing transverse vibration

of a rotating cantilever beam. Bending vibrations in a plane

inclined at any general angle to the plane of rotation has been

tnvestigated by Lo et al (932. They have also observed that the

equations of motion contain a nonlinear term resulttng from the

Corfolis acceleration (94). Equations of motion for a rotating

cantilever blade using

Carnegie (95).

Hamilton's principle have been derived by

Jarrett and Varner (96) and Targoff (97) have solved the

problem of a rotating twisted blade idealizing the blade by a

lumped mass system. Isakson and Eisley (98,?9) have also used

Kyklestad type analysis for calculating the bending frequencies of

pretwisted rotating beams. The effect of rotation on the torsional

frequencies has been investigated by Bogdanoff and Horner (100,101)

and by Brady and Targoff (102). Karupka and Baumanis (103) have

derived the field equations for coupled bending-torsion vibrations

of a rotating blade using Carnegie‘s formulation of the Lagrange

equations of motion. Cowper (104) has developed a computer program

to calculate the shear centre of any arbitrary cross-section.

When the blades are thick, the classical Bernoulli-

Euler beam theory for bending vibrations is known to give higher

h
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values of computed frequencies. In such cases transverse shear

and rotary inertia should be included in the analysis. Rayleigh

improved the classical theory considering rotary inertia of the

’cross-section of the beam. Timoshenko extended the theory to

include the effects of transverse shear deformation. Prescott

(38) and Volterra(lO5)  have developed various Timoshenko type beam

models. Huang (106) has given solutions of Timoshenko equations for

a cantilever beam of rectangular cross-section. Carnegie and

'Thomas (1071 have used the finite difference method for the bending

vibration analysis of pretwisted cantilevers including the effects

of transverse shear and rotary inertia.

Among the other published work connected with blade

vibration; Gere (1081 has derived differential equations, for the

torsional vibrations of beams of thin walled open crossisection

for which the shear centre and centroid coincide, including the

effects of warping of the crossqsection. Grinsted (1092 has

studied the complex nodal patterns of turbine blades; impeller

vanes and discs, Ellington (110) has derived frequency equations

for the modes of vibration of turbine blades laced at their tips.

Pearson (111) and Sabatiuk and Sfsto (112) have discussed the

aero-dynamics of turbine blade vibration.

AS mentioned earlier beam type models are not applicable

to low aspect ratio blades. Such blades are generally treated

either as plates (l13). or as shells (114).
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1.2.4 Coupled Blade-Disc Vibration

The existence

and its influence on the

has been demonstrated by

With a bladed disc it is

the unbladed disc apply;

of coupling between the blades and disc

natural frequencies of bladed rotors

both experimental and theoretical studies.

found that sjmilar concepts to that of

the rotor oscillates in a coupled blade-

disc mode characterised by diametral and circular nodes. The

'bending motion at diametral anti-nodes, in torsional motion at

nodes, and in

nodes may lie

blades. This

and again the

blades being constrained in the disc at the rim, will vibrate in

in the disc, but will more often be located in the

whole pattern may rotate as in the disc alone case,

dangerous resonant vibration condition corresponds

combined bending-torsion elsewhere. The circular ,

th
to an m nodal diameter mode exited by the m order of

rotational speed.

The general features of the resonant conditions in a

typical rotor may be illustrated in a Campbell or interference

diagram, Figure 1.2. In

predicted assuming rigid

blades on a rigid disc.

t h

this diagram are shown the resonances

blades on a flexible disc, and flexible

For the former assumption the resonances

occur when the m"'^ order of rotational speed is equal to the

frequency of the disc mode with m nodal diameters. For the
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latter assumption the resonances occur whenever the various

rotational excitation frequencies are equal to a blade natural

frequency. The resonances of the combined blade disc system are

modified as shown. These resonances again occur when an m nodal

diameter mode isexcitedby the m
th

engine order, and it is

seen that the resulting motion degenerates to essentially disc

vibration with rigid blades at low engine order excitationand

high speed, and to blade vibration with a rigid disc at high

engineexcitationand low speed.

The early work reported on the problem is based on

very simplified models. Ellington and McCallion (115) have

investigated the effect of elastic coupling, through the rim of

the disc, on the frequencies of bending vibration using a simpli-

fied model. In this model the effect of twist, taper and obliquity

is neglected and the blades are replaced by uniform blades fixed

to the rim at their roots and vibrating in a plane parallel to the

plane of the disc. For the analysis

assumed to be parallel to each other

three adjacent blades are

and the portion of the rim

joining them is taken as a straight continuous beam. A relation-

ship between three slopes of the beam at the root of three adjacent

blades are established and is used in the calculation of the

natural frequencies.

Johnson and Bishop (116) have also examined an idealized
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bladed rotor consisting of identical mass-spring elements to

represent the blades, connected to a rigid free mass which

represents the disc. They examine the principal modes of such

a model'and outline methods for determining the receptances

(dynamic flexibility) of the system.

Wagner (2) extended this simplified model, represent-

ing each blade by a single degree of freedom system which has

the same natural frequency and damping factor as that of a

particular mode of the blade. These subsystems are attached to

a common ring representing the disc.

Capriz (117) has developed equations for the analysis

of the interaction between the disc and blades. Using available

numerical methods, "a number of cases o.f practical interest have

been studied," but, "comparision  with experimental results has

put in evidence discrepancies when modes with large numbers of

nodal diameters were considered." No numerical results are pre-

sented in the paper and the paper does not appear to have been

published in a Journal.

The first extensive investigations of the problem

appear to be due to Armstrong (118). Armstrong et al (1,119)

studied the problem by experimental investigation. Armstrong

carried out experimental tests on model rotors with uniform

. .
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discs and uniform untwisted blades attached to the disc at varying

stagger angles. Based on approximate receptance relations, he

developed a theoretical method for the analysis of the coupled

system and was able to predict satisfactorily the frequencies of'

the lower coupled modes of his models. The analysis was restricted

to simple model configurations for which receptance relations

could be easily obtained. The application to practical rotors

was outlined.

At about the same time as Armstrong's work, Jager (120)

developed a numerical method to predict the coupled system frequen-

cies and mode shapes, using a transfer matrix technique based on

a lumped mass model of the disc suggested by Ehrich (51) and a

conventional lumped mass model of the blades treated as twisted

beams. This method was therefore directly applicable to practical

rotors of varying geometry, and included the stiffening effects

resulting from rotation. This method has been adopted by several

aircraft engine companies.

Dye (3) and Ewins (4,5) have studied the effects of

detuning uponthe vibration characteristics of bladed discs, in

particular the variation in blade stresses which can result when

the blades do not have identical frequencies. They concluded that

this effect can result in a variation of vibratory stress from

blade to blade by a factor as high as 1.25approximately.
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Carta (6) describes an aeroelastic instability condition

which is governed by strong coupling between bending and torsion

of the blades resulting from disc or shroud dynamic coupling.' This

flutter condition is highly dependent on the coupled blade-disc:

shroud mode shape, which must be accurately determined. He assumes

suchmode shapes are available from a Jager type calculation (1201,

and successfully predicts the instability for a number of bladed

rotors.

Finally, a paper by Stargardter (lZl>, which also appears

not to have been published in-a Journal, describes qualitative

results obtained by vibrating rubber models at low rotational speeds,

He describes the physical phenomena well, and presents some inteq

resting photographs showing clearly the motions involved with bladed

rotors.

1.3 OBJECT OF THE PRESENT INYESTIGATION

Since exact solutions of rotating discs are restricted

to certain simple geometry and boundary conditions, numerical

procedures must be adopted for the analysis of practical turbine

discs and bladed rotors of general geometry. Although transfer

matrix techniques have been applied to these problems by Ehrich

(51) and Jager (120), these methods have two disadvantages. First,
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the use of mass lumping in the mathematical model of the system

requires a large number of stations to be considered in both disc

and blades if good accuracy is required, particularly for higher

modes of v?brati.on. Secondly, the natural frequencies  are obtained

by rteratfng wjCth the frequency of vibration as a variable, and

seeking the zeros of a frequency determfnant. These results 2n a

requjtrement  for substantfal  computing t&ne and storage, and not

tifrequently, the numerical conditioning difficulties wrth higher

modes whfch arise In transfer matrix methods.

A more profitable approachwould be to use the finite

element technrque which has now become fermly established as a

powerful method of analysis, Th%s method al.lows refinements over

the other numerical procedures and when applied to the vibration

analysis results in an algebraic eigen value problem,

Although the circular and annular sector finite elements

developed by Olson and Lindberg C54J and even triangular elements

may be used Sn the vibration analysis of circular and annular discs,

the use of these elements results in an eigenvalue problem of

considerable magnitude, Inclusion of thickness yariation and

the effects of rotation etc., in these elements would be quite

involved. Hence, it is desirable to develope simpler elements,

particularly suitable for the vibration analysis of turbine discs,

and which take advantage of the nature and geometry of the problem.
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The main objective of this investigation, therefore,

is to develope finite elements of annular geometry, in which

radial thickness variation, the effects of in-plane stresses,

and the effects of rotary inertia and transverse shear can be

easily introduced, and to examine the behaviour of these elements

in the analysis of simple and complex discs and bladed rotors.

Attention is to be focussed on developing methods of

vibration analysis of rotating discs of general profile and

bladed discs representative of practical turbine stages. Although

reliable and efficient methods are available for the stress

analysis of turbine discs, a plane stress finite element method

compatible with the vibration analysis is developed. In the

analysis of the bladed rotors, only asimplifiedmodel is to be

assumed for the blades and the investigation emphasises the study

of the coupling between the disc and blade motions. A thorough

treatment of the blades in the light of the many complicating

factors involved would require substantial amount of additional

work and hence is not attempted here.

L,
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CHAPTER 2

VIBRATION ANALYSIS OF AXIAL FLOW TURBINE DISCS

2.1 INTRODUCTION

In this chapter a finite element model which will

adequately represent a turbine disc having general thickness ’

profile is developed for the vibration analysis of axial flow

turbine discs. The disc is idealized to be both axisymmetric

and symmetric about the middle plane. But, any general radial

thickness profile is satisfactorily described by the model.

Stiffening effects of in-plane stresses resulting from centri-

fugal and thermal loading and other boundary loadings, such as

shrinkfit pressure at the hub, and blade loading at the rim are

taken into account. This method of analysis which is based on

thin plate theory, is then further extended to include the effects

of transverse shear and rotary inertia, so that the method can

be used in the analysis of moderately thick discs.

Detailed analysis of stress distribution across the

thickness of the‘disc  is not attempted; rather, a plane stress

finite element method for computing the average stresses at the

middle plane of the disc is developed. While this plane stress
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finite element model has little advantage in accuracy or effi-

ciency over the extensively used finite difference schemes (20,

211, it has the one advantage here of being completely compatible

with the analysis developed for the flexural

disc, since many of the matrix relations and

identical.

vibration of the

operations are

In section 2.2 thin plate bending finite elements

having annular and circular geometry and radially varying thickness

and which are

are developed

for this type

particularly suitable

(122). Compared with

of problem, these new

for the vibration of thin discs

other available finite elements

elements are described by a

remarkably small number of degrees of freedom. The annular element

has four degrees of freedom, while the circular element has only

two or three. This is achieved by including the number of diametral

nodes in the chosen displacement function for the element, and in

effect this results in separate solutions for each diametral mode

configuration.

In section 2.3 matrix expressions are derived which

allow for the additional stiffness resulting from in-plane stresses

in a thin disc. These assume that the in-plane stress distribution

is known, i.e., precalculated by some means or other. In this work

a plane stress annular finite element is developed and used to

calculate the stress distribution; this appears to be new and could
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be readily extended to handle buckling problems of discs.

Finally, in section 2.4, two new methods of incorpo-

rating the effects of transverse shear and rotary inertia are

developed, which will allow accurate analysis of moderately

thick discs,

The convergence and accuracy of the finite element

models are in each case critically examined by comparision  with

exact solutions, where available, and with experimental data,

for both static and vibration problems.

2.2 ANNULAR AND CIRCULAR T"IN PLATE BEMING ELEHENTS

2.2.1 Element Geometry and Deflection Functions

Figures 2.1 and 2.2 show the annular and circular thin

plate bending finite elements with their associated degrees of

freedom and diametral nodes. The annular element is bounded by

two concentric circles and the circular element by a single

circle, Any required number of diametral nodes is incorporated

in the elements as follows.

Once the lateral deflection G and the radial slope

F at any antinode, where 5 is taken to be zero, are specified,

the deflection and slope at any other point at an angle 5 from

some reference antinode can be expressed as, f; cos rnc and
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3 5

s cos rn[  , where m is the number of diametral nodes. Hence

a suitable deflection function for w , the lateral deflection

of the disc along the radial direction and an antinode, only remains

to be chosen.

Irrespective of the number of diametral nodes, the

annular element

-

w2 ’ Fl , and

aw
a s  6 = - - ,

ar

has four degrees of freedom. These are Gl ,

F2 as shown in Figure 2.1, where 0 is defined

For the circular element, as shown in Figure 2.2,

the number of degrees of freedom vary with the number of diametral

nodes, It should be observed that when m is zero Fl is zero,

when m is odd w1 is zero and when m is even both w
1
and sI

are zero. This indicatesthat while a single deflection function

can be assumed for the annular element, three different deflection

functions are to be assumed for the circular element, one for

m = 0, another for m = 1,3,5,... and a third one for m = 2,4,6,...

However, no suitable function could be found for the second case

excepting when m= 1.

The following deflection functions are found suitable

for the different cases mentioned.

W( r,S ) = ( al + a2r + a3r2 + a4r3 > cos mc;
t

(2.1)

for the annular element;

WC r,c ) = Cal + a2r2 f a3r3 > (2.2)
-
* The choice of cos mg in the deflection function can be justified
noting that the exact solution for an axispmetric  plate is of the
form w = f(r) co9 mg
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for the circular element with

w( r,E > = (air -t a2r2 -I-

for the circular element with

WC r,S ) = ( alr2 + a2r3

for the circular element with

is the lateral deflection of a

plate at radius r and angle

antinode. The relationship of

In= 0;

a3r3 ) cos 5 (2.3)

m = 1;

> cos rnS (2.4)

m = 2,4,6,... where w( r,S >

point on the middle surface of the

5 measured from the reference

the deflection functions to those

normally used for a beam element is evident. The deflection func-

tions for the circular element are chosen considering the following

conditions. For the circular element with m = 0 it is necessary

to include the rigid body translation, and with m = 1 it is

necessary to include the rigid body rotation about a diameter.

The difficulty with m = 3,5,7,... arises from the need to retain

the linear rotation term, but at the same time ensure that the

circumferential curvature remains finite when r = 0. This is

not possible with the simple form of deflection function chosen.

2.2.2 Element Stiffness and Inertia Matrices

The stiffness and inertia matrices of the annular

element and the three different circular elements are obtained

by substituting the assumed deflection functions into the strain

energy and kinetic energy expressions of the elements and following
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well known procedures (123). For the thin plate annular element

the strain energy is given by (124),

.I

r dr dS

where

and

a2w_-

/ :~

0

ar‘

1x1 = -
1 aw 1 a2w
T a r r2 x2

2
r

a2w 2 aw-_
ara 5 i2 aF, J

Substituting (2.1) for w in (2.7)

(2.5)

Q-6)

(2.7)

{xl =

where

%IT=

(2.8)

(2.9)
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and

[E] =

The matrix

in (2.5)

I
0

2

f5

- 2m tan rnc
r2

0 - 2

+ (m2 - 1) (m2 - 2)

0 2m tan rnc

-6r m

r (m3 - 3)

4mr tan me

:Bd] is given in Table 2.1. Substituting (2.8)

L’ = L
2 ;: r ;2 D’ {ndlT [BdJT [EJT  Iv] [El [Bdl {9,}

1

r cos2 me dr de

(2.10)

(2.11)

Therefore the stiffness matrix is givenby

2r r
[Kd] = / ?

0 r,
D [BdjT [EJT [V] [EJ [Bd] r cos2 m5 dr dT

(2.12)

[“d-” = lBdJT [kdJ [BdJ

where

2n r
[kd] = ! 3 D [EIT [V] [E] r cos2 mS dr dS

O rl

(2.13)

(2.14)

The matrix IkdJ is given in Table 2.2.
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The kinetic energy of the annular element is given by

T = P h(r) ( E j2 r dr dS (2.15)

Substituting (2.1) in (2.15)

rT = f p h(r)'{td]T [BdlT. ISIT is) [Bd]'{:d)

'1

r cos2 rnc dr dS (2.16)

’ Where

ISI = [ 1 r r2 r3J ; and the dot denotes time derivative.

Therefore the inertia matrix is given by

2r r
Fdl = ! 3

cl
p h(r) IBdIT isIT' [Bd] r cos' m5 dr dS.

rl
(2.17)

IMdl  = [BdlT Erndl LBdl

where

imdl = F” ‘3 p h(r)' {SIT
0 r1

(2.18)

1s) r cos2 me dr dS (2.19)

The matrix Im,] is given in Table 2.3

In Tables 2.2 and 2.3 the integrals Pi and Qi are.

given by

.,.
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pi
=clT E “3 h3(i) ri dr

12(1-9) r1
(2.20)

and

Q, = Cnpr? h(r) ri dr (2.21)

'a

where

C = 2 when m = 0 and C = 1 when m 1 1 (2.22)

The values of Pi and Q, depend on the function assumed for

h(r). Any desired function can be assumed. If linear thickness

variation within the element is assumed, then

h(r) = a + fir (2.23)

where

.b-lr2 - h2r1
and B=

b, - hl
a = (2.24)

=2 - rl
;

r2 - rl

If parabolic thickness variation within the element is assumed,

then

h(r) = a -t Br2 (2.25)

where

"l$
a =

- h2r: ‘ . h2 - hl

’
and B = (2.26)

r$ - rt ri - r:

The two cases above require the thickness to be known only at the

inner and outer boundaries of the element. Any other desired

expressions for h(r) can be assumed and the corresponding values

of P
i and Q, evaluated.

;.. .._
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The stiffness and inertia matrices of the thin plate

circular elements are derived in a similar manner and these are

given by

and (2.27)

The matrices [Bi], [ki], and [mi] and the corresponding def-

lection vector' {qi] are given in Tables 2.4 to 2.6, for the

three different circular elements. Here again the integrals Pi

and Q, are evaluated assuming desired functions for h(r).

These element.stiffness matrices [Kd] and inertia

matrices [Md] can beassembled by conventional methods to get

the disc system stiffness matrix
%I' and inertia matrix m-J,

for a model of the disc comprising several elements. The dynamic

stiffness relation for the disc becomes;

(2.28)

where {qDl is the disc deflection vector and '{QB] is the

vector of corresponding generalised forces. For free vibration

of the disc all the terms of {QDl are zero, and Equation 2.28

becomes an algebraic eigen value problem which is solved to yield

the natural frequencies and mode shapes of the disc. Such a
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calculation would be repeated for each diametral mode configu-

ration.

In static problems the inertia matrix D$,I disappears

and {Q,) is the vector of external generalised forces at the

nodes of the finite element model of the disc.

Displacement boundary conditions only are applied by

deleting the appropriate rows and columns of the stiffness and

inertia matrices of the disc.

2.2.3 Application to Thin Plate Vibration Problems

The convergence properties and accuracy of the finite

elements developed above for the vibration of thin plates are

examined by comparing the nondimensional frequency parameter

x /--phO=wb2-----

DO

obtained, with available exact solutions. ho and

DO
are the thickness and the flexural rigidity of the plates

considered. When a variable thickness plate is considered, these

are the values at the centre of the plate.

CA) For a first example, complete circular plates having

uniform thickness are considered. When these plates are modelled

with several annular elements and one circular element at the

centre as shown in Figure 2.3 , the results are restricted to

modes with m = 0,1,2,4,6, etc., only because of the difficulty

in choosing a suitable deflection function for the circular
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element with odd values of m other than unity. The solutions

obtained for plates with simply supported, clamped and free outer

boundaries are given in Tables 2.7 to 2.9, in which m and n are

the diametral and circular node numbers respectively. These plates

can also be modelled by approximating the complete plate by an

annular plate having a very small central hole as shown in Figure

2.3. Only annular elements are used in this case and hence results

are obtained for any value of m. The results obtained with a

radius ratio a/b = 0.001 for the three cases considered above are

given in Tables 2.10 to 2.12 along with available exact solutions

of complete circular plates. Comparing results from Tables 2.7 to

2.12 it is seen that the presence of the central hole has only

very small effect and in practical problems the use of annular

elements alone would be satisfactory. ’

Convergence of the solution with number of elements is

seen to be extremely rapid in all cases and monotonic from above

as would be expected. Frequencies of engineering accuracy are

obtained with very few elements; thus the use of number of

elements N = C Number of modes desired -t 1 ) will in all cases

give frequencies accurate to approximately 2% or better.

In Figure 2.4 the percentage absolute error in the

first six frequencies of the simply supported plate, calculated



using annular elements alone, are plotted against number of

elements used in the model.

CBI As a second example, annular plates of uniform thick-

ness are considered. These are modelled with the annular elements

only. Results obtained for plates with radius ratios a/b = 0.1

and 0.5 are given in Tables 2.13 to 2.18 together with the

available exact solutions. The remarks made in (A) above regard-

ing convergence and accuracy of the solution also clearly hold

for these examples.

cc> The

circular plate

third example chosen is that of a complete free

having parabolic variation in thickness,

3
h(r) = ho 1 1 - (r/b)") o as shown in Figure 2.5, and for which

exact solutions have been obtained by Harris (46), when the plate

is free along the outer boundary. The plate is approximated by

considering an annular plate with a/b = 0.001 and using only the

annular elements with parabolic thickness variation. The results

are presented in Table 2.19. The effect of using elements with

linear thickness variation instead of parabolic thickness

variation within the element is also studied and the results are

given in Table 2.20.

Comparing results of Table 2.19 and 2.20 it will be

noted that convergence is rapid with either model, but that while
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the model using parabolic thickness elements converges mono-

tonically and is an upper bound solution as expected, the convcr-

gence of the model using linear elements, where an approximation ‘I

of the geometry is made, is from below, at least for the first

mode, and is not monotonic for the higher modes. Convergence

and accuracy of the finite element solution with true thickness

modelling is quite remarkable.

CD) In a final example, the efficiency of the procedure

using annular elements can be judged by comparision with results

obtained using sector elements. Such a comparision is made for

a uniform freeplate in Table (2.21). Olson

model the plate with a grid of three sector

and 12 circumferentially. Using symmetry

and Lindberg (54)

elements radially,

their resulting

model has 55 degrees of freedom. The results obtained with the

3 x 12 grid of sector elements are compared with those obtained

using two and four annular element models. It is seen that the use

of only two annular elements, resulting in only six degrees of

freedom, gives more accurate results than the use of sector elements.

Moreover the identification of the particular modes is easier

with the annular element. The sector element model yields two

values of frequency for the (2,0) and (5,0> modes; these

solutions appear to be associated with nodal diameters in the

vibrating plate passing through nodes in the grid mesh, and

passing between the nodes in the grid mesh respectivly.
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It should be pointed out that the use of annular

elements will involve solution of the eigen value problem once

for each nodal diameter configuration. Notwithstanding this

there remains considerable saving in storage and computer time

requirements. In addition the use of the sector elements is

ofcourse not restricted to complete annular and circular plates,

unlike the annular and circular elements.

Apart from these examples, where vibration problems

are considered, the elements developed here may be applied to

static problems also, by superposing the solutions obtained by

expressing the applied load in it's Fourier components. The

results of several such studies are briefly described in

Appendix A.

2.3 THE EFFECT OF IN-PLANE STRESSES ON THE VIBRATION OF THIN DISCS

The stiffening effect of centrifugal and thermal

stresses is significant in practical rotors, and must be taken

into account in any realistic analysis. If centrifugal stresses

only are considered, these are proportional to the square of the

rotational speed, and additional stif'fness terms may be derived

which will also be proportional to the square of the rotational

speed. Thermal stresses, however, have no relationship with the

rotational speed. This suggests that a method of including both
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effects should be formulated assuming that stresses in the rotor

are already known.

In section 2.3.1 a stiffness matrix is derived which

is dependent on the in-plane stresses present in the disc. This

matrix simply adds to the basic elastic matrix equation to give

the total stiffness matrix of the element. The radial and tangen-

tial stress values used in this additional stiffness matrix may

be obtained by any method, but in section 2.3.2 a plane stress

annular finite element is derived which is used to calculate

these stresses in this work. This has the advantage here being

compatible with the annular bending element, and many of the

matrix relations and operations are seen to be identical.

The accuracy and convergenceoffirst the method of

stress analysis and second the resulting

disc vibration, is examined with several

section 2.3.3.

stiffening effect on the

numerical examples in

2.3.1 Additional Stiffness Matrix for the Annular Element due to

In-Plane Stresses

When in-plane radial stress ur and tangential stress

o!z
are present at the middle plane of the annular thin plate

element, the following additional terms arise in the strain energy
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equation (124), of the annular element, Figure 2.1,

r dr de

(2.29)

Assuming the deflection function, Equation 2.1, as before, and

substituting in the above strain energy expression, additional

stiffness coefficients for the annular element are readily

derived corresponding to the deflection vector,

The additional stiffness matrix is

(2.30)

(2.31)

where the matrices IBd] and [kz] are given in Tables 2.1 and

2.22 The integrals Ri and Si appearing in the elements of the

matrix Ik;J are given by

Ri '= Csr? ri
'1

h(r) or(r) dr (2.32)

’si = Cnr? ri h(r) uS(r) dr (2.33)

'1

It is convenient to assume linear variations, within the element,

of h(r) , or(r)  , and co (r) requiring that the values need only

be known at the nodal points.
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assuming

h(r) = a+ Br; or(r) = c -I- dr ; and u
5
(r) = e + fr

then
. __

a = (hlr2 - h2rl)/ (r2 - rl> ; B = (h2 - hl)/(r2  - rl>

(2.34)

c= kfrlr2 - or2rl)/(r2 - rl) ; d = Car2 - arl)/(r2 - rl)

e  =  (oElr2 - aC2rl)/(r2  - rl> ; f = (OS2 - acl>/G2  - y_>

and

(2.35)

.
Ri = CITY? r1 (a + Br) (c + dr) dr (2.36)

r1

si = Car? ri (a + Br) (e + fr) dr (2.37)

rl

2.3.2 Plane Stress Finite Element For Thin Discs

When a disc rotates at speed, very high radial and

tangential stresses are generally produced by the centrifugal

inertia force. The presence of radial temperature gradient can

substantially modify the total stress distribution and in

extreme cases has been known to result in buckling at the rim.

Shrinkfit pressure at the hub, in certain cases, can also modify

the centrifugal stress distribution. The result of all these

effects produces an in-plane stress distribution in the disc,
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which changes the flexural stiffness of the disc. The variation

of these stresses across the thickness of the disc is generally

ignored in axial flow rotors.

By taking advantage of the axisymmetric nature of the

problem, plane stress finite elements of annular and circular

geometry are developed below for use in the stress analysis of

discs. These elements incorporate radial thickness variation.

Consistent load vectors (123) are used to replace the continuously

distributed centrifugal and thermal loading, or any other axisym-

metric external loading on either boundary.

Consider the axisymmetric stretching of an annular

element with inner radius
rl

and outer radius r2 and radially

varying thickness h(r) l The geometry and deflections of the

element are shown in Figure 2.6. The strain energy in the element

is given by (124),

27T r2
1 E h(r)1 c2 + ci + 2srsS ) r dr (2.38)

( 1  - vq r1 r

The radial and tangential strains in this case are

E and
r

(2.39)

where u is the radial displacement. Substituting the deflection

function

u(r) = al f a2r -I- a3r2 f a4r3 (2.40)
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in the strain energy expression and following standard procedure

we arrive at the following expression for the stiffness matrix

for the element,

corresponding to the deflection vector

(2.41)

(2.42)

where

The matrics [Bd] and [ki]' are given in Tables 2.1 and 2.30.

(2.43)

If linear thickness variation within the element is assumed, then

KrJ = a + f3r (2.44)

where

hlr2 -.h2rl
a = and

'% - rl
B

.h2 - hl
= -

r2 - rl
(2.45)

then,

-- + Br) ri dr (2.46)

When rl = 0 , the geometry of the element becomes

circular. In this case ul = 0 and the element has only three



52

degrees of freedom, and

hdlT = c e1 u2 e2 1 (2.47)

By assuming the deflection function

u(r) = air -6 a2r2 -f- a3r3

the stiffness matrix of the element becomes,

(2.48)

(2.49)

The matrices [Bo] and [kt;,l are given in Tables 2.4 and 2.31.

The integrals Qio

Q_ = 2’E
10

1 - v2

in Table 2.31 are given by

r2
/ h(r) ridr
9

(2.50)

Again when linear thickness variation is assumed within this element

h(r) = 01 f Br (2.51)

where

(2.52)

The element stiffness.matrices D$l can be assembled

by conventional methods to get the disc system stiffness matrix

IQ Now, theequilibriumcondition requires the following relation

to be satisfied;

(2.53)

._
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where {Q,) is the vector of generalised nodal forces and {qD)

is the vector of unknown nodal displacements.

Only displacement boundary conditions should be applied

by deleting rows and columns in [$I corresponding to displace-

ments which are zero. Often the turbine disc is considered to be

free at either boundary while analysing the stresses in the disc;

here [J$J is not reduced. The simultaneous equations given by

the relation (2.53) may be solved by conventional procedures; if

matrix inversion is followed then,

{q,,} = [I$? (Q,,)

Thus all the nodal displacements are obtained.

The load vector {Q,} comprises several

Thus the following should be considered.

(a) P;im loading resulting from blades should be added at the

appropriate position of the vector. {Q,). If the number

(2.54)

contributions.

of blades present is Z, each with mass m* and centre

of gravity at radius R
g

and if the rotational speed

is 0 rad./sec., then this loading is Zm*n2R
g'

(b) Shrinkfit pressure at the hub results in some loading

at the inner radius a and is given by 21~ a ooh(a),

where oo is the shrinkfit pressure and h(a) the

thickness at radius a.
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(c) Distributed centrifugal loading.

(d) Distributed thermal gradient loading.

For Cc) and (d) equivalent consistent vectors of nodal forces are

obtainedbyequating work done by the hypothetical nodal forces to

work done by distributed centrifugal and thermal_ loading.

Consider the distributed centrifugal inertia loading

first. When the disc is rotating with constant angular velocity

Q 9 by, equating the work done by the hypothetical nodal forces

to the work done by the centrifugal force in the annular element,

we obtain

{qd}

where

27r '2
= / Z F(r) u(r)

* rl

{qd3T = [ u1 e1 u2 e2 I .

(fcI - consistent vector of nodal loads.

FO-1 = p Q2 r2 h(r) dr dE

ucr) = [ 1 r r2 r3 J  [BdJ’ (qd)

Substituting for F(r) and u(r) in (2.55)

{fc3 = IBdlT' (8)

where

{dT = 1 Et2 f&J  g4 853

(2.55)

(2.56)

0.57)

C2.58)

(2.59)

c2.60)
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and
r2

= 2npR* Z h(r) ri dr
,

si (2.6:)

rl I

When linear thickness variation within the element is assumed, then

h(r) = a + f3r

and

hlr2 - h2r1a =

then

r2 - "1

gi
= 2lTpR2 7

'1

(2.62)

and f3 =
h2 - hl

r2 - rl
(2.63)

(a + f3r) ri dr (2.64)

When the disc is subjected to axisymmetrical radial

temperature gradient the thermal loading is replaced by the consistent

vector given below. For the annular element,

[

E
r

%

CT
r[1*5

.du
‘dr

= 111 0

=
U- r

I_’ _I

Ezz
1 - v2

L r

[

1

V

1 2r 3r2

lr r2
[Bdl’ {qdl

(2.65)

I (2.66)

.
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where

CL* - coefficient of thermal expansion of the material of

the disc.

T(r) -
**

temperature at any radius r.

Equating the work done by the temperature gradient to that by

the consistent load vector {ft)

2R r2

0
f / ‘1 -E IqdlTIBdlT [EIT : ; [EI IBdj'(qdj

L-1 l- V2 c I

E_-
1 - v a* T(r) [BdlT [EIT' {qdjT r dr dc

= ‘{qdjT [I$] {qd) - {qdjT  {ft) (2.67)

Now,

[Kt;] = E
2n r2

1 - v2 0
1 f [BdlTIEIT

r,
[El EBdl  h(r) r dr d#

Therefore

{ft} = *

where

A

(2.68)

IBdlT
'2
/ h(r) T(r) [E.jT

"1

= IBdlT'{gl (2.69)

(gl = I go g1 82 &J 1 (2.70)

(2.71)

** Note that T(r) is the change in tomperatura from a stress free
temperature state.

,
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When linear thickness and temperature variations within the

element are assumed, then

h(r).= a + f3r

where

a'
hlr2 - h2rl

r2 - r1

and

TCr) = c + dr

where

Tlr2c = - T2rl

r2 - rl

and therefore,

2nEa* r2
gi = I_v / Ccl

rl

h
and B = 2 - hl

r2 - rl

and d = T2 - Tl

r2 " '1

(2.72)

(2.73)

C2.74)

(2.75)

+ Br) (c -I- dr) ri dr (2.76)

,As already mentioned the load vector {Q,} comprises

of the above individual contributions where applicable. Now

Equation 2.54 can be solved to obtain the system displacement

vector. The stresses are then calculated as follows. In the

case of axisymmetric stretching of the disc the shearing stress

'c
r5

is zero and hence the stress strain relationship becomes,

The last term on the right hand side of the above equation
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vanishes if there is no temperature gradient. Now the strain vector

can be expressed in terms of the assumed deflection function; which

in effect gives a relationship betweenstrain and the nodal displace-

ments.

(2.78)

The above relationship together with Equation 2.77 can be used to

get the stresses ur and a6 at any radius r. In such a situ-

ation '{qd) is the deflection vector of the element inside which

the point in question lies.

Generally we are interested in the stresses at the

nodal points of the model only, and the following procedure should

be followed. Consider an element between nodes i and i+l.

The deflection vector of this element is

hJdlT - 1 ui ei ui+l 'i+l I (2.79)

This vector is obtained from the system deflection vector {qg).

Now, making use of the relationships (2.77) and (2.78), we get

[

u
ri

*&i

o
ri+-

'#i+

1

VI !E=-
1 l-9 O

1
0

‘0 . 1 2ri 3rt

0 l 2ri+l 3r;+
1
r 1 ri+l r:+1. ii-l

(2.80)
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Vhen there is no temperature gradient in the disc the last term

in the above equation vanishes. These same stresses can be found

using the deflection vectors of the adjacent elements also. Note

that in this case the stresses at a node are uniquely defined

since both u and du/dr happen to be degrees of freedom chosen;

thus there will not be any difference in the values calculated

using adjacent elements.

2.3.3 Numerical Applications

The convergence properties and accuracy of the plane

stress annular element developed are first examined by comparing

with exact solutions the values of stresses calculated using these

elements. Both centrifugal and thermal loading are considered.

The accuracy of the use of the additional stiffness coefficients

derived for the vibration of rotating discs is then assessed by

comparing frequency values calculated with these coefficients and

the thin plate annular elements, with exact and experimental values.

(A> First uniform annular discs with the extreme value of

a/b = 0.001 and the more typical value 0.2, rotating with uniform

angular velocity Q were considered. Radial stress coefficients

P = (a /p Q2b2)
r.

x 10: and tangential stress coefficients q = (o /
5

p Q* b2> x lo4 were calculated for these discs with the plane



60

stress annular elements, and these are given in Tables 2.25 to 2.28

along with exact solutions. From these results it is seen that

when a/b is very small, 0.001, the finite element results are in

error at the inner boundary and are unacceptable. However, at .
.

points away from the inner boundary, agreement between finite

element and exact solutions is good. For such cases it is neces-

sary to use many elements, eg. 8 or 16 elements, in Tables 2.25 and

2.26, and to disregard the stress value obtained at the inner

.boundary. When the value of a/b is increased to 0.2, the finite

element results at the inner boundary also become very much closer

to the exact values, Tables 2.27 and 2.28. In both cases conver-

gence is rapid and results with engineering accuracy are obtained

with four to eight elements. In Figure 2.7, the stress coeffici-

ents p 'and q calculated, for a disc with a/b = 0.2, using

plane stress annular elements are compared with exact solutions

graphically.

CB) For a second example, an annular disc with a/b = 0.2

and hyperbolic radial thickness variation (17), h(r) = h(b)/ri,

when i = 1, rotating with uniform angular velocity Sa was

considered. The stress coefficients p and q obtained with

plane stress annular elements with linear thickness variation

are given in Tables 2.29 and 2.30 along with exact solutions.

Agreement between finite element and exact solutions is good and

convergence is rapid with increasing number of elements.
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03 Next, temperature stresses in two uniform annular discs

with a/b = 0.001 and 0.2 were considered. The discs were subjected

to radially varying temperature gradient, T(r) = T(b) z . Radial

stress coefficients p = ia,/ E * T(b)} x 10: and tangential stress

coefficients q ='+/ ECX* T(b)) x 104, calculated with the plane

stress annular elements, are given in Tables 2.31 to 2.34, along

with exact solutions. Remarks made under (A) above, regarding

accuracy and convergence of results, hold for these cases also.

CD> The stresses obtained using plane stress elements are

now used as initial in-plane stresses in the vibration analysis of

rotating discs. Ignoring bending stiffness of the disc and consi-

dering only the stiffness due to the initial stresses, frequency

coefficients X= (wl/ 0 )2 of the membrane disc, where w1 is the

natural frequency of the membrane disc and n , the speed of

rotation, were calculated. The values of X obtained,

for a centrally clamped disc, are given in Table 2.35 along

with the exact values given by Lamb and Southwell (47). These

values were also calculated taking exact stress values at nodal

points and are given in Table 2.36. A value of a/b = 0.001 was

assumed to facilitate modelling .the disc with annular elements

only. In both cases linear variations of the stresses within the

element were assumed. In either case the membrane frequencies

are calculated within 3% or better using only four elements.
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(El Finally, the variation of the natural frequencies with

speed of rotation of a thin annular disc with a/b = 0.5, b = 8.0 in.

and h = 0.04 in. was studied. Both the disc bending stiffness and

the additional stiffness resulting from centrifugal stresses were

considered together. Natural frequencies wmn of this disc rotating

at 0, 1000, **9 4000 rpm, calculated using eight thin plate bending

and plane stress annular elements are given in Table 2.37. Conver-

gence of results with increasing number of elements, for 3000 rpm,

'are shown in Table 2.38. The relationship between the natural

frequencies wmn of a rotating

frequency r; is given by (73)

r;

where m

rotation

mentally

obtained

rpm, for

=w tmG
mn

is the number of nodal diameters and n is the speed of

of the disc. Mote and Nieh

values of < for this disc.

from finite element results

the first mode of diametral

(73) have measured experi-

In Figure 2.8 values of 6

have been plotted against

nodes 0 to 5. The calculated

disc and the harmonic exeitation

(2.81)

frequencies lie very close to the experimental points showing

excellent agreement between these results.

2,4 THE EFFECT OF TRANSVERSE SHEAR AND ROTARY INERTIA ON THE

YIBRATION  OF MODERATELY THICK DISCS

Computed frequencies using thin plate theory are always

found to be higher than the experimentally measured ones when thick
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discs and the higher modes of relatively thin discs are considered.

An improved plate theory, which considers transverse shear and

rotary inertia, would result in satisfactory analysis when the

discs are moderately thick. The effect of transverse shear is .

to produce additional rotation and deflection; and that of rotary

inertia is to increase the inertia. Thus both these effects serve

to decrease the computed frequencies.

A coefficient ~~ , known as shear coefficient, is

introduced to take into account the shear stress distribution

across the depth of the plate.' Mindlin (62) has used a value

K2 e a2/12, which is close to the normally used value of S/6 for

rectangular section Timoshcnko beam. When moderately thick uniform

circular and annular plates are considered the frequency dcter-

minants derived by Callahan (66) and Bakshi and Callahan (67) can

be used; however, as mentioned previously, there is'no simple

exact solution for thick discs of varying thickness.

In this section, a finite element approach is descri-

bed which can readily be used in the analysis of discs with

radial thickness variation. Two new finite elements, both of

annular geometry and having radial thickness taper, are developed.

These elements require additional degrees of freedom to take into

account transverse shear effects. The efficiency of these elements

is examined by comparing calculated frequency values with experi-

mental values published by other investigators. For uniform discs,
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the exact values are computed using Mindlin's theory for compa-

rision with finite element results. These exact values use the

method of Bakshi and Callahan (67). Since their paper contains

many typographical errors the frequency determinant resulting

for a free annular plate is given along with a brief summary

of Mindlin's equations in Appendix B.

In the finite element analysis of moderately thick

turbine discs, additional strain energy due to transverse shear

and addftional kinetic energy due to rotary inertia must be

taken into account in obtaining the element matrices. For an

annular element, the complete strain energy and kinetic energy

expressions are given below when these additional energies are

included (62).

K2Gh(r) lx,) T (2.82)

where

rr[11x,3= ys

(2.83)
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and

IXbl =

and

T =
1 2lT r2
T / / phCr)

O 5

$'f)' r drdS

a$6 2
+'{rl

where

and, y, and y
E

are the additional radial

rotatLons  resulting from transverse shear.

(2.84)

(2.85)J r drdC

and circumferential

2.4.1 Annular Plate Bending Finite Elements Including Transverse

Shear And Rotary Inertia.

(A) Thick Disc Element-l

In this case, in addition to the total deflections w
\

and radial rotations 7r along an antinode at either boundary of
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the annular element, the radial and tangential shear rotations

Y,
and 7

r
are taken as additional degrees of freedom. Figure 2.9

shows this element with two nodal diameters and the degrees of

freedom considered, Hence, the deflection vector, which has .

eight degrees of freedom, is

This formulation of the element configuration follows closly

that of Pryor et al b25), who recently examined the static

loading solutions for thick plates using rectangular finite

elements. Now, assuming the deflection functions

w(r,C) = Cal + a2r i- a3r2 -I- a4r3) cos rnc

v,CrJ3 = (35 + a6r) cos me

v,O,O = Ca, -I- a8r) sin rn<

(2.87)

(2.88)

and substituting these into the energy equations, Equations 2.82

and 2.85, we obtain the stiffness and inertia matrices of the

element as

and (2.89)
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where

[B;]-l=

1 1

0

2 '3
5 5 5 0 0 0 0 1
-1 -2rl -3r: 1

=1
0 0

0 0 0 0 1 =1 0 0.

0 0 0 0 0 0 1 rl

1 2 3
=2 =2 =2

0 0 0 0

0 -1 -2r2 -3ri 1
r2

0 0

1 0 0 0 0 0 0 0 0 1 0 r2 0 1 0 r2 0 1

a n d

[$I =

(2.90)

(2.91)

The matrix IkaJ is the same matrix of the thin plate bending

annular element developed in section 2.2.2 and is given in Table 2.2.

The matrices Iki] and rki] are given in Table 2.39, where

=clr. E
r2 =2 .

pi
/ h3(r) ridr;

12(1-w2) r,
Qi = C?TGK~  ! h(r) r'dr

rl.I.

(2.92)

r ImaJ
(2.93)
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where

[B;]-l=

a n d

[k$ =

-1

0

0

0

1

0

0

0

5
-1

0

0

=2

-1

0

0

2 '3
rl rl

-2rl -3r:

0 0

0 0

2 3
r2 r2

-2r2 -3ri

0 0

0 0

0

=1

r1

0

0

r2

r2

0

0-

0

0.

rl

0

0

0

r2
.

(2.90)

(2.91)

The matrix IkaJ is the same matrix of the thin plate bending

annular element developed in section 2.2.2 and is given in Table 2.2.

The matrices Iki] and rki] are given in Table 2.39, where

r2
/ h3(r) ridr;

=2 .

pi
=clr. E

12(1-w2) rl
Qi = C?TGK~  f h(r) r'dr

rl
(2.92)
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where [md] is the same matrix of the thin plate bending annular

element, developed in section 2.2.2, and is given in Table 2.3.

The matrix [rn:J is given,in Table 2.40, where

r2
Pi = c7r $ S h3(r) ri dr

'1

I

(2.94)

Linear thickness variation can be assumed within the element

in evaluating the integrals, Equations 2.92 and 2.94.

When this element is used the following boundary

conditions should be satisfied.
-

Simply supported boundary w = 0

-
Clamped boundary w=o;;i; =o

r

Free boundary yr = 0

(B) Thick Disc Element-2

An alternative method of considering the effects of

transverse shear and rotary inertia is to treat separately the

deformations due to bending and transverse shear. The effici-

ency of this approach was first examined in the static bending

analysis of thick rectangular plates and this work is described

with some detail in Appendix C. It is demonstrated that this

approach has considerable advantages for static problems (126).

Below, this method of analysis is applied to the vibration
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analysis of moderately thick circular plates. An annular plate

bending element with eight degrees of freedom is developed. In

this element, in addition to the deflections and rotations due

to bending, those due to transverse shear are taken to be the

additional degrees of freedom.

In the formulation of this finite element, the contri-

butions of bending and transverse shear are separated, thus

w = wb + ws (2.95)

and further it is assumed that the rotations $ and J,
5

arer

due to bending alone.

(2.96)

Then the rotations y, and y
5

are due to shear deformation

alone.

a2 1 a2
'r=--ar

and
?=---r ac

Taking these shear deflections and rotations in addition to those

due to bending as degrees of freedom, the deflection vector of

the element Is

. -
{qd). =

(2.97)

(2.98)
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where

and

Figure 2.10 shows this element with two nodal diameters and the

degrees of freedom. Assuming the deflection functions,

wb Cr,Ei> = (a
1
+ a2r + a3r2 f a4r3) cos mS

(2.99)

w'(r,S) (a far-l-ar
2

=
5 6 7

f a8r3) cos rnS

and substituting in the energy expressions, Equations 2.82 and

2.85, we obtain the stiffness and inertia matrices.

and

where

[B;I =

and

(2.100)

(2.101)

(2.102)
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where the matrIces [Bd] and

the annular thin plate bending

2.2.2, and are given in Tables

is given in Table 2.41, where

r2

[k J
d

are the same as those of

element, developed in section

2.1 and 2.2. The matrix [ki]

4
Q, = Cn KEG I h(r) rA dr

L

‘1
and

!
Imdl Imdl

Dirndl h,l

(2.103)

where the matrix [m,] is the same as that of the thin plate

bending annular element, developed in section 2.2.2, and is

given in Table 2.3. The matrix [mi] is given in Table 2.42,

where
=2

'i = c7r & _I h (r) ri dr (2.105)

When this'element is

conditions should be satisfied.

Simply supported boundary

Clamped boundary

Free boundary

used the following boundary

;;b= 0 ; $% 0

;;;b= 0 ;&o; s =()
r

G, = 0
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2.4.2 Numerical Applications

The efficiency and convergence properties of these

two thick disc elements are now examined by comparing frequency

values computed using these elements with experimental data,

for both uniform and nonuniform discs. In the case of uniform

discs, the exact values are also calculated using Mindlin's

theory for comparision.

CA) The first example is a small circular disc 75 mm in

diameter and 5 mm thick, for which some of the experimental

frequencies are given by Onoe and Yano C68). A small hole is

assumed at the centre of the disc with a/b = 0.001. Frequencies

calculated using both thick disc elements are given in Tables 2.43

and 2.44, along with exact and experimental values. Modes o'f

vibration with m = 0 to 3 are considered. Comparision of results

in Tables 2.43 and 2.44 shows little difference between results

of Element-l and Element-2; and both results compare well with

exact and experimental data. The disc was completely free and

therefore free body modes exist for m = 0 and 1. In these cases

convergence is from below, atleast for the first mode. In all

the other cases-convergence is from above, as would be expected,

and is rapid.

CB) A number of fairly thick discs

as the second example, The dimensions of these discs and rings

and rings were chosen
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are given in Tables 2.45 and 2.46 along with the first frequency

(m=2$ n=O) values calculated using these thick disc elements.

Experimental results are given by Peterson (71) for all these

cases. Comparision of results in Tables 2.45 and 2.46 shows

that when complete discs are considered both the elements

perform well and calculated and experimental results are close.

But in the case of rings Element-l gives good results whereas

there is a large difference between calculated and experimental

values with Element-2. Practically there is no convergence with

this element. Such poor performance of Element-2 may be due to

the difficulty in imposing correct boundary conditions when this

element is used,

CC) As the third example two rings with different thick

nesses were chosen. Experimental results for these rings for

m = 2 and n = 0 are given by Raog27);  and are originally due to

Peterson (71). Only Element-l is used in this case and the

calculated frequencies are given in Table 2.47 along with exact

and experimental results. The dimensions of these rings are

also given in Table 2.47. Agreement between the calculated and

experimental results is good.

Discs with stepped section and fillets were examined

next. Three such discs were considered. Except the web thickness

other dimensions are the same, Figure 2.11. Only one frequency
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Cm= 2, n= 0) in each case was calculated and are given in

Table 2.48 along with experimental values. Agreement between

calculated and experimental values is good. These discs weres

modelled with five elements as shown in Figure 2.11.

m The final example chosen is a practical turbine disc.

The dimensions, material constants and experimentally measured

frequencies for this disc were provided by Dr. E. K. Armstrong

of Rolls-Royce (1971) Ltd. The profile of this disc is given

in Figure 2.12, and the thickness at various radial distances

are given in Table 2.49. This disc was modelled with 4, 6 and

8 elements using Element-l, and the mass of castellations

present at the end of the disc was lumped at the outer boundary,

Finite element results are given along with experimental frequen-

cies in Table 2.50. Frequencies calculated using 8 thin plate

elements also are given for comparision. Values calculated with

thick disc elements are in much closer agreement with the

experimental results. It is also perhaps worth noting that the

error between calculated frequencies, with 8 elements, and

experimental values is consistently 6% to 8% high; this suggests

the possibility that the nominal modulus of elasticity used

may be in error.

r /
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CHAPTER 3

VIBRATION ANALYSIS OF AXIAL FLOW TTJRBINE BLADES

3.1 INTRODUCTION

Since the purpose of this investigation has more empha-

sis on the coupling effect between the disc and the array of

blades in

attempted

was noted

a bladed disc, a refined analysis of the blade is not

here. Much work has been published on this area, as

in the literature survey in chapter 1, and several

methods of analysis of blade alone case are available. Such

methods consider the blade with its aerofoil section and most of

the other complicating factors such as camber, pretwist, longitu-

dinal taper, root flexibility etc.

In this investigation the blade is idealized to behave

as a beam having arbitrary variations in section properties and

pretwist along its span. It is assumed that the centroidal and

flexural axes coincide, ie the shear centre coincides with the

centroid and there is no coupling between bending and torsion

within the blade.

. In section 3.2 an idealization  of a blade segment

using available beam finite elements is outlined. The effect of
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and the presence of other stresses in the blade modifies substan-

tially the natural frequencies of the blade. Therefore, in

section 3.3, additional stiffness coefficients resulting from

these effects are derived to be included in the bending and

torsional stiffness matrices of the element chosen. In section

3.4 a new beam bending finite element with six degrees of freedom

is developed; where transverse shear and rotary inertia effects

are taken into account. Finally in section 3.5, the method of

analysis of pretwisted blades is described.

Numerical results showing the effects of rotation,

transverse shear and rotary inertia and pretwist are given along

with other available solutions,

3.2 MODELLING OF BLADE SEGMEhrIlS USING AVAILABLE BEAM FINITE ELFHENTS

Figure 3.1 shows a nonuniform blade element with the

coordinate system chosen. Oz is the engine axis and Oy and Ox

are the tangential and radial directions respectively. The minor

principal axis Oz* of the blade cross-section is inclined at an

angle 8 to the engine axis Oz. When this blade element is

considered to behave according to Euler-Bernoulli beam theory,

well known beam finite elements described by several authors

(78,79) can be used. In such cases, the element has four degrees

of freedom in each principal direction in bending and two in
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torsion. These are, as shown in Figure 3.1, VP, I);, vs and

$5 in bending along the minor principal direction, wp, 02, w$

and 05 in bending along the major principal direction and 6,

and $2 in torsion. Since there is no coupling between bending

in the principal directions and between bending and torsion, the

element matri.ces are not coupled. Therefore corresponding to

the displacement vector,

the element stiffness and inertia matrices are given by

q1

Dql

where I#* and fj* are defined as

**z-g* and 0*=-

@I and [ql are the bending

aw*
ax

(3.2)

(3.3)

stiffness and inertia matrices

along the minor principal direction, .[I(bw] and [g] are the
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b,ending stiffness and inertia matrices along the major principal

direction and [<I and @I are the torsional stiffness and

inertia matrices. Matrices $1 and [c] are identical and

can be defined by the matrix rq1 in which appropriate values

of moment of inertia corresponding to the required direction

should be used. Matrices [$I and [Yi] are the same when

rotary inertia is ignored and can be defined by the matrix rQ*

In Tables 3.1 and 3.2 matrices ($1, @I, I<1 and

@I are given for a beam element when linear variations of the

moment of inertia I, the area of cross-section A, the torsional

stiffness
KG'

and the polar moment of inertia J are assumed.

3.3 EFFECT OF ROTATION

The additional terms arising in the energy expression

of a blade element rotating with angular velocity s1 are given

by (90)

x2
/ A 0.1 (*)' +'Cav)') d

x2

X aX
L pQ2 I A (v)~ dx

ax x-2
xl x1

x2
+ $ Jox J (z)2'dx - $

x2
1 (I~~-I~~~)(~)~ cos 26 dx

x1 x1

(3.4)

where ux is the stress along the length of the blade resulting
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from rotation. It should be noted that since Oz is the engine

axis and Oy the tangential direction,

are perpendicular and parallel to the

ming the deflection functions,

v(x) = al + a2x + a3x2 + a4x3

WGrl  = a5 + a6x + a7x2 + agx3

the deflections w and v

plane of rotation. Assu-

(3.5)

4(X) = a9 + alOx

which are used to derive the basic beam matrices given in Tables

3.1 and 3.2, and substituting in the above strain energy equation

we arrive at the additional stiffness matrix corresponding to

the deflection vector

as

(3.7)
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where

[Q-l,

and

‘1 x1 4: x; 0 0 0 0

0 -1 -2x1 -3xf 0 0 0 0

0 0 0 0 1 x1 x; x;

0 0 0 0 0 -1 -2x1 -3x;

0 0 0 0 0 0 0 0

1
2 3

x2 x2 x2 0 0 0 0

0 -1 -2x2 -3x; 0 0 0 0

0 0 0 0 P x2 x; x;

0 0 0 0 0 -1 -2x2 -3x;

0 0 0 0 0 0 0 0
I-

[<I =

0 o-
0 0

0 0

0 0

1 x1

0 0

0 0

0 0

0 0

1
x2

where the matrices [kt], [kz] and [k:] are given below.

0 0 0 0

0 RO 2R1 3R2

0
2Rl

4R2 6R3

0 3R2 6R3 gR4

(3.8)

(3.9)

(3.10)
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In the above matrices

x2
Ri = f ux A xi dx and

xl

and

Kk;l = sO

where

2Rl+S3 3R2+S4

4R2+S4 6R3-kS5

(3.11)

x2
s, = - p Q2f A xi dx (3.12)

x1
J.

_

sl
(3.13)

Ro+S2 _

x2

Ri
= Z ux J xi dx

x1 x2
si = - p I;)r2 cos 26 r (Imax-Imin) xi dx

x1

(3.14)

J = "m,+Imi,

It is perhaps worth noting that the deflection vector

{qb) given by Equation 3.6 is different from'(qt) given by

Equation 3.1. The bending displacements and rotations in vector

(qb 1 are measured along the engine axis Oz and tangential direc-

tion Oy, whereas those in vector' {qg) are measured along the

. /
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principal directions Oz* and Oy*. The torsional displacements

in both cases are the same and are along the Ox axis. Since

the angle 6 between these two sets of coordinates vary along

the length of the blade the individual element matrices given

by Equation 3.2 should be transformed to the Oz-Oy coordinates

before adding the additional stiffness coefficients derived

in this section. This transformation is discussed in some

detail in section 3.5.

In evaluating the integrals given by Equations 3.12

and 3.14 linear variations in I, A, ux and J can be assumed

within the element. For a uniform beam element the additional

stiffness matrices for bending parallel and perpendicular to

the plane of rotation and for torsion are given in Tables 3.3

to 3.5, in closed form.

3.4 EFFECT OF TRANSVERSE SHEAR AND ROTARY IMXTIA

In this section a new beam bending finite element

which is compatible with the Thick Disc Element-l, developed

in chapter 2, section 2.4.1, is developed. In the develope-

ment of this element transverse shear and rotary inertia are

included, and in addition to the transverse deflection and

rotation the additional rotation due to transverse shear is

also taken as a degree of freedom in each node. Thus the

element has six degrees of freedom.
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Although two other Timoshenko beam finite element

models developed by Archer (77) and Kapur (128) are available

these are not compatible with the annular Thick Disc Element-l

and thus these are not used here. It turns out, in fact, that .

the beam element derived hereunder is a marginal improvement

in terms of convergence over those of Archer and ICapur.

Figure 3.2 shows a nonuniform blade element with the

coordinate system chosen. Here again the minor principal axis

'Oz* is inclinedto the engine axis Oz at angle 6. The degrees

of freedom of the element along the principal directions are

shown in Figure 3.2. The rotations $* and $* in this case are

defined as

** = _ z*+ y” and g* =
V

- $$. + y*
W

(3.15) -

where
G

and y$ are the additional rotations due to trans-

verse shear corresponding to the minor and major principal

directions.

Since, in our case, there is no coupling between

bending in the two principal directions, the bending stiffness

matrices [I$1 and [GJ and the inertia matrices [$I and

[%J are similar to each other except that in each case

corresponding values of section properties are used. Hence the

stiffness and mass matrices for the minor principal direction
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only are dcrfved here.

The strain energy and the kinetic energy in an

element of the blade, shown in Figure 3.2, for the Imin direc-

tion, when transverse shear and rotary inertia are also

considered, are

x2 x2
u = $ / EImin($*)2 dx + $ / kGA

x1 x1

where

Y; - rotation due to shear,

k - shear constant?,

A - area of cross-section of blade

and
x2

3 / pA (g*)2 dx + $
x2

T = ' 'Imin
($*)2 dx

x1 x1

(3.16)

(3.17)

Assuming the deflection functions

v”(x) = al + a2 x -t- a3 x2 + a4 x3

(3.18)
y:(x) - a5 + a6 x

t In view of difficulty in calculating k for an aerofoil section

a value of 5/6 corresponding to a rectangular section is used.
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and substituting in Equations 3.16 and 3.17, we arrive at the

stiffness and inertia matrices of the element for the Imin

direction as

[$J = [BblT [$) [Bb'J

and

[<I = [BblT [<I rBbl

corresponding to the deflection vector

[Bb]-' = '

[$I =

2 3
x1 x1 x1

-1 -2x1 -3x;

0 0 0

2 3
x2 x2 x2

-1 -2x2 -3x;

0

0

0

Symmetrical

0 0

.O

0

4R0

0

0

12Rl

36R2

0

x1

x1

0

x2

x2
I

0 0-

0 0

0 -2R0

0 -6R1

sO s1

Ro+S2
-

(3.19)

(3.20)

( 3 . 2 1 )

(3.22)
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In the above matrix

x2 x2

Ri = / EImin xi dx and S =
i

/ kGA xi dx

xl x1

and

S<l =

‘so 3 s2 s3
0 0

ROCS2
2Rl+S3 3R2+S4 -R. -R1

4R2+S4 6R3+S5 -2Rl -2R2

-3R3
Symmetrical

9R4+S6 -3R2

RO R1

R2

(3.23)

(3.24)

v-

In the above matrix

x2 x2
Ri = J' pImin xi dx and Si = J' pA xi dx

=1 x1

(3.25)

The stiffness and inertia matrices of the element for

the Imax direction are derived similarly and are given by

IQ = IBblT IgJ lBbl

and (3.26)

IBblT [<I IBbl
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The matrices [gl and [<J are given by Equations 3.22

and 3.24 when Imfn is replaced by Imax'

Linear variations within the element of the area A,

I
min'

Imax, KC and .I of the blade section can be assumed requir-

ing the values to be known only at the nodes. For an element

of uniform section the stiffness and mass matrices are given in'
.

closed form in Tables 3.6, where I is either I
min

or I
RElX

depending on the direction considered. R is the length of the.

element, and p is the radius of gyration for the particular

direction considered.

The following displacement boundary conditions should

be applied when this element is used. For the Imin direction:

Simply supported edge +-0

Clamped edge urc=o; lJ*=o . _.
Free edge J$ = 0

-.
e .i ”

3.5 VIBRATION ANALYSIS OF PRETWISTED BLADES

When the blade is pretwisted it is modelled with

straight elements staggered (inclined) at an angle B to the

engine axis.' For any particular element 6 is the average

pretwist angles of the actual blade measured at the two nodes

of the element. Figure 3.3 shows a pretwisted blade and the

finite element model with two straight elements.

In this case the individual element stiffness and

inertia matrices [%J and IT], given by Equation 3.2, which

correspond to the deflection vector {q*) whose elements are
b

. measured along the element principal directions, should be
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transformed to the engine axis (Oz-Oy coordinates). This

requires a rotation matrix [R] relating‘{qg] a n d ’  Iqb]

Iqb*) = [RI is,) (3.27)

Making use of the above relationship the stiffness and inertia

matrices corresponding to the deflection vector 1qb3 are

given by

W = [RIT [R$ [RI

and (3.28)

ry = [RIT [lf$l [RI

Once this transformation is done the element matrices can be

assembled to get the blade system matrices W
and [M,J .

Additional stiffness coefficients resulting from rotation

should be added to these matrices only after this transformation.

Figure 3.4 gives the relationships between coordi-

nates appearing in the displacement vectors (q*] and (qbJ.b

Making use of these relationships the rotation matrix [RJ

is obtained. When transverse shear and rotary inertia are

ignored the relationship between the deflection vectors

{qt J and {q,] becomes
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(

where

_
C

0

0

0

-s

0

0

0

0

0

c = cos 6 and s = sin 6

or

0

C

0

0

0

-S

0

0

0

0

S

0

0

0

C

0

0

0

0

0

0

S

0

0

0

c

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

C

0

0

0

-S

0

0

0

0

0

0

C

0

0

0

-s

0

0

0

0

S

0

0

0

C

0

0

0

0

0

0

S

0

0

0

C

0

0

0 ’

0

0

0

0

0

0

0

0

1
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.

3

$1

w1

Ol

%

v2

$2

w2

O2

42

(3.29)
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Rearrangement of variables in {c+) is carried out to facilitate

assembling the complete blade matrices. When transverse shear

and rotary inertia are included in the analysis, then

;: 0 0

0 c 0

0 0 c

0 0 0

D 0 0

3 0 0

-s 0 0

3 -s 0

3 0 -s

3 0 0

1 0 0

1 0 0

I 0 0

1 0 0

s 0 0 0 0 0 0 0 0 0 c

osooooooooc

oosoooooooc

0 0 0 0 c 0 0 s 0 0 c

o’oooocoosoc

0 0 0 0 0 0 c 0 0 s 0

c 0 0 0 0 0 0 0 0 0 a

0 c 0 0 0 0 0 0 0 0 0

0 0 c 0 0 0 0 0 0 0 0

0 0 0 0 -so 0 c 0 0 0

0 0 0 0 0 -s 0 0 c 0 0

0 0 0 0’0 0 -so 0 c 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 01

(3.30)

vl

$1

YV I

WI.

e1

YWl

%

v2

$2

Yv2

w2

e2

Yw2

$2
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where

c = cos 6 and s = sin 6

or

3.6 NUMERICAL APPLICATIONS

Numerical results are presented, in this section,

which show the effects of rotation, transverse shear and rotary

inertia and pretwist on the natural frequencies of

rectangular blades.

uniform

(A) . First, the variation of the first three nondimensional

AL4
frequencies A = w EIk-- of a uniform rectangular blade with the

nondimensional rotation R* = fi
k--
Xi?-
EI

, and the influence of R/L

ratio, where R is the radius at the root and L .is the length

of the blade, on these frequencies, were studied. Values of x

for vibration (a) out of plane of rotation and (b) in the plane

of rotation, calculated using four elements, are given in

Tables 3.7 to 3.12. In these calculations, the additional

stiffness coefficients given in Tables 3.3 and 3.4 are addedto

the beam bending stiffness matrix.

Boyce (129) has calculated upper and lower bounds

of X for vibration out of plane of rotation for a few values
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of R/L ratios. In Figure 3.5, values of X calculated with

four elements have been plotted against the nondimensional

rotation Q* for the value of R/L = 0.1. Only the first two

modes of vibration are considered. The upper and lower bounds

given by Boyce for this case lie close to the finite element

curves.

(B) Next, the effect of transverse shear and rotary

inertia on the natural frequencies of a uniform rectangular

beam was studied using the new Timoshenko beam finite element

developed in section 3.4. A value of k = 0.667was used and

the ratio u/L, where n is the radius of gyration and L the

length of the beam, was chosen to be 0.08. Nondimensional

frequency parameter X = w
/-
PAL4EI for a simply supported beam

and a cantilever beam, computed using 1 to 6 element models

are given in Tables 3.13 and 3.14 along with exact solutions.

These results demonstrate the accuracy and convergence of the

elements used. Results obtained by Kapur (128) and Archer (79)

are also given for comparision in Tables 3.15 and 3.16. In

Figures 3.6 and 3.7 percentage error versus number of degrees

of freedom have been plotted for these three beam models.

cc> Finally, the efficiency of modelling twisted blades

using untwisted beam elements was studied. Dokumaci et al (85)

have used beam elements in which pretwist is incorporated, for

this problem. They have. computed frequency parameters A,4_ w2pAL4-
RImin
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for uniform rectangular twisted beams. Here values calculated

using untwisted beam elements are compared with those of

Dokumaci et al and those given by Anliker and Troesch (82) and

Slyper (84). It is seen from the results in Table 3.17, that

when the number of elements is increased the results converge

rapidly to those given by Dokumaci et al indicatingthat in

practical problems use of untwisted beam elements in modelling

twisted blades would be satisfactory, thus avoiding the additional

complication involved in formulating the beam element which

incorporates pretwist.
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ANALYSIS OF COUPLED BLADE-DISC VIBRATION IN AXIAL FLOW TURBINES

4.1 INTRODUCTION

The vibration of a bladed rotor is found to be similar

to that of an unbladed disc. The rotor oscillates in a coupled

blade-disc mode which is also characterised by diametral and

circular nodes, Figure 4.1. The blades, being constrained in the

disc at the rim, will vibrate in bending motion at diametral

antinodes, in torsional motion at nodes, and in combined bending-

torsion elswhere, Figure 4.2. The circular nodes may lie in the

disc, but will more commonly be located in the blades.

A method of analysis is developed in section 4.2 for

bladed rotors with a large number of identical blades. The blade

loading on the rim are assumed to be continuously distributed

around the rim. With this assumption, formulation of an exact

method of analysis is possible for rotors of nonrotating simple

configurations. This method utilizes the exact dynamic stiffness

coefficients for the disc, rim and the blade, and is detailed

in section 4.3.

For rotors of more general geometry, a finite element

method is developed, in section 4.4, which utilizes the annular
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plate bending element for the disc and the conventional beam

element for the blades. This method includes the effect of a rim

and torsional distorsions in the blades, which are ignored by

other investigators (118,120). Effects of rotation, temperature'

gradient and other in-plane stresses are also considered. The

method is then extended to include transverse shear and rotary

inertia both in the disc and blades.

A number of numerical studies are presented, in section

4.5, which examine critically the accuracy and convergence of the

calculated solutions by

bladed rotors of simple

4.2 METHOD OF ANALYSIS

comparision with experimental data for

and complex geometry.

4.2.1 System Configuration And Deflections

Figure 4.3 shows the idealized model of the rotor and

for analysis purposes the rotor is considered as three distinct

subsystems.

(1) The disc web described by thin plate theory,

(2) The disc rim treated as a solid compact ring,

(3) The array of blades, each of which is considered to

behave as a beam described by Euler-Bernoulli theory.
‘.

Ignoring torsional vibration of the system about the oz axis and
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considering only the flexural vibration, the coordinates shown in

Figure 4.3 areassumedto describe the distortions of the subsystems.

Considering stations 1,2,...,i  in the disc as shown in

Figure 4.3 the deflection V ector for the disc is written as

(4.1)

Considering only the centroidal distortions of the rim, the

deflection vector for the rim is written as

For the blade with stations k, k+l, . . . . the deflection vector

is written as

=
wj (6)

[ 1Bj ts>
(44.2)

f
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rqp3 =

-
v,(S)

$p

vk+l(s)

'k+l")

.

.

.

wk(E)

‘kCr;>

wk+lcs)

'k++)

.

.

.

%+P

.

e

.

(4.3)

Consider the system vibrating with m nodal diameters. If 5 is

the angle measured from a reference diametral antinode, then for
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the disc subsystem,

{q,(S>) =

--

.

. cos mS = {T&j  cos rnS (4.4)

where w1, or, . . . etc are the amplitudes of vibration at the

reference antinode. Similarly for the rim

w.
h@H = J

i 1 cos rn& = '{qk} cos mS
s
j

(4.5)

The blades are assumed to be fixed to the rim and are

thus constrained to retain their orientation at the root. The

flexural axes are assumed to coincide with the centroidal axis and

hence there is no coupling between bending and torsion within the

blade. Then a blade at an antinode is displaced in bending only

as shown in Figure 4.2. However because of blade stagger, or

in general, because of the pretwist in the blade, bending may

take place in both axial and tangential planes. A blade at a node

is displaced in torsion only. Blades at any other angular locations

experience both bending and torsion. Thus the deflections of a

blade at an angle may be written as .



r Vk co9 rnS
1

is, ts)

Tk cos rn{

.

.

.

-

I wk cos me
I

Tk cos rn4

.

.

.

Tk sin rn5

l

.

.

L

where

[RJ =

c [RI’ $3 (4.6)

(407)

where [CJ and [S] are diagonal matrices with diagonal terms

cos mS and sin mS respectively, and vk, s
k '

. ..) wk’ ‘-“”

are the bending amplitudes of the blade at the reference diametral

antinode, while 7k,"' are the twisting amplitudes of the blade

at a diametral node.
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4.2.2 Dynamic Stiffness Of The Subsystems

The individual dynamic stiffness matrices are directly

used for the disc and rim subsystems. Thus,

and (4.8)

where [DD] 9 [!$,I and [MD] are the dynamic stiffness, stiffness and

mass matrices respectively of the disc corresponding to the
-

deflection vector {q,) and [DR] , [I$] and [
MR

] are the corres-

ponding matrices for the rim with respect to the deflection

vector '{q ]R -

The dynamic stiffness matrix [D,] for the vibrating

array of blades may be obtained from the stiffness and mass matrices

151 and [$I of a single blade in the following manner, provided

we assume sufficient number of identical blades to be present on

the rotor, such that the resulting loading on the rim can be

dered to be continuously distributed in a sinusoidal pattern

consi-

around

the rotor as shown in Figure 4.2. This condition is likely to be

satisfied in typical rotors vibrating-in modes involving low numbers

of nodal diameters.

The dynamic stiffness relation for a blade vibrating

at a frequency w and located at a polar angle 5 from the reference
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antinode is

{Q,(c) 1 = [ [I$1 - u2 1~1 1 Iq,(c) 1 (4.9)
_-

where {q,(S)} is defined by Equation 4.3 and {Q,(c)) is the

corresponding force vector. It should be noted that matrices

TJ and D$l are independent of 5 .

Assuming that the blade loading on the rotor to be

continuously distributed, the total energy, strain energy and

kinetic energy, of the vibrating blades between the angles 5

and 5 + 65 is

dE = 'T- & $.$)) T 1. tKBl - w2b$]  ] (q,$)} dc

where 2 is the number of blades in the rotor. Substituting

for {qg} from Equation 4.6

dE =_ $A $}T [RJT 1 [I$$ - u2P$1 1 [RI $1 dS

Integrating between the limits C; = 0 and 5 = HIT we get the

total energy
,

where

(4.10)

C =2 if m=O; and C = 1 if m 2 1

Hence the required dynamic stiffness matrix of the vibrating array
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of blades corresponding to the deflection vector'{TDI is

(4.11)

4-2.3 Dynamic Coupling Of The Subsystems

The dynamic stiffness relation for the complete rotor

system is obtained by combining the individual relations for the

disc, rim and blade subsystems, taking into account the compati-

'bility requirements at their boundaries.

The torsion of the blade at the root, g,(c), is

related to the axial deflection wk(c); thus

m -= _-
R

wk sin mS

Therefore

q = _ ; Wk (4.12)

where R is the radius of the blade-rim attachment.

The remaining relations ensure compatibility between

the three subsystems and hence depend on the nature of blade

fixing. With the commonly used dovetail or fir-tree attachment

cantilever blades can be assumed and in such cases the following,

relations hold.

b
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WZ” _
k

‘Fj
j e2 j

Gk= 0

Tk = 0

where el
and e2

are the distances from the rim centroidal axis

to the disc-rim junction and blade-rim junction respectively,

Figure 4.3. Considering such cantilever blades all the coordinates

at stations j and k can be conveniently described in terms of

;5i and s, with the
L

- -

“j
iT
j

5
k

'k

wk

'k

'k

=

1

0

0

0

1

0

m_-
R

Th_is relationship is sufficient to allow assembly of the dynamic

following transformation relations.

- e
1

1

0

0

-Cy+e,)

1

$e,+e,)

-
“i

[ 1i
(4.13)

stiffness matrix of the coupled blade-rim-disc system.

r
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4.3 EXACT SOLUTION OF NON-ROTATING ROTORS OF SIEIBLE GEOMETRY

When non-rotating rotors with uniform disc and uniform

blades are considered, exact dynamic stiffness matrices for the

disc, rim and blades can be derived. This resulting solutions

are exact in so far as thin plate theory, Euler-Bernoulli beam

theory and the assumption of continuous blade loading hold true

and are useful in examining the accuracy and convergence of the

finite element solutions.

In such cases the disc dynamic matrix [D,] need be

derived with respect

radial slope 7i at

node. Thus the disc

coordinates.

F- -7
-

IqD3 =
wi

i 1%

to only the axial deflection wi and the

the outer boundary along the reference anti-

deflection vector has only two generalised

(4.14)

The derivation of the (2 x 2) dynamic stiffness matrix for a

uniform annular disc with its inner boundary fixed and the outer

boundary free is given below. Similar matrices for other boundary

conditions at the inner boundary.can  be readily derived.

4.3.1 Dynamic Stiffness Of The Disc

The deflections wi(S) and' 0,(S) have associated

forces, corresponding to sinusoidal distributions of shear force



and bending moment around the rotor, and which may be related to

the deflections by a dynamic stiffness matrix for the case of a

uniform thickness disc, either by inversion of the corresponding

receptance matrix relation given by McLeod and Bishop (42), or

directly as follows.

Consider a thin annular disc, of uniform thickness h,

clamped at the inner radius a, and subjected to transverse shear

force Vi cos rnE eiwt and radial bending moment Mi cos rnS e
iwt

around the outer radius b. The governing differential equation is,

V4 w(r,c) + ph a2 { w(r,E)} = 0 (4.15)

where w(r,c)

mass density,

lJ atL

is the transverse deflection, p is the material

and D is the flexural rigidity.

For the case being considered the solution of this

equation is

wCr,S) = [ PJm(kr) + Qym(kr) + RIm(kr) + SKm(kr) ] cos mS

= W(r) cos me (4.16)

where

w - vibratory frequency in rad./second,

&> - amplitude at an antinode,

J,,Y, - Bessel functions of first and second kind of

integer order m, ’
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I,sK, - modified Bessel functions of first and second

kind of integer order m

k-C+,02 ,1/4

Using the sign convention established in Figure 4.3

8 =

Mr =

M =
rS

Qr=

V=

_E
ar

+L_&L+.z 2x1
r2 ar ac2 r3 a62

(4.17)

Substituting for w(r,c) from Equation 4.16,

eCr,S)

Mr(r, E>

=- I PAl(kr) +

= SCr) cos rn5

=- [ PA$kr) +

= Kr(r) cos mF;

QA2(kr) + RA3(kr) + SA4(kr) ] cos rn5

QA6(kr) + RA7(kr) + SA8(kr) ] cos mT



107

V(r,C) = - D [ PA9(kr) + QAIO(kr) + RAll(kr) + SA12(kr) 1 cos mS

= Y(r) cos mS (4.18)

where Ai through A12 are linear combinations of the Bessel functions

of order m and m-I-1, given in Table 4.1. Applying the boundary

conditions

wca,s) = 0 6Ca,S)  = 0

W(b,E1 = w,Cs) ~Cbb,E) = e,(c)

NW) = Vi(s) Mr(W) = M&S)

and using Equations 4.16 and 4.18 gives,

= [Dl
wp -

[ I cos mS
ep

(4.19)

where [D] is the matrix given in Table 4.2

Consider 'a unit displacement vector is imposed

at the reference antinode, at the outer boundary, then following

standard procedure the associated force vector will be,

‘i .
[ 1 2n

i / IDI cos2 rnS b d-5
Mi

0
(4.20)
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where

= Cn b [D]

C = 2. if m=O and C = 1 if rnzl

Thus the required dynamic stiffness matrix is given by

(4.21)

4.3.2 Dynamic Stiffness Of The Rim

The formulation of the exact dynamic stiffness relat-ion

for the rim, treated as a thin ring is well known (l30). For a

thin ring vibrating at frequency w with m nodal diameters, when

shear deformation and rotary inertia are neglected, it takes

the form,

[;] = ID,] [;] (4.22)

where IDRJ is the dynamic stiffness matrix of the ring and is

given in Table 4.3.

4.3.3 Dynamic Stiffness Of The Blade Array

When we consider uniform untwisted blades, the dynamic

stiffness relation for a single blade vibrating with frequency w
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and located at an angle 5 from the reference antinode is

{Q,} p [Dbl {qk)

where

{qk) =

Vk

'k

wk

and the matrix [Db] is given in Table 4.4.

In Table 4.4

E,G -

11' I2 -

6

Kc -

(4.23)

elastic moduli,

principal minimum

area of the blade

and maximum second moment of

cross-section respectively,

stagger angle; angle between the engine axis 0s

and the Imin direction, Figure 3.1

St. Venant torsional stiffness of the blade

cross-section,

and
7

(w-p)
l/4

'1 = EIl

w2p F4C-'2 = EI2

. ,
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x3

P

J

R

X (--J )1/z
GKG

- mass density of blade material,

- mass polar moment of inertia of blade section,

- length of blade.

The matrix [Db] is of size ( 5x5 ), since only the five

displacements at the root of the blade are involved. This matrix

is readily obtained from the receptance relations tabulated for a

free-free beam, (131), transformed from local principal axes,

through stagger angle 6 to the coordinate system used here.

From Equation 4.11, the dynamic stiffness matrix for

the array of blades is obtained by multiplying that of a single

blade by C 5, where Z is the number of blades in the rotor.

Hence the dynamic stiffness matrix for the array of blades is

ED,] = C f [Dbl (4.24)

4.3.4 Dynamic Stiffness Of The Disc-Rim-Blade System

The dynamic stiffness matrix for the complete rotor

system is obtained by combining the individual matrices for the

disc, rim and blades, taking into account the compatibility

relations given by Equation 4.13. The result is a ( 2x2 ) dynamic

stiffness relationship

A non-trivial solution

involving only the deflections wi and ii

is obtained when the determinant of this
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matrix is zero, and corresponds to the natural frequencies of

the system. For numerical calculations the zeros of the deter-

minant are sought by iterating with the frequency w as the

variable.

4.4 FINITE ELEMENT SOLUTION OF ROTORS OF GENERAL GEOMETRY

For rotors of general geometry with arbitrary discs

and pretwisted nonuniform blades numerical procedures are adopted

to obtain the subsystem dynamic stiffness matrices D,l and

ID,1 of the disc and the array of blades respectively. The

annular plate bending finite elements developed in chapter- 2

can be readily used here.

4.4.1 Dynamic Stiffness Of The Disc-Rim-Blade System Neglecting

Transverse Shear And Rotary Inertia

The method of analysis.described here utilizes the

finite element models developed for the disc and blade in section

2.2 and 3.2. Thus the matrices
W and IsI of the disc

subsystem appearing in Equation 2.28 are directly used in the

dynamic stiffness relation

.-.
{Q,) = 1 [%I - 02k$l 1 {;T,,

(4.25)
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matrix is zero, and corresponds to the natural frequencies of

the system. For numerical calculations the zeros of the deter-

minant are sought by iterating with the frequency u as the

variable.

4.4 FINITE ELEMENT SOLUTION OF ROTORS OF GENERAL GEOMETRY

For rotors of general geometry with arbitrary discs

and pretwisted nonuniform blades numerical procedures are adopted

to obtain the subsystem dynamic stiffness matrices [D,l and

1DBl of the disc and the array of blades respectively. The

annular plate bending finite elements developed in chapter 2

can be readily used here.

4.4.1 Dynamic Stiffness Of The Disc-Rim-Blade System Neglecting

Transverse Shear And Rotary Inertia

The method of analysis.described here utilizes the

finite element models developed for the disc and blade in section

2.2 and 3.2. Thus the matrices
%i' and IsI of the disc

subsystem appearing in Equation 2.28 are directly used in the

dynamic stiffness relation

(4.25)



I

li2

Similarly for the array of blades matrices
[rgl

and [MB] from

Equation 3.2 are used here, thus,

III this analysis, the stations 1,2,..., i considered in section

_.4.2.1 are the finite element nodes in the disc subsystem and hence

'the disc deflection vector (1,) is given by Equation 4.4. Similarly

the stations k, k+l,... consIdered in section 4.2.1 are the finite

element nodes in any of the blades and hence the blade subsystem

deflection vector {q,) is given by Equation 4.6.

The number of degrees of freedom in each of these sub-

systems depend on the number of elements used in each case. The

constraint conditions given by Equation 4.13, now gives the relation-

ships between the degrees of freedom at nodes i,j and k, where

j is the centroid of the rim. In this analysis, for the rim, the

dynamic stiffness relation given by Equation 4.22 is used. The

subsystems are coupled satisfying the relations given by Equation

4.13 and the following dynamic s.tiffness relation for the entire

system is obtained.

-
IQ,} = I [KS1 - u2[Msl 1 {1,, (4.27)
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When free vibration of the system is considered Equation 4.27

reduces to an algebraic eigen value problem, which may be solved

by any of the standard procedures. It should be noted that, here,

as in the disc alone vibration problem, a set of eigen value ’

problems result, one for each diametral mode configuration.

The use of the annular element for the disc makes it

possible to effectively model discs with any arbitrary radial

profile. Moreover, the initial in-plane stresses resulting from

rotation and radial temperature gradient and other loading can

be computed and their effect on the vibration frequencies of the

system can be taken into account. Similarly variation in section

properties of the blades, pretwist in the blades, and the effect

of in-plane stresses in the blades are readily included.

4.4.2 Dynamic Stiffness Of The Disc-Rim-Blade System Including

Transverse Shear And Rotary Inertia

In practical rotors the disc is moderately thick and

the use of methods based on thin plate theory may not result in

satisfactory analysis. Therefore, the finite element method of

analysis developed is now extended to include transverse shear

and rotary inertia, both in the disc and blades.

This analysis is very similar. to the one described

in section 4.4.1 above for bladed rotors, except, now the rim,
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if present is considered to be a part of the disc. Hence, the

whole rotor system is divided into two subsystems.

(1) The disc and rim subsystem described by Mindlin's

plate theory,

(2) The array of blades, each of which is considered to

behave as a beam described by Timoshenko beam theory.

The annular Thick Disk Element-l, developed in chapter 2,

section 2.4, is used to model the disc and rim. The blades are

modelled with the Timoshenko beam element described in chapter 3,

section 3.4, Hence each station in the disc has four degrees of

freedom and at station i these are, Figure 4.4,

(4.28)

Each station in the blade has seven degrees of freedom and at

station k these afe,

When the subsystems are connected

relationships between the degrees of freedom

exist, and these should be satisfied

together, the following

at stations i and k
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(4.30)

4.5.1 Comparision Of Exact And Finite Element Solutions For Simple

Nonrotating Rotors

The validity and accuracy of the analysis developed in

sections 4.3 and 4.4 have been assessed by comparing numerical

results of the coupled frequencies with experimental data on three

simple nonrotating bladed disc models. For the first two models

experimental data were obtained by Mr. R. W. Harris, a senior under-

graduate student at Carleton University. The third model is that

used by Jager (120).

All these models are of mild steel and comprise uniform

thickness annular discs clamped at the inner radius and uniform
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untwisted rectangular blades cantilevered at the outer boundary

of the disc or rim. The blades are set at a stagger angle 6 = 45"

in models I and II, and at d = 50" in model III. The dimensions.

and other details of these models are given in Table 4.5. A rim

1s present in models I and II, but absent in III. The first six.

cantilevered blade alone frequencies of these models are given in

in Table 4.6. For models I and II experimental measurements of

frequency were made by exciting the models using an electromagnet.

A barium titanate accelerometer probe was used to.detect resonance

,and to identify mode shapes. Figure 4.5 illustrates the vibrating

bladed disc models with sand pattern showing nodal diameters.

Coupled system frequencies of thesethree models were

calculated by finite element models comprising various numbers of

elements. These frequencies were also calculated using the &act

method. As already mentioned, these values are exact in so far

the assumption of continuous blade loadings on the rim is valid.

Also certain tolerances on the value of the determinant, which

should otherwise be zero, were necessary.. The results of the

finite element analysis should converge to the exact values as the

number of elements are increased.

The numerical results for models I and I-I are given

in Tables 4.7 and 4.8 along with experimental results. It is

seen that agreement between finite element, exact and measured

frequencies is excellent, and indeed that just two blade elements

and two disc elements yield the first three to four modes for any
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untwisted rectangular blades cantilevered at the outer boundary

of the disc or rim. The blades are set at a stagger angle 6 = 45"

in models I and II, and at 6 = 50" in model III. The dimensions.

and other details of these models are given in Table 4.5. A rim

1s present in models I and II, but absent in III. The first six.

cantilevered blade alone frequencies of these models are given in

in Table 4.6. For models I and 11 experimental measurements of

frequency were made by exciting the models using an electromagnet.

A barium titanate accelerometer probe was used to.detect resonance

.and to identify mode shapes. Figure 4.5 illustrates the vibrating

bladed disc models with sand pattern showing nodal diameters.

Coupled system frequencies of thesethree models were

calculated by finite element models comprising various numbers of

elements. These frequencies were also calculated using the exact

method. As already mentioned, these values are exact in so fin

the assumption of continuous blade loadings on the rim is valid.

Also certain tolerances on the value of the determinant, which

should otherwise be zero, were necessary.. The results of the

finite element analysis should converge to the exact values as the

number of elements are increased.

The numerical results for models I and I-I are given

in Tables 4.7 and 4.8 along with experimental results. It is

seen that agreement between finite element, exact and measured

frequencies is excellent, and indeed that  just two blade elements

and two disc elements yield the first three to four modes for any
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given nodal diameter configuration, with engineering accuracy

for these models. Convergence of finite element solution is rapid

and monotonic from above as expected.

The first six coupled system frequencies are plotted

against increasing number of nodal diameters in Figures 4.6 and 4.7

for models I and II. As the number of nodal diameters increases,

the combined frequencies should degenerate to the cantilevered

blade alone frequencies and this is seen to be the case from

these graphs.

In model III, which was used by Jager, no rim was present,

so that the blades overhung the disc at the point of attachment.

In Table 4.9 the numerical and experimental frequencies given by _

Jager are compared with the finite element and exact solutions.

Jager's numerical model comprised ten lumped masses in the disc

and ten lumped masses in the blades. Again it is seen that good

agreement is obtained between the various frequencies; more

important the efficiency of the finite element model is signifi-

cantly better than that of the lumped mass model. The increasing

divergence between calculated and measured values for the higher

modes may result from the incomplete attachment of blades to disc,

since the blade chord is much greater than the thickness of the disc.
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4.5.2 The Effect Of System Parameters On The Frequencies Of

Simple Nonrotating Rotors

It would be useful, as in most of the other engineering

problems, to nondimensionalize the system frequencies of the bladed

disc. In view of the unusually large number of parameters involved

this is extremely difficult. Alternatively the variation of the

frequencies with respect to a selected number of parameters, which

would give some qualitative insight to the problem, may be studied.

These parameters may be chosen to suit particular situations.

As an example,

meters on the frequencies

meters considered are,

(1)

(22)

(3)

a
b

ratio, where

the effects of the following three para-

of a bladed disc are studied. The para-

R is the length of the blade and b is

the outer radius of the disc,

blade aspect ratio R , where db
db

is the chord of the

blade

stagger angle 6.

Seven different cases of the model were studied. In all

these cases the model comprises of an uniform disc with constant

inner radius and thickness. The blades, which are uniform and

untwisted, are cantilevered at the outer boundary of the disc with

a stagger angle. In order to minimise the number of parameters



119

the rim is omitted. The thickness to chord ratio is fixed at

8%, which is typical of compressor blading. Only the outer radius

b of the disc, the length R of the blade and the stagger angle 6

are changed independently. The number of blades in the model

depends on the chord of the blade, The various dimensions of the

model for the seven cases considered are given in Table 4.10,

and. the first four cantilevered blade alone frequencies in Table 4.11.

In all these cases the first four- system frequencies

were calculated with the exact method for m =2to6. These

b
frequencies w are divided by the first blade alone frequency wl

and the ratio 2 are given in Table4.13. Figures 4.8 to 4.10
b
Y

show the variation of the first system frequency and Figures 4.11 to 4.13

the next three frequencies with respect to the three system para-

meters chosen.

From Figures 4.8 and 4.ll it is seen that when the value

of a
b

is low, in other words when the blades are shorter compared

to disc radius, the system frequencies are very low compared to the

blade alone frequencies, at lower numbers of diametral nodes, and

the vibration is controlled by the disc. These frequencies increase

in their values with increasing number of diametral nodes and con-

verge to the

considerable

of m .

blade frequencies. Therefore the influence of.disc is

when short blades are used, especially at lower values



From Figures 4.9 and 4.12 it is seen that when the

blade aspect ratio is lower the system frequencies are lower than

the blade alone frequencies. In all the three cases considered
\

L

the first blade frequencies are in bending in the Imin direction.

Therefore with increasing number of nodal diameters the system

frequencies converge to the first blade alone frequencies. But

the higher modes of vibration of the blades in the three cases are

different nature. Hence convergence of system frequencies are

to the individual blade frequencies in each case.

From Figures 4.10 and 4.l3 it is seen that for the first

mode of vibration the system frequencies are lower for lower values

of 6 , the stagger angle. But for the higher modes this is

reversed and the system frequencies are higher for lower values of

6 . In the case of first, second, and fourth modes, where the

blade frequencies are bending frequencies, the system frequencies

converge rapidly to the blade alone frequencies with increasing

values of m . But in the case of the third mode, where the blade

frequency is a torsional frequency, convergence is slow with

increasing value of m .

4.5.3 The Effect Of Rotation On The Frequencies Of Simple Rotors

When the bladed disc is rotating at speed, the centri-

fugal stresses developed both in the disc and the blades increase

the stiffness of the entire system and the natural frequencies of
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the bladed disc are substantially  modified.

In the finite element analysis of the bladed disc the

effect of rotation can be readily included, since additional .

stiffness coefficients for the disc and blade elements are available.

The stresses in the disc are calculated including the blade loading

at the rim. The frequencies of bladed disc model I were calculated

neglecting transverse shear and rotary inertia, but adding the

centrifugal stiffening effect when the bladed disc was considered

rotating at 3500 rpm and 7000 rpm, which are typical speeds of

rotors of similar dimensions; Unfortunately no experimental

or other numerical results are available to compare the results.

These results are given in Table 4.14, along with the results of

the stationary bladed disc. Comparision of results in Table 4.14

shows that variations in the frequencies are considerable at lower

modes of vibration for each diametral node configuration, whereas

frequencies of higher modes are not affected much.

4.5.4 The Effect Of Transverse Shear And Rotary Inertia On The

Frequencies Of Simple Rotors

The finite element method of analysis outlined in

section 4.4.2, which includes transverse shear and rotary inertia

was applied in the analysis of bladed disc models I and II. T h e

first six frequencies of each of the diametral node configuration,
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m = 2 to 6, obtained are given in Tables 4.15 and 4.16. These

results should be expected to be lower than those in Tables 4.7

and 4.8, which were obtained neglecting transverse shear and

rotary inertia in the analysis. Comparision of results in these

tables show this to be true except in the case of a few lower

modes when m = 2. This discrepancy is thought to be due to

the difference in the models assumed for the rim. In the earlier

case the rim is treated as a thin ring with constant radial slope .

from the inner to the outer boundaries. In the second case the

rim is assumed to be a part of the disc and hence its radial

slope can vary across the rim.

4.5.5 Calculated And Measured Frequencies Of A Complex Turbine Rotor

The finite element method of analysis developed for

bladed discs was also used to calculate the natural frequencies

of a complex turbine rotor. Experimental results and other data

for this rotor were provided by Dr. Armstrong of Rolls Royce (1971)

Ltd. The disc of the rotor is the same analysed in chapter 2,

section 2.4.2. The dimensions of the disc are given in Table 2.49.

Other details of the rotor are given in Figure 4.14. Section

properties of the blades are given in Table 4.17.

Since the computed frequencies of the disc alone were

satisfactory only when transverse shear and rotary inertia were

included in the analysis, here also these effects were considered.
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The blades of the rotor are of aerofoil section and have pretwist

and other complicatj.ng factors, and therefore the Timoshenko beam

finite element model used in the analysis should not be expected

to give accurate results for the blades. No torsional stiffness

data was made available for this aerofoil section; thus the effect

of blade torsion is necessarily neglected. The cantilevered blade

alone frequencies calculated with five Timoshenko beam elements

are given in Table 4.18. As expected only the first computed

frequency agrees closely with the experimental value.

The rotor was modelled with 6

and 5 Timoshenko beam elements. In both

of section properties within the element

of the finite element model are given in

Thick Disc Element-l

cases linear variations

were assumed. Details

Table 4.19. As mentioned

earlier, the error in most of the disc computed frequencies is

almost constant and is around 7%. This may be due to a higher

value of Youngs modulus E assumed in the calculations. Therefore

here the coupled frequencies were calculated using two different

values for Edisc' These results are given in Table 4.20 along

with experimental values. The first frequencies of each diametral

node configuration are in fairly good agreement with the experimental

results, Deviations in the second frequencies should be due to the

inadequacy of the blade model. Use of an improved blade model.should

improve the results considerably.
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CEAFTER5

SUMMARY AND CONCLUSIONS

In this investigation of the application of the finite

element method to the vibration analysis of axial flow turbines,

the following important novel techniques have been evolved.

(1) New finite elements for the flexure of complete thin

and moderately thick circular and annular plates (discs)

have been derived, and critically examined for static

and vibration problems.

(2) The formulation of these new disc elements has been

extended to include the effects of in-plane stresses

such as might result from rotation or thermal gradient.

This aspect of the work is also new.

(3) A novel method of coupling blade bending and torsional

vibration with disc flexural vibration has been formu-

lated, which is particularly effective when combined

with the refined modelling offered by the finite

element method.

(4) An exact solution for coupled vibration of bladed

rotors having simple geometry has been obtained.
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The significant advantages of these developments

are

(1) By making use of the axisymmetric properties of the

problem, the resultingmathematicalmodel is described

by a very small number of degrees of freedom compared

with other finite element techniques, with correspond-

ing savings in computer storage and time.

(2) The finite element method itself is known to demons-

rate higher accuracy compared with conventional

lumped mass models, due to a more correct description

of the inertia properties.

(3) A very refined mathematical model results, since

incorporation of varying thickness in these new

elements'is  readily achieved. With other available

finite element models, eg. sector elements, incor-

poration of thickness variation is difficult -

indeed formidable.

(4) The formulation of the vibration problem for the

disc or the bladed disc results in an algebraic

eigenvalue problem, and avoids the numerical diffi-

culties which often arise in the transfer matrix

methods with higher modes which have close frequen-

cies.

. /
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The accuracy and convergence of the methods developed

have been critically examined by comparision with exact and/or

experimental data in all cases, and the results obtained demons-

trate the reliability and potential of these methods. In general

these comparisions  show excellent agreement. The exception,

unfortunately, is the calculations carried out for the one complex

(real) turbine rotor, for which some experimental data was avail-

able, and which gave somewhat indifferent results. In this case

the blade model was clearly inadequate, and by comparision with

the precision demonstrated on other test cases, it must be

admitted that the disc alone results are also disappointing.

In fairness, it shouldbe pointed out that these experimental

data were obtained on a single test, and may not be represen-

tative of the nominal disc frequencies.' A standard deviation

in test results, amounting to 5% to 7% of the mean measured

frequencies is not unusual for bladed turbine discs. In the

authors opinion, this particular comparision, while disappoint-

ing, underlines the following further work necessary to clearly

evaluate and improve the precision of the present bladed disc

model:

(1) A need for further careful assessment of the calculated

frequencies by comparision with experimental data

on various complex rotors.

‘_ .,.-.



(2) A need for further refinement of the blade model,

to include, as a first step, coupling between

bending and torsional vibration within the blade

(shear centre effect).

127
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Modelled circular plate. (a) With one circular element
and two annular elements. (b) With a small central hole
and three annular elements.
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Figure 2.4 Percentage absolute error in the first six frequency coeffi-
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Figure 2.9 Thick Disc Element-l with'two nodal diameters and
associated degrees of freedom.
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Figure 2. 10 Thick Disc Element-2 with two nodal diameters and
associated degrees of freedom.
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Figure 2.11 Stepped circular disc and five element finite element

model.
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Figure 3.2 Blade element with associated degrees of freedom
when transverse shear is considered.
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Figure 3.3 Pretwisted blade modelled with two straight beam elements.
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Figure 3.4 Relationships between distortions along the principal
directions and the coordinate system chosen.
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(cl

Figure 4.2 Rim deflections and forces. (a) undeflected position.
(b) rim deflections. (c) blade shear force and bending
moment. (d) blade torsional moment.
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Figure 4.5 Sand pattern illustrating mode shapes of
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Figure 4.6 Variation of the first six coupled bladed disc
frequencies with nodal diameters, Model I.



168

8000

6000

2000

I? 1000

G
5

800

z
!k

600

400

2

- cantilevered blade a'lone
frequencies.

I ..-.~~__._____-______.  __..
j

n = 1

3 4 5

Nodal diameters

6

Figure 4.7 Variation of the first six coupled bladed disc
frequencies with nodal diameters, Model II.

c



lk9

0 . 9 6

0.92

3”
3

0.88

0.84

0.80
2

/

R/b = 0!51

I
w - coupled frequency

al - first blade alone frequen
_-----___~ - L_.

I

5

,CY

---

Nodal diameters

Figure 4.8 Influence of !?,/b ratio on the first coupled bladed
disc frequency.



170

0.9

0.8

0.7
rl

3
\
3

0.6

0.5

I

w - coupled frequency

- first-blade alone frequency

Nodal diameters

Figure 4.9 Influence of blade aspect ratio on the first coupled
bladed disc frequency.



0 . 9 8

0 . 9 6

0.95

- coupled frequency

% - first blade alone frequency

--_-----L__-_._
j --I-

-_---___+  __._._  __._--__-~._

I 1
i

2 3 4. 5 6

Nodal diameters

Figure 4.10 Influence of blade stagger angle on the first coupled
bladed disc frequency.



I
172

20.0

10.0

8.0

10.0

8.0

r-4
3 6.0
3

4.0

1.0
. . .-a .-. l -* .-,-

~_-..._~/~--.____-~~-__  _--/-_;

R/b = 0.51

I

Second mode

Third mode

Fourth mode

2 3 4 5

Nodal diameters

Figure 4.11 Influence of R/b ratio on the higher

6.

coupled frequencies.



I

0.8

0.6

0.4

10.0

8.0

6.0

. -.-

- Second mode

-a-.- Fourth mode

2 3 4 5 6
Nodal diameters

Figure 4k Influence of blade aspect ratio on higher coupled frequencies.

-



lf4

10.0

8.0

6.0

-z!==
3

4.0

-.-.
30",45",6O‘j

l -.~Y-.-
I

m o d eSecond

-0- Third mode

-M-.- Fourth mode

4
Nodal diameters

5 6

Figure 4.13 Influence of stagger angle on the higher coupled
frequencies.



Number of castellations = 113

Number of blades = 113

Figure 4.14 Details at the blade disc attachment of the turbine rotor.
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TABLE 2.2

Matrix [kd] of the thin plate bending annular element.

P_3(m4+2m2- P (m4-m2)
-2

2vm2)

I +1)

1
symmetrical

CITE
'2

Pi = / h3(r)r
i
dr

12(1-v2) rl,

P_l(m4-4m2)
I
Po(m4-7m2-

2vm2)

Po(m4-3m2- Pl(m4-4m2-

2vm2+2v+2) 6vm2+6v+3)

Pl(m4-2m2- P  (m4-m2-12vm2
2

6vm2+8v+8) +18v+18)

P3(m4+2m2-20vm2

+36v+45)
I

TABLE 2.3

Matrix [md] of the thin plate bending annular element.

.

Ql Q2 Q3 Q4

Q3 . Q4 Q5
Symmetrical

r2
= Cnp / h(r)ridrQi

rl

’ Q5 Q6

97
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.
TABLE 2.4

The deflection vector {qi] and the matrices [Bil, [kil and

[mi] ,of the thin plate bending circular element with m = 0.

0 0 0

0 P1(8vW P2(18v+18)

0 P2(18v +18) p3(36v+45)

.

Q2 Q4

Q5 Q6

Qti Q7

r2
/ h3(r)ridr ;

r2
E

= 2lT
pi .

Q = 21~ I ph(r)ridr
l2(1-v2) 0

i 0



.

179

TABLE 2.5

The deflection vector ic(l and the matrices [Bi], [ki] and

[mi], of the thin plate bending circular element with m = 1.

3
-2
'2

2_-
3

r2

1 0

L Q5

0

r

.I

'2

1_-
2

r2

0 0

Q4 Q5

Q5 Q6

Q6 Q7
I

r2
Pi = ITE / h3(r)ridr

r2

l.2Cl-V21 0
; Q-j_ = IT/ ph(r)ridr

0

:.
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TABLE 2.6

The deflection vector {qi) ant the matrices IBiI, [kil and

[III:] of the thin plate bending circular element with m = 2,4,6,...

2 I.-
2 r

r2
2

2 1_-
3 2

r2 =2

el(m4-2m2-6m2v

+8v+8)

P9(m4-m2-12m2v
L

+18v+18)
L

P2(m4-m2-12m2v

S18vi-18)

P3 (m4+2m&20m2V

+36v+45)

Q5

Q6
i

ITE
r2

Pi = / h3(r)ridr
12(1-G) ()

.,

Q6

Q7 1
=2 .?

= ITI phCr)rldrQi 0



TABLE 2.7

Non-dimensional frequency X of a uniform thickness circular plate;
simply supported at the outer boundary, calculated using thin plate
bending circular and annular elements. v = 0.33

Number of elements

1 2 121.75 104.15 102.91 102.82
3 219.32 193.34 177.44 176.89

0 30.62 25.85 25.66 25.65 25.70
1 77.67 70.50 70.17 70.06

2 2 180.00 137.58 134.54 134.33
3 237.44 219.23 211.99

0 68.07 58.42 56.93 56.88 56.85
1 145.01 122.79 121.80 121.66
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TABLE 2.8

Non-dimensional frequency X of a uniform thickness circular plate;
clamped at the outer boundary, calculated using thin plate bending
circular and annular elements. v = 0.33

m

6

c

n

Number of elements

10.25 10.22 10.22
40.25 39.84

115.15 90.12
161.71

21.27
61.10

121.69
218.37

34.91
85.21

156.19
273.86

69.83
141.22
245.65
388.00

128.22
437.52

114.77 114.25
210.92 206.33
345.70 317.24
518.53 448.94

.

Exact

8. (42)

10.22 10.24
39.78 39.82
89.18 89.11

158.64 158.26

21.26 21.25
60.85 60.84

120.25 120.12
199.91 199.09

34.88 34.81
84.63 84.64

154.13. 153.76
244.10 243.36

69.68 69.72
140.23 140.19
230.20 229.52
340.90

‘
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TABLE 2.9

Non-dimensional frequency X of a uniform thickness circular plate,
free at the outer boundary, calculated using thin plate bending
circular and annular elements. v = 0.33

umber of elements

0 47.19 46.92 46.83 46.81
1 171.67 126.29 122.42 122.28

6 2 263.69 213.50 211.81
3 494.18 339,32 321.17



183

TABLE 2.9

Non-dimensional frequency X of a uniform thickness circular plate,
free at the outer boundary, calculated using thin plate bending
circular and annular elements. v = 0.33

umber of elements

0 47.19 46.92 46.83 46.81
1 171.67 126.29 122.42 122.28

6 2 263.69 213.50 211.81
3 494.18 339,32 321.17
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TABLE 2.10

Non-dimensional frequency X of a uniform thickness annular plate,
simply supported at the outer boundary, calculated using thin plate
bending annular elements. v = 0.33 a/b = 0.001

0 131.44 101.16 98.21 98.04
1 1555.46 201.56 187.62 184.12

6 2 3441.95 438.60 303.66 289.28
3 4742.59 451.86 415.32

.

*.,  ..I. ). .,
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TABLE 2.11

Non-dimensional frequency )\ of a uniform thickness annular plate,
cltimped at the outer boundary, calculated using thin plate bending
annular elements. v = 0.33 a/b = 0.001

Number of elements I Exact

2

10.22
40.24

114.49
528.76

21.33
66.56

165.85

35.20
101.58
493.31

53.47
138.14

1135.96

74.35
200.97

2033.55

98.65
289.64

3185.06‘

127.91
401.81

4591.14

4

10.22
39.88
90.11

161.66

21.27
61.10

121.70
218.23

- -

34.91
85.20

156.14
273.81

51.12
112.00
199.49
329.13

69.83
141.21
245.51
386.85

91.05
174.19
294.20
447.69

114.76
210.87
345144
517.78

8 (42)

10.22 10.24
39.78 39.82
89.18 89.11

158.63 158.26

21.26 21.25
60.85 60.84

120.25 120.12
199.91 199.09

34.88 34.81
84.63 84.64

154.13 153;76
244.08 243.36

51.04 50.98
111.10 111.09
190.79 190.44
291.10

69.68 69.72
140.23 140.19
230.20 229.52
340.89

90.76 90.82
171.98 171.87
272.36
393.53

114.25
206.33
317.23
448.93

1
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TABLE 2.12

Non-dimensional frequency X of a uniform thickness annular plate,
culated using thin plate bendingfree at the outer boundary, ca

annular elements. v = 0.33 a/b = 0.001

n

1
2
3
4

0
1
2
3

0
1
2
3

0
1
2
3'

5.27
47.21

191.88

12.51
63.01

430.99

21.84
86.26

770.95

33.26
119.00

1208.66

47.09
160.85

1743.73

Number of elements

2 4 8 (42)

9.07
35.72
76.84

167.47
- -

9.07
38.38
88.15

156.41

9.07
38.50
87.86

157.10

9.06
38.44
87.80

156.75

20.56
62.75

129.74
278.12

20.52
60.10

120.13
214.27

20.51
59.88

119.18
198.74

20.52
59.75

118.81
197.96

5.26 5.26 5.26
35.33 35.28 35.25
94.75 84.89 84.42

245.65 154.68 153.64

5.24
35.52
84.64

153.51

12.26 12.25 12.24 12.25
54.28 53.0'2 52.93 53.00

127.67 112.58 111.99 111.94
265.01 197.67 191.14 190.72

21.54 21.53 21.53
75.32 73.52 73.39

177.29 142.66 142.46
294.05 242.81 231.60

21.53
73.45

142.33

33.11 33.07 33.06
98.89 96.69 96.53
225.92 176.32 175.75
355.21 289.99 274.96

33.06
96.43
175.56

46.90 46.83 46.81
126.13 122.41 122.28
262.33 213.46 211.81
458.67 339.13 321.17

b

Exact
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TABLE 2.13

Non-dimensional frequency X of a uniform thickness
simply supported at the outer boundary, calculated
bending annular elements. v = 0.3 a/b = 0.1

annular plate,
using thin plate

1 2 162.37 113.95 102.03 100.67
3 214.36 178.39 171.86

0 27.95 25.49 25.40 25.40 25.45
1 83.68 74.73 69.46 69.27 69.23

.2 2 332.49 155.88 133.84 132.37
3 258.08 231.03 214.84

0 43.41 40.40 39.96 39.94 39.99
1 128.17 101.94 94.81 94.41

3 2 589.09 203.28 171.41 168.27.
3 325.32 280.64 261.71

0 60.38 57.88 56.88 56.84
1 192.81 131.94 122.32 121.73

4 2 932.38 239.49 213.07 206.07
3 447.93 329.02 310.53

0 80.96 77.79 76.27 76.21
1 275.54 165.71 152.58 151.58

5 2 1371.87 275.96 256.92 246.19
3 614.90 380.85 361.12

0 105.94 100.17 98.10 98.00
1 375.82 201.11 185.86 184.04

6 2 1907.00 323.40 302.14 288.97
3 818.49 437.80 414.30
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TABLE 2.14

Non-dimensional frequency A of a uniform thickness annular plate,
clamped at the outer boundary, calculated using thin plate bending
annular elements. v = 0.3 a/b = 0.1

m

Exact

(43)

Number of elements

2 4 8

10.21 10.17 10.16
39.87 39.65 39.54

105.67 91.27 90.53
253.03 166.21 164.71

21.31 21.21 21.20
63.14 60.39 60.10

144.28 119.30 117.31
332.77 197.84 193.43

34.70 34.56 34.54
93.09 83.84 83.50

201.48 153.20 151.54
559.97 256.34 238.98

51.89 51.05 50.99
127.73 111.49 110.83
292.84 191.92 189.80
899.12 316.16 288.33

72.30 69.77 69.67
165.91 141.00 140.16
425.51 236.25 229.85

1350.27 373.64 339.67

95.89 90.95 90.75
212.79 173.04 171.92
594.00 284.83 272.04

1919.23 432.54 392.52

122.80 114.58 114.24
270.79 208.30 206.24
796.02 336.24 316.84

2609.34 495.64 447.84

1

10.27
51.68

n

10.16
39.49
90.38

22.64
126.95

21.15
59..98

34.53

83.44

45.15
283.22

83.44
514.65

51.06

134.84
829.15

199.05
1229.88

4

5

276.34
1718.04

6

.
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TAJ3LE 2.15

Non-dimensional_ frequency X of a uniform thickness annular plate,
free at the outer boundary, calculated using thin plate bending
annular elements. v = 0.3 a/b= 0.1

3 133.17 117.80 116.22
4 175,70 195.53 192.25

0 5.31 5.31 5.30 5.30 5.30
2 1 39.38 34.99 34.96 34.93 34.86

2 110.10 89.63 83.60 83.30
3 351.47 183.34 152.11 151.04

0 12.49 12.44 12.44 12.44 12.44
3 1 61.62 53.24 53.03 52.97 53.04

2 152.80 121.36 112.28 1.11.76
3 611.61 253.48 191.11 190.19

0 21.98 21.85 21.84 21.84
4 1 83.26 74.45 73.65 73.55

2 218.44 155'.88 142.95 142.49
3 965.55 310.02 235.42 321.35

0 33.69 33.52 33.50 33.50
5 1 106.91 98.36 96.92 96.77

2 305.23 196.83 176.10 175.86
3 1416.29 345.78 283.59 274.83

0 47.57 47.43 47.40 47.38
6 1 134.62 124.92 122.78 122.60

2 411.76 243.63 212.30 211.98
3 1965.22 382.73 334.17 321.06

, .I..
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TABLE 2.16

Non-dimensional frequency X of a uniform thickness annular plate,
simply supported at the outer boundary, calculated using thin plate
bending annular elements. v = 0.3 a/b = 0.5

m
-

3

-

-

6

-

1

5.09
74.42

274.06

11 .71
78.35
277.19

22.78
89.44

286.58

36.54
106.21
302.30

53.47
127.54
324.39

73.64
153.02
352.82

96.74
182.80.
387.69

Number of elements

2 4 8 (43)

5.08
66.02

228.44
459.05

5.08 5.08
65.88 65.84

204.83 203.92
427.62 421.60

5.07
65.76

203.23

11.62
70.12
231.35
460.64

11.61 11.61
69.93 69.89

207.98 207.05
430.40 424.37

11.62
69.89

22.40
81.57
239.98
465.36

22.36 22.36
81.17 81.11
217.30 216.30
438.75 432.63

22.31
81.13

35.70
98.69

254.09
473.10

35.64 35.64
97.77 97.66

232.36 231.23
452.60 446.25

35.69

52.10
120.24
273.35
483.74

52.04 52.03
118.50 118.34
252.62 251.27
471.84 465.02

71.70
145.84
297.38
497.26

71.64 71.64
143.08 142.87
277.52 275.89
496.29 488.67

94.27
i75.51
325.87
513.25

94.19 94.18
171.69 171.44
306.67 304.74
525.77 516.93

T Exact



TABLE 2.17

Non-djmensional frequency X of a uniform
clamped at the outer boundary, calculated
annular elements. v = 0.3 a/b = 0.5

thickness annular plate,
using thin plate bending

m
_ _

0

1

2

3

4

5

6

n

0
1
2
3

0
1
2
3

0
-1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

1

17.76
131.10

- -
22.21

135.43

33.04
148.12

48.17
168.39

67.49
195.41

91.22
228.61

119.40
267.79

Number of elements

2 4

17.24
93.68

289.62
736.51

17.72
93.94
253.96
495.48

22.05
97.19

292.39
739.88

22.02
97.48

256.85
498.04

32.22
107.35
300.69
750.00

32.12
107.63
265.44
505.72

45.99 45.83
123.29 123.27
314.38 279.52
766.86 518.54

63.24 63.04
144.11 143.36
333.30 298.73
790.50 536.49

84.04 83.84
169.35 167.45
357.37 322.67
820.76 559.54

108.21 107.99
198.88 195.61
386.26 350.98
858.16 587.64

8

17.72
93.85

252.34
490.03

22.02
97.38

255.21
492.64

32.12
107.50
263.72
500.45

45.81
123.07
277.63
513.37

63.02
143.07
296.58
531.27

83.82
167.06
320.15
553.95

107.96
195.14
348.03
581.22

Exact

17.68
93.85

252.80

21.98
97.32

32.05
107.56

45.77
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TABLE 2.18

Non--dimensional frequency X of a uniform thickness annular plate,
free at the outer boundary, calculated using thin plate bending
annular elements, v = 0.3 a/b = 0.5

Number of elements
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TABiE  2 .19

Non-dimensional frequency h of a free circular plate with
parabolic thickness variation, modelled with parabolic thickness
variation annular thin plate bending elements. v = 0.3 a/b = 0.001

n

Number of elements

4

9.67
29.26
54.79

17.80
41.93
74.99

5.80
25.88
54.19
91.90

10.04
33.98
66.60

109.24

14.20
42.10
79.Q8

128.16

18.34
50.28
91..72

150.22

22.47
58.50

104,83
174.69

8 (46)

9.67
29.80
57.79

9.67
29.83
57.86

17.80
41.86
73.99

17.80
41.86
73.88

5.80
25.88
53.91
90.17

5.80
25.88
53.89
89.89

10.94
33.94
65.99

106.45

10.04
33.94
65.92

105.91

14.20
42.00
78.09

122.85

14.20
42.00
77.95

121.93

18.33 18.33
50.08 50.06
90.25 89.99

139.36 137.96

22.45 22.45
58.15 58.11

102.47 102.02
155,99 153.98

Exact



TABLE 2.20

Non-dimensional frequency )i of a free circular plate with
parabolic thickness variation, modelled with linear thickness
variation annular thin plate bending elements. v = 0.3 a/b = 0.001

0 10.12 13.60 14.17 14.20 14.20
4 1 64.37 38.49 41.30 41.95 42.00

2 1074.67 91.30 76.54 77.71 77.95
3 212.26 125.85 121.49 121.93

0 14.25 17.13 18.25 18.33 18.33
5 1 100.74 47.23 48.97 49.97 50.06

2 1690.57 111.09 88.89 89.68 89.99
3 301.91 147.86 137.64 137.96

0 19.57 20.53 22..29 22.44 22.45
6 1 145.52 57.10 56.64 57.98 58.11

2 2442.14 I 134.48 101.92 I 101.76
3 417.75 172.16

I 102.02
154.25 153.98
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TABLE 2.21

Comparision of non-dimensional frequency X for a uniform free plat d ,
calculated using sector elements (54), and thin plate bending annular
elements. v = 0.33

D.O.F. = 55

1 20.24 20.56 20.52 20.52
1

2 62.75 60.10 59.75

0 5.91; 5.94 5.26 5.24 5.24
2

1 36.01 35.33 35.30 35.50

0 12.98 12.26 12.25 12.25
3

I 54.28 53.02 53.00

0 23.02 21.54 21.53 21.50
4

I 75.32 73.52 73.45

0 34.18; 34.44 33.11 33.07 33.10
5

1 98.89 96.69 96.43

I
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TABLE 2.22

Matrix [k:] of the thin plate bending annular element

m2 5 I
Rl + m2 S

1

Syrmnetrical

_I__-

m2 Sl

2R2 -I- m2 S2

4R3 + m2 S3

m2 S2

3R3 + m2S3

6R4 + m2 S4

9R5 + m2 S5

R, = CIT f r%(r)u_(r) dr ; S, = CIT f r%(r)a,(r) dr

TABLE 2.23

Matrix [kg] of the plane stress annular element

Q-l 1 (l+ v) Q, 1 (1 + 2~) Q, 1 (1 + 3~) Q,

JL=-y-%_

Symmetrical

r2

Qi = -%- / h(r) ri dr
l-v2 r1

_



.
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TABLE 2.24

Matrix [k:] of the plane stress circular element

e

L

2 Cl -+v> Q,

Synmetrical

3 (1 + v> Q,

.(5 + 4v)Q3

2E I‘-

Q, = I_$ Q
h(r) ri dr

4 (1 + v) Q,

(7 + 5~) Q,

(10 + 6~) Q,
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TABLE 2.25

Radial stress coefficients p = ( ar/p Q2b2 ) x lo4 for a

uniform annular disc rotating with constant angular velocity n
a/b = 0.001 v = 0.3

I Number of elements I
I

r/b 1 2 4 8 16 Exact

0.001 4428 4475 4536 4604 4652 0

0.063 4096 4107

0.126 4055 4058 4059

0.188 3978 3979

0.251 3864 3865 3866 3866

0.313 3720 3720

0.376 3543 3543 3543

0.438 3333 3333

0.501 3091 3091 3092 3092 3092

0.563 2818 2818

0.625 2512 2512 2512

0.688 2174 2174

0.750 1803 1803 1803 1803

0.813 1401 1401

0,875 966 966 966

0.938 499 499

1.000 -1 0 0 '0 0 0
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TABLE 2.26

Tangential stress coefficients q = ( u /p n2b2 ) x lo4 for a
5

uniform annular disc rotating with constant angular velocity G
a/b = 0.001 v = 0.3

0.063

0.126

0.188

0.251

0.313

0.376

0.438

0.501

0.563

0.625

0.688

0.750

0.813

0.875

0.938

1.000 1750

Number of elements

2 4 8 16 Exact

5332 5594 5960

4087

3975 3976

3790

3530 3530 3530

3196

2788 2788

2306

1750 1750 1750

6473 8250

4114 4116

4087 4088

4041 4041

3976 3976

3892 3892

3790 3790

3669 3669

3530 3530

3372 3372

3196 3196

3001 3001

2788 2788

2556 2556

2306 2306

2037 2037

1750 1750
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TABLE 2.27

,

Radial stress coefficients p

uniform, annular disc rotating
a/b = 0.2 w = 0.3

. .

,

r/b

0.20

k-25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

= c (Jr /p’ Q2b2 ) x 104for a

with constant angular velocity G

#umber of elements

2023

-314

965 316 77

2074

2555 2593

2594

2247 2335 2346

1932

1392 1392

-41 -2

745

0

8 16

15

1391

2084

2437

2598

2640

2599

2497

2347

2157

1932

1676

1392

1081

745

384

0

Exact

0

1392

2085

2438

2599

2640

2599

2497

2347

2157

1932

1676

1392

1081

745

384

0
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TABLE 2.28

Tangential stress coefficients q '= ( uE /p Q2b2 ) x 10 4 for a

uniform annular disc rotating with constant angular velocity Sl
a/b = 0;2 v = 0.3

r/b

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0,80

0.85

0.90

0.95

1.00

1

8736

1978

Number of elements

8579

3869

2066

3890

3027

8

8343

5907

4940

4356

3893

3463

3028

2570

2680

16

8324

6781

5909

5346

4941

4624

4356

4117

3893

3677

3463

3247

3028

2802

2570

2329

2080

Exact

8320

6782

5910

5346

4941

4624

4356

4117

3893

3677

3463

3247

3028

2802

2570

2329

2080

-
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TABLE 2.29

Radial stress coefficients p = ( ur /o R2b2 > x lo4 for an

annular disc with hyperbolic radial thickness variation rotating
with constant angular velocity Cl. a/b = 0.2 v = 0.3

Number of elements

r/b 1 2 4 .8 16 Exact

0.20 1105 507 167 41 8 0

0.25 883 880

0.30 1427 1423 1420

0.35 1771 1767

0.40 2003 1999 1992 1988

0.45 2121 2117

0.50 2184 2176 2173

0.55 2169 2166

0.60 2107 2127 2113 2107 2105

0.65 1995 1993

0.70 1840 1836 1834

0.75 1632 1631

0.80 1398 1389 1386 1385

0.85 1099 1098

0.90 773 772 771

0.95 405 405

1.00 -220 -26 1 0 0 0

L,
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TABLE 2.30

Tangential stress coefficients q = ( (I. /pQ2b2 ) x lo4 for an
5

annular disc with hyperbolic radial thickness variation rotating
with constant angular velocity 51 . a/b = 0.2 v = 0.3

r/b

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1

5783

1403

Number of elements

2

4979 4912

8

4951

3582

3103 3150

2934

2638 2724 2751.

2537

2248 2266

1927

1449 1499 1514

4 16

4974

4070

3602

3334

3164

3043

2944

2853

2759

2657

2543

2416

2272

2111

1932

1735

1519

Exact

4985

4079

3609

3340

3169

3047

2948

2856

2761

2659

2546

2418

2274

2113

1934

1737

1520
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TABLE 2.31

Radial stress coefficients p = '{ar/Ea*T(b)l x .04 for a

uniform annular disc with linear temperature gradient.
a/b = 0.001 v = 0.3

r/b

0.001

0.063

0.126

0,188

0.251

0.313

0.376

0.438

0.501

0.563

0.625

0.688

0.750

0.813

0.875

0.938

1.000

I Number of elements I

1 2 4 8 16

3575 3612 3662 3717 3755

3112

2910 2912

2705

2496 2497 2497

2289

2081 2081

1873

1664 3.665 1665 1665

1457

1249 1249

1041

833 833 833

624

416 416

208

-1 0 0 b 0

Exact

0

3121

2914

2706

2498

2289

2081

1873

1665

1457

1249

1041

833

624

416

208

0
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TABLE 2.32

Tangential stress coefficients q = ( og/Eu*T(b)] x lo4 for a

uniform annular disc with linear temperature gradient.
a/b = 0.001 v = 0.3

r/b

0.001

0.063

0.126

0.188

0.251

0.313

0.376

0.438

0.501

0.563

0.625

0.688

0.750

0.813

0.875

0.938

1.000

1

4157

-3334

Number of elements

2

4301

-4

-3333
-

4 8 16 Exact

4512 4808

2494

1661

-3

-1668

-3333

1662

829

-3

-836

-1668

-2501

-3333

l-

5222 6657

2909 2911

2494 2494

2078 2078

1662 1662

1245 1245

829 829

413 412

-3 -3

-420 -420

-836 -836

-1252 -1252

-1668 -1668

-2085 -2085

-2501 -2501

-2917 -2917

-3333 -3333

,-.
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TABLE 2.33

Radial stress coefficients p ='( ur /Ea* T(b)) x lo4 for a

uniform annular disc with linar temperature gradient.
a/b = 0.2 w = 0.3

r/b
--

0.02

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1

1362

-212

Number of elements

2

650

1069

-28

4

213

1387

1128

602

-1

8 16

52

1202

1413

1332

1135

884

604

307

0

10

832

1209

1370

1416

1396

1333

1244

1136

1015

884

747

604

457

307

155

0

833

1210

1371

1417

1396

1333

1244

1136

1015

884

747

604

457

307

155

0
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TABLE 2.34

Tangential stress coefficients q = (CY~ /Ea* T(b)) x l& for a

uniform annular disc with linear temperature gradient.
a/b = 0.2 v = 0.3

a/b

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

r
1

5169

Number of elements

2 4

5063 4951

8

4904

2677

1466 1471

555

-263 -249 -247

-996

-1716 -171.5

-2418

-3180 -3120 -3112 -3111

16 Exact

4892 4889

3555 3556

2679 2679

2018 2818

1472 1472

993 993

556 556

145 145

-247 -247

-626 -626

-996 -996

-1358 -1358

-1715 -1715

-2068 -2068

-2418 -2418

-2766 -2766

-3111 -3111

T-
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TABLE 2.35

Frequency coefficients X for a centrally clamped circular membrane
disc when stresses calculated using finite elements are used at the
nodes of the finite element model and linear variations of stresses
are taken within the elements. v = 0.3 a/b = 0.001

I I Number of elements I Exact

m n 1 2 4 8 (48)

0 0.8624 0.9799 0.9977 0.9999 1.00

1 4.188 5.343 5.799 5.917 5.95

1
2 13.340 13.779 14.076 14.20

3 29.685 25.370 25.514 25.75

0 1.941 2.197 2.310 2.340 2.35

1 7.098 7.885 8.574 8.848 8.95

2
2 17.498 18.061 18.561 18.85

3 37.994 31.284 31.554 32.05

0 3.391 3.752 3.969 4.030 4.05

1 12.294 10.880 11.750 12.144 12.30

3
2 23.219 22.290 23.466 23.85

3 54.763 38.116 38.123 38.70

_
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TABLE 2.36

Frequency coefficients X for a centrally clamped circular membrane
disc when exact stresses are used at the nodes of tile finite element
model and linear variations of stresses are talcen within the elements.
v = 0.3 a/b = 0.001

Number of elements Exact

m n 1 2 4 8 (48)

0 0.791 0.963 0.992 0.998 1.00

1 3.843 5.261 5.763 5.905 5.95
1

2 13.185 13.680 14.038 14.20

3 29.281 25.175 25.429 25.75

0 1.803 2.188 2.309 2.340 2.35

1 6.317 7.796 8.564 8.848 8.95
2

2 17.148 18.012 18.556 18.85

3 36.493 31.125 31.538 32.05

0 3,187 3.750 3.969 4.030 4.05

1 10,742 10.837 11.750 12.144 12.30
3

2 22.883 22.891 23.466 23.85

3 51,045 38.068 38.122 38.70
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TABLE 2.37

Frequencies in Hz. of a rotating annular disc, calculated using 8
thin plate bending annular elements, and the variation with speed
of rotation.
a/b = 0.5, b = 8.0 in., h = 0.04 in., E = 30 x lo6 psi,

Pg = 0.283 lb/in3, v = 0.3

Speed of rotation in rpm.

m n 0 1000 2000 3000 4000

0 79 81 86 93 103
0 1 515 517 522 530 541

2 1477 1479. 1483 1491 1502
3 2917 2919 2923 2931 2942

0 81 83 91 102 116
1

l2
525 527 533 542 555

1488 1489 1494 1502 1514
3 2928 2930 2934 2942 2953

0 89 94 108 127 150

2 :
556 558 566 578 594
1519 1521 1527 1537 1550

3 2961. 2963 2968 2977 2989

0 112 119 140 168 200

3 :
607 610 620 636 659

1573 1575 1582 1594 1610
3 3016 3018 3024 3034 3048

0 155 164 188 222 263
1

4 2
679 683 696 717 746

1648 1651 1660 1674 1694
3 3094 3096 3193 3115 3131

0 216 226 252 291 338
1 772 777 793 819 854
2

5 3
1746 1750 1760 1778 1802
3194 3197 3205 3218 3237
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TABLE 2.38

Frequencies in Hz. of a uniform annular disc rotating with
3000 rpm, calculated using thin plate bending annular elements.

a/b = 0.5, b = 8.0 in., h = 0.04 in., E = 30 x lo6 psi,
Pg = 0.283 lb/in3, v = 0.3.

0 126 127 127
1 584 578 578

2 2 1883 1548 1537
3 5533 3021 2977

0 167 167 168
1 643 637 636

3 2 1933 1605 1594
3 5573 3078 3034

0 222 222 222
1 723 718 717

4 2 2003 1686 1674
3 5630 3158 3115

0 291 291 291
1 825 820 819

5 2 2093 1790 1778
3 5703 3261 3218

I . _..- .,
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P_2m2(2-v)

P_1 b2-l>

PO&J-2v-2)

Pl(2m2v-m2

-6v-3)

p-12
+m2-m2v

+mQ1

Symmetrical

P_12m2

P (m%m2v
0

-v-l)

iABLE 2.39

Matrices [kr;] and [ki] of the Thick Disc Element-l

Pl2(m%

-2v-2)

P2(3m2v-m2

-9v-9)

Po-$(m2-m2v

+w+Q2

p Lb2-m2V
12

+4v+4)+Q3

P_lm(m2-1)

Pom(m2-v-3)

Plm(m2-5-4v)

P&(3-v)

1
Po@3+v)

P_l+(2m2+1

-W-Q,

p_lm3

Pom(m2-1)

Plm(m2-2V-2)

P2m(m2-6v-3)

Plm(l+v)

Pom2-+Q2

plm2+Q3

pi
= cr E

I;!&v2)

=2 =2
j' h3(r)ridr ; Q, = CITK~G J h(r)ridr

rl =1
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TABLE 2.40

Matrix [mi] of the Thick Disc Element-l

p_1”2 Porn2 Plm2 P2m2 0 0 pO plm

P,(l+m') P2(2+n2) P3(3tm2) -Pl -Pa Plm P2m

P3Cq+m2) P4(6-hn2) -2P2 -2P3 P2m
p3m

P5(h2) -3P3 -3P4 P3m p4m.

pl p2
0 0

p3
0 0Symmetrical

pl
I

p2

I p3.

pi
= C'T~ IL h3(r) ridr

rl

. . ,
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TABLE 2.41

Matrix [ki] of the Thick Disc Element-2

Q_, m
2

Qo m
2

Q, m
2

Q2 m
2

Q, (l+m2) Q, (2+m2) Q3 (3h2)

-i
Q, (4+m2) Q, (6.cm2>

r2 .

Qi = CTTK~ / h(r)r'dr

5

Q, (9-hn2>

'TABLE 2.42

Matrix [mi] of the Thick Disc Element-2

r2

pi = Cn 6 / h3(r)ridr
P3 (4+m2) p4 (6+m2>

'1
-v

Pg (99m2)
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TABLE 2.43

Frequencies in Hz. of a uniform circular plate calculated using Thick
Disc Element-l. a/b = 0.001; b = 37.5 mm; h = 5 mm; E = 22,000 kg/mm2 ;

P - 7.85 and V = 0.3.

-

m

-

0

-

1

-

2

-

3

-

n

Number of Elements I

1 2

6766 7837

23421 30540

153450 63350

15050 16875

55174 45134

332367 97409

-I---4781 4774

37746 29627

119687
I

73842

11100 10855

50683 43797

202583 96747

YJYT-1 Exact*

7943 7950 7949

31222 31297 31278

65651 1 64310 1 64141

17419 17440 17408--t-T--46786 46417 46246

89537 82941 82183

4765 4754 4742

28883 28797 28714

63216 62101 61901

10823 10784 .10738

41635 41438 41265

80979 78333 77973

Thin
plate
soln.

8213

34848

79593

18603

54169

107708

4754

32202

76731

11105

48046

101476

Experi-
mental.

7767

30698

17012

4620

28117

10505

* Calculated using Mindlin's plate theory.

,
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TABLS 2.44

Frequencies in Hz. of a uniform circular plate calculated using Thick
Disc Element-2. a/b = 0.001; b = 37.5 mm; h = 5 mm; E = 22,000 kg/mm2 ;
P = 7.85 and v= 0.3.

m n

1

0 2'

3

1

1 2

3

0

2 1

2

0

3 1

2
c

l- Number of Elements

41
I

2

6594

10341

15414

53869

321156

7423 7948 7955 7949 8213

13289 29948 31297 31278 34848

52618 60020 64141 79593

16905 17457

42678 46300

93328 82498

4785 4784

29050 29011

68329 62535

10890

41883

78990

10898

42738

87648

4787

39835

142438

11139

52104

274801

8 Exact*

Thin
plate
soln.

17481

46387

82519

- -

4784

28986

62276

17408 18603

46246 54169

82183 107708

4742 4754

28714 32202

61901 76731

10889 10738 11105

41830 41265 48046

78687 77973 101476

* Calculated using Mindlin's plate theory.

r
Experi-
mental

7 7 6 7

30698

17012

4620

28117

10505
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TABtE 2.45

The fundamental frequency (m = 2, n = 0) in Hz. of thick uniform
plates and rings calculated using Thick Disc Element-l.
E = 30 x 106 psi pg = 0.283 V = 0.3

c

C

~~~ Dimensions(in) I Number of Elements I Experi-

-

Disc 0.06: 5.1875 3.5 5162 5032 5009 4999 5100

Ring 5.375 6.4375 3.5 1315 1303 1292 1289 1350

Ring 5.375 6.4375 1.5 924 923 915 913 920

Ring 8.3125 9.375 3.5 635 632 629 628 640

Ring 8.3125 9.375 2.5 570 568 564 563 575

* Small value assumed so that a/b = 0.001
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TABLE 2.46

The fundamental frequency (m = 2, n = 0) in Hz. of thick uniform .
plates and rings calculated using Thick Disc Element-Z.
E = 30 x 106 psi pg = 0.283 v = 0.3

Disc o.o* 5.1875 3.5 5191 5188 5188 5188 5100

Ring 5.375 6.4375 3.5 2237 2237 2237 2237 1350

Ring 5.375 6.4375 1.5 1071 1071 1071 1071 920

Ring 8.3125 9.375 3.5 1075 1075 1075 1075 640

Ring 8.3125 9.375 2.5 793 793 793 793 575

* Small value assumed so that a/b = 0.001



TABLE 2.47

Frequencies in Hz. of rings calculated  using Thick Disc Element-2.
E = 30 x 106 psi Pg = 0.2&3 v = 0.3

-

n

-

0

0

-

0

0
-

0

0
-

0

0
-

0

0
-

0

0
-

0

0
-

0

Tm Dimension(in) !&ber of Elements
Exact*

2 4 8

703 701

1953 1950

Experi-
mental

709 709

1964 1963

799 720

2089 2000

1453 1450 1436 1432 1429 1470

4001 3996 3970 3962 3954 4050

la67 1855 la37 1832 1828

5020 4997 4949 4934 4923

1900

1978 1951 1929 1922 1918

5088 5030 4964 4943 4930

1980

444 444 441 44c 498

1238 1238 1233 1231 1307

435

1250

924 923 915 913 912

2610 2607 2593 258E 2586

920

2850

1215 1210 1201 119E 1195

3420 3410 3385 3377 3371

1315 1303 1292 1285 1286 1350

3566 3538 3504 3494 3487

b h

0.621

5.1875

2.5

3.621

6.4375

a

2

3

2

3

G.121

2

3

2

3

2

3

i.375

* Calculated using Mindlin's plate theory.
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TABLE 2.48

Frequencies in Hz. of stepped discs.
E = 30 x.106 psi P8 = 0.283 V = 0.3

Finite
m n h Element*

2 0 2.5 3093

2 0 1.5 2416

2 0 0.75 1668

Experimental

3030

2310

1600

* Five Thick Disc Element-l used.

TABLE 2.49 .

Thickness of the turbine disc at various radii.

Radius
(in> (ihn)

Radius
(in)

7.50 1.025 6.08

7.39 1.025 5.89

7.25 0.790 5.70

7.10 0.590 5.50

6.95 0.480 5.30

6.72 0.474 5.08

6.45 0.550 4.92

6.26 0.590 4.72

---

h
(in>

I__-

0.625

0.650

0.680

0.725

0.770

0.805

0.840

0.875

Radius h Radius
(in) (in> (in)

4.53

4.33

4.12

3.89

3.66

3.43

3.20

3.00

0.910

0.945

0.980

1.020

1.050

1.095

2.80 1.200

2.38 1.395

2.11 1.700

1.80 2.180

1.38 2.220

0.90 2.650

1.140

1.170
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TABLE'2.50

Frequencies in Hz. of an actual turbine disc, calculated using thin
plate bendi.ng annular elements and Thick Disc Element-l.
E = 31.2 x 106 psi Pi3 = 0.281 V = 0.3

n Number of
Thick Disc Element-l

Eight
thin plate
elements

1177
5323

12485
22565

. 1805
7315

16174
27903

m

0

Percent- -i
age error

Experi-
mental

1590
5240

8

1707
5618

11401

2894
7632

13810
- -

1114
4761

10294
16927

1711
6431

12976
20307

2482
8112

15279
23264

3440
9960

17618
26135

4556
11931
20047
29100

5810
13984
22553
32151

1
2
3

1737
5590

11521

1696
5585

11340

7.35
7.20

26851
2
3

2962
7714

14708

2899
7710

14022

7.80

-
6.30
8.30

5.30
8.50

5.30

5.65

6.00

6.40

1048
4392

1135
4835

10471
18510

1109
4749

10292
16960

1702
6389

12889
20229

2478
8089

15214
23136

0
1
2
3

0
1
2
3

0
1
2
3

1746
6529

13205
23220

1625
5926

23572534
8260

15923
26677

2668
9436

19480
32542

377s
11880
23001
37197

5118
14608
26805
42203

6683
17561
30847
47610

32563503
10121
18830
30170

3436
9947

17585
26055

42984627 4552
12100 11919
21797 20026
34094 29067

6

54605886 5805
14196 13971
24737 22534
38428 32141

7

* Error in eight element solution.

.
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TABLE 3.1

PAIR

420

Bending stiffness and inertia matrices of a beam element when
linear variations in I and A are assumed within the element.

Subscripts 1 and 2 refer to values at node 1 and node 2

of the element respectively.
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TABLE 3.2

Torsional stiffness and inertia matrices of a beam element when ’

linear variations in KG and J are assumed within the element.

G
!z

PR
12

%I + KG2

- ‘KG1 -+ KG2’

- (KG1 -t KG2’

KGl -I- KG2

I

Jl+ J2

Jlf J2

Subscripts 1 and 2 refer to values at node 1 and node 2

of the element respectively.



TABLE 3.3

A
420R

Additional bending stiffness matrix, resulting from uniform rotation !A 9 for a uniform beam

element for bending in the plane of rotation.

~504u1+252(o2-u1) I-42ol-42(a2-ul) C-5G4al-252(u2-al) (-4&1+13a)9,

+156a) -22a)Q +54aj

156ul+14(u2-u$ {4201+42(u2-al) {-1401-7(a2-q

+4aIa2 -13a)Q -3a)Q2

u = Q2pR2

a1 = stress at node 1 of element

u2 = stress at node 2 of element

{504al+252(a2-al)

+156a)

(42ul+22a)Q

Symmetrical {56ul+42(u2-"1)  :

+4a)Q2



TABLE 3.4 I

A
420R

Additional bending stiffness matrix, resulting from uniform rotation cd , for a uniform beam

element for bending out of the plane of rotation.

50401+252(a2-al) {-42al-42(a2-ol)Ie -504al-252(a2-~l) -42ulR

al = stress at node 1

a2
= stress at node 2 504~~+252(a~-~~) 42alR

Symmetrical
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TABLE 3.5

Additional stiffness matrix resulting from uniform rotation Cl

for a uniform beam element in torsion.

4

a -I- 26 -Cr-bB

-C%+fS a -t 28

a

B

5

a2

= g q- a2>

E - 9 (I -1
min

) cos 26
max

= stress at node 1 of the element

= stress at node 2 of the element



.

227

TABLE 3.6

Stiffness and inertia n?atrices  of an uniform Timoshenko
element of length L in Sending.

beam

I

12 61? 6a -12 6R 6~

4a2 3R2 -6% 2R2 322

EI
F

PAR
420

-62 3a2 (3i-p
-

Symmetrical

156 (22f

+504fi 2526)~

c4+ (4+

56$)a2 21m2
I

(4+I--126i3)a2

CI - radius of gyration

Symmetrical

54

-504$

.(13-

42$)R2

(13-

252B)R

156

+504B

(-13-F

4.2f3)a
_*

(-3-

14B)G

(-3

+2lB)a2

(-22

-42B)!Z

(4+

56B)a'

c-13+

2528)~

(-3-F

21g)a2

(-3

+1268)R2

(-22

-2528)11

(4+

21fi)a2
- -

(4-t

.126BN2



TABLE 3.7

Frequency coefficients x , for the first mode of vibration of a rotating beam for vibration out of
plane of r'otation, calculated using four beam finite elements.



TABLE 3.8

Frequency coefficients h , for the second mode of vibration of a rotatfng beam for vibration out
of plane of rotation, calculated using four beam finite elements.

W

R/L 0 0.1 0.2 0.5 1 2 5 10 20 50 100

0.00 22.06 22.06 22.07 22.10 22.20 22.62 25.39 23.41 54.57 125.4 246.6

E
W
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TABLE 3.10

Frequency coefficients A , for the first mode of vibration of a rotating beam for vibration in the
plane of rotation, calculated using four beam finite elements.

R/L 0

0.00 3.516

0.02 3.516

0.05 3.516

O.&O 3.516

0.20 3.516

0.50 3.516

1.00 3.516

2.00 3.516

5.00 3.516

T-
0.1
3.516 I 3.517

3.516 3.517

3.517 3.518

3.517 3.518

3.517 3.519

3.518 3.522

3.519 3.526

3.521 3.535

3.528 3.562

0.5

3.522

3.523

3.525

3.528

3.533

3.550

3.577

3.632

3.590

3.544 13.626

3.551 3.652

3.563 3.694

3.584 3.778

3.649 4.019

3.755 4.390

3.958 5.050

4.512 6.641

5

4.006

4.101

4.240

4.461

4.874

5.940

7.378

9.621

14.36

4.863

5.165

5.588

6.229

7.344

9.963

13.21

18.02

27.80

6.396

7.279

8.432

10.06

12.71

18.48

25.31

35.17

54.99

10.48

13.64

17.32

22.12

29.45

44.66

62.16

87.13

136.9

1

17.87

24.99

32.89

42.92

57.94

88.74

123.9

174.0

273.7



TABLE 3.11

Frequency coefficients 1 , for the second mode of vibration of a rotating beam for vibration in the
plane of rotation, calculated using four beam finite elements.

m
R/L 0 0.1 0.2 0.5 1 2 5 10 20 50 100

0.00 22.06 22.06 22.07 22.09 22.18 22.54 24.89 31.88 50.77 115.0 225.4

0.02 22.06 22.06 22.07 22.09 22.18 22.55 24.97 32.15 51.42 116.7 229.0

0.05 22.06 22.06 22.07 22.09 22.19 22.58 25.10 32.54 52.38 119.3 234.1

0.10 22.06 22.06 22.07 22.10 22.20 22.61 25.32 33.19 53.93 123.4 242.5

0.20 22.06 22.06 22.07 22.10 22.22 22.69 25.74 34.44 56.91 131.3 258.4

0.50 22.06 22.06 22.07 22.11 22.28 22.92 26.96 37.94 64.96 152.4 300.9

1.00 22.06 22.06 22.07 22.14 22.37 23.29. 28.88 43.10 76.42 182.0 360.5

2.00 22.06 22.06 22.08 22.19 22.57 24.02 32.35 51.80 95.11 229.9 456.7

5.00 22.06 22.07 22.10 22.33 23.13 26.08 40.94 71.54 136.3 334.3 666.1



TABLE 3.12

Frequency coefficients x , for the third mode of vibration of a rotating beam for vibration in the
plane of rotation, calculated using four beam finite elements.

R/L 0 0.1 0.2 0.5 1 2T=5 10 20 50 100

0.00 62.18 62.18 62.18 62.21 62.31 62.70 65.39 74.11 101.2 203.7 385.4

0.02 62.18 62.18 62.18 62.21 62.31 62.72 65.48 74.44 102.1 206.3 390.6

0.05 62.18 62.18 62.18 62.21 62.32 62.74 65.62 74.93 103.4 210.1 398.4

0.10 62.18' 62.18 62.18 62.21 62.33 62.78 65.86 75.74 105.6 216.4 410.9

0.20 62.18 62.18 62.18 62.22 62.35 62.86 66.33 77.32 109.9 228.2 434.8

0.50 62.18 62.18 62.18 62.23 62.41 63.10 67.71 81.85 121.6 260.2 499.0

1.00 62.18 62.18 62.19 62.26 62.51 63.49 69.94 88.80 138.7 305.5 589.8

2.00 62.18 62.18 62.20 62.31 62.71 64.27 74.17 10.1. 0 167.0 379.1 737.3

5.00 62.18 62.19 62.22 62.46 63.30 66.54 85;41 130.2 230.3 540.5 1061

r
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TABLE 3.13

Frequency coefficients X for a vibrating simply supported Timoshenko
beam, calculated using the present method.

Mode No.
Number of degrees of freedom

8.684 8.652

27.508

49;701

78.145

8.647

27.106

49.573

87.410

16

8.646

27.017

48.336

72.476

19

8.645

26.988

47.967

70.359

TABLE 3.14

Frequency coefficients X for a vibrating cantilevered Timoshenko beam
calculated using the present method.

N

Mode No.

?

1 2 3 4 5 6

Number of degrees of freedom
I

3 6

3.304 3.286

21.590 16.009

65.361 40.490

82.112

9

3.284 3.284

15.567 15.512

36.650 34.821

59.845 57.934

18

3.284

15.494

34.382

54.219

Exact

(128)

- -

8.645

26.960

47.680

68.726

Exact

(128)

--_-

3.284

15.488

34.301

53.652
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TABLE 3.15

Frequency coefficients A for a simply supported Timoshznko  beam.

.l 2 4

. Exact

Number of degrees of freedom (128)

I I I I 1 * .
Mode No. 2 4 8

A
oh
s 1

I
10.620

I
8.831 8.688

I
8.645

fi 2 48.583 39.098 28.218 26.960

3 77.010 54.073 47.680

93.897 85.271 68.7264 I
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TABLE 3.16

Frequency coefficients X for a cantilevered Timoshenko beam.

2 3 54.494 36.515 34.301

4 86.711 59.842 53.652
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TABLE'3.17

Frequency coefficients A for retwisted cantilever blades.

Number of Elements Ref. Ref. Ref.

3 4 5 d (82) (84)

1.8767 1.8770 1.8771 1.8772 1.8774 1.87
2.6459 2.6413 2.6398 2.6391 2.6379 2.63
4.7325 4.7231 4.7223 4.7230 4.7281 4.73
6.5668 6.5806 6.5667 6.5501 6.5535 6.55

1.8798 1.8822 1.8830 1.8834 1.8843 1.88
2.6282 2.6118 2.6065 2.6041 2.6004 2.57
4.7868 4.7836 4.7947 4.8017 4.8210 4.82
6.3333 6.4186 6.3885 6.3739 6.3587 6.35

1.8841 1.8903 1.8923 1.8932 1.8957 1.89
2.6046 2.5698 2.5592 2.5546 2.5485 2.54
4.8736 4.8753 4.9040 4.9199 4.9591 4.95
6.0617 6.2273 6.1754 6.1543 6.1397 6.12

1.8769 1.8774 1.8776 1.8777 1.8781 1.87
3.6961 3.6566 3.6424 3.6358 3.6245 3.62
4.7691 4.8069 4.8282 4.8401 4.8672 4.90
8.1375 7.7646 7.7162 7.6912 7.6802 7.70

1.8770
4.5688
5.3353
8.5350
-_

1.8775 1.8777 1.8779 1.8777 1.87
4.4123 4.3616 4.3390 4.3066 4.26
5.5446 5.6404 5.6893 5.7855 5.76
7.8317 7.7798 7.7583 7.7827 7.75

1.8770 1.8776 1.8778 1.8779 1.8772 1.88
4.6465 4.5229 4.4779 4.4573 4.4432 4.42
6.7043 7 .17.23 7.4609 7.5523 7.5752 7.53
9.3475 7.9112 7:7894 7.8206 8.2287 8.22

n

60"

30"4

8 30"

16 30"

I Results obtained using fivepretwisted beam elements.

* 6 is the total pretwist angle in this case.

‘,.
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TABLE 4.1

Functions A1 to A
12

A+) = ; Jm(d - k Jm+#)

A2(x) = f Ym(xI - k Ym+l(x)

A3(d = ; I,(x) + k Im++)

A4(x) = f Km(x) - k Km,_l(x)

A+) = cl Jm(x) + c2 Jm+l(x)

A6(d = c,_ Y,(x) I- c3 Ym+l(x)

A7(x) = ~2 Im(d - c3 Im+l(x)

As(x) = c2 Km(x) + c K
.3 m+l(x)

A+ = c4 Jm(d + c5 Jtil(x)

A&) = c4 ym(x) + c5 Y&X)

A&) = c6 Im(x) + c7 ~m+~(x)

A12(d = ~6 Km(x) - c7 Km+r(~)

5 =
m(m-1) (l-v)

r2 -

c2 =
m(m-1) (I-v) +

r2

k(l-v)
c3= r

k2

k2

- mk2r2
c4 =

+ (l-v) (1-m) m2

r3

k3r3
=5 =

+ kr(l-v) m2

r3

mk2r2
c6 =

I- (l-v) (l-m) m2

r3

k3r3
=7 =

- kr(l-v) m2

r3
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TABLE 4.2

Matrix [D]

D_-
Ll
m

PIAg (kb) - QIAlo  (kb > PlA5 (k-b  > - QlA6(a)

+ RIAllW) - SlA12M > + R1A7Wd - SlA8W-d

P 2A5 (kb > - Q2A6Wd

Symmetrical
+ R2A7 (kb) - S2A8(kb)

c

P
I

Ymcka)  Irn(ka)  Km&d

I

Jm(ka> Im(ka) Icm(ka)

-I=
A2(kd A3Od A4(kd Q, = AI(ka) A3(ka) A4(ka)

A2(kb) A3(kb) A4(kb) +b) A3(kb) A4(kb)

RI=

P2 =

R2 =

Al Ckb ) A2 (kb > A4 (kb )

Ymcka) Imb) Km&a)

A2 (h) A3hd  A4 &a)

Ym (kb > IN (kb > Km (kb >

Jm&a) Yrn(ka) Im(ka)

s1 = A,&) A2(ka) A3(kd

AI A2(kW A3(kb)

J,(ka) I,(ka) Km(ka)

Q, = Al&a) A3(ka) A4(ka)

Jm(kb) Im(kb) Km(kb>

Jm(ka) Ym(ka) Im(ka)

s2 = A,_(ka) A2(kd A3(ka)

Jm(kb) Ym(kb) Im(kb)
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TABLE 4.2 (Continued)

Jm &a) Ym ha) Im(ka) Km&a)

Am =
Al&a) A?(ka) A3(ka) A4(b)

Jm(kb> Y,_$W Im(W J&W>

A1 (kb) A2 Ckb > A3 (kb) A4 Ucb )
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TABLE 4.3

Dynamic stiffness matrix [DR] of a thin circular ring.

E,G

=z
KG

R.
A

G% m4
(EIz + - --

m2 R40

Symmetrical

Jz, Jx -

WZ +
m2

GKG) -
R3
0

(EIZ -t m2 GKG)/ Rt

-to2 J
X

elastic moduli,

moment of inertia about z axis,

St. Venant torsion21 stiffness of the ring section,

centroidal radius of the ring,

Area of cross-section of ring,

moment of inertia about z and x axes of ring section,
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TABLE 4.4

-

Al1 cos26
A12 cos2b (All 11-B ) sin5 cosd (A12-B12) sin6 cosd 0

s'Bl2 sin26

-

A22
2

cos 6 (A12-B12> sin6 cos6 (A22-B22> sin6 cos6 0

+B22
2

sin d

All
sin26

A12
SiI126

+B1l
cos26 cos26

0

fB12

I-- ,--

Symmetrical A22
sin26

0
+B2i cos

2
6

All = - EI1 h; [
cos llg sinh XJ_g + sin Xl& cash Xlg

cos AIL cash X1& -f I 3

Al2 = EIl Xf I
sin Ill! sinh XIR

cos X1% cash AIR+ 1 1

A22 = EIl hJ_ [
cos Xl2 sinh XJ_L - sin Xl% cash Xlll

cosXle cash XIR i- 1 1

Replace IJ_ by I2 and X1 by X2 in the above expressions

to obtain Bl19 B12 and B22 .

c11 = GKG X3 cot Xgll



.
Cl-
- I I
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TABLE 4.6

First six cantilevered blade alone frequencies of models I to III.

Model III

Bl
- Bending in the Imin direction

B2
- Bending in the I_ direction

T - Torsion
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TABLE 4.7

Calculated and experimental frequencies in Hz. of bladed disc
model I.

E = 29 x lo6 psi pg = 0.283 lb/in3 V = 0.3

bdc Number of disc and blade element:l-5 Exact
-J

NO 1 2 3 4

1 112 112 112 112 112
2 323 321 320 320 320
3 1071 746 743 741 740
4 1251 1156 1153 1151 1150
5 1388 1293 1276 1270 1263
6 3851 2482 2080 2072 2056

116
602

1130
1370
1782
4619
- -
117
760

1140
1374
2727
5724

115 115 115 115
598 589 589 589
750 747 746 745

1275 1258 1252 1244
1749 1720 1715 1712
2531 2148 '2144 2130

116 116 116 116
711 708 707 706
778 777 776 776

1279 1261 1255 1247
2378 2024 2013 1998
2888 2820 2814 2807

1 117 116 116 116 116
2 836 729 726 724 723
3 1145 829 828 828 828
4 1375 1280 1262 1256 1248
5 3945 2458 2051 2040 2025
6 7142 3923 3843 3737 3662

1 117 116 116 116 116
2 876 733 729 727 726
3 1147 862 861 861 861
4 1376 1280 1262 1256 1248
5 5279 2473 2058 2048 2033
6 8761 4457 4116 3949 3738

--

Experi-

mental

113
326

1123

2094

115
581
754

1687
2159

116
695
766

2010
2792

116

2041
3610

116

2067

. .
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TABLE 4.8

Calculated and experimental frequencies in Hz. of bladed disc
model II.

E = 29 x lo6 psi pg = 0.283 lb/in3 u = 0.3

-

m
-

2

-

3

-

4

-

5

-

t

-

fode Number of disc and blade element:Tj 1

347 345 345 345
580 577 576 576

2292 2214 2207 2205
2679 2493 2458 2446
4308 2816 2803 2797
7193 4761: 4705 4689

345
576
2203
2430
2794
4676

1 427 426 425 425 425
2 1x1 1157 1156 1156 1156
3 2678 2493 2459 2447 2431
4 2981 2818 2805 2800 2797
5 4332 2971 2968 2966 2965
6 7693 5671 5629 5619 5610

1 436 434 434 434 434
2 1912 1880 1878 1877 1876
3 2685 2500 2466 2454 2438
4 3838 2828 2816 2811 2808
5 4441 3936 3933 3932 3931
6 8558 7121 6964 6945 6924

439 437 436 436
2494 2375 2360 2355
2713 2535 2509 2501
4238 2859 2849 2844

5 4 1 0 5294 5278 5273
9 8 8 0 8664 7645 7715

--

1 I 440 438 437 437 437
2 2654 2472 2439 2427 2412
3 2936 2680 2666 2661 2659
4 4287 2952 2946 2944 2942
5 7167 7061 6902 6872 6827
6 11691 8716 7947 7713 7336

3 4

Exact

436
2347
2492
2842
5269
7290

Experi-

nental

350
587

2112

2781
3958

423
1157

2893

436
1802

3789

436
2228

5018

436
2458

6551

L’ ,



247

TABLE 4.9

Calculated and experimental frequencies in Hz. of bladed disc model III

E = 29 x lo6 psi pg = 0.283 lb/in3 v = 0.3

m

2

3

4

5

6

Iode l-;!umber of disc and blade element:
--

No. 1 2 3 4

Exact Jager :120)
Calcu- Experi-
lated mental

- -

1 157 155 154 154 154 154
2 466 463 463 463 462 450
3 1032 1008 1005 1004 1003 1005
4 2979 2120 2107 2103 2099 2040
5 3860 3187 3151 3138 3128
6 4929 3610 3559 3542 3519

1 226 225 225 225 225 230
2 522 521 521 521 521 515
3 1277 1267 1266 1265 1264 1270
4 3082 2224 2214 2210 2208 2145
5 3866 3534 3494 3479 3461
6 5036 3760 3729 3717 3706

1 275 273 273 273 273 276
2 598 .596 596 596 596 599
3 1661 1579 1575 1574 1573 1600
4 3283 2376 2370 2366 2364 2275
5 3885 3613 3563 3545 3523
6 5261 4422 4372 4364 4358

1 304 298 298 298 298
2 678 667 666 666 666
3 2043 1823 1814 1812 1811
4 3561 2621 2618 2614 2611
5 3956 3668 3617 3600 3578
6 5734 5193 5099 5088 5081

1 321 313 312 312 312
2 760 728 726 726 726
3 2331 1957 1946 1943 1941
4 3717 2935 2924 2918 2912
5 4174 3768 3719 3702 3682
6 6623 5928 5811 5798 5786

- -

164
430
985
1930

237
490

1215
2050

280
585

1500
2200



248

w
0

a



. :

TABLE 4.11

First four cantilevered blade alone frequencies of cases 1 through 7.

E = 29 x lo6 psi Pg = 0.283 v = 0.3

Mode Case Number

No. 1,2 and 7 3 4 5 6

1 71I=2 447

I=/=

3 799

4 892

Bl - Bending

T- Torsion

J--r-F-
%

I
1198

I
T

B2 2013 %

in the Imin direction B2
- Bending in the I_ direction



250

TABLE 4.12

Coupled frequencies in Hz. of cases 1 through 7, calculated
by the exact method.

E = 29 x lo6 psi Pg = 0.283 lb/in3 v = 0.3

Case NumberMode

m No.

2

3

4

5

6

1
2
3
4

1
2
3
4

I
2
3
4

1
2
3
4
- -
1
2
3
4

1 -2

I--69 137
212 220
462 947
796 I_054

4 5 6 7

70
186
452
795

68
250
483
797

40
186
262
597

40
24.1
287
597

225 71
442 308

1193 454
1281 797

272 71 I 71

70
387
526
798

71 155
348 402
469 1030
798 1200

71 158
419 607
501 1040
798 1201

71 159
437 784
554 1056
798 1203

80
430
529

1022

80
. 496
685

1192

40
248
327
598

553
1205
1700

395
459
798

427
602
799

40
250
357
598

80
500
808

1197

291
680

1212
2034

71
436
487
798

40
251
378
598

8 0
502
a67

1197

300
799

1221
2054

71 159
442 905
600 1092
798 1208
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TABLE 4.13

Frequency ratios w/U; of the first four modes of cases

1 through 7.

Case Number
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TABLE 4.14

Variation of freq,uencies  (in Hz.) of bladed disc model I
with speed of rotation.

E = 29 x lo6 psi pg - 0.283 lb/in3 v = 0.3



TABLE 4.15

Frequencies in Hz. of bladed disc model I calculated including
transverse shear and rotary inertia.

E= 29 x LO6 psi pg = 0.283 lb/in3 V = 0.3

3
3 750 744 743 754
4 1274 1256 1250
5 1734 1705 1700 1687
6 2520 2140 2132 2159

1. 116 116 116 116
2 710 705 703 695

4
3 772 768 766 766
4 1277 1259 1253
5 2357 2014 2000 2010
6 2823 2744 2738 2792

1 116 116 116 116
2 728 723 722

5
3 815 811 809
4 1278 1260 1254
5 2445 2043 2029 2041
6 3719 3646 3585 3610

1 116 116 116 116
2 731 727 725

6 3 843 839 838
4 1278 1260 1254
5 2460 2050 2037 2067
6 . 4342 4075 3939
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TABLE 4.16

Frequencies in Hz. of bladed disc model II calculated including
transverse shear and rotary inertia.

E = 29 x lo6 psi Pg = 0.283 lb/in3 V = 0.3

!

-

3

-

4

-

5

-

6

Mode No.
Ikmber of disc

and blade elements

426
11.58
2493
2783
3034
7113

- -

1 434
2. 1839
3 2501
4 2790
5 3894
6 8132

436
2295
2528
2801
5118
8655

- -
437
2443
2631
2832
6655
8709

_-

3 4

351 350
579 578

2276 2255
2455 2443
2769 2763
4463 4408

425 425
1152 1149
2458 2446
2767 2761
3006 2989
5395 5347

434
1827
2466
2773
3878
684.9

-

436
2273
2495
2786
5080
7680

433
1820
2454
2768
3868
6744

436
2264
2484
2780
5072
7653

437 437
2410 2399
2603 2593
2817 2811
6521 6493

7843 7676

-

1

.--

Experimeni

350
587

2112

2781
3958

423
1157

2893

436
1802

3789

436
2228

5018

436
2458

6551
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Section properties of t

I

Radius Area

(in> (in2)

8.182 0.1196 0.0005994 0.007063 10.32

8.780 0.0960 0.0004300 0.005400 16.00

9.390 0.0771 0.0002736 0.003857 22.71

10.050 0.0630 0.0001700 0.002800 29.50

10.720 0.0461 0.0000822 0.002048 32.27

TABLE 4.17

ze turbine blade

I I 6
nin max

(in4)
4

(in ) ("1

TABLE 4.18

Calculated and measured frequencies in Hz. of the turbine blade
5 Timoshenko beam elements used in the calculations.

E= 29.3 x lo6 psi pg = 0.283 lb/in3 V = 0.3

1 1151 1150

2 3553 2560

3 5482

4 12108



256

TABLE 4.19

Dimensions and section properties at nodal points of the finite
element model of the turbine.

DISC

BLADE

2 8.182

3 8.780

Node

1

2

3

4

5

6

7

Area

(in2)
-

0.1350

0.1196

0.0960

0.0771

0.0630

0.0435

Radius Thickness
(in> (in>

0.900 2.650

2.380 1 .395

3.430 1.095

5.700 0.680

6.950 0.480

7.390 1.025

7.836 1.025

I
mi.n

(in41

0.0007400

0.0005994

0,0004300

0.0002736

0.0001700

0.0000720

I
max

(in41

0.007400

0.007063

0.005400

0.003857

0.002800

0.001900

6

(“1
-I_

8.00

10.32

16.00

22.71

29.50

32.30
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mJ3LE 4.20

Calculated and experimental frequencies, in Hz., of the turbine
rotor. 6 disc elements and 5 blade elements used in the cal-
culations.

pg = 0.281 (disc) , pg = 0.283 (blade) v = 0.3 slade = 29-3 x lo6 psi

1. 1131 1126
4

2 1523 1466

I 1143 1142
5

2 1947 1877

1 1146 1146
6

2 2308 2237 1871
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APPENDIX A

APPLICATION OF THE THIN PLATE BENDING ELEMENTS

TO STATIC BENDING ANALYSIS OF CIRCULAR AhD ANNULAR P-LATES

A.1 INTRODUCTION

The annular and circular thin plate bending elements

developed in Chapter 2, although primarily developed for the

vibration analysis of turbine discs with radial thickness vari-

ations, can be readily applied in the static bending analysis of

axisymmetric circular and annular plates.

Here a few examples have been chosen to show the

accuracy and use of these elements in such static analysis.

When plates with axisymmetric loading are considered, annular

and circular elements with m = 0 are to be used, Loads which

are not axisymmetric can also be considered if they can be

expanded into Fourier series, In such cases each Fourier compo-

nent is considered seperately and for the i
th component elements

with nodal diameters m = i are used. Required number of'

Fourier terms are taken and the individual contributions of

deflection etc. are superposed together to get the complete

.' solution of the problem.
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A.2 NUNERICAL APPLICATIONS

The first example is the axisymmetric circular plate

with radial thickness variation subjected to uniform load q,

shown in Figure A.1. Annular and circular elements with m = 0

are used and the load q is replaced by

central deflection and bending moments

Table A.1, along with exact solutions.

consistent load. The

obtained are given in

Plates with ho/h1 = 1.0

and 1.5 are considered. The same problem is solved by consi-

dering annular plates with a/b = 0.001, and using only annular

elements, The results are given in Table A.2. Comparing

results of Table A.1 and A.2, it is seen that when the plates

are approximated by annular plates with very small inner radius

the bending moments obtained at the centre are not accurate,

whereas they are not much affected at points away from the

centre,

The second exampJ_e chosen is an axisymmetric annular

plate with variable thickness shown in Figure A.2. The maximum

deflection for this plate with b/a = 1,25, 2, and 5, obtained

with models with annular elements are given in Table A.3 with

exact solutions.

'Axisymmetric plates with nonsymmetric loads can also

be considered, As already mentioned these loads are expanded
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in Fourier series and each Fourier component is considered

separately. A uniform annular plate fixed at the inner radius

a and free at the outer radius b, and subjected to a single

concentrated load P at a point on the outer boundary as shown in

Figure A.3 is considered. Deflection under the load obtained

for this problem usin,0 annular elements are given for plates

with a/b = 0.5 in Table A.4 along with exact .solutions,

Humber of Fourier components taken for the calculations were

11, 21., 51, and 101. The results show that the number of Fourier

components taken has more influence on the results than the

number of elements used. OJson and Lindberg (54) have used

sector elements to solve this problem and their results are

given in Table A.5.

The next example is a clamped circular plate with

a single concentrated load P applied anywhere in the plate,

as shown in Figure A.4. The plate is approximated with an

annular plate with a/b = 0.001. The deflection under the load

when the first 21 Fourier components of the load are taken are

given in Table A.6 with exact solutions and solutions obtained

by Olson and Lindberg (54) using sector elements. The load is

applied at a point with radius ratio c/b = 0.5.

A.3 DISCUSSION

The numerical examples considered show that for



261

axisymmetric plates, although sector elements (54,55,56) and

triangular elements (57) can be used in the static bending

analysis, the use of annular and circular elements offer sub-

stantial computational advantages since the number of degrees

of freedom involved are much less than the other cases. At

the same time there is no loss in accuracy. The relative ease

with which radial thickness variation can be taken into account

when annular and circular elements are used is an added advan-

tage. Eventhough a set of problems equal to the number of

Fourier components taken, are to be solved in the case of loads

which are not axisymmetric, still use of these elements offer

computational advantages in terms of storage and time.

But the application of these elements are limited

only to complete axisymmetric circular and annular plates.
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Figure A.1 Circular plate with radial linear thickness variation.

I . a I

b

Figure A.2 Annular plate with radial.linear thickness variation.
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b

Figure A.3 Uniform annular plate loaded with a concentrated load
at the outer boundary.
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Figure A.4 Uniform circular plate loaded with a concentrated load
anywhere on the plate.
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TABLE A.1

Deflections and bending moments of simply supported plates under
uniform pressure q, modelled with one circular and several annular
thin plate bending elements.

h0

i i

1

1.5

w -
maxqbl(

Mr/G2

Mt/qb2

Eh;
w-max

4b4

Mr/qb2

Mt/qb2

r
Exact
(124)

2 4 8 16

0 0.7391 0.7383 0.7383 0.7383 0.738

0 0.2147 0.2060 0.2038 0.2033 0.203

b/2 0.1599 0.1543 0.1528 0.1525 0.152

0 0.2147 0.2060 0.2038 0.2033 0.203

b/2 0.1775 0.1763 0.1759 0.1758 0.176

b 0.0955 0.0942 0.0939 0.0938 0.094

0 1.2660 1.2660 1.2660 1.2660 1.260

0 0.2689 0.2593 0.2577 0.2574 0.257

b/2 0.1927 0.1799 0.1772 0.1766 0.176

0 0.2689 0.2593 0.2577 0.2574 0.257

b/2 0.1760 0.1730 0.1724 0.1722 0.173

b 0.0588 0.0556 0.0545 0.0541 0.054

l- Number of elements
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TABLE A.2

Deflections and bendi.ng moments of simply supported plates under
uniform pressure q, modelled with annular thin plate bending elements
only with a/b = 0.001.

hO
ii-

1

1.5

k7 G
max

qb4

M,/qb 2

Ehil
WIIElXT

ab

J-f,/@

Mt/qb2

r
2

0

0

b/2

0.7389

- -

0.1639

0.1595

0

b/2

b

0.0073

0.1774

0.0955

0

0

b/2

1.2650

- -

0.2202

0.1925

0 0.0693

b/2 0.1758

b 0.0588

Number of elements

4

--

8 16

0.7384 0.7383 0.7383 0.738

0.2111 0.2191 0.2220

0.1542 0.1527 0.1524

0.203

0.152

0.2275

0.1762

0.0942

0.2709

0.1759

0.0939

0.2935

0.1758

0.0938

0.203

0.176

0.094
- -

1.2650 1.2650 1.2650 1.260

0.2713

0.1797

0.2783 0.2814 0.257

0.1771 0.1765 0.176

0.3099

0.1729

0.0556

0.3478 0.3731 0.257

0.1723 0.1721 0.173

0.0544 0.0541 0.054

Exact
(124)
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TABLE A.4

Deflection coefficient wmax D/P for a uniform annular plate with
a single concentrated load, calculated using thin plate bending
annular elements.

n* 2 4 8 16

11 0.047737 0.047785 0.047789 0.047789

21 0.049910 0.049960 0.049964 0.049965

51 0.050537 0.050591 0.050595 0.050596

101 0.050616 0.050682 0.050687 0.050688

T Number of Elements

n* - number of Fourier terms

T
Fxact
(124)

0.050718

TABLE A.5

Deflection coefficient wmax D/P for a uniform annular plate with
a single concentrated load, calculated using sector elements (54).

Sector Element
Grids

N.D.F. W D/P
max

1x6 19 0.050896

2x12 74 0.051372

3x18 165 0.051027

4x24 292 0.050885

Exact
(124)

0.050718
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TABLE A.6

Deflection coefficient w D/P of a uniform circular plate with a
single concentrated load P applied any where in the plate. c/b = 0.5

2x4*

4x6*

Finite element

* Sector element grid (54)

n* - number of Fourier terms

c
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APPENDIX B

VIBRATION OF CIRCULAR AN9 ANNULAR PLATES WITH

TRhNSVERSE SHEAR AND ROTARY INERTIA

B.l INTRODUCTION

Based on Mindlin's Plate theory (62), which takes

into account transverse shear and rotary inertia, Callahan (66),

and Bakshi and Callahan (67) have derived frequency determinants

for circular and annular plates with various boundary conditions.

These determinants can be used in the calculation of natural

frequencies of moderately thick circular and annular plates.

A brief summary of the theory as applied to annular plates is

given here with the frequency determinant of a free-free annular

plate.

B.2 MINDLIN'S PLATE THEORY

When transverse shear and rotary inertia are considered,

the governing differential equations, in polar coordinates, of a

vibrating plate is

~ a21?i 1
- - I - -

awi + 6iwi = 0 (B.1)
8r2 r ar r2 at2

( i = 1,2,3. )

where w1
and w2 are component parts' of the total deflection w;
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and w
3

is a potential function giving rise to twist about normal

to plate; and

1
62 = 11,2 2 &4' { ( R f S0 ) F [ ( R - S )*i- 4 604] 2 1

6; = 2(R64
0

- s-1> / ( 1 -v ) 03.2)

R- h2/ 12 ; S = D / K2 Gh ; D = E h3 / 12( 1 -v2 )

E, G, v are the Young's modulus, the shear modulus and Poisson's

ratio, respectively, and ~~ = ?r*/ 12

Now,

w =
w1 + w2

(B.3)

1J15 = c o1 - 1 ) r
awl aw2 aw3
ag +  (o,-1) $F - -ar

where

61' o2 = (6; 9 6: > ( R S;.-S-l) -I

The above equations give the deflection and rotations of the plate,

and the plate stresses are given by the following relations.
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(B.4)

Qr
= ,2 Gh (JI, + 2 )

Q = K 2 Gh ($J, +$s. )

Now, 62 is
1

and 62
3

are

of the first

positive only when w

thickness shear mode

given by, w = n(G. /P)

always positive for positive values of w ; but 6:

II2 / h

solutions

w -are

L

< ‘Jl  , where G is the frequency

of an infinite plate, and is

Hence, the most general

annular plate when w <

w1
= 7 { ai Jm
m=O

w2
= ? { ai Im
m=O

w3
= Z ( ai Im
m=O

of Equations (B.l), for an

(r61) 4 bi Ym (r 61)) ( cos mS + sin mE )

(r&i) + bi Km (r 6;)) ( cos rn[ f sin mC )

(r61) + bi Km (r 6;)) ( cos me + sin mE )

0.5)

where a
f bi
m' m

(i= 1,2,3. ) are arbitrary constants,

,Jm;Y Im' m'
and Km are Bessel functions of order m,
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(a’>2= 1 u2)21 ;
r)

‘6; j2 = I 03121

Substituting (B.5) into (B.4) we arrive at expressions for

the plate stress components involving the six arbitrary constants

i
a bi
m' m

(i" 1,2,3. ).

B.3 k?NLJUR PLATE WITH FREE BOUNDARIES

Let us consider an annular plate with both boundaries

free, as an example. Then on both boundaries where r = a and

r = b.

9, = MrS = Mr = 0 (B-6)

Now)

Q, = ai hi (6,r) + bi Bk (6lr) + ai hi (6;r)  + bi Bi (6;r)

M =
rc

ai Ci (61r) + bi Di (61r)  f af C2m -(62) f bi Di (6;r)

3 :? z .,

ai CA (62) -I- bi Di (6;r)

03.7)
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Vhere the expressions A:, Bim , etc., ( i = 1,2,3) are combnations

of Bessel functions and are given in Table B.l.

When the above expressions are equated to zero when r =a

and r = b , satisfying boundary conditions (B.6), we get a set of

homogeneous simultaneous equations. Nontrivial solution of these

is obtained by equating

D&Slb)

to zero the following determinant.

I 0

Por other boundary conditions similar determinants

are readily derived. Similar procedure is followed when a circular

plate is considered. This problem has been treated by Callahan (66).
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The natural frequencies of the plate are obtained by

systematic searching of values of w which make the value of the

appropriate frequency determinant corresponding to the required

boundary conditions, zero.
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TABLE B.1

B;cx) = al Y;<x) K2Gh

A;(x) =  al I;(x) tc2Gh B;(x) = o 1 K;(x) K*Gh

A;(x> = - f Im(x) K*Gh B3(x) = - ; Km(x) tc*Gh

$xj. = [@,-l){  ; J;(x) - 2 J (x)) 1 (.1-v) D
r2 m

c;w = [ (cr2-l){ ; I;(x) - E I (x) ) 1 (l-w)  D
r2 m

2
c;(x) = - $ [ I;(x) - $ I;(x). + it? I

r2 m
(x) ] (l-v) D

D;(i) = [(yl){ T Y;(x) - = Y
r2 m

(x)) 1 (1-u) D

D:(X) = [ b2-i){ ; K;(X) - m K (X))
r2 m

] ( 1 - v )  D

D;(x) = - $
2

C K;(x) - + K;(x) + m K (x) ] (l-u) D
r2 m

vm2
E:(X) = [hTl-ij{ J;(X) -I- ; J;(X) - - J

r2 In
(x>} I D

E:(x) = p$J2-lj( L;(X) i- : I;(X)
ml2

- - I  (x)1 ] D
r2 m

E;(x) = [ - F P(x) + = I (x>
r2 m

1 (1-v) D

vm2
F:(x) = [(yjf Y;(X) i-: Y;(X) - - Y

r2 m
(xj> 1 D

F:(X) = m2-ljf K;(x) + f K;(X)
vm2
--K (x)1 ] D

r2 m

F$d =  1. - ; K;(x) + 2. K (x>
r2 m

] (l-v) D
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APPENDIX C

FINITE ELI%lENT ANALYSIS OF THICK RECTANGULAR PLATES

IN BENDING

c.1. INTRODUCTION

of freedom rectangular element for the bending analysis of

Pryor and Barber (125) have developed a twenty degree

rectangular plates including the effects of transverse shear.

In'the formulation of this element, in addition to the total

deflection w and rotations 4
X

and 4
Y

normally considered

in plate bending, the average transverse shear strains 7
X

and
Yy

are taken as the additional degrees of freedom.

Numerical results presented demonstrate good agreement with

Reissner theory, and a substantial improvement over previous

formulations (133,134).

In the exact analysis of problems based on Reissner

theory, Salarno and Goldberg (135 ) have separated the contri-

butions due to bending and transverse shear. Such an alternative

approach, when used in the finite element formulation, offers

significant computational advantages. Following this approach, a

( 12 x 12 ) shear stiffness matrix is derived which is used
.L

L ,
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seperately to yield the transverse shear effects.

Since the notations used here are different from those

used elsewhere in this work, a separate list is given at the end of

this Appendix.

c.2. FINITE ELFXENT FORMUTATION

The governing equations 0~C the Reissner theory give

the following relations for the stress resultants, (1241,

MX

a4X
=  D[yjy- c v$ + ;; q]

34 a+X vk
M
Y
=n[#+v~+~ql

M =m..
xy

cc.0

where

cc.21

!Y$, = -$f + kGh
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Implicit in the theory is the value k = 6/5 accounting

for the variation in transverse shear strain across the section.

Equations C.l and c.2 together with the equilibrium

relations, result in the governing differential Equation

h2
DV4w = q - -j-j ( 1_ v2- ) V2q (C.3)

TWs equation has been solved by Salerno and Goldberg

cl35 I, and these exact solutions were used for comparison

purposes with the finite element method in reference 025)

In Equations C.1 the tenn 2g q arises from

consideration of the transverse normal stress oz . The effect of

the stress is not accounted for in the finite element formulation of

Barber et al or in the following, Accordingly, dropping this

term, but retaining k = 6/5, results in the governing Equation

2
DV4w = q - !& c& ) V2 q (C.4)
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It may be noted that solutions to Equation C.4 can

be obtained by minor modification of the Salerno and Goldberg

solutions, and that these modified solutions should be used to

assess the finite element method which discounts the effects of

transverse normal stress.

is assumed that the contributions of bending and transverse shear

In the finite element formulation to be described it

to the plate deflection w, may be separated ; thus

w=wb+3 (C.5)

Further we assume that that the rotations +x and

+>I
can be obtained from the deflection resulting from bending

only; thus,

(C-6)

The resulting relations for the stress resultants become;

Mx=
_o[a2wb -1-v a2wb ]

ax2 aY2

2 b 2 b
M =
Y
-D[h +v?-%--]

ay2 ax2
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2 b
M
XY

= D (l-v) a_
axay

Gh 3ws
Q,= -kc

Gh aw
Q, =-Tay

Thus the bending and twisting moments are these given

by classical thin plate theory. The strain energy relations for

the deformed plate are then,

/I [ublT [D 1 [ub] dx dy ++ II b,lT CGI [usI dx d y

(C.8)

(C-7)

where,

h+,lT = [ wix w;x w;y 1

b ,
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[usIT = 1 w; w; 1

and

cc.91

[Gl =

The effects of bending and transverse shear

deflection are thus uncoupled and the contributions of

be calculated separately.

on the

each may

Considering bending contribut5ons  first, for the

rectangular element shown in Figure C.1 if we take as deflection

function,

b
W = [ 1 X y X2 Xy y2 X3 X2y  Xy2 y3 x3y xy3 ] [a] (C.10)

and as generalised co-ordinates the nodal deflection vector,

[~blT = [ We WEj_ W~i 1
.1 = 1, 2, 3, 4 (C.11)
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there results the well known stiffness matrix for tkin plate

bending obtained and studi.ed by many workers (123). Such

elements may be assembled and solved in the usual way to yield
8’

the contribution of bending to the total plate displacement, and

to give stress resultants according to thin plate theory,

In the same way we take for the transverse shear

deflection,

S
W = [ 1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3 ] [b] (C.12)

together with the nodal deflection vector,

[GJT - [ WI WEi w;i ] i= 1, 2, 3, 4 (C.13)

and by substitution in the energy relation for transverse shear,

Equation c.8 , a (12 x 12) shear stiffness matrix Is obtained for

the element, This matrix is given In Table C.l. These shear

stiffness matrices may now be assembl.ed and solved in the usual way

to yield the contribution of transverse shear to the plate total

deflection, and to give the stress resultants Qx and Q ,
Y

Equation C.7 .

The boundary condition constraints to be enforced with

the bending element contribution are those normally considered.
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In the shear stiffness contribution the following will apply

for the edge condition

For an edge x = constant,

Clamped and Simply supported

S
w -0 ; WE # d and w; = 0

(C.14)

and

Free

ws+ 0 ; w;= 0 and ws = 0
Y .

Before examining the numerical application of this

proposed method, two significant computational advantages will be

noted, which result from separating the effects of bending and

shear, First for a given finite element mesh two sets of

simultaneous equations must be solved, corresponding to the assembled

matrices obtained from the (12 x 12) bending and (12 x 12) shear

element matrices. However these resulting sets of equations are

of much lower order than that which must be stored and solved

t
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using the (20 x 20) finite element formulation of reference (125 ).

For example, a 6 x 6 mesh used to solve a simplv supported quarter

plate system will involve two (147 x 147) matrices by the method

described here, compared with a single (245 x245) matrix using

the method of referencc(125 substantial advantages in computing

time and storage are evident with the present method. Secondly,

the deflection of the plate can be written, (135 ), as

‘tj  =

may.
[ a + B (h/a)2 I qa4/Eh3 (C.15)

in which the coefficient a derives from classical thin plate

theory, while B gives the additional deflection resulting from

transverse shear. Thus  for a given aspect ratio (b/a) of the

plate, it is necessary to calculate a and B for one thick-

ness only; the effect of transverse shear in a plate of identical

aspect ratio, but differing (h/a) ratio is then readily obtained

from Fquation C.15.

c.3. NUMERICAL APPLICATIONS

To examine the accuracy and convergence of the method,

the central deflection of a uniform thickness, uniformly loaded,

simply- supported square plate has been calculated for various

finite element meshes. Using symmetry the model comprised a

quarter plate system having N elements per side, where N was
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varied from 1 to 6. The value k = 615 was used, and thus the

Solution to Equation C.4 obtained by modifying those obtained

in reference (135 ) have been used to compare with the finite

element results. The calculatedvalues of the coefficients

o and 6, Equation C.15 , are given in Tables C.2 and C.3 in

Table C.2 a consistent load formulation has been used, while in

Table C.3 lumping of the distributed load at the nodes has been

used. Good agreement with the exact values is obtained.

Convergence of the shear contribution with a consistent load

formulation is extremely rapid, and indicates that the use of

precision bending elements would be most profitable to increase the

accuracy of the bending conribution. With lumped loading of the

nodes, convergence of the shear contribution is much slower, but

it is interesting to note that the bending contribution is indeed

improved for this particular bending element.

In Table C.4 the deflection coefficient for

a uniform sj_mply  supported square plate of various thicknesses

is given, and compared with the.results given in reference (125)

exact values, obtained from Equation 3 in reference (135)

this case's 6 x 6 finite element mesh has been used for the

quarter plate system, and the value k = 1 suggested in reference

employed. Again agreement between the various solutions is good,

but it is worth noting once more the advantages in computing time

and storage, and in the use of‘ Equation C.15 for different thickness

when assessing the proposed method.



287

C.4 NOTATION

[al, bl

b, 5

k

%i, 5,s Mxy

Qx, Q,

4

U

W

Wb

ws

[wbl

GJ

a, B

vectors of constants;

subscripts and superscripts denoting bending

and shear;

flexural rigidity of the plate;

modulus of elasticity of material;

shear modulus of material;

thickness of plate;

constant denoting resistance of section to

warping;

moment stress resultants;

transverse shear stress resultants;

transverse uniform distributed pressure;

strain energy;

total deflection of

deflection of plate

deflection of plate

nodal displacements

nodal displacements

plate;

due to bending;

due to transverse shear;

due to bending;

due to transverse shear;

coordinates'of plate element; subscripts

denoting partial differentials;

deflection coefficients due to bending and

transverse shear;.
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7x9 Yy

v2

V

[Jz

+,, $Y

- average transverse shear strains;

a2 a2
= --I-_ ;

3X2 ay2

- Yoisson's ratio;

- normal stress in the z direction;

- total rotations of sections x = constant

and y = constant.
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X

Figure C.1 Rectangular plate shear deformation element.
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TABLE C.2

Coefficients w Eh3/qa4 for central deflection of a uniformly
loaded simply s@$orted square plate. v = 0.3 k = G/5

Classical Reissner
Theory Theory Finite Element

N Eqn. C.4 (consistent load)

a B a % error B % error

1 0.05529 24.6 0.2259 -1.7

2 0.04726 6.5 0.2300 0.0

3 0.04566 2.9 0.2299 0.0
0.04437 0.2299

4 0.04509 1.6 0.2299 0.0

5 0.04483 . . .

6 0.04469 1 :.: ] :.I::: / 1.:
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TABLE C.2

Coefficients w Eh3/qa4 for central deflection of a uniformly
loaded simply s?$$orted square plate. v = 0.3 k = G/5

Classical Reissner
Theory Theory Finite Element

N Eqn. C.4 (consistent load)

a B a % error B % error

1 0.05529 24.6 0.2259 -1.7

2 0.04726 6.5 0.2300 0.0

3 0.04566 2.9 0.2299 0.0
0.04437 0.2299

4 0.04509 1.6 0.2299 0.0

5 0.04483 . . .

6 0.04469 1 :.: ] :.I::: / 1.:
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TABLE C.3

Coefficients wmx Eh3/qa4 for central deflection of a uniformly
loaded simply supported square plate. v = 0.3 k = 6/5

N

--
Classical
Theory

CL

0.04437

--

Xeissner
Theory
cqn. C.4

B

0.2299

a

0.03763

0.04302

0.04378

0.04404

0.04416

0.04422

Finite Element
(Lumped load)

% error

-15.2

- 3.0

- 1.3

- 0.7

- 0.5

- 0.3

B

0.2226

0.2161.

0.2230

0.2259

0.2273

0.2281

% error

-3.2

-6.0

-3.0

-1.7

-1.1

-0.8

I .,._.
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TABLE C.4

Coefficients wmax Eh3/qa4 for central deflection of a uniformly
loaded simply supported square plate. v = 0.3 k = 1.0

h/a

0.01

0.05

0.10

0.15

0.20

0.25

Reissner
Theory
035)

.I

0.04439

0.04486

0.04632

0.04876

0.05217

0.05656

-

t

I_-

Lumped Load

Finite Element
Pryor et% Present Method

(125) Constr Load

t0;04423 0.04471_ 0.04424

0.04469

0.04612

0.04852

0.05186

0.05617

0.04517

0.04660

0.04900

0.05235

0.05666

0.04470

0.04612

0.04850

0.05182

0.05610
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APPENDIX D

DETAILS OF COMPUTER PROGRAMS

D.1 INTRODUCTION

For numerical calculations several FORTRAN programs

were written and most of the calculations in this investigation

can be done with one of the programs described here. Several

options, which facilitate the use of these programs either for

the analysis of the entire rotor system or the component parts,

are given. Furthermore these programs can be easily modified

to meet particular requirements. Complete listings of the

programs are given in section D.4. Brief description of the

programs along with the definition of input and output variables

are given below. Use of the various options are explained.

D.2 FORT&Q? PROGRAM FOR THE ANALYSIS OF ROTORS OF SIMPLE

GEOMETRY - PROGRAM-l

D.2.1 General Description

This program

lations involved in the

described in chapter 4,

was written for the numerical calcu-

exact method of analysis of rotors,

section 4.3. Hence the use of this
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program is restricted to rotors of simple geometry. In this

program a systematiciterative search is made for the values of

the natural frequency ti of the system which makes the value

of the frequency determinant of the system to be zero. Ofcourse'

specified amount of tolerance is allowed on this condition.

In principle the value of w can be initiated with

zero, as the starting value, and the iteration continued with

some specified step size until a change of sign in the value

of the determinant is noticed. Then the step size may be

reduced and this procedure repeated until a very small step

size is reached. But this procedure requires considerable

amount of computer time if the initial step size is small. For

that reason if the initial step size is increased, it is very

likely that some of the natural frequency values are missed.

This happens because of the complex behaviour of the value of

the frequency determinant with the change of w. As seen in

Figure D.l, the value of the determinant some times jumps from

- 03 to -t- ~0 and again changes sign within a very small incre-

ment of w. Since the elements

combinations of trigonametric,

of the determinant contain

hyperbolic and Bessel functions

it is impossible to foresee such jumps.

Because of the above reasons this program is made to

utilize approximate frequency values of the rotor obtained from
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finite element analysis. Thus this program is mainly used for

refining and assessing the accuracy and convergence of the

finite element results.

The following procedure is followed. First, a range

is specified within which the exact frequency is expected to lie.

Then the approximate frequency corresponding to a particular

mode of vibration is read in. The iterations are performed with

a small step size, within the range. When a change of sign of

the value of the frequency determinant is noticed, it is checked

whether there was a jump from either side of infinities. If this

did not happen, then the step size is cut down and the iterations

continued until the allowable step size is reached. If a jump

had taken place then the iterations are simply continued until

change of sign is again noticed.

other modes.

A flow diagram of the

which shows how

are performed.

explained below

in the program.

the input data is

The notation used

This procedure is repeated for

program is given in Figure D.2,

provided and how the iterations

in this flow diagram are

in section D.2.2 along with the variables used

D.2.2 Input and Output Variables

Brief descriptions of the input and output variables

used in PilOGRAM-1 are given below in their order of appearance
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in the program. Corresponding symbols used in the flow diagrams

are given immediately following these variables where applicable.

Input and related variables.

ALL

FAC(N)

FI(N)

SM

AL@J

3X.X

NIIS

ND

NC

IRNG

ED

EB

X

Y

m
S

me

n
r

iR

Ed

E6

allowable error in the value of Bessel functions

given as a factor.

N! (factorial N).

function Q(N) =1+++++... +$

initial step size.

factor used to get the final allowable step

size where the iteration is stopped.

factor used to multiply the approximate

frequency to get starting value.

factor used to multiljly the approximate

frequency to get the final value beyond which

iterations are not carried out.

starting value of nodal diameters.

final value of nodal diameters.

required number of frequencies in each nodal

diameter case.

rim option.

Youngs modulus of disc material.

Youngs modulus of blade material.
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ROD

R#B

PRD

PRB

RDI

RD@

TD

od

'b

'd

'b

a

b

h

BB

BD

BL

bb

db

R

BANG

Z

ER

R4R

PRR

RR

RJ

RIZ

RLX

E l

6

Z

Er

pr

V
I:

R
0

KG

Izz

Ixx

el

e2

Ar

AFXCJ @a

E2

RA

mass density of disc material.

mass density of blade material.

Poisson's ratio of disc material.

Poisson's ratio of blade material.

inner radius of disc.

outer radius of disc.

thickness of disc.

width of blade.

depth of blade

length of blade.

blade stagger angle.

number of blades in the rotor,

Youngs modulus of rim material.

mass density of the rim material.

Poisson's ratio of the rim material.

the rim centroidal radius.

St. Venant torsional stiffness of the rim section.

moment of inertia of the rim section about Oz axis.

moment of inertia of the rim section about Ox axis.

distance between the inner boundary and the

centroid of the rim,

distance between the centroid and the outer

boundary of the rim.

area of cross-section of the rim.

approximate frequencies of the rotor.
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Output variables

M m -

N n -

FF tit -

NIT i-

AFR(,) wr -

number of nodal diameters.

mode number.

trial value of the frequency.

number of iterations.

refined frequencies.

D.2.3 Subroutines Used In PROGRAM-1

The subroutines and functions used in PROGRAM-l are

given below.

(1) Main program.

MAIN-1

(2) Subroutines used to obtain disc dynamic stiffness matrix.

EXTDSK

DETERM

(3) Functions used for the computation of the values of Bessel

functions.

XJN

XIN

EN

FACT

PHI
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D.3 FORTRAN PROGRAMS FOR THE ANALYSIS OF ROTORS OF GENERAL

GEOMETRY - PROGRAM-2 and PROGRAM-3

D.3.1 General Description

For the stress and vibration analysis of rotors of

general geometry two programs, PROGRAM-2 and PROGRAM-3, were

written. Roth of these are based on the finite element method

of analysis of the rotor described in chapter 4. The effects of

transverse shear and rotary inertia are not considered in

PROGRAM-Z, whereas

Also in the latter

dered to be a part

these effects are considered in PROGRAM-3.

the rim of the rotor, if present, is consi-

of the disc.

In both these programs all the necessary input

statements are included so that input data closely describing

rotors of general geometry can be fed in. The materials of the

disc, rim and blades may be of different materials. The programs

are featured with several options which allow the user to either

consider the entire rotor or the parts. Also the effect of

rotation and temperature gradient can be included when they are

thought necessary.

The meaning and use of the various options available

in these programs are given below. The symbols used here are the

same used in the programs. A flow diagram is given in
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Figure D.3, showing how the input data are provided and the

symbols used in this diagram are explained along with those

used in the programs in section D.3.3.

D.3.2 Options Available In PROGRAM-2 AND PROGRAM-3

(1) I@PT - General option.

value description

1 Vibration of the disc alone is considered.

2 Vibration of the blade alone is considered.

3 Vibration of the bladed disc is considered.

4 Stress analysis of the disc alone is considered.

(2) IRNG - Rim option

value description

0 No rim present.

1 A rim is present.

(3) ITED - Disc thermal gradient option

value description

0 No temperature gradient present.

b Temperature gradient present.

(4) ISTB - Blade initial stress option.

value description

0 Blade has no initial stresses.

1 Blade has initial stresses.
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(5) IEDE - Blade general option.

value description

1 Vibration of a single blade in the principal

directions and in torsion are considered

seperately.

The coupled bending-bending vibration of a

pretwisted blade is considered.

The vibration of a single or group of blades

with or without initial stresses is considered.

D.3.3 Input and Output Variables

Brief descriptions of the input and output variables

used in PROGRAM-2 and PROGRAM-3 are given below, in the order of

their appearance in the programs. Corresponding symbols usedin

the flow diagrams are given immediately following these variables

where applicable.

Variables used in PROGRAM-2 and PROGRAM-3

I@PT i -

IRNG . -
=R

NF n -

@GA n -

general option.

rim option.

number of frequencies to be calculated for each

diametral node configuration.

speed of rotation in rad./sec.
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ND

MDS

NDE

ITED

ED

R@D

PRD

ALD

SRI

SR8

NTD

R(I)

T(I)

TE(1)

NBE

NB

ISTB

IBDE

NSB

me

mS

Nd

id
'6

Ed

Pd

Vd

"d

ua

*b

r(i) -

h(i) -

T(i) -

Nb

z

ibS

ib

final value of nodal diameters.

starting value of nodal diameters.

number of disc elanents.

temperature option of the disc

Young's modulus of the disc material.

mass density of the disc material.

Poisson's ratio of the disc material.

coefficient of thermal expansion of the disc

material.

radial stress at the inner boundary of the disc.

radial stress at the outer boundary of the disc.

number of degrees of freedom in the disc.

the radii at the inner and outer boundaries of

all the disc elements' taken in increasing order.

the thicknesses at the inner and outer boundaries

of all the disc elements taken in increasing order.

values of temperature at the inner and outer boun-

daries of all the disc elements taken in increas-

ing order.

number of blade elements.

number of blades present.

blade initial stress option.

blade general option.

number of stations in the blade.
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NTB

EB Eb -

R@B pb -

PRB vb -

BX(I) x(i) -

BB(I) Q(i) -

BD(I) 12(i) -

AM(I) A(i) -

BKG(1)

ANG(1)

SIG(I)

ER

RQ'JR

PRR

AIR

RR1

RR6

RTI

RT6

RTEI

RTE@

K,(i) -

6(i)

u(i)

Er
or

'r

ar

R
i

R.

t
i

to

Ti

To

number of degrees of freedom in the blade.

Young's modulus of blade material.

mass density of blade material.

Poisson's ratio of blade material.

distancees of stations in the blade from the root.

?ain of the blade at the stations considered.

Imax of the blade at the stations considered.

area of cross-section of blade at the stations.

St. Venant's torsional stiffness of the blade

section at the stations.

pretwist angles at the stations.

initial stresses in the blade at the stations.

Young's modulus of rim material.

mass density of rim material.

Poisson's ratio of rim material..

coefficient of thermal expansion of rim material.

inner radius of rim.

outer radius of rim.

thickness of rim at inner radius.

thickness of rim at outer radius.

temperature at inner radius of rim.

temperature at outer radius of rim.

Additional variables used in PROGRAM-2 alone.

El
el

- distance from inner boundary to centroid of rim.

E2 e2 - distance from centroid to outer boundary of rim.

.-. _. .._,.. .___._

h
_



RIZ =z - moment of inertia about Oz axis of rim section.

RIX Ix - moment of inertia about Ox axis of rim section.

RJ KG - St. Venant's torsional stiffness of rim section.

Additional variables used in PROGRAM-3 alone.

SCD kd = l/K*, where ~~ is shear constant of disc.

SCR
kr

= l/t?, where lc* is shear constant of rim.

SCB kb = l/k , where k is shear constant of blade.

D-3.4 Subroutines used in PROGRAM-Z and PROGRAM-3.

The subroutines used in PROGRAM-2 and PROGRAM-3 are

divided in to the following sections.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Main programs.

Subroutine calculating the blade subsystem matrices.

Subroutine calculating the disc subsystem matrices.

Subroutine assenlbling the subsystem matrices in to the

system matrices.

Subroutine calculating the stresses in the disc.

Subroutines used to solve the eigenvalue problem.

General purpose subroutines.

Sections (1) to (4) are different for the two programs,

whereas sections (5) to (7) are the same for both the programs.

The subroutines used in these sections are given below.
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Section PROGRAM-1 PROGRAM-2

1 MAIN2 MAIN3

2 BLADE THKBDE

3 DISC THKDSC

4 SYSTFM THKSYS

5 INLSTR

6 EIGVAL

QUICK

INVT

ASMBLE

SYSLOD

REDUCE

TRIMUL

MATMUL



A- value of frequency
determinant.

Figure D.l Variation of the value of the frequency determinant
with increasing values of trial values of w
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c)iR-1 PiR=O

Read details of rim

I

Read W, values

-;I,.m
S

I-
Iterate

and print out values of
wr when satisfactory.

Figure D.2 Flow diagram for PROGRAM-l.



i=1,3T-#

ENTER
t--l

Read

r(i), i = 1 t0 2XNd

h(i),  i = 1 t0 2XNd

5 - applicable only to
PROGRAX-3

Read
Nb,Z,i~,ib,Eb'Pb.,vb,k~

x(i),  i = 1 to Nb+i ; I+), i = 1 to Nbfl

12(i),i =lto Nb+l ; A(i), i=lto N,,+l

KG(i),i‘= 1 to Nb+l ; 6(i), i = 1 to NQ-1 ’

I I \Read I \-/

I T(i), i=l t0 2??d t ( 1 a(i), i=l to Nb+l h 7,

Read details of rim. U
Q\D

Figure D.3 Flow diagram for PROGRAM-2 and PROGRAM-3, showing how the input data is provided.



.
310, .

,

D.r, PRC'GKAM LISTING

c
C
C
C
C
C
C
C

c
C

,

.

C
C
c
c

C
C
C
C

18
16

D.4.1 Subroutines  6sed in PROGRAM-1

* *
* MAIN-l -- KAIN PRQGRAI.1 OF PR0GRAK-1 *
* *
*.**~~~~~***~W8***~4**~***~*~*****~****************~***~
* THIS PRGGRAM.R:FIMES TliE A?PR0XINATE  FREOLJENCIES  *
* 0F A BLADED R0T0R USING THE 'EXACT I/IETH0D' *
* THE DI?lE:NSI0jr:S 0F ALL THE ARRAYS ARE FIXED AND N0 *
'* CHANGES ARE NECESSARY AT ANY TINE '., *
**~*~s*~~*~~P*~*~***~~~*~~~***~*~*****~~*,****~**~**~~*
DIMEIL'SI0ilJ S(2,2>rC(2>2>
DIl~lENSICN AFR(O/l01101
CPIIII~ICN  ?I,?RD ,ED,TD,Al~.Sl~,RDI.P.D13r-CDL,FCC
CeI~;E~:0rJ/e~JE:/F~~C(O/6O,.FI  (O/GO),ALL  \
ALL=O.lE-IO
**~*~~~*b~*~*~*~~*~~~**~~****~**~~~*~****~*~~*~~****~**
* CALCULATE AND STGRE THE VALUES 0F FACT0RIALS AND *
* THE PHI FUNCTI0N F0R VALUES 0F I'J FR@:l 0 T0 55 ’ *
****~*~*****~X~******~~**~*****~~**~*************~~***
DO; 18 J-O>55
FAC(I>=FACT(I)
FI(I>=PHI(I>
C0,NT 1:JUE
PRINT 7
N0P=O
*~**~**~*~*9~*~~~*t~~*~*~*~***~***~*~**~****~***~~****
* READ IN VALUES GF INITIAL.STEP  SIZE A>JD FACTQRS *
* F0R FINAL STE? SIZE AIJD RANGE *
**%~**~~~**~~~~~****~~**~~***~~~********~*****~**~****
READ IO,S~~,AL~~~,XXX,YYY
PHINTlO.S~J.AL0~~!,XXX,YYY
***~*~:*~*~******b~~*~****~**~~******************~~*~**
* READ I ?; IT IAL ,"a?:D "I!:AL >:U:K3ERS OF 1JSCAL DIAI-:ETSRS *
* TO 3E CCNSICERED, TiiE NUE;DER 0F FRECUENCIES  T0 l3E *
*. CALCULATED AI<D RING B?TICIIN -*
**X********~*~*4~:***~~*******~***~******~**~**~*~~****
READ llr~JDS,~:D,~~C,Il?~iG
PRINTllrNDS,ND,NC,IRNG

.
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c
C
C
c

C
C
C

, C

C
.C
-C
C

9

****~**t**************$******~**~~*~****~**~*~~***~**~**

* READ IN VALUES 0F TIIE DISC AND BLADE ELASTIC *
* C0lJSTAKTS  AI:ID D  II.:ENS 10r3S *
****~~*t~~~*~~******~*~****~~**~****~************~~*~*
READ 12,ED,E3
PRXNT12,ED,E3
READ 12rRODrR0B

\

PRINTl2,R0D,R03
READ lO,P;?D,“R3
PR I NT 10 z P!?D, PRi3 .
READ IG,RDI,RDG,TD
PRINTlO>RDI,RD0,TD
R E A D  lO,BB,ED,BL,BASG,Z
PRINTlO,BB,ED.,3L,3AKG,Z
RRR=RDa
El=O.O
E2-0.0
IF(iXIJG.EQ.0)  G0 T0 1 9

. ’ ‘ \

*

I

.

.

*~***~~*~~X~r***~****~~*~*~~*~~*~****~*****~**********
* I F  RIbi I S  PZESENT, READ IN THE VALUES OF THE ‘RIM *
*- E L A S T I C  C0NSTANTS  AND DIKE!YTS 10K.S _. *
**~~*~~~~~~~~~~**~***~~~*~~**~*~~**~~~**~*******~~*~***
READ 12, E? > R!Z?, , “91. . .
PRINT~~PE?.,R~R>F’RR
READ 10 rR?r”J,RIZ,RIX,El  ,E2,RA

.

PRIN_TlO,RR,?.JrRIZ,RI%,E1,E2,RA
RRR =RR +E2
Al =l .O/RR
A2=Al  *ill \
A3=Al *A2 .

A4=Al  aA
A5=Al *A4
GR=O.5*iX/(l  .O+?RR>
CONT  IT‘XJE
*~t*****~~***f~***~**~~***~~~**~**~~~~~*~***~*~~~*~***
* READ II; THE V A L U E S  OF ThE A?P?RBXIl,:ATE  FREQUEt!CY  *
* V A L U E S  ,F’iX T H E  S P E C I F I E D  V A L ’ J E S  0F NODAL  DIA>iETER  *
**~***~~~i~*~~t****t~~*~*‘*~*~***~***~**~*~~*~~********
READ 6 ,  ((AFR(I,  J>,J=l .IJC>, I=t?DS,fJD>
PRINT6, ((AFZ(I,  J>.J=l>IlC>,  I=tL’DS,KD>
x2 = 1 . 0 /R?.?< /?&2x
PI=3.141592653589793
ccc=2.o*PI
BIX=ZD*9!3*33*33/12.0
BIY=33wBDai3D*3D/12.0
SJ=33~39a39~3~*(1./3.-.2l~~E~/~D*(l .-~3/Bn*~B/3D~~~/BDa~D/~D/l2*0:
CD=S~RT(S~RT(12.0~:n~Da(l  .O-P~D~?~D)/ED/TD/TD))
CX=SQXT  (S”!‘T ( 12 .^.. o*zGs/Er3/33/~B)  >
CY=SQP.T (SQTIT(  12.0*?4?~/E3/BD/ZD>  >
CT=.SCRT(2..*~OB*‘(l  .0+2%3>/EB> I

BA=BANGxPI/180.0
SNA= SIN(3A)

.

L ,
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C S A =  CC?.5 (3A>
RSNA=E2*SItA
RCSA=E2*CSA
SAS =SIJAaSIJA
CAS=CSI?*CSA

S R S  =I?S!\:f\*-RSNA
CRS-"CSA*XCSA .
PQ=0.5/(I.0+??b3>
PRINT 3
M=h!DS-I 1

20 CENT IIJUE
‘C ******~***~*****~******~*~*~~~*******~~***~~**~***~*~~
C * SELECT THE r,:Ub;BE!? a;F EJaDAL DIAl*$ETERS *
C ***t*~*~**********t~**~****~*~********~*****~~*~***~**

H= M + 1
IF(M.GT.ND> G0 T01 90 ._ *
PRJNT 1

._ ,
AN=M
AN2 =AN*AN
RNLI=ArJ2*Ap!2
PRIIJT 5

.,

F F = O . O
FCC=O.5
IF(M .EG.O) FCC=l.O
IF(1Rr:G.NE.O) C?.=2.0sPI*FCC*RR
N=O

30 CeNTlNUE
KIT=0 .
Ak:=SM

C **~84*~*~****~**~*******~~*~~**~*~~****~*****~*~~*****
C * SELECT THE :JU~:SER &F XgDAL CIZCLES *
C ***~*****b****~****~****~~**~<~~~*~**************~*~~~~

N=N+I
XN=N
IF(N.GT.NC> G0 Tt?? 20

C ****~~~~~~****~V~*~~~~~*~~*~*~~~~***~~*~~***~**~**~~**
C * SET L0:?ER AND U??r,X LIKITS FEZ ITEZATICN *
C ~**~~~~~*~~~~*~**r~~~~~*~~*~***~~~~**********~***~~~~*

FF=XXX*AF;.?,(I.I.I<)
ZZZ=YYY*AX?(I.I,~!>

25 C@i\;TIttU3
C .*t*~*~~~*~*~~~**~~~~*~~*~****~**~~**~*****~*~*****~**~
C *‘ S?CIFY STE? 5125 *
C *********~*~*~t~*~***~~************~~***~~********~*****

STE?=AE! .
GO T0 37

33 C0lJTI:;UE
FF=XXX*AFR(KrN>
AM=Ab1*0 e 5
STEP=AI.; -
IF(STE?.LT.O.O.5>  GC T0 30

37 C0~~TItJUE
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c I********~****~**~~*x~**~~~~****~~**~**~******~~**~~~***
C * Si'ECIFY TEE ALLQPA3LE STEP SIZE 'I-k? E:JD ITERATI@N *
C ******~*~**~****~**t*~*****~*******~*~*~****~~~******~

ALL'Q!J=ALO!;*XId
KK= 1 ,I
KKK= 1

40 CBKTINUE \

FF=FF+STE?
52 CCI'JTIIJUE

'c ~~~_*~~*~:~:*t~****~9~i**~*~~~~*~*~~***~~~****~~~********
C * _ START IT.ERATING . *
C *$~***~~~*tl**~~**~~~~~*~*~~~********~~***~*~*~*~**~*~

NIT=r;TIT+l
IFCNIT .GT -500  > G@ T,D. 30
NB?=N@P+I
XY=FF
IF(?F.GT.ZZZ> G@ T_D 33 '

,

FR=FF*CCC
SFR= SQRT(FR)  , . .t
CDL=CDt:SFR ,

, AK=CDL*RDI ,'
BK=CDL*RDt?

C *~**~~*~~~a~*~~~**~*****~***~***~~*~*~*~*~~*~~~**~***~
C * Ce>;r>yJTE  THE DY::AT?IC STIFFNESS CBEFFICIENTS FGR *
c ‘* 'THE.DISC *
c ~*~*~*~~~~**~**~**~~~~***~*~******~**~:*~*****~~~~**~**

CALL EXTDSK(C,M) .- \
C J*~*~*~~~:~~~~**~~**~*~~*~********~~**~~**~***********~
C * CCM?UTE THE DYiL'AMIC STIFFNESS C0EFFICIENTS F13R *
C * ARRAY @F SLADES *,
C *~~*~*~*~~~*~x*~*~~~~***~***************~*~**~~***~***

CXL=CX*SFR I \
CYL=CY*SFR
CTL=CT*FR
CXR=CXL*3L
CY:-I=CYL*3L I
CTR=CTL*sL ,
SIJX= SINCCX:R>
SNY= SII:(CYR!)
csX= CtzS(CXR;I)
CSY= C0S(CY.?>
SNT= SIN(CTR> . .

CST= CBS(CT?t!>
SIiX=S II"JIi(CXR  >
SHY=S IN~-iC.YR>
CHX=CGS!i(CXR  >
CHY=CBSII(CYR)
DX=E3*Z~~-CC~3I~/(CSX~C~iX+l.O)
DY=EL3*Z*FCC*DIY/(CS?'aCHY+I.O)  .
PX=-DX*CXL*CXL*CXL*(CSX*SRX+SNX*CHX)
PY=-DY*CYL*CYL*CYL*(CSY*SKY+SrJY*CHY)
RX=DXaCXL5/~CXL*SNX)i;SlIX
RY=DY*CYL*CYL*St,JY*SliY
TX=DX*CXL*(CSX*SHX-SNX*CHXl .
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C
I C

C
.C

C
C
C
C

C
C_-

’ c

.C
C
C

TY=DY*CYL*  (CSY%zSKY-SNY*CfIY  9’ . .

AT= -?O~B‘;~CTL*SNT/CST*Z*FCC*ES
RMA=O .O
RMB=O .O -

RMC=O.O ,

IF(IRI!G.EQ.O9  G O  T0 45.
**~*~~~x*~*~*~*~**~****~**~~*****~~;~**~********~*~**~~
* I F  A  RIM I S  PT-!ESENT  C0M?UTE T H E  DYI\JAMIC  STIFFlJESS  *
* C0EFE’IC IEilTS  F0R TliE R1i.T *
*****~~%~i**~~*~*~**~**~*~~******~~~~*******~*~~~*****
R~;A=C~~:(E~~~~IZ+G~~RJ/AN29*ArJ4~A4_CR~FR*FR*R~R~(RA

0 +R I Z *At;2 kR2 9
RMB=CR~(E~~RIZ+GR~~J)~AN2*A3
R~C=C~*(E~*~IZ+AN2~GR*RJ9*A2-CR*FR*FR~RQR*(RIX+RIZ9  ’ .

4 5  CQNT  INUE
D O  5 0  1=1,2
D0 5 0  J=1,2 \ .

5 0  S(I,J>=O.O
*****~~3*~~***~~*~~~******~~**~****~~~**~****~***~**~~
* C0b131NE THE SU3SYSTEM MATRICES TO GET THE SYSTEM *
* DYNAPIIC  STIFFNESS MATR  IX *
~~***~*~~~~~**~*~**o~*****~~**~******~*****~*~~*~*****
AZ=SAS*PX+CAS*?Y+AN2*X2*AT+RKA
BZ=-E2~SAS*?X-E:2~CAS*?Y+SAS*RX+CAS~RY+~l~;B-AN2~X2~AT~E2
CZ=SR.S~?::+C?.SSPY-~SAS*TX+CAS~TY-~.O*:E~*;SAS*RX  ”

. -2. O *E2 aCAS *RY+Ri,iC +AN2 *X2 *AT *E2 *E2
S(l,l>=C(lrl>+AZ
S(lr29=C(l,29-EI*AZ+BZ
S(2,29=C(2,29+E1~El*AZ-2.O*El~BZ+CZ
*~***~~*****~~**~~:~***~~~~~~*~~*****~~~~***~*~***~**~*~
* CALCULATE THE VALUE 0F T?iE FREQUEPJCY  DETERI.11  NANT *
*****~~~*~**~**~**~3~*******~*~***~*~~~*~***~**~*~**~*
DET=S(l,l>*S(2,29-S(lr2)sSo
IFCf(K.EG.  19 G0 T O  7 5 I

******h*~~*~~*~~~***~***~~~***~***~~*~~*******~*~****~
* CHECK IF VALUE 0F DET.ERPIINA:.iT  CHANGES SIGN *
****~X*~*~*.i~*f~*k********~*~~~~~**~~*~****~~*~*******
AAA=A3S  (PV-9 +A3S (DET 9 ’
BBB=A3S  (PTJ+DET  9 , *

IF(AAA.NE. 3BB 9 KKK=2
DIF=A3S(PV>+ABS(DET>

7 5  PVkDET
KK=2 ,
I F ( i(i!l<  s EYI . 19 G0 T0 40
IF(ST,E?.LT.AM> GO T0 CO
FF=FF-STEP
DIFA=DIF
STE?=ALLQ;:
l<K= 1
1x1<  = 1
G0 TO 52 .

r’

8 0  DIFB=DIF

.
0
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t

C
C
c

****~~**************t**********~*****~**~**~*****~*~~**~~~
* CRECIC I F  VALIJS 3F DETEKI[JA:JT  J!Ji.IPS FR0M ONE E N D  TQ*
* THE 0TIiER ElJD  OF I N F I N I T Y *
**~~*~**~*~.*8**~~**~*~*~***~~**~***~*~~****~**~*****~*
IF(DIFA.LT.DIFB>  G0 T O  2 5
AFR (NJ IJ > =FF
***~~X**k~******~***~**~****~~~*~~*~**~*~~***~~~~**~**
* PRINT 0UT THE RESULTS ‘.!HEN  SAT ISFACTARY ii:
*~*~~*~**~*~**~~*i*~~**~*~~~~*>~***~~~~~********~*****~
P R I N T  15rM,N,FF,NIT .
G0 TQ 3 0

9 0  C0NTINUE
~***~~*****t**~**~~h*~*****~*~~*~***~~**~***~~**~****~

* PRINT EUT SUWWRY 0F ALL THE RESULTS *.
*****~*~**~****~~i~~~*~~*****~~******~*~******~~~**~~*-
D0 9 5  IJI:=l  a5
PRINT 3

.

PRINTlO,RDXrRD0,TD
‘

_._..
:%F(IRrJG.ME.O)  P~~INTlO,R~,_~A,El,E2 h
P~~NT10,53,BD,3L,BA~~G,~N

9 5 PRIIiT  2,<cAFR(I,J>,J=l+C>,I=NDSIND>
G0 TQ 16

103 CALL EXIT
1 F0Rlr;AT  (///// 1

~2 F0Rb?AT(/6F12.4>
3 FO.?MAT ( 1 fil z 5X, ’ E X A C T  S0LCT  IOTJ --FRECUNCIES I N  CPS.‘//>
5  F0RMAT ( 3X,46HI?0DAL  D I A MODE NO FREC,UENC  IES ITERAT  I0rJS 1
6 F0Rb:AT (6FlO .4 >

.
7 F0RMAT(lHl,SX,‘V13RATI0Zd  0F B L A D E D  D I S C  - -  E X A C T  S0LUTI0N’
.//5X,’ IN?UT DATA’  // >

10 F0~,r~lAT($F10.3> ,‘_.- :
*I 1 F0RI~~AT(l615>

12 F0RtlAT(4F20.9> .
I5 FQR~~~AT(/2(6X.,I3>,3X,Fl3.4,110) ‘$

END
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c
C
C
c ’
C
C

200

1  CQNTINUE  -
, IO<=K+  1

IS=K
IT=K ,
B= ABS  (A(~(J X> >

,D0 2  I=KJN
D0 2  J=KJN

h

IF(  ABS(A(IJJ)>-~>~J~J~~.

2 1  IS=1 i .

I T = J
B= ABS(A(IJJ>>  1

2 C0NT INUE
~F<IS-~f>3~3,31

3 1  D O  3 2  J=ICJN
C=A(ISJJJ>

.A(IS,J)=A(:c,J)

3 2  A(K>  J)=-C
3, C0NTIN:rE  -

,

IF(  IT-I(>hr4,41  . \

41 D0 4 2  I=K,N \

C=A(IJIT>
A(IJIT>=A(IJK>

4 2  A(IJK>=-C .
4 C0XT I iWE
D=A(KJK)*D

IF(ft(KJK))5,71~5

5 C0IZT  INUE
DO 6  J=KKJK

A(KJJ>=A(K,  J)/A(KJK)
* D0 6 1 =I;:<2 rd

I

$I =A ( I J i( 1 *A ( Kr J >
A(IJJ)=A(IJJ>-W

6 C0NTINUE .
K=KK
IF(I(-N>lJ70rl

7 0  D=A(N>IJ>*D
71 RETURN

END

SUBRQUT  INE DETER11  (AA, PJ, D 1’
****~***~~******f~**~~~~~*******~~’**~~~**~~*********~*
* THIS SUBR0UTINE  EVALUATES TllE VALUE D OF THE *
* DETERi.  I l;A?:>lT  0F ARRAY AA (?J, N 1 . *
* BEFORE E‘NTERINO  THE SU3R0UTINE DEFINE ALL THE * s
* ELEMENTS 0F ARRAY AA *
**~*~~l*~~~***~***~~~*~~~*~~**~**~*~~~**~~~********~~*
DIt~iEtJSIOh;  Afi(‘f4,4),A(4,4>

D0 2 0 0  I=l,PJ
D0 2 0 0  J=lrN
A(I,J)=AA(IJJ> . *
D=lc
K=l
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SUBR0UTINE EXTDSJ:(C,M)
C ******~~******X*~~*****~~~*~**~*~~*******~**~*********
C. * THIS SLTBR3'JTIr"JE  CALCULATES TI!E EXACT STIFFNESS *
C * MATRIX C(2,2) 0F AN UNIFGRM DISC, CLAMPED AT THE *

-C * INNER BBUNDARY AND FREE AT THE 0lJTER BOUNDARY *
.C **~*~~~~*l~*~*~*~fC~******~*~*****~~~****~~*~~**~******

DIMENSION A(4,4>,C(2,2)
C0MM0N ?I,PR, ED,TD>AK,BK,RDI,RD&i.CDL,FCC
L = M + 1
D=TD*TDaTD/12.0/(1.0-?R*PR)*ED
A2=CDL*CDL
A3 =A2*CDL , :

C. ***~*~~~~~*****~~~~~t~~******~***~*~~~~~~*.**~~**~***~**
C * CALCULATE AND ST0R.E ALL THE BESSEL FUNCTI0NS T0 *
C * BE USED LATER . *
C ****~*~~~~xI*~**l*~~*~*~*~~~*****~~*******~****~****~*

AJM=XJNLl(t~I,A!O
i33Pi=XJN (b1,BiO I
AJL=XJN(L,AK)
3JL=XJN(LrBK>
AYM=XYrLT(I~rA~(,AJM>.,. h
BYM=XYN(M>BK,3JM)
AYL=XYN(L,AK,AJL> ._
BYL=XYN(L,BK>BJL>

AIM=XIN(I~i.AK>
BIM=XIN(MsBK)
AIL=XIN(L>AK)

\ BIL=XIN(L>BK>
-AKM-XXN (l.1. AK, A I ;i: >

BKI/I=XKN (Mr BK, B IM >
AKL=XKN (L,AK,  AIL 1
BKL=XI<N(I,,BI(,3IL)
AM=M
AM2 =AM+At;l
R12=RDI*RDI
RI3=RI2xRDI
902=RD0*RD0.
R03=R02*RD0
AX=AM/RDI
BX=AM/RDC .
BY=AM*(AF:-l.)*(I.-?~)/R~2-A2
BZ=AM*(A~~-I.>*(l.-?R)/R02+A2
AA=CDL*(I.-PR>/RDI
BB=CDL*(I.-PR>/RD3
AN1 =AX*AJSI-CDL*AJL
AN2=AX*AYI,l-CDL*AYL
AN3=AX*AI:?+CDL*AIL
AN4=AX*klI?l-CDL*AKL
BNI=BX*BJM-CDL*BJL
SN2=DX*cBYld-CDL*BYL
BN3=3X*BIM+CDL*BXL
arJ4=~J):*3)(~i-CDL~BS(L

,,BNS=BY*3Jk+BB*BJL.
BN6=BY*BYM+BB*BYL
BN7=BZaBIM-BB*BIL

. /



.*.

I’

I
BQ=(  AB*A2*RC2+(I  .-PR>*(il  .-AM)*AI.:2)/R03 .
BR= (A3 *ii03 +CDL*?.Dae ( 1 e -P:i > *A$12  > ,‘R03
BS=(A3*393-CDL*RD8*(1  .-PR>*Ab;2>/?.03
BN23 =Z?*3 JI.Ii-33 a3 JL
BN24=BP*BYK+3ZoEYL .*
BI~~~=~~I~:YII.~+SS~!:~IL

.

BN2G=3Q+BI<l’-BS  *-skiL  .
c ***tQ~~~*y**s~~~~*~*****~**~*~**~~*~~****~~***********
C *
c‘ *

C A L C U L A T E  AI:D ST0RE  THE VALUES OF TEiE  DETERMINANTS.*
APPEARING I N

C
THE DYI?IAI*:IC  STXFFIJESS ‘NATRIX  OF DISC * y

*******~*~~****~**************~~~~~*~~****~~~**~**~**~  .
.

\ A( 1, 1 >=AJI*!
A(1,2>=AYId .- I

’ A(I+3>=AIM
._.

.
A(lr4>=AKK
A<2,1 >=ANl

-. .A(2,2>=ApJ2 .
’ :

A(2r3 )=AN3
. A(2,4)=AN4  , ,

A(3r l.>=BJI+ ,

A(3,2>=BYM I
A(3,3)=BIM  I
A(3,4  )=BKM
A(4r 1 )=3Nl
A(4,2)=BN2
A(4>3  >=Si’J3

.A(4>4)=3:?4
CALL DETEXM(A,4,DM>

. _

A ( 1, 1 > =AYM . :

A(lr2)-AIM
A (I, 3 1 =AKM
A(2r 1 >=A:<2
A(2,21=A:J3
A(2,3)=AN4
&3,1 >=BYM
A(3,2>=3IM
A(3>3>=3KM
CALL DETERN(A,3rDKPA)
A(1, 1 )=AJI.I
A(2r  1 )=AIJI
A(3,l >=i3JX .

CALL DETERI (As 3, DI,l?B 1 .

A ( 1 ,2 > =AYI,l
A(2,2 )=AN2

/ A(3,2>=3YN
CALL DETERlhl  (A, 3 z D!,:PC  1

. .

A<1,3>=AIM
A(2,3 )=A?!3

. AC3/3 )=BIM
C A L L  DETERM(A,3rDKPD>  .

., ,,.



319

A(lrf>=AYM ’ ..
. . . .-.I . . ;,

.
A(I,2)=AI?I  l

. .

A ( 1 , 3 > =AI-;M
A (2, 1 > -A:,!2 -_ ).
A(2,2>=AN3 ,

/
A(2,3 )=ApjLI L :.‘- a; i>f-..
A(3,l >=BN2 I
A_(3,2>-BN3 *’
A(3>31=B>!4
.CALL  DETE?>f(A,3,DrISA.

‘, , ~

A(l,l>=AJt<
ACZ, 1 )=ANI __
A(3a 1 )=3Nl -

C A L L  DETERM(A,3,DMSB>  . ,.
A(1 .2>=AY!,;

:
.

A(2,2>=AN2 I
A(3,2 >=BN2

J *_
’

. .
CALL DETEnIEi  (A, 3 > DMSC >

.A( I,3 >=AIM s

A(2>3>=AN3 -

A(3,3>=BN3
CALL DETExtl; (A, 3, Dt,fSD >

C ****~**6x:~*~X~***~~~~*~.~**~*~~*~*~**~~~ ( ak***************

C * CALCULATE THE VALUES D/F THE ELEMENTS @F TEE DISC *
C * DYNA:<IC STIFFNESS MATRIX *

C **~****~~~~~*8**~~~~*~~~~~~~*~~~***~*~~**~**~**~*~**~**-  x.
CBNST=- D/DKa?I*RDB*2  .O*FCC

~“ST*(D~ISA~~::~~-D~ISB~B~J~~+DMSCY~N~~-D~;SD~~N~~)Ccl, 1 )=Cti*v
C(l,2>=C~NST~(D~?A%~SN23-D!,~~~ ~~tJ24+D:.l?C*~N25_01,:PDjkB:LT26 >
C(2~2>=CBt~jST~(DMPA~B~J5--DI~I?5~:23N6+DMPC~~iJ7-Dt~?D~BNii>
RETURN
END .
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,

, c, -
c .
c

I

FUNCTIBN PHI(N)
-.

****4~~~~*~****~%~~**~****~*~**~***~**~*~**~**~********

* PHI(N>=1+1/291/3+...' l/N *
*~*~*~*~~***I***~**~~*~*~~~~~**~*~*~~****~*~**~*~~**~*
PHI=O.O
IF(N.EQ.0) RETURN
DO 10 I=lrN
XI=1

10 PHI=PHI+l.O/XI .*
RETURN
END ' \.. . . . .

x

c
FUNCTIEN FACT(N)

,C
*~***~~~8~**~~~*~****~~*~~~**~~**~*~**~~*****~******~~
*

C
THIS FUNCTI0N CALCULATES FACT0RIAL N *

******~~~****~~*~~****~~~~**~*****~*****~~****~******~  %
FACT=l.O ,'
IF(N.EG..O> ZETUARN
DO 10 I=lrN
AI=1

lb FACT=FACT*AI
RETURN

, 'END
.

.
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1 0

FUNCTI011 XIN(I,JsX> . I'

~*X*~*~Q*~*~*~~~~****~*~****~*~~~~~~*****~~~****~**~**
* TIIIS FUNCTION CALCULATES M0DIFIED SESSEL FUNCTION '*
*. OF THE FIRST KIND OF INTEGER 0RDER N AND REAL *
* PARAFZTER X *
***~:*~~*~***I~:~~*~***~*~~~******~~******~*********~~*~
C0~;~~~lJ/~NE/FAC(0/60),FI<0/60>rALL
XIN=O.O

.

K=-1
K=Kcl
XX=(X/2.O)**(N+2*~~)/FRC(l{)~~AC(r~~I~)
XXN=XIN+XX . .

,
ALLCY=A3S(XIN)*ALL -\
IF(ABS(XX>.GTIALL~~!)  G0 T0 10 \ .''.
RETURN
END

FUNCTI0N XJNCbJ,X> 4 ._

C _ *****:******************* x*****************************
C * TIiIS FUrJCTION CALCULATES 3ESSEL FUNCTI0N OF THE *
C * FIRST KIND 0F INTEGER ORDER N AND REAL ?A!?At,ZETER  Xa
c ***~*~***~*~*~*~~,*~***~~~~~~*~*~~*~*******~**~********

C@pJye~-,d,~/aNE/FAC(0/60)rFI(O/6O~,ALL
XJN=O.O ’ '-.-
K=-1

10 K=K-tl
XX=(X/il.O)*r(ll'+2*K)/FAC(il)/FAC(N+:O.
XJN=XJ>:+XX*(-l.O>**K
ALL0!J=A3S (XJN)*ALL
IF(ABS(XX).GT.ALL0">  GO TO 'IO
RETURIJ
END

“.I



322

FUNCT I0lJ XYN (N, X, XJNX 1
C ~~****~*~~~X+~***~~~~*~~~*~~~**~~**~*~~~***~~*~*~****~

‘- c * THIS FUNCTIBlJ  C A L C U L A T E S  BESSEL  FUNCTI0N OF SECQND*
C * KIND OF INTEGER ORDER N AND REAL PARAMETER X *
C * XJNX IS  TfiE E E S S E L  FUI\;CT ICIJ  OF T H E  S A M E  T Y P E  A N D  *
c .* SHCULD SE DEFIIJED 13EF03E E:JTEFIING *
C ~~***~~*~~*~~~~*5~~**~~***~*~~~**~~**~~~*~****~**~**~*

CObIl~:0N/O>JE /FAC(O/GO)tFI(0/60>,ALL .

PI=3.141592653589793
EC=0.5772  1566490 1533
XYN=2.0/?1*( L0G(X/2.0)+EC>*XJNX

I

xx=o.o
IF(N.EQ.O>  G0 T O  1 5
N:N=N-  1
DO 10 I=OII”N  *

10 XX=XX+FAC(iJ-I-I  )*(X~0.5>**(2aI-N)/FAC(I}  a
XYN=XYN-(l.O/PI)*XX .

15 CONTINUE .

K=- 1, ‘.

XF(N.EO.0)  k=O
2 0  K=K+I _

YY=l  .O/PI*(-1  .O>**K*(FI  (lO+FI  (N+K>>*(OiS*X>**(2~K+N)/FAC(l{)
. /FA’3 (N+IO

XYN=XYN-YY
ALL0W =ADS  CXYtJ  > *ALL I.

IF(ASS(YY).GT.ALLB!d)  G O  T0 2 0 , ’
0 RETURN .

END

FUNCTI@N  XKN(N,X,XINX)
C
C
C
c
C

c
C

1 0

15

2 0

**~*~~f*~~~~****~4*~**~**~**~~~*~~**~~~~***~**~**~~*.~*
* T H I S  FUIJCTI0N C A L C U L A T E S  I~:0DDFIED  BESSEL FUNCTI’ON *
k OF THE SECBI’JD  KIND 0F INTEGER ORDER N AND REAL *
* PARAiq:ETER  X *
* XINX IS THE: BESSEL FUNCT 10fJ 0F THE SAME TYPE AND *
* SHBULD  2E DEFINED J3EF0RE  ENTERING *
***~*~~~~~***x**~~~~*~****~*~~*~~***~*~*****~***~***~*
C0~l~;BN/~NE/PAC~0~/6O>,FI  (0/60),ALL
EC=0.577215664901533
Xl(I\I=(-1  .O>**ic(:J+l  >*( L~G(X*O.5)+EC>*XINX
x x = o . o
IF(N.EG.0) G O  T0 1 5
Nn’=x!-  1
DO! 1 0  I=O,lJN
X>:=XX+(-1  .O)**I+FAC ( N - I - 1  >a(X~O.5)~*.(2~I-N)/FAC(I>
XlW =XKN io .5 *Xx
C 0 NT I NUE
K=- 1
IF(N.EQ.0) K=O
K=K+ 1
YY=O.5~~-l.OO**:IJ*~O.5lrcX~**~N+2~K>~~FI~lO+F.I~l~+N))/FAC~lC>/FAC~~~+l~~
XKN=XKN+YY
ALL0!?=A3S  (XKN 1 *ALL
IF(ASS(YY).GT.ALLGV)  GQ T O  2 0

,

RETURN
END
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* t

, D.4.2. Subroutines hsed in PROGRAC-2 .

\

. . . ,

c
c

, c
c
c
C
C
c .
v

I c
c

I c
c
C
c
C

c
C.
C
C

C
C
C

* TlIE BLAilES. OPTIk?bJS
PRBGRM~ FZZ THE

FACILITATING THE USE OF THIS *,
* V13RATICN AI~IRLYSIS  0F EITH"c;",  THE *
* ENTIRZ  R13T(?R SYSTETl GR I T S  C6?>l?arJErJT  P A R T S  KAY >E *

* SPECIFIED. VARIA3LE  DII.lENSIe?tS  A R E  U S E D  ZEQURING  *
* TI:‘E  Cf!AIJG  ING t?F T%E DII,;EPISI~~<S  0NLY I N  1’;iE blAIN *
* ?:XCG?AX AT ANY T IXL AND SPECIFYING THE APPR@PzIATE*’
* V A L U E S  6F KS 1 AND l,JS2. *
~~~~~~*~*~~~~~~~****~~:~:j~~~:*~:*~~~~*~****~~~~**~~~~~:~~~~
DIMEt:S IGN S:((24,24  > ,Sr.I(24,24  > .SI~9~30,30~,S~~3~30,30>
DINE!.JSICN  R‘124>.T(24>,T~-724~>~.~(~/i~sP(24)~
DI1,IENS  IGN 3B (24 > ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DINE!JS IG:d SSS (24 >,SGT ( 2 4  >
D I I.‘-*-JC~JSIC::J  D(24,2~~>rF(24,24>,~(24),C(2~~‘),X(24)
DI:vlEb:S Ie?J 5RR(24),37(24),38(24),~9(24),FR(20,10)
CB~:1.:FN/~?TI~rJ/IG?T,  I?,iNG,  ITiiD, ITE3r IT1~!33,  I S T 3
C~I.:F:~:\~/Q~JF.,‘A~~~,A?;~JA~‘.;~,A~;?~
C~I.li~;CN/T’:.‘1Z/S  1 rS2,S3,S4,CX3,C;~’.~...C:~:D.CM;!.CC.CcCrC:~,C?.CT
c~~lI~l~1J/TI-:~~/~~I,RD~,~~iIrP,~0~~TI~.TG,~:,.2 .~IZ,RIX,%J>~hT!?

cG1 i’:t~:~N/F~*‘;U?/?I,  XD, E!?:, E3, ZGD,  !‘.C.?,2C3,AJ_D,  f,L.?,?Rl3, P.?R,?R3
c a pi i,; c ry’ /F IVz:/Ss I, SR0, GI.lGA
c~I,:?;!:rJ/SI:~/C:!?JST,P:,NF
ECU IVALE>:SS (Si!,  F >
1.1s 1 =24
KS 2 = 3 3

1 5 c u5i;‘r 1 rxtz
**~~******~**x~*****~**~~~****~~~~*~**~*~*~~*****~**~~~
* riEAD GEp!EPIAL  G?TISN,RI:,l  @PTIF,ti,ArdD lJUr,:3Zz OF *
*- FREQUE:<C  I ES 3X3!!  I RED FaR EAC!1  DIAr.lET.RAL  NSDZ.  ’ *
~**~x~~**~~***~x~*****~~~~**~****~~*~*~*~~**~~*
R E A D  12r ICPT,  IR:L’G,$JF
?RIr:T12, 16?T,  I?I;JG,xF
*~*+~~***~*x~~**t**~*~~~~~**~*****~*****~~******~*~***
* R E A D  S P E E D  O F  RQTATI0rJ QF TlIE !-‘.@TCR I N  RAD./SEC.  *
*************~****~~*~~~*******~~~*******~~~*~*~*~*~~~~~

‘READ 6, EbIGA 8

P3 IrJT6,.ar,rGA
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.
c

G0 T0(20>50,20,21),10PT
c *****~~~L~*~**~*~**t~~**~*~*~~~*~*****~~~******~*~~~**~
C _ * .. READ FXP:AL Al;D STARTIIjG LrALUES CF rJQL)AL DIAEiETE3.S *
C *****S**~t*x***~~~4*~~****~~*~~*~~~~~~~~~*~**~~****~*~~

20 3EAD 12,idD,P;DS
PXINTI2,i’D,~;3SY

C *4*~*~:*~*~~~***~:*~~**~~****~~*~**~:**~~.a,*****************
c * ?,EAD P:UP:3ER CF DISC ELE>!EIJ'T'S, DISC B?TI0NS, DISC *
6. * KATEn!AL ?zG?EnTxES, AlJD 33UN3AZY  LZADINGS.  *.
c ~***X*~**~~X~**~x**~~~*~*~*~~**~~**~*~*~***~*~~*~~~***

2 I liEALl  1 2  ,!lDE, ITED
PRItYl- 12, IJDE>  ITED
READ 6,ED,.RtZ3,?t?D,ALD i. i
PRINTbzEDp~ODrP~Dt~L3
READ lO,SRI,SsIQ
PXINTlO,SXI,SR@ I
NSD=NDE+  1 .
NP’D=2  er,rDE ,

NT D =2 *::S D
C ****~*~k*~**~**8**~*~***~~~~~~~*~~**~~~*~***~~~**~~**~
e * R E A D  D I S C  DIXEb:SI8XS  ’ *

.C ~***~*b~~~~**~~~~~***~*~*~~~~~**~***~*~~*~*~~*~*~~**~~
*. READ lOa(R(I),I=l,N?D)

PRINTlO>  C?.(I),I=l,XPD)  ’
READ IOr~T~I>.I=lrlJ?D) .
PRINTlOs(T(I>,I=l,N?D)
RDI=X(l  1
RDQ,  =!=Z (IJP3 >
IF(XTED.EB.0)  G’Z T0 4 9
READ lCj,(TE(I>,I=l,t<?D) _-
PRINTlO,  (TE(I>,I=lrNPD)

49 GE TC(70,50,5C,70>,I~?T

.
.b



.

c
C
C
c

7 0

8 0

$5
C
c
C
C

90
C
C
C
C

i .

, .

READ 1 0 ,  (3D(I  1, I=IrNS3>
PRI~~~10,~3D~I~,I=irNS~~
READ IOr(Di<G(I>rI=lrNSB>
PRINTIO~~3~~G~I>,I=lr~s~~
R E A D  IO> tARA( I >, I=1 ,NS3)’
PRIIJTlOr  (kRA(I)rI=I,NSB)
READ IO~(AN,~(I),IJ~,NS~)
PRINTlO~~AIJG~I>~I=l.NS9>
IF(IST3.EQ.l)  R”iAD  6,(SIG(I>,I=lrKSB)
IF(IST3.EQ.l)  PRIXT6,  (SIGCI>,I=l,KSR)
IF ( IXiT.lG eZQ.01 G”u T O  80
***~~~~******~bt*f~*****~~*~****~**~~~****~*~:****~***~
* I F  RI?;  I S  ?kEssr:T, R E A D  T H E  RIK I.iATE?IAL  PF,O?ER- *
* T I E S , D I I*ZEiJS  13NS a AND ELASTIC PRGPERTIES * .
*****~k*k***XI~~~~~******~~~**~~*~~~*~~*********~****~
READ 6 .E!?JRSRJ?zX
PRINT6,ERrROXrPR?
R E A D  lO,RRI,RR~~,RTI,RT0rRTEI~~TE0
PRI~:TlO,~RI,RR0~?.TI,RT~,RTEI>RTE~
R E A D  10,El .E2,RIZ,RIX,RJ>RA

*

l=RINTlO,Z l,E2,RIZ,RIS,RJ,RA . ,
T(NPD+l  >=RTI I

I
T (NPD+2  )=RTD
TE(NPD-+l  )=“TEI .
TE(I\IPD+2 >=TiTEa ’
R(N?3+1 >=RRI .
EI(N?D+-2 >=F,Ra I
C0I;T INUE
PI=3.14159265358979
Ck?NST=O.S/PI
Sf=1./3.
s2=1 s/G.
s3=1./7.
s4=1./9e
GO T0(95,&5,85,?5>sI~PT
C@lJT I XUE
*~X***%~~~~*~8~*~*~~f***~~~*~*~*~~~*~*~****~~****~*~*~*
* C,~LCULATE BLASE SU3SYSTEi.I  ST IFFidESS AND I.:ASS *
* BAT?tICSS  AND STaRE  THC1.1 *
***b~~~~*~~**~*~~~~*~~~*~*~~**~**~*~~****~*~~**~**~~~*
CALL sLADE(Si<3,sr,r”‘3,BX,3~,~D,ANG,SIG,ARA,~~~G,NSE,  13DE,XS2>
dE? TQ(95,93,9S>,I0?T
C0NT I Ih’JEY
***X~~~r~***~*~~l*~~~*~~********~~~~~***~***~~**~**~**
* COr.t?UTE  BLADE Fr,EQULrlCIES ACCSRDING  Tt! T H E  BLADE 3:
* GEr,!CRAL  OPT 1 G>!S *
****~*~x~~~*4~~~~~r*~**~~~~*~**~*~~******~~****~~*~***
IF( I:?XG .IJE. 0) Gi; T’2 102
I JK= 1
M=O
IF(I3DE.NE.  1) GC5 TQ 94
DQ 9 1  1=3,2*:JSi3
II=I-2

.
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De 9 1  3=3,2*NSB
JJ= J-2
SIi(II.JJ>=SI:B(I.J> ‘i ._

9 1  SI.;(II+JJ>=S~:3CI,J>
Nl =2*NSB-2
P R I N T  1

. C A L L  EIGVn~tsK,S~,D,F,FR,B,C,X,E~R,B7,B8,os;lJS{,Nl~~~S.l  >
Da 9 2  1=2*!dS3+3,4*NSB
IIZI-2-2>kNS3 ,

D0. 92 J=2 *:r;S3+3 B 4 *NSB . .
JJ=J-2-?*b!S3
SK(II,.J;)=SKB(I,  J>

\
.

92 SM(II,JJ)=S?j3(I,J> c
PSINT 2
C A L L  EIGVAL(SI(,SM,D‘,F,F;i.B,C,XXrs~R.B7.B8.99,  IJK,r\l’l  +MSl  >
Da 9 3 I =4 *rJs3 +2, N,T3
II=I-I-4aNsB
DO 93 J’=4 *:;rS3+2,  NT3
JJ=J-1-4*tL’SB
SI<(IIrJJ)=S1’~(I.‘J> r .I

9 3  S1~(II,JJ)=S~~~B(IrJ)
: :

. .
Nl yNSB- 1
PFtINT  4.
CALL EIGVAl~~S~~oS1~~rD.F~FRrB.C ,X,EPIR,B7,BE:rB9,IJl~r~JIrMSI  >
GO T0 15

9 4  IF(I3DE.NE.21  G0 T6Z 9 7 .

N>izNT3
Da 1 9 5  I=N3Erl,-I
11=5*1

: C A L L  FtEDUCE(SKSr?:M,  I I, 1 rMS2> I
CALL REDUCE (SI1BrNHs  I I, 1 .,I/IS2 >

NM=I;M- 1
.195 CENT INL’tJE ‘.

D O  9 6  1=5,4*?<SB
11=X-4
DE 9 6  J=5,4*?JSB
JJ=J-4 /
SK(II,JJ)=SKS(I,J>

9 6  SFS(II,JJ>=SI.:B3(IrJ)
NI =4*I‘S3-4
PRINT 5
GOT899  ..

9’7 Cgr:,T I!!!!E
‘ 3 0  98 1=6,NT3

I I = I - 5
D5 98 J=6,h’T3 .
J J = J - 5
SK(IIrJJ>=SK3(I,J) .

‘98  Sb:(II,JJ)=SMS(I,J)
.  NI =NTB-5

PFIINT  7
99  CALL EIGVALCSS(,SM,D,F,F,?.B,C,Y

G@‘T0 15 _
, .Z%?,Bi,B&B9,  iJKrN1 ,MS 1 >



.

C
‘C
C

C
C
C
C

9 5

102

105

100

110

C QNT I NU E
CK=2.0*?IrED/(l  .O-?RD*?RD> .
CP=2.0~?I*:~eD~a~;GA*~~GA :
CT=2.0*?IaED*ALC/(l  .O-PRD>
****~~~~~*~*J*~~~**~***~  ,.*******************t**********
* CALCVLATE  TlIE I N I T I A L  S T R E S S E S  I;J T%E D I S C  D U E  TGI 94
* ROT AC I Q:‘J, TEI.;?ERATURE  GRADIEhT,  AI\!D 0THER i30UNDARY*
* LGAD I I”!GS *
****~**+~:*~**~x*~~~:******~~~~*~~**~~~~*~***~~*****~~~.~
C A L L  II~~LST:!~S::,R.T,T~,!\t.P.SGR-i.SGT,r\JSD.I~~SI  1
IF(IQ?T.SQ.4> GE Ta 1 5
NT=NTD
IF(IGPT.E0.3>  NT=NTD+NT3-5
STR=O .S~~CSGT(~~PD-l>cSGT(NPD>)*RA
GE TO 1 0 5
C0NTIKE
READ IOtSR5 . /

.,
PRINTlO,SR8  l

.

ST~=RQR~~A*~~~GA*B~~GA*~RRI+~l  >HRRi+El  >+SR0*(RRI +-El >
NTD=2
NT=NT3+NTB-5 1
CENT INUE  ,
I JK=l
M=KDS - 1
IF(IGPT.EC.3)  Z=NB ’
CBNT Ir.‘UX
******~~~*~~f**~~%**~*~**~~*~***~**~*~~****~~*~~*~~**~
* S E L E C T  WJP53ER  GF NODAL  DIANETEXS *
~*~~*~*x~~~*~i*~~,~*~******~*~***~*~~*~~*~**~~~~*~*****
K=M+  1
PR I PJT 3 > I.1
FACTI .O
IF(K.EQ.0) kAC~2.0
IF(IO?T .XS.2)  CI<D=FAC*?IaED/(l  .O-PRD*?RD>/l2.0
IF< I0PT uNE.2 > CI~ID=FAC*?I*Xt?D
I[F(IXIIJG  .E”,. 1  > CK?=FAC*?I~CRRI+El  1
IF(IR>jG.EG:.  1 > C:<Yt=FAC+?I*(XRI+El  >
IF(Ifi?T.NE.l> CC=Z*FAC/2.0 :

IF(I8?T.NE.2)  CCC=FAC*PI ,
AK=M
A :,I 2 = A 1.; z+ A ):
AM4  =A:,:2  *AK2
AI.;6 =A::4 *A[!2
IF(IE”T.UE.. . 2 > Al,i?r! =A:.12  *?RD
D0 110 I=lrNT
D O  1 1 0  J=l,NT
SK(Ir J>=O.O
SPj(I,J>=O.O
***~**~~***~*~3*~*****~~*~~*~*****~~~~***~**~~%;****~*~~
>ic .CALCULATE DISC SUi3SYSTEX  STIFFNESS AND MASS *
* M A T R I C E S  Al’!D STGRE THE>1 * :
***~~~~*~~********~**t***~*******~***~~******~~*******~~
C A L L  DISC(Sl~,SK,l?rT,SGRrSGTINSD,MSI  1
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C
C
C

c
C
C

- .

I c
C
C
C

’ I

* .

*~*~~*****~*~*~$**~*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘* G E T  TiiE SYSTEi.1  STIFFEIESS A N D  XASS FIATRICES  FRBM *
* T H E  SUBSYS’T’cr+  P!ATR I C E S *
*$*~~.****~*I~~~~****~*~~:*~***************~*~~***
CALL SYSTEM cS;*;, S!,;I Si:BrSi.:R,NTD,h’T3,MSl  rMS2)
***~~*****~~~~t~***~**~~~~~*~***~*~*****~*********~*~~
* A P P L Y  30’_lNDA3Y  CGNDIT  I O N S *
J:***~i:f~*X~*~~~~$~*~** * ; ! . a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C A L L  REDUCE(S;:,;JT,  1.2,:~ISl > I
C A L L  REDUCE+.NT,  1,2,fiiSl 1
Nl =bJT-2
****i~**~*~*t**~~~~~***~~*:~~*~~~**~**~***~~*~~.~****~*~~**
* SQLVE  T H E  EIGE”J V A L U E  P;iSBLEI*I  A N D  $iET  T H E  SYSTEN *
* FZEZ’JENC  IES . *

****~~~****~~a~~~~**~~~~******~~~~***~*****~*~*~**~*~*
C A L L  EIGVAL(SI(,SM,DPF+FR,B,C,X,E~~,B?,BBrB9,IJ~(,~~,~~Si  >
IF(M.LT.KD)  GB T!s? 1 0 0 .._

G0 T O  1 5
- ‘ 2 0 0  C A L L  E X I T

\

1 FOFIMRT  ( 1 l~il,EiX, ‘ B L A D E  S E N D I N G  F$E&JENCIiS  ItJ I-IslIN DI’i?ECTI@N’//>
2 FO;ZT”,AT ( I2-:l  > S? : , ‘ B L A D E  BENrjIlJG F R E Q U E N C I E S  Ii’J I-KAX  DIi?ECTIO[.J’//)
3  F0!?MAT (///26I!NUW3E..Q O F  N0DAL DIAPlETEZS=,  12///j
4 FBRt,;i?T  ( 1 Hl ,5X, ‘3LADE TfPiTIG>;Ai FZEGUEhJCIES’//)
5  Fti?FItJ,AT  ( 1 ‘r 1,5X> ’ T!J i ST ED BLADE BEST)  I r:G FP,EgUE?!C I ES * // 1
6 Fe?.f.:.riT  (4F20  e 1~3 1
7 F0xP:AT ( 1 Hl , Sy.> ‘ B L A D E  F R E Q U E N C I E S  ‘,dITfi INITIAL STRESSES’ / />

10 F0RIIAT (EiFlO .7 >
11 F0i?MAT(/8E13.6)’
12 FffiRKAT  (1 615  > \

END ’
.

. :
,’ .

-

.

. . .

c

.’

.

I

.

.

/

. .

.

.*
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SUB30UTINE BLADE(SICB,SMB,BX,BB,BD,ARA,BKGrI~BE~IBDE,L~
C ~k*~+****~**~***X**k~****~*~*~<~~**~**~~~~~~~**~*******
C * THIS SlJCR0UTIrJE CALCULATES THE BLADE SIJBSYSTEM *
c. * STIFFlJESS  IIATRIX S)<B(L,L) AND PiASS MATRIX SMB(L,L)*
C * TRANSVERSE SHEAR AND R0TARY INERTIA ARE IGNGRED *
C * ADDITIGJNAL  STIFFNESS DUE T0 INITIAL STRESSES CAN *
C ri: ALSO BE INCLUDED *
c **~~~**~*~t~~*~**~****~*~*~*~*~~**X*t*~*~***~~~*~***

DIMENSI0N  SKB(L,L)>SMB(L,L),EK(lO,lO~,EM~lO,lO)
DIFIENSI0N R~10-,10>,B(10,10>,C(10,10),D~10,10)
DIl.?EIJSION BXCL>,BB(L>rBD(L>,ANG(L),SIG(L),ARA(L)rBKG(L)
C0MM01\!/0PT I 0N/ I0?T+ IRNG,  PTHD, ITED, ITHB= ISTB
C~MM~N/FQUR/PI,EDIER,EB~R~D,R~R,R~B,ALD~ALR,PRD,PRR~PRB
CGMM0N/F  IVE/SR  I .e SR0s OMGA

-RX(I,AI>=ALFSaALFA~XX(I+l,AI~l.O)+(ALFS*BETA~BETS*ALFA)*
.XX(I+2,AIc2.0>+BETS*i3ETA*XX(I+3,AI+3.O)
SX(IrAI,=R~B*:2~iGA~0~~IGA~~(ALFA*XX(I+l,AI+l’.O)+BETA*XX(’I+2.AI+2.O>)
XX(I,AI>=~BX2~*I-BXl**I~/AI.
NTB=S*(NBE+l>
DO 1 0  I=l,NTB
DO 10 J=l rNTB
SKB(I,J>=O.O

,

10 SMB(I,J>=O.O  .-
PRINT 1 \
K=O

.20 C0NT INUE
D0 1 5  _I=ltlO

.D0 1 5  J=l,lO .

R(IrJ)=O.O
EK(IrJ>=O.O
EM(I,J)=O.O ,

I5 R(I,J>=OoO
C *********~**********~~~~*~****~~~**~~~~**~**~*~*~*****
C * SELECT THE NUMBER K OF THE ELEMENT AND GET THE *
c * VALUES OF SECTI0N  PRGPERTIES OF THE BLADE AT *
C * ENDS 0F THE ELEMENT. *

C **~*******~*************~~************~*****~***~*~~
K=K+ 1
KPl =K+l
BXl =BX(K)
BX2=BX(KPl  >
P R I N T  2,KrBXl  ,BX2
ARAl=ARA(Kj.
ARA2 =ARA ( KP 1)
ANG 1 =ANG (K >
ANG2  =ANG  (KP 1 1
BR=0.5*(ANGl+ANG2>
SN=SIN(BA/18O.O*PI)
CS=C0S(BA/l80.O*PI)  _

’ ,
.

.
. -3
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C
c
C

C
C
c

. *
GB=O:5*ZB/(l  .0+?RB)
BEI 1=33;j  (I:>
BEfI2=33(IPl)  .
BtiXI  =BD(IO
BMX2=3Dcl<?l  >
BJI=3:<G  :I<)
BJ2=3KG (!(?l >
EL=Y>‘2  -2X1

_-

XI<1  =E9*!3::iI  1 /EL/EL/EL
XI(2=E~3aL!I.;I2/EL/EL/EL . .

YKl= EZi:331’<>(1  /El / F L / E L., .,
YK2 L-E3  w&2 /EL/EL/EL

*
t

ZKl=G3*3J1/2.O/EL *

21;2=GDe:3J2/2  .0/E?_,
XMl =?Z3sA?Al  *EL/420.0
X~~2=R~3:~A~A2*EL/~20  .o . .
m1=.153*:( z:.;1 1 +31.:z 1 > *EL/ 12 . 0
ZM2=RQ~a(3~;12+B:i~2>~EL/l2.0
*~~I~~*~~*~~~~~~*~**~*~~~*~~*~**~~**~*~~~***~*~*~*****

rt: CALCI.!LATE TKD ZETATIE>!  t,iATxIX. R : .*
~*~*~~~~~~~**~~~~~~~****~.~~~*~**~~*~*~~~***~****~~*~~~~
R<l,l)=CS : I
R(2,2>=CS \
Fi(3,6>=CS.
RC4,7>=CS L
R<5,3>=CS
R(6rY>=CS
R(7,P>=CS
R(8,9)=CS .
R(l,Co=SN
R(2,4 >=SS
R(3,8>-S:1
R(4>9>=SId
R(5,l I=-SN
R(6,2)=-SN \
Fi(7,6)=-SN
R($r7 I=-SYJ

_

Ri(9,5)=1  .o
!?(lO,lO>=l . o *

******~~~~*~~*~~~~*~~**~~~~~~~~**~~*~*~~**~~~~~~***~~*
* CALCULtlTE  TEE ELE:+!ZNT ST I FFNESS NRTR  IX El< t
*~*~~~:~*~**~**~~~~*~***~*~~~*~~~~*~~**~~*~**~**~~****~
El~(lrl>=6.OaX1~1+6.O*XI~2

-~:;:~1-,2~--2.O*EL~~~l:1-4.OIELY~::<2
EI~~l,3>=-6.O~X1~1-G.o*XJ~2
EiC(  134 )=-[I .O*EL*t::<Ii’l  -2 .O*ZL+I:;(2
EK(2,2  >=Z!_,*EL*X!il  +3 .OwEL*.EL*X:{2
E:{(2,3 >= 2 .O*ELsSicI  +4 .O~I:EL~:SI~~ .
El((2,4)=EL*ZL+X;(l  +EL%EL*X];2 ‘
EK(3,3>=6.3*~!~1  -kG.O~:!:;2
EK(3,4 >= 4 ~O~EL~,;I~:l -t2 .0&*>:~&
EK(4.4 >=3 .O*EL*EI.,:~~:lil  +EL+:EL*XJ(2
EK(5.5~=6.O*Y;{l  +G.O*YK2  ,_

._. .. :
. :. .

.

. 0
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EK(5s6>= - 2 . 0  *EL*YIC  1 -4.0 *EL*YiC2
EK(~>~>=-~.C?~YKI-~.O*YK~
El{(S,U>=-4.0a~L~YI(I-2~O~EL.~Yl~2

. .*

EK(6>6)=EL*EL*Yl:1+3.O*EL8YK2
EK(6,7)= 2.O*EL*YI(1+4.O~EL~Y1(2
EK(6.  U>=EL*EL+Y?:I  +EL*ELeYlc2
EK(7r7>~6.O*YI:1+5.0~Y~{2

EK(7,8>= 4.O*ELeYI:1+2.O*ELeYJ(2
Et{(g.E!>=3.O*ELaELaYi(l9EL~EL~YK2
EK( 9 , 9 > =ZKI +21:2
EK( 9, IO > =-Z!(l  -2~2
EK( IO, 13 1 =ZKl +Z:C2 I

C ~****~~~~~~*t*~~*~~~**~~*****~**~**~*****~****~****~~~
c * ‘CALCULATE TIiE ELUIEIJT  MASS NATRIX Et/l *
C *******~8~6~~~3*~k~X**~~~~~~~~******~****~****~*****~*

’ EMClr 1 )=36.O~Xt~:li-120.O*XM2
I

E1~(1,2>=-7.0~~L~X~:1-~15.0~~L~Xt~2  -
.

EM(ls3>=27.O*XG1+27.O*Xt~:2
Et’i(1,4>= ~.O~EL~XI~II+-~.OOEL:;:X~~;~

.:

EFl(2,2  ) = 1 e 5 *EL*EJ>*X?11  +2.5 *EL*EL*Xx2
EM(2.3>=-7.O*EL*X:d1-6.O*ELsXM2
EM(2,4 >=-1 .S*EL*ELsX?:l  -1 .5*EL*EL*XM2
Er:(3,3>~12O.O~Xf.I1936’.O*X~~:2.
Etq(3>4  )- 1 5  sO*EL.*:‘;:.il  +7 .O*EL*XM2

’ EM(4,4)=2.5*ELsELeX>$l  -cl .SaEL*EL*X:q2
EP1(5.5>=36.0~~~:;~:1~120.0*X~52
E~~(5~6~~-7~O~~i~Xlil-l5~O~~L~Xt~l2 I
E1~5(5;7)=27.O~:~:t.i1+27.O~::~i.12
Etg(5,e)=  6.O*EL*Xiil+7.O*~L*XF52

. --EM (6,6 > = 1 e S,*EL+:ZL*XE’Il  +2.5 *EL*EL*XM2

3 0
C
C

*. C
. c

C

,

Et,1(6,8)=-1  .S*EL*EL*XbjI-1  .5*EL*EL*XM2
EP!(7t7>=12O.O*X>il  +36.0*Xx2
EI<(7>8>=  lS.O~~La?:;~ll’+7.Oxc’LsXt,12 I
El+(t3,8)=2 .S*EL*EL-J: Xt.11 +I .5%ZLeELeXt.12
EbI(  9r 9)=3 .o*zp:i  i - Z ? 1 2
EM( 9s 1 CI )=Z:~Il  +Z?;2
Et.1 ( 1 0, 1 0 1 yZF.1 1 +3 . 0 *ZPi2
Da 3 0  I=1,9
II=I+l
D O  3 0  J=II,lO

-
-- .

EK( J, I >=E:C(  I, J>
EI.I( J, 1 >=E:,1( I, J>

C A L L  AS!-:13L~(SS1\‘~~r;:,l(l(r1(1(,5t8,  lO,L>
C A L L  ASt13LE(St~lB,~~~5~i(l~,l~l~r5,  8, 101L)

‘>



.
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l

w
KlC=4  * (P!BE+ 1 > +I?- 1 -

CALL .ASK3LE (Sm. E!(, I<!(,  I<!<, 9, 1 O ( 1 0 + L.>
C A L L  ASI.13LE  (51,:.3>  EI~l,:~lCr!ii!,  9, 10, 10,L) u
IF(ICeLT.N3E)  c0 -T0 2 0 .
RFTUI?:J . .2 I ‘.

3 2  C0IdTINUE
C A L L  TP.I:.IUL(2,EE,C,D,  10,101 IO, 10,s 13)
C A L L  T!?LKiJLL?.,EE~lrC,Dr IO, 10, IO, 10~ IO>
IF(XSTS.E~.O>  GO TO 50

c - ~~~,~~*~~~**~~*~~x**~~~~~*~**~*~~**~*****~~~~**~*~*~**~
C * C A L C U L A T E  Tl!E ’ 3’ PIAT?a  IX *
C *~~~:~~*t~**~~**~~b~*~~~~.*~~~~~~~:~~*~*~~’*~~~~~**~~~~***

B(l,l >=f.O
B(lr2)=BXl
i3(1,3>=3X1*3Xl
B(I,4)=3XI*BXla5Xl
)3(2,2)=-l  .O
B(2,3>=-2.0*3X1  I , _
B(2t4 >=-3.0*BXl  *BXI
B(6+ 1 >=l .o
B(6,2 >=BX2 :\.
$(6,3>=BX2*3X2
B (6,4 > =9X2 *3X2  sBX2
B(7,2>=-1  .O
B(7,3>=-2.0*3X2
B(7,q)=-3.O~BX2~BX2 .
B(5,9>=1  .O \

B(5> 10)=3X1
B(10,9>-1 .O
B(l0,  lO>=BX2
D0 2 5  I=l,2 :
Da 2 5  J=1>4
B(I+2,J+Y>=B(I,J>

2 5  3(1+7rJ+4>=B(1+5,J>
C A L L  J.I,JVT(B,  lo> IO>

C **~~~~*~~~*~~~~*~*~~*~~~~~~***~~~~~~*****~~*~**~~~~*~~
C * C A L C U L A T E  AD!)ITIcr!AL  STIFFNESS VALUES IF INITIAL *
C * ST?ESSES  A?,E PZESEIJT *
C **~~~****~*t*~~~t*a*~*~~~**~*****~*~~**~*~*****~~***~*

SIGI=SIG(l:>
SIG2=SIG(!(?l  >
ALFS=(3Y2*SIG1-3Xl*SIG2)/EL
BETS=(SIG2-SIG1  >/EL
ALFA= (3% +AY?t;  1-3X 1 Si:A?,A2  >/EL
EETA=  (A?A2 -&?A 1 > /EL
ALIU=(3X2*Bb!I  l-BY1 *3i112 >/XL
BETU=(st,;12-B:.!1  1 >/EL.
ALIT:!= (33s2*3>iX1  -3?:1 *i;sI.IX;!  > /EL
BETbi= (331,1X2 -Bi*IM 1 > /EL
00 3 5  I=lriO
Da 3 5  J=l,lO

I

35. R(IsJ)=O.O :
R(l,l)=-SX(OaO.0)
R(l,%>= -SS(l,  1 .o> .



*
.
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.

.
R<lr3)= -SX(2,2.0)

1

R(lr4)=-SS(3,3.0>
.

R<2r2>=~X(O,o.o>-SX~2,2.0~
-_R(2,3>=2.O*ZSCl,l  DO>-.5X(3,3.0>

R(2,4)=3.O*~!:C(2.2.0)-5:~(~~.4.0>
R(3,3)=4.O*~X(2,2.0)-SX(4>4=0)
R(3,4>=G.Ox~X(3,3.0>-SX~5,S.O~
R(4,4)=9.0~~~X(4,4.0)-SX(6~G~O)
R;1(6,6>=71X(O,O.O>
R(6,7>=2.O*“X(l,l  .O)
R(6/8>=3.OdX(2>2.0>
R(7;7>=4.O:+~X(2,2.0>
R(7,$>=6.Oa~X(3,3.0>  * ’ .
R(8r8>=9.O~~X(4,4.0)
R( 9,9>=-?,C~~~GI,IGA~::.I’GA~CCS(2.O*~Aj*(

.BETU>*XX(2,2.0>)
CALF’s!  +ALFU ) *XX (

40

4 5
5 0

1
2
3

D O  4 0  I-=1,9
11=x+1
DD* *40 J=XI,lO
R(J,I)=R(I,J>
CALL TRIl~iUL(f3 >4,C,D,10>10,10,10,10>
DG ‘45 I=1310 r
DO ‘45 J=l,lO
Ei<(I,  J)=EK(I,  J>+!?(I, J>
KK=5 * c;:- 1 >
CALL ASi.ZLE (SI<3 J El{, I<:<, Xi{, I > 1 0 s 1 0, L 1
C A L L  AS~;3LECSI.:BtE~:.;‘I:rI{:C,  1, 10, lO,L>
IF(X.LT.N3E)  G0 TG 2O
9 ETU?IN.
FaR~.iAT(l;ilz//SX,‘BLA~E  DIT,:EbJSIBI~jS’//)
F%Z:,jAT(5X,I5,  UFE;.3/)
Fe?:.lAT(5Z13.5>
END

.
c , .

. .

.

.*

.

I

- .

l .



. .

C
C
C
C

.c
c
C’

. c
c
C
C
c

C
C
C

C
c
C

JO

,

40

cALFA=(R2*Tl-RI*T2>/DD
BETA=(T2-Tl>/DD
X1 =ALFAaALFA*ALFA*Ci~D
X2=ALFA*ALFA*BETA*CKD
X3=ALFA*3ETAaBETA~C;~D
X4=BETA*BETA*BETA*CKD

SU3R0UTINE DISC(SK,SI~I,R.T,SRR,STT.NS,L)
**~*~**~~***~*~**~~*~*~~**~*~**~~**~***~****~~~~*~~*~~~
* THIS SUS:<0UTINE CALCULATES THE ELE>lENT STIFFNESS *
5): AND I.:ASS blATRICES AND ST0RES THE VALUES IlJT0 THE *
* DISC SU3SYSTEM t,;AT?.ICES  SK(L,L> APJD SM(L,L> *
* THE ADDITIZ?lAL STIFFNESS C0EFFICXANTS DUE TQ *
* INITIAL STRESSES SR?.(L) A:JD STT(L> ARE ALSO ,*
* CALCULATED AND ADDED TO THE RENDING STIFFNESS. t
*. SHEAR DEF0?.1\3ATIcZ>JS ArZD R0TARY INERTIA ARE IGNaRED.*
* WHILE E:JTERIrJG  THE SUBR0UTINE ZEF.0 ALL THE TERNS *
* OF. TIiE MATRICES SK AND S1sle INITIALISE ALL THE *
* TERMS 0F TfiE RADIUS ArJD THICKNESS VECT0RS R AND T.*
*~~x*~**~*~*~*~~***~***~*~*~*%:*~***~*~**~~~~~*~~~~*~~*
DIMENSIBN S:((L,L>,SM(L,L>,R(L)JT(L>
DIl*<EEJSIOiJ  SRRCL>,STT(L>pES(4,4>
DIblENSIBN E~((4,4)rE~~(4,4>,B(4,~~),~(~~4),D(4,3)
CQMM0N/0?TIDN/I0PT,IR~JG,ITHD,ITED,ITHB,ISTB
Ca~;rl~N/crJE/Ar,;,?2. P I ,I'3 2.
C0MKSI~/T~~~/Sl,S2,S3,S4sCKD,~.~{R,CMRICC,C~C~~~{~CP,CT
C0MMQN/FaUR/?I~ED,ER,EB~*R0D,R0R,R~B,ALD,ALR,?RD,PRR,~RB
K=O .
N=NS-1
PR=PRD
CONTII%JE
*~**~~~~~~X*~*~****~~***~**~***~*~~***~*~****~**~**~~~
* SELECT TRE NUi9BER K OF THE ELEMENT *
*~~~~~~~~~*~*~~***~*~*~~~***********~***~**~****~***~~*
K=K+l
K1=2*K-1 ,
K2=2 *K
*~**~*~~**~4~~~~~~**~~***~~*~**~*~,~**~~***~~~**~***~~~
* GET TKE VALUES 0F RADIUS ArJD THICKNESS AT N0DES *
~**~*~*~~~i%~*~*~**~*~~~~~~~~***~*~~*~~~~***~~***~~***~
Rl=R(Kl>
R2=R(K2> .

TI=T(KI>
T2=TO{2>  *
DO 40 I=l,4
D0 40 J=I,4
B<I,J)=O.O
EK(I,J)=O.O
EM(I,J)=O.O
DD=R2-Rl
DI=DD*DD
D2=Dl*DD

.



C
C
C

i3(1,2>= RI *R22i;R2/Dl
B(l r41= Ri xR=il  *R2/Dl
B(2rl >=6 . il:xl *R2/D2
B(2,3>=-B(2r  1)
B(2,2)= -R2*(2.O*Rl-tR2)/Dl
B(.2,4)= -Hl*(?Zl+2.O*R2>/Dl
13(3,1>=-3.*(Rl-tR2>/D2
B(3,3>=-B(3rl>
B(3#2>= (?.l+2.*R2)/Dl
B(3,4)=  (2 .*Rl+R2>/DI
B(4,l >= 2./D2
B(4,3)=-B(4rI  >
B(4,2)=-I.O/Dl .

B(4,4>=B(4,2>
Al=Rl*R2.
A2=Al *Al
A3=R2-Rl
All =R2 *a2 -?, 1 *:*2
~5=R2 **3 -?J 1 *i--x3.L
A6=R2**4-R1  **4
A7=R2**5-RI  **5

I

I

.

.

a

A8=R2 *#:6-R 1 t=e6 . ., .

A9=R2**7-?  1*)1:7
AlO=R2**8-Rl  *%t(
All-R2e*9-R1**9  ’
AI2=R2**10-z1**10 .
C5=AL5G  (:12/Rll  -
El =X1 *.5*.44/A2+X2&3.  *A3/Al  +X3*3 .*-C5+X4*A3
E2=Xl*A3/Al+X2e3.%5+X3*3.*A3+?:4*e5*A4
E3=Xl*C5+>:2*3caA3+X3*1  .5*A4+%4*Sl*A5
E4=Xl  *A3+X2%1  .5*A4+X3*AS+X4*.25*AG
E?==Xl*.5*A4+X2eA5+X3*:.75*A6+X4%e2*A7
E6=Xl  cSlaA5+X2*.75aA6+X3*.6eA7+X4*S2*A8
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*~~*~****~**~~*~***~:~~~****~~%:~~~***~*~~~*~*****~~~~:~**
* CALCULATE THE ’ SPIALL  I<’ MATRIX *:’
~~*~~*~~8~~~*~~**~~1~~*~~***~~********~*~~******~*~***
ZK(lrl~=El~:(Pl+2.*P2-2.*?3)  .
EK(1,2)=E2*(Pl-P2>
EK(2. 1) =E:;i(lr2>
EK(l,3>=E3*(?1-4.*?2>
EK(3,  1 >=E!C( 1 >3 >
EK(l,4)=E4*(?1-7.*P2-2.*P3)
EK(4, 1 )=E;((  1 ,4 >
E1((2,2)=E3*(?1-2.*?2+1  .)
El~(2,3>=~4~(P1-3.~?2-2.~P3+2.~?:~+2.~
EK(3r2  >=EK(2,3  1
EK(2,4)=E5*(?1-4.*?2+3.-6.*P3+6.*PR)
ElC(4+2>=EKC2,4>
EK(3,3>=E5*(Pl-2.*?2+8..-6.FP3+8.*PR)
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c
C
c

4 5

C
C
C

EK(3,4)=E6*(Pl-P2+18.-12~~?3+18.*PR~
EC(4a3>=E:{(3s4>
E~{(~~,4>=E7~iPl+2.~22+45.-20.*23936.*?3~36.*PR)
CA=<~2*SRr?<i<I  >-xI*SRR(K2>)/DD  ‘.
DA=(SRR(IC:!>-S:i,Sil(l  > )/DD
EE=(R%:i.STT(!(l  )-I?.1  *.STT(IC2)  >/DD
FF= (STT (x2 1 -STT (I: 1 > 1 /DD
X1 =CCC:kALFA*EE*P2
~;2=CCC~P2x(AL!~A*FF9~~ETA~E~)
X3=CCCaBETA*FF*?2
El =X1 *CS+X2w%3+0  e 5*X3aA4 .
E2=Xl*A3+0.5*S2+:A4+Sl*X3*A5
E3=0.5*Xl  *+.Y-tSl  *X2*A5+0.25*X3*A6
E4=SlaXl*A5+0~25*X2an6+0.3au3aA7
E5=0.25+,Xl  aA6~.0.2~X2~.~7+S2*X3~A8
E6=Oc2*XI ~A?+S2~X2~Rg+S3~X3~A9 .
E7=S2+>:1  aAG+S3eX2*A9+0  o 125*X3*AlO
Xl =CCC*ALFA*CA *. .

X2=CCCs(ALFA,+DA+3ETAkCA) ,
X3==CCC*BETA*DA * ,
Fl=O.SaXI~~As+Sl~%2*A5~0.25~X3~A6
F2=Sl~Xl:+GS+0.25~X2aA6+0.2~~3~A7
F3=0.25aXIaA6+0.2+X2%A7+S2*,X3eA8
Fh=O.2#Xl%G*7+S2*X2*A8-tS3*X3*A9

._

F5=S2+X1 $:A~cS~+<X~%:A?+O  c 125*X3eA10
*~b**~~~~~~~:~~~:~~~-~***~i:$~~-_si.***c**~*~***I*‘~~-~~:~****
* CALCULATE ADDITI@NAL  STIFFli’ESS  F8R I N I T I A L  S T R E S S  *
~h~*M~*~~*~~~~*~*~~~~~~~~~*~*~~~~~****~~~;~*~~~~~~~*~*~
ES(l,l>=El.
ES(lp2>=E2  _
ES(lr3>=E3
ES(lr4>=E4
ES(2>2>=E3+Fl
ES(2>3)=E4+2.O*F2 ‘I
ES(2,4>=E5+3.O*F3
ES(3,3>=E5+4.OaF3
ES(3,4>=E6+G.O%F4 .

ES(4,4>=E7+3.0sF5
ES (2, l)=ES(l,2)
E.S(3,I>=ZS(lr3>
ES(3,2)=CS(2,3>
ES(4,1>=6S(194)  .
ES(4,2>=ES(2>4>
ES(4,3>=ES(3,4> :
Da 4 5  I=l,4
DQ 4 5  J=l,4
EI((f,J>=~~;(I,J>+~S(I,J)
ALFA=ALF.A*CKD \
BETA~SE~‘A;I:C~;D
~****t**~*8******~~Y~~~*~~~***~*******~~~***~**~~*****
* C A L C U L A T E  TIIE  ‘SIq;ALL  PI’ >liTp.IX *
*~~~**~*~***~*****~~*~~*~***~~~~***~~~*********~**~**~
EhJ ( I , I > =f’iLFA*.  5 *A4 +r3ETA *S 1 *A5
EM(l,2>=ALFA~Sl~AS+~ETA*.25~A6

L ,
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.

C
C
C

C
C
C

b
C
C

EM(lr3>~ALFA*.25aA6+EETA**2~A?
EM(lr4>~ALFA*.2~A7+BETA*S2aA8
EP1(2,I)=Sb!(1.2)
EM(2,2>=i~~~l(Ir3>
EM(2P3>=Z><(1,4)

,

EM(2,4>=ALFAaS2~~8+B~TA~S3~A9
EM(3sl>=Et~(1,3>
EM(3,2>=Er:(2,3>
EMC3+3)-EMt2>4)
EM(3/4)=ALFA*S3*A9+BETA*.I25*AlO  . .
EM(4,I)=EI~l(I,4)
'EM(4,2>=EH(2,4j
EM(423>=E!<C3,4>
EM(4,4>=ALFA* e125*AlO+BETA*S4*All
**~*~~~~~~t~~*~**~*~*~**~~~~~*~****~~***~*~*~~*~**~*~*
* CALCULATE THE STIFFNESS A?QD MASS ?'IATRICES *
~*~*~*~~***t***~~~~~~****~~*~**~*~**~~~*****~***~~****
CALL TRIMUL(B,EI:tC,D,4,4,4,4,4)  /
CALL TR1~IUL~B,E~~1.C,D,4,4,4,4,~4~
m=2* (X-1 > -1

,

l .

.

.

( *

.
v *

.

.

.

:

.
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C
C
C

I C

._

1 0

1 5

2 0

, .
..

SUB70UTINE  SYSTEb~(SK,SM,SKB,SMB,NTD,NTB,L,LL)
***~~**~~~~~***~**~**~~~*~*~******~~***~***~~*********
rk T H I S  SU3RSUT  IIJE  ASSEf,13LE*S  TIiE STIFFTZESS ATU’D i”ZASS * .
* FIATZICES  CF TI’E T%?EE  SU3 SYSTEb:S II’JT0  TSiE  SYSTEII *
* NAT‘RICES  w T?iE ICATZICES ZK(2,2>  ArJD .R1.1(2,2>  0F T H E *
+ RIti SIJ3SYSTEr.I AZE C A L C U L A T E D  BEFaRE  ASSEbiZLII:G  o *
* T H E  D I S C  SU3SYSTLi.i  i,b’I -!-RICES  SK(LrL)  A N D  SI,i(LsL)  +
* AXE THEI.;SELF U S E D  A S  SYSTEPI  I\:ATRICES. . *
* BEFf3RE ENTERIIiLTG TIIE  SUSRZUTINE  I N I T I A L I S E  A L L  T H E  *,
* .TER!.:S  GF T H E  SUZSYSTETyi  I,;ATRICES  SK,SM,SKB,/~l<D  SE:B.*
***~~~~~~~~~~**b~~~*~~~~~i~~~*~~~*~~*~~~**~~~~~~~~****~
DIb:E,P?SICIJ  SI~~L~L~~SMCL.rl,~rSi(S(LL~LL>~SI~iB~LL,LL>
DIMElJSI9N  DK~IO,lO~~DM~lO,IO~rT~lO,lO~~CClO,lO~,DClO,lO~
DIMENSIGiJ  R~{(2,2>,RM(2,2>,CR(2r2)+DR(2J2>PTT(2r2)
Ca~lr.:aN/aPTI~~~/IO?Tt  I?,NG, ITHD, ITED,  ITHS, ISTB
C0:(lr~BN/ei!~/A?l,Ai.12.AI-ILI,Aiil?~
C~~i~~;nJN/TG.*O/Sl~S2,S3,S4rCI<D~Ci~R,C:~lD,CMR,CC,CCC.Ci~,CP,CT
C0M~~iOl’,j/TIIRE/~~DI,T?DO,R~~a:.R;r:~.RTI,RT0,El,E2,:~IZ,.~IX,?.J,RA,STR
~01*1MBN/Fi?JUR/‘I  .a ED, ER,EB,RgD>R0R,RG3,ALD,ALR>PRD,PRR,?RE
SF(I0PT.EQ. I> GO TO 35

.:

RR=R20
IFCIRNG.EQ.01 RR=RD0  ”

. c

D O  ID X=1,10 .
*

Da I O  J=l,lO
DK(IrJ)=SK3CI.J>
DMCIs  J>=SF!ZCIr  31 i’
TCI,J>=O=O
*~**~*l~*i~~~~*S*~~~*~~~~~~~~~***~*~~~**~~**~~*~****~~
* APPLY THE C3?jST3AIIT C 5>JDITIBNS T0 THE BLADE *
* SUBSYSTEM ?IATRICES. t I
*I**~~~*~*~*~*~~*~~*~***~~*~~*~****~~**~***~~*~*****~~
T(3,l )=l .O I
T(3,2)=-El-E2
T<4,2>=1  .O
T (5, 1 >=-A!.I/R,“,
T(5,2)=AI,:/RRx(EI+E2)
TCG,3>=1  .O
TC7,4>=1  .O
T(8,5)=1  .O
T’C9rG>=l .O
TCiO,7)=1  .O
C A L L  TZIi’,UL(T,DK,CrD,  10,7,10;  10, IO>
CALL T~‘;I~:UL(T,Di~:,C,D,10;7,10,10,10>
DQ 1 5  I=l,lO \

D12 15 J=l,lO
C(I>J)=S;C3CI,J>
DC I, J>=S:.:3(  I, 3)
DO 20 I= lr7
11=1+3
Da 20 J= lr7
JJ= J+3
SKBCIIrJJ>=DKCI,J>
SM3(I  I, JJ>=Di.l(  1, J>

.
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C
c
C

C
C
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I*****~~:~*~*****~~*~~*~***~*~**~~*~*~~~*~*~*~***~:*****

* ASSEI,:BLE  TIiE DISC AND BLADE MATRICES ,IN TQ THE *
* SYSTEM >‘ATR  ICES o. 1 *
*****C**~~*~*****~**~~***~~*********~*~*****~~~*~~*~**
DO 3 0  1=4rPJTB
II=I+NTD-S
D 5  3 0  J=Li,llTB
JJ= J+iJTD-5
SI{(II,JJ)=SI~(II,JJ>+CC*S~~B(E,J)

30 SM(II,JJ>=SM(II/JJ~+CC*SI~l3~I,J~ .
,

DD,,35 I=1 t 1 0 .

D O  3 5  J=lrlO
,. .

SKB(I,J>=C(I,J) /
SMB(IrJ)=D(I,J)

35 CDNT IWE
IF(IRrJG.EQ.0)  G0 T O  5 0
~~*~~~~~~~~~~~~*~~*~~~~~****~~*~**~**~~~*~~**~~~**~*~~
* CALCULATE TiiE R I M  PIATRICES .*
*~~~~~~~~~~~~~~**~~~~~*****~~*~*~*****~~*~***~~*~*~***

Pl=l  eO/(RRI+El> .t
A2=Al*Al’
A3 =A2 aA 1 .

A4=A3*Al :
AR=0.5*(RR0-RRI)*(RT0+RTI>
GR=O.S*ER/(l  .O+?RR)

RK~~.~>-CI~~~~~R~RIIZ+G~~RJ/AM~~~A~~~~A~+AES~~A~~STR~C~~R
Rl(( 1,2>=C:~R~i:~R~RIZ+Gr!a.9J)*A~,J2*A3
RK(2.1  >=RK(  1,2 >
~Hl~(2,2>=CI~R*(E;;:~RIZ+A~~2~GR~RJ)*A2
RM( la1 )=CM~~R~R~(EA+RIZ%A~~2*A2)
RM(lr2>=0.0
RM(2,l  )=O.O
RM(2,2>=CMR*ROR. *(RIX+RIZ)
TT(l,l>=I.O
TT(1>2>=-El
TT(2,l >=O.O - .
TT(2,2>=1  .O ,
CALL TRIMUL(TT,R;~rCR,DR,2,2,2,2,2>
CALL TRIMUL(TT,RM_sCR,DR,2.2,2,2,2>
**~~L~~~~*~~~~~~~~~~~~*~~~~**~*~~~***~*~~**~*~~*~~~***
* ASSEMBLE THE R I M  ‘l?ATRICES  Ii.JT0 T H E  S?STEM  lJATRICES*
*8*****8**~*~*~**~*~~~~~**~~~~*~~*~~**~~***~**~****~**  *
D O  4 0  I=;,2
II=NTD-24.1
D0 4 0  J=lr2
JJ=NTD-2+J
S~((II,JJ)=S:~(II,JJ)+RI!(I,J)

4 0  S~~I(II.JJ>=S~~J(II.JJ>+~i;~i(IrJ> 1
SO RETURN

2  F0~i.j,2T(5X’rI5,5E13.6/)
E N D

.d A ‘,
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b.4.3  Subroutines used in PROGRAM-3

.

C
C
C

‘C
C
C
c
C
C
C
C
C

’ ‘.C
C
C
C

15
C
C
C
C

d: r,IA I >! - 3 L- WIN PRBGRRM  O F  PR0GRAp;3 ‘*
* *
*~~~~k*~*~**~~~*~***~~***~*~**~~~**~*~****~*******~~**
* Tl!IS I S  A  G E N E R A L  PR2GRApi T0 B E  U S E D  IiJ Tl;E *
* At<ALYSIS 0F BLADED  RZT0RS. TRAXSVERSE  S H E A R  A N D  * ’
* RETARY IXERT IA  ARE 12!CLUDED  3STH I N  ,THE D I S C  A N D  *
* BLADES.  0PT IKIJS FACILITATIl!G.  TfiE USE OF THIS *
* PRiGRA:*l  F0R T H E  VIBRATIGN  APJALYS  I S  OF EITl-IER  TXE *
* ElJT IRE “0TER SYSTEr.1 0:I!  I T S  Ca!:?0XENT  T=ARTS  l*lAY  BE *
* SPECIFIES.  VARIABLE D I XENS  I0NS ARE TJS ED RE!Z’J  I R I NG *
* TlIE CHi?IdG I NG 0F T H E DI:~;Z:NSI0?<S 0ldLY I N  TIiE l.WiIN  *
* PR0GRA:I A T  A N Y  TINE Ar;D SPECIFYIIJG  T H E  A??R0PRIATE*
* V A L U E S  S F  FIS 1 AlZD  KS2. *
**~8~~~~~~~~k~*~~*1~~~~~~~~**~**~*~****~~~~**~**~*~*~* ’
D I I.lE?:S  ICI,’ S~((49,49>rS1~:(49~49),Si(‘3(35,35),S~i~(35,35>
DIt~lEi!SI0IJ  ~(49>,T(49),TE(49>,5.~(49>,?(49> /

D I IcEI,JS  1 C1J 33(49),~D(~1~),3~(49),SIG(49),A;:G(49>rA~A(49).E1~G(4?).
DIt.:EIlSICIJ  SGR(49>>SGT(49>
DIl~;E?:SISiJ  D(49,~9>,F(49,49>~B(49>,Co,X(49>
DII,:EI!S I’J?,; E~~(49>,~7(49>,38(49),~?(49),F~(20,10)
C0XI.:0fJ/G?T IL?)!/  10?T, IRilJG,  ITliD,  ITED, I THB, I STB *

c 0 r,;;,:.z I\] / c 2: E /i:K,A:.12.Ax4 tAilP2
c ~;.;>;~ ?j /T:.TZ/Sl ,S2,S3 , S4r CKD.  CKR. CI:D,  CXR,  CC, CCC, C:(r C?, CT, CSDr CSR
C~i~~~~~~~~~/T~‘~~//:~DI,~.3G,~~IIR~‘o,~TI~~T~,~l~E2~RIZ~RI>:~~~J. . c . . ..Y -
C~i~il~ISij/F~L~~/?I,ED,E~~EE3,..,,“aD,RWR, R03,ALD,ALRr ?RD,PRXr??3,SCB
CE >:>:3;;/F IVE/SRi  .SR3,  Z!.!GA
C0ti;.iC>!/S  I X,‘CG:l!ST,  I.:, KF
EQIJ  IVALEKCE (Si!,F)
r:s 1 =49
:.;s2 =35
C ZIlT i F!~LTE
*~*o~***~~*~i&~*~~***~*~~~*~****~~**~~*~*~~*******~***

* READ GElJET?,\L  iZ?‘I-  I G;rJ,  “IX CPT Ir,::, A N D  I;‘Jr’BER  BF. *
x: FREC;UEiIC  IZS T?Z?.J I:‘(En  FC?R  EACK DIAt.;ET:iAL DIODE. *
~**~~~~~~~**J~~~***~~~~~~~~~**~*~~~~~*~*~***~***~*~~~*~*
R E A D  1 2 ,  IO?T, IRii!G.E!F I
PRIIJT 12, IC?T, IRIFlG,NF

l .
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c
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**~~~*~c***~******4~*~***~*~***~~*******~~***~***~***~
* READ aLADE D I I-:ErJS  I rJKS *
******~***X~**~~********~**~*~~~~*~~******~*****~*****
READ lO,C3X(I>,I=l,NSS)
PRIST13,  (3X:(X 1, I=l,rJS3> ’
READ lO,(S3~1>,1=1,NS3)
?RIIJTIO, (U3(!),  I=l,IJS3) \
R E A D  10,(3D(I1>I=lrKSB)  s
PRIIJTlO,  (3D(I>r  I=lrNS3)

R E A D  13,(ARA(I>,I=lr~~SB>
PRINTlO,  (A?A( I), I=1 ,:JS3)

: .

R E A D  10,~3I~GtI:,,I=lr~JSB,
PRINTlOt(BI~G~I~,I=IrNSB>
READ 13~~A~G~I>,I=l,IJS3>
?~INTlO,~A~~~G(I>,I=I,~~~~3~
IF(IST3.EZ.I) READ $t(SIG(I>,I=I,NSB>
LF(IST3.Ea.l)  ?~I~JT6,~SIG~I>rI=l;NS~~

‘ 7 0  IF(I?.i:G.E,Z.O>  G!? Ti??  80 .
,~~*~*~~**~~**~~~~*~~*~~**~**~~~~*~~~*~~*~**~~~*~~~~**~

* IF !? I K I S  ?RESEPZT,  REA.,P.THE !?IIII 1~IATERIAL  ?Z-?o?ER-  *
* T I E S , D I r_iENS I GIGS A:JC ELASTIC PR!s?lPERT  IES *
***X~***~~~~t~**~~*~~*~*~~*~**~~****~~***~**~~*******~
READ 6, E?ti,  ?.Cx > ??Z, ALT?,  S CR
Pi? Iti’T5 ,E?,?G?.,!‘~?.,AL?.,SCZ
READ 1 O,T?R 1,723, !??T I ,?T@ txTE I, RTE3
PRIIJTlOr?,RI ,~~~,~TI,~Te,RTEI,~TEB
T(N?D+l  >=?TI
T (pJPD+2 )=ZTg
TE(N?D+l )=Y?TEI
TE(N?D+Z>=xTE@
.R (ItPa+ 1 >=.?LR  1
R(N?D+2  )=x38
Gar;T IWE
?1=3.34159265358979
GCfdST=0.5/?1
Sl=l./3.
S2=1./6. I

53=1./7.
S4=1./?.
GE TG(95,?5,E5,95),I~?T
C”J:JT I::‘._lZ
~~*~~~~~**~*k~***~~~~~*~~,~~~~~**~*~~~**~*~**~*~*~~*~~*
* CALC’JLriTE  s’,/-,;cE SL;ZSVCTEI<  ST IFF:;L:sSS A N D  !?ASS *
* ;.jAT;ICzS ApI3 STs2.L TEE:.; *
~***~~~~~i~~*~~~*t~~*~*~*~~~*****~~**~**~*****~***~**~~
GALL T!I;~~DE~S:~3,SI~:3,YX,93,3D,ANG,SIG,ARA,3:~G,;~~3E,  13DE,?iS2>
G3 Tg(95,90,95>,IZ?T
CSNT  I r;I,:s
IF( 12115  .rtZ. 0) G3 TG 95 e
~~~**Xf~~~**~*t**t~**~~~~*~*~~~~*****~~~*****~~**~*~~~~
* Gr,l.iPUTE  3LADZ  FRE”!JEIJCIES  ACCG;RDIp;G  TO T!IE B L A D E  *
* G ENE3AL OPT I G:r;S *
****~*b~X~****k*~***~***~**~*****~~~******~******~*~*
IJl(=l
Id=0 L

.
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94
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IF( 13DE.F;E. 1) G0 TO 94
DE 9 1  1=3,3*?JS3-1
x1=1-2
D O  9 1  J=3,3*NS3-1 ,
jJ=J-2 ‘.
S!!(IIsJJ)=Si(3(I,,J)
SI.I(IIrJj>---SI,i3(I,J>  . .
Nl =31:1J53-3
PFtINT  1
C A L L  EIGVAL(S~{,S:~l,D,F,F~.B,C,>:,ER~,B7,B~8.B9rIJI(rr\!l~~Sl  >
D0 9 2  I=3*NSB+3,6*NSB-1
II=I-2-3*NSB,
D0 9 2  J=3*IlS3+3,6*NS3-1
JJzJ-~-~*~,]S~

SK(iI,JJ>=SK3(IrJ)
.S~l(IIrJJ>=S~~I3(I.J)
PRIIJT 2
CALL EIGVAL(S::r Si~,D,FrFR,B,C.~.ERl~,B7,B8,B9,~IJ:~rNi.’~IS~  >
D0 9 3  1=6*NS3+2,XTB _’ -

\ ,
II=I-1-6*NS3 .\
De 9 3  J=6*rJS3+2, N’fB -- ,

. /
JJ=J-1-6a:JS3 ,
Sl((IIrJJ)=SK3(I,J> .
St~l(II,JJ)=S:~~3(I,J>
Nl=PJS3-1
C A L L  EIG~~AL(Sl(,S~~:,D,F,F~,~~C,~,ERR,B7,B~,B9,IJ~(,Nl~~~Sl)
G0 TO 15
IF(I33E.NE.2)  G O  T0 97
I,Ib:=NT3
D O  1 9 5  I=N33S,l,-1 . .
11=7*1 .
CALL IIEDUCE(SKB,NM,  I I, 1 ,I:S2> ,.
CALL ZE DUCE(Si.:3,“l>l, I I, 1 zMS2 > .
IJ I.I = N PI - 1
C0NT II,:‘JE b.
CALL REDUCE (sm. rlblr 6iNSB-3,  1, IsiS2 >
CALL XEDUCE  (Sb:33. LUI.:,6*NS3-3,  1 .NS2)
CALL ~ED~CE(s:~~,:;~~-1,~r.~2,;;S2~
CALL IIEDUCZ(S>:i!,I\l1~1-  1 ,4>2,b:S2)
CALL ~.EDUCZ(S~:3.~!~~:-3,  1,2,L.‘IS2>

‘ C A L L  XED’IJCZ  (SX3> TJi.:-3, 1,2, biS )
N 1 =IJI-l-6
PX I r>JT 5
GB Ta 9 9
C 2 !J T I r,J’_l  E
IJbi=t;T3
CALL ~.EDL’CE(Si;3riL’i:,7~:~~s;3-1,  l,MS2)
CALL ?.EDT_!CS  (Si*li3,  !!I,:> 7*1JS33- 1 , 1, :.lS2 >
C A L L  ZEDl;CE(S:<3,.J:;i- 1 ,7*IdSB-4,  1,1.1S2>
CALL 1Eli!_iCE(Si:3,iJI~:-  1 ,7~!!33-4, lst.I.52)
CALL ~EED~CE(SI~!3,:~:~1-2,4,2,l~IS2>
CALL REDlJCE(S:,IU,EJt-;-2,4,2,1,1S2)
CALL ~ED’JCE(Si’:3rI~J~:-4,  lr2rbIS2>
CALL REDUCE (SIl13, NH-4, 1,2, :-IS2  >

. .
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N 1 =NPZ-6
PRINT 7
CALL EIGVAL~SICB,S~:~,D,F,FR,B,,CrX'rERfl.B7r~~,B9,IJJi<rI~Ir~~1S2>
G[Z TCI I5
CLSNTIrJUE
CK=2.0*?I*ED;(l.O-??D*?xD) *
CP=3-.O~?I~ROD~~~:GA~~B!GA '. .

CT=2.0*PI*EDaALD/(l.O-?i?D)-
**~*~*~*~~~*~~~*X~~~~~**~~*~**~**~~*~*~***~~**~****~~*
* ,CALCUL‘ATE Ti-!E INITIAL STT?ESSES IN THE DISC DUE Tg *
*' R@TATIOlll, TEI;!?ERATU13,E GRADIEIJT AND aTHER 38UpJDARY *
* L@ADIrJGS *
******~~**~*~*~******~**~~*~****~****~~*~***~~*****~**
CALL INLSTR(S:I,R,T,TE,"!,?,SG~,SGT,i'!SD,~:Sl  >
IF(IO?T._EO.4> CALL .EXIT
NT =NTD
XF(IQPT.EQ.3) NT=NTD+NTB-6 \

.
IJK=l _
M=PIDS-1
IF(IGPT.EQ.3) Z=NB . .l

CQPJTINUE
***~~***~f**~**~~**~~~**~~~***~~**~*~~*~**~~*~~****~~*
* SELECT 1JU>iBE~ OF_ t:OCRL DIAMETERS ’ *
~**~**~~~***~~~*3~**~~~~**~**~~*~~~~~~*~**~~*~.~~~~**~*
r$=I,l+l
PRINT 3,Ibl
FRC-1.0
IF(H.EQ.0) FAC=2.0
Cl!D=F,~C~?I*SD/(l.O-PRDaPRD)/12.0.
CHD=FAC*?I*?OD
IF(IWG.~Q.l>  CCR=FAC~?I~;E~/(l.O-PRR~?R~)./l2~0
IF(IRNG.EQ.1) C!.;R=FAC*PI*z:3?
IF(Ia?T.EQ.3) CC=Z*FAC/2.0
CCC=FAC*PI I
CSD=0.5*PI*FAC~ED/SCD/(l.O+P~D~
IF(I?.NG .NE.O) CS3=O.S~?I*FAC~E~/SCR/(l.O+~R~)
A'/=I.jL.
At.12 =AI.:*AI*i
AM4=Ax2*A:>22
A'46 =&At:4 *Al.12. . 1
Atl?~ =AI.:2 *?T.D
Da 105 I=l,NT
DC 10.5 J=l,T.?T
SK(I>J>=~.O
.SI.l(I,J>=3.0
****~*~Q~*~~*~*~*~~*~*~~*~~~****~~~*~*********~*~*~~**  *
* CALCULfiTE DISC SU3SYSTE.r: STIFFlJzSS AND b:ASS *
* MATRICES Arl:, STg.'IE Tk!EI: *
***%~~i~~~**~~~*~~**~*~~*~~~~~**~*~~******~**~******~*~
CALL TI-~i~DSC(SI:rS:~irR,T,SS~zSGT,rL'SD,tlSl)  z c
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***~~~*****~*~~***a**~~~~~***~*~*~~~~****~*~****~~~~*~*
* GZT TI!E SYSTEE: STIFFtJESS A N D  I.lASS  KATRICES  FRGX C
* T I-iE SU.3SYSTEX  PIATR I CES *
*~*~****tbJ:~i:r:~*~*~*cJ;~i:i*~~*****~**6*******~*******~ic**’
IF(IB?T.EQ.3>  C A L L  TXi:SYS  (Sl~rSMzSI~B.SK3.

~CCI~‘!Dr!,:?i?;l,i,:T~,IJTB,I.;Sl  iIdS
~~~~~t~~***~~*~k***~*~~~~***~**~*~*~*~*~~~~****~*~~~~*
* APPLY B ZLTPJDAJY  C 0>JD  1 T I GiJS , *‘.
*~~~~*~~~*Q~~a~~**~~*~*~~~***~******~******~*~***~*****
C A L L  ~EDUCE(SI:.NT,:,:T-1,  lrKS1 >
CALL REDUCE (Sl,lr l>lT, PJ,T  - 1 J 1 .e 141s 1 >
IF(I02T.EQ.l)  G0 T0 1 1 0
C A L L  REDUCE(SK,NT-l,NT-4,  lrXS1 >
C A L L  REDUGE(S?I,iJT-1  ,NT-4, 1 ,I~lSl >
CALL RED’JCE(Si:,IJT-2r  1 r2rI‘,?Sl 1
C A L L  REDUCE(SI,:,NT-2,  1.2,KSl > .
Nl =>JT--4
GO T0 1 2 0
C 0 1JT I r,JU  E

‘ C A L L  REDUCEWWJT-1  ,3,l,MSI > ’ ‘. ’
C A L L  REDUCE(SII,NT-lr3,  1,MSl 1’
Nl =-NT,2 .

C 0l.lT I I:UE
************* ~~~a***~~~~~~*~~f~~~~*~**~**~~***~*~~*~~*
* S0LVE  THE EIGEKVALUE PR03LE;*l  AN3 G E T  T H E  SYSTE1.i *
* FREC!UEI,!C  I ES *
****884~*l~~~~~**t~~~**~~~~~*~~~~~*~****~~*~~***~*~**~
CALL EIGVALCS::>SI~I,D.F.F.?.3,C,~ / ,E~R,B7,3Y,39,1J~:,~J1,i~:S1>
IF(!<.LT.ND> G0 T0 1 0 0
G0 T0 15
CALL EXIT I

FORl,iAT  ( 1 l-i1  , 5X, ‘BLADE BENDING FREQUENCIES IiJ I-MIlJ  DI’RECTI0N’//1
F0RE;fiT ( 1 HI, 5X, ‘BLADE BEIJDING  FREQUENCIES IN I-MAX DIRECTIBN’//>
FeriI,:AT (///= 27!iMJl~ZER OF N!ZDAL DIAi>:ETERS  =a I3// >
F0R>lAT ( 1 Hl > 5X, ’ BLADE T0RT I GPJAL  FREQUEI,:C  I ES ’ // >

.FaRl,itZT ( 1 E 1 > 5X, ’ T:,: ISTED  BLADE 3EI\TG  I IJG FREQUENC  I ES ‘.// 1
FBR?!AT (4F23.  10 >
FG:!t.:AT  ( 1 I: 1 , 5X(,. ’ BLADE FREOUEI-JC  IES ?a; ITIi I11 IT IAL STRESSES ’ I/ 1
F0R?r:t\T (8F 1 0 . G >
F!ZRi.;AT  (/%E 1 3 o 6 >
FGRi%%T(16!5)  .
END

.
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SU3:IOUT IlJE TI;l:3DE (S1!3 ,S~,~B,3?:,~~3,33+A~JG,SIG,ARA,B;(G,NBE,  IBDE,L)
T ~*~~~*f**~~~:~a~**t~~~~~*~*~~ ~~:~~*~**~~~**~*~~~**~~.~:~**

*’ TliIS SLJ3ROUT  Il>IE C,?LCULATES  Tl!E B L A D E  SU3SYSTEi’S ‘*
* STIFFrL:ESS I.:ATRIX  S;(B(L,L)  A:;D 1,IAS.S  :~lATRIX SlCB(L,L)*
* TRANSVERSE SliEAR  ArdD !?OTARY I N E R T  I A  A!!E I N C L U D E D  *
* ADDITICIJAL  STIFFl!ESS D U E  Tti I N I T I A L  S T R E S S E S  CArJ *
* ALSO BE I?lCLUDED .*
~~~~***b*~~~~b~*~**~****~*~~*~~**h*******~*~~*~~
DIi~;ENSIOll  S1<9(L,L);S~~i3(L,L),El((  14, 14),EF;(  14 ,  14)
DII~lEIJS10>j  3~14,  14),3(14,  14),C(14,  14),D(l4~  1 4 )
DIMENSIOl;  BX(L),~~(L)tBD(L),A~IG(L),SIG(L)
~0;~j[~WN/~~U::/:~I,E~,E~,E3,R0D,R~R,RQB,ALd,AL”,?RDr?:?~’,?RB.SCB
CDI.I>,IGN/F  IVE/SR  I , SRO, Gi*!GA
RX(I+AI)=ALFS~ALFA~X:~(I+l,_~I+l  .O)+(ALFS*3ETA+BETS*ALFA)*

.XX(Ic2,AI+2.0)+3ETS~BETA*XX(I+3,AI+0.0)
~SX(I,AI)~R~~~~i~~GA~3~~~GA~(ALFA~XX(I+1,AI+1~O)+2ETA~~XX~I+2,A1+2cO))
XS(I;AI>=YYY~(ALFR~Xi~(I+l,AI+l  .O)+EETAaXX(I-t2,AI+2.0)>
XR(I,AI )=XXX*ic(AL*,u\“V(I+l,AI+l.0)+BEaXX(I+2,AI+2.0))
XX(I,AI)=(BX2~~1-3Xl~~~I);AI
NTB=? * (NBE+ 1 )
D0 1 0  I=l,lJT3
DC 10 J=l,l<TS
SI:3(I,J)=O.O  * : ,

la Sl’l3c(I,  J ) = O . O
P R I N T  1.-

K=O
ia CENT INUE

I

D0 1 5  1=1,14
D0 15 J=1,14  . \

B(I,J)=O.O
EK(I,J)=0.0
El:(I,J)=O.O

1 5  Rri(I,J)=3.3
****************************** ~*~8~*****~**~*~**~~~*~*
x S E L E C T  TliE >!T,Tl.]3ER  i{ OF THE ELEl.:ENT  f.lJD  G E T  TliE t *
* VfxLUES’ OF SECTIal:!  ??.G?ERTIES O F  T H E  B L A D E  A T  T E E  *
* E N D S  0F THE ELEI\;E?!T *
~*~~***~~~*~*~~~**t~~~~****~~*~******~~~.******~~*~****
K=K+  1
KP 1 -K+ 1
BXI =BX(!O
OX2 =3X ( ;;? 1 )
A% 1 =AT?A ( K)
ARA2 =ARA ( :CP 1 )
AlJG 1 =AIJG  ( K)
ANG2=ANG (:(?I )
?RIt\;T 2,iC,3>:1  ,3>i2
SIGl=SIG(iO
SIG2=SIG(l’“I)L1
BA=~. 5* (ANG 1 tAlJG2)

. .

. *b
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SN=SIIJ(3A/leO.O*?I) - :
CS=CGS(3A/1~0.0*?1) \.

GB=O.5*E3/(1  .O+?FiB>
.BxI 1 =B3 (IO

B~;I2=B33(1:?1  ) I .
BF!%l  =BD  (IO - .
BlijX2  =BD ( I(? 1 )
BJ 1 =BIKi (10 L
B J2 =3i:G (I{? 1 )
Et?B>:2  -3X1

ALFS=(BX2~SIGl_BXl*SIG2>/EL
BETS=(SIG2-SIG1  ) / E L
ALFA=(BX2*AxAl-3Xl*ARA2)/EL

\
BETA= (AZA2 -ARAl  : /EL-
ALFJ=(3X2*:331-3Xl*BJ2>/EL
BETJ=(3J2-3JI  ) / E L
ALIU= (BX2*:=;,lI 1 -BXl *BP:!2  >/EL
BEIU=  (BKI2-UFl;I  I > /EL . .

.
ALI\?=  (BX2sB:;Xl  -BXl*3MX2  ) / E L J
BEIF:=  (B!,!X2  -3f.IX I )/EL
*~~*~**~**~~~*~*8**~~~~~.~~~*~~~~~******~~~~~~*~~*~*~~**

** CALCULAT; THE ‘ 3 ’  MATRIX
*~~~~***~X~~~*~****~~~~~*~~*~~**~**~***~**~***~***~****
ac1,1 )=l . o

‘B(1,2)=BXl
.  B(l,3)=3XlaBXl

B(lr4>=BXla3X1*BXl
3(2,2)=-l  .O
3(2,3)= -2.0*3X1 \
B(2,4?=-3.0+3X1*3X1

‘.B3(2,5)=1  .O _. ,.
B(2,6)=3Xi
B(3,5)=1  .O
B(3,6)=BXl
.B(4,1 I=1 .O
B(4,2)=3X2
13 (4,3 ) =3V2  *3::2
B (4 > 4 > =3X2 *3S2 *BX2
B(5,2>=-1  . o \
B(5,3)=-2.0*:3X2 ‘.
B(5,4>=-3eO*aX2*3X2

B(5,5)=1  . O
B(5,6>=B>r2
B(6,5)=1 .O
B(6,6)=3?:2
DC 2 5  1=1,6
1X=1+6 .
DO 25  J=1,6
JJ= J+G

2 5  B(II,JJ>=3(1>3)
Fsc13,13>=1.0
Bc13,14>=BXl
B(14,13>=1  .O
B(l4,14)=B>:2
C A L L  INVT(3,14,14)

. 1

. ..-.



R(l,l>=CS
R(2,2)=CS
R(313>=CS
R(4,8)=CS
R(5,9)=CS
R(6,1O>=CS

\
R(7l4 >=CS
R(8,5>=CS
R(9,6>=CS
R(lO,ll>=CS
R(lO,I  1 >=CS
X(1 lr121>=CS
R(12,13)=CS
R(I,LI)=SN
R(2,5>=SN
R(3,6)=SIJ

\ ‘R(Qll.11  )=SPi
’ R(5,12>=SN

R(6;13 )=SN
R<7rl  >=-SN
R(8,2>=-SN
R(9,3)=-SN.
R(lO,U>=-SN
R(1 109>=-SK
R(12, IO)=-SN
R(13,7>=1  .O

R(14,14>=1  .O

\

.

:

1CKI<=O
AL=ALIU
3E=3EIU

‘.
r

I=0
J=O
XXX=Ei3
YYY=G:3/SC~

30 CG.!IJT I:GUE
}fK1(=1:1(!1+  1c
E;{(Ii-3, J+3>=4.0*%?(0,0.0)
El{(I+3, J-t4>=12eOa’:~(lrl  .o> _
E;((I+3, J+6>=-2.0*>~:~(0,~.0>
E!((I+4, J+4)=36.O*Xx(2,2.0‘>
E]{(I+4,J+6>=-6.O~X~(l,l.o) .. .
EI((I+S,J+S>-~S(OrO.O>-
E!<(I+5,J+6>=XS(lrl.O>
E};(I+6,;+6~=X~~0,3.~~+~s~2,2.0~
IF (I:l(K .EQ.2> GG TW 3 5
I=6
j=6 ’

0.



.

.
. 349 .

I(KI<=O
I=0 I

J=O
AL=ALIU
BE=BE  1.U
xxx=r?ca
YYY=R&3

. - 4 0  C5iitJT INUE
1oc1~=1u~l~+  1
EM(I+l~J+l  )=%S(O>O.O)
E~~(I+l,J+2)=XS(lrl.O)
E~~l(I-tl.J+3)=XS(2,2.-i))
EN(I+l,J+4>=XS(3,3.0)
E~l(I+2,J+2)=XS(2,2.0)+X~(O>O.O)
E~~(I+2,J+3)=XS(3,3.O)+2.O+XR(lr1.0)
EK(1+2,J+4)=XS(4,4.0)+3.O*XR(2>2.O)
Ebl(X+2rJ+S)=-XZ(0,O.O)  ’
EM(I+2>4+6)=-Xx(1,1  .0)
E>l(I+3,J+3)=XS(4,4.0)+4.O*XR(2,2.0)
EK(I‘+3>J+4)=XS(5,~.O)+GeO*XR(3r3.0)
EM(1+3,J+5)=-2.0aX~(l,l.O)
EM(1+3,J+6)=-2.O*XR(2,2.G)
EM(I+4,J+4>=XS(6,6~3)~9.O~XR(4,4.O)
E~~(1+4rJ+5>=-3.O~X~(2,2.0)
EM(1+4,J+6)=-3sO*XR(3>3.0)
EM(1+5>J+5)=X?(O,O.O)
E~~l(I+5,J+6)=‘~(1>  1 .O)
E1~1(1+6,J+6>=X!?(2,2.0)
IF(lCiCI{.EQ.2>  G O  T0 4 5
AL=AL I!&’ .
BE=BEIT/!  .
I=6
J=6
G0 T0 4 0 .\

4 5  CC:NT Ix!E
AL=(ALILT+;~LI!!)~~0!3
3E=(BEIi!+3ZI’~!)a”a3
E1~~(13,13)=AL~XX(1,1.0)+3E~XX(2,2.0)
EM(l3,14)=AL*XX(2,2.0)+?3!Z~XX(3,3.O)
EM(14,14)=,~L~?:S(3,3.0)+3E~XX(4,4.0)
Da 5 0  X=1,13
x1=1+1
DQ 5 0  J-11,14
EK( JP I )=EK( I, J)

5 0  EPI(J,I)=EPI(I,J)

3

\

.

. .
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’ . C A L L  TT(IP:UL(B>E:(,C,D,  14, 14, 14, 14,14)
C A L L  TRIMJL(B,EI~I,C,D,  14, 14, 14. 14, 14)

C ***~~*~~**I~X~~:~*****~~~~*****~~**********~~*~**~****~
c * STCRE TfiE ELE?IE?JT  I.!ATRICES  I PJ-i.0  T H E  B L A D E  SYSTEI.1  f
C * I<ATR ICES IN TliE A??R0PRlATE  ?0SITIONS  ACC0RDING T0*
C * THE BLADE GEFIEXAL  BFTI ON *

C *~**~~l*~~*~~~t***~**~*~~~***~~~~~~*~~*******~~*~~*~*~*
XF( IBDE.P!X. 1) GO T0 60
KK=3*  (K- 1 )
CALL ASI’;BLE (Sl!D/El(,  KK, I:!(, 1 > 6, 14, L)
C A L L  AS1.1~LLE(S:.13zE~1,1!1(,!(I(r  1~6,  lY.tL)
1(1<=3+(Nl33+1  )+3*(1(-l)
C A L L  ASI.i3LE(Si:9,EI(,i~:i(,;(J(,7,  12, 14,L) .
CALL ASPI3LE (SX3 +EMJXIC~!{~‘;,~S  12, 14,L)
KK=G* (NBE+ 1 ) +lC- 1

, C A L L  ASI~I3L~(SS~5,EI(,l(~:rI(Kr  13,142  14rL)
CALJd  AS~;8LT;(S~.13,E:,i,:!i{.I<I:.  13, 14, i4,L)
JF(K.L,T.N~33E)  G0 T0 2 0
RETURN .r.

6 0  CGWr INUE_..
C A L L  TRIl~:UL(I>..EK,C,D,  14, 14, 14, 1’4, 14) .
CALL T?.IPlUL(Z, EN,C,D,  14,14.14,141  1 4 )
IF(0XGA.EO.OaO)  GO TO 80 ,

DZ 7O 1=1,14
D0 7 0  J=l,l4
B(I,J)=O.O

7 0  R ( I , J ) = O . O
~**~~~*~~~~~*~~~~**~~~~~**~~~~~~~~***~~*~~*~*~*~~***~*

c, *C C A L C U L A T E  A3DITIISiJAL  STIFFIL’ESS  V A L U E S  I F  IPJITIAL  *
C‘ * STRESSES ARE PRESENT *

,
C *****~s*~**8~~~~~~~~~~~~~*~**~~*~~~*~~*~*~~***~~~*~~**

B(l,l)=l.O
B(lr2)=BX1
B(l,3)=BXlsCXl
B( 1,4)=3X1  x3x1 aBx1

B(2,2)=-1  .O
B(2>3)=-2  .0+3X1
B(2,4)=-3.O~~BXl*BK1
B(2,5)=1 .O
B(2>6)=BXl
B(3>5)=1  .O
B(3>6)=3X1
B(Y,7)=1 l o
B(4>8)=3?:1

*.

‘B(4,9)=3S1*?:!1
9(4,10)=3x1*3?;1*Bx1
B(5,8)=1 .O
B(5,9>=-2  .0*:3X1
3(5,lO>=-3.0*5?:1  aB?;l
D(5,ll  )=I DO
B(5,12)=3X1
B(6rll )=l.O
B(G, 12)=3X1
B(7,13)=1  .O

.

I

.

I

.



.

B(7,14)=BXl
rite, 1 )=l .o
B (8,2 > =B?:2
B ($, 3 )=33x2 +!3X2

. B ( h’, 4 ) =BX2 aBX2 *BX2
B(9+2)=-1  .o

_. B(9,3)=-2eOa3X2
B(9,4)=-3.CaEX2#:5X2

,_B(9,5)=1  . O  _

/ 6(9,6)=3X2
B(10,5>=1  .O
B(10,6)=BX2.__
B-f-1 1 ,7 > = 1 e 0 ~
B(1 lr8)=3X2
E3(11,9)=3?<2*BX2
B(lI,lO)=BX2~BX2*BX2
B(l2+8)=~1  .O
B(l2,9>=-2.O*BX2
B(l2,10)=-3.0+3X2a3X2_,11
B(l2,11)=1.0
B(l2,12)=3:<2
B(13,11)=1.0  *
B(13,12)=33:-:2
B(lY>  13>=1 .O
B(I4,14)=~3X2
R(l,l ) = - S X ( 0 , O . O )

‘..

R(l,2)=-SX(1,l.O)  *

c

. .

#

%.a*’

\

,

e

n. -7: . .

3 .

.I

R(l,3>=-SX(2,2.0)
R(l,4)=-5X(3,3.0>  -
R(2,2)=RX(O,O.O)-SX(2,2.0)

,

. R(2,3>=2.0aRX(l,  1  . O ) - S X ( 3 r 3 . 0 )
R(2,4)=3.0aRX(2r2.0)-SX(4>4.0)
R(3,3)=4.0e?.X(2,2.0)-SX(4,4.0)
R(3,4)=6.0G?1:(3,3.0)-SX(5,5.0) .

R(4,4)=9.0a?X(4,4.0)-SX(6,6.0)
R(8a8)=RX(O,O.O>
R(8,9>=2.0~~R;I(l,  1 .O)
R(8,10)=3.O*!?X(2,2.0)
R(9,9)=4.0?:~:~(2,2.0>
R(9,10)=6.O:~~X(3,3.0) ._.
R(i0>10)=9.0*RX(4,~4.0)
R(l3~13)=-I:.GB~OMGA*~i~IGA~COS(2.O~BA)*((~LF~’+ALFU)~XX(lr1 .O)

e + (3ET’:.:+3ZT~!  ) *XX (2.2 .O ) )
R( 13, 14)=-r!~~~qC:Gtl~i:S:.jSA~c~S(2. eBr_?)*(  (ALF’c’+ALFU)*XX(2,2.0)+(~~T1:.~+

.BETU)*XX(3,3.0))
R(14,  lY>=‘-.-.-“iij*i::.;Gn~,:i.:GA*CaS(2.~BA)*(  (ALF1G+ALFU)*XX(3r3*O>+(BET’a!+

.BETU > * XS(4.4.0))

.+ALFS~;ALFJ~;:.~:,;(~, 1 .O)+(ALFSKjETJ+~ETS*,:LFJ)*:<X(2,2  . O )

.+9ETSe3ETJeXX(3,3.0)
C A L L  T~II;VL(3,~,C,D,  14,14>  14. ldr 14)
DQ 8 0  1=1,14. .
Dai 8 0  J=ls14
E;((I,J)=ElC(I,J)+~(I,J)

80 CBIJT INUE . .
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, .

KK=7*(K-  1 >
CALL ASt~~3LS~S::~.E:~,I:I~.:~i;. 1 , 14, 14,L)
CALi AS:ZLE  (S 19, EN. I(Kr KK, 1 , 1 4 , 14, L 1
IF(K.LT.t13E>  GG T O  2 0
RETCIX  tJ

1 FWT(b;AT  ( 11i 1 > / /5X, ’ BLADE D I:/IEtJS  I BNS * // >

.

2  F~Rt.:AT(5S,IS,E:F6:.3/)
3  FURMAT(7E13.5)

ENb , , _
. ----.-  -.-

.

.

. .-
d .

c ,

a

8.

:.

.
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SU3R  OUT  I r;E: h-Il<DSC  (SK,SM,R,T,SRRrSTT,NSD,L>
~*a~**~***~t~~*t~t~*~~~*~*~**~***~*~~~~*~*~****~~~**~*
* TliIS  SU3i”::U-i. IhE C A L C U L A T E S  TliE ELEI.:El,JT S T I F F N E S S  *
* A N D  I*lASS l.:ATRICES Ai!D ST0RES  TRE V A L U E S  I N T O  T E E  *
* D I S C  S’JBS?‘STEl4 MA’lWCES-  ‘SK(i.‘i.‘) A N D  S:.:(L,L> *
* T H E  ADDITICNAL S T I F F N E S S  CCEFFICJENTS  DUE T0 /*
*. I N I T I A L  STI?ESSES SDR(L) AND STT(L>  A R E  A L S O *
* CALCULATED AND ADDED T0 TIiE 3EidDIr\lG  STIFFNESS l *
* T R A N S V E R S E  SliEAR  A:,;3 R0TARY  IPJERT  IA  ARE 1t;CLUDED. *
>i: FEF0RE Ep JTE!-iING TliE SUBRGUTI;JE  Z E R O  A L L  T H E  TERXS  *
* OF THE NATRICES  SIC AND Sit. I N I T I A L I S E  A L L  T H E *
* T E R N S  0F TRE R A D I U S  A?;‘D THICXIJESS  VECTOR R AND T. *
*~4*~*8~******~~*~,~~~***~**~*~**~~~****~~~*~****~**~*~
DII.IENSI0N SI{(L,L),SM(L,L>,R(L),T(L) I

DIPlEIJSI0>J  S~~(L>rSTT(L>,ES<8,8>
DINENSI0rJ  E:~(E(.8),EI~~(8,8>~3(EI,8),C(8,8“),D(8,8> .’

C%E;l~;e,?l/~;pTI.~~;/I~?Tr  IRIJG, ITHD, ITED,  ITH3, ISTB
C0M~~ON/ONZ/n~~~,P2,?1  ,?3
C0MXBN/T?v’0/Sl  ,S~~S~,S~,CKD,C}(R,C~,~D,CMR,CC,CCC,CCC,C~{~{,C~,CT,CSD,CS~
C OMb:S>J/F0UR/?  I, ED ,E.R,E3rRQD,RBR,R0B,ALD,ALR,?‘RD,PRR,I’RB,SC3
I<=0
NS-NSD’
1E.c IR3,h’G  .EQ. 1 > NS=NSDi-  1
rj=,s - 1
?R=?RD . I
CK=CKD
CM=Ci;ID
CS=CSD
C0XT INUE
*~**~***~~*~~******~~*~*~**~*~***********~*~**~**~~~**
* S E L E C T  TIiE I,:tl;.lBER  K 0F T H E  E L E M E N T *
*4**~~~:****~~~****~*~*~~~~****~*~~*~*~********~~~~**~*
K=K+  1
Kl=2*K-  1 .
K2 =2 *:I(
*~*~**~**x~~****l**~~~*~~~~**~**~*****~~~*******~~**~*
* GET THE VALUES 0F ‘ R A D I U S  Ah’D TllICKIJESS AT N0DES *
*~~~~~*t***~~*~*****~*~***~**~~*~~*******~*~*********~
Rl=?.1(1!1  1
R2=R  (K2 >
Tl =T (Kl > \ ..

T2=T (I(2 > . a.

DO 40 X=1,8
DO 40  J=l,8
B(IrJ)=O.O

EK(Ir J>=O.O
E:i(Ir  J)=O.O
IF(K.NE.NSi)> G8 T0 42 '
PR=PRR I
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C.
C
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C
c
C

.
.

P3=PRR*P2
CI~=CIz=t . . *.::

._
CN=CKR  - -. I

.:. -._

CS=CSR
CG!dT  INUE
DD=Z2-31
D 1 =DD*DD
D2=D 1 *DD
ALFA= CR2*T l-31 *T2 >/DD I
BETA= CT%-T 1 )/DD
Xl =ALFA*ALFAxALFA*Ci<
X2=ALFA*ALFA*3ETA*CK .

X3=ALFA+.BETA*3ETAaCX
X4=3ETA*3?TA*BETA*C:{
~***~***~~**J*~~**~~***~**~~*****~***~~*~~*~~~~*~*~~**
* CALCULATE THE ‘B’ MATRIX - *
~**~~*~~XI1~**~**~~******~~**~**~****~~**~*~~***~*****
R<l,l>=I.O
B(1,2)=Rl
B<i ;3 >=Rl *:Rl L :
B(l,4)=Ri*Rl*Rl :

,
B(2,2>=-1  .O
B(2,3)=-2.0*?.1 f
B(2,4)=-3.0*Zl*Ri .

B(2,5>=1  .O
B(2,6>=Ri
B(3,5)=1 . o
3(3,6)=Rl
B(4,7)=1 .O .

i3<4,E;>=s1 \
B(5r 1 >=1 .O
B(5,2)=?2 \
B(5,3>=32*Fi2
B(5,4>=?2+R2*R2
B(6r2>=-1  .O .

B(6,3)=-2.O*R2 . .
B(6,4>=-3.0*92*?.2  ., ,
B(6,5>=1  .O
B(6+6>=R2
3(7,5)=1  . o
3(7,6>=92
B(8,7>=1  .O .
B(8, E;>=:12
C A L L  INVT (5,8,8 >

.

*~**~***~*~~**~**~Y*~*~***~~*~~*****~~~~******~*******
* C A L C U L A T E  T H E  ‘SI~IALL  I<’ f,iATRIX ‘*
*~~~~*~~*~~~**~*****~:~~~*****~~*~******~**~**~*****~****
Al=?l*R2
A2=Al  *Al
A3 =?.2 -R 1
A4=R2 **2 -:I 1*:*2 \
AS=R2**3-RI  **3
A6=R2**4-!?I**4
A7=.12**5,-Rl**S

. .

t:
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.
A8=R2**6-RI*:*6 -. ,

A9=R2  **7 -3 1**7
AIO=R2**8-R1**8
Al 1 =,R2*z9-31+*9

:

A12=R2*~alO-R1**10  ’
C5=ALQG  (I?2/Rl >
El=Xi~.5~:A4/A2+X2*3.‘~A3/Al~X3~3.*CS~X~~~A3
E2=Xl*A3/Al+X2*3.*C5+X3*3.*A3+X4*.5*A4
E3=Xl*CS+X2*3.*A3+X3*:1  .S%A4+X4*Sl*AS
EY,=Xl*A3+>:2*!  .S*A4+>:3*AS+X4a.25*A6
E5=X1~.5~:A4+X2*A5+X3*.75*A6+:~4*.2*A-l

E6=Xl  *Sl aA5+X2*.75*A6+X3*.6*A7+X4*S2*A8
E7=X1*.25aA6+?:2*.6*A7+X3*eS*A8+X4*S3*A9
~S((lr!)=~l~(?1+2.*P2-2.*P3)
EK(l,2>=E2*(Pl-P2>
EK(l,3)=E3*(Pl-4.*P2)
EK(1,4>=E4*(?1-7.*P2-2.*?3)
EK(2,2>=E3*(P1_2.*P2+1.  >
EK(2,3>=E4*(!‘1-3.*P2-2.*P3+2.*PR+2.)
EK(2,4)=ESe(P1-4.eP2+3.-6.*P3+6e*PR)  ’
EK(3,3>=ES*(P1-2.*P2+8.-6.*?3+8.*?~)
EK(3,4>=E6*(Pi-P2+18.-12.*?3+18.*PR)  .
EK(4,4>=E7*(?1+2.aP2+45.-20.*?3+36.*PR)
EK(l,S>=E2*C2.O*P2-?3)
EK( 1,6>=E3*2.O*P2
Ei( ( I ,7 > =E2 * (22 *A>?-AM*PR+AM)
EK ( 1,8 1 =E3 aP2 *AT.1
EK(2rS>=E3*(P2-1  .O>

\ EKC206>=E4~(P2+?3LP~-l  .O>
EK(2r7>=~3~(P2*AM-AM>
EK(2,  8>=E4*(P2*AN-A:*:)
EK(3rS)=E4*(P3-2.0*?R-2.0) : .

EK(3,6>=E5*(2.O*P3-4.O*FR-4.0~
EI~~3,7~=E4*~?2*AI~I-AI~l~?R-3.O~AI~l>
EK(3,8>=E5~(~2*A~5-2.0~A~~*P~-2.O*Ar~)
EK(4,5>=E5*(2.0*?3-?2-6.O*?R-3.01  ’
EK(4,6)=E6*(3.0*?3-?2-9.O*i’~-9.0)
~K(4,7>=E5~(P2*Al.I-S.O~A~j-4.O~A~~~~~)
E~((4,8)=E6~(?2~AM-6.O~A~.~*PR-3.O*AM) ,
EK(S,S>=E3*(1  .O-0.5*23+0.5*?2>

.  EK(5,6>=E4*(1  .O+?R-0.5*P3+0.5*?2>
EK(5,7>=E3*(1  .S*Abi-O.S*API*P~>
EK ( 5,8 > =E4 *Al.1
EK(6,6)=E5*(2.0+2.0*?R-O.5*?3+0.5*P2)
EK(6,7>=24*(1  .5*AI~i+O.S~AI~l*?R)
El((6,8>=E5~((A~~I+A~~PT?>
EK(7,7)=E3*(?2+0.5-0.SsPR>

‘EK(7,8>=E4*?2
EK( 8 ,  E! 1 =E5*?2
Xl =ALFA*CS
X2=BETA*CS
El =X1 *O .5*A4+X2*S  1 *A5
E2=XI  *S 1 *A5+X2*0.25*A6

. .

-0

\e
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E3=X1*0.25*A6+X2*0.2*A7 \
EK(S,S>=SK(5,5>+El .

EK(S,6>=EK(5rG>+E2
EK(6,G>=EK(6,4)+E3 . .\
E~{(7+7>=~~1((7,7)+El
EK(7,8)=!ZX(7>8)+E2
EK(8,U>=EK(8,8)+E3

C ~***~~:*~*~****X~~XI*****~~~~~******~**~~**~***~:***~~*~*
C * CALCULATE ADDITIgNAL STIFF;JESS  F3R INITIAL STRESS *
C **~~*~*~~t8*****~*~~~***~~*~*~*~**~~***~*~*~~~*~*~~***

CA=(R2*SRR(~;i>-RI~:SRR(K2))/DD
DA=(S~R(;i2)-SRR(:(l) >/DD
EE=(R2*STT(Kl>-Rl*;STT(K2>)/DDI
FF=(STT(l!2!>-STT(Kl)>/DD
Xl=CCC#:ALFA*EE*?2 *
X2=CCC*P2WALFA*FF+BETA*EE)
X3=CCCa3ETA*FF+P2
EI=Xl*CS+X2*A3+0.5*X3*A4
E2=Xl*A3+0.5*X2*A4+Sl*X3*AS
E3=0.5*Xl*A4+SlaX2aA5+0.25*X3*A6
E4=Sl*Xl+:A5+0.25*X2*A6+0.2*X3*A7

.E5=0.25~Xl*A6+0.2*X2*A7+S2*X3*A8
E~=O.~~XI*A~+S~~X~*A~-I-S~*X~*A~
E7=S2*XleAS+S3*X2*A9+0.125*X3*AlO
Xl=CCC*ALFA*CA \
X2=CCC*(ALFA*DA+BETA*CAJ .
X3=CCC*!3ETA*DA
F1=0.5*X1~?4+S1*~2~A5+0.25aXj*A5 _-

F2=Sl*Xl*A5+0.25*X2*A6+0.2*X3*A7  .
F3=0.25*Xl*:A6+0.2aX2*A7+S2*X3*AtS *.

F4=0.2*XI*A7+S2*X2*A8+S3*X3*A9  ' .
F5=S2xXl*A8+S3xX2*A9+0.125*X3*AlO
ES(l,l>=El
ES(lr2>=E2
ES(l,3>=E3 .
ES(lr4>=E4
ES(2,2>=E3+Fl
ES(2,3>=E4+2.O*F2
ES(2,4)=S5+3.O*F3
ES(3>31=E5+4.0*F3
ES(3,4)=E6+6.0*F4
ES(4,4>=E7+9.O*FS

C ******~~~~t*~*~~**~~~~*~**~*********~**~**********~**~
C * CALCULATE TI!E 'SP:ALL II' ?:ATRIX *
C ******4~*~****Q~~~~~~***~*~~~~*****~~~*****************

Xl=CM/12.0*ALFA*ALFAaALFA
X2=CM/12.0*ALFA*ALFAa3ETRx3.0  ' _
X3=C~~~/l2.0*ALFA*BETA*3ETA*3.0
X4=Cfl/12.0*BETA*BETA*gETA
ALFA=ALFA*CM .
BETA=BETA*C?l
EM(lrl>~ALFA*.S*fd+BETA*Sl*A5
EM~l,2)=ALFA*Sl*A5+BETA*.25*A6 .

* .
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C ***********~~******4**~**~***~******~**~~~**~*~~~~~****
C, * CALCULATE THE STIFFNESS AEJD FIASS MATRICES *
C *****~*****~***~***X~~***~*~*~~~**~*~**~~******~~*****

CALL TRXI~!UL(B,EI(,C,D,6:,8s8,8s8) . . ,
CALL TRI~~IUL~B,Z~lrC,D,E;,C,Ur~,8~ . ,' a-y.

C *~~~******t*~*~~**~~~~~**~***~~~~~~~~~*~~~~*~~*~~~~~*~~  .
C rd: PUT THE ELEICENT I.iA-Ii.‘31CES INTO SUBSYSTEI.:  MATRICES *
C **~~~~*~~*~*~*~~****~~~~~***~~*~*~***~*~~**~_***~~**~***

KK=4*(K-1)
CliLL ASI~?BLE(Sl:,E1(,I<KrI(I(.1,8,8zL) b
CALL ASM3LE (!?!,I, EM,KK,K:!, 1 , 8.'8> L)

C ***~*~~***~~~~***X***~~~***~*~*~~%*~******~~***~~~*~*~*
C *' G0 BACK A>ID REPEAT CALCULATIONS FQR 0THER ELEMELJTS* ,

'c *~~**~*~**~*~*****~t~***~~*~**~**~**~~***~******~***~*
IF(K-N>30>50,50

50 C0NTINUE 1.
RETURN . .

END -__-  .-
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SUBRBUTINE  TII~{SYS(SI~,St~~,SI<i3,S~:S,CC,,RDQ1.R~P.O,NTDrNTR.LrLL~
**~~~~k~~*~~~~~~****~~~*******~~*~**~~**~~****~*~~~***
* T H I S  S’JBb?E’JT  INE ASSEI.;BLES  TI:E S T I F F N E S S  A N D  KASS *
* M A T R I C E S  OF’ THE TV0 SUB SYSTE::,:S  INTG Tf!E SYSTEI.1 *

* *. I.jATR ICES . T H E  D I S C  SUBSYSTE1.i.S  EATRICES  SIf(L,L>  A N D *
* Sll(L,L>  ARE THEMSELF USED AS SYSTEM M A T R I C E S . *

* BEF0RE EXTERING  T H E  SUX?OUTI~JE  I N I T I A L I S E  A L L  T H E  *
* T E R N S  0F TliE SUBSYSTEl.1 M A T R I C E S  SI<.SI~,Sl!B.AI\:D  Sii13  *
*~~*~~~~~*~*~*~t*~****~*~*****~~*~**~*~*~~~****%~******
DIMEIJSI0N SI((L,L>,SI,I(L,L>,SI{B(LL,LL>;SMB(LLrLL>
DIIdENSI0N Di:( 14, 14),D:.l(  1 4 , 14>,T~14,14>tC~14,14>,D~1~;14~
C0XFi0N/0PT  I 0N/ I ~PTI IRNG, ITHD, ITED,  ITHBJ  ISTB I .‘.
C01~i~I”JN/0NE/AI*l,  AX2,  AM4,  AXPR

RR=RD0 ! ,
IF(IRNG.NE.0)  RR=RR0  * _

.T
“1 ._

D0 1 0  1=1,14 . .

DO 10  3=1,14
..

DK(I,J>=SKB3(I,J> .._.

DM(I,J>=S?l3(IrJ> ’ .

10 T(I,J>=O.O .

~~~~************~***~~~~~*~**~*~*****A;**~*******~*~*
* A??LY THE COKSTRAI NT CBNDIT  10lJS TQ THE BLADE *

* SU3SYSTEM  f.lATR I CES *

*~~~~*~****~~b~*~******~*******~~******~~***~*********
T(3,5>=1 . O

T(4,l )=l .O
T(5>2>=1  .O ,
T(6,3>=1.0

.
-.

T(7,l >=-AX/RR
T(7,4>=1 .O s

. - T(E5,6>-1  .O
T(9,7)=1  .O

\ i T(10,8>=1  . O
T(1 1,9)=1  .O
T(12, lO>=l .O

.

T(13>11)=1.0 .
T(l4,12>=1 .O
C A L L  TRIl~!UL(T,D;(.CrD,  141 12, 14, 14.14) . . . .
C A L L  TRIt.;UL(T,DMrCrDr  14, 12,14>  14, 14)
D3 1 5  Irl,l4 , . . . . ._.:
DO 15  3=1,14
Ccl, J>=Sl<B(I,  J)

1 5  D(IrJ>=SM3(1,J) . .

D0 2 0  1=1,12
11=1+2 ,
DO 20 J=l,12 I .

.
0

.
’ ,

.

. .b



.

JJ=J+2

C
C
C
c

20

30

35

*

Sl<B(II,JJ>=DX(I,J)
SMB(IX,JJ)=D~(S,J?
*~****~*t~C~**l**~~***~**~~~~~.**~***~~******~~*~~****~~  *
#: A'SSEWL? THE DISC AND BLADE MATRICES INTO T1I.E *
* SYSTEi.1 IXTXICES *
*~*****~~~~~**t**~X***~****~*~~**~~~~~~*~~***~~**~~**~
D0 30 X=3,NTB
II=XcNTD-6 .

DO 30 J=3rNTB
JJ=J+NTD-6
S~~(II,JJ>=SI~(IIrJJ)~CC*S~B(I,J)
S~~~II,JJ~=S~~I~II,JJ~~~CC*SI~~B~I~J~
DO 35 X=1,14
DO 35 J=I,14
SFZ(l,J)=C(I.J>
SMB(I,J)=D(I.J.) -

:_ .
. .

RETU.?N
END .I , ,I :a \ : m-.*_

.,

e

,

‘I

.

. d?

. .

.
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D.4.4 Subroutines Used Eoth iri PROGRAM-2 and PROGRAM-3

.

. ’
.’ I

,

. Sl.J,31?5UT  I I?JE I~JiSTR(S;(,R;T,TE,!~,P.SGR,SGT,NSD,I~S)
c : **~~*~*~~*Xt%:~~~~*~~~a~*~~*~~~~~~%~~~~~~~~*~~~*~**~:~~~~~*
c. * THIS SUYTIZtJT  I N E  Ci\LCULATES R A D I A L  A N D  TA:JGENT  IAL *
C * S T R E S S E S  .SGR(L,> A N D  SGT(L>  A T  T H E  NEDAL P0IrJTS 0i: *
C * A N  AXISYII~~~ETRIC  I\JCN UNIF0Rpl ,DISC W I T H  OR !*;ITIi!lUT .*
C * A R I M  DUE T0 UNIF0iI’r~:  ??0TATI0i$  A N D  AXISYM!.IETRIC *

c * TEyPE.&q’]-Ll”C GSADIEI!T  TE(L> , *I.‘& .
C * %rHILE  Ei37‘ETiING  TIIE  SUBRGU?‘Ii!E  I N I T I A L I S E  A L L  TfiE *
C * TEF,MS 0F TI-’,E RADIUS VECTOJR  R(L),  T H E  T H I C K N E S S *
C’ * VECT0R T(L), AND THE TEMPERATURE VECT0R TE(L> *

C *~*~*~4~~~~~:~~~***~*~*~****~*~~***~**~~*~*~~*********~
DIMENSI0N  SX(MS,MS>,  I<“Ci,iS>,?(MS>,R(MS>pT(MS),:TE(MS>
DIMENSI0N  SGR(I.IS).SGT(MS)
DIME.rJSIP,N  E1((414),3(4,4),C(4,4),D(4,4);EP(4);EE(4)
C0MMn,N/OPT I,0N/I 0PT, IRNG, ITHD, ITED,  ITH3.e  I S T B
C~~~K~~~N/T’~J~/SSIS~~S~~S~~CC~~~C~~R~C~~~D~CI~~R~CC~CCC~CI~~C?~CT
C0I~i~:eN/F0U~~/?I+ED,E~,EB,*R0D,R~R,R0B~.~LD,ALi~,?RD,P~~,?RB
C~~M0N/FIVE/SRI,SR0
NS=NSD
‘LF(IRNG.EQ.1)  NS-NSD+l ’
NN=2 *bJ.s
DO 2 0  I=lrNiJ
P(I>=O.O
D0 2 0  J=l ,NN I *

2 0  SK(I,J>=O.O \ 1
PRINT 3
lC=O
N=NS - 1
PR-PRD _- ,

. 30 C0NTIIJUE
C ~~~~3~*~~*~*~~*********~~***~**~~*~*~~~~~~~***~**~***~~
C * SELECT THE NU1;lBER  ;< OF THE ELEMENT *

C ~~8~~*~~~~~*~~~b~****~~~**~**~~~~*~**~**~~~~~**~~*~**~*~
K=fC+  1
IF(l(.EQ .NSD) PR=?!?R
K1=2 *I<- 1 :

c .
1{2=2*K
*~~*******~*J~~~*~*~~~~~*~****~~~**~****~~~*~~***~~**~~

C * GET THE ‘J’AL’JES OF XADIUS A N D  TSIICKNESS  A T  NQDES *
C *4****~1*~~%:*~***~***~**~~***~~**~***~**~**~*~~~~~**~~

. Rl=R(Kl  >
R2=R  (X2 1
Tl=T(I!l  1
T2=T (1!2 > . r

,, lCK=2*Cl~-1 > .. I . . . . . . . .
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D0 40 1=1,4 -
D O  4 0  J=1,4 I
B(I,J>=O.O _ .

4 0  EI:(I,J>=O.O
DD=R2-RI
D1 =DD*D3
D2=Dl *DD
ALFA= (22 *T 1 -R 1 *T2 > / c.92 -R 1 )
BETA=(T2-TI  >/(R2-Rl  1
Xl =ALFA*CK
X2 =BETA*C  I{

‘L

IF’(K.EQ.rJSD)  Xl=XI*ER/ED*(l  .O-?RDsPRD)/(l .O-PRyi*?RR.>
IF(K.EQ.!JSD>  X2=X2aER/ED*(l  .O-PRD*PRD>/(l  .O-PRR*PRR)
B(l,l)=~Z*R2*(R2-3.*Rl~/D2
B(l,3>=Rl+R1*(3.*R2-RI>/D2
B(1,2)=-Rl*R2*R2/Dl
B<l,4>=-R 1 +Rl *zR2/D1
B(2rl >=6 . *Rl *R2/D2
B(2,3>=-B(2,l  >
B(2,2>= R2*(2.0*Rl+R2>/01 2.

8(2,4>= Rl*(Rl+2.O*R2)/Dl *

B(3,1>=-3.~(Rl+R2>/DP
B(3,3)=-3(3rl  >
B(3,2>=-(R1+2.*R2>/Dl  .
B(3,4)=-(2.*Rl+R2>/Dl
B<4,1>=  2./D2
-3(4,3)=-B(4.1  > I

Bt4,2>= l.O/Dl . _
B(4,4>=B(4+2>
Al=Rl*R2
A2=Al *Al
A3 =R2  -R 1
A4=R2**2-!?1**2
A5=R2**3-?1*:*3
A6=R2aa4-31**4 .
A7 =R2 *%:5 -I-i  1 **5
A8=R2**6-Rl**S
A9=22**7-R1  *1;*7
CS=AL@G  (R2/R 1 >
El =X1 aC5+X2*A3
E2 =X 1 *A3 +X2 *O .5 *ALI
E3=Xl*Oe50*A4+XZ?*Sl*A5
ELI=Xl  *Sl ~AZI+X~*O.~S*A~
E5=Xl *O .25*A6+X2*0.2*A?
E6=Xl  *0.2*A7+X2*S2aA8 .
E7LXl *S2*A8+X2*S3*A9

C *****~*~**~*******l*****~*~~~~~******~*******~~~~******
C * CALhLATE  TfiE SbIALL  ’ S:.IALL K ’ M A T R I X : *
C *****~~~*~****t~x**l~***~~~******~*~**~~****~*******‘**

EK(l,l  >=El .
EK(lr2>= 62*(1.0+2x1> .
EK<.l,3 >=E3*:( 1’.0+2 .O*PRi)
EK(1,4)=E4*(1  .0+3.O*:pR)
EK(2,2)=E3*(2.0+2.0*?RI
EK(2,3)=E4*(3.0+3.0*PR>
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EK(2,4)=E5*(4.0+4.0*?R) .
EK(3,3)=E5* (5.0+4.o*?R) .
EK(3,4>=E6*(7.0+5.0*2R>
EK(4,4>=E7~(10.0+6.0~P~) .

EK(2. I )=EK(l,2!  I
EK(3,l >=EK( 123)
EK(4, 1 )=EK(  1 r4)
EK(3,2)=EK(2,3>
EK(4r2  )=EK(2.4  >
EKW,J )=EK(3,4  >
Y 1 =ALFA*C”
Y2=BETA*CP
IF(K.EO.NSD>  Yi=Yl*ROR/RfiD
IF(K.EQ.NSD)  Y2=Y2*R0R/?@D
~*~~**~~*0*k~~~~*****~*****~~~~*~~**~***~*~~~**~~*~~~~.
* C A L C U L A T E  CBNS ISTAi;T  LEAD VECTOR  FGR R0TAT  I0N -*
****~*~~*~*~~**~~~*~*****~*****~~*********~**~*********
EP(I )=Yl*SI*A5+Y2*0.25*A6
EP(2)=Yl*O.25*AS+Y2+Ow2*A7 ‘,-.
EF’(~)=Y~TO.~*A~+Y~*S~*A~

2.

E?(4)=Yl%S2*A8+Y2*S3*A9 -

IF(ITED.EQ.0)  G O  T0 4 2 .

****b****~t*~r~***~**~~**~*~~**********~*~*~*****~~~**
* G E T  TliE  V A L U E S  BF TEi,1?Ez!ATUzE  A T  N O D E S *
*****la~~*****~~*~~~~~~*~~~**~~~~*~*~*******~***~*****
TEl =TE(Kl 1 .

TE2=TE(K2)
.

P R I N T  2,K,Rl.~2tTl,T2,TEl,TE2
ALFT=(R2&TEl-Ftl*TE2).‘DD
BETT=(TE2-TEl  )/DD I
21 =ALFA*ALFT*CT : . i
Z~=ALFA*~ETTWCT+~ETA*ALFT*CT
23=BETA*BETT*CT
IF(K.EQ.NSD>  Zl=Zl *ER/ED*ALz/ALD
IF(K.EQ.NSD)  Z2=Z2*Ex/ED*AL?./ALD
IF(K.EO.NSD)  Z3=Z3%?/ZD*AtWA&D
**X*t~M~***X**~**~~b~*~*****~***~**~**~**~*~~*~***~~**
* CALCIJLRTE C3r<!S  ISTANT  LZAD VECTGR  F0R TElsi?E2ATURE  *
**X~*~****~.**~~:i~*~ b*t~~~*~t~****~*t~*~*****~***~~~~**
EP(l)=E?(l>+ZlxA3+Z2*3.5aA4+Z3*Sl*A5
E?(2)=E?(2>+Z1*A4+Z2*2.o*sl*A5+z3~o.5*A6
EP(3)=E?(3)+Zl~A5+Z2a0.75~A6+Z3~~0.6*A7
EP(4>=E?(4>+2l~R6+Z2~0.~~~~7+23*2.O~Sl*A~
G0 TW 4 3
C0NT  IljlJZ
P R I N T  2,1(,x1 ,R2,T1  rT2
Da r45 1=1,4. .

D O  4 5  J=I,L4
C(I,J>=g(J,I)
***~*~*~*~***&~*****~**~~~~~***~~~****~**~*~*~*~~~~*~~*
* C A L C U L A T E  L0AD VECTCR  AND S T I F F N E S S  M A T R I X *
****~s~*~~***~*******~**~**~****~*******~****~~*****~*
C A L L  ~I~?T~IUL(C,E?.EE,~,~I,~I,  lrl4)
C A L L  TRIMUL(B,E!(,C,D,4,4,4,~~,4)
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C ******~**~**~~*~*******~*~****~~*******~**~***~*~**~**
C * PUT THE ELEI.I3NT KATXICES INT@ SU3SYSTEM blATRICES *
C **~~~*****~**I******~~~~~~*~**~~~~****~***~*~*~*****~~

. CALL ASX3LE(SI!, EKr KKr KK, !,4rY,MS >
CALL SYSLi?D(~=,EI:,I!I(,4,4,t~IS)

C .*~~~~f*~***~~~i~~~~~~~*~~ ~***~t~*~*~**~*~~~k~~*~*****~
c- * Gfl RACK  AND REPEAT CALCULATI@>JS  FQR GTI-IE:fi ELEI,lENTS*
c; *~~~~~~*~a**~~~~+*~~*~~~~~****~~~~~**~**~*~~~**~**~~**

IF(K--tJ>30>50,50
- 50 COtdT IN'JE \

PC1 >=?(l )+SRI * \

P(h’N-,I )--PCNN-1 >+SRD ’
CALL IFJVT (SK, t<:~rr';S >
CALL ICAT~~CTL(SI<s?,W,rJNrr~:N,NN.  1 ,‘MS >

C ***~~~:~****~~~~**t~*~~*~~~~***~***~**~*~***~*****~*~~*
C * CALCULATE STRESSES AT N0DES 0F EACH ELEFIEEJT *

c **k*XI******s~~~t****~~**~~~*~~~~~*~*~**~~*~~~~*~*****~
PRINT 1
DO 60 K=l,N
E=ED J
PR=?RD
ALFA=ALD . r

IF(K.EQ.NSD) E=ER
IF(K pEQ.NSD> PR=“RR
IF(K.EO.NSD> ALFA=ALR
GS=E/(l  .O-PR*:?.?>
1<1’=2 *K- 1
KZ=Kl -+ 1
1(3=K2+1

I<LI=K3+1
. SGR(K1  )=CS*(!:T(1{2)+PR~!‘;(~{l  >/R-(I{1 1)

SGR(;(2>=CS*:(‘;.!(i:4).+PRI*V(X3)/R(K2)) I
SGT(K1 >=CS*(Y(!(l  >/R(Kl >+PR*??(K2)>
SGT (;(2 ) =CS si: (I:; (!(3 > /R (I:2 > +?!?*!J (I:4 1 1
IF(1TED.E QeO) G0 T0 6 0
SGR(K1  )=SGR(Kl  )-CS*:ALFA*TE(Kl  >*-_(l  .O+?R)
SGR(!(2>=SG:!(Ii2)-*CS~ALFA~TZi!i2>a(I  .O+?R)
SGT(K1 >=SGT(l:l  >-CS*ALFA*TE(Kl  )*(l  .0+??.1>
SGT(;C2>=SGT.(Ii2>-CS~ALFA~T~-(~(:!>*iil  .O+?R>

60 PRIIJT 2rKrSGR(l:l  >rSGR(i<2>rSGT(Kl  >rSGT(K2>
RETURN

1 FERir;AT  ( 1 )il >//5,X, ’ STRESSES IN T!iE DISC ’ //2X,  ’ ELENENT
.RADIAL  STRXSS T A N G E N T I A L  S T R E S S ’ / / )

2  F~~~:‘~T(/2X,15,5~13.5>
3 FfiRl%QT  ( 1Hl , /5X, ‘ D I S C  DIl;EI~JSI0NS’//)
5 FQRIMAT  ( 4 E 1 3 . 6  >

10 F0Rl~:AT(2X,5E13.6>
END

.’
.* A
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SUBRQ’_lT:NE  61GVAL~S~~.S:~:.D,F,FR,B,C,X,ER,B?.B~.B~,  IJKrNl.L9
~~~~~:**~*I~~**~~~~*~*~~*~*~***~*~*~~~~~~;~****~~**~***~*~
* TH I S SUBR0UT I IJE SOLVES THE EIGEN VALUE PR0BLEM *
* R E L A T E 3  T O  T H E  VIBDATI0N  PR0BLEId C0NSIDERE.D. *
* SK(L,L> AND SM(L..L>  ARE THE STIFFNESS AIJD  M A S S *
* I*IATR  I CCS’  0F THE VIBRATING SYSTEt.1  AND TIIESE SHOULD *
* BE DEFINED BEF0RE ENTERING THE SlJBR?GUT  INE. ALL THE*
* O T H E R  ARSAYS  A:dD VECTORS IdEED  IJ0T B E  DEFIiJED. *
* I JK - T H E  P0S I T  I0FJ 0F Tl!E ELEl.:ErJT  0F T H E  M0D_AL *
.* .VECT0R WIiICH  I S  K E P T  A S  U N I T Y  !?HILE  ITERATINGa *
* r\i 1 - SIZE 0F THE ARRAYS SK AND SM -’ *
* L - DIMErJSI0N G I V E N  T0 S K  A N D  SM *
*~*~~~~~~~~~~*~*~~~~~~*~***~:~~**~**~****~**~****~**~*~
DIMENSIGN  SX(L,L>,S?~~(LrL>rD(L,L)rFo,B(L>rCoJX(L9~ER(L)
DIMENSI0N  B7(L9,38(L9,39(L9,FR(20,109
CBMr,:0NNS  I X/CQNST, Mr KK
ALLQSi=O  .OOOOOOO 1 - . .

MA=l.;+ 1
. -

IF(N1 .LT.KK>  KK=Nl
*~*~8~~*~**~*~**~&~***~~*~**~~~*~**~*~~*****~***~~*~**
* F0RM T H E  DYNAl,lIC ST1FFrJES.S  M A T R I X  D(L,L> *
**~*3~**~~************~***~~~***~***~~~~***~****~~****
C A L L  INVT(SK.Nl tL9
C A L L  r~AT~,jUL(SI~,SM,D.Nl  ,N.l’,Nl ,Ni ,L9
****~*~*~8*~*~*******~~~~~***~~*~~~~~*~*~*************
* S P E C I F Y  I-lAXIlIUM  N U M B E R  GF ITERATI0NS  BEY0ND !:rHICH  *
t I T E R A T  10TJ SH0ULD BE STBPPED *
*~**~8~*~~~~~~5********~~~**~~~**~~**~~*~***~*****~~**~:
MI=95
D O  3 0  I=lrNl
X(19=1.0 . .
Ct19=1.0
MM zz O !
Mbl= MM + 1
1~1 =o
LN=7
LL=LN
*~*I~~**~~~~**~~*~*****~****~**~~***~~**~******~~~****~
* S T A R T  ITERATIQrJ *
****X~~**~j~~~~*****~~~~*~**~***~*****~****~***~*~**~*
NI=NI+I
ML=LL+  1
NN=lviL+  1
D0 3 1  I=l,Nl
B(I>=O.O
D0 3 1  K=l’,lJl
B(I9=B(I9+D(I,l~9*C(l~9
***~~*~*~****~******~*~~~~*****~*******~*****~*~~****
* E V E R Y  SEVEPJTII  ITEI’ATIGfJ  G0 T0 T H E  QUICK  RBUTINE *
* AiJD R E F I N E  TlIE ASSU:.iED  VECTGR ’ *
**~:*~~:**~~~t~*~~*~***~~~~***~~*~:~*~*~**~**~*~*~;*~~*~**
IF(NI-LL951,52>53
IF(NI-ML95ls54s55
IF(NI-NN951,56,51

.

‘
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5 2  D O  4 4  I=I,Nl I
B7(19=B(I> \I-a”

4 4  C(I9-B(I)
* %

GE ‘i-0 5 0
5 4  DZ 4 5  I-l,i\Tl

B8(19=BCI9
4 5  C(I>=B(I)

GO TO 50 i
t

5 6  D0 4 6  I=l,Nl
B9(I9=3(19 .

4 6  C0NT IIJUE
60 CALL MA~(B,B~jAX,Ml,Nl,L)

BCMl  9=0.0
L 6 1  C A L L  MAX(3,BMAX~M2rNl  ,L>

6 2  C A L L  QUICi~(B7rB8rB9rC,X,Nl,I~~l,M2~L9
LL=LL+LN .
G0 TC 5 0

51 ,Bb:AX=  ABS(B(IJJ0  9
9 0  DQ 3 2  I=l,iVl

.:

B(I>=B(I)/BMAX
3 2  ER(I)=B(I>-C(I)

3 2 0  C A L L  MAX(EI?JERMAX,~,:~,N~  rL9
C **~*~~*~~~~J*~i*****~~~~***~~~******~****~***~****~~**
c. * CHECI< CENVERGENCE *
C ****~~I*~~~~~~~~~~~~~~~~~**~~***~~~*~~~****~~***~~*~~~~

ERNAX=2  .O*Ei?KAX/ (A9.S (B (i.13  9 > +A3S (C (M3 9 > 9
IF(E:%IP;AX:LT  .ALL~~b;9  Ge T0 4 2

4 3  DO 4 9  I=l,pJl

,
. 4 9  C(I>=B(I)

IF(NI-P:I  950,50,42 _*
.

4 2  C0f:T Ir:‘rE-_
C **~**~*~**S~*~~*k*~**~~~***~~~~**~******~*****~~~~*~~*
C * PgINT GUT FP.EQUEt,JCY  V A L U E  A N D  T H E  K@DAL  VECTGR *
C *~*~~4~~~~b~~~*~***~*~*~~~*~~****~*~**~***~**~~~~~*~~*  .

P R I N T  EcO.Wi,NI
FRZQ=CeN.ST/S~RT  (B14AX9
FR (I.IA, b1?.1  9 =F?.EO
P R I N T  81 rF?E”,
PRINT83
PRII’JT  S4, (3(I), 1=1,1\Jl 9
D O  6 5  I=l,Nl
C(I9=0.3
D O  6 5  K=l,Nl

65 C (I 9-C (I 9+3 (!O*SM(K,  I >
ALFA=O.O
D0 6 6  I=l,tJl

6 6  ALFA-ALFA+C(I>*B(I)
BFTA=S’?3T  (ALFA 9

‘
. c

D0 6 7  I=l,Nl
. 6 7  B7(19=3(19/BETR

_.
l

’ .
.
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IF(MM-K1!>59,  100, 100
5 9 D0 68 I=l,Nl

DO 6 8  J=l,rJl
F(IaJ>=O.O

6 8 F(I,J>=F(I,J>+3(I>~:C(J)
G=BMAX/ALFA

I. . *.-

.

:. .

_’

/

c
c

c

*****~X*~3**~*~~~*~*~****~~~~**~*~~*~~*********~~******~
* F0P,I$  TIiZ NE’;! DYNANIC STIFFNESS MATRIX ‘*

***~~*~*~*k****i~*~*~~**~~*~**~*~*~~~***~***~~~*****~~  I .
D O  6 9  I-lrN1
DQ 6 9  J=i,Nl . .

6 9  D(I=~)=UCI,J>-G~F(I,J)
D0 9 5  I=l,Nl .

9 5  C(I>=X(1>
GO TO 150

100 RETURN
8 0  F0?INAT (5X, * 1?13DE  PI!J%ER =’ , 12,4X, ’ LTERATI0NS  =’ ,.13/ >
$ 1  F0RPiAT (5X, ‘F?EQUENCY I N  f:Z. =!,E14.8/)
83 FORN.4T  (20X, ‘Pi0DAL VECT8?‘/>  ,

.  8 4  F0Rt4AT (/ 5Xr 5.El3.6  >
END

:
:*

,

I.

-.

.
.

. .
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SUI3FiGUT  INE I NVT (A, Fy’, L >
C
c
C
c

1 0 8

109

l i l

1 1 3

1 1 4

. 112
1 1 0

1 0

116

119

120

1 1 8

1 2 1

1 2 ;

1 2 4
1 2 2

1 2 5

.
1 2 6

2 2 5
1 1 5
1 5 0
1’27

***~Y~****~*~***~*~~***~~*~**~~****~**~*~*****~**~~*
* TITIS SUDRC’JT  1 I:E I:;VE!?TS  T H E  I.lf,TZIX A(N,N> AND *
* STQRES THE XNVE!?SE IN THE SAYE M A T R I X *
***3~~X*********~**~**~~*~*~~***~*****~*****~***~**
DIMENSI0:N  A(L,L),INDEX(100,2>
IS=1
D0 1 0 8  I=l;N
INDEXCI,  1 >=o *

PI=0
AMAX=-  1 .
D O  111OI=l,N
IF(INDE%(I>l>>lIO,lll,llO
D0 1 1 2  J = l , N
1F(1NDEX(J,1>>112,113,112
TEMP=ADS (A(Ir 3) 1 I

IF(TEMP-AMAX  12, 1122 114 w
IRB’d=  I
ICQL=J

‘AMAX=TEM? ,

C0rJT INUE
I
_.

C0r;‘TINUE
IS=IS+l

I .*_  .

F0RMAT(I6,E13.6> \
’

IF(AMAX>225,115,116 .
INDEX(ICOL>l  >=IRGiJ
IF~IR0!t’-IC0L)li9,ll8>ll9~  _ . . .
D0 1 2 0  J = l , N

(’ :_
c

TEM?=A  ( IRO!d, J)
A(IROW,J>=A(IC0L,J>
A(IC0L,  J)=TEI;IP
II=II+l
INDEX(II>2>=IC0L  . .
PIV0T=A(ICBL,  ICaL>
A(1C0L,  IC0L>=l.
PIVOT=1 ./?IVOIT
D O  1 2 1  J=l,N
A(IC~LIJ)=A(IC~L,J>*?IV~T
D0 1 2 2  I=l,N .-
IF(I-IC0L>l23,122,123
TEM?=AC  I; ICOL)
Ati,IC0L>=O.

.D0 1 2 4  J=l,N
A(I,J>=A(I,J>-A(IC.~LJJ)*TEMP ,

C0NT IIWE
G O  TO 1 0 9
ICCL=INDEX(II,2)
IR;i?li=INDEX(  IC0L, I )
D O  1 2 6  I=lrN
TEFiP=A(  I, 1’1011’). .r I
A(Ir IRBc!>=A(I,  ICOL)
A(I, ICGL>=TEMP
11=11-l
IF(I1>125~127,125
PRINT 150
F0Rr~lAT~l~~O.lOHZER0  PIVIZIT,/)
C 0tJT I rJU6
RETURN
END
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3

2
4

C
C
C
C

2

3

10
11

5
6

c;UBRCUTINE t(iAT1~ilJL(A.3.C,~~:A,~JAr~,13,~!BrL).
~~~~~*~~~8~~t*~~~~*~~~~~~~~~~*~~~~*~~~~*~*~****~~*~~~~

ic THIS  SU3R0UTINE  i~iULTI”LIES T H E  :.:ATRICES  A  A N D  B *

k AI\!D  THE R E S U L T I N G  I;ATRIX  IS ST02ED  IN T11E  A R R A Y  C  *
k NA - NTJP13ER  CF ROliS I N  MATRIX A *

ri: N A  - NUp:BER  0F CCL!Jb;?JS I N  I.lATRIX A *

* I.;B - Nu?:BER 0’F RCWS I N  ?.!ATR  I X 3 *

t 153 - NU;,iBER  0F CCLU:.INS I N  P:ATRIX  B *

*~~~~~~~**~*~*~**~**~*~~~~**~**~~~~*~~***~**********~~~

3 I I*ld.u““SI01J  A(L,L),B(LrL),C(LaL)  .
D0 5  I=l,MA ’

D0 5  kJ=l ,NB
C(I,J)=O.O
D0 5  K=l,NA
C(I,J)=C(I,J)+A(I,K)*B(K>J)
RETURN . . .

END

Z= A3S(A(l))
PI= l
D0 2 1=2,N ’
Y =  ABS(A(I))

. .

IFCY-2)2>2,3
Z=Y
M-1
C0NT  II,JUE
RETURN
END

_ : _.
SUBRBUTINE  QUICK(B7,BB,B9~A,n2N,I,ll  ,1+2,L)
*~*~~~~~~i*~*i~x~~~~~**~*~~~~~~*~****~~***~****~~~*~*~~
* T H I S  SU3R:UTIIJ.E REFIr.;ES  T H E  1<0DAL ViCT0R  F0.R Q U I C K *
* C0NVERGZNCE *
~~~~~~~~~t~~~~~~~~*d*~~*~~*~~~:~*~****~~~**~~~~~*~*~~***
DXNENSI0N  B7(L),38(L),B9(L),A(L),B(L)
DR=B~(Ml~)d37(i~2)-B7(~1  )*EE((b:2)
Al-(B9(Ir:!1  )*3Y(i~Z2)-38(l*11  )*B9(1.;2)>/DR
A2=(39(1<1 )*B7(1.12)-37(bi1  >*B9(1.;2))/DR
AO=O.SaSQRT(A2*+2-4.*A1)
Cf=O.5s:AZ+A3
C2=0.5*A2-A3 :

De; 1 0  I=l,:J
A<I)=39(1)-C2a38(1)
3(1)=39(I)-CleBC(I)
RETURIN
EIJD ,
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c
C
c
C
c .
C
C
C

c.
C

1 0

SUBR0UTINE ~-RII~UL~A.B,C.Dr~ArNA.MBrN3rL~
**~**~*~**t~~~~*~*~~~~~***~~~~~~~****~*~~**~~~*~~~**~*
* THIS S'U3.?GUT INE PRE~;ULTIP'LIES THE l;ATRIX 13 BY THE *
* TRANSP3SE. 9F A A5JD THEN PdST>!iJLTIPLIES THE PR@Di_JCT*
* BY TRE I,:ATII.IX A AlJD GIVES TIIE RESULTII~JG  MATRIX *
* STaRED IrJ THE ARRAY B ITSELF *
* MA - IJ'JxBER OF R@!JS IN IliATRIX A *
* NA - ~JU:~lBCR  OF C'tlLU?;INS  IN MATRIX A' *
* MB - I'JUi4BER OF RC',51S IN I~IATRIX B *
* NB - lGlJi43ER BF C9LUmJS IN bIATRIX B . *
**~~~***~*~~~~*~*~~*~*~**~~~~~*~**~~*~~*******~*~~*~~~
DIKENSIOIJ A(LrL>rB(L,L),C(L,L)zD(L,L)
Da 10 I=lrMA
D?i 10 J=l,lu'A

I.. 'I .

ccc> I>=A(I;J> :
C A L L  ~~IATi~~lJL(C.,BtDrNArI.'IA,MB,NB.L)  '
C A L L  ~!ATi/IUL(D.A,Br~~At~JBrli:A.NA.L)
RETURlJ ,
.END

10

20

SUBROUTI?GE REDUCE(A,NsL>l<,M)
**~**~**~~r~*~**~*~*~~~~***~*~*~~****~**~~*~****~~~~~**
* THIS SUBRaUTINE REDUCES THE SIZE OF THE ARRAY A *
* FR014 ( N X N > T@ ( N-l< X N-K > BY SCZRING OUT *
* R0'dS A N D  COLUPIXS  F!?;!01  L  Ta L-tK *
**~**k~*~~~~~~~~~~~~~~******~*~~***~*~~~~~**~~*~*~*~*~
DII”.!ENSIGiJ  A(I-i.sPi)
NM1 =N-K
DG3  1 0  I=L,h
DE?  1 0  J=lrN
I I-I+K
A(I,J>=A(II,J>
DC 2 0  I=l,N
DG 2 0  J=L>SI,il
JJ=J+K
A(I,J>=A(I,JJ>
RETURN
END .

-.

‘. .
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C
C
C
C

C
C
C
c

. -
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I

SUBRCUTINE AS~I~LE(A,Br~i.N,l(SrI<.LL,L>  .
**~~*s~~*X*~*~*t~***~~~~***~~~****~~~**~~**~~***~~*~**
* THIS SUBRCUTINE ASS EX3LES Tl1E ELEMET,JT I.;ATRIX . *
* B(LLaLL> IPJT@ THE SYSTEM MATRIX A(L,L> *
**~~~*~*~~~~:~8~~~*6~*~*~~~**~*~*~~*~***~~~~**~~**~~*~*~
DLI,;EP!SI0N  A(L,L>,BCLL,LL>
De! 10 I=KS.:: :
MM=I4+ I -KS +l

\

DO 10 J=KS,K
NN=N+J-KS+1

IO A (I,I:.lr  rJN > ==A (t~::~l,NrJ  > tB i 1 a J 1
RETURN
END I

.

,.

,

SUk0UTINE SYSL0D(ArBrMrNN,LLrL> .
~***~~*~***~~~~*~*g~~~~~~**~***~~*******~~*******~~~~~
* THIS SUB2GUTINE ASS:rIBLES THE ELEMENT L0AD VECTGR *
* B(LL) IrJT@ THE SYSTI$l LaRD VECT0R A(L)
**~**~~***~~g~*~****~~~~**~**~*~~~*~*~~~~~~~~~***~~~*~*
DIIXENSI0N A(L),B(LL)
DG 10 I=lrNN
MM=M+I
A (!ri:,l> =A O,IM 1 +B ( I >
RETURiJ
END

’ 10

* . .
‘-

.

.


