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Summary

An investigation is made into the effects of detuning upon the

vibrations of a bladed disc. A theoretical analysis is developed in terms

of receptances from which natural frequencies and modal shapes may be

determined. An alternative approximate analysis is proposed which

enables extremely efficient computation of estimates of these natural

frequencies.

By examining the equations of motion of the system, it is possible

to predict two distinct types of vibration mode. An extensive programme

of computation is made for the case of uniform five bladed discs using

both methods of solution, and the results confirm the existence of these

two types of mode. Also, the precise effects of detuning by the intro-

duction of small differences between the blades are established, and it

is found that certain forms of detuning cause a natural frequency splitting

effect in specific modes of vibration.

Consideration of a simplified analytical model leads to the

conclusion that, for certain modes, detuning always causes one or more

blades to experience a higher stress level than is attained in a perfectly
, ,.

tuned system. However, it is also found that the other modes suffer

their highest stress levels in a tuned system, and that for these modes,

detuning can be favourable.

Detuning effects are observed and measured experimentally on a

simple physical model. Good agreement i! achieved between measured
.~

and computed data for five bladed discs in every case that is examined.

Many of the results obtained in this investigation apply to bladed discs

in general, and they agree qualitatively with other published work.
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CHM'TER 1

INTRODUCTION TO T)iE RESEARCH

1.1 The nature of the problem

Vibration has always presented a major problem in the
development of turbomachinery by imposing excessive stress levels on
various components, causing them to fail. In the introductory lecture
cf a conference* held recently in Cambridge, Dr. D.N. Smith** surveyed
current vibration problems in turbomachinery and in many cases traced
their develcpment  from the early days of steam turbines. Iie found it
ccnvenient  to divide such problems into two types - one involving
motion of the whole machine, such as might be brought about by
flexural  Vi!JratiOnS  of a rotor shaft, and the other concerned with the
vibrations of individual components. The great majority of problems

0
of this second type are associated with vibrations of the blades and
discs, and it is with these that the present study is concerned.

It is possible in many cases to treat the blades as
cantilevers, either vibrating individually or grouped together in a
ring or cascade in which case they are mechanically coupled by a rigid
disc cr annulus. Such is the case in many axial flow comy:ressors,
where any coupling between one blade and another is eit!ler througS
rigid body motion of the disc, or of an aerodynamic nature. Omission
of any coupling effects which might arise from the flexibility of the
disc, simplifies considerably analysis of the motion, and consequently,
aerodyllamic  effects may be considered in greater detail than would
otherwise be possi?>le.

*
Applied Xechanics Croup Convention (1.Xech.E.)  Cambridge, 1966.

**
References may be found in alphabetical order of authors in
Appendix 2.



However, there are cases in which this simplification is invalid
because of strong coupling between blades due to the flexibility of the
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disc to which they are attached. In the earlier days of steam turbines,
a number of failures occurred which were clearly caused by participation
of the disc in the vibrations. Experimental investigations which were
made at the time confirmed the importance of this type of vibration, and
demanded reconsideration of the basis upon which design calculations
were made. Thereafter, discs tended to become stiffer, although
vibration problems of this nature are currently reappearing in gas
turbines. An analysis of the mechanical vibrations of a bladed disc
may only be made in general terms, while techniques for numerical
application cf theory to practical systems have not yet been perfected.

There are several methods which might be employed to eliminate
or reduce the harmful effects of vibration. Foremost of these is the
development of design techniques, numerical methods etc. SC that the
vibratory properties of bladed discs may be accurately predicted, as
also may the sources of excitation. With this information it should
be possible to reduce the incidence of resonant conditions. In the
absence of accurate estimates of resonant frequencies, an obvious
remedy is the provision of sources of damping so that the acuteness of
resonance may be eased. Many attempts have been made to devise such a
solution, but none has yet been perfected. A third possible method
might be either to 'detune' the system, for example by introducing
small differences between a set of blades, or, alternatively and at
the other extreme, to tune the blades until they are as nearly as
possible identical. Put rather crudely, the argument in favour of
detuning is that the severity of resonance would be reduced by
avoiding having a large number of identical natural frequencies. The
supporters of tuning put the contrary view that differences between
blades would inflict higher stresses on some blades (and lower upon
others), thereby worsening the situation, The research which forms



the subject of this thesis relates to the effects and possible benefits
of detuning.

1.2 A summary of previously published work

Although there is a large amount of published material on
vibration in turbonachinery, very Little discussion is to be found on
the current topic of detuning. Thus it is necessary to survey the
literature for more general studies of blade and disc vibration, and it
is found that these fall into two categories. Those in the first are
the more numerous and are concerned with the cantilever vibration of
blades, either alone or connected by a rigid disc or casing; the other
group includes those cases in which blade coupling through a flexible
disc is admitted.

Since the introduction of axial flow compressors, considerable
efforts have been made to determine the vibration characteristics of
cantilevered blades. Shannon (1945) produced a comprehensive review of
experimental and numerical techniques for determining these
characteristics, but the approximate methods then used for calculations
have since been found inadequate. An extensive computational and
experimental programme of research into more accurate methods is being
made by Carnegie, and a number of results have already been published
(1959, 1964, 1966). Other workers have also proposed alternative
methods for computing the natural frequencies of complex, twisted
blades, but although such work is essential to practical application
of the analyses described in this thesis, it is not relevant to the
problem of detuning. Aerodynamic aspects of blade vibration have also
been examined by Whitehead  (1957, 1966) and others, but such studies
generally relate to systems with simplified vibratory properties,
This approach may be usefully applied to more complex vibratory systems
(in which the aerodynamic effects are usually ignored) as it serves to
define the likely forms of excitation.
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Of particular interest to the present work are two assessments
of the effects of detuning on a set of blades which are connected by a
disc or casing. Whitehead (1964, 1966) has shown that detuning always
has a favourable effect on self excited vibration (flutter), but is
detrimental to forced vibration resulting from external excitation in
that it causes an increase in the maximum stress. A recent unpublished
report by Stratford (1966) considers the effect of detuning on blades
which are attached to, and vibrating in the plane of, a rigid disc.
Coupling between the blades in this case is the result of small
torsional oscillations of the disc as a rigid body. The analysis
indicates that a specific form of detuning in which there is a
sinusoidal variation of blade natural frequency around the disc,
together with unfavourable conditions of excitation, can give rise to
large increases in stress levels in comparison with those obtained in
a perfectly tuned system. Neither of the studies just mentioned
considers in detail the coupling between the blades which results from
flexibility of the disc.

An investigation into the effects of detuning on the vibration
of circular discs is reported in two papers by Tobias and Arnold (1957)
and Tobias (1957). Both papers present a linear theory describing the
effect of imperfections in a disc on its flexural vibrations, and it is
found that for each combination of 1~ nodal diameters and s nodal
circles, the disc possesses two individual modes of vibration which
have close natural frequencies. The first paper goes on to study the
consequences of this property on the vibration of an imperfect disc
when it is rotating, and examines in detail the 'standing wave'
phenomenon which is experienced in turbines. The results of this study,
together with an extensive experimental programme, indicate that the
inclusion of imperfections can greatly reduce the severity of the
vibrations associated with standing waves. In the second paper, Tobias
extends the theory to consider vibration at larger amplitudes. In this
case, the equations of motion become non-linear, and their solution
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explains certain experimental observations reported in the first paper.

In 1955 Armstrong presented an analysis of the vibration
properties of a stationary bladed disc using mechanical receptances,
Prior to this, methods for determining natural frequencies were
essentially approximate, and estimates were sometimes in error by as
much as 20X. There had also been a number of papers describing
experimental observations of vibration of the bladed disc as a single
composite component, but these reports are only of passing interest to
the present work and reference may be made to Armstrong's thesis for a
more detailed discussion.

Armstrong's method of
the bladed disc have a number

solution assumes that modal shapes of
of nodal diameters and circles in the

same way as does a disc without any blades. It is possible on this
basis to derive a frequency equation in terms of the receptances of
the disc and the blades. One limitation of this method is the
assumption that all the blades are identical, and as such it cannot
be directly applied to study detuned systems. Armstrong's analytical
work was supplemented by experiments on a system with 80 nominally
identical blades, and also by a series of tests on the same system
under various detuned conditions, When the system was detuned, several
modes of vibration were found to 'split' into pairs of modes with
almost identical modal shapes and very close natural frequencies, but
no simple pattern of behaviour can be detected. The conclusion drawn
by Armstrong from a number of response measurements was that detuning
was always unfavourable in that it resulted in a greater incidence of
high stress levels than was found in the tuned system.

Since 1955, this method has been developed to enable its
application to practical systems, as described by Armstrong, Christie
and Hague (1966). However, no other work on bladed discs has been
published, and the effects of detuning which were observed 'en passant'
by Armstrong, remain largely unaccounted for.



1.3 The scope of the present research

The closing paragraphs of the previous section clearly suggest
a topic for further work, since the precise effects of detuning on a
bladed disc are largely unknown. The present research is intended to
contribute to a better understanding of bladed disc vibrations, and in
particular to examine in detail the mechanism and consequences of
dctuning.

In order to achieve this object, it is necessary first to
devise quicker and more convenient methods than exist at present for
calculating natural frequencies and modal shapes, and then make a
detailed study of discs with non-identical blades. This is a truly
formidable undertaking for 'real' discs of non constant thickness
carrying twisted and non-uniform blades. The complexity of such 'real'
systems entails extra expenditure of thought and time which, in
themselves, reduce both the quantity of numerical data which can be
assembled by way of theoretical prediction, and also the time
available for testing these predictions by experiment. For these
reasons, it was decided at the outset to restrict attention to models
which have simpler properties than real systems (and are therefore
more amenable to analysis and computation), but nonetheless preserve
those features which are believed to be essential to a fuller
understanding of the effects of detuning.

To this end, the model which is subsequently considered
incorporates the following simplifications:

1) the disc and blades are each of constant cross section;

2) all the blades have zero stagger, so that vibration is
entirely normal to the plane of the disc;

3) the system is assumed to be stationary and the effects of
rotation are ignored; and



7

4) only a small number of blades (5) will be considered, although
subsequent work will deal with multibladed discs,

(Whereas calculations mayobe made for any number of blades, a smaller
number enables more cases to be examined and assists in detecting
patterns of behaviour.)

Any study of vibration in dt?tuned  bladed discs, tfhether real
or hypothetical, can be subdivided as follows

1) calculation of normal modes and natural frequencies in the
absence of damping;

2) calculation of response to forcing with damping;

3) search for pattern of behaviour in respect of detuning;

4) experimental assessment of the theoretical predictions.,

All these aspects are considered later in relation to the simplified
model. Part (1) involves considerable preliminary analysis, using
both receptance and matrix methods, and this forms the basis for the
development of computer programs for obtaining numerical results.
Part (2) is based upon the results obtained in part (l), but because
somewhat questionable assumptions have to be made concerning the
damping, a comprehensive numerical study is not attempted. In
part (3), numerical results for detuned systems form the basis for
formulating empirical 'laws' of behaviour, although the theoretical
basis for these remains obscure. Nevertheless, it is relevant to note
that there is no significant conflict with experimental evidence, To
this extent, there are good grounds for believing that the theory
wSich is used here tc discuss a simplified model will be found tc
apply, with little change in its essentials, to real blade5 discs.
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CHAPTER2
A GENERAL ANALYSIS OF THE UNDAMPED VIBRATION OF A BLADED DISC

2.1 Introduction

The work reported in this thesis forms part of a study which is
being made of the vibration characteristics of bladed discs. It is
particularly concerned with the manner in which these characteristics are
affected by detuning, such as might arise from the presence of small
differences between the blades. However, in order to undertake such a
study, it is first necessary to develop a method for determining the
natural frequencies, modal shapes and other properties of a vibrating
bladed disc. Previous techniques are found to be inadequate for the
present case of non-identical blades, so that it has been necessary to
devise a more general form of solution. The present chapter is
concerned with this task, and describes in general terms two analyses
which are suggested as alternative methods of obtaining this solution.
Both analyses apply to a system which is composed of a circular disc
with a number of separate blades attached at points on its rim. It is
assumed (for the purpose of this chapter) that data defining the
vibratory properties of the subsystems is available in some convenient
form, and it is in their requirements in this respect that the two
methods of solution differ.

The first analysis, which is based on receptance techniques, is
only useful when the information on the component subsystems is
available as explicit algebraic expressions. The second method is based
on normal mode theory, and it employs such data in an infinite series
form. The numerical application of this latter analysis provides an
approximate solution by truncating the series at some convenient level.
This is a more practical approach when the required data must be
computed for complex non-uniform components, although the accuracy of
the resulting apprcximate solution has yet to be investigated,
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The displacement of any element of the system may be considered
as being composed of six components, namely,

(i>

(ii)

(iii)

(iv)

(v)

(vi)

translation normal to the plane of the element;

translation along the disc radius through the element;

translation in the plane of the disc, normal to the radius
through the element;

rotation about the normal;

rotation about a radial line; and

rotation in a plane containing both the normal and the radius
through the element.

In a general treatment of the flexural vibrations of a bladed disc, one
of these six displacements,(ii), usually becomes redundant.

Motion in the other two directions which are & the plane of the disc,
(Iii) and (iv), occurs as a result of staggered blades, In the present
work, in which a simplified system is studied in detail, only motion
which is normal to the plane of the disc will be considered, and
furthermore, the torsional modes of vibration of the blades will be
ignored so that the system is reduced to one in which only two
displacements are relevant, (i) and (vi) above. This system is
referred to as having 'two degrees of coupling'.

As mentioned earlier, the analyses in this chapter are
presented in general terms, and in the interests of brevity, a matrix
notation is used throughout. In the text, the 'displacement' of a
point refers to the displacement vector (which is composed of the
components described above), and not to the motion in any one
particular direction (such as the normal displacement).
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2.2 Receptances of blades and discs

Before proceeding with the analysis, a definition of the
receptance expressions which are used throughout will be given.
Consider first any one of the N blades which are attached to the
disc. This blade will possess certain receptance properties which are
determined by its dimensions and elastic properties. The general
receptance for the iti blade, JL;ky) ) relates the displacement at
any point x (defined by -tr a+x , 8= *; > and a dynamic loading at
any other point y (*=a*y  ) e= 0; ). In the present work we shall
be concerned only with displacements of the end of the blade which is
attached to the disc, and which is subsequently referred to as the
'root'. Thus, the blade root receptance J&;(y) is defined which
relates the root displacement to any loading applied to the blade. If
the load itself is applied at the root, then it is convenient to write
the receptance simply as -fj-~ . The order of the receptance matrix 4&
is determined by the number of degrees of coupling which are admitted

to the analysis (see section 2.1). The elements on the leading
diagonal are direct receptance terms and are the ratio of displacement
to load in any one particular direction, while the other elements are
cross receptances and these represent the ratios of displacement in
onL direction to loading in another.

If we next consider a freely supported disc, we shall define
the general receptance for the disc _o< (-C,-4) as the relationship
between the displacement at a point defined by 1. ( +CC~ , 8= 6" ),
and a harmonic load applied at another point A ( er <4 , 8~ G4 )O
Nuch of the analysis requires only 'edge' receptances in which the two
points (Z,C) both lie on the rim of the disc. The following
notation is adopted in order to simplify the algebraic expressions:
points on the disc which are situated at the rim (i.e, f= Q ) are
denoted by the suffices i and j , and the edge receptance
between them is written as o'i,j . A further simplification is made
by omitting the second suffix when the positions of the response and
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excitation are identical (i.e. i= j ), so that c;,; is written
simply as 5; .

It is to be remembered throughout that each of these
receptance terms is a function of frequency of vibration as well as
the system geometry. They may be derived from consideration of the
basic equations describing the motion of the systems.

2.3 A receptance analysis of the undamped free vibration of a
bladed disc

Consider a bladed disc vibrating in a direction normal to its
plane. Fig02,1 illustrates the system where .i and ; are two of
the N stations around the rim of the disc at which the blades are
attached.

The displacement of the disc at station i
combined effects of all loads -F; at each of the
given by

N

” - “<;,j  Ej-4 - L
j=l

(V_;) due to the
N stations, is

(2 l 1)

and there are r\l of these equations, corresponding to is I(\ o

Next, consider the blade which is attached at station i e
The corresponding expression for the displacement of the root is

r; = n_; f-.-1 for i= I(l)rJ (2 02)

The boundary conditions for the whole system are those of compatibility
and equilibrium at each station, i o First, since all the blades are
rigidly attached to the disc, we have

Y; = y; for i= l(\)rJ (2.3)
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and secondly, equilibrium is maintained if

F, + j; = 0 for i= It')"I (2.4)

The combination of these four sets of equations leads to a set of
homogeneous linear equetions in which the variables are the individual
forces and couples at the points of attachment, and the coefficients
are the elements of the receptance matrices, This set of equations
may be conveniently written as

l.J

L-(“‘i,i ~j) + fi. F. = 0- 4 -4 for i = I (I 1 bJ (2 05)

trivial
Because
will be
natural

j=l

In order that a set of homogeneous equations may have a non-
solution, the determinant of the coefficients must vanish,
the receptance terms are frequency dependent, this condition
satisfied at particular values of frequency - the so-called
frequencies - and these are given by the roots of the

determinantal equation

(2.6)

The order of this determinant is the product of the number of blades
and the number of degrees of coupling (usually 2 or 3: see
section 2.1).

It may be shown that for a set of homogeneous equations, such
as those in equation (2.5), no unique solution exists for the
variables (fj >* However, it is possible to obtain a set of
relative values of these loads, or a form of the modal shape, at any
particular natural frequency. The equations are reduced to an
inhomogeneous form by an arbitrary choice of values for a specific
number of the variables. For example, if the determinantal equation (2.6)
possesses one root at w= w, , we set one variable to unity, F, say.
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This condition and d = wx are substituted into the equation (2.5) and
a set of inhomogeneous linear equations are formed. A unique solution
is now possible for the ratios Fz/F, , F, /F, ,.@. etc, and thus the
pattern of the distribution of forces and couples around the disc is
deduced.

However, if the determinantal equation possesses b'l coincident
roots at w = m, , the problem is somewhat more complex. It is then
necessary to choose M variables (such as f? , FZ ,..O) and assign
to them a set of suitable values (e.g. l,O,O,...,O). The relative
values of the remaining variables may now be computed as before. This
process must be repeated w times, each time using a different set of
values for the r\/l fixed variables (e.g. O,O,l,O,...,O),  until the
complete solution of ~ linearly independent modal patterns is
obtained. The general solution at this frequency is any linear
combination of these h/l modal patterns.

2.4 An analysis of undamped forced vibration

It is possible to determine the undamped response of the
bladed disc to any form of excitation at any frequency other than a
natural frequency.

Suppose that a number of external loads ,pI are applied
at points -)c on the disc (see Fig.2.2) together with a number of
loads L/J= acting at points x on the blades. In this case,
equation (2.1) is written as

and equation (2.2) becomes

(2.7)
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The boundary conditions of compatibility and equilibrium may be applied
to the N stations i , as before, and this time form a set of
inhomogeneous linear equations

f-r i= \(\)d (2Q9)

In this case, the condition for a unique solution for EJ is that the
determinant of the coefficients shall not vanish. Providing that the
frequency equation (2.6) is not satisf= (i.e. that the system is not
vibrating at a natural frequency), then each of the forces and couples
at the stations A. may be found in terms of externally applied loads
r+ and ;tX by solution of equation (2.9).

With the solution thus provided as a set of loads on the disc
and blades, the response may be derived in any convenient form, such as
disc or blade amplitudes of vibration, or blade root stress levels etc.

2.5 The normal modes of vibration of blades and discs

An alternative method of analysis will now be developed which
is based upon normal mode theory and which expresses the vibration of
the bladed disc as a set of equations of motion. For a numerical
application of this method, it is necessary to make a number of
simplifications but the method of solution employs powerful matrix
techniques which may be readily programmed for a digital computer,

We consider first a free free blade oscillating freely in
its normal modes of vibration, which are represented by the principal
coordinate vector A ,, It is possible to write down expressions for
the local amplitudes of vibration and for the kinetic and potential
energy of the system in terms of the properties of the normal modes
and their principal coordinates. In these expressions, the following
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notation is used:

prefix A refers to the 1.’ * blade;

iho
is a vector whose elements are the principal coordinates
for the rigid body motions of the .i+ A blade;

is a vector whose elements are the principal coordinates
_;+ representing the normal modes of flexural vibration of

the A, 21, blade;

L represents geometrical coordinates;

LAO(~) and _iAI4)

correspond to
respectively;

&I is a diagonal

are vectors of characteristic functions and

the principal coordinates ;+ o and i/L

matrix of natural frequencies squared;

Lao and ;,A are row vectors
coefficients of the system
modes.

of characteristic inertial
when viiirating in its normal

The displacement at any point in the blade which is specified
by the coordinate A may be written as

q(L) = ;-$Cd iho + i-c, (4) ;J& (2.10)

The kinetic and potential energy of the blade when it is vibrating in
its normal modes may be written iu terms of the properties of these
modes as

and

2i\1 = ; 5 (; f.2) ; h’
(2,111

respectively.
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We next treat the disc in the same manner. The notation is
similar to that used above, except that in this case the principal
coordinates are represented by q, ; the characteristic functions

by f and the typical geometrical coordinate by ‘F
o Natural

frequencies and other properties are the same but lack the blade
identification prefix.

The equation for the displacement of the disc becomes

while the expressions for the kinetic and potential energies are

and

(2012)

(2013)

respectively.

2.6 Equations of motion for a bladed disc in matrix form

By using the compatibility conditions which were employed in
the receptance analysis, 8 ret of equations of motion will now be
derived for the bladed disc in terms of the principal coordinates and
the properties of the normal modes of vibration for the disc and the
blades,

First, expressions for the kinetic and potential energies of
the combined system may be obtained simply by addition of equations
(2.11) and (2.13) o Thus we have

and (2,141

For reasons which will become clear later, it is necessary to eliminate
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from the analysis those coordinates which correspond to modes with zero
natural frequencies (i.e. the rigid body modes). This is done in two
stages, The first is to use the condition of compatibility at the
blade roots as expressed by the equation

Y(i) = ; y (0)

in conjunction with (2.10) and (2,12) to give

(2,151

(2.16)

(where x=" is the position of attachment of the 1: a blade).
In this way, the coordinates referring to rigid body motions of the
blades may be eliminated from any subsequent equations.

The second stage, the elimination of the coordinates $,, ,
which represent rigid body motions of the disc, is conveniently done
by deriving the equations of motion for these coordinates by the
Lagrangian method, The form of Lagrange's equation applicable to the
system is

(2.17)

where cc is any principal coordinate, and if we apply this equation
to s = 9, , the equation becomes

(2.18)
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Thus in subsequent equations, we may substitute for kO (or 9/O 1 in
terms of the principal coordinates of the modes of flexural vibration
and thereby express the energy functions (2.14) in terms of C$ and 4
only,

If Lagrange's equation is applied to these modified expressions
for 3c equal in turn to all the flexural coordinates, i.e. to all q
and A , we arrive at a set of equations

AS + @x = 0 (2,191

where 4 is the inertia matrix, B is the stiffness matrix and 3~ is
the coordinate vector which contains all 4 and A e

It is convenient, both analytically and computationally, to
combine the symmetric inertia and stiffness matrices into a single
'system' matrix. As is well known, the latter will not itself be
syuunetric unless the coordinate vector is subjected to the linear
transformation z = Blhx. , which serves to define a modified- -_
coordinate vector ,Z e Assuming harmonic oscillations, so that

1,3c=-O'X_) we find that

&=$Bx

or:, in terms of 2 ,

( B-I’= A B-“=) z = ;a ( B-“,  B B-‘I= ) z e $__ 5
- -- - _

or

D z  =  $-I
-c ( 2 . 2 0 )

where D = &-'"A R -1/a
- -- __ ir the symmetrical 'system' matrix.

Inspection of ,B shows that it is a diagonal matrix whose
elements are the coefficients in the potential energy terms,, The
necessity for the elimination of the coordinates c+. and II,, is
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now made clear, since their potential energy coefficients are zero.
With such zero terms in a , the matrix -1125 would possess infinite
elements and render further manipulation impossible,

2.7 Solution of the equations of motion by matrix manipulation

In order to obtain a practical solution based on the matrix
analysis described in the previous section, it is necessary to make one
basic simplification, Because both the disc and the blades are
continuous systems, they possess in theory an infinite number of
normal modes of vibration. Consequently, the matrices and vectors in
the previous sections are all of infinite order. We shall define the
approximate system as one in which the disc and the blades each have a
finite number of normal modes. Furthermore, we shall choose the
properties of these modes of the approximate disc (for example) to be
identical with those of the same number (Q say) of the normal modes
of the continuous system. In practice, it is usually convenient to
choose the first Q modes when they are arranged in ascending order of
natural frequency. In this case, the approximation which is made
consists of neglecting the effects of the higher frequency modes of
vibration. Using this simplification, we reduce the matrices and
vectors associated with h to a finite order R , and those
associated with the disc modes 't to order Q . Thus, having
eliminated .$ and q/o , the order of the system matrices A , I3

and 2 8 and the vectors E and 2 becomes.- Q+ I\IR= M rryo which
may be made of realistic magnitude by a suitable choice of Q and
R.

This done, the solution of equation (2.20) may be effected to
produce M eigenvalues CJ, and the associated eigenvectors Em y
These represent estimates of the natural frequencies (directly from

mm)), and the modal shapes (indirectly from '5-Y > of the original
system, The accuracy of these estimates will depend upon the
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magnitudes of Q and R y

The modal shape may be most conveniently derived from the
eigenvector -fW in the form of the displacement pattern over the
surface of the disc, by using equations (2.12) and (2,18) in
conjunction with the eigenvector itself. Alternatively, the pattern
of loads at the root of each blade may be determined using the root
displacement (as computed above) together with the root receptance
expression (as described in section 2.2)" These loads provide
estimates to the exact valuec3 which may be found according to the
method described at the end of section 2.3, The remarks in that
section concerning a number of normal modes with the same natural
frequency apply equally in this case.
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CHAPTER 3

SOW PROPERTIES OF UNIFORM VIBRATING BEAMS AND DISCS

3.1 Introduction

The analyses presented in Chapter 2 are intended to show, in
general terms, two methods which can be usefully employed to study the
behaviour of vibrating bladed discs, Before these methods may be used
as a basis for computation, it is necessary to derive expressions for
the receptances, natural frequencies etc, of both the blades and the
disc, In general, this is a formidable task and is beyond the scope of
the present work. However, it is possible to determine these
properties for the components of a uniform system (i,e, a uniform disc
with uniform bars to represent the blades), and this chapter describes
various ways in which such information may be obtained.

The first part of the chapter is concerned with uniform free
free beams or bars. None of the results nor the analysis in this
section are new, and all the information could have been found in the
relevant chapters of Bishop and Johnson - 'The Mechanics of Vibration*.
Nevertheless, it has been thought worthwhile to include a derivation of
these results on the ground that this serves to introduce the procedure
which is adopted for the subsequent treatment of the freely supported
disc, and which is much more difficult.

Receptances of a uniform disc were first derived by Armstrong
in 1955 in the form of an infinite series. More recently (and after
the completion of the work in this chapter), Bishop and NcLeod
published considerable information concerning the receptance
expressions for uniform circular plates with various boundary
conditions. Their expressions corresponding to Armstrong's receptances
for a free disc are in a closed form, and as such they provide more
accurate numerical values, However, their results are presented in
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such a general form that application to a specific problem (in this
case to a free disc) presents an extensive algebraic exercise,, In the
second part of this chapter, these closed form receptances are derived
from first principles, and the resulting expressions are found to be
very much simpler than the general forma from Bishop and McLeod, Thus
it is believed that the present analysis is a far more convenient
approach for such a case, A large number of calculations were done to
demonstrate the inaccuracy of the series form receptances when these
series are truncated at various levels,

3.2 Flexural vibrations of a free free beam

The fundamental equation governing the free motion of a
uniform prismatic beam, in the absence of rotary inertia and shear
deflection effects, is

-G
ae+

+!Q
EI

where CJ/ is a displacement

R is a displacement

)‘Tr

-$i” = 0 (301)

coordinate normal to the length of the beam
coordinate along the beam

A,,I,p and E are the sectional area, second moment of
area, density and Young*s modulus respectively of the beam,

Ihe assumption of a harmonic solution to (3,l) in which

Y' Y (1) Qiat (3.2)

leads to a general solution of the form

(303)

where 4A = &A.+I and cry is the frequency of vibration,
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The constants A , B , C and D in equation (3.3) are determined by
four boundary conditions, Current interest is in a free free beam, in
which the absence of restraining forces or couples at either end gives
rise to the boundary conditions

{ 2.i = {$} = 0 Q=o,L
(304)

where L is the length of the beam, When these conditions are applied
to (3,3), they lead to the conclusion that a non trivial solution only
exists if

CcsChL)b&C~L)-I = 0 (3.5)

The frequency equation (3.5) has an infinite number of roots which
correspond to the natural frequencies of the beam, Corresponding to
any such root, X -_ h, , there is a normal mode of vibration whose
shape may be found by substituting h=h, into any three of the
four equations (3,4) and solving for the ratios B/A , C/A *r D/A O
This results in the characteristic function of the Jzk normal mode
which is

(306)

where CA is an arbitrary constant representing the amplitude of free
vibration, and c4 is the constant LOS&  (hrL) - cos (h&)1

[s&d (AAL)  - A4A. (Ad-y
We shall now introduce a principal coordinate /LA which describes
motion in the //e" normal mode such that

Y&(d) = 4 &#L (2) (3.7)
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It is convenient to normalise the characteristic function so that unit
distortion in the principal coordinate /TV corresponds to a unit
displacement at either end of the beam, From this, and equation (3,7),
it follows that

c, = ‘/2 for all & 3

Because many relations in the theory of vibrations are most
easily derived by Lagrangian methods, it is important to assess the
contribution which each mode makes to the kinetic and potential energy,
As to the first of these, the contribution from an elemental length of
the beam is

so that, for the whole beam,

2Ta= a_&-: (308)

where CL* = A&?+~~ which, on substitution for +&Id) from

(3.6), reduces to"

a, = ye 44.L for all AZ

OM_ being the mass of the beam,
Similarly, the contribution of an element to the potential energy is

leading to

zv, = c_c A.2 (309)
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L

where CA= ES /[&W]'k( 0 Using the same substitution as
0

before, this reduces to

CA = a, La_&= (3010)

Calculations

A number of solutions to the frequency equation (3,5) were
computed together with a number of other characteristic properties,
Although this information is available elsewhere, a computer program
was written and tested which was to become a subroutine of the final
program which is discussed in the next chapter, Most tabulated data
on the characteristics of beam vibration are given to 5 significant
figures, but the calculations which are described throughout this
work are made (and required) to 7 figures,

3.3 End receptances of a free free beam in closed form

In order to derive expressions relating dynamic loading and
response at an end of the beam, recourse is made to the general
solution in equation (3.3), Suppose there to be an oscillating load
Faiwt applied to the end of the beam (A= C), then one of the

four boundary conditions (3,4) will be altered so that

F
= -EI (3,ll)

while the others remain unchanged, An explicit solution for the end
displacement y (0) may now be obtained using these modified boundary
conditions, and this is
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(3012)

Also, the slope ( by / u 1 may be found at the same point, and is

bY
i 1 F A.& (AL) .&A (XL)

a-cL;o =  - -E T  A’ coS(XL)  eoccc(hL)  - I (3.13)

In the same way, the result of applying an oscillating couple
Ms.iut to the end of the beam may be deduced. Again, just one of

the four boundary conditions (3,4) is affected so that

(3.14)

The resulting displacement and slope at the end (R= 0) of the beam
are

and

cos CAL) COCA, CAL) - I (3016)

The end receptances which we require are defined as the ratios of
displacements to load, both measured at the root of a blade, which
we take to be the end 4 = 0 of the beam, These receptances may be
deduced directly from the four preceding equations, and are
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y (0) = -5 ,&a, [AL)  c&.4”(hL)  - -5 (ALI .&A CM
EIP CosChL) cos.L(XL) - I

(3012)

Also, the slope ( by / u 1 may be found at the same point, and is

bY
i 1 F A.& (AL) .&AA (XL)
blL;o =  - -E T  A’ coS(XL)  G8sA(hL) - I (3.13)

In the same way, the result of applying an oscillating couple
M4Liut to the end of the beam may be deduced. Again, just one of

the four boundary conditions (3,4) is affected so that

(3.14)

The resulting displacement and slope at the end (R= 0) of the beam
are

and

(3.15)b$(hL) CQ&AC~L) - 1

cos (XL) 4.L-A  ( AL\ •t &A ( A L )  &sAdhL)

cos CAL) co&L CAL) - I (3016)

The end receptances which we require are defined as the ratios of
displacements to load, both measured at the root of a blade, which
we take to be the end 4 = 0 of the beam, These receptances may be
deduced directly from the four preceding equations, and are
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(3 the normal displacement - force receptance

II= h-.) F, /+a C.-J= F, (3.17)

(ii) the normal displacement - couple receptance, and the slope -
force receptance (which are identical in conformity with Maxwell's
principle of reciprocity)

_a__’ = (AL)?, /ML csz F, (3.18)

and (iii), the slope - couple receptance

A_" =  (AL)~F,/~~L~~F~ (3*19)

In these expressions,

Fo = cc5 (AL) LOA c AL) - \

F, - L ( AL) COSLC  (AL) - cos (AL) sALb& c AL)

F,.. - SAA (AL) 5d CAL)

F3 - Los (AL) SAA (AL) + S&CAL)  cos& chL-,l (3.20)

The receptance matrix A_ for the present case in which there
are just two degrees of coupling (see section 2.2), is

A_=-
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3.4 End receptances in a series form - an approximation

It is possible to express the end receptances of the previous
section as an infinite series. Approximations to these receptances may
then be obtained simply by truncating the series at some convenient
level, and it is found in practice that reasonable estimates to the
exact values are achieved by including a relatively small number of
terms. This feature makes the approximate forms very convenient for
numerical application,

With reference to the principal coordinates and normal modes
of vibration which were discussed in section 3.2, the receptance for
the Ad' mode may be written

(3.21)

and further, the receptance between two points on the beam, x & y ,
may be expressed in terms of such modal receptances as

(3.22)

where X is the displacement (or slope) expression for the point at
which the displacement (or slope) is measured (a= 1,);

and y is the corresponding expression for the point at which the
force (or couple) is applied (A= Jr ).

Using the displacement function which is derived in equation (3.6),
together with its derivative (for the slope), at A, = &, = 0,

the three end receptances of the previous section are derived in a
series form in terms of the properties of the normal modes of
vibration. These are

LL = L?-, + z [ &(~'1=/&&& Ls')
-kc\
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and

corresponding to (3.17), (3.18) and (3.19) respectively, where the
three receptances R. , J26 and XL:' represent the response of
the beam as a rigid body. This motion is accounted for in the closed
form receptance expressions, and arises as a special case in this
series form as it corresponds to the particular solution A = 0 of
the frequency equation (3.5). The corresponding properties may be
found from first principles, and are

Calculations

As suggested previously, truncation of these infinite series
can provide useful approximations to the exact, or closed form,
receptances. A number of calculations were made to illustrate how
the accuracy of these approximations varies with the number of terms
included in the series. Typical results are shown in the four graphs
in FIG.3.1 in which the ratio of series form estimate to closed form
receptance is plotted against the number of terms in the series. Each
of the three receptances R , a' and J2)' is represented, and
curves are shown which relate to four values of the frequency
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parameter ( AL ). The results indicate that the approximations are
not always highly accurate, but at the same time they do provide a
very simple, and computationally fast, means of estimating these
receptances,

3.5 Flexural  vibrations of a freely supported circular disc

The analysis of the elastic vibrations of a uniform circular
disc is basically the same as that described in section 3,2 for the
free free beam, although it is considerably more complex. This
analysis is presented in a number of works, most of which are derived
from Prescott's 'Applied Elasticity'.

The basic equation of motion for a circular disc, expressed in1
polar (+,e) coordinates, is

V'/i.C + ,at (3,251

where .W is the displacement of a typical element normal to the plane
of the disc;

and R ,p* E andc are respectively the half thickness, density,
Young's modulus and Poisson's ratio

If we now assume a harmonic

N= W(r, 8) *;wt

equation (3.25) may be rewritten as

of the disc.

solution of the form

(3,261

07 2
+ AL’

)( v

a.
- _K)w = 0 (3.27)

and substitution of equation (3.26) leads to the general solution
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In this equation, A, 3 H, are constants which depend upon boundary
conditions, while J,&, , Y._~&~  , I,l4rJ amd k,(&) are the
standard notation for various types of Bessel functions of order Y
and argument (A*). The boundary conditions which are to be used to
determine A, etc, must hold for every integral value of IK , so
that subsequent work need only treat the general term of equation (3,28).
However, it is found that ti = 0 presents a special case which is most
conveniently dealt with separately.

For a continuous plate, the displacement and slope, shear force
and bending moment must all be finite at the centre, The expression
for displacement (AU) is given in (3.28) and the slope may be derived
from this equation simply as (dw/M). The corresponding expressions
for the shear force and bending moment are

I:shear force/unit of circumference3, (3.29)

and

c bending moment/unit of circumference 1 (3.30)

respectively. The substitution of the above mentioned conditions into
the four equations results in the elimination of four of the constants.
This arises since the terms containing y__ and k, (both of which
tend to infinity as r tends to 0 ) must vanish, thus requiring the
coefficients R,,,, , D, , F, and H, to be zero* With this result,
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(3,31)

(3.32)

we may rewrite the general solution (3.28) as

and w,, /“A and &, are constants which
boundary conditions. In the present case of
the absence of restraining forces or couples
two more conditions which may be written as

may be found from further
a freely supported disc,
at the rim gives rise to

0 (3033)

When these conditions are applied to equations (3,29) and (3.30), using
the general solution in (3.31), then we find that a non trivial solution
can exist only if

I: b” + a.& (A= I>(I- aa IC I_, (51 J,+,  (b) + I,,, h) J,_, lb)]

- 2 b’h (I- a) /)--d I,_, lb) ?ii-, (b) + (a* 1) I**, m Ji, cr)]

= 0 (3.34a)

or, for the special case of * = 0, if

b’ { 2(1-a) I, (b ) J, (b) - b [ I, lb) S, cb) t 1, ( b) T, Ib1-j }

=O (3.3413)

Each equation (3.34) has an infinite number of roots which define the
natural frequencies of the disc. As in the case of the beam, to each
solution b = b,,, (where S represents the (%I)% root), there
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corresponds a normal mode of vibration whose characteristic properties
may be found by substituting b = b,, into equations (3.31) and
(3.33). The characteristic function which defines the shape of the

&,S mode, is

(3.35)

where 'N,, is an arbitrary constant representing the amplitude of
free vibration @ /P4s is a constant which is equal to

(3.36)

and JCkS ;.ri is the radial characteristic function.

If we now introduce a principal coordinate 9&s which
describes motion in the ,W,S normal mode such that

we may then normalise the radial characteristic functions. Using a
similar treatment to that described in the earlier case for the beam,
we shall require that for unit distortion in the principal coordinate

9WI * the maximum rim amplitude shall be unity. Thus, we find that

(3.38)

With the present boundary conditions, it is not possible to
establish a value for E,,,~ , and this must consequently remain
arbitrary. From equation (3.37), it is possible to deduce the
physical form of the modal shapes. The cosine term vanishes at
regular intervals of 6 and thus gives rise to NL nodal diameters
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symmetrically disposed about 8 = errs . The radial characteristic
function fHI (+) , since it contains Bessel functions, is an
oscillating function which is zero at a number of specific values
of -f- . This results in a number (S ) of nodal circles.

We shall now derive expressions for the kinetic and potential
energy of the disc when it is vibrating in its *,s normal mode.
For an element of the disc, the kinetic energy may be written as

so that for the whole disc

ZT,, =

or =

where

(3.39)

(3.40)

a Itr*=4s (3.41)

(3.42)

The integral in equation (3.42) may be expressed explicitly using a
result given by McLachlan, as (see APPENDIX 2)

where the argument of each Bessel function is ( b,,).

For the corresponding potential energy expression, use is made
of the relationship between the inertia and stiffness coefficients of a
normal mode, in order to avoid further lengthy algebraic manipulation.
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If CA.%, is the stiffness coefficient, and u,,_~ the inertia
coefficient for the -IQ,S mode, then these two are related by the
natural frequency (o,,) such that

(3.44)

The potential energy of the disc, when vibrating in its 4,s normal
mode, is then simply

Characteristic properties were computed for each of a large
number of normal modes. FIG.3.2 shows a table of three of the more
important quantities; dimensionless natural frequency ( b,,),

inertia coefficient (dz ) and slope at the rim ( b. [ & (jal(r)j] ) o
f-s Q-

3.6 Edge receptances of a free disc in closed form

We shall now derive receptance expressions which relate the
displacement (M) of the rim of the disc to excitation which is
applied to the rim, A suitable form for this excitation is one which
varies sinusoidally around the disc (e.g. L = L, cos a@. ciwt) since
any other loading configuration may be achieved by the linear
superposition of a number of such expressions.

Consider first the effect of applying a circumferential shear
force, P = P, ~0~ ho. eiWt . In this case, the boundary conditions
are

(3.46)

(omitting the eiWt term for convenience), where the expressions for
P and M may be found in equations (3.29) and (3.30). Using the
general form of the displacement function (J_(*,@)) which is given
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in equation (3.31), application of the conditions in (3.46) results in
the solution (which is derived in APPENDIX 3)

and N, (cc) = ‘/b [(R- b') J’_,i + (Q-b') J,,,] I, (b&a)

- [k+ b') I.,._, - (Q#) I,,,] J, (bdd )

(omitting the argument of the Bessel functions when it is b >;
The displacement at the rim, in which we are particularly interested,
is.

5 Wk. cos me

The radial slope ( &J/&r) at the rim of the disc is also of
interest, and this may be derived from equation (3.48) as

= w_’ as he

where
N*_’ = a[ T-4

,_ -a (I- 6) c I,_, Ja+, + I,,, J,_, 1
- b’l: L, L-, + I,,, JI,, 1

(3.48)

(3.49)
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If we next consider a bending moment h/l = w+. eos HC~ aiwt to be applied
to the rim of the disc, then the boundary conditions become

(3.50)

When these conditions are applied to equations (3.29) and (3.30), the
displacement at the rim of the disc is found (in APPENDIX 3) to be

(3.51)

The corresponding expression for the slope at the rim of the disc is

(3.52)

where

or

- b=- c L-4 - La, I[ I,_, + I,,, 1

The foregoing expressions for displacement and slope hold for
any integral value of .n_ except zero. When -=O, it is found that
the expressions for N,,., N,' , N," and b, all vanish. However,
non zero values for the corresponding functions N, etc. may be
determined, either by repeating the analysis for this special case, or
by a limiting process. The former is quite straightforward and results
in the following expressions:
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De = b3(bl:LJ,+  T,J,] - 2bd r,J,)
No = (‘-dk~J, + TJ,] - 2bT, J,
N,' m b’1:LJ, - JoI,]
N: = 2 b3 I-, J,

N,(T)  5 (1-6) [I, &(br/d t J, T-oh/-)]
- b[T, J&-/d + J,,I,(bd]} (3053)

We shall nor introduce and define the disc edge receptances
which give the displacement and slope at a point a, 8. caused by a
loading of the form L,Ms Me eiwt applied to the rim of the disc,
The receptance relating the normal displacement M, fa,e.) = h/, bs-63.

and a circumferential shear force of p, COST@ is defined as

(3054)

The normal displacement - circumferential couple, and the slope -
circumferential shear force receptances are identical, and are

Finally, the slope - circumferential couple receptance is

I (-) = X,’ I r\J2
oc RI =

-_
5 3, (3.56)

It may be seen from this analysis that when the loading is
symmetrical about 8 = 0, then so is the resulting displacement,, We
may extend this result to conclude that the constant E, is zero
relative to the origin of the excitation, for all m o



39

3.7 Edge receptances in a series form
We shall now show that the edge receptances which were

introduced in the previous section may also be represented by an
infinite series. This analysis is summarised from that of Armstrong.

Let there be a normal force P applied at the rim such that
P, Pa CoJ AQ. ,iut. We may determine the response in the *, s

normal mode by considering the generalised force in that mode (Q-cc)
which results from P . We shall also make use of the result in the
previous section that for this type of loading, ebS is always 0 .
The total generalised force in the -,s mode due to p is

?"
(3.57)

This integral has three possible solutions, viz.

(3.58)

The magnitude of the principal coordinate %_S is given by

(3.59)

so that the displacement at the rim resulting from vibration in the

A.5 normal mode, is

(3.60)
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Similarly, an expression may be derived for the slope at the rim, and
this is found to be

= w,: COS M 0

If we define the edge receptances for the a,s mode as

and

then the so-called 'closed form'
may be written as

(3.61)

(3.62)

(3.63)

receptances c+) and d'kJ

(3.64)

and

oc ’ t-1
t

cd. I &I>=
(3.65)

s=o

If the load at the rim is a couple M- M, ca-RO.ei”~ then a
similar treatment to that described above results in the following
receptance expressions:
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and

(3.66)

As in the case of the free free beam, there are two rigid body,
or zero frequency, modes of vibration. These are in fact included in
the range a,5 = 0 + 00 , but their characteristic properties are
best computed separately from those for the flexural modes. The first
zero frequency mode corresponds to /M. = 0, S - 0, and represents
translation of the disc as a rigid body. The second mode occurs when
&ml, S =o, and constitutes rotation of the disc about a
diameter. By considering the disc as a rigid body, it is possible to
write down the properties of these two modes. We find

w,, = 0 ; a00 =Md ; [ jo; (o-)1 = O

for the first case, and

for the second.

Calculations

A number of calculations were made in order to study the
accuracy of the truncated series form for the disc receptances.

(3.67)

(3.68)

A
large number of cases were necessary before a general pattern could be
seen, and typical results are shown in FIG.3.3 where the estimate to
the exact receptance is plotted against the number of terms included
in the series.
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The general conclusion to be drawn from these results is that
the series form of disc
to the exact value when

receptance only provides a good approximation
a large number of terms are included.

3.8 Point receptances

It was mentioned in section 3.6 that the edge receptances
which were derived there could be used to provide receptances for any
form of loading at the rim. Xn this section, the case of a point load
applied at some position 1' ( A-= a , 8 = Gi) will be studied in detail
since it is this type of load which is considered in the general
analysis (Chapter 2).

Consider a distribution of shear force around the rim which is
of the form F (8);

F (zap)

t

shear force/unit angle

)
F (0) = 0 , {

-~ < (8-Bi)c-t
L c (e-e;)< Jr

(

F(8)
Total force
2fc '(') L j , -~ < (8-0j)<c

If we represent this load by a Fourier series, then we may write
00

where K

(3.69)

(3.70)
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The limiting case as G tends to 0 is a point load F, , and in
this case

(3.71)

Now, the displacement of the
load excitation, may be expressed in

rim of the disc due to a point
terms of the edge receptances as

&W F, ~S&&3-Sj)
7T (3.72)

We shall now define the point receptances which relate the
displacement and slope at a point i ( r= a , 0 = 0; ) on the rim of the
disc to a point force or couple applied at j (~~4 , 8 = ~3; ). These

are

respectively.

Calculations

As in previous cases where an infinite series is truncated for
practical reasons, it is necessary to check that convergence of the
series is satisfactory, and that the truncation level which is proposed
is suitable. A series of calculations was made in the present case in
an attempt to establish a suitable rule for determining the number of
terms required in the series in each of (3.73), (3.74) and (3.75) above.
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The results (examples of which are shown in FIG.3.4) indicated that a
suitable formula relating the number of terms to the frequency (b)
at which the receptances are required would be q = b +- 15 , and this
is used for all subsequent receptance calculations.

It may be noted that in this case, there is no exact or closed
form expression with which to compare the series, nor is it envisaged
that one may be obtained as it requires the summation of complicated
Bessel functions of all integral orders from 0 to QO .
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CHAPTER4

A NUMERICAL STUDY OF A UNIFORM  BLADED DISC

4.0 Summary

The results of Chapters 2 and 3 will now be used to obtain
solutions to the vibration problem of a simplified bladed disc. This
consists of a uniform circular disc which has a number of uniform
rectangular bars attached at points on the rim to represent the blades.
A receptance determinant is derived for this system and its properties
are discussed prior to an extensive computational programme. An
approximate system matrix is then formed, and the estimates of natural
frequencies and modal shapes which its eigenvalues and eigenvectors
provide are compared with those obtained by the 'exact' method.
Applications of both methods are discussed. Finally the principal
characteristics of the modes of vibration which emerge from the
numerical study are summarised.

4.1 Application of the receptance method of solution to a uniform
model of a bladed disc

We shall now apply the analysis presented in Chapter 2 to the
uniform model whose component parts were discussed in the previous
chapter. It will be convenient to refer only to those sections of the
general analysis which are specifically relevant, and not to repeat
each step in full. Since only straight blades are considered in this
study, it was decided that the third degree of coupling - the
tangential slope (section 2.1) - should be omitted as being of secondary
importance. Thus, it is only the normal displacement and radial slope
which have to be matched at each blade - disc fixing point. This is
compatible with Armstrong's approach and is expected to provide good
approximations for non-twisted blades. However, should it be necessary
to consider the torsional modes of vibration of the blades, then this
third form of coupling must be included.
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The blade and disc receptance expressions which are used
throughout this analysis were all derived and discussed in the previous
chapter, and the symbols which were used for them there are retained.
Only the so-called closed form receptances will be used.

With reference to FIG.2.1 and the analysis of section 2.3, we
may express the normal displacement and radial slope of the point i on
the rim of the disc in terms of the disc receptance terms and the forces

(Fj 1 normal to the disc and couples (Cj > about tangents to the rim.
These are

j=  I

(4.1)

respectively. Similarly, the displacement and slope at the root of the
i" blade expressed in terms of the force (JC 1 and couple ( c;)

acting at the same point are

y, = ._a; f; + a,’ c,

(4.2)

If the displacements and slopes of both disc and blade are equated at
each of the Pl fixing points, then a set of 2r\l linear equations are
formed. These consist of a set of N similar pairs, and the general
form of each pair is
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The condition that these equations shall have a non trivial solution
(i.e. not all F Ic C zero) is derived from the determinant of the
coefficients of the equations (4,3),  A . The general form of this
determinant is given in FIG.4.2 and since every element in it is a
frequency dependent receptance term, A itself is a function of
frequency and it is the values of this parameter which cause it to
vanish that provide the required solutions to (4,3). These values
are known as the natural frequencies of the system, and they represent
the frequencies at which undamped free vibration is possible.

To each such solution there corresponds a modal shape, or set
of relative values of the variables F' , C; , although a unique
solution for Fj and Cj does not exist. These modal shapes may be
found by substitution of the natural frequencies into equations (4.3),
removing one of the variables ( F, say), and solving the resulting
set of (2N -1) inhomogeneous equations for 5/F, , C; / 6 etc.

4.2 Properties of the receptance determinant

Before proceeding with a numerical treatment of this
determinant, it is useful to examine the form which it takes,, Owing
to the circular symmetry of the system, a disc receptance expression
which relates point (i ) with (i+p) is identical to one relating
(i) with (i+N-p). Furthermore, this receptance is independent of
the actual value of A and is purely a function of the separation of
the two points, which is p . Thus

d.A,iiP L d ;, i&&p = &P for all i (4.4)

and it is this feature which is largely responsible for the interesting
properties of the determinant. A second observation concerning the
determinant n is that it may be seen to be composed of four quarters,
each of which follows the same pattern, Using the result in equation
(4.4) above, the receptance determinant for a symmetrical five bladed
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disc has been written out in full (FIG.4.31,  and with the four similar
quarters indicated a rather curious symmetry is now evident.

Even with such a small number of blades as five, it is not
practical to expand this determinant, but it is possible to show that
it has some interesting properties. As a further simplification which
is justified by the result, we shall consider the situation which would
result from restricting the analysis to include just one degree of
coupling. The receptance determinant for this case would be in fact
one quarter of A , and this reduced determinant is

(4.5)

which, because of its symmetry, is a special type of circulant. As
such, it may be factorised and expanded to the form given by Aitken,

5

A,= 7 - u a, t a,w. t azw .+
1 J + az cd-’

J
+ A,Uj’

1j:, ’

where aj is the j
this product reduces
different factors;

(4.6)

&& complex root of 11 I”’ . On simplification,
to a simpler form in which there are only three

np = [do+ 2a,+ 2a,][a,+  a,(w+w+)  + a,(f~‘+w’)]‘*

L b4 + 0, (w% 0s) + a, ( w +w4 )I2 (4.7)
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and this in turn becomes

(4.8)

The three receptance  terms, k. , a, and a, are all frequency

dependent so that we may write

a, c-b) = ,4, (-b) A, t-b) (4.9)

in terms of the dimensionless frequency parameter -&I .
Now, the roots of A, may be found by determining the roots of both

A, and A,, and since the latter is a perfect square it may never
be negative so that any roots it might possess will consist of
coincident pairs. The significance of this is demonstrated in FIG.4.4
which shows what might be a typical section of a plot of aA against
-b . The first of the two roots shown is the result of A, vanishing
and is known as a 'single' root, while the second one (or coincident
pair) occurs because A, - 0, and this is termed a 'double' root.

Clearly, these double roots exist directly as a result of the
circular symmetry of the disc and the uniformity of the set of blades.
Further, it would appear that this result will hold for a disc with
any number of equally spaced identical blades.

If now the system has its symmetry disturbed (i.e. is detuned)
by varying the blades, then the diagonal terms of A, will no longer
all be identical. This necessarily destroys the circulant properties
of the determinant but still leaves it symmetrical, It is reasonable
to assume that the detuned system determinant will no longer
necessarily exhibit double roots as two solutions at the same
frequency, but as a pair of solutions with close natural frequencies,

Using this simplified model, two types of solution are
predicted; those corresponding to single roots and those associated
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with double roots. It is also postulated that a natural frequency
splitting phenomenon might be associated with detuning.

If more than one degree of coupling between the disc and
blades is admitted to the analysis, then the algebraic problem greatly
increases in complexity while the physical system is virtually
unchanged. The corresponding determinant for two degrees of coupling
was shown in PIG.4.3, and whilst it is clearly not a circulant, a
symmetry due to the circular properties of the system is still in
evidence. It would seem reasonable to assume that the broad
conclusions drawn for the simpler case above may be applied to this
refinement of the same system.

4.3 Natural frequency solutions using the receptance method

Based upon the analysis in section 4.1 together with the
computational experience reported in Chapter 3, a computer program
was written to determine the natural frequencies of the uniform bladed
disc. This it does simply by evaluating the frequency determinant of
iUlN 2, laded disc of the type described above, assuming the two
degrees of coupling, and the routines which were developed earlier for
the calculation of the closed form disc receptance expressions
(Chapter 3) now form the heart of this program.

Some apprehension was felt concerning the possible behaviour
of the determinant in frequency regions near the natural frequencies
of the disc alone. At these frequencies, each of the receptance terms
which form the determinant is infinite, and whereas the value of the
determinant itself would not necessarily be infinite, its evaluation
might present a formidable computational problem. As it was not
possible to estimate the extent to which such ill conditioning might
affect the calculations, steps were taken tc ensure 'Ihat these
difficulties were avoided.

The program was used to calculate the natural frequencies of a
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number of different systems. Initially, a one bladed disc (of academic
interest only!) was treated as the results could be checked quite
easily by hand calculations. Then, the general program was tested with
a three bladed disc and a programme of computing for the five bladed
discs of interest was drawn up and carried out.

In the case of a tuned system, the pattern of the determinant -
frequency relationship which had been predicted (section 4.2) was found
to be accurate. Sections of a graph in which A is plotted against
the frequency parameter (b) are shown in FIG.4.5, and from these the
natural frequencies may be found. Using this method, the first dozen
or so natural frequencies were computed to 5 significant figures,
although not very efficiently owing to the failure of conventional root
finding techniques to locate the double roots. A number of disc and
blade sets with various geometrical ratios were treated in this way,
and some of the results are presented graphically in FIG.4.6 where the
natural frequencies of a five bladed disc are plotted for blades of
varying length but constant width.

Next, the effect of detuning the system was investigated by
making the blades slightly different one from another. This produced
the result that was tentatively suggested in the previous section.
Where the tuned system had a double root at one frequency, for the
detuned system there was a pair of close natural frequencies. Single
roots were largely unaffected. The system whose determinant produced
the double root shown in FIG.4.5 was subjected to this type of
detuning, and the corresponding section of the determinant - frequency
plot is reproduced in FIG.4.7. The frequency splitting phenomenon,
illustrated in this graph, is found to be a characteristic of every
double root, and a detailed study of its mechanism may be found in
Chapter 5.

There is one special case which has passed, so far, unmentioned.
From consideration of the physical system, it may be seen that it is
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possible for an N bladed disc to vibrate in a mode with N nodal
diameters so disposed that the blades are all situated at nodal points
and thus cannot participate in the motion. The natural frequencies and
other characteristics of such modes of vibration of the bladed disc will
be identical to those of the disc mode of the same shape. To each such
mode, there will correspond a conjugate mode in which the blades will be
situated at antinodes of a mode whose shape is similar, but not
identical, to that of the pure disc mode. These latter conjugate modes
appear as single roots to the determinant solution, but the former pure
disc vibration modes are not detected by this solution since they
constitute a trivial case in which Fj , c; = 0.

The different types of solution and their corresponding modes
are discussed in the last section of this chapter.

4.4 Calculation of modal shapes

Each root of the frequency determinant corresponds to a mode
of vibration of the bladed disc. There are two properties of each of
these modes which are defined by this solution, one being the natural
frequency and the other the modal shape. The latter is found as a set
of relative values for the forces and couples ( Fj) Cj> and is
conveniently expressed as F, :i F2: . . . F,.,: C, : CL... : C, o1
From such a set of ratios, it is possible to derive other forms of the
modal shape, such as the pattern of nodal lines which was used to
describe the modes of a circular disc. However, it is the original
version of modal shape which is the more convenient form for
qualitative measurements and comparison.

The method by which these modal shapes are computed is
basically quite straightforward, although difficulties do arise when
there is more than one solution at a particular frequency, such as the
double roots of the tuned system. If there is a single root of the
determinant at frequency L3, , then the modal shape corresponding to
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that natural frequency is determined as follows. The equations
represented by equation (4.3) may be written out with each receptance
term completely defined by the value of w, . A unique solution for
the  var iab les  Fj , Cj does not exist because the equations (4.3) are
homogeneous, but a set of relative values may be found. By selecting
one of these variables ( C, say) and setting it to unity, it is
removed from the equations as a variable and replaced as a constant
term. In this way, a set of 2N--I inhomogeneous equations are formed
from which a solution for F;/cti, F, /c,, . . . etc. may be obtained,
and appears as a set of ratios ( 5 : F, : . . . TN : c, : c, . . . : I ) .

If there is a double root at frequency w, , it is necessary
to find two such sets of ratios which are linearly independent. The
modal shape of free vibration at this frequency is then defined as
5 linear combination of these two modal shapes. In this case, it is
necessary to fix two variables and slightly modify the procedure, but
the results for these cases are so arbitrary that they are not very
useful and in fact are not used in the subsequent sections.

Calculations have been made for a five bladed disc for a
number of modes in which there is a unique root to the determinant.
These include the single roots of the tuned systems, and all roots of
the detuned versions. Consider first the single modes of the tuned
model. In every case, the modal shape is found to exhibit complete
circular uniformity and is always of the form ( X : X : X : X : X : I : I: I: 1: I}

so that each blade experiences the same loading. When the sys tern is
detuned by varying (for example) the blade lengths about a mean value,
then a similar variation in blade loading about the average value is
found.

When examining the shapes of modes corresponding to double
roots, it is convenient to confine the examples to detuned cases in
order to simplify the computational procedure. Calculations were made
for the mode shapes of the double mode whose pair of natural frequencies
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is illustrated in FSG.4.7, and the results are tabulated in FIG.4,8.
Although there seems to be little significance in these actual figures,
it may be shown that the distribution of both force ( fj 1 and couple

( cj 1 around the disc correspond to a cos (ZQ+$) distribution for
the first mode, and a sin (263+#  ) distribution for the second
(where 8 is the angular position of the blades), The detailed study
in Chapter 6 examines the full significance of these observations, and
relates them to the specific form of detuning of which they are the
result.

By considering the combined effect of five forces and couples

( Fj , Cj ) acting at the rim of the disc, it is possible to compute the
normal displacement of any part of the disc using the general
receptance expressions CX (r,Q) in Chapter 3. These calculations
lead directly to defining the patterns of nodal lines which constitute
an alternative expression of modal shape. However, the numerical
procedure is somewhat lengthy and the results merely of passing
interest, so that few calculations have been done. As an illustration
of the technique, the nodal patterns which correspond to the pair of
modes described above are given in FIG.4.9.

From both presentations of the modal shapes of this pair of
modes, it is clear that not only are their natural frequencies almost
identical, but also their modal shapes are identical in every aspect
other than their angular orientation in the disc.

Chapter 6 deals with the properties of the modal shapes of
detuned systems in much greater detail, and it is sufficient at this
stage to have described the manner in which they may be found,
together with one or two examples.
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4.5 Application of the matrix method of solution to a uniform model

Having established that the receptance determinant solution
provides a somewhat inefficient means of computing natural frequencies,
we shall now investigate the potential of the alternative approximate
solution. This expresses the motion of the system in a matrix form
which readily lends itself to numerical application on a digital
computer. However, we have yet to establish whether the estimates of
natural frequency which the approximate method yields are sufficiently
accurate to be useful.

The salient points of the analysis in section 2.6 will now be
expressed in terms of the properties of the uniform model which, in
turn, were derived in Chapter 3. Considering first the blades, which
are represented by rectangular beams, the displacement functions of the
i" blade (equation 2.12) may be written as

(4.11)

and yfls) are the displacement and slope of the
beam;
is the coordinate along the length of the beam with
an origin at the root;
is the length of the beam;
and iA, are the principal coordinates representing
rigid body translation and rotation;
is the principal coordinate for the A" flexural mode;
is the characteristic function of that mode, and
is its derivative with respect to A ;
represents the number of flexural modes which are
admitted to the approximation.
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The potential and kinetic energy may be expressed in terms of the same
properties as

S
(4.12)

(4.13)

Turning now to the disc, we find that a similar treatment is less
straightforward in this case. The normal displacement function for a
single flexural mode was derived in equation (3.37) and is

where A- and 0 are the geometrical coordinates;
a is the radius of the disc;

4AS is the principal coordinate for the -,s mode which
has * nodal diameters and S nodal circles;

fLW is the radial characteristic function of that mode
and is derived in equation (3.40), and

cos c-e- eb%.s) is the angular characteristic function.

In this equation there are two unknown parameters, eas and (kz ,
and it is found that a more convenient way of expressing the equation
is obtained by introducing a pair of principal coordinates, C+

and LJ D so that

I (4.15)

The double suffix a,5 which identifies the flexural modes may be
replaced by the single suffix i which is chosen for convenience
so that j, I ,2,3... etc. corresponds to the modes arranged in
ascending order of their natural frequency. Thus:
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3 12.52070 3 0

4 2 0 . 4 5 7 6 9 I I
I I I I I

I : I 1 6-l-C.

On the inclusion of the rigid body modes of vibration (discussed at
the end of section 3.61, the final form of the expressions for the
normal displacement and slope of the disc is obtained:

where 900 is the principal coordinate representing rigid
body translation

qQ0 and p,- are the principal coordinates for rigid
body rotation about perpendicular diameters

and Q is the number of flexural modes of vibration
considered in the approximation

The potential and kinetic energy of the vibrating disc, in terms of
these coordinates, is

Q

(4.17)
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and

(4.18)

The equivalent energy expressions for the bladed disc are simply the
sums of the respective energy terms of each of the constituent parts
of the system. Thus,

(4,191

where both expressions are functions of all the principal coordinates

P S 9 and h S including those representing the rigid body modes
of vibration. As explained earlier, the zero-natural-frequency
property of these latter modes necessitates the elimination of their
coordinates from the equations of motion. In order to eliminate
i& and ihR from the kinetic energy term iv , two equations
may be derived by equating the displacement and slope of the root of
the i& blade to the same quantities for the point on the rim of
the disc at which it is attached. Thus

y4! lo) = AAT’ (a, 9;)
(4.20)

and from these equations ihr and ina may be found in terms of ;A+
and all ,b and 4 . The three disc coordinates c$_, , c+,~ and

PID may be eliminated by the application of Lagrange's equation to
the energy expressions (4.19) for each coordinate in turn, The
algebraic manipulation of the three resulting equations of motion may
be found in APPENDIX 4.1 where q/_ , 4,. and k,, are expressed
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in terms of coordinates representing only flexural modes of vibration.

The energy expressions (4.19) may now be written in terms of
the coordinates of flexural modes only, and further application of the
Lagrangian technique to the modified equation (4.19) for each of these
coordinates in turn leads to the set of equations of motion of the
approximate system. These provide the required system matrix whose
eigenvalues and eigenvectors may be computed by one of a number of
standard methods. The general forms of the equations of motion are
derived in APPENDIX 4.2 for reference.

4.6 Eigenvalue estimates of natural frequency

A series of calculations was done on Titan in order to find
the accuracy of the eigenvalue estimates of natural frequency which
resulted from various degrees of approximation, as defined by the
parameters Q and S . All the results which are described in this
section relate to five bladed discs. A detailed study was made on the
particular model in which the five identical blades had a length
equal to l/3 of the diameter of the disc, and the results from this
study were found to be typical of those for other configurations.
Natural frequencies computed according to the 'exact' receptance
method (section 4.3) provided a standard of comparison.

The first step in each calculation was the formation of the
system matrix (or order I'S p , where P = 2a+NS, and N = S),
after the fashion described in sections 2.7 and 4.5. The eigenvalues
and eigenvectors for this matrix were then found by a library routine
which is based on the well known Jacobi process described in
Wilkinson (1965). From this solution, the natural frequencies and
modal shapes were determined from the relationships given in Chapter 2.

Results pertaining to the natural frequencies are displayed in
FIG.4.10 for various combinations of Q and S 0 The eigenvalue
estimates are invariably on the high side and tend to the exact values
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as Q and S increase. However, evenwhen Q= 16 and s ~5,
the estimates are in error by as much as 20% in some cases, which
points to the need for caution when applying the method*. On the
other hand, the present matrix method yields natural frequencies very
much more quickly than does the receptance method. Experience has
shown that the two methods may be usefully combined, the one rapidly
providing estimates which make the root-finding procedure in the other
much more efficient. The apparently random variation from mode to
mode in the accuracy of the results (see FIG.4.10) is discussed later
in the present section.

A second series of calculations was designed to assess the
accuracy of the eigenvalue method in estimating the magnitude of the
natural frequency splits which occur in the double modes of detuned
systems. Results shown in FIG.4.11 show that these estimates are
acceptable in that they are of the right order of magnitude.

FIG.4.12 shows the results of further computations which
illustrate the effect of variation in blade length on the natural
frequencies of a tuned five bladed disc. The eigenvalue method was
used with Q = 16 and S - 5, and the disc thickness, blade width
and disc diameter were kept constant in the ratio 1:2:48. Because
the range of blade length extends to zero (so including a disc without
any blades) it is possible to identify each mode of a bladed disc
with the unbladed disc mode from which it is generated. This is a
convenient way of identifying modes when there are only a small number
of blades and the composite system does not, in consequence, possess
such geometrically simple modal shapes as an unbladed disc.

*
In any one particular case, both the matrix and receptance methods
yield identical results if, instead of using the closed form receptances,
we use the series form truncated at the same values of Q and S o
Thus this result also indicates the need for caution when using series
form receptances,
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There appears to be some connection between the results shown
in FIG.4.12 and the variation in accuracy of eigenvalue estimates which
was mentioned earlier. While it would be difficult to establish a
numerical relationship, it may be noted that those modes in which the
eigenvalues provided the poorest natural frequency estimates
correspond to the lines in FIG,4.12 whose slope (at the appropriate
point on the abscissa) is greatest, In fact there would seem to be a
qualitative connection between the slope of the frequency curves in
that graph and the accuracy of the natural frequency estimates provided
by the matrix method
more convenient form
pursued no further.

of solution. However, as it seems unlikely that a
of this method will be found, the matter will be

4.7 Eigenvector estimates of modal shape

In the same way that the matrix method supplies approximations
to the natural frequencies of a bladed disc, it also provides estimates
of the modal shapes. The determinant solution for modal shapes
consists of a distribution of blade load around the rim of the disc
from which the displacement shape, or nodal lines, of the surface of
the disc may be deduced. In the matrix solution, the eigenvectors
which are computed simultaneously with the eigenvalues lead directly
to this displacement shape. From this, the more convenient form of a
blade load distribution may be found.

The normal displacement of the disc was derived in equation
(4.16) and is

(4.21)
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(4.22).-&sk~) = Frk 0) 4/-

in which C$ is a vector containing all the flexural principal
coordinates p , 9 and A (but not those of rigid body motion,

90" etc.); and E is a matrix of coefficients which include not
only the terms such as 0j(:) CCS 'Lje } above, but also those
resulting from the elimination of the three coordinates c+.~ , rtlo

and b,, * The form which F takes is shown in APPENDIX 4.1,-

This may also be written

matrix
of the

Each eigenvalue (or natural frequency wy ) of the system
has an associated eigenvector, C+x o The displacement shape
mode corresponding to this natural frequency is simply

(4023)

and by substituting various values of + and e in the matrix 5 ,
the relative displacement at the corresponding points may be found.
Solution of the equation

produces the patterns of nodal lines which are a familiar description
of modal shapes. Furthermore, by finding the relative values of the
normal displacement and slope at the points on the rim at which the
blades are attached, and using the series form receptance expressions
for the blades, it is possible to obtain the distribution of blade
load around the disc.

However, both these processes are cumbersome in numerical
execution and the few results which are described here demonstrate
that the matrix method of solution has no advantage either in speed
or accuracy over the determinant solution in the evaluation of modal
shapes. This is the reverse of the situation described in the
previous section for natural frequency calculations,
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A number of calculations were performed for a five bladed disc
and were analysed in a similar manner to the eigenvalues. Owing to the
amount of time required to perform these calculations, it was not
convenient to study many different modes of vibration, and we shall in
fact confine our discussion to the results for one double and one single
mode. The results relating to a double mode were from a detuned system
and those for a single mode from a tuned system, The graphs in FIG.4,13
show how the five individual blade loads vary with the values of Q
and s , and unlike the results of the previous section we find them
to be almost completely independent of either parameter. One surprising
result apparent in the graph for the single mode is the fact that the
blade load estimates appear to worsen as the approximation is improved'.
Whilst the determinant solutions corresponding to these results are
marked on these graphs, there is a better form of comparison for the
double mode which is shown in FIG.4,14, In these two graphs the blade
loads are plotted as a histogram against the angular positions of the
blades around the disc, From these discrete values, it is possible to
deduce a simple cosine distribution, and this is shown alongside the
corresponding curve deduced from the determinant calculations so that
the two may be compared. For the first case , good agreement is
observed between the two methods of solution (the amplitude of each
curve is arbitrary and must not be considered in the comparison), but
the second set of results is somewhat confusing. Certainly both
solutions indicate a similar cosine variation of blade load around
the rim, but the approximate solution has a mean value which differs
considerably from zero, the value which it should take.

No explanation for this discrepancy, nor for the seemingly
ill-conditioned single mode case was immediately forthcoming, and
since this method of solution has no advantages over the exact
solution, a more detailed investigation was not made,

However, it is as well to bear in mind that the determinant
solution is not possible unless the roots of the determinant are known,
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and it is only with the assistance provided by the eigenvalue
estimates that these roots may be readily found,

4.8 Vibration characteristics of bladed discs

The results reported in this chapter may be summarised quite
briefly as characteristics of the flexural vibrations of bladed discs
in general, The two methods of solution which were used both
demonstrated the existence of two distinct types of flexural vibration
mode, These are called 'single' and 'double* modes after the form
taken by the corresponding solution to the equations of motion,

There are two aspects in which single and double modes are
fundamentally different, and these are both concerned with detuning,
The first of these is a property of the natural frequencies. A single
mode has just one natural frequency associated with it, although the
actual value of this frequency may vary slightly as the nature and
magnitude of detuning varies, However, there are always two natural
frequencies associated with each double mode, These are very close in
a detuned system and identical in a tuned system, as shown by the
existence of equal eigenvalues of the system matrix and double roots
of the frequency equation found by the receptance method, The
phenomenon of 'frequency splitting' is a consequence of detuning, and
cannot under any circumstances occur in a single mode,

The second difference concerns the modal shapes, It is a
property of a single mode that in a tuned system each blade experiences
the same loading, or that the modal shape is circumferentially
symmetrical, Detuning causes this symmetry to be slightly disturbed,
but the individual variation of blade load is small compared to the

mean* or tuned system, value, The modal shapes corresponding to a
double mode are essentially the same in both tuned and detuned systems,
In any one case, the distribution of blade load follows a cosine
variation around the rim and consequently has a mean value of zero,
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exactly the reverse of that for a single mode.

Single modes include all those bladed disc modes which are
associated with the symmetric disc modes (i,e, those with no nodal
diameters) as seen in FIG.4,12, and also those special cases with the
same number of nodal diameters as there are blades (or any multiple
thereof). These were described as 'conjugate' modes earlier in the
text, but as they are found to exhibit all the properties of single
modes, they may be classified as such, All other modes fall into the
category of double modes.
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CHAPTER5

DETUNING A FIVE BEADED DISC - (I) NATURAL FREQUENCIES

5.1 Introduction

Calculations described in the previous chapter show that when
the symmetry of a tuned bladed disc system is slightly disturbed,
certain of the normal mcdes of vibration split into a pair of modes
with similar characteristics and very close natural frequencies, The
asymmetry was introduced in that case by varying the sizes of the
blades so that they were no longer identical (as had previously been
the case), Similar results would also be obtained by disturbing the
circular symmetry of the disc itself, or the angular positions of
otherwise identical blades. Detuning may thus be defined generally as
the process of making small variations to a basically symmetrical
system, and this work will seek to investigate the specific effects of
detuning on the properties of a vibrating bladed disc. Because the
precise mechanism seemed unimportant, it was decided that for the
purpose of all subsequent computation, the system would be detuned by
varying the blade lengths only, keeping all other dimensions constant,

The general form of detuning will be represented by a
distribution of blade length around the disc so that the length of any
one blade is defined by the equation

(5.1)

where f()0 is the detuning function, and is within the
range -I+(e) < +I j

6 represents the degree of detuning, and determines upper
and lower limits of blade length;

L is the length of each blade in the tuned system;
and 0 is the angular position of a blade.
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Subsequent sections in this chapter deal with the effect of using a
variety of forms for the detuning function $ (e), and in particular
with the frequency splitting which then occurs0

Basically, there are two problems associated with the frequency
splitting phenomenon which must be solved. The first is concerned with
the mechanism of such splitting, and the second with the consequences,
A physical explanation of this phenomenon has not been found. However,
by considering the effect of adding small detuning masses to the rim of
a uniform circular disc, it is possible to predict a natural frequency
split and to estimate its magnitude, This analysis is given in
APPENDIX 5, and the results are discussed in relation to their possible
extension to include bladed discs. Given that certain modes of
vibration do split on detuning, we wish to establish a relationship
between the type of detuning (f(e)), the degree of detuning (a)
and the magnitude of the resulting splits in each mode. The present
chapter is concerned with this problem only, while in the next chapter
a study is made of the properties of a pair of modes with close natural
frequencies.

In order to tackle the problem numerically, a large number of
calculations must be performed. It may be seen from the previous
chapter that the matrix or eigenvalue approximation to the natural
frequency solution is an ideal tool for this investigation. In such
an application, this method scores heavily over the alternative
receptance determinant method by virtue of its speed and convenience
of use* A five bladed disc with dimensions in the ratio8 h = 0.3,
and W,/Za = .04167 was selected for this study. For all
calculations, 16 disc modes (Q) and 5 modes per blade (S) a r e
considered in the approximation; reference may be made to the previous
chapter concerning the accuracy attained with this set of data, The
natural frequencies of the tuned version of the chosen model are found
on FIG.4.12 at the point corresponding to x = .3, and this particular
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case is of special interest because the natural frequencies of modes 3
and 4 (corresponding to the 3/O and l/l modes of the unbladed disc)
are extremely close together. Their separation is of the same order of
magnitude as the splitting phenomenon which is under investigation.
This makes possible a study of the effects of interference between one
pair of modes and another.

form of
are two

Finally, we note that when it is required to derive a general
a function, in this case the detuning function f (0>, there
principal methods which may be employed. One is to form a

polynomial such that

and the other is to assume a Fourier series,

(5 -2)

Because of the circular
obvious choice, and the
idea.

nature of the system, this latter form is the
present chapter is devoted to developing this

It has been found convenient throughout to identify each mode
of the bladed disc with the shape of the unbladed disc mode from which
it has degenerated. This system is illustrated in FIG.4.12.

5.2 

When a study of the effects of detuning was first considered,
it was decided to make a statistical analysis of randomly detuned
systems. This work was largely completed, but the results led to
belief that a systematic study could illustrate much more clearly
patterns of behaviour of a bladed disc subjected to detuning.

the
the
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The blade length equation which was used for random detuning
was simply

L = L, ( I + 6 k ) (5.4)

where K; could take any value at random within the range -I& rc sl.
Now, it is possible to derive a function of the type shown in equation
(5.3) which has the same values at the five points 8i= 2xi/5 ,
for i - 1(1)5, as the corresponding random numbers e; e As there
are only five variables, the function needs only five terms and may be
written either as

f(Q) = a, f a,cosQ + a,&0 + a,ss26 + a, s&29 (5.5)

or, in a more convenient form, as

f(e) = b, + b,c=(0+#) + 6, cos2@+V') (5.6)

The five constants, a0 to a+ in the first case and 6, , b, , b,, 4

and 9 in the second, may be found by solving the set of five linear
equations which are formed by equating /(a;> and LL for each
value of i O Thus, any five blade lengths may be represented by

(Se@, and this equation is the general form of f(e) for the case
of a five bladed disc.

We shall now study the effect of each of the three terms in
equation (5.6) individually. The first of these is a constant term,

b0 ) and provides an almost trivial case in that it serves only to
lengthen (or shorten) each blade by the same amount. This does not
disturb the circular symmetry of the system and thus will not cause
splitting in the double modes, although it will raise (or lower) the
natural frequency of each mode. Calculations were made to assess the
magnitude of this effect and the results are shown as a set of curves
in FIG.5.1. For each of a number of modes, the detuned natural
frequency is plotted against the total extension or contraction of the
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A set of calculations
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lines which result correspond to the slopes of
in FIG.4.12 at the point x = 0.3.

a detuning function of the type

= b,cos(-#)
was carried out for a variety of values of

(~6,) and #, and the results may be summarised  as follows:
(i) the natural frequencies of single modes are unaffected by this
form of detuning; (ii) the value of $ has no effect whatsoever on
any of the natural frequencies, and (iii) certain of the double modes
exhibit a splitting of their natural frequencies which is symmetrical
about the tuned system value, while others do not. The results are
shown graphically in FIG.5.3 where natural frequency is plotted
against the component of tab le detuning, (+). With the
exception of modes 3 and 4 (l/l and 3/O), which present a special
case by virtue of their proximity, it is found that all those modes
which do exhibit a split are associated with unbladed disc modes
possessing (5i 22) nodal diameters ( j is any integer). Also all
modes which show no splitting are associated with disc modes which
have (5.j 21) nodal diameters. This indicates that each double mode
of the five bladed disc belongs to one of two categories, depending
on the shape of the unbladed disc mode from which it degenerates.
The existence of two distinct groups is also evident in the general
form of the detuning function for the five bladed disc (5.6), where it
is necessary and sufficient to include terms of cot re and ~0s 28

types only. The reason for this may be illustrated by reference to
the diagrams in FIG.5.2. The first of these, FIG.5.2a, shows how a
detuning function of cetl0 results in the same set of blades as
does a function of Co5 4-e , or, generally, c0.s (5j f1)0 . The
second diagram shows the identity of the cos 28 detuning function
with all others included in the general term cos (5j 22)Q . Modes
and detuning expressions of these two types are referred to as
belonging to either the ’ ~0s I@ ’ or ’ ~0s 28 ’ family.
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The other type of basic detuning function,

j(e) = 6, cos20J++/)

produces a similar set of results. Once again, no change is observed
in the natural frequencies of the single modes; nor does the value of
p affect the natural frequencies of any mode. In this case however,
it is the modes of the co5 19 family which do split, while those of
the cu3 28 family do not, The computed results are shown in
FIG.5.4 alongside those from the previous
are combined and presented graphically in
splitting in each mode is plotted against
relevant cosine term ( ab, 0N z )0

case0 Both sets of results
FIG.5.5 where the degree of
the component of the

In this graph, the results for the l/l and 3/O modes are
omitted since they do not conform to the regular pattern. It is clear
from FIGS.5,3 and 5.4 that some form of interference is present
between these two modes, and further calculations for a slightly
modified system (one in which x was .275 instead of .3 and the
natural frequencies of these two modes are not so close) show the
expected behaviour (FIGS.5.3a and 5.4a).

The general conclusion which might be drawn from these results
is that detuning of the cas re type does not produce any splitting
in those modes which belong to the U.--S fe family, whereas it does
cause the modes of the other family to split. A reciprocal
relationship holds for cas 28 detuning.

One further empirical relationship has been observed. For
any particular bladed disc, there are just two parameters for each
mode of vibration which define the behaviour of that mode under any
detuned conditions. The first of these we shall call the 'frequency
factor', 5P , and is the slope of the appropriate line in FIG.5.1.
It is a measure of the rate at which the natural frequency of the
tuned system varies with blade length. The second parameter is termed
the 'split factor', 9 , and this is a measure of the degree by
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which splitting occurs, as indicated by the slope of the corresponding
line in FIG.5,5. From the table of values which has been drawn up for
the system currently under investigation, it appears that, apart from
a difference in sis, these two parameters have substantially the same
value.

MODE FREQUENCY SPLIT
FACTOR FACTOR
@r !@

In order to demonstrate the application of the above results
to a general example, one of the randomly detuned cases of the
statistical analysis was taken, The five random numbers k;
specifying the individual blade lengths were analysed to determine the
constants b, , 6, , 6, , 4 and p in the Fourier series of
equation (5.6)0 Using the values of 6 and ck in the above table,
the natural frequencies of each of the double modes were deduced by
superposition of the relationships described above,, These
frequencies were then compared with the values which were computed
directly from the same blade and disc data. Details of this example,
which is just one of several treated in the same way, are tabulated in
FIG,5.6 where the extremely close agreement between 'deduced' and
'computed' natural frequencies is clear.
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5.3 Calculations made using the receptance method

Having established a number of relationships between blade
variations and their effects on the natural frequencies by using the
approximate matrix solution, it was decided that they should be
verified by test cases computed according to the more precise
receptance determinant method. This would confirm that the
relationships are not peculiar to the approximate solution, and also
furnish more accurate values for the frequency and split factors,
defined in the previous section.

In order to provide values for comparison with later
experimental work, the blade length ratio (X) was taken as 0.275
(rather than 0.3), and calculations were made for the same model as
before. The results of these calculations confirm those of the
earlier analysis, and as an illustration, a portion of the determinant
- frequency plot is shown in FIG,5,7. These curves are drawn in the
region of the natural frequency of the fundamental mode (2/O), and
correspond to (i) the tuned system; (ii) the detuned system when
f(e) = cus 8 and CJ- = 0,Ol; and (iii) a second detuned system in
which f(e) = CIcrJ 20 and Q = 0.01. Curves (i) and (iii) are
indistinguishable from one another, while curve (ii) demonstrates a
definite split of natural frequency which is symmetrical about the
tuned system value. Furthermore, it was found that a detuning function
of CQZJ (@ t$) produced exactly the same curve for any arbitrarily
chosen value of + o This was also a result of the earlier analysis.

As had been the case earlier, it was found that for larger
degrees of detuning (of the order of 6 = .02), a detuning function
of the US 16 type would in fact produce a small degree of split in
modes of the cQ5 10 family, but once again the order of magnitude of
this split in such a mode is insignificant when compared to that due
to CQS 28 detuning. This would seem to confirm the suspicion that
there is a second order, or nonlinear, effect causing these small
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splits, rather than these being the result of computational errors.

Finally, a set of calculations were undertaken in order to
obtain more accurate values for the frequency and split factors

($=&I which were defined in section 5.2.
calculations, a table of values for these parameters
is shown below,

Based on these
was drawn up and

FREQUENCY SPLIT
MODE FACTOR FACTOR

@ !P
210 - .475 * 478
I / I - I .405 I.443
3/o - .7l9 .672

21 I - .572 -564
4/o - .034 .035
6/O - .382 .37/
112 - .473A .48/

For the system used in these calculations, the natural frequencies of
the l/l and 3/O modes were not as close as had been the case for
the earlier study,, However, they were sufficiently close to produce
slight interference one with the other, and it is thought that the
proximity of their natural frequencies is responsible for the larger
discrepancies which are found between ch and GJ for these
particular modes. The figures relating to the other five modes show
the same degree of similarity as those computed by the matrix method,
so that it is not possible to attribute the differences found there
to the approximate nature of the solution. However, it is difficult
to be sure whether or not the discrepancies found between the two
constants @ and ck ) being as small as they are, are due to rounding
errors in computation. It must be remembered that each of these
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factors is found from the difference of two almost identical
frequencies, and is of the order of IX of the magnitude of either
frequency, The order of magnitude of the discrepancies with which we
are concerned is in turn just lx of this difference, and thus only a
very small fraction of the original values,, Although all the
computation is done with seven significant figures, it is doubtful
whether all the disc receptance terms attain this degree of accuracy.
Thus it is felt that computational errors of the same order of
magnitude as the discrepancies observed between @ and 9 are quite
possible.

In this chapter, we have established that for a five bladed
disc there are just two types of mode; the CQS /e and (;(Ts 28
families. From the results it is possible to deduce two alternative
general rules of detuned behaviour, One is that the modes of the
CGS 463 family are split by any detuning function except one which
belongs to the ca3 4 family. The alternative rule is that modes
of the COJ 40 family are only split by detuning functions belonging
to the cbs Z.&Q family. In the case of the five bladed disc these
two rules amount to the same result, but it is the latter which is
supported by the theoretical predictions in APPENDIX 5, Test
calculations for a seven bladed disc, in which there are three such
families, substantiate this prediction,
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CRAPTER6

DETUNING A FIVE BUDED DISC - (II) MODAL SHAPES AND
VIBRATION LEVELS

6.1 Introduction

The previous chapter was concerned solely with the natural
frequencies of detuned systems, and did not describe the corresponding
shapes of the modes of vibration. In this chapter, a study is made of
these modal shapes, along much the same lines as that for natural
frequencies, and the practical significance of the results is discussed,
All the numerical examples upon which this chapter is based result from
calculations which were made using the receptance method of solution,
The relative merits of the two methods for obtaining modal shapes were
discussed in Chapter 4, and it was found that it is the receptance
method which provides the more efficient and accurate means of
computing this information,

Each modal shape, as computed by this receptance method, is in
the form of a set of values for the forces and couples which act at
the root of each blade. It was considered necessary to devise a more
concise form for the presentation of this information, and a number
of possibilities were examined. One of these - the pattern of nodal
lines on the disc - was rejected since it provides very little
quantitative information. The shape of the displacement at the rim
was also considered to be unsuitable as its specification is, if
anything, less concise than the original set of blade loads,
Finally, it was decided to define a modal shape function (or, blade
load distribution) which is of a similar form to that of the detuning
function f (@), and which represents the distribution of either
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blade forces or couples around the disc*, The modal shape function is
written as

and the five constants k_ , /4 , k , )I and 8 are determined by the
couples on each of the five blades. The constant A is an arbitrary
scaling factor, and may be chosen to have any convenient value,

It is convenient to study the behaviour of single and double
modes separately, Their characteristics are dissimilar, and so, it is
found, are their reactions to detuning.

6.2 Single modes

Although it is a property of single modes that they do not
split under any detuned conditions, it appears that their modal shapes
are affected by detuning, and then often to an appreciable extent. The
present section attempts to establish the precise manner in which the
single modal shapes of a detuned system are related to the form and

degree of the detuning arrangement, In order to achieve this, a
numerical study was made on four such modes of the five bladed disc,
those selected being associated with the O/l, 5/O, O/2 and O/3
modes of the unbladed disc. As before, this classification is used to
identify the bladed disc modes.

First, the shapes of these four modes were computed for a tuned
system, in order to provide a standard of comparison for subsequent
detuned cases o The result was the same for each mode, and the modal

*
It is found that in any modal shape, the pattern of.blade root forces
is identical with that of blade root couples. The couple is a more
useful parameter since the bending stress at the root is directly
proportional to it.
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shape function was found to be simply

F(8) = 1I 1 (6.2)

where A is chosen in this case so that the constant term is 1.
This result illustrates clearly the circular uniformity which is a
property of single modes, and which was discussed in Chapter 4,

In order to discover how these modal shapes are affected by
detuning, it was found convenient yet again to consider individually
the effect of each of the three terms which constitute the general
detuning function f (e), (5.6), The first of these, a constant
term, is clearly a trivial case and has no effect on the modal shapes
simply because it does not upset the circular symmetry of the system,
However, when a detuning function of the form

f(6) = b, ca Co+ @)

was applied to the system, and calculations made for various degrees
of detuning, it was found that the shape of each mode followed the
same pattern in which the modal shape was of the form

(6.3)

&here j refers to the j" single mode), By plotting a number of
results (see FIG.6.1), it was possible to establish a simple
relationship between jp, and ( ab, >, and it is found that for
each mode: ;B, = ;k (& ). A similar result is obtained by
using the third type of detuning function:

f(e) = b,cas 2@4’/)

for which modal shapes were all of the form

(6.4)
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In this case, the coefficients jkz and (ok) are related for
each mode by a second constant jkcc,  , SO that jpz = jk, ( ab,)
(FIG.6.2). These results show that for each of the two basic forms of
detuning, there is a linear relationship between the variation in blade
length and the variation in blade load around the disc, The
consequences of this effect appear to be considerably more serious for
the higher frequency modes,

If we now consider the general form of detuning, represented by

j(e) = b, + b,cos(e+4) -t b/a 2@+@) (6.5)

it is possible to deduce the modal shapes for this arrangement by
superposition of the above results. As mentioned above, the constant

bo will have
the two cosine

(64, so that
is:

no effect on the modal shapes, The effect of each of
components may be derived from equations (6,3) and
the modal shape resulting from any detuning arrangement

j kr ab, ) cam (Q+ 4) + (jk,Qba)  C-US 2(8+ JI)

(6.6)

p) =

In this case, a simple linear relationship between blade length and
load, such as was found for the two simpler detuning functions, does
not exist. However, since the two constants for any one mode, jk, ,

and ,A B have similar values, the overall effect is much the samee
A variation in blade length gives rise to a variation in the blade
loads about a mean value.

The practical significance of this result may only be
appreciated by considering the response of a system which is lightly
damped to various forms of excitation. Suppose that a bladed disc is
excited in some given manner at the natural frequency of a single mode,
The response to this excitation might be conveniently measured as the
distribution of blade root stresses around the rim of the disc, and
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the presence of light damping is necessary in order to maintain finite
stress levels at the natural frequencies. If the damping is light, we
may express this form of the response as

q (0) = jpo Fj Ce) (607)

where F; (0) is the modal shape, and jpo represents the mean
stress level and is directly proportional to the excitation level.

If we may assume that this given excitation will give rise to
the same mean stress level ( jpo ) for various detuned versions of
the same basic system, then it is possible to make a direct comparison
between tuned and detuned systems. The conclusion which may be drawn
from such a comparison is that, for a single mode, detuning always
causes one or more blades to experience higher stress levels than they
do in the tuned system under the same excitation conditions. The
extent of this effect depends upon both the form and the degree of
detuning, but the variation in stress levels (about their mean) is
usually several times that of the blade lengths about their nominal
(tuned system) value,

It is difficult to ascertain whether this assumption is
justified. It is unlikely to be valid in a case where the position
of excitation (if this is at a point) is close to a node. In this
case, slight variations in the nodal pattern, which will result from
detuning, may cause large variations in the effective excitation.

6.3 Ilouble modes

The behaviour of double modes under detuned conditions is
somewhat more complex than that described in the previous section for
single modes. It was first observed in Chapter 2 that when there are
two or more coincident roots to the receptance determinant, there is
no unique modal shape corresponding to that frequency, This is the
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situation which exists in respect of the double modes of a tuned system,
and for these modes, the modal shapes or patterns depend upon an
external influence (such as the excitation) for their complete
specification. However, as soon as the system is detuned, and no
matter how small the degree of detuning, the pairs of coincident roots
of the frequency determinant are replaced by pairs of very close roots
and corresponding to each of these is a unique modal shape which is
defined completely. Thus, it is only in the limit of detuning (i,e, in
the tuned case) that analytical difficulties arise,

As in previous cases, we shall begin by considering the simple
form of detuning where

w8 = 6, cam++) (6.8)

The modes which are studied in the numerical investigation are those
which are identified with the 2/O, 3/O and 2/l modes of the
unbladed disc. The other double modes which lie in this frequency
range, the l/l and 6/O modes, are omitted since they do not
exhibit the frequency splitting phenomenon under this type of detuning
(see section 5,2).

It is found that the results pertaining to each of these three
modes follow the same pattern, For each pair of modes (constituting
a double mode), the shape of the one with the lower natural frequency
may be expressed as

while that for the higher frequency mode is

(6.9)

(6010)

A set of results for the 2/O mode, typical of those from which these
expressions were derived, is shown in FIG,6.3. It may be seen in this
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table that the coefficient k, increases with o-b, , but since its
magnitude is always very much less than that of pz , it is omitted
from the modal shape functions, (6.9) and (6.10), as being negligible.
Since there is thus only one term in either of these expressions, the
value of its coefficient in each case (/& ) is of no consequence,
and is chosen for convenience to be unity.

A similar study was made for the l/l and 6/O modes by
using a detuning function which is known to cause them to split.
Calculations made for these two modes, with

fw = 6, um z@+c1/)

produced a similar set of results, The two modal shapes for any
double mode in this category are typified by the results tabulated
in FIG.6.4 for the 6/O mode. The modal shape functions which are
derived from these results are

and

(6.11)

(6.12)

(corresponding to (6.9) and (6.10) respectively), and these demonstrate
the same properties as those described above for modes of the other
family*

As a general rule, it may be considered that it is the natural
frequency of each mode which determines its shape. In the case of a
double mode of a detuned system, there are two modes which have almost
identical natural frequencies so that they possess correspondingly
similar modal shapes, The form of the detuning, and in particular the
constant # or $ , provides the specific angular orientation of
each of these two virtually identical modal patterns. As the degree
of detuning increases, the natural frequencies of the two modes will
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differ appreciably, and this, in turn, will give rise to differences of
a similar order of magnitude between the shapes of the corresponding
modes. It is believed that the nonlinearity which is evident in the
tabulated results in FIGS,6,3  and 6.4 (in which the coefficient p,

(or pz ) increases with d ) might be attributed to this effect,
and this suggestion is further substantiated by the behaviour of the
l/l and 3/O modes, in which the nonlinearity is considerably more
pronounced than in the other modes. The natural frequencies of these
two modes in the tuned version of the system are quite close together,
so that a variation of modal shape with frequency would be more marked
in their vicinity than elsewhere, Thus, one might expect that any
second order effect which arises from such a variation would be more
prominent in these two modes than in the others.

The alternative expressions of modal shape were computed for
one particular case (for the pair of 2/O modes) in order to provide
a comparison between them. From the basic form of a set of blade
loads, the modal shape was computed in the form of (i) a blade load
distribution; (ii) the disc rim displacement shape and (iii) as a
pattern of nodal lines on the disc, A further expression was
obtained by computing the blade root displacement distribution,
This was found by considering the displacement of the rim of the
disc at the five points corresponding to the positions of the blades
as five discrete values, and then deducing a function of the same form
as the modal shape function VW. The results are presented in
two sets of graphs, The first, FIG.6.5, shows the individual blade
loads and their deduced distribution, the disc rim displacement shape
and the -deduced  blade root displacement distribution. The second
simply shows the nodal patterns: FIGo6.6, In both sets of results
the orthogonality property of the pair of modes is evident. The
deduced blade load and blade root displacement distributions for each
mode consist of similar cas 28 -type curves and are in phase with
each other. The disc rim displacement, although it exhibits a



somewhat complex shape, may be seen to be basically a ccm 28
variation around the disc, and this also is in phase with the two
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distribution curves, The results shown in these graphs serve to
illustrate the close similarity which exists between the various
expressions of modal shape, and this is a feature which may be used
to advantage in the next section,

6.4 A simplified double mode

Once again, it is necessary to consider the response of a
bladed disc to damped forced vibration in order to realise the
practical implications of the results obtained in the previous
section. It has been found convenient to study the behaviour of
double modes by considering a simplified analytical model which has
basically similar properties, Using this model, the response of a
simplified system may be determined for a wide range of detuning
arrangements under various damping and excitation conditions.
Subject to the limitations of the simplifications, results obtained
in this way may be related to the real system to predict the behaviour
of a bladed disc when it is detuned.

The basic assumption which is made in the construction of the
model is that the response of a bladed disc double mode may be
considered in isolation from the effects of other modes. Thus the
system is reduced to one in which there are just two degrees of
freedom. The normal modes of vibration which correspond to these
two degrees of freedom have properties typical of those of the pair
of modes which constitute the double mode of a bladed disc, These
two modes are represented by principal coordinates 9, and %,
and their natural frequencies ( w, and wz) are very close. The
shape of each mode is defined by the rim displacement shape, and this
is assumed to be

H,(e) = co3 ti.8 (6.13)
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for the mode with the lower natural frequency ( w,), and

A.J= (e) = Sib n@ (6.14)

for the higher frequency mode. These are typical of a bladed disc
double mode with /VL nodal 'diameters', It will be assumed that the
inertia and stiffness coefficients of the two modes are identical,

We shall now derive expressions for the response of this
system to various forms of excitation. It is convenient to consider
first the possible forms which the excitation might take, In
Chapter 3 it was shown that the only type of loading at the rim of the
disc which could excite a mode with /VL nodal diameters is one of the
form

P (0) = P, co-3 A& Pk (6015)

Any configuration of loading at the rim may be represented in a Fourier
series, and generally this will contain a term such as that in (6,lS).
It is found that a point loading is a typical example in that its
Fourier series representation contains a cvs *@ term for every
integral value of a o We shall thus confine our interest to this
type of excitation. For a point load F. situated at a point 0 - 2
on the rim, the general term in the Fourier series expansion is

p,(e) = 2 Gas ,(0-l) eiut (6.16)

The total generalised force in the two modes due to the point load

F, may be determined (as in section 3,7), and is found to be

Q, = F. - (^‘I) (6.17)

in the first case, and

in the second,

(6018)
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Damping may be included in the analysis, and c, and c, will
be used to represent the fraction of critical damping which is present
in each mode. The two equatioxsof motion corresponding to c+, and

4/z may now be written as

and

where cc, is the inertia coefficient of either
equations may be readily solved for c+, and c+.L
of the system to excitation at a point 8 = 7
some suitable form, It is convenient to express

+ 2G9 c+, + L),=c+, = Q, /A.

(6.20)

mode., These

B and the response
may be obtained in

(6.19)

this response as a
receptance function R (0) which relates the displacement at any
point on the rim to the point load F, at 8 - 2 o This
receptance may be written generally as

(6.21)

where .w, (63) and N,(G) are the modal shapes defined in (6.13)
and (6.14) respectively. On substitution for c&, and 4, (which are
found by solving the equations of motion (6.19) and (6.20)), the
response becomes

where

W,= J_ ; e = thk-’ (q/w,)

and
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( wo is the maximum response and 6 the position around the rim at
which it occurs),, It was shown in the previous section that the
variation of blade load around the disc corresponded to the rim
displacement shape. Thus it may be considered that W, is
representative of the maximum blade load (and e of its position),
and it will be used subsequently as the significant parameter in
comparing tuned and detuned systems.

Having obtained a measure of the response of the simplified
system, it now remains to investigate the properties of this
solution for a variety of conditions. The three parameters which
might be most usefully varied are (i) the split, or difference
between the two natural frequencies w, and ~3, ; (ii) the
position of the excitation 1' and (iii) the level of the damping.

First, we shall study the significance of the position, or
origin of the excitation, For a given split and damping levels
(assuming c, = c, = c ), the amplitude of the response ( W,) was
computed at frequencies in the region of the natural frequencies, for
different values of 7 o Typical results for a system with a split
of .Ol and with .Ol critical damping are shown in the graph in
FIG.6.7 where the three curves correspond to excitation positions of

'I = O,n/z*,  n/m  e Clearly, for the second of these three curves
the maximum response attained throughout is lower than for the other
two, illustrating that the maximum response of a detuned system is a
function of the position of the excitation. This function is shown
in FIG.6.8 where the maximum response 40) of systems with
different splits but a constant level of damping is plotted against
the angular position (7) of the excitation, Each curve in FIG,6.8
shows there to be an optimum position of 7 , at 7-r/2*, whereA
the reduction in W0 is at its greatest, A further graph, FIGo6.9,
shows how this reduction varies with both the split and the level of
damping present in the two modes. The curves represent the maximum
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amplitude attained in the response for the optimum position of
excitation at q = n/2-~ o Each curve is asymptotic to 0,707
times the worst, or tuned, case, and the speed of convergence to this
value is governed by the split and damping.

The conclusion which may be drawn from this study of a
simplification of the real system is straightforward, Detuning
cannot produce higher levels of response in a double mode than those
present in the tuned case0 The degree of the reduction which is
possible depends on the position of the excitation, the split of the
two natural frequencies (or the degree of detuning), and the level
of damping present in the system,

It is believed that the simplified system which has been
studied in this section will represent closely the behaviour of most
double modes of a bladed disc, In certain cases where there are a
number of modes all with similar natural frequencies, the assumptions
may not be justified, However, the results of an experimental
investigation, which is described in Chapter 8, indicate the
validity of the simplification,

It has been found that the simplified analytical model, which
has been formulated in this section based upon a large number of
calculations of an 'exact' analysis, corresponds to that assumed by
Tobias and Arnold (1957) in their discussion on the vibration of
rotating imperfect discs.
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CHAPTER 7

THE DESIGN AND DEYIZLOPMENT OF THJ3 EXPERIMENTAL EQUIPMENT

7,l Requirements of an experimental model

The basic requirement of an experimental model is that it
should represent as closely as possible the system which was studied in
the theoretical analysis. If this requirement is met, a realistic
comparison might be made between the results of the analysis as
described in the earlier sections and those obtained from an
experimental investigation,

Since this work is primarily concerned with a uniform disc
which is bladed with five uniform rectangular bars, such is the form
that the model should take., Furthermore, it was observed at the outset
of the study that the inclusion of blade stagger as a variable parameter
would be an inessential complication, so that no provision for the
adjustment of stagger is necessary on the model,

It is necessary to suspend the disc in such a manner that it is
effectively freely supported in space, This simply means that the
natural frequencies of the bladed disc when it is vibrating as a rigid
body on its suspension should be much lower than those of the
flexural modes of vibration with which we are concerned,

Detuning is the principal factor of interest in this work, so
that a means of controlling it must be incorporated which is at the
same time precise and convenient, In the analytical studye detuning
was both effected and measured by the variation of the individual
blade lengths, and the same technique may be used experimentally,,

Finally, it was believed that the inclusion of a source of
damping which may be varied up to a level such as is experienced in a
running turbine (of the order of Q = SO), would be a desirable
feature, This would serve to ensure that the response in the



vicinity of a resonant frequency would be restrained to a reasonable
level, Experience shows that on this type of freely supported system,
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inherent damping is very low (Q> 1000) so that the response at a
natural frequency is extremely high. In practice this is manifest
by the applied exciting force becoming very small, under which
conditions electronic noise levels render accurate or consistent
measurements very difficult, if not impossible. Thus, the inclusion
of damping which is heavy enough to overcome this difficulty but
sufficiently light so as not to interfere with the general patterns
of behaviour, is advantageous,

7,2 The design of a model

The first design consideration is clearly that of the five
bladed disc itself, Several forms which this might take were
considered before it was finally decided to machine this item in one
piece, from a sheet of steel, The main advantage of this form of
construction is that it avoids discontinuities of geometry or
material properties at the blade to disc junctions, and thus provides
what is perhaps the best possible representation of the analytical
model. The actual dimensions of the model are of some importance in
that it is preferable to arrange for the working frequency range to
lie between 100 cps and 3000 cps, The flexural natural
frequencies of the bladed disc are of course highly dependent upon its
size, and the following dimensions were those eventually chosen:

Disc diameter = 24"
Disc thickness = 1"
Blade width ?X 10
Blade thickness = 1"
Blade length = (initially) 8"

(subsequently) 6"

The original model, with 8" blades (L./24 = l/3), had a
fundamental natural frequency of about 125 cps, and the later
version a slightly higher value, Vibration data for the experimental
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model have been computed, and are discussed in APPENDIX 7,.

In order to control the detuning process, it was decided
to vary the effective length of each blade by the addition of shims
with the same cross section as the blades but of various thickness,
to its tip. Also fixed to the tip of each blade is an aluminium plate
which forms part of the damping arrangements which are discussed
later. It was decided that the standard blade throughout the detuning
tests should be effectively 6,6" long ( L,/~Ix  - .275), and this
should be attained by adding to the tip of the 6" blade the damping
plate and a 'detuning block' (basically a large shim). The size of
this block is chosen so that the fundamental frequency of a free free
bar, 6" long and with a mass at one end equal to the total mass of
the block and the damping plate, is the same as that for a uniform
free free bar which is 6.6" long. The assembly is illustrated in
FIG.7.la. On detuning, an overall blade length of L,(Itcr-oc)
might be required, where b represents the degree of detuning
and o( may be any value between -1 and +l. In this case, a
detuning block corresponding to the chosen value of Q- is used
which makes the effective blade length up to L.(I -c) , and
then the number of ahime which constitute the increment of blade
length (jr+ oc]rL,) are added as shown in FIG.7,lb.  A set of
nine shims were made for each blade in sizes of 1, 2, 4, 8, 16, 32,
64, 128 and 256 units, where one unit is equivalent to a length
increment of L, /20000. Also for each blade, a set of detuning
blocks were made which corresponded to five degrees of detuning
(o- = 0, .0025, ,005, .Ol and .025). For each assembly, the shims,
block and damping plate are all fixed to the tip of the blade by two
Allen screws which locate in holes tapped in the end of the blade.
The detuning 'kit' for one blade is shown in FIG.7.2,  and a typical
assembly may be seen in the photograph in FIG.7.3. For convenience,
two tables were drawn up, one of which provided the total number of
units corresponding to any combination of o- and d. # while
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the other gave the only combination of shims which add up to this
total.

Turning now to the damping arrangements, there are basically
two mechanisms which might be employed to produce a viscous damping
effect on the vibrating system. One of these, based on the
resistance offered by a highly viscous fluid to the motion of a body
through it, was considered as impractical owing to the difficulties
which would be involved in varying or controlling the damping level.
The method which was adopted depends on the fact that a conductor
moving in a magnetic field experiences retarding forces proportional
to its velocity. An aluminium plate is attached to the tip of each
blade so that it moves in its own plane as the blade vibrates. An
electromagnet is then placed in position with the aluminium plate
situated in the gap between the two poles of the magnet, as
illustrated in FIG.7.3. The magnetic flux in this gap, and hence the
magnitude of the retarding or damping forces which result from eddy
currents induced in the plate, is controlled by the current flowing
in the winding of the magnet. Pilot tests, which are described in
the next section, showed that an arrangement of this type was
capable of providing damping whose magnitude could be readily varied
up to the required level, in this case to Q = 50. A magnet was
designed which is intended for use with a disc and any number of
blades, and consists of a single winding to which may be added a
number of pole pieces (see FIG.7.4). A magnetic circuit with a high
flux density air gap may be obtained simply by the addition of a
pole piece as illustrated in FIG.7.4 and in detail in the photograph
of FIG.7.3. It is appreciated that there will be edge effects
arising from the simplifications which it was found convenient to
adopt for manufacturing, but these are not expected to impair
performance, This design has several advantages over the
alternative of a number of smaller individual magnets, and these are
increasingly apparent for greater numbers of blades. In particular,
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very little effort is required in setting up the magnet ready for a
test, and the ampere-turns associated with each of the individual
magnetic circuits is automatically the same0 Also, for a larger
number of blades there is a considerable saving in the quantity of
copper which is needed for the magnet windings: for 30 blades,
the individual magnets would take double the amount required by the
present design, The adopted design may be seen in FIG,7,5,

The final item which required careful attention at the
design stage was the means of suspension of the disc, The necessity
for low natural frequencies of the rigid body vibrations was
mentioned earlier, and to obtain these, a previous worker (Armstrong)
suspended his model with 'shock-proof' elastic cord. However, this
has the disadvantage that it provides virtually no lateral restraint
(i,e, in the plane of the disc) which in turn would render the
proposed damping arrangements impractical, An alternative method of
resting the system on rubber blocks was ruled out owing to the high
level of damping which would result, A suggestion that some form of
air cushion might be employed led to the discovery that a partially
inflated automobile inner tube provides an excellent support for the
disc by combining the required low stiffness in a direction normal
to the plane of the disc with a fairly high lateral stiffness, Tests
described in the next section showed the inner tube to be ideal for
this purpose, and experience has since borne out its suitability and
convenience in use, It may be seen in position in FIG,7.5,

7,3 Suspension and damping tests

Prior to the acceptance of the suspension and damping
arrangements described above, simple tests were carried out to
examine their suitability,

The suspension was required to provide a free support for the
disc while at the same time introducing no significant energy
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dissipation. The first set of tests were made to study the effect of
variation of air pressure in the tube on the natural frequencies of
the bladed disc which it supported,, For pressures ranging from 3 cm
to 12 cm of Mercury, a number of the natural frequencies were
measured from free vibrations of the disc. The signal from a
piezoelectric strain gauge on the surface of the disc was passed
through a frequency analyser, and on impact excitation of the disc
each individual component of the gauge signal could be isolated and
measured. No variation in these frequencies could be detected with
change of pressure, and as they agreed well with the theoretically
computed values, it was concluded that the inner tube did not
influence the stiffness of the system to an appreciable extent.

A second set of tests was carried out using the same
technique in order to measure the level of damping present in each
mode, A record was taken of the decaying oscillations of the disc in
each mode of vibration in turn. Analysis of these decay curves showed
that in every case the level of damping was less than 0,0005 times
the critical damping for that mode (corresponding to a G2 factor of
greater than 1000). Damping of this low order might very well be
attributed to mechanical losses in the specimen itself, which again
seems to indicate that the inner tube is not contributing to the
motion.

In order to test the proposed damping arrangements, it was
necessary to construct a separate rig, This consisted simply of a
bar of the same dimensions as the blades which had one end embedded
in a large block of steel and an aluminium  plate attached to the free
end. A small electromagnet was then placed in position with its two
pole pieces on either side of the plate. By plucking the free end of
the bar, it could be excited to free vibration as a cantilever with
the attached plate moving in its own plane, Depending upon the
strength of the magnetic field in the gap between the poles, the
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plate, and consequently the bar, would experience a retarding force
proportional to the instantaneous velocity of the plate, The
effective damping offered by this source of energy dissipation was
measured as before by the analysis of decay curves0 A strain gauge
fixed to the 'root' of the bar was used to detect the vibrations, and
photographic records of its signal were made for various magnetizing
currents o The results from this experiment indicated that viscous
damping was introduced which was substantially proportional to the
magnetizing current, The maximum current which was considered as
permissible from considerations of heat dissipation in the winding,
was found to correspond to a level of damping of the same order of
magnitude as that required (i,e, .Ol critical, or a Q factor
of 50),

7,4 Instrumentation and other equipment

Experimental equipment other than the basic items described
above falls into three distinct categories. The first of these
concerns the means of vibration excitation; the second includes all
the equipment necessary for the measurement and recording of the
response of the system, and the third constitutes the power supply
for the damping magnet,

In order to excite the bladed disc to vibration, an
electromagnetic vibration generator was used and the moving coil of
this unit was rigidly fixed to a point on the rim of the disc by
means of a simple clamp arrangement, This method of attachment was
designed so that the excitation could be applied to any point on the
rim, The receptance transducers were also mounted on the clamp
assembly, which is shown in FIG,7,6, A Muirhead decade oscillator
was used to supply a signal at the required frequency to a power
amplifier which, in turn, drove the vibrator, The frequency stability
of this signal is very important (for reasons discussed in the next



section) and an electronic counter was used
to an accuracy of 6 significant figures,
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to measure its frequency

The basic requirements of the instrumentation are to measure
(i) the excitation force applied to the disc and (ii) the response of
the disc, both as the normal displacement or acceleration at the point
of excitation (the driving point) and also as a distribution of blade
loading around the rim, It was decided that the most suitable
transducers for use in each case would be those of a piezoelectric
type, since they are more sensitive and less demanding on ancillary
electronics than passive types of transducer. A short description of
piezoelectric charge generating transducers and their use in
vibration work is given in APPENDIX 6. A force gauge and accelerometer
were used for the accurate measurement of receptance, while barium
titanate  strain gauges were attached to the root of each blade in
order to provide an indication of stress levels O These gauges are not
suitable for accurate measurements of strain, nor may they be
calibrated owing to the variation in their sensitivity both one from
another and with environmental conditions O They may, however, be used
to illustrate the distribution of blade stress around the rim of the
disc, and are ideal for comparing the responses of different systems,

Many of the experimental results were recorded by a Solartron
data logger, and as this instrument measures d-c, levels only, it was
necessary to rectify the aoco outputs from the transducers D The
circuitry associated with a single strain gauge signal is shown in the
diagram in FIG.7.7,  while the corresponding circuit for the receptance
transducers will be discussed in the next section,,

Finally, we come to the equipment used to control the
application of damping, In order to vary the intensity of the
damping, a d,c, power supply was used which was capable of delivering
10 amps at 24 volts0 The circuit is shown in FIG.7.8 and consists
of a rheostat for controlling the current level, and a reversing
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switch for demagnetising the magnet while switching off the power.,

7.5 Development of receptance measuring technique

One of the principal objectives of the experiments is the
observation and measurement of the natural frequency splits which
result from detuning (see Sections 4,3, 5,2), It was decided that
this could be best accomplished by measurement of the response of the
bladed disc to forced vibration, In order to measure a split of the
order of l%, it is necessary to know each of the two natural
frequencies to within at least O.l%, This in turn requires that
the frequency of any point on the response curve (from which the
natural frequencies are deduced) should be known to within about O,Ol%.
The stability of the oscillator signal and the electronic measurement of
its frequency are both capable of maintaining this degree of accuracy=
However, it is necessary that other aspects of the measurement
technique should be examined in detail to ensure that such a level of
accuracy is in fact attainable.

If it is assumed that the acceleration and force transducers
are accurate (in their measurement of the quantities they are
experiencing), it is necessary to establish that these quantities are
in fact those that we wish to measure, Since the transducer and clamp
assembly is very stiff in a longitudinal direction, it is reasonable
to assume that the displacement (and acceleration) in that direction
is the same throughout its length. This being so, the acceleration
level indicated by the accelerometer is the same as that of the point
on the rim at which the excitation is applied, and at which the
response is required, However, the force level measured by the force
gauge is not the (true) exciting force which is applied to the disc,
on account of the separation of the point of force measurement and
the disc itself by part of the clamp assembly, In the vicinity of a
resonance of the bladed disc (which is virtually undamped), the true
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excitation force which is required to sustain a working vibration
level is aluost zero0 In this situation, the inertia force of the
mass of metal between the points of force measurement and
application will be several times greater than the applied force
which is to be measured. The transducer will give a reading which is
a combination of both the inertia force and the (true) excitation
force, so that measurements in the regions of greatest interest (i,e.
near natural frequencies) are incorrect, Fortunately, it is possible
to correct the force gauge readings so as to measure the excitation
force which is required, Suppose the force gauge reading is F , the
accelerometer reading is 2 and the angle by which f leads g is
measured as $ o We shall assume that the inertial load (i.e, the mass
of metal between the points of force measurement and application) may be
estimated or measured, and that its mass is y,, 0 The true excitation
force which is applied to the disc, P o is obtained simply by the
vector subtraction of the inertia force hgX from the measured force

F # and this, in terms of the measured parameters is

(701)

Other workers (ref, Schloss) have proposed an alternative
method of making this correction which is both more convenient and
more accurate o The amplified outputs from the force gauge and
accelerometer provide signals which are directly proportional to the
physical quantities they are measuring. Now, the vector subtraction
described above may be performed electronically with the aid of
operational amplifiers, similar to those used as charge amplifiers
(see APPENDIX 6), thus forming a miniature analogue computer. A
fraction of the acceleration signal is subtracted from the force
signal using a circuit which is shown in FIG,7.9,  and this fraction
may be chosen to correspond to any particular value of the inertial
load VT.L~ 0
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To illustrate the importance of this correction, and the
identity of the two methods of making it for a given load m, o the
results of a test are shown in FIG,7,10, Of the three curves of
receptance plotted against excitation frequency, one illustrates the
uncorrected results (i); a second shows the curve drawn from the
electronically corrected receptance (ii), while the third is the
result of numerical correction according to equation (7,l) (iii).,
Clearly the two methods of correction provide almost identical
results, but the former process is much more convenient to use, A
further advantage of this technique is that it provides a means of
obtaining a good estimate of the mass of the inertial load, m. 0
In order to make this estimate, the vibrator and transducer assembly
is driven without attaching it to the disc, The electronically
corrected force level should be zero since in this case there is no
load, and the fraction of the acceleration signal which is subtracted
may be adjusted until the (corrected) force is at a minimum. In
practice, this minimum will not be exactly zero, but it is usually at
least two orders of magnitude less than the uncorrected force (i,e,
than the inertia force of the mass W, )0 A calibration test was
performed to determine this inertial load, and to examine its
variation with frequency of vibration, The results, shown in FIG,7,11,
indicate a fairly consistent relationship between these two parameters
with the inertial mass approximately equal to 0029 lb, except near
two frequencies (200 and 800 cps), The deviation from a constant
value near these two frequencies indicates that the inertial load is
not simply a mass, but that it has elastic properties of its own which
result in the behaviour shown on the graph, It is found in practice
that there are two similar narrow frequency regions in which the
receptance measurements by the transducers are inconsistent, The
cause of this is believed to be this flexural behaviour of the clamp
assembly and such regions are arranged so as not to interfere with
any measurements which are required,
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Electronic mass cancellation was employed in all the tests
which are described in the next chapter,

7.6 Calibration of the damping assembly

The most convenient way of calibrating the damping assembly
is by measuring the level of damping in each mode of vibration and
relating it to the magnetizing current, The experimental procedure
which is employed to do this is based on the recording and analysis of
decay curves resulting from free vibrations of the system, and is now
described in detail,

Before any measurements may be made, it is necessary to determine
the natural frequencies of the bladed disc, and this may be done either
by calculation or by experiment. The output from a piezoelectric strain
gauge attached to the surface of the disc is fed into a wave analyser
which is tuned to the natural frequency of the mode which is currently
of interest, If the disc is struck, it will vibrate in every normal
mode (except any which might have a node at the point of excitation),
and the decaying oscillations in the selected mode will be filtered out
of the complex strain gauge signal, These oscillations may then be
recorded in the form of a decay curve, such as the one shown in FIG,7,12,
and analysed to provide a measurement of the level of damping present,
The reproduction also shows the details of this analysis,,

A series of tests was carried out for a number of different
modes of vibration at each of three different magnetizing currents, From
the results, which are shown in FIG,7,13, a roughly linear relationship
between magnetizing current and damping was found for each mode. In
general, the damping resulting from a given current falls off for the
higher natural frequency modes, although it appears that single modes
are more effectively damped than double modes.
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THE EXPERIHENTAL PROGRAMME, PROCEDURE AND RESULTS

8.1 Objectives of the experimental investigation

The experimental investigation was undertaken in order to
provide a check on the calculations and observations which had
resulted from the theoretical analysis. These fall into two
categories, one concerned with a method of natural frequency calculation
and the other with the behaviour characteristics of detuned systems; and
the experimental programme is similarly divided.

The first objective of the experiments is to provide an estimate
of the accuracy of the natural frequencies which were computed by the
receptance determinant method. The experimental model was designed so
as to represent the analytical model as closely as possible, and
comparison of measured and computed natural frequencies is considered
to be a realistic check on the accuracy of the method of solution.

The second and more important series of tests are intended to
confirm, both qualitatively and quantitatively, the patterns of
behaviour of detuned systems which were examined in detail in
chapters 5 and 6, These experiments involve observation and
measurement of the frequency splitting which occurs in certain modes
under detuned conditions. They are also designed to verify that the
two types of cosine detuning do in fact have the effects which are
predicted by the 'theory'. The modal shapes may also be measured, and
in certain cases the validity of the proposed 'simplified double mode'
(Section 6.4) may be investigated. An extensive study of modal shapes
is less readily made experimentally than by computation owing to the
necessity of making measurements from forced vibration response in the
former case, while the latter is based on a consideration of free
vibrations. It is in this aspect also that both the advantages and the
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limitations of having just five blades become noticeable, While there
are only five blade stresses to be measured and recorded, a discrepancy
in a single reading has a much greater effect on the deduced modal
shape than if there were a large number of blades, however, the
subsequent work which is planned for a multibladed disc should overcome
this difficulty, I

The series of tests which were carried out are listed here and
described in detail later in the chapter, and in the same order,

1, Tuned systems: various x *
Series A.Natural frequencies X = 0.3333
Series B.Natural frequencies h = 0,25
Series C.Natural frequencies ?I = 0,275

20 Detuned systems: x = 0,275
Series D.Natural frequencies: cosine detuning
Series E.Damped response: single modes
Series F.Damped  response: double modes

8,2 Experimental procedure

The experimental procedure was basically the same for every
test described in this chapter, The various parameters, such as
excitation position and frequency, detuning and damping arrangements
etc, were varied from one test to another according to the requirements
of the programme  outlined above, but in each case the results were
obtained in the form of response curves,

Prior to each test, it was necessary to set up the system with
the detuning blocks and shims which were specified for the current
detuning arrangement as described in the previous chapter (7,2),

*A is the 'blade length ratio'; being the ratio of blade length to
disc diameter,
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Having established which mode of vibration was currently of interest,
the mass cancellation adjustment was corrected for the natural frequency
of that mode, either by inspection (as described in the calibration;
7,5) or direct from the calibration curve FIG,7.11, Then, the
vibrator and receptance transducers could be attached to the point on
the rim of the disc which that particular test specified, by means of
the clamp arrangement which was also described in the previous
chapter, It was found to be convenient to locate accurately the
natural frequency (or frequencies) which were to be measured during the
test, so that the values of frequency at which readings should be made
in order to produce an acceptable response curve could be most
efficiently spaced, These natural frequencies could be detected by
inspection of the force and acceleration signals, which were monitored
on valve voltmeters, and noting the value(s) of frequency at which the
ratio of acceleration to force reached a maximum. When this had been
done, the specific values of frequency at which the response should be
recorded were selected, the number of points ranging from about 20
for a single resonance to 30 or more for a double-peaked resonance.

With the damping magnet switched on at the required current
level, the response at each of the excitation frequencies was obtained
and recorded in the following manner0 The oscillator signal was set
at the appropriate frequency (its exact value being measured by the
electronic counter) and the strength of the signal supplied by the
power amplifier to the vibrator was adjusted to provide satisfactory
force and acceleration levels, In the vicinity of a resonance, it was
necessary to maintain a reasonably high level of vibration in order to
make the exciting force signal large enough to be free from electronic
noise, As the resonant frequency was approached, this became
increasingly difficult, and the measurements of force at frequencies
very close to this value are subject to considerable errors,, However,
only one or two points on the response curve were affected, and these
usually lay outside the bounds of the graph, A similar situation
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arose near antiresonances where the acceleration fell to a very low
level, The maximum level of vibration was determined by the acoustic
noise level in the laboratory near resonant conditions, and by the
power limitations of the equipment which became evident near anti-
resonances0

As soon as the monitored transducer signals showed that
transient effects had died away, the outputs from the two transducers
and the five strain gauges could be recorded, In the majority of
cases this was done directly onto punched tape by the data logger,
ready for processing. In the few cases when this instrument was not
available, these outputs had to be measured individually on the
voltmeter, written down and then punched out onto tape; this procedure
took almost 100 times as long as when using the data logger.

Finally the results were processed by computer to provide
measurements of receptance, blade stress response and relative blade
stress levels around the rim at the various excitation frequencies.

g,3 Experiments on tuned systems

The experiments in this category are intended to provide
accurate measurements of the natural frequencies of three five-bladed
disc sets, In each case, the natural frequencies were first measured
by an impact technique similar to that used in the damping calibration
tests (7,6). The filtered strain gauge signal was compared with one
of known frequency from an oscillator for each mode in turn, and the
natural frequency deduced by matching the two signals. The resolution
of this method proved to be poor and ineffectual for close natural
frequencies, so the measurement of the response to forced vibration
was adopted as the means of determining natural frequencies.

Series A: Blade length ratio = 0,3333.
The original model was machined with five 8" blades and the

response of this system was measured over a wide range of frequency
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during the development of the receptance measuring technique (7.5).
The response in the vicinity of each resonant frequency was examined
in greater detail so that the natural frequencies could be measured to
within O"O2 cps, The results of these tests are tabulated in FIG,8,1
alongside the theoretically computed values, with which they show good
agreement, Owing to a lack of precise information concerning the
physical properties of the steel from which the model was made (see
APPENDIX 7), it is necessary to quote upper and lower bounds on the
constant (K) which relates the dimensionless and dimensional forms
of frequency, and this results in the upper and lower limits which
quoted for the 'theoretical values' in this and subsequent tables,

Series B: Blade length ratio = 0,25.
The model was then subjected to further machining prior to

are

the
detuning tests and the blade lengths were reduced from 8" to 6",
A series of tests was performed, identical to those of Series A, in
order to determine the natural frequencies of this modified system,
Results are tabulated in FIG,8,2.

Series C: Blade length ratio = 0,275.
When each blade had its damping plate and 0% detuning block

added to its tip, the system was an approximation to a bladed disc
with a blade length ratio of 0,275*, The natural frequencies of
this model were then measured and compared with those computed for a
system with x = 0,275 as shown in FIG.8,3. As might be expected*,
the results do not show such close agreement as for the two earlier
cases, although the correlation is still very good.

The results from all three series of tests are presented on a
single graph, FIG,8,4,  in which the measured natural frequency is

*
The assumption is made that these composite blades behave as uniform
bars, 6.6" long, when vibrating at low frequencies. This will
become less valid at higher frequencies,



106

plotted against the computed dimensionless natural frequency for each
mode. If the analysis is accurate, then the experimental results
should all lie on a straight line, the slope of which is the constant
Ic and depends upon the elastic and dimensional properties of the
model. bowever, this constant may only be determined to within about
f 52, thus making a direct comparison of the two sets of results
difficult, Two lines corresponding to the upper and lower bounds on
the constant are shown as broken lines on the graph and all the
experimental points are seen to lie on or between them. It is also
clear that these experimental points lie very close to the straight
line which has been drawn through them, and this fact serves not only
to illustrate a good agreement between experimental and computed
natural frequencies, but also to provide a much better estimate of the
constant Ic o Using this result, a further table has been prepared
in which the deviation of each experimental frequency from this
straight line is shown: FIG.8.5. Finally, the results are shown
superimposed upon a graph from one of the earlier sections, FIG.4.6,
which illustrates the variation of natural frequency with blade length,

In every case, the results show an exceptional agreement
between the computed and measured natural frequencies, and thus
provide confirmation of the accuracy of the analytical solution.

8,4 Detuned systems - I. Natural frequency measurements

In performing a series of experiments with the intention of
confirming the predicted behaviour under detuned conditions, there are
two problems to be overcome0 The first of these is to locate and
measure a natural frequency split in those modes for which 'theory'
predicts such a split will occur with the given detuning. The second
and more difficult task is that of demonstrating that there is no
split in those modes which theory again specifies. The difficulty
here is that in selecting a point on the rim of the disc at which to
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apply the excitation, it is quite possible to choose a point which is
on, or very close to, a node of one or other of the pair of modes.
This results in only one mode being apparent in the response curve.
If a second excitation position is chosen, say 10 to 20 degrees
from the first, then a second mode may well be detected in the
response, in which case the existence of a split is confirmed together
with a measure of its magnitude, Such a case is illustrated in
FIG.8,7 where the response in the vicinity of the pair of 2/O modes
is shown for two positions of excitation. However, this second
position will not necessarily produce a significant change in the
response, such as the case illustrated by the curves in FIG,8.8. In
this case there is in theory no split, but a third and perhaps even
fourth excitation position might be necessary in order to furnish
sufficient evidence to make this observation conclusive. There is,
however, one feature which indicates whether or not a split is to be
found by further measurements. Marked on both graphs is the natural
frequency of the tuned system, and as the detuning is in both cases
of a cosine nature, theory predicts that any splitting which results
will be symmetrical about this tuned system value. In FIG.8.7, the
curve corresponding to 8 = 50' indicates a single resonance, but
as this occurs at a frequency which is substantially higher (0.3%)
than the tuned system value, it suggests that that particular
excitation position is producing response in just one of a pair of
modes. Excitation at a different point proves this to be the case
by displaying two natural frequencies symmetrically placed about the
tuned system frequency, On the other hand, the curve corresponding
to 8 = so0 in FIG.8,8 also shows a single resonance but this time
it coincides with the tuned system natural frequency, suggesting no
split, The second excitation position produces an identical response
to the first, substantiating this result. Although this provides a
useful indication, it must be used with some caution since, if there
is a constant term in the detuning function, then the splits will
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not be symmetrical about the tuned system values.

Series D: Various forms of detuning, x - 0.275
During the course of these tests it was found necessary to

alter the damping plates slightly and this resulted in a shift of
about 1X in each tuned system natural frequency. In the detuning
tests we are concerned only with the difference or split between pairs
of close natural frequencies, and not so much with the absolute values,
so that the results from all the tests are included in this section.
In each 'test' described below, the natural frequencies and splits of
the first five double nodes were measured.

ze In this series, the first tests used a simple COSQ detuning
function with c - .Ol. These were followed by --s (0 + 30);
o- = .025, cas (Q + 30); c7- - .Ol and then by Cos (0+ 90);
Q = -01. The results from these tests are tabulated in FIG,8.9
and they illustrate the same pattern of behaviour as that predicted in
the theoretical sections. The modes which belong to the second family
(i.e, those which are associated with ( 5J’ f 2) nodal diameter disc
modes) exhibit a split which is dependent upon d but not on e ,
while the double modes of the other category show no signs of splitting
at all,

jl& The second series of tests used the complementary detuning
functions based on w 2(0+3/), with a similar selection of values
for CJ- and 9 . These results are given in the table in FIG.8.10,
and once again they conform to the behaviour specified in Chapter 5 for
this type of detuning.

2. Finally, a third set of tests incorporated detuning functions
formed by the sum of two different types of detuning. The first used
a detuning function of f (6') = 0.2 + oar ( 8 + 30) with d = ,025.
In addition to the expected splitting which occurred in this case, the
mean natural frequency of each mode was lowered as a result of the
positive constant term ( cb,= .OOS), thus providing an opportunity
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to estimate the frequency factor $ (defined in Chapter 6), as well
as the split factor $' , for various modes.

The second test of this type used a combination of both types
of cosine detuning with 4 { cas ( 8 + 30) + cxr~ 2( e + 15)) and
6 - .025. In this case a split was observed in every double mode,
and the results from this and the previous test are given in FIG.8.11.#

Having satisfactorily established agreement between experimental
and predicted patterns of behaviour, the results were then analysed to
provide a quantitative measure of the split and frequency factors of
some of the modes. These are shown in the table in FIG,8.12 alongside
values which result from the computational study described in Chapter 5. *

With due consideration to the order of magnitude of the quantities
being measured, it is felt that agreement between the experimental and
computed values of these properties is very good, and that the behaviour
predicted by the analysis is confirmed by the experiments.

Throughout the course of these tests, measurements were made
to check that splitting is a property of double modes only. In no case
was splitting detected in any single mode.

8,5 Detuned systems - II. Damped response

The experimental study next sought to compare the response of
the system when it was subjected to various detuning arrangements in
the presence of light damping, Many of the experimental observations
relevant to this section were measured from the strain gauges, and
consequently the results are considerably less accurate than those
concerned with frequency measurements. AB it was found convenient in
the analytical sections to separate the treatments of single and
double modes, so it was decided to divide the experimental work in
the same way. In the previous section (8.4), only double modes were
of interest and single modes were hardly mentioned. However, theory
predicts that it is these latter modes which are adversely affected by
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detuning from a consideration of stress levels, so that a number of
tests were carried out to check this result,

Series E: Single modes
This series of tests was performed to measure the variation

in blade stresses resulting from various forms of detuning in each of
three single modes, Only the blade stresses at the resonant frequency
were required and in order to overcome the difficulties which are
encountered when taking measurements near these frequencies (Section
8,2), light damping was applied using a magnetizing current of 4 amps
in every case, The position of the excitation was also the same for
every test, so that realistic comparisons could be made between
systems with various detuning arrangements.

The first tests were made on the tuned version in order to
determine the natural frequencies and also to trim the strain gauge
outputs so that each blade was indicating the same stress level,
This trimming was found to be necessary to take account of variation
in gain between channels due to differences in the sensitivity of the
gauges and associated circuitry. Cosine variations were then made on
the blade lengths, much as in the earlier natural frequency tests, and
the response at resonance was measured under the same excitation and
damping conditions for each detuning arrangement, The collected
results are shown in a table in FIG,8.13  and graphically in FIG.8,14
where the variation in relative stress levels is plotted against the
variation in blade length for (i) c+-5 10 detuning and (ii) ~6s 20
detuning, These graphs are arranged so as to enable a direct comparison
to be made with the computed values of Chapter 6, which are reproduced
in this instance as the solid lines,

Although on first sight the correlation between the experimental
points and the theoretical lines is not very good, it is clear that
there is qualitative agreement, When it is considered that it would be
necessary to measure each stress to better than 1% in order to obtain
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'good' agreement, the results are thought to provide qualitative
confirmation of the behaviour predicted in Chapter 6.

It was observed in Section 6,2 that a conclusion could be
drawn concerning the effects of detuning on single modes on the basis
of one assumption viz. that the mean stress or response level for given .
excitation and damping conditions would be largely unaffected by
detuning. The experiments also sought to produce evidence of the
validity of this assumption, but difficulty was again encountered in
attaining a sufficiently high degree of accuracy. The results
presented in the table in FIG.8,13  show that although there is a
variation in the mean stress level from one test to the next, it does
not appear to conform to any particular pattern, nor are the
variations of any significant magnitude, This would seem to indicate
that the assumption is justified.

Series F: Double modes
The analytical treatment of the effects of detuning on double

modes (Chapter 6) resulted in the construction of a simplified model
of this type of mode. If the assumptions and approximations relating
to this model can be justified, it provides a simple method of
examining the properties of the double modes of bladed discs with
arbitrary detuning, This was in fact done in Section 6.4, and the
present series of experiments attempt to provide the required
justification.

It was considered impracticable to attempt an extensive
experimental study along the same lines as that made numerically with
the aid of the simplified model. Instead, it was decided that a
typical bladed disc double mode should be studied in detail and that
a direct comparison should be made between these results and those of
a numerical treatment of the simplified model under the same conditions
of detuning and excitation.
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The investigation reported here was conducted on the 2/O modes
of the experimental model with a detuning function of cbs (8 + 30)
and with CT = .Ol, The response of this system was measured at four
positions of excitation at each of two levels of damping. These four
positions were chosen such that one produced a response in just one of
the two modes, a second produced a similar level of response in both
modes, while the third and fourth were situated between these two,
The response is shown as a number of graphs, the first two of which
(FIG.8.16)  show the driving point receptance plotted against frequency
at each of the two levels of damping, It was noticed in these graphs
that the damping levels appeared to be somewhat lower than was
suggested from the calibration tests o The receptance curves
corresponding to 8 = 100' may be used to measure damping by the
'half power' method since they indicate response in only one mode of
vibration, and application of this technique shows the damping to be
approximately one half of the calibrated value: a possible explanation
is discussed at the end of this section. The blade stress response is
also plotted, although only for the lighter damping, and appears as a
set of five graphs in FIG.8.18a,

It was shown in Chapter 6 that a relationship existed between
the coefficients in the detuning function f (e) and those in the
modal shape functions F (e). When this relationship is applied to
this experimental case, the modal shape functions for the pair of 2/O
modes are defined as tag 2( 8 - 7.5) for the lower frequency mode,
and L 2(8 - 7,5) for the higher frequency mode. Results are
shown in the form of nodal patterns in FIG.8.15, and also indicated
on this diagram are the positions of the four experimental excitation
points which were discussed above. The first of these points was
chosen so that it was situated at a node of the higher frequency mode
(thus fixing the complete nodal pattern), and it may be seen from
FIG.S.15 that the experimental and theoretical position for the nodal
lines agree very closely,
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Calculations were made using the simplified double mode
analysis for the above experimental conditions, For these conditions,
the basic theory predicts a split of 0.5X and the modal shapes given
above, and this information is incorporated in the model. Other data,
such as excitation and damping arrangements, was drawn from the
experimental conditions.

The results of these calculations are presented as a set of
graphs which may be compared directly with the experimental
observations. The driving point receptance is plotted in two graphs
on FIG.8,17, and the blade response in a series of five graphs,
FIG.8.18b.

The general form of the two sets of graphs is remarkably
similar. The twin peaked response predicted by the simplified double
mode calculations (FIG.8.17)  is reproduced in the experimental curves
(FIG,8,16),  and the correlation between the curves relating to the
four specific excitation positions is very good. The only disparity
between these results is in the minimum response which is situated
between the two natural frequencies, as this drops to a somewhat lower
value in the experimental graphs. It is thought possible that this
might be due to a non-linear effect in the damping assembly in which
the value of the damping is amplitude-dependent. Such an effect has
not been investigated in detail, but it might also account for the
discrepancies found between the damping levels indicated by the
calibration and those measured from the response curves0 In order
to eliminate any such effects from the present series of tests, each
of the four tests in the two graphs were recorded at approximately
the same level of vibration,

Turning now to the two sets of five graphs (FIG.8.18)  showing
the response curves for each blade, we find a similar degree of
correlation between the computed values and experimental measurements.
Owing to the lower order of precision of the recording transducers in
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this case (strain gauges), the experimental response curves are less
well defined. however, only second order differences may be found
between the two graphs for each blade.

8,6 Summary of experimental results

The experimental apparatus performed well in general, but
some difficulty was encountered in obtaining accurate measurements of
blade stress levels due , presumably, to variations in the
sensitivities of the strain gauges. The damping arrangement was not
as effective as had been expected, and considerable variations from
the calibration curve were observed in various forced vibration tests.

The natural frequencies measured on a number of tuned systems
agreed very closely with the values computed from the receptance
determinant. The collected results provided a useful estimate of the
constant K, whose value could not be determined accurately owing
to a lack of precise physical data for the model.

Extensive measurements of the natural frequency splitting
phenomenon provided confirmation of the patterns of behaviour which
were predicted in Chapter 5. Values of the frequency and split
factors (@QP) of certain modes were found to agree very well
with those computed for this model.

Although measurements of blade stress levels were considerably
less accurate than those of natural frequencies, it was possible to
demonstrate that detuning always has a disadvantageous effect on
single modes, as was predicted in Chapter 6.

Measurement  of the response of double modes for detuned systems
provides confirmation of the validity of the *simplified double mode'
model. Taking a specific case , good agreement was found between
experimental measurements and calculations made using this model. The
conclusion drawn from this section is that detuning cannot produce

?
1
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higher stress levels than are experienced in a tuned system under the
same conditions of excitation.
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CHAPTER 9

CONCLUSIONS

9.0 General conclusion

A procedure has been developed for investigating the vibration
properties of a bladed disc which has been detuned in an arbitrary
manner o The techniques have been applied to make a detailed study of
a uniform five bladed disc, and the results from numerical and
experimental tests have agreed in every case. It is concluded that
these methods may be used to make a similar study on any system, and
that some of the results obtained are general and apply to any bladed
disc *

9 .l Vibrations of a tuned bladed disc

A general method for determining the natural frequencies and
modal shapes of a bladed disc has been developed in terms of receptance
expressi.ons o In a detailed investigation which has been made for
uniform five-bladed discs, the natural frequencies of experimental
models were measured and compared with values computed according to
this method o The close agreement which was achieved in every case led
to the conclusion that the assumptions made in the analytical approach
are justified,

Because of the numerical difficulties which would be encountered
in applying this method to practical cases, an approximate method of
solution was devised which is based on matrix techniques and readily
programmed for efficient digital computation. During the course of the
development of this method, a large number of calculations were made to
assess the accuracy of the truncated series form receptances, and also
of natural frequency estimates which result from using them. It was
found that a much greater number of terms are required in order to
obtain good estimates of either receptances or natural frequencies,
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than had been expected,

The receptance analysis from which the natural frequencies were
computed shows there to be two distinct types of solution, or vibration
mode. The first of these, single modes, are associated with symmetrical
vibrations of the bladed disc in which all the blades vibrate in phase
and with the same amplitude. In double modes the blade amplitudes vary
sinusoidally around the disc, although they are vibrating in phase, and
these modes are related to those of an unbladed disc in which there are
nodal diameters.

9.2 The effects of detuning

When a bladed disc is detuned, the two types of mode are
affected in different ways. The natural frequency of a single mode is
unaffected by small variations of blade length (provided that the mean
length is unchanged), but the symmetry of the modal shape is disturbed
and the blades no longer all have the same amplitude of vibration.
However, such a variation in the blading causes a double mode to split
into a pair of modes with virtually identical modal shapes and very
close natural frequencies. The magnitude of this natural frequency
split depends upon the nature and amplitude of the variation of the
blades. In the case of a five-bladed disc, it was found that a cosine
variation of blade length produced either the maximum or minimum
possible split, according to the frequency of the cosine expression and
the shape of the double mode. It was also found that the behaviour of
each double mode could be defined by a single property called the
'split factor'. An extensive experimental investigation on a number of
detuned models confirmed without exception the patterns of behaviour
predicted by the analytical treatment.

It is of considerable importance to appreciate the practical
significance of the changes which are brought about by detuning. For
single modes, a variation in the blades always results in one or more
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blades experiencing higher loads than others, and it is concluded that
in practice the maximum blade stress level for given conditions will
always be raised by detuning, Results from experimental tests suggest
that this is probably true, but owing to inaccuracies in the stress
measurements, these results are not conclusive. In a double mode,
there is a pair of similarly shaped, but orthogonally orientated modes
whose respective natural frequencies are very close. It has proved
possible to devise a simplification of a double mode by ignoring the
effects of all other modes. Using this model, it has been shown that
detuning cannot cause an increase in the maximum blade stress in this
case above that found in a perfectly tuned system. In fact, with
favourable excitation conditions, the maximum blade stress attained
on resonance may be reduced by as much as 30%, depending on the
extent of detuning and on the damping level. Measurements of the
response of experimental models to forced vibration in the presence
of damping and detuning provide good agreement with calculations made
with the facility of the simplified double mode, which suggests that
this analytical model may be used to study the response of a typical
double mode under more complex excitation and damping conditions,,

9.3 Application of the results to other systems

Although a comprehensive study may be made for any uniform
bladed disc, many of the results described above are general and apply
equally to uniform and non-uniform systems alike. Any bladed disc in
which the disc is flexible and symmetric will possess both single and
double modes of vibration, This property results from the circular
symmetry of the disc and the regular spacing of the blades.
Consequently, all such systems will exhibit frequency splitting when
the blades are detuned. The consequences of this property in a detuned
system are expected to be similar to those described in detail for a
five-bladed disc, although exceptions will probably arise when a number
of distinct modes have natural frequencies that are almost the same.
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The pattern of behaviour of detuned systems which has been
established in this work is largely in agreement with experimental
observations made by Armstrong. In a number of tests on detuned models,
he observed splitting in most of those modes which, by the present
classification, are double modes, while no such behaviour was detected
in any of the single modes. However, possible patterns of behaviour
were not investigated, nor are the results sufficiently comprehensive
to deduce such a pattern. Ncasurements of response on the detuned model
produced results which were very similar to those obtained in the
present investigation.

A qualitative comparison may be made between the results of the
present work and those of Whitehead and Stratford, described in the
introduction (section 1.2). In a single mode, the effect of the
coupling through the flexible disc is that in a tuned system each blade
vibrates with the same amplitude. This situation also results from
coupling through the rigid body motions of the disc, such as that
described by Stratford, The effects of detuning on this type of
vibration are found in both studies to be unfavourable, but owing to
the diversity of the basic assumptions in the two approaches a numerical
comparison may not be usefully made.

9,4 Limitations and extension of the work

The most important limitation of this work arises because it
has not been possible in the time available to investigate the
properties of a bladed disc which are peculiar to systems with a large
number of blades, It is known, for example,that a multibladed disc has
a number of (double) modes whose natural frequencies are all just below
the blade cantilever frequencies, and the behaviour of these modes under
detuned conditions might well differ from that described above for
isolated double modes by virtue of the proximity of several natural
frequencies. Any extension of this research must first examine these
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properties of multibladed discs, However, the results of the present
work provide information which is essential to the planning of an
efficient numerical study of such a system, The computation time for
a natural frequency solution increases with the cube of the number of
blades, so that an investigation of the same scale as the one reported
here would not be practicable for large numbers of blades.

It is felt that the other principal assumptions, those of
uniformity and zero stagger, do not seriously restrict the generality
of the results. The inclusion of stagger and components of non-uniform
cross section would present a considerable numerical problem in the
derivation of accurate receptance expressions, Whilst an extension of
the work to include such additions is not envisaged in the immediate
future, it might be extremely useful to consider in greater detail the
mechanism of excitation, Such a development of the theory might be
made possible by analysis of the simple analytical model of a double
mode which was devised in this work.

An attempt has been made to include the effects of damping in
both the numerical and experimental studies. In both cases, some
measure of success was attained, but it is believed that a more
detailed study is required of the precise form of the damping which is
to be simulated, The experimental damping assembly did not provide a
sufficiently accurate source of damping for this quantity to be
included as a parameter in the study, although it did serve to
facilitate accurate and consistent measurements of response at resonant
conditions,

Finally, the techniques which were used to measure the effects
of detuning on an experimental model did not permit sufficiently
accurate measurements to be made of the blade stress levels,, This
limitation could be overcome by the use of more accurate strain
gauges,
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upper case refers to the disc
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SOME PROPERTIES OF THE NORMAL MODES OF VIBRATION OF A FREELY SUPPORTED

UNIFORM CIRCULAR DISC

s 0
0 . 0 0 0 0

0 o.soooo
O.OOOiJ

941-l
^: 2.9957

, 1 0_.?2429
3.0015
R.LCI
6.19%1

2 0.24375
6.3409

c-II>
9.3661

3, 0.24729
9.5371

N'UMBEBOF  NJDALDI~S N
1 2s*oi 3

2.3236
, CL

3.53 85
4 11.47 5 3Ug 6

4.6865
4-,.61 7 LS?

O.OOOO 5.8030 6.9002 7.9843
0.25000 o;lg$ 0.15578 0.13623 0.12245 0.11203 0.10378
l.oooo . 2.0913 2.5213 2.9173 ?.ZQ3 3.6467

4.&g
li.sl Sb.d 7?++

5.9387
?Cm

7.2832 8.5798 9.%19 11.0776 12.2928
0.23267 0.22497 0.21462 0.20483 0.19613 0.1%49 0.18175
4.5182 5.6264 6.j306 7.3152 8.0206 8.6696 9.2761

ST.10 P43b

7.7325 9.1849 10.5813 11.9363 13.2593 14.5566 15.8327
0.24242 0.23630 0.228e7 C.22145 0.21449 0.20911 0.20230
7.7985 9.0192 ~o.ot?oR 11.0299 11.3959 12.6977 13.4489

lo.9057 12.3813 13.&94 15.2006 16.5622 17.8992 19.2154 20.5138 21.7968 23.0661 24.3234 25.5699 26.%X&
0.24585 o-24158 0.23619 0.23050 0.22489 0.21053 0.21Ljo 0.20980 0.20542 0.20134 0.19755 0.19401 0.19069
11.01Oj 12.3002 13.4554 14.5008 15.4&7 16.:885 17.2432 19.0535 ,8.&61 19.5663 20.2783 20.9656 21.6310

12.5216 14-0659 15.5571 17.0070 13.4237 19.8128 21.1785 22.5243
4 0.24@+9 0.247!9 0.24434 c.24032 0.23589 0.23136 0.22689 0.22256

12.7046 14.1935 15.5302 14.7496 17.8755 18.9255 lg.?126 20.%65

15.6718 17.2196 1".7222 20.1881 21.6237 23.0337 24.4217 25.7904
5 0.24904 0.24&G' 0.24595 0.242% 0.23935 0.23564 0.231?9 0.22818

15.%15 17.3622 iaa.7328 19.9901 21.1799 22.2892 25.3301 2k.3350

1?.91?3 20.3699 21.'-%9 23.3590 24.PU94 26.2359 27.6415 29.0288
6 0.24934 0.24870 0.24696 0.24452 0.24168 0.23862 0.23545 0.23225

19.0132 20.5229 21.9189 23.2211 24.4446 25.6011 26.5997 27.74di

21.9651 23.5179 25.0355 26.5234 27.9856 29.4254 30.3456 32.24@1
7 0.24952 0.24901 0.24763 0.24567 0.24333 0.24076 0.2),%5 0.23529

22.1619 23.6788 25.0945 26.4250 27.6827 28.8775 3C.Cl72 ;,.1084

1 dimensionless
2 dimensionless
3 dimensionless

natural frequency b,,
inert ia coefficient a,,
slope at the rim a[ Wwf(c)_l t-La_

8-1 8 orb 9 /a+.~ IO
9.0588 10.1258 11.1870

0.09702 0.09135 0.08651
3.9905 4.3243 4.6501

13.4911 14.6756 15.&83
0.17576 0.17039  0.16554
9.9492 10.3955 10.9195

11
12.2432
0.0&30
4.9691

17.0110
0.16112
11.4247

13122954 14.;3442
0.07860 0.07531
5.2825 5.5910

18.1649 19.3112
0.15708 0.15335
11.9139 12.3893

14
15.3900 16.43;:
0.0-/236 0.06970
5.8953 6.1960

20.4507 21.j841
0.14989 0.14667
12.8524 13.3048

17.0910 18.3342 19.5641 20.78e5 21.9907 23.1898 24.3807 25.5643
0.19702 0.19220 0.18778 0.18372 0.17997 0.17649 0.17325  0.17021
14.1588 14.8344 15.4811 16.1030 16.7035 17.2852 17.8503 18.4005

28.0345 29.2543
0.18758 0.18466
22.2769 22.9052

23.8526 25.1655 26.4648 27.7519
0.21@3 0.21450 0.21079 0.20728
21.7351 22.5846 23.3999 24.1852

27.1422 28.4789 29.9021 31.1131
C.22457 0.22108 0.21~72 0.21451
25.2869 26.1992 27.0767 27.9232

30.3997 31.7559 33.0989 34.4298
0.22909 0.22599 0.22297 0.22005
2e.7522 29.7171 30.6470 31.5456

33.6350 35.0075 36.3671
0.23251 0.22976 0.22705
32.1565 33.1660 34.1409

29.0279 30.2938
0.20397 0.200&
24.9438 25.67%

32.4130 33.~28
0.21144 0.20852
28.7419 29.5356

35.7497 37.0594
0.21723 0.21452
32.4158 33.2604

39.0517 40.3785
0.22181 0.21930
35.9994 36.8884

31.5507  32.7991
0.19788 0.19507
26.3919 27.06j3

34.9833 36.2552
0.20573 0.20306
30.3066 3l.Oj70

38.3598 39.6315
0.21191 0.20940
34.0815 34.??812

41.6960 43.0049
0.21687 0.21452
37.7535 38.5967

FIG 3.2
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EXPERIM. LIMITS ON
FREQ. COMPUTED

FREQ. SERIES  A : A l 0.3333

126.89 121.80 677.69 654.75 1245.80 1214.65
134.64 723.77 1342.70

165.32 161.54
178.57 711.49 684.06

756.18 1363.88 1334.30
1475.0

208.28 205.30 933.18 898.64 1607.72 1579.0
226.95 995.79 1745.5

250.38 242.39 1027.39 1632.5
267.95 1058.54 1135.70 1669.73 1804.6

351,54 342.23 1110.49 1079.60 1813.90 1774.3
378.31 1193.42 1961.4

440.3 422.82 1196.07 1986.4
467.40 1236.86 1322.17 2107.93 2195.8

FIG 0.1
SaulEc 6 : Ar 0.25

149.2 142.59 308.02 677.2115j.62 312.8 340.49 703.5 748.61
220.5 214.85 424.0 418.35237.50 462.46 775.0 748.30

827.19
312.8 301.14

332.89
505.7 491.84

543.70 FIG t.o \

SER\QS e : h= o.a75

140925 137.02 280.3 281.71 696.3 675.79
151.47 311.41 747.03

196.5 198.99 383.6 386.74 733.7 720.2
219.97 427.51 796.12

259.6 270.90 467.7 462.23
299.46 570.96 Fib S.3

NATURAL FREQUENCIES OF TUNED SYSTEMS

FIGS 8.10 8.3
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SERIES D
A= 0 . 2 7 5

Mode N.Freq.

2/o

l/l

3/o

2/l (i) 467.7
(ii) 463.9

TEST No. El, 1 El,2 El,3

0, .Ol f, .Ol 5 .Ol

(i) (i) (ii)

El.4

0. .025

(ii)

139.75 139.95 139.05 138.6
140.6 140.7 139.8 140.4
0.6% 0.5% 0.5% 1.3%

258.95
0%

- -
279.88
281.65
0.6%

259.0
0%

254.9
0%

280.03 277.2
281.55 279.85
0.5% 0.9%

466.7 466.25 463.05
468.9 466.85 464.55
0.5% 0.6% 0.3%

DETUNED NATURAL FREQUENCIES -(I) COS le DETUNING

FLG 8.9



SERIES D
A-- 0.27s

TEST No. I E2,l I E2,2 I E2.3

9, ab2 0, .Ol 5, .Ol 5, .Ol

Mode N.Freq. I I (i) (0 (ii)

2/o 140.2

0%

139.4

0%

140*1

0%

l/l (i) 259.6
(ii) 255.0

257.13 252.8
260.35 256.4
1.2% 1.4%

257.15
260.50
1.3%

3/o (i.) 280.3
(ii) 278.0

280.23 277.48
,

0%

2/l (i) 467.7
(ii) 463.9

463.6

0%
,/

(i) 733.7
(ii) 750.5

732.0 732.5
735.5 735.0
0,5% 0.4%

6/O
/

DETUNED NATURAL FREQUEN~IEG(U)C~S  28 DEWING

FIG 8.10



Mode

2/O

l/l

Test No.

139.4

255.0

E3,l E3,2

0.2, .025, f, 0, 0 0, .0125, 0, .0125, (I

131.05 139.05
139.95 139.90
1.4% 0.6%

252.6
0 257.1

1.7%

3/o 278.0 278.0
0 279.1

0.4%

2/l 463.9 460.40 463.1
465.15 465.2
1.1% 0.5%

6/O 750.5 749.7
755.6

/
0.8%

SERIES D_ h- 0.275

DETIJNED NATURAL FREQUENCIES-(III) GENERAL DETUNING

FIG 8.11



SPLIT FACTOR

1 Mode 1 ' 1 of ?,"teets

l/l 1.21.4 1.32
(4)

3/o 0.40.9 0.6
(4)

2/l 0.30.6 0.5
(5)

6/O 0.40.6 0.5
(4)

S E R I E S  D A= 0.275

computed
value

0.5

1.4

0.7

0.55

0.5

1 FREQUENCY FACTOR

computed
one ca8e value
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I 0
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FIG 8.12
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APPENDIX 1
NOTATION

The following list refers to those symbols
frequently throughout the text. Other notation is
locally, but this is clearly defined in the text.
refer to the appropriate chapters.

a

aj
A
b
bMS

L, b,, b,
B
C,
=;
(2

C, D
E
fi

f(e)
f. (4

F

F;
F(e)

G
A

H

1, J, K,Y
1
L
LO

radius of the disc
inertia coefficient of a vibration
constant, cross sectional area (3)
dimensionless frequency parameter
dimensionless natural frequency of
coefficients in detuning function
constant (3)

which are used
often adopted
Numbers in brackets

mode defined by j

the +, s mode

reaction douple on the i ti blade (2)
inertia coefficient of the j yr mode (3)
reaction couple on the disc (2)
constants (3)
Young's modulus, constant
reaction force on the i ec. blade (2)
detuning function
characteristic function of the &,I mode
constant (3)
reaction force on the disc (2)
modal shape function
constant (3)
half thickness of the disc and blades
constant (3)
Bessel functions (3)
length coordinate along a blade
length of a blade
length of blades in a tuned system
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L(e)
-i
M
M&

/K

N

PJct,h
P*
P4t
P

Q
-I-

S

s
f
T
V

Au

blade length equation
mass ofthei% blade
bending moment in a plate
mass of disc
number of nodal diameters
number of blades on a disc
principal coordinates
externally applied force on a blade (2)
externally applied force on the disc (2)
order of the approximate system matrix (2Q+ NS)

number of disc modes in the approximate system
radial coordinate
number of nodal circles
number of modes per blade in approximate system
time coordinate
kinetic energy
potential energy
normal displacement of disc
normal displacement of blade

disc receptance terms
coefficients in modal shape function
constants in modal shape function
receptance determinant
angular coordinate
blade length ratio (L/2&) (4 et seq)
dimensionless frequency parameter in blade frequency
density eq.(3)

Poisson's ratio
degree of detuning (5 et seq)
constants in detuning function
frequency factor (5)

-_-.

..’ ,. , ,_ ,,. ._. -.A%. ., ,
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!P split factor (5)
w frequency of vibration

wj natural frequency of the J’ a mode
a, ~~fi” blade receptance terms
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APPENDIX 2

INERTIA COEFFICIENTS FOR THE NORMAL MODES OF A DISC

The equation for the inertia coefficient of the ti,g mode,
given in (3.42), is

The integration over 8 may be made directly, and upon substitution

for fNs (r ) from (3.35), equation (A2.1) may be rewritten as

We shall now introduce the dimensionless inertia coefficient,
a *hl = ~--us/~?d, and rewrite (A2.2) in general terms, so that

McLachlan  gives three results which enable this integral to be
evaluated explicitly. In the present notation, these are

I

(A2.4)

L ,
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where all Bessel functions are of argument (be,).

: X2,_, - 1, J,_, )

u , ‘S.
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APPENDIX 3

CLOSED FORM RECEPTANCE EXPRESSIONS

A3.1 General

Note: In this appendix we shall write J, (A) - J, etc.,
and Va+{ J-(-b )} = J,’ (.b) etc.

The general displacement function, equation (3.31), may be
written as

where

(A3.1)

u3.2)

We shall also use the expressions for shear force and bending moment in
the disc which were given in equations (3.29) and (3.30), but it must be
noticed that the units of these expressions are shear force and bending
moment per unit circumference. It is convenient for later work to deal
in terms of force etc. per unit angle and thus appropriate corrections
will be made to the expressions for shear force and bending moment.

Substitution of (3.31) into (3.29) gives

I: 1P- _+c*
D a

=  x,ud3 +  Y,s.AI\he
(and P is now force per unit angle), where

(A3.3)

( A 3 . 4 )
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where

L - - (f+ b’) I,,, - (a- b') L,,, ;

R = +dm-l>h-6)  ; Q = 41. (MtI)( I- 6-1 (A3,5)

Next, on substitution of (3.31) into (3,30), we find that

where

A3.2 Normal displacement - edge shear force

(A3.6)

(A3.7)

(~3.8)

In this case, the boundary conditions (given in equation (3.46))
are

V=&
= P’c,d3 ; Mr 1 = 0 (A3.9)*r

so that, from (A3.6), (A3.7) and (A3.8),  we

w, = 2, = 0 also X_:

Because the shear force boundary condition;

find that

Y, = 0 , wf +L (A3.10)
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must hold for all 8 , it follows that

Y, - 0
x, I - P&/L

(A3.12)

The equation for the displacement at any point C, 8 is thus

AAl,(+ e) = [A,J.I.I(~)+&.I&&m&’ (A3.13)

We may solve two of the boundary conditions, (A3.10) and (A3.13) above,
for A, and C, since

A, ?_ + L pw = o

A, b, + c, s, = - -‘6“b”

Thus, the displacement becomes,

(A3.14)

where

aa= N, (~1
5’ 3, P, cus4he

(A3.15)

+ $ I,(-Br)L:(R- b’) J.+, + (Q- b’) Jh+, ]

k.. = c b4 * -= (ha-- 1 )(I-- d’][ T_,,_, J*+, + T,, T--,-j
- 2bX-~) [(4 I,_, J-I,_,  + (&+I ) J++, TN,, ]

(A3.16)



A3.3 Normal displacement - edge couple

The boundary conditions for this case are given in (5.50) as

Substitution of the first of these into (A3.3) gives

X,-Y*= 0

and into (A3,6), results in

(A3 e 17)

(A3 0 18)

(A3.19)

The requirement that this equation shall hold for all 8 is that % is
identically zero, and that

W& = rl, /L (A3.20)

In order to eliminate A,,, and C, from the displacement equation
(A3 p 13)) two equations may be derived from (A3 e 18) and (A3.20) such
that

Thus, the displacement at the rim may be written as

(A3.21)

c ,
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A3.3 Normal displacement - edge couple

The boundary conditions for this case are given in (5.50) as

Substitution of the first of these into (A3.3) gives

x, = Y, =

and into (A3,6), results in

0

(A3 e 17)

(A3 0 18)

(A3.19)

The requirement that this equation shall hold for all 8 is that % is
identically zero, and that

W& = rl, /L (A3.20)

In order to eliminate A, and C, from the displacement equation
(A3.13)) two equations may be derived from (A3 e 18) and (A3.20) such
that

Thus, the displacement at the rim may be written as

(A3.21)

t ,
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where

N,’ = ha 6 - 6) 1: I,_, L+, + I,, TN_, ]

(A3.22)

(A3.23)
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APPENDIX 4

EQUATIONS OF MOTION IN MATRIX FORM

A4.1 Rigid body modes of vibration

If Lagrange’s equation is applied to each of the three rigid
body coordinates %too , $,, and /a ,0 in turn, then we have,

and a similar expression corresponding to P,, ,

where

(A4.3)

By substituting for M; and s; from equation (4.16)) the three
equations (A4 e 1)) (A4.2) and (A4.3) may be expressed as

2.
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Q N

ir I
(A4.4)

where E is a 3x3 matrix and C; , Sj and i yc are 3x1 column
vectors. Introducing /“; - *Hi / Md and fi = A D$,r&(-lll C=& 0

R =

we find, after some manipulation, that

(A4.5)

. :



If (as always proves to be the case) the
are represwted in another equation of motion by

I- *’ 1

by writing

D where X is a rQw vector, then they may be eliminated

(from (A4.4))
a

three rigid body
a matrix product
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modes

(A4.6)

Thus we may use this result to express the displacement k\~ ( T, 8 ),
(4.16)) in terms of the coordinates of the flexural modes only. If we
write

where

F =

(A4.7)

so that (A4.7) becomes

(A4.8)
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A4.2 Flexural  modes of vibration

In constructing the inertia and stiffness matrices (and
subsequently the system matrix, 2 ) , there are three general
to consider, namely, the equations of motion corresponding to
(i) 9rr , (ii) Ql and ( i i i )  lA, (say) l The equation

g, is found by letting 2 (a$> +(%5‘, = 0:

On substitution for &; and ;; (from (4.16)). and for the
body coordinates (from (A4.6))) this equation becomes

cases

for

(A4.9)

rigid

Similarly the equation for pz. may be written as
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= 0 (A4.11)

Finally, if we apply Lagrange's equation to Lh, , the corresponding
equation of motion becomes

M s

---
i-1 -k-l

= 0 (A4.12)
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APPENDIX 5

A MECHANISM OF NATURAL FREQUENCY SPLITTING

In an attempt to predict a possible mechanism of natural
frequency splitting, it is convenient to consider the simple system
of a disc without any blades. The results may then be extended in
principle to the more complex arrangement of a bladed disc.

Consider the disc to be vibrating in its normal mode with -
nodal diameters and S nodal circles,which we shall identify as the

.I.tlr mode. This vibration
coordinates, @i and Pi m

apj = a?. = ai

may be expressed in terms of two principal
whose properties are as follows:

As in previous work we shall choose jj (k) P 1, and it should be
noted that d may
and kinetic energy

2Vj =

and

2r; =

be chosen as any convenient value. The potential
expressions for this motion are

ci (Pi' + pi')

t 4; ) W.1)

respectively.

Now suppose that a distribution of mass is added to the rim of
the disc such that fl = w, W-G where M, << Md , the disc
mass0 It will be supposed that the addition of this mass will only
affect the vibration of the disc slightly, in that it will only alter
the kinetic energy term and not contribute to the potential energy.
The normal velocity of the rim of the disc, and hence of the added mass,

:
b . . .
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is given by the equation

so that the kinetic energy of the added mass may be written as
zrr

There are two

r, is zero,
the vibration

ZT, =

possible values for this expression. If +L # 2ti, then
indicating that the added mass has no effect whatsoever on
of

3
2

the disc. If, however, 3n - 2-, then we find that

Us.41

In this case the natural frequencies of the modified p; and +i modes
will no longer be identical. If we consider the bj mode first, we have

In this expression, we may choose d to be any convenient value but as
yet have no criterion upon which to base such a choice. However,
Rayleigh’s principle provides such a criterion, in that any value which
is chosen will result in a value for a‘;. which is either greater than
or equal to the exact value. Since in this analysis we assume that the
solution is exact in every respect other than the value of d , then
it follows that that value which makes w,,! a minimum, yields the
exact natural frequency. Thus )

and having established the value of o( , we may determine the modified
natural frequency we,: as
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The relationship between wei' and &hi' may be examined as follows.
Since %, c< Md # we shall assume that a: >> i )Y=K~ and that

LJbl cy L+; * Thus

and

W4j'
Me A-_wpj’ = w. -

J 2&i W-9)

so that we may define the 'split' as

and introduce a 'split factor' which is

("ej'- WPJW w; rs K

M,/Mol 24+ 045.10)

and consequently a property of the j K mode.

The result of this simple analysis is the demonstration that a
mode with * nodal diameters will only be split by a detuning function
which takes the form ~0s (2*8 ), in which case the magnitude of the
natural frequency split is dependent upon the amplitude of the detuning
function and the properties of the disc mode. The modes of vibration of
a bladed disc are essentially similar to those of the unbladed disc, and
the same result is expected to hold in principle when applied to bladed
discs.
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It has been found that an analysis by Zenneck (1899), also
based on Rayleigh's principle, predicts the same type of behaviour
for an imperfect disc.
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APPENDIX 6

PIEZOELGCTRIC TRANSDUCERS

Piezoelectric transducers were chosen for force and acceleration
measurements on account of their high sensitivity and fundamentally
simple (although sometimes costly) demands on ancillary electronic
equipment. These transducers have been developed to overcome the
considerable temperature sensitivity which was an early inherent
disadvantage, and accurate and reliable devices are now available for
the measurement of most dynamic properties. The advantage of their
high sensitivity lies in the fact that less power need be supplied to
the vibrating system (than for an equivalent passive type of pickup) in
order to obtain a signal leve 1 which is readily measurable, and thus
they tend to be relatively free of electrical noise problems. This
fact, in the present work at least, means that the acoustic noise
level is not the nuisance that it might have been had larger
amplitudes of vibration been required.

The piezoelectric transducer is essentially a charge-generating
capacitive source (see FIG.A6.1), in which a charge is generated
proportional to the physical quantity being measured. In order to

FIG.A6.1 EQUIVALENT CIRCUIT OF A PIEZOELECTRIC TRANSDUCER

measure this charge, two alternative systems are available. The more
common of these requires a voltage amplifier whose input impedance is
of the order of 100 Megohms in order that the lower frequency limit

t
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of the system be at a reasonable level. The low frequency response of
such transducers is critically dependent upon the measuring equipment,
and the high figure quoted for an amplifier input impedance is
absolutely necessary. From FIG.A6.1, it may be seen that the open
circuit voltage (e) of the transducer is given by the ratio of the
charge (9) to the source capacitance ( C,) * The next diagram
(FIG.A6.2) shows a transducer in a typical voltage amplifier system,

r -e--s - I- ---m_- 7
I

GAIN G

w

L
r----- I-w--D J

TRANSDUCER CABLE VOLTAGE AMPLIFIER

+v= G+/(c.+  c* tC*)

FIG.A6.2 VOLTAGE AMPLIFIER MRASURING SYSTEM

and it may be seen that the voltage amplifier measures the voltage across
its input, which has now been reduced from e by the addition of the
external capacitance of the cable, and still further by any input
capacitance that the amplifier itself might possess. Clearly then, the
sensitivity of the transducer will be highly dependent upon the external
circuitry imposed between it and the amplifier, and although cathode
follower units could be employed, they really only serve as an
additional unknown quantity, rather than solve the difficulties.

In spite of such drawbacks, the voltage amplifier system may be
used to measure charge. However, there exists another technique which
seems basically more sound and appropriate for the purpose, and this
employs the use of a so-called charge amplifier. This is essentially
an amplifier with a very high gain and a feedback capacitance, and

k
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its (simplified) method of operation is as follows (see FIG.A6.3).

r B-w

L --e-s .J L - t----_

TRANSDUCER CABLE CHARGE
AMPLIFIER

u= 9/c’

FIG.A6.3 CHARGE AMPLIFIER MEASURING

Suppose the voltage at the output of the

SYSTEM

amplifier is zr , then,
since the amplifier gain is extremely high, the voltage across the
input of the amplifier is effectively zero. This has two consequences;
first that no current flows in the circuit indicating an input
impedance of the amplifier of infinite order, and second that the
voltage y is thus the voltage across the feedback capacitor, and
furthermore, this voltage is numerically equal to the ratio of the
generated charge to the feedback capacitance: W- = + / C* . The
main advantage of this type of amplifier over the voltage amplifier
described above, lies in the independence of the overall sensitivity
to the externally applied electrical loads in the form of cable
capacitance: a value of 15,000 pF for the external capacitance C y

(equivalent to one mile of cable) decreases the sensitivity by a mere
1 per cent, whereas the same value in the previous system would make
readings impossible. One refinement which is often found on
commercial models is the addition, to the amplifier just described, of
a voltage amplifier with a gain of about 5 0 . A fraction of the
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charge amplifier output is fed into this second amplifier and the output
from that is measured. An accurately calibrated potentiometer is used
to determine the fraction taken, and this fraction may be chosen so
that the resulting voltmeter readings are scaled directly in lb. or 8 ,
this refinement being in the nature of a luxury rather than a necessity.

Finally, another important aspect, as yet unmentioned, is that
concerning the relative phase of the measured signal to that of the
original physical quantity. In the voltage amplifier system, the
signal is subject to phase changes of varying magnitudes, depending
upon the frequency and more evident at the lower frequencies. In this
case, it is imperative that both the force and the acceleration signals
undergo identical electronic transformations if their relative phase
is to be meaningful. The charge amplifier system, with its independence
of external loading (which is the chief cause of these changes), is less
prone to such difficulties.
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APPENDIX 7

COMPUTATION OF VIBRATION DATA FOR TEE EXPERIMENTAL MODELS

In order to deduce natural frequencies for the models used in
the experimental study from the dimensionless quantities computed by
the receptance method, it is necessary to establish a value for the
constant K. in the equation

The dimensions of the models are known accurately, but the elastic
constants of the material from which they are made may not be determined
with the same precision. The steel from which the five bladed disc was
machined had been hot rolled, and a metallurgical examination of a
specimen indicated that it contained a large amount of impurities and

was highly anisotropic. As a result, the value of Young's modulus (and
probably the density) would vary throughout the model. Thus it was
decided that rather than attempt to measure these properties, typical
values would be assumed and tolerances accepted on the resulting value
of tG0 Results in Chapter 8 indicate that this is a convenient
approach, and that a more accurate value may be deduced from the
experimental observations.

The dimensions of the

disc diameter
disc thickness
blade width
blade thickness
blade length

models are as follows:

- 24"
- l/2"
= 1 II

= l/2"
o 6-S"

,P

*
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and the elastic properties are assumed to be:

Young's modulus = 30~10~ psi +3%
density = 0,283 lb/in3 +_3X
Poisson's ratio = 0,287* _+lX

These figures provide upper and lower limits on K, which are:

K kllrJ - 32.1
K WA% = 35.4 (cps/unit of b')

*
In conformity with Armstrong.



APPENDIX 8

146

REFERENCES AND BIBLIOGRAPHY

AITKEN A,C,

ARMSTRONG E,K,

ARMSTRONG E,K.,
CHRISTIE P,I, &
HAGUE W,M.
BISHOP R,E.D, &
JOHNSON D,C.
CARNEGIE W.

CARNEGIE W,

CARNEGIE W,,
DAWSON B, &
THOMAS J.

NCLAHLAN

McLEOD A.J. &
BISHOP R.E,D,
PRESCOTT J.

SCHLOSS F.

SHANNON J,F,

SMITH D,M.

STRATFORD BoS,

1949

1955

1966

1960

1959

1964

1966

1934

1965

1924

1965

1945

1966

1966

Determinants and
Oliver and Boyd
An investigation_ _

matrices

into the coupling between
turbine disc and blade vibrations

Ph,D, Thesis Cambridge
Natural frequencies of bladed discs
App,Mech.Gp,Conf. I,M.E, Cambridge

The mechanics of vibration
C0U.P"
Vibrations of pretwisted cantilever blading
Proc.I.Mech.Eng,  Vo1,173
Vibrations of pretwisted cantilever blading

allowing for rotary inertia and shear
deflection

J,Mech,Eng,Sci. Vol.6 No,2
Vibration characteristics of cantilever blading
AppMech.Gp. I,Mech,E. Cambridge

Bessel functions for engineers
00U.P.a
The forced vibration of circular flat plates
Mech.Eng.Sci, Monograph No.1
Applied elasticity
Dover books
Recent advances in mechanical impedance

instrumentation and applications
D.T,M,B, Report No.1960
Vibration problems in gas turbines, centrifugal

and axial flow compressors
R & M No.2226
Vibrations in turbomachinery
App.Mech,Gp, I,Mech.E, Cambridge
Rogue blades
Unpublished Rolls Royce internal report MCR90011


