Joints - Rolls-Royce Perspective

Dr John Schofield / Dr Jeff Green
Joints Workshop April 2009.
Joints in Gas Turbine

Compressor
- Rotor dovetails
- Stator shrouds

Engine Structure
- Flanges / spigots
- Splines
- V-blade

Fan
- dovetail
- snubbers

Turbine Blades
- Dampers / seals
- Firtree
- Shroud
- Lockplate / cover plates

Key
Damping
Stiffness / frequency
Stress
Whole Engine Issues

- Whole engine uses a simplified model.
 - Need simplified representation of joints.
- Static loads (thrust / external loads / manoeuvres)
 - Are stiffness effects adequate for tip clearances and load distribution etc?
- Dynamic Loads
 - Engine/Wing Dynamics (0-10 Hz)
 - Frequency, damping, loads
 - Engine Rotordynamics (30-500 Hz)
 - Frequency, damping, loads
 - Extreme events (eg Fan Blade Off)

Example Joint (and simplification)
Damping

- Drive towards prediction of vibration amplitude for design and certification.

Structure (known)

Force (usually known)

Damping (aero & mechanical) (non-linear) (measured ?)

Response

Wear / deterioration / contamination

HCF capability
Effect of Non-linear Contact on Frequency

- Dampers can have a significant influence on resonant frequency.
 - Affect on resonant speed
 - Change in force amplitude

Campbell Diagram of HP Turbine

- With Damper
- Without Damper

Upstream vanes
Downstream vanes
No. of Burners
Low engine order

Gas Turbine
High Pressure Turbine Stage

© 2009 Rolls-Royce plc
Effect of Joint on Modeshape => Stress

Contours of WP Stress
At 2F resonance

Typical position of strain gauges in engine tests.

<table>
<thead>
<tr>
<th>Gauge Position</th>
<th>Gauge Sensitivity [Mpa/mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1T Mode</td>
</tr>
<tr>
<td>Undamped</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>579</td>
</tr>
<tr>
<td>2</td>
<td>156</td>
</tr>
<tr>
<td>3</td>
<td>731</td>
</tr>
<tr>
<td>Damped</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>348</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>705</td>
</tr>
</tbody>
</table>
Effect of Shroud Contact on Stator Response

- Uncertainty about inner shroud restraint => variability in effective stiffness
- Change of stiffness leads to change in amplitude and frequency.
- Difficulty interpreting measured results
Effect of Shroud Contact on Stator Modes

- It gets more complicated ...
Structural Integrity Assessment of Fan Dovetail Joints

• Assessment capabilities enhanced significantly in recent years
 ➢ Steady and vibration stress predictions
 ➢ Based on load extraction from ‘coarse’ FE model and analytical half-space model.
 ➢ Converged stresses using detailed FE sub-sub modelling.
 ➢ Robustness determined using short crack modelling techniques.
 ➢ Integrity of root managed via use of surface coatings and treatments.
 ➢ More careful design possible.
Outstanding Issues?

- Varying (patchy) friction, local wear, effect of local fillet, half-space assumptions.
- Longer lasting surface coatings have clear cost benefits.
- EoB and near edge of bedding locations can be life limiting features.
- Prediction of stresses near edge of bedding in vibration is problematic.

➤ Use of locked contact can be misleading

ABAQUS friction analysis shows separation of fillet and EoB stress. Region close to EoB is now showing a much reduced stress.
Summary of Needs

- **Damping**
 - Stability & Amplitude prediction (including non-linear effects)
 - Friction Properties
 - Validation of System Behaviour
 - Interpretation of measured results (in engine)
 - Rotor dynamics for stability

- **Frequency**
 - Effect of blade dampers is already under control
 - Snubbers / Interlocks (mainly for fleet support)
 - Whole engine at high frequencies – accessories

- **Stress**
 - Edge of bedding stress including steady stress and vibration.
 - Surface treatments, coatings
 - Wear