Incorporation of CIGS Cells into Photo-Electrochemical Reactors...

Anna Hankin
Postdoctoral Research Associate
Electrochemical Engineering Research Group
anna.hankin@imperial.ac.uk
Principles of electrochemical reactions

Solid Phase
 e.g. metal

Liquid Phase
 e.g. H$_2$O + ions

E_F (Fermi Level)

$E_{O/R}$ (Equilibrium energy of redox couple)

e.g. $2H^+ + 2e^- \leftrightarrow H_2$
Principles of electrochemical reactions

Liquid Phase
- e.g. $\text{H}_2\text{O} + \text{ions}$

Solid Phase
- e.g. metal

Fermi Level (E_F)

Equilibrium energy of redox couple ($E_{O/R}$)

- e.g. $2\text{H}^+ + 2e^- \Leftrightarrow \text{H}_2$

η
Kinetics

Good catalyst

Poor catalyst
Principles of electrochemical reactions

- **Solid Phase**: e.g. metal
- **Liquid Phase**: e.g. H₂O + ions

Fermi Level \((E_F) \)

Equilibrium energy of redox couple \((E_{O/R}) \)

E.g. \(O_2 + 4H^+ + 4e^- \leftrightarrow 2H_2O \)

OXIDATION
Principles of electrochemical reactors

Solid Phase
 e.g. metal

Liquid Phase
 e.g. H₂O + ions

Solid Phase
 e.g. metal

Fermi Level

REDUCTION

\[2H^+ + 2e^- \rightleftharpoons H_2 \]

OXIDATION

\[O_2 + 4H^+ + 4e^- \rightleftharpoons 2H_2O \]

Source?!
Electrochemical to Photo-Electrochemical

Solid Phase
Semiconductor

Liquid Phase
e.g. H₂O + ions

Solid Phase
Semiconductor

Conduction band

Valence band

Conduction band

Valence band

Source?!

$2H^+ + 2e^- \Leftrightarrow H_2$

$O_2 + 4H^+ + 4e^- \Leftrightarrow 2H_2O$
Electrode Design

Principal requirements for a photo-electrode:

• Good photo-absorber
• Suitable conduction and valence band energies
• Suitable direction of internal bias
• Chemically robust
• Cheap
Hematite Photo-Anode Production

Spray Pyrolysis Setup

1. Compressed Air
2. Precursor reservoir
3. Syringe pump
4. Quartz nebuliser
5. CNC machine
6. Substrate
7. Clamping block
8. Hotplate

Fe$_2$O$_3$ coatings produced by nebulising FeIIICl$_3$ in solvent onto heated substrate

Ti $|$ Fe$_2$O$_3$-SnO_2

Variables:

- **Dopants → SnIV (0.6 %)** (increase photocurrent)
- **Substrate → Ti, FTO** (flexibility with illumination)

Photographic image SEM image
The Mo | CIGS | CdS | ZnO | Ti system

-4 eV

\(\text{CB}_{\text{CIGS}} \quad -4 \text{ eV} \)

\(\phi_e^{\text{CIGS}} = ? \)

\(\text{CB}_{\text{CdS}} \quad -3.98 \text{ eV} \)

\(\phi_e^{\text{CdS}} = ? \)

\(\text{CB}_{\text{ZnO}} \quad -4.2 \text{ eV} \)

\(\phi_e^{\text{ZnO}} = ? \)

-5 eV

\(\phi_e^{\text{Mo}} \quad -4.6 \text{ eV} \)

\(\text{VB}_{\text{CIGS}} \quad -5 \text{ eV} \)

-6 eV

-7 eV

\(\text{VB}_{\text{CdS}} \quad -6.4 \text{ eV} \)

\(\text{VB}_{\text{ZnO}} \quad -7.4 \text{ eV} \)

\(\phi_e^{\text{Ti}} \quad -4.63 \text{ eV} \)
The Mo | CIGS | CdS | ZnO | Ti system

Moly | CIGS p-type | CdS n-type | ZnO n-type | Ti

Vacuum level

ϕ_e^Net

CB_{CIGS} CB_{CdS} CB_{ZnO}

VB_{CIGS} VB_{CdS} VB_{ZnO}

e^- h^+
To replicate the effect of illumination on energy levels within the photo-cathode, the photo-cathode (when studied in the air) must be biased in this way:

For the physicists:
This is ‘reverse bias’?

For the electrochemists:
Dark current and photo-current refer to the flow of electrons in this direction.
Performance of Al coated CIGS Cells

Current was measured in response to an applied cell bias.
Device & System Development

- **Photo-cathode fabrication**
 - Substrate
 - Electrical contact

- **Photo-anode fabrication**
 - Substrate
 - Electrical contact

- **Reactor body**
 - Geometry
 - Materials

- **Illumination**
 - Mirrors
 - Concentrators

- **Membrane**

- **External bias**

- **Electrolyte flow circuit**
 - Pumps
 - Reservoirs
 - Dosing

- **Product harvesting & storage**

Diagram showing the flow of electrons (e^-) and various components involved in the device & system development process.
The London Team

Keith Barnham (Physics)
Geoff Kelsall (Chem. Eng.)
Amanda Chatten (Physics)
Anna Hankin (Chem. Eng.)
José Videira (Physics)