09/11/2006

Tutorial For Modelling of Porosity Formation
1. Introduction:

Many components experience cyclic loading, where casting defects such as microporosity, intermetallic particles and oxide films can be detrimental to the fatigue behavior. Therefore, in recent years a number of studies have focused on the prediction of these defecting, in particular porosity formation. However, most of these studies predict only the percentage of porosity or the average radius assuming the pores are spherical due to the simplification of microstructure evolution during solidification. Growth of microporosity depends upon diffusion of hydrogen, shrinkage, and the interaction of the expanding pores with the surrounding dendrites. Therefore, the prediction of the morphology of porosity should consider the restriction of bubble growth by the solid phase. The CAFD model is able to predict the three dimensional morphology of porosity including shape, size, and distribution.
The CAFD model is a cellular automaton growth model combined with finite-difference solution of diffusion equations. The program runs from a command line, reads in a series of input files that define the model, and produces several output files containing information about the simulated system at various points in time.
2. Functions:
Porosity formation is classically divided in two stages: nucleation and growth. Both of them can be simulated with current CAFD code. Many physical phenomena occurring during solidification have been included in the CAFD model, among these, the following functions might be useful when simulating porosity:
(1) Pre-fixed nucleation of pores;
(2) Stochastic nucleation;
(3) Diffusion controlled growth;

3. How to use the functions:
(1) Obtain the source code:

Checkout the latest version of the CAFD code from a branch e.g. TMS_07 by typing the command:

cvs –d /home/CA_CVS checkout –d <folder> -r TMS_07 ca
The name of the user’s source code directory, <folder>, where the source code will be copied to, i.e. CAFD_jwang, should be specified by the user.
(2) Compile the code:
Compile the code and copy the executable such as ca_hive2_64 to a working directory by typing the command:

./makeca
cp ca_hive2_64 <folder>
The name of the working directory, <folder>, where the executable will be run, i.e. /hive2tmp/jobs/jwang1/tutorials/AlCuSi/, should be specified by the user.
(3) Change input parameters
Generally, all the input parameters are specified in those input files as shown in Table I. Concerning about the porosity model, those parameters in ca_ctrl.in, ca_matprop.in, and props_gas.in might need to be varied.
Table I. Input files and their descriptions
	ca_ctrl.in
	The main control files including alternate filenames other files

	ca_geoplus.in
	The geometry and boundary/initial conditions

	ca_matprop.in
	Global properties of the materials and nucleation model inputs

	props_alloy0.in
	Properties that apply only to the first alloying solute

	props_alloy1.in
	Properties that apply only to the second alloying solute

	props_gas.in
	Properties that apply only to the gas solute

Each line in these input files consists of keywords followed by one or more values. Any text beyond the required number of values is ignored, so comments may be placed on the end of the line. Lines that begin with a hash mark (#) are also ignored and may be used for comments.
(a) For pre-fixed nucleation of pores, the following parameters need to be specified in ca_ctrl.in:

FixedPore 7 7 0 1.4 /* FixedNuc nx ny nz threshold */

(b) For stochastic nucleation of pores, the following parameters need to be specified in ca_matprop.in:

#Pore nucleation properties

PnucMethod 5 /* see below for methods allowed */

PGaussCentre 2.0 /* or LOWER END of step */

PGaussSigma 0.5 /* or WIDTH of step */

PMaxDensity 4.00E+11 /* TOTAL under step */

P_limrad_perturb 5e-2 /* perturb lim-rad fractional amount */

#***************************** possible pnuc methods:

PNUC_GAUSS (0)

PNUC_STEP (1)

PNUC_TRUESTEP (2)

PNUC_FUNCTION (3)

PNUC_INPUT (4)

PNUC_GAUSSDEV (5)

(c) For diffusion controlled growth of porosity, the following parameters need to be specified in ca_ctrl.in:

Pore 1 /*porosity?*/

das_limrad 1 /* use limiting radius, based on das, for pore growth*/

diffuse 1 /* Gas diffuse 1=yes 0=no */

And the following parameters need to be specified in props_gas.in as well:
my type 0

Cinit 0.24 /* CA_FLOAT Cinit */

DoLiq 3.8e-6 /* triche sur la valeur de D, divise par 10 eichenaur ? */

QaLiq 19248

DoSol0 1.1e-5 /*triche sur la valeur de D*/

QaSol0 40924

mould_src 0

mould_source_value 1e-6 /* CA_FLOAT mould_source_value */

mould_src_pert 0 /* int mould_src_pert */

part_coef0 1.0e-01 /* CA_FLOAT part_coef */

part_coef1 0.0

surf_tens_coef 0.9 /* CA_FLOAT surf_tens_coef */
(4) Run a job

Due to the space limitation in the home directories, all jobs must run in the temporary directories. If the job doesn’t take so much time, it could be run as follows:

ca_hive2_64 –c ca_ctrl.in

However, if the job takes quite a bite time to finish, it should be run using the queuing system as follows:
ca_q <job name> ca_hive2_64 <required time e.g 1:00:00 for 1 hour>

Where the time is in the format of hh:mm:ss. If your job exceeds your estimate it will be terminated.
(5) Results:
The CAFD code produces several output files for porosity visualization and quantification at each selected execution step, and summary files at the end of the run. When the jobs are run in the queue using ca_q, the output files are automatically collated and compressed into zip files.

(a) Compressed block files (*.blz)

Compressed block files contain the complete state of the simulation at that time step. Any information in the simulation may be extracted from these files by ca_read. It comes from the same source code as ca_hive2_64 using the command:

./makeca ca_read

You must use the same version as was used to build the ca_hive2_64 executable. The data is converted into a form suitable for importing into another software package. The three-dimensional image files are simply ‘raw data’ and may easily be imported into VgStudioMax, Amira , ImageJ, Paraview, or Volview. These are:
(b) Binary Files (*.bin)
Each binary output files contain the raw data for one variable in a selected 2-dimensional (x-y) slice of the micromodel domain. The file name is of the form

<FirstPrefix>_<SecondPrefix>_<basefilename>_<timepoint>.bin

The data type of the data is indicated by the FirstPrefix, and the variable is indicated by the SecondPrefix in the file name, as given explained in Table II.

Table II. Input files and their descriptions
	FirstPrefix

	F
	floating point type (single or double depends on compilation)

	I
	integer type, e.g. grain number

	SecondPrefix

	A
	Alloy solute

	G
	Gas solute

	FS
	Fraction Solid

	UC
	undercooling

(c) Image Files

Image files of the selected 2-dimensional slice are output at each selected execution step. The files have the form

<basename>_<blocknum>t<timestep>.png

They may can be viewed visualized with any viewer with png file capability or imported into documents.

Usage in this tutorial

Commands that you type are printed in:

courier 10 pt (‘code’ style in the Document)

Computer commands enclosed in anglebrackets <> should be replaced with your own choice for file name, directory name etc. Do not type the anglebrackets.

File and directory names should not have contain spaces or other special characters. Familiarity with basic use of the computer system on which the model is being run is required, including creating, copying, and deleting files and directories, editing text files, and viewing image files. The code can run on a variety of systems, including but not limited to Gnu/Linux, Cygwin/Windows, SGI/Irix, and may be ported to other systems in the future.

1
4

