TABLE OF CONTENTS

SUMMARY

1 INTRODUCTION 1
 1.1 HOME COMPOSTING OVERVIEW 1
 1.2 HOME COMPOSTING IN WASTE MANAGEMENT 2
 1.3 BENEFITS OF HOME COMPOSTING ORGANIC WASTE 2
 1.3.1 Financial 2
 1.3.2 Environmental 2
 1.3.3 Technical 3
 1.4 SIGNIFICANCE OF THE RESEARCH 3
 1.5 OBJECTIVES 3
 1.6 OUTLINE OF THE REPORT 3

2 LITERATURE REVIEW 5
 2.1 POLICY AND LEGISLATIVE CONTEXT 5
 2.1.1 Definition of waste 5
 2.1.2 Waste disposal routes 5
 2.1.3 Waste production 7
 2.1.4 Factors influencing the introduction of alternative options to landfill 8
 2.1.5 UK waste management policy 8
 2.1.6 Composting as a waste management option 9
 2.1.7 Summary 16
 2.2 EXPERIENCE WITH COMPOSTING 16
 2.2.1 Composting practice in EU countries 16
 2.2.2 Composting in the UK 18
 2.2.3 Home composting 19
 2.2.4 Summary 26
 2.3 RUNNYMEDE BOROUGH COUNCIL 26
 2.3.1 Introduction 26
 2.3.2 Background 26
 2.3.3 Waste inventory 26
 2.3.4 Current waste collection and disposal practices 27
 2.3.5 Composting in RBC 28
 2.3.6 Cost of waste collection 29
 2.3.7 Summary 30
 2.4 COMPOST MANAGEMENT PRACTICES 30
 2.4.1 Introduction 30
 2.4.2 Microbiological aspects of composting 32
 2.4.3 Biochemical reactions 33
 2.4.4 Biological succession 35
 2.4.5 Types of composting system 36
 2.4.6 Environmental factors 37
 2.4.7 Composting maturation 40
 2.4.8 Summary 42
 2.5 COMPOST UTILISATION 42
 2.5.1 Introduction 42
 2.5.2 Peat substitution 42
 2.5.3 Horticultural applications for home and MSW compost 43
 2.5.4 Properties of compost 44
 2.5.5 Summary 45
2.6 COMPOST QUALITY
2.6.1 Introduction 45
2.6.2 Standards 45
2.6.3 Health and safety in relation to home composting 49
2.6.4 Summary 52

3 GENERAL MATERIALS AND METHODS 54
3.1 HOME COMPOSTING TRIAL 54
3.1.1 Preparation and rationale 54
3.1.2 Home Composting Study Trial participant recruitment 54
3.1.3 Home composting procedure and equipment 54
3.1.4 Experimental treatments 55
3.2 MASS BALANCE ANALYSIS 56
3.3 COMPOST PROCESS MONITORING 56
3.3.1 Temperature 56
3.3.2 Gas composition 56
3.4 LABORATORY ANALYTICAL PROCEDURES 57
3.4.1 Oven-dry moisture content 57
3.4.2 pH 57
3.4.3 Electrical conductivity (EC) 57
3.4.4 Loss on ignition/organic C 58
3.4.5 Extractable NH$_4$-N, NO$_2$-N and NO$_3$-N 58
3.4.6 Total N and P 58
3.4.7 Extractable P 58
3.4.8 Total Mg and K 59
3.5 STATISTICAL ANALYSIS 59

4 EFFECT OF HOME COMPOSTING ON THE DIVERSION OF BIODEGRADABLE HOUSEHOLD WASTE FROM LANDFILL DISPOSAL 60
4.1 INTRODUCTION 60
4.2 WASTE INPUTS TO HOME COMPOST BINS 60
4.2.1 Kitchen waste 60
4.2.2 Paper 62
4.2.3 Garden waste 63
4.3 MASS BALANCE OF WASTE INPUTS AND OUTPUTS FROM HOME COMPOST BINS 64
4.4 IMPACT OF HC ON WASTE GENERATION IN STUDY AREA 66
4.5 SUMMARY 73

5 COMPOSTING PROCESS MONITORING 75
5.1 INTRODUCTION 75
5.2 TEMPERATURE INVESTIGATIONS 75
5.2.1 Monitoring by homeowners 75
5.2.2 Profile monitoring 76
5.2.3 Main treatment effects on compost temperature profiles 76
5.2.4 Compost temperature in relation to waste inputs 79
5.2.5 Summary 80
5.3 GASEOUS PHASE INVESTIGATIONS 80
5.3.1 Oxygen concentrations 80
5.3.2 Carbon dioxide concentrations 84
5.3.3 Methane concentrations 87
5.4 DISCUSSION 90
5.4.1 Temperature in relation to composting activity 90
5.4.2 Gas composition in relation to composting activity 90
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.1</td>
<td>Homeowner responses to questionnaires distributed to the Study Area</td>
<td>136</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Feedback questionnaire from homeowners involved in the experimental investigation</td>
<td>140</td>
</tr>
<tr>
<td>10.4</td>
<td>SUMMARY</td>
<td>147</td>
</tr>
<tr>
<td>11</td>
<td>GENERAL DISCUSSION AND CONCLUSIONS</td>
<td>148</td>
</tr>
<tr>
<td>11.1</td>
<td>SIGNIFICANCE OF THE RESEARCH</td>
<td>148</td>
</tr>
<tr>
<td>11.2</td>
<td>WASTE INPUTS AND DIVERSION FROM LANDFILL</td>
<td>148</td>
</tr>
<tr>
<td>11.3</td>
<td>WASTE STABILIZATION IN HOME COMPOSTERS</td>
<td>149</td>
</tr>
<tr>
<td>11.4</td>
<td>COMPOST TEMPERATURE AND GAS PROFILES</td>
<td>149</td>
</tr>
<tr>
<td>11.5</td>
<td>HOME COMPOST QUALITY</td>
<td>149</td>
</tr>
<tr>
<td>11.6</td>
<td>AIRBORNE RELEASE OF ASPERGILLUS FUMIGATUS FROM HOME COMPOST BINS</td>
<td>150</td>
</tr>
<tr>
<td>11.7</td>
<td>FRUIT FLY POPULATION DENSITIES IN THE VICINITY OF HOME COMPOST BINS</td>
<td>150</td>
</tr>
<tr>
<td>11.8</td>
<td>HOME COMPOST END-USE</td>
<td>150</td>
</tr>
<tr>
<td>11.9</td>
<td>SOCIO-ECONOMIC AND DEMOGRAPHIC ANALYSIS</td>
<td>150</td>
</tr>
<tr>
<td>11.10</td>
<td>HOME COMPOSTING GUIDANCE FOR LOCAL AUTHORITIES</td>
<td>151</td>
</tr>
<tr>
<td>11.11</td>
<td>FURTHER RESEARCH</td>
<td>152</td>
</tr>
<tr>
<td>11.12</td>
<td>CONCLUDING COMMENTS</td>
<td>153</td>
</tr>
<tr>
<td>12</td>
<td>REFERENCES</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>APPENDICES</td>
<td>170</td>
</tr>
</tbody>
</table>