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Abstract

The paper presents an implementation of free-form surface registration in relation to inspection of engineering components, defined as
NURBS. Registration is principally performed through the Iterative Closest Point (ICP) method. The time-critical step in ICP was found to be
the determination of the closest points on NURBS to a given point in space. Significant speed improvements were achieved through the
adoption of a dual surface representation, involving approximation of NURBS entities by a polyhedral mesh. A criterion for sufficient
polyhedral approximation was derived and implemented, producing encouraging results. Original solutions are suggested in order to further
improve the computational speed. Extensive testing has been carried out, showing that the proposed registration method handles a full six
degrees of freedom and achieves global convergence. Performance of the implemented algorithms is discussed with reference to registration

of a turbine blade airfoil. © 1997 Elsevier Science B.V.
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1. Introduction

Accurate registration of free-form surfaces is an essential
requirement for dimensional inspection and, as such, it is
relevant to many branches of manufacturing industry. The
requirement arises at several stages of the product life cycle,
such as during product and manufacturing process develop-
ment, production, and also in the repair of broken or worn-
out parts [1]. A common feature of components containing
free-form surfaces is the absence of clearly defined refer-
ence features. The prime examples are the parts produced
using forming processes (casting, forging, pressing), such as
aero engine compressor and turbine blades, car body panels
and others. Typically, registration relies on employing
special-purpose inspection jigs which provide the registra-
tion features that are not available on the part itself.

With the advent of various non-contact sensors, it iS now
possible to rapidly collect a large number of point measure-
ments so that the actual surface may be characterised in full.
A review of the most relevant non-contact measurement
techniques is provided by Newman and Jain [2], while the
accepted view [3] is that range sensing, such as laser trian-
gulation, is the most appropriate choice for accurate dimen-
sional inspection. In such situations software best-fitting is
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the essential registration tool to be employed in order to
enable accurate measurement and to eliminate the systema-
tic component of the error due to misalignment.

The main difficulty with best-fitting has been in dealing
with large data sets in relation to parametric surfaces such as
NURBS (Non-Uniform Rational B-Spline). The most suit-
able registration technique in such situations is widely
accepted to be the Iterative Closest Point (ICP) method
[4]. It is based on the idea that, at each iteration, the points
on the nominal model that are nearest to the measured ones
may be taken as corresponding and the aligning trans-
formation is calculated by least-squares minimisation of
the collective point-to-point distances. The process is then
repeated until satisfactory convergence is achieved.

Although the ICP method is well known, several funda-
mental difficulties have not been adequately resolved to
date. It was found that the time required to perform the
best-fitting task by the published algorithms is so excessive
that, in practical applications, they can handle only a limited
number of measurements. The computational burden is
largely associated with finding the nearest point on
NURBS, which demands the use of numerical methods
because the equations have no known analytical solution.
Furthermore, the initial guess in finding the closest point
was found to be of critical importance, in order to guarantee
a correct result of this computation. However, none of
the published methods were found to address this issue
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adequately. As a consequence, in many situations, the accu-
racy and robustness of the ICP method as a whole were
observed to be limited.

This paper presents an implementation of ICP registration
for free-form surfaces that aims to overcome these pro-
blems. The main objective was to achieve high com-
putational efficiency, without sacrificing the accuracy,
when dealing with large measurement data sets and nominal
geometry defined as NURBS. An objective was also to
realise a robust method that could be readily and reliably
applied to a variety of shapes.

The paper is organised in the following way. The next
section deals with techniques for geometric modelling as the
basis of the proposed registration method. It presents
the most important functions related to NURBS and the
approximation criteria that must be satisfied for registration
purposes. The subsequent section presents the implemen-
tation of the ICP registration algorithm, showing how a
number of important improvements in the computational
speed were achieved. This is followed by a discussion of
the achieved registration performance with reference to
actual and simulated measurement of a turbine blade airfoil.
The final section summarises the main conclusions drawn
from this work.

2. Geometric modelling for inspection

The basis for ICP registration is the calculation of the
closest point on the surface to a given point in space. Cal-
culation of the nearest point on a parametric surface
demands the use of iterative search techniques, since the
equations in general have no closed form solutions. The
initial guess for this search may be provided by the vertices
of a suitable polygonal approximation of the parametric
surface model.

In this work, NURBS surfaces were chosen to be the main
modelling entity for the nominal geometry because they
offer good local shape control and are rapidly becoming
the principal building blocks of modern CAD/CAM
systems. Importantly, NURBS are supported by IGES
(entity 128), and almost all surface geometry exchange in
heterogeneous environments is done via surface entities in
IGES files. Since NURBS can exactly represent the natural
quadric surfaces, software complexity can be drastically
reduced if all surfaces are converted to NURBS. However,
the overhead created by the unequal weighting is significant
and NURBS formulation can incur considerable perfor-
mance and reliability penalties. This issue was central to
the design of the geometric modeller.

Following this, a number of geometric functions have
been implemented and these are described below.

2.1. Computing a point on NURBS

The function which calculates x, y, z coordinates of a

point on the surface defined by parameters u, v is implemen-
ted as suggested by Bartels et al. [5]. The algorithm was
found to be very efficient. For example, on a SUN-SPARC2
workstation it computes approximately 5000 point coordi-
nates per second for a fourth-order NURBS comprising 13
X 89 knots. (Source code for the benchmark is available via
anonymous ftp on robot-gw.me.ic.ac.uk in pub/inspection/
nurbs.zip)

2.2. Polyhedral approximation of NURBS surfaces

Polyhedral approximation is produced by subdivision
sampling of the parametric surface. In its simplest form it
generates a parametrically uniform grid of m X n points
ordered as ‘sections’ in space. However, our implementa-
tion involved adaptive subdivision sampling in order to
avoid over-sampling of the regions with low curvature,
thus reducing the number of triangles needed to accurately
describe the surface. The surface is then approximated by a
mesh of straight line segments joining each pair of adjacent
grid points. Triangular polyhedra are obtained by splitting
each rectangle into two triangles. Topological relations
encoding the connectivity structure are stored in corre-
sponding linked lists.

The method is essentially that presented by Von Herzen
and Barr [6], in which the sampling is performed recursively
in the following steps until certain subdivision termination
criteria have been satisfied:

1. The surface is sampled on a uniform parametric grid at
some initial resolution.

2. Each region is evaluated using several acceptance
criteria.

3. If the region is not acceptable, then it is split into two or
four smaller regions, since the criteria may not be
fulfilled with respect to one or both dimensions.

4. Steps 2 and 3 are repeated until the entire surface is
sampled adequately.

5. The regions are broken into triangles.

The acceptance criteria for each region in adaptive sam-
pling is a problem that requires special attention. Clearly,
the first requirement is to guarantee that the triangulation is
accurate to within a given tolerance. Consequently, we have
implemented an algorithm in which one of the subdivision
termination criteria is based on flatness [7], where the qual-
ity measure is the distance from the surface to its planar
approximation. Most of the published literature assumes
that satisfaction of this criterion is sufficient, but our investi-
gation has revealed that, for registration purposes, an addi-
tional acceptance criterion is required. This is based on the
object thickness and is presented below.

2.2.1. Object thickness and the required point density

A frequent practical problem when calculating the nearest
point on a surface to a point in space is illustrated in Fig. 1,
where P is the measured point and V;, V; and V, are the



M. Ristic. D. Brujic/Image and Vision Computing 15 (1997) 925-935 927

Vi

Fig. 1. Initial guess for MDSM search in finding the closest point.

vertices on the grid. This calculation starts with an exhaus-
tive search for the nearest vertex, which is then used as the
initial guess for the subsequent Multi-Dimensional Simplex
minimisation (see the next section). The nearest point
clearly lies in the segment between V; and V), either of
which is a correct initial guess. However, if the point density
is too low, then the nearest found vertex may be V,,, which is
on the wrong side of the model. The search for the nearest
point would then minimise the distance PP’, ultimately
yielding a wrong result. This is particularly apparent when
dealing with highly folded surfaces, as well as with compo-
nents that are relatively flat but slender. Therefore the solu-
tion requires selection of a point density that is appropriate
for the thickness of the given geometry.

Formally, object thickness (Fig. 2) and point density are
defined as follows [8]:

Let P be a set of points P;, i = 1,..,n, on the surface. P is
said to have density /e if and only if, for all points on
the surface, there is aj, | = j = n, such that P; is within
the open ball of centre P; and radius e.

The thickness e of an object is the real positive number
such that any maximal ball included either inside or
outside the object has a radius larger than or equal to e.

The acceptance criterion in subdivision sampling based
on thickness is explained with reference to Fig. 3, which
shows the limiting case when l/e = 1/2e and the given
spatial point P, is on the surface. Points V; and V; are its
closest vertices on the near side of the object, while the point
V, is the nearest vertex on the far side of the object. Clearly,
the situation where density 1/e > 1/2¢ will lead to vertex V;
or V;being found as the nearest, both of which provide correct
starting points in the subsequent MDSM minimisation. How-
ever, if this condition is not satisfied, then point V,, may be
chosen, leading to a wrong point being found as the nearest.

Fig. 2. Object thickness.

Object
Fig. 3. Point density in relation to object thickness.

The thickness criterion therefore states that the density of
the points on the surface must be greater than 1/2¢. The
approximation obtained under this condition is homeo-
morphic. Note that this argument was derived bearing in
mind accurate dimensional inspection, where the measure-
ment noise size is assumed to be much smaller than the size
of the smallest inspected feature on the object.

The implemented algorithm ensures that each region
complies with this condition by considering the thickness
of the NURBS surface in the directions of its parameters u
and v. Thus, for each region, this results in different point
densities in the two directions, according to the object
geometry. This is also consistent with most modern CAD
systems (such as ProEngineer) which do provide thickness
as one of the surface interrogation functions.

2.3. Distance from a point in space to a NURBS surface

Computation of the closest point to a NURBS surface to a
point in space P,, (x,,, ¥ Zn) InvOlves minimisation of a
scalar objective function @, defined as the distance from that
point to the surface:

0=y — 30, V) + O = ¥ty VI + (g — 2, V)Y (1)

The Multidimensional Downhill Simplex Method [9]
(MDSM) has been chosen for this minimisation because
it requires only evaluation of the function and not of its
derivatives.

As with all iterative methods, the correct choice of an
initial guess for MDSM minimisation is crucial, since the
search would very often lead to a local minimum if the
initial guess is not sufficiently close to the real nearest
point. This problem was solved in the following manner.
Prior to starting the determination of a closest point, a poly-
gonal mesh which covers the parametric surface is calcu-
lated according to the subdivision sampling method
described above. Each vertex is tagged with the correspond-
ing parameter values (i, v) and both the vertex coordinates
(x, v, z) and parameter values (u, v), are stored in a data
structure. When the closest point is required we search for
the nearest vertex on a polygonal mesh. Parameter values
corresponding to the nearest vertex are then supplied to
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MDSM as one point for the initial guess. Two other points
are easily calculated as (u + d, v) and (4, v 4 d), where the
constant ‘d’ is calculated from the mesh density.

In a number of situations in practice, the surface being
manipulated is closed, such that points corresponding to a
parameter value u = uy,, and u = uyq coincide. In that case
it may happen that the initial guess leads to a closest point
on one edge of the surface while the real closest point is
close to the other edge. The implemented solution solves the
above problem by introducing a second initial guess. When
the result of the first initial guess leads to a solution close to
the surface edge, then the point on the opposite side is tried
while the other parameter value is retained. Two cost func-
tions are obtained and the smaller is selected. Its corre-
sponding point is then accepted as the closest point on the
surface.

2.4. Distance from a point in space to a polyhedron

The function of finding the nearest point on the poly-
hedral surface approximation to a given point in space
was implemented through an algorithm which promotes
the vertices (readily available) to be the representatives of
their surroundings. This was made possible by the adoption
of the correct termination criteria in subdivision sampling in
order to produce a sufficiently dense set of vertices. The
algorithm considers the vertex nearest to a given spatial
point and the region which is formed by the facets in the
vicinity of that vertex. It examines whether the projection
of the given point falls on any of the facets surrounding
the vertex and, if not, then the region under consideration
is expanded to include the adjoining facets. The process
may then be repeated until the true nearest point has been
found.

3. Iterative closest point registration

The Best Fitting procedure, as applicable to dimensional
inspection, can be defined as follows [4]:

Given 3D data in a sensor coordinate system, which
describes a data shape that may correspond to a
model shape, and given a model shape in a model coor-
dinate system in a different geometric representation,
estimate the optimal rotation and translation that aligns
the model shape and the data shape, minimising the
distance between the shapes and thereby allowing
determination of the equivalence of the shapes via a
mean-square distance metric.

It has been proved (4] that, by using the collective dis-
tance between measured points and their closest points on a
surface as the corresponding points, it is possible to build a
best-fitting algorithm which will always converge to the
nearest local minimum. Based on this, and on the above
definition, the cost function to be minimised in best-fitting

is the model—part distance, which can be expressed as:

N
F= z|qi_Ripi—t|2 (2)
i=1

where ¢ is the translation matrix, R is the rotation matrix, p;
is the ith measurement point, q; is the closest point on the
model, taken as the corresponding point, and N is the
number of measured points.

This is the basis of the Iterative Closest Point (ICP)
algorithm, which consists of the following steps:

1. For all the measured points, compute their closest points
on the model shape.

2. Compute the transformation matrix which minimises a
defined cost function.

3. Apply the transformation matrix to the measured points
set.

4. If the change in the cost function is greater than a preset
value, go to step 1.

5. Else stop.

Computationally, the most critical step was found to be
the first, namely the calculation of the nearest points on the
NURBS surface. For this reason, significant speed gains can
be realised if the polyhedral approximation is used in the
initial phase of best-fitting whereas the full NURBS model
is used at the subsequent stages. This principle has led to the
adoption of the dual representation of model geometry for
ICP registration.

3.1. Search for the nearest vertex

With the adoption of the dual geometry representation,
and following from the described methods for geometric
modelling, the search for the nearest vertex is performed
as a part of two tasks. Firstly, it provides an initial guess
for MSDM search in finding the nearest point on NURBS.
Secondly, it is performed when finding the nearest point on
the approximation. Bearing in mind the large number of
vertices typically contained in a polyhedral surface model
and the lack of spatial information encoded in the topologi-
cal structure, the search for the nearest vertex became the
time critical task. Three major improvements have been
implemented in order to increase the efficiency.

3.1.1. Adaptive window search

The first improvement is the adaptive window search. It is
based on the original idea that for each measured point an
exhaustive search for the closest vertex can be substituted
by a search in the surrounding of some appropriately chosen
vertex. Having in mind the iterative nature of the fitting
algorithm, the search may be performed in the surrounding
of the closest vertex found in the previous iteration. The
search procedure is explained with reference to Fig. 4, in
which P,, . denotes the position in relation to the model of
the mth measured point, P, at the kth iteration, whereas



M. Ristic, D. Brujic/Image and Vision Computing 15 (1997) 925-935 929

j vak./—

I:,m, k+1

/

\ V(im.kd»]vjm, k+l)\
N

earch window

Fig. 4. Adaptive window search.

V(i 1 Jm 1) denotes the vertex on the grid which is found to The search window is adaptive because its size corresponds
be the closest to the point P, ;. to the change in position at each step, and it rapidly reduces

Step 1: For each measured point P, 1, 1 < m < N, to include only eight adjacent vertices.

perform exhaustive search to find the nearest vertex

V(im, 15 jm 1). Compute and apply the fitting transforma- 3.1.2. Multi-scale search

tion to move the point P,, | to position P, ; relative to Unfortunately, the above solution still demands exhaus-
the model. tive search in the first two iteration steps in order to establish
Step 2: For each measured point P, ,, again perform the required adjacency information. This is where the sec-
exhaustive search to find the nearest vertex V(i, 3, ond improvement was introduced, which we call multi-scale
Jm. 2)- Here, we notice that the same point would be search because it employs a coarse approximation of the
found by searching in the window {i, | * li, 2 — object in the first two steps. The coarse approximation
im1ljm1 = lim2 — jm 11}, although this window is of greatly reduces search time and, at the same time, solves
course known only at the end of the search. Having in the adjacency problem mentioned above. Adjacency infor-
mind that the two objects are expected to move closer mation is computed (but not used) in the first two steps and
together at each fitting step and that the positional is directly applied when switching to the ‘window-based’
increments become smaller, it is therefore expected method in the third step.

that this now known window will be sufficient for the The number of vertices in the coarse approximation was
next step. chosen to be C log(N,), where N, is the original number of
Steps k (k = 3): For each measured point P, , search vertices and C is a suitable constant. This formula was
can now be performed in the window adopted because it provides a suitable and reasonably uni-

form number of vertices for a wide range of N,. Bearing in

{i + | _i | mind the computing speed of our hardware platform
m k== k=2 k=1 Sk (SPARC-2), we used C = 300, so for the range 1000 <
* k=2 =Jm, k-11} N, < 100000 we obtain 900 < 300 log(N,) < 1500,

while for faster machines a larger value of C may be more
suitable. Of course, for N, < 1000 multi-scale search brings

However, this has the drawback that for each point the little benefit.

closest vertices in the previous two steps have to be
stored. Thus, in order to riinimise the storage require-
ments, only the largest of the windows is used for all the
points, the size of which is given by

3.1.3. Selective use of measured points

A further improvement in speed is achieved by allowing
the user to choose the number of measured points to be used
for each iteration. This is very important in the initial phases

N . . of alignment when, due to a considerable discrepancy, the

{i,,,, k-1 = I,\,,/If’f li, =2 = im, k=1l Jm, k-1 use of large data sets does not improve the accuracy. Several
thousand experiments were conducted [10] in which 10000

+ A;lx i k2 —=Jm k1 |} points were measured. In each case, fitting was performed
=17 ’ using a subset comprising 200300 points. The subsequent
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fitting of the full data set required only 1-2 further
iterations.

3.2. Rigid body transformation

The second step in ICP, to find a rigid body transforma-
tion that minimises the least-square distance between the
point pairs, is the essence of the best-fitting procedure.
The method used to compute the transformation is Singular
Value Decomposition (SVD), as suggested by Haralick
[11]. The main reasons for this are that the SVD method
is computationally very efficient and that it can be easily
generalised to more than 3-D. A detailed proof of the SVD
algorithm is provided by Haralick {11] and Arun et al. [12].
The SVD algorithm, as a method to solve constrained least-
squares problems and its implementation, is presented by
Golub and Van Loan [13] and Press et al. [9].

In some cases SVD will compute a refiection matrix, but
this is easy to detect as the determinant of the rotation
matrix becomes — 1. In this case an alternative method is
applied, in which the minimisation of the cost function is
computed by solving the system of six nonlinear equations
[14], all other steps in ICP remaining the same. Thus, in this
case, the transformation is modelled using a function of six
variables:

T=f@, t, t, o, B, 7

where 1., t,, f, are translations along the x, y, z axes and
a, b, g are the rotations. The system of six nonlinear
equations to find the unknown variables is obtained from:

oF
5([1, b, 13, Iy, I, [6)20 fori=1to6 (3)
where:
N
F= Z |ql _Tpi|2
i=1
and

(tl’ t29 t39 t4a tS’ t6)=(t)(’ ty7 tza o, B’ ‘Y)

The above derivatives of the cost function F can be
obtained analytically. To solve the system of equations
obtained in this way, the Variable Metric method [9] was
applied. The results are the same as those obtained using
SVD but, due to the iterative nature of the algorithm, the
computational time is much longer. As a result, we primar-
ily use the SVD algorithm and only when the reflection
matrix is detected do we switch to the Variable Metric
method.

3.3. Global convergence and termination criteria of ICP

ICP registration minimises the systematic component of
the error while retaining the random component [15].
This means that the mean square error (MSE) after
registration approaches the sample standard deviation of

the measurement data set, which in turn (for reasonably
large data sets) approaches the standard deviation of the
measurement noise, ¢. Furthermore, for inspection purposes
it is readily assumed that the measuring instrument is suffi-
ciently well characterised such that the value of ¢ is known.
This argument allows that both detection of convergence to
a local minimum and the ICP termination criterion be based
on the known value of o.

Convergence to a minimum is detected by comparing the
change in MSE with a pre-specified value. Local minima are
then detected as the situations when the MSE value is con-
siderably larger than the known value of ¢. In such situa-
tions a small local perturbation in position is generated and
the subsequent convergence is examined.

The ICP procedure was set to terminate when the change
in MSE became less than 10™%g. This value is based on
experience and in several thousand conducted experiments
it produced good results [10]. Of course, this does not pre-
clude using some other suitably chosen value in the early
stages of registration, when a subset of measured points and
the approximate model are used.

4. Registration performance

The most important aspects of the presented registration
method will now be illustrated in relation to measurement of
a particular aero engine turbine blade airfoil, Fig. 5. This
component was considered to provide a useful registration
performance benchmark for a number of reasons. Firstly,
the airfoil shape is poorly conditioned for registration due
to its strong symmetry in the z direction. Secondly, its

Fig. 5. CAD model of a turbine blade.
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Fig. 6. Experimental results: error after ICP registration for each measured blade section.

surface is highly folded and the thinness of its shape poten-
tially gives rise to problems in calculating the corresponding
points, which the proposed method aims to overcome.
Thirdly, the small radius of 0.3 mm at the trailing edge
represents a fine feature which in practice needs to be
measured and analysed. Finally, accurate measurement of
turbine blades is a good example of an engineering appli-
cation where the proposed method would bring immense
practical benefits by eliminating the need for special tooling.

The turbine blade in question was measured using a con-
ventional 3-axis coordinate measuring machine (CMM).
The CMM was equipped with a laser triangulation probe

(Matsushita LM200) which was mounted via a 2-axis index-
able head. Special probe path planning software was also
developed for this system, allowing accurate control of
probe position relative to the object for each measured
point. The measurements were performed in a number of
parallel sections over the airfoil surface. Fig. 6 shows
typical results obtained using this system, where the error
magnitude after registration is displayed for each measured
section. The regions of imperfection of the actual shape are
clearly visible.

However, as direct knowledge of factors such as the
amount of initial misalignment and the measurement error
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Fig. 7. Typical reduction of MSE vs iteration step number for different noise values.

at each point is not readily available with a physical system,
an extensive simulation of the measurement process was
also developed in order to better analyse the registration
performance. The conduct of the simulation studies has
been reported in detail by the authors [10], presenting a
generic analysis of the influence of various factors on ICP
registration. In this paper, on the other hand, we present the
results that are considered to provide a validation of the
proposed algorithms.

The measuring system accuracy was characterised by
using a calibration sphere of known diameter. Application
of the x-test on calibration data proved that the measure-
ment noise in this system was very closely represented as
Gaussian. On this basis the measurements were simulated
by introducing randomly generated Gaussian noise of
known standard deviation g. Initial misalignment, on the
other hand, was simulated by applying a uniformly distrib-
uted random transformation in a certain range to the simu-
lated measurements.

The graph in Fig. 7 shows typical progress of the ICP
registration, in terms of the reduction in mean square error
(MSE) at each iteration step for noise value ¢ = 55 um. In
this case the approximate polyhedral model comprised 5200
vertices; the measurement data set comprised 10000 points.
According to the described method, registration was per-
formed by initially fitting a subset of 300 randomly chosen
measurements to the approximate model, until convergence

was detected such that the reduction in MSE was less than
1072 (point A on the graph). Subsequently, the same point
subset was fitted to the NURBS model until convergence
was detected such that the reduction in MSE was less than
107 % (point B). The final set of iterations was then per-
formed by fitting the full set of measurements to the NURBS
model, and the iterations were again terminated when reduc-
tion of MSE was detected to be less than 107 %¢ (point C).
Points L1 and L2 represent local minima, which were over-
come by applying a perturbation described previously.

Simulation studies [10] have shown that the ability of the
ICP method to reach the global minimum depends on the
number of measured points in relation to the object geome-
try. This is supported by the graph in Fig. 8, showing that the
mean error in transformation parameter estimates tends to
zero as the number of measured points increases. Each point
in the graph is the average of 100 simulations with different
initial misalignment. In this example, it is primarily the poor
determinacy of the airfoil position in the z-direction that
demands the use of a larger number of points.

A useful measure of registration performance may be
provided by comparing the maximum measurement error
in a data set with the maximum error identified after regis-
tration. This is particularly relevant to inspection, where the
objective is that any errors introduced by best-fitting are
minimised. This analysis was performed through simulation
by sampling the nominal surface, introducing the random
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Fig. 10. Average computing time on SUN-SPARC?2 workstation vs number of measured points for the implemented method and the direct method operating on

NURBS.

measurement error at each point and recording the maxi-
mum error value in the set. After applying a random trans-
formation to the points and the subsequent ICP registration,
the maximum error was again recorded and compared to the
original one. Sample results are shown in Fig. 9, which for
clarity includes only 50 simulations, each with 10000
measured points, noise ¢ = 20 um and a misalignment
range of * 3mm and =* 3° The closeness of the two
graphs indicates that the point measured with the largest
error still results in the largest error after registration.
Experiments involving misalignments in the range of
+15mm and * 15° showed identical results.

Naturally, the question arises as to how the proposed
registration method performs in the presence of gross out-
liers in the data set. In the context of ICP registration
outliers may result from two causes, namely from wrongly
determined point correspondences and from gross measure-
ment error at certain points. As the results show, the former
cause has been eliminated by adherence to the proposed
thickness criterion in subdivision sampling, producing
encouraging results even for a highly folded surface such
as the blade airfoil. Further, the presence of outliers result-
ing from gross measurement error may be easily detected
after fitting. We suggest that any point lying outside the
range of * 30 be rejected and the fitting process repeated.
With the system used for this work gross outliers were never
detected, owing to the strict control of the measurement

process at each point, but with other types of measuring
system they may occur frequently.

Reports in the literature [4] suggest that more than 30
iterations are necessary to achieve accurate registration,
and this was confirmed by our experiments. In both the
experimental and the simulation studies involving the
turbine blade, about 40 iterations were required on average
to achieve the desired accuracy. This strongly underlines the
time-critical task of finding the closest points.

The effect of the presented improvements on the comput-
ing speed is illustrated by the graph in Fig. 10. It shows the
average computing time to perform registration against
the number of measured points. Each point in the graph is
the average result of 50 simulations involving random mis-
alignment. Performance of the described method is pre-
sented in comparison with the direct method that operates
on NURBS and uses the full data set at all steps, the regis-
tration accuracy being the same in both cases.

5. Conclusions

The paper has presented an implementation of NURBS
surface registration using the Iterative Closest Point method.
The original ICP method suggested by Besl was improved
by fitting it to an approximate polyhedral model before
switching to NURBS. The fitting speed was further
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improved by using a subset of the measurement data at all
but the final stages of the iteration.

The implementation also incorporates important compu-
tational improvements, which were realised in connection
with finding the nearest vertex. These are the adaptive
window search and the multi-scale search.

The paper has also suggested several original improve-
ments for ICP registration. Firstly, the appropriate criteria
for approximation of free-form surfaces have been derived.
Secondly, it was suggested that the standard deviation of the
measurement noise, if known, should be used as the basis
for the ICP termination criteria. Finally, it is proposed that
the knowledge of the measurement noise also be used for the
detection of local minima, which are then overcome by the
introduction of a local perturbation.

Experimental studies have shown that the method handles
a full six degrees of freedom and that, for a reasonable initial
misalignment, it converges to the global minimum.
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