Winter School on Computational Methods for Neurorehabilitation

Introduction to the mini-projects

N. Jarrassé ISIR, CNRS-UMR7222, Univ. Pierre et Marie Curie, France Human Robotics Group, Imperial College London, UK

January, 28-31th 2014, Obertauern, Austria

Introduction

Goal

- Apply theoretical knowledge presented during the morning lectures sessions
- Explore practical applications and possibilities of computational methods.

Organization

- 8 different mini-projects
- groups of 4 / 5 students, supervised by 1 to 2 tutors
- Mini-project session every evening (7-9pm)
- Mini-projects will take place in the dinner area

Deliverable

- A short presentation of obtained results on Friday morning (10 min+5 min questions per project)

List of mini-projects

- Project A: Isometric Assessment of Multiple Sclerosis vs. Healthy Subjects
- **Project B:** Decomposition Techniques for Analysing Motor Tasks
- Project C: Analysis of Grasping Strategies and Function using an Instrumented Object
- Project D: Motor Adaptation and De-adaptation
- Project E: Optimal Control (LQG, LQR) as a Model of Human Motor Control
- Project F: Models of Neuromotor Recovery
- Project G: Analysis of Movement Smoothness
- **Project H:** Analysis of Coordination Learning in a Figure Drawing

Project assignment

Project A <i>A. Hussain</i>
Nicolas Gerig
Rick Bosveld
Tamara Lorenz
Anneleen Maris

Project B <i>A. Pennycott</i>
Gaurav Mukherjee
Kerstin Sobus
Virginia Ruiz Garate
Susanna Summa
Alice De Luca

Project C N. Jarrassé, W. Dailey Jaime Duarte Sumner Norman Albert Sans Andrea Crema **Belen Rubio**

Project D A. Takagi **Firas Mawase Thomas Seel Guoping Zhao Oscar Giles** Karin Eibenberger

Droject E

Project E E. Guigon

Patricia Leconte Joel Perry Laura De Rijcke

Luca Ricci

V. Sanguinetti		Project H
Andrei Ninu	Project G	S. Balasubramanian
Coore Doutor	A. Melendez	Eleonora Tamilia
Georg Rauter	Frieder Wittman	Fabio Oscari
Vincent Crocher	Christophe Everarts	Cristina Fonte
Jessica Allen	Carlos Rodriguez	Meret Branscheidt
Kazimierz Wojewoda	Sharah Mutalib	Irene Tamagnone

Learn to recognize your project's instructor

2014 Winter School on Computational Methods for Neurorehabilitation: Mini-projects

Thank you for your attention

2014 Winter School on Computational Methods for Neurorehabilitation: Mini-projects

Project A: Isometric Assessment of Multiple Sclerosis vs. Healthy Subjects

Context

- Muscle strength is essential for producing motor output (accelerate limb, compensate for gravity, interact with env.).

 Quantification of sensorimotor function could be based on isometric force/torque measurement

Objectives

- Analysis of the richness of isometric force signal (strenght and control) using sample entropy

- Comparison of recorded data between multiple-sclerosis patients and healthy subjects

Project B: Decomposition Techniques for Analysing Motor Tasks

Context

- Muscle synergies: simplified control of a large number of DOF through a smaller number of motor output patterns

 Interpretation of large set of physiological signals through dimension reduction

Objectives

- Analyze of data sets (16 EMG signals) recorded during walking

- Comparison of 2 different pattern recognition techniques (PCA and NMF)

Project C: Analysis of Grasping Strategies and Function using an Instrumented Object

Context

- Bridging the gap between elementary measures and functional scores for better therapy and follow-up for stroke patients

- Quantitative assessment of grasping function

- Use of an simple, robust and low-cost Instrumented Object (iBox)

Objectives

- Data acquisition during simple grasp and manipulation experiments

- Comparison of healthy recorded datasets with hemiparetic datasets via a set of pertinent variables (existing or to define)

Project D: Motor Adaptation and De-adaptation

Context

- Constant motor adaptation to environment and body changes

- Using robots to generate force fields and study how this motor memory is retained through iterative learning

Objectives

- Analyses data from healthy subjects who learned a linear velocity-dependent force field

- Examine modelling of this adaptation and de-adaptation using an iterative control model (Matlab)

Project E: Optimal Control (LQG, LQR) as a Model of Human Motor Control

Context

 providing solutions to ill-posed and stochastic problems such as those encountered in sensorimotor control (e.g. reaching with a redundant limb to a target located at an uncertain position)

- Optimal control then consists in finding a control policy that minimises (or maximises) the performance value

Objectives

- Learning to manipulate LQ optimal control models, and design computer simulations

- Simulation and comparison (redundancy and robustness) of different controllers (feedback, LQR, LQG and H-infinite)

Project F: Models of Neuromotor Recovery

Context

- Quantification of the effect among time of rehabilitation procedure

- Modelization and understanding of recovery mechanisms of recovery at the functional level

Objectives

- Exploration of the basic methodologies to describe the recovery process in a rehabilitation trial as a dynamical process

- Development of a dynamical model of the recovery process from time series data of a rehabilitation trial

- Parameters identification and method comparison

Project G: Analysis of Movement Smoothness

Context

- Development of more objective, detailed and sensitive assessment methods to precisely quantify sensorimotor ability.

 Robust and representative quantification of movement smoothness

Objectives

- Investigation of the performance of four selected smoothness measures on healthy and stroke data.

- Analyze and comparison of the performance of these measures.

Student repartition among mini-projects

Context

- Muscle strength is essential for producing motor output (accelerate limb, compensate for gravity, interact with env.).

- Quantification of sensorimotor function could be based on isometric force/torque measurement

Objectives

- Analysis of the richness of isometric force signal (strenght and control) using sample entropy

- Comparison of recorded data between multiple-sclerosis patients and healthy subjects

Project G: Analysis of Movement Smoothness

Context

- Muscle strength is essential for producing motor output (accelerate limb, compensate for gravity, interact with env.).

- Quantification of sensorimotor function could be based on isometric force/torque measurement

Objectives

- Analysis of the richness of isometric force signal (strenght and control) using sample entropy

- Comparison of recorded data between multiple-sclerosis patients and healthy subjects