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ABSTRACT

The energy-distortion function (E(D)) for a network is defined
as the minimum total energy required to achieve a target dis-
tortion D at the receiver without putting any restrictions on
the number of channel uses per source sample. E(D) is stud-
ied for a sensor network in which multiple sensors transmit
their noisy observations of a Gaussian source to the desti-
nation over a Gaussian multiple access channel with perfect
channel output feedback. While the optimality of separate
source and channel coding is proved for the case of a single
sensor, this optimality is shown to fail when there are multiple
sensors in the network.

A network with two sensors is studied in detail. First
a lower bound on E(D) is given. Then, two achievability
schemes are proposed: a separation based digital scheme and
a Schalkwijk-Kailath (SK) type uncoded scheme. The gap
between the lower bound and the upper bound based on sep-
aration is shown to be a constant even as the total energy re-
quirement goes to infinity in the low distortion regime. On
the other hand, as the distortion requirement is relaxed, the
SK based scheme is shown to outperform separation in cer-
tain cases, proving that the optimality of source-channel sep-
aration does not hold in the multi-sensor setting.

Index Terms— Sensor networks, energy efficiency, feed-
back, joint source-channel coding, information theory.

1. INTRODUCTION
We study a sensor network in which the sensors observe noisy
versions of a stochastic source and transmit their observa-
tions to a destination such that the destination can reconstruct
the underlying source with a certain fidelity. If the energy
available at the sensors is severely constrained, they could re-
duce their transmission energy by spreading their transmis-
sions over multiple channel uses (e.g., see [9], [7] and ref-
erences therein). Furthermore, if the destination is under no
power constraint, it could help the sensors by providing them
with a perfect feedback of all its receptions. Thus, the feed-
back allows a sensor to obtain information about the transmis-
sions of the other sensors. This fact could be exploited by the
sensors to pass messages to each other over the feedback link,
allowing the sensors to cooperate with each other. It is in this
framework that we set our problem. In this work, we study
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the problem of minimizing the energy expenditure per source
sample at the sensors, in a sensor network with feedback and
with no constraint on the number of channel uses per source
observation.

Our model brings together the problems of compression
and communication in a distributed setting, and hence it is a
joint source and channel coding problem. While this model
has been widely studied in the literature (e.g., see [2], [10]
and references therein), previous works consider a fixed ra-
tio between the source and channel bandwidths, i.e., a fixed
number of channel uses per source sample, and search for the
minimum achievable distortion under a power constraint. In
this work, we introduce a fundamental information-theoretic
energy-distortion function E(D) in which we do not put any
constraint on the bandwidth ratio, and find the minimum en-
ergy per source sample required to achieve a target distortion.

We assume that perfect channel output feedback is avail-
able at the sensors. While we prove that separate source and
channel coding achieves E(D) for a single sensor scenario,
similarly to the power-distortion tradeoff, optimality of sepa-
ration fails as the number of sensors increases. Our focus in
this paper is on a two-sensor model for which we provide
lower and upper bounds on E(D). We study an uncoded
achievability scheme based on the well-known Schalkwijk-
Kailath (SK) scheme [4] as well as separate source and chan-
nel coding.

2. SYSTEM MODEL

We consider a sensor network with perfect channel output
feedback as illustrated in Fig. 1. The source SM is an
M -length random vector of independent and identically dis-
tributed (i.i.d.) real-valued Gaussian random variables with
zero means and variances σ2

S , i.e., S ∼ N (0, σ2
S). Each of the

K sensors observes a noisy version of the underlying source
S, i.e., the observation vector at sensor k for k = 1, . . . , K is
denoted by UM

k , which is defined as

Uk,m = Sm + Wk,m for m = 1, . . . , M (1)

where WM
k is a Gaussian noise vector with i.i.d. N (0, σ2

Wk
)

components.

Sensors transmit their observations over a multiple access
channel (MAC). Denoting the transmission vector of sensor k
as XN

k , and the corresponding channel output vector as Y N ,
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Fig. 1. Gaussian sensor network model with perfect channel
output feedback.

the channel is characterized by

Yn =

K∑
k=1

Xk,n + Zn for n = 1, . . . , N (2)

where ZN is the vector of i.i.d. Gaussian channel noise with
distribution N (0, σ2

Z). In this work, we focus on the sym-
metric scenario in which the observation noises at different
sensors have the same variance, i.e., σ2

Wk
= σ2

W for k =

1, . . . , K. We denote this system as a (K,σ2
S , σ2

W , σ2
Z) sen-

sor network.
We assume the availability of perfect channel output feed-

back at all the sensors, and hence the encoding function at
each sensor can depend on its noisy observation as well as
the previous channel outputs. Considering block encoding
from an M -length source vector to an N -length channel vec-
tor, the encoder at sensor k is described by a sequence of en-
coding functions f

(M,N)
k,n : R

M × R
n−1 → R where Xk,n =

f
(M,N)
k,n (UM

k , Y n−1) for k = 1, . . . , K and n = 1, . . . , N .

The decoder is described by the decoding function g(M,N) :

R
N → R

M where ŜM = g(M,N)(Y N ).

Definition 2.1 For a (K,σ2
S , σ2

W , σ2
Z) sensor network, we

say that an energy-distortion pair (E,D) is “achievable” if
there exist a sequence (over M and N ) of encoding functions

{f (M,N)
1,n }N

n=1, . . . , {f (M,N)
K,n }N

n=1

satisfying the total energy (per source sample) constraint

E

[
K∑

k=1

N∑
n=1

X2
k,n

]
≤ ME, (3)

and a sequence of decoding functions g(M,N) such that the
corresponding distortion sequence satisfies

lim sup
M→∞

1

M

M∑
m=1

E

[
(Sm − Ŝm)2

]
≤ D.

Definition 2.2 We define the “energy-distortion function” for

a given sensor network as

E(D) � inf{E ≥ 0 : (E,D) is achievable}. (4)

Our goal is to identify E(D) for a given sensor network.
Note that, we do not impose any source or channel bandwidth
constraints, hence it is possible to transmit as many channel
symbols per source observation as needed as long as the total
energy constraint is satisfied.

3. SINGLE SENSOR SCENARIO
We first focus on the point-to-point scenario in which there is
only a single sensor transmitting its noisy observation to the
destination, i.e., K = 1. We show that separate source and
channel coding achieves E(D) in this case. To present this
result we first define Ebmin as the minimum energy per bit [8]
for the underlying communication channel.

We define RU1
(D) as the remote rate-distortion function

for the given source, that is, the minimum rate required to
achieve an average distortion D when the encoder observes
U1. For the Gaussian setup considered here, we have

RU1
(D) =

1

2
log+

2

(
σ4

S

(σ2
S + σ2

W )D − σ2
Sσ2

W

)
,

where log+(x) = log(x) if x ≥ 1 and 0 otherwise.

Lemma 3.1 For a single sensor scenario, we have E(D) =
EbminRU1

(D), and this can be achieved by separate source
and channel coding1.

The proof of Lemma 3.1 is along the lines of proof of
the source–channel separation theorem (see also [9, Theo-
rem 2]). For the (1, σ2

S , σ2
W , σ2

Z) network, we have E1(D) =

σ2
Z log+

e

(
σ4

S

(σ2

S
+σ2

W
)D−σ2

S
σ2

W

)
.

Remark 3.1 We note here that the optimality of source and
channel separation is not limited to the Gaussian model con-
sidered here. Lemma 3.1 holds for a general discrete memo-
ryless stationary source and channel with any additive distor-
tion measure and any separable cost function respectively.

In the remainder of the paper we focus on the two-sensor
scenario, i.e., K = 2, for which the optimality of separation
fails. We provide lower and upper bounds on E(D).

4. LOWER BOUND ON E(D)

A trivial lower bound is obtained by a cut-set argument, as-
suming the sensors can perfectly cooperate. Under this as-
sumption, the network reduces to a point-to-point link with
two noisy observations and perfect channel output feedback.
From Lemma 3.1, optimal performance is achieved by source
and channel separation.

We define the remote rate-distortion function RU1,U2
(D)

as the minimum rate required to achieve an average distortion

1The proofs are omitted due to space limitations.
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D when the encoder observes both U1 and U2. We have

RU1,U2
(D) = min

PT |U1,U2
:

E[(S−T )2]≤D

I(U1, U2;T )

=
1

2
log+

2

⎛
⎝ σ2

S

D
(
1 +

σ2

W

2σ2

S

)
− σ2

W

2

⎞
⎠ .

We have Ebmin = σ2
Z loge 2 for the underlying Gaussian

channel with two transmit antennas. Then the lower bound
is found as

Ecutset(D) =
σ2

Z

2
log+

e

⎛
⎝ σ2

S

D
(
1 +

σ2

W

2σ2

S

)
− σ2

W

2

⎞
⎠ . (5)

Next, we identify a tighter lower bound based on the ideas
from the converse of the MAC with feedback by Ozarow [6].
To present this lower bound, we first introduce the conditional
remote rate-distortion function RU1|U2

(D), which is defined
as the minimum rate required to achieve distortion D when
the encoder observes both U1 and U2 while U2 is observed by
the decoder as well. We have [11]

RU1|U2
(D) = min

PT |U1,U2
:

E[(S−T )2]≤D

I(U1;T |U2)

=
1

2
log+

2

⎛
⎝ σ2

W σ2
S

(σ2
W + σ2

S)(σ2
W + 2σ2

S)
(
D − σ2

W
σ2

S

σ2

W
+2σ2

S

)
⎞
⎠ .

Proposition 4.1 In a (2, σ2
S , σ2

W , σ2
Z) sensor network, E(D)

is lower bounded by

ELB(D) = max
ρ̂∈[0,1]

min

8><
>:

σ2
Z

1 + ρ̂
log+

e

0
B@ σ2

S

D
“
1 +

σ2

W

2σ2

S

”
−

σ2

W

2

1
CA ,

2σ2
Z

1− ρ̂2
log+

e

0
B@ σ2

W σ2
S

(σ2
W + σ2

S)(σ2
W + 2σ2

S)
“
D −

σ2

W
σ2

S

σ2

W
+2σ2

S

”
1
CA

9>=
>;

.

(6)

In (6), ρ̂ denotes the correlation between the transmissions of
the two sensors.

5. SEPARATE SOURCE AND CHANNEL CODING

In this scheme, sensors first compress their observations, and
then transmit these compressed observations over the MAC
using channel codes that are generated independently of the
sensor observations.

The source coding component of separate coding is the
well-known CEO problem [5]. Assuming equal rates, the
minimum rate required at each sensor to achieve distortion
D for the symmetric Gaussian CEO problem is given by [5]

RCEO(D) =
1

4
log+

2

(
σ2

S

D

)
+ r, (7)

where r satisfies

1

σ2
S

+ 2
1 − 2−2r

σ2
W

=
1

D
. (8)

On the other hand, the rate pairs that can be achieved over
a MAC with perfect channel output feedback is characterized
by Ozarow [6] as follows:

⋃
0≤ρ≤1

{
(R1, R2) : 0 ≤ R1 ≤ 1

2
log2

(
1 +

P1

σ2
Z

(1 − ρ2)

)
,

0 ≤ R2 ≤ 1

2
log2

(
1 +

P2

σ2
Z

(1 − ρ2)

)
,

0 ≤ R1 + R2 ≤ 1

2
log2

(
1 +

P1 + P2 + 2ρ
√

P1P2

σ2
Z

)}
,

where Pk ≥ 0 is the power allocated to user k, k = 1, 2.
For an equal power allocation of P1 = P2 = P/2, it is

possible to achieve the following rate at each sensor:

min

{
1

2
log2

(
1 +

P

2σ2
Z

(1 − ρ2)

)
,
1

4
log2

(
1 +

P

σ2
Z

(1 + ρ)

)}

for any 0 ≤ ρ ≤ 1.
Assume that M source samples are quantized and trans-

mitted over N channel uses, where M,N → ∞ while M
N

→
0. Then the energy-distortion pair (E,D) is achievable if

RCEO(D) ≤ max
0≤ρ≤1

min
{ E

4σ2
Z

(1 − ρ2) log2 e,

E

4σ2
Z

(1 + ρ) log2 e
}

=
E

4σ2
Z

log2 e. (9)

Note that the maximum in the last step is achieved by set-
ting ρ = 0; that is, no beamforming is required to achieve
the minimum required energy in separate source and channel
coding, and hence, the same performance can be achieved in
the absence of feedback as well.

Using (7) and (9), E(D) is upper bounded by

Esep(D) = σ2
Z log+

e

⎛
⎜⎝ σ2

S

D
(
1 − σ2

W

2

(
1
D

− 1
σ2

S

))2

⎞
⎟⎠ . (10)

6. UNCODED TRANSMISSION
Next, we describe an achievability scheme based on uncoded
transmission. It is well-known that uncoded transmission
achieves the optimal power-distortion tradeoff for point-to-
point systems when the source and channel bandwidths match
[3]. Interestingly, it is shown in [4] that a variant of uncoded
transmission achieves the optimal power-distortion tradeoff
in a point-to-point system even when multiple channel uses
are available per source sample in the presence of perfect
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Fig. 2. E(D) bounds for a (2, 1, 1, 1) sensor network.

channel output feedback. This is achieved by the well-known
Schalkwijk–Kailath (SK) scheme in which the transmitter
sends the estimation error at the receiver in an uncoded fash-
ion. Adapting this scheme to our model, it can also be shown
that E(D) in a point-to-point system (i.e., K = 1), which can
be achieved by separate source and channel coding as shown
in Lemma 3.1, can also be achieved using the SK scheme.
Note that the SK scheme is much simpler than separation and
it operates on a per symbol basis thereby reducing delay.

Much less is known for the case of multiple sensors. In the
sensor network model without feedback, when the source and
channel bandwidths match, it has recently been shown in [1]
that uncoded transmission is optimal in terms of the power-
distortion tradeoff. Since perfect feedback is available in our
model, we study a variant of the SK scheme. The sensors not
only jointly communicate their beliefs about the estimation
error of the receiver, but also update their own estimates about
the source realization at each step. While we do not have a
closed form expression for the minimum required energy for
the SK scheme, we are able to characterize it in a recursive
manner, which is used to obtain the numerical result in the
next section.

7. NUMERICAL RESULTS AND DISCUSSIONS
In Fig. 2, we illustrate the lower and upper bounds on E(D)
for a (2, 1, 1, 1) sensor network. We observe that the opti-
mal tradeoff is achieved in the two asymptotic regimes of
low or high distortion targets. However, while the separation
based scheme performs better in the low distortion regime,
the SK scheme outperforms the separation based scheme as
the target distortion increases, proving the sub-optimality of
source-channel separation for multiple sensors. None of the
schemes meet the proposed lower bound, yet it is possible to
bound the gap between the energy requirement of the separa-
tion based scheme and E(D) in the low distortion regime for
which E(D) goes to infinity.

Lemma 7.1 In a (2, 1, 1, 1) sensor network, the gap between
E(D) and the energy required by the separation scheme is
upper bounded by 1.674 as D → 1/3.

8. CONCLUSIONS
We have introduced and studied a fundamental energy-
distortion function E(D) for sensor networks when perfect
channel output feedback is available at the sensors. E(D)
identifies the optimal energy-distortion tradeoff in the wide-
band limit, that is, when there is no constraint on the available
channel bandwidth per source sample. We have first proven
the optimality of separate source and channel coding in a
point-to-point system in terms of E(D). Then, since the opti-
mality fails in the case of multiple sensors, we have provided
lower and upper bounds on E(D) when there are two sensors.

9. ACKNOWLEDGMENT
The authors would like to acknowledge Lalitha Sankara-
narayanan for many helpful discussions.

10. REFERENCES

[1] M. Gastpar, “Uncoded transmission is exactly optimal
for a simple Gaussian “sensor” network,” IEEE Trans.
Info. Theory, vol. 54, no. 11, pp. 5247–5251, Nov. 2008.

[2] M. Gastpar and M. Vetterli, “Power, spatio-temporal
bandwidth, and distortion in large sensor networks,”
IEEE J. Sel. Areas Commun., vol. 23, no. 4, pp. 745–
754, Apr. 2005.

[3] T. J. Goblick, “Theoretical limitations on the transmis-
sion of data from analog sources,” IEEE Trans. Info.
Theory, vol. 11, pp. 558–567, Oct. 1965.

[4] T. Kailath, “An application of Shannon’s rate-distortion
theory to analog communication over feedback chan-
nels,” Proc. IEEE, vol. 55, no. 6, pp. 1102–1103, Jun.
1967.

[5] Y. Oohama, “Rate-distortion theory for Gaussian mul-
titerminal source coding systems with several side in-
formations at the decoder,” IEEE Trans. Info. Theory,
vol. 51, no. 7, pp. 2577–2593, Jul. 2005.

[6] L. H. Ozarow, “The capacity of the white Gaussian mul-
tiple access channel with feedback,” IEEE Trans. Info.
Theory, vol. 30, no. 4, pp. 623–628, Jul. 1984.

[7] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Minimum en-
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