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Abstract—The capacity region for a multiple access channel
(MAC) with arbitrary sets of common messages was derived
by Han in 1979, extending a result by Slepian and Wolf from
1973. The general characterization by Han involves one auxiliary
random variable per message and one inequality per subset
of messages. In this paper, at first, a special hierarchy of
common messages is identified for which the capacity region is
characterized with generally fewer auxiliary random variables
and inequalities. It is also shown that this characterization
requires no auxiliary random variable for certain message
structures. A procedure is then proposed to transform any
common message structure to this special hierarchy, leading to a
general capacity characterization which generally requires fewer
auxiliary random variables than the one given by Han.

I. I NTRODUCTION

A multiple access channel (MAC) consists of multiple users
transmitting to a common receiver. The capacity region of the
MAC was first characterized by Ahlswede [1] and Liao [2],
assuming independent messages at the users. In this model, the
independence of the transmitted messages prevents the channel
inputs of different users to be chosen as correlated (apart from
possible time-sharing), and the capacity region is characterized
via the set of probability distributions that factorize as the
product of the input distributions of the users [1][2].

A more general model encompasses arbitrarily correlated
sources at the users. This leads to a significantly harder
problem, which remains open in the most general setup, as
the source correlation allows the users to generate correlated
channel inputs [3]. A few special cases have been solved in [4]-
[10]. Among such special cases is the model first considered
by Slepian and Wolf in [7], in which users have access to
a given subset of a number of independent messages. This
scenario generalizes the classical MAC of [1], [2] in which
each independent message is available to only a single user.

Within this class of channels, in [7], the capacity region
is found for a two-user three-message MAC with two pri-
vate and one common messages. An “educated guess” on
the extension of this result to three users (and thus seven
messages, including the three pair-wise common messages
and one common message to all users) is also provided.
Later, it was shown by Pinsker with a simple example that
such guess does not provide the correct capacity region (see
[9]). The correct generalization to a MAC with an arbitrary
number of users and messages is derived by Han in [8]. Han’s
characterization requires one auxiliary random variable for
each of the independent messages. However, it is known that,

in certain special cases, it is possible to describe the capacity
region without resorting to auxiliary random variables which
significantly simplifies the numerical evaluation of the capacity
region. The classical case of a single independent message at
each user studied in [1] and [2], and the case of degraded
message sets studied in [10] are two examples. Our goal in
this paper is to give a generalization of such special cases
and also to provide an alternative capacity characterization for
the general case which would reduce the number of auxiliary
random variables involved.

We identify a special message hierarchy for MACs with
common messages such that the capacity region is described
with a limited number of auxiliary random variables. We
show for a special subset, generalizing [1], [2], [10], no
auxiliaries are needed, unlike the characterization of [8]. Then,
we propose a procedure to characterize the capacity region
of any common message structure with a number of auxiliary
variables smaller than (or, in the worst case, equal to) the gen-
eral description of [8]. The procedure works by transforming
the message set into the identified special message hierarchy
through the definition of additional virtual users.

II. SYSTEM MODEL

We consider M independent messages andK non-
cooperating users. Each user has access to a non-empty
subset of the messages, and all messages are to be conveyed
to a destination over a MAC. We denote the messages by
Wm ∈ Wm for m ∈ [1,M ], and the channel input of user
k by Xk ∈ Xk for k ∈ [1,K]. The discrete memoryless
channel is characterized by a probability mass function (pmf)
p(y|x1, . . . , xK) whereY ∈ Y is the channel output available
at the destination. We denote the set of the messages available
to userk by Ik:

Ik = {Wmk
1
, . . . ,Wmk

ik

}, k ∈ [1,K], (1)

whereik is the number of messages at userk andmk
j ∈ [1,M ]

is the index of thejth message (j ∈ [1, ik]) at userk. Without
loss of generality, we assume thatIi 6= Ij for i 6= j, since,
otherwise, two users with the exact set of messages can be
combined into a single super-user. Similarly, we assume that
no two messages are available to the same set of users.

Definition 2.1: A (2nR1 , . . . , 2nRM , n) code for aK-user
MAC consists ofM setsWm = {1, . . . , 2nRm}, m ∈ [1,M ],
K encoding functions:fk : Wmk

1
× · · · ×Wmk

ik

→ Xn
k , k ∈



[1,K], and a decoding function:h : Yn → W1 × . . .×WM ,
with (Ŵ1, . . . , ŴM ) = h(Yn).

The average probability of error for a code is defined as

Pn
e , Pr{(Ŵ1, . . . , ŴM ) 6= (W1, . . . ,WM )},

whereWj are independent and uniformly distributed in their
domainsWj , j ∈ [1,M ].

Definition 2.2: A rate tuple (R1, . . . , RM ) is said to be
achievableif there exists a sequence of(2nR1 , . . . , 2nRM , n)
codes withPn

e → 0 as n → ∞. The capacity regionis the
closure of the set of all achievable rate tuples.

Theorem 2.1:[8] The capacity region of the MAC at hand
is given by the closure of the convex hull of the set of all rate
tuples(R1, . . . , RM ) satisfying1

∑
j∈M

Rj ≤ I(UM;Y |UMc) (2)

for all M ⊆ [1,M ], for some auxiliary variablesUj ∈ Uj ,
j ∈ [1,M ] and pmf

∏M

j=1p(uj)
∏K

k=1p(xk|umk
1
, ..., umk

ik

)

p(y|x1, . . . , xK). Moreover, the conditional pmfs
p(xk|umk

1
, ..., umk

ik

) can be restricted to take values only in

{0, 1} and |Uj | ≤
∏

k: Wj∈Ik
|Xk|+M .

III. MAC WITH A SPECIAL MESSAGEHIERARCHY

A. Definitions and Associated Message Graph

Our focus here is on a MAC with a special message
hierarchy, which is specified by the following definition.

Definition 3.1: A given MAC with K users andM mes-
sages, where thekth user has access to messagesIk (1) for
k ∈ [1,K], is said to have thespecial message hierarchyif,
for any i 6= j ∈ [1,K], the setIi ∩ Ij is either an empty set
or is equal toIk for somek ∈ [1,K].

This special message hierarchy induces a particular structure
on the message subsetsIks. It is useful to describe this
structure as a graph, in order to ease the description of the
capacity region (see Fig. 1 and 2). We first give some necessary
definitions. A graphG is denoted byG = (V,E) with vertex
setV and edge setE, E ⊆ [V ]2. G is a directed graphif we
have two maps,init : E → V and ter : E → V, assigning an
initial vertex init(e) and a terminal vertexter(e) to each edge
e ∈ E, where init(e) 6= ter(e). Then, edgee is said to be
directed frominit(e) to ter(e), and is denoted by the ordered
pair e = (init(e), ter(e)). A subgraphP = (V ′, E′), with
V ′ = {x0, . . . , xk} ⊆ V andE′ = {e0, . . . , ek−1} ⊆ E, is a
directed path onG if ei is an edge directed fromxi to xi+1 for
all i < k. A directed graph is called arooted directed graph
if there exists a directed path between a vertex designated as
the root and every vertex in the graph. A directed cycle is a
directed path that starts and ends at the same vertex. A directed
graph isacyclic of if it contains no directed cycles.

Definition 3.2: A rooted, directed, acyclic graphG =
(V,E) is referred to as amessage graphif for any e ∈ E
it has no directed path frominit(e) to ter(e) other thane.

It is noted that a message graph is not in general a (directed)
tree, since more than one directed path may exist between

1XM , {Xj : j ∈ M} for any set of indicesM andMc = [1,M ]\M.

two vertices not on the same edge. However, we can define
some terminology similar to trees, which will be useful in the
following. The parentsof a nodexi are defined as the nodes
that are directly connected toxi and are on a path fromxi to
the root. Achild of a vertexxi is a vertex of whichxi is the
parent. The setDk of descendantsof a vertexvk contains all
its children, the children of its children and so forth. Aleaf
is a vertex that does not have a child so its descendant set is
empty. Theancestorsof a vertex are all its parents, the parents
of its parents and so forth.

Definition 3.3: Given a MAC with a message structure as in
(1), theassociated graphΓ = (V,E) is defined as follows. We
haveV = {v0, v1, . . . , vK}, where vertexvk corresponds to
userk in the MAC for k = 1, . . . ,K. We add a directed edge
from vk to vl if Ik ⊂ Il and if there exists noIj , j 6= k, l,
such thatIk ⊂ Ij ⊂ Il. Finally, we add the edges(vk, v0)
if vk has no parent. Root vertexv0 does not correspond to a
user in the network, but is added to the graph to make it a
rooted graph2.

The associated graph for a MAC with any message structure
is a message graph. As an example, consider the6-user MAC
with 4 messages in Fig. 1 and its associated graph in Fig. 2.
The graph has a total of7 vertices, one for each user and a root
v0. Note, for example that, vertexv4 is the parent ofv1 and
v2 since the messagesW1 andW2 are also available at user
4. Vertex v1 has two parents asW1 is also available to user
3. Moreover, examples of descendant sets areD4 = {v1, v2}
andD5 = {v1, v2, v3, v4}. Note that the MAC in this example
has the special message hierarchy.

Definition 3.4: In a message graphΓ = (V,E), we call a
vertex v ∈ V multiple parent(mp) if it has more than one
parent. We denote the set of all mp-vertices inV by M.

Note that a message graph is a tree if and only if there are no
mp-vertices. In the example of Fig. 2 we haveM = {v1} and
the graph is not a tree. As seen below, in the characterization of
the capacity region, users corresponding to mp-vertices need
to be handled in a special way.

B. Capacity Region

We define theprivate messagesof userk as the messages
that are inIk but are not available to any of the users in the
descendant setDk of user k. If Dk is empty, then all the
messages available to userk are its private messages.

Lemma 3.1:If the underlying MAC has the special source
hierarchy, there can be at most one private message for each
userk (and associated vertexvk 6= v0). This private message is
denoted asW (k). Moreover, each messageWj in the system
is a private message for exactly one user, i.e.,Wj = W (k)
for only onek ∈ [1,K].

Proof: Assume thatW1 andW2 are both inIk but not
available to any of the users inDk. Then, there needs to be at
least one user in the MAC such thatW1 ∈ Il butW2 /∈ Il, as
otherwise one can combineW1 andW2 into a single message.
But nowW1 ∈ Ik ∩ Il and thus, by Definition 3.1, we need

2This step may be skipped if there exists a user observing all messages.
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Figure 1. Example of a MAC with a special message hierarchy.

to haveIm = Ik ∩ Il for some userm ∈ [1,M ]. But, since
W2 /∈ Im, we havem 6= k and Im ∈ Dk. However, this
contradicts the initial assumption.

Private messagesW (k) for the MAC in Fig. 1 are also
included in Fig. 2. Forvk 6= v0 let R(vk) denote the rate of
messageW (k). Note that, nodesv4 andv5 having no private
messages haveW (4) = W (5) = ∅ andR(v4) = R(v5) = 0.

Definition 3.5: A graphF = (V ′, E′) is a proper rooted
subgraphof the message graphΓ = (V,E) if V ′ ⊂ V , E′ ⊂
E, v0 ∈ V ′ and for anyv ∈ V ′ all the edges inE that originate
from v belong toE′, i.e., e ∈ E′ if e ∈ E and init(e) ∈ V ′.

Each rooted subgraph corresponds to a set of users, and
this set is considered to be proper if for each message that is
available to a user in the chosen set, all the users that have
access to this message are also included in the set.

For example, in the message graphΓ of Fig. 2, the rooted
subgraph(V ′, E′) with V ′ = {v0, v5, v3, v4, v1} and E′ =
{(v5, v0), (v3v5), (v4, v5), (v1, v3), (v2, v3)} is a proper rooted
subgraph. This subgraph is illustrated with the dotted edges
in Fig. 2. Note that the subgraph withV ′ = {v0, v5, v3, v1}
andE′ = {(v5, v0), (v3v5), (v1, v3)} is not a proper one since
(v1, v5) /∈ E′ even thoughv1 ∈ V ′.

Since each proper rooted subgraphF is defined by
its vertices, with abuse of notation, we will denote
F by its vertex set. In Fig. 2, we have18 proper
rooted subgraphs: v0, {v0, v5}, {v0, v6}, {v0, v5, v3},
{v0, v5, v4}, {v0, v5, v6}, {v0, v5, v3, v4}, {v0, v5, v4, v2},
{v0, v5, v4, v6}, {v0, v5, v3, v6}, {v0, v5, v3, v4, v1}, {v0, v5,
v3, v4, v2}, {v0, v5, v3, v4, v6}, {v0, v5, v3, v4, v1, v2}, {v0, v5,
v3, v4, v1, v6}, {v0, v5, v4, v2, v6}, {v0, v5, v3, v4, v2, v6},
{v0, v5, v3, v4, v1, v2, v6}.

Theorem 3.2:For a MAC with a special message hierarchy
as in Defn. 3.1, the capacity region is the closure of the convex

u1,W1, p(x1) u2,W2, p(x2)

u3,W3, p(x3|x1) u4, ∅, p(x4|x1, x2)

u5, ∅, p(x5|x1, x2, x3, x4)

u6,W4, p(x6)

u0

Figure 2. The message graphΓ corresponding to the MAC in Fig. 1.

hull of the set of all rate tuples(R1, . . . , RM ) satisfying3

0 ≤
∑

v∈FR(v) ≤ I(XF ;Y |XF c , UF c∩M) (3)

for all the proper rooted subgraphsF of the
associated message graphΓ and some pmf∏K

k=1p(x̃k|xDk
, uDk

)p(y|x1, . . . , xK), where x̃k = (xk, uk)
if k ∈ Mand x̃k = xk otherwise.

Proof: A sketch of the proof is given in the Appendix.

The characterization in Theorem 3.2 involves one inequality
per proper rooted subgraphF , each concerning the rates of
the private messages inF . This is unlike Theorem 2.1 by Han
which involves one inequality for each subset of messages.
Moreover, Theorem 3.2 requires one auxiliary variable for
each mp-vertex only, whereas Theorem 2.1 uses one auxiliary
variable per message. It should be noted, however, that it
appears difficult to give general bounds on the cardinality of
the auxiliary variables in Theorem 3.2, unlike for Theorem
2.1. Finally, we remark that Theorem 3.2 generalizes the
capacity region in [7]4 while the following corollary provides
a generalization of the capacity regions in [1], [2] and [10].

Corollary 3.3: The capacity characterization (3) for a MAC
with a special message structure that does not involve any mp-
vertex (i.e., whose message graphΓ is a tree) does not require
any auxiliary random variables.
Some of the inequalities obtained from Theorem 3.2 may
be redundant or trivial. For instance, in Fig. 2, since no
private message is assigned tov0, (v0, v5) or (v0, v5, v4), they
can be ignored (corresponding inequalities are trivial). Also,

3XF , {Xj : vj ∈ V ′} for a proper rooted subgraphF = (V ′, E′),
while XF c , {Xj : vj ∈ V \V ′}.

4Notice that in this case the cardinality of the only auxiliary random variable
can be bounded as shown in [11].



(v0, v5, v3, v4) can be ignored as we already have(v0, v5, v3)
and v4 has no private message (corresponding inequality is
redundant). In general, for all the combinations that include
the same subset of vertices with private messages all but one
can be ignored. Following these arguments, it can be seen
from Theorem 3.2 that the capacity region is the closure of
the convex hull of the rate tuples satisfying

0 ≤ R3 ≤ I(X3, X5;Y |U1, X1, X2, X4, X6)

0 ≤ R1 +R3 ≤ I(X1, X3, X4, X5;Y |X2, X6)

0 ≤ R2 ≤ I(X2, X4, X5;Y |U1, X1, X3, X6)

0 ≤ R1 +R2 +R3 ≤ I(X1, X2, X3, X4, X5;Y |X6)

0 ≤ R2 +R3 ≤ I(X2, X3, X4, X5;Y |U1, X1, X6)

0 ≤ R4 ≤ I(X6;Y |U1, X1, X2, X3, X4, X5)

0 ≤ R3 +R4 ≤ I(X3, X5, X6;Y |U1, X1, X2, X4)

0 ≤ R1 +R3 +R4 ≤ I(X1, X3, X4, X5, X6;Y |X2)

0 ≤ R2 +R4 ≤ I(X2, X4, X5, X6;Y |U1, X1, X3)

0 ≤ R1 +R2 +R3 +R4 ≤ I(X1, X2, X3, X4, X5, X6;Y )

for some joint pmf of the form p(u1, x1) p(x2)
p(x3|u1, x1) p(x4|u1, x1, x2) p(x5|u1, x1, x2, x3, x4) p(x6)
p(y|x1, x2, x3, x4, x5, x6). We would like to remark here that
using the formulation given by Han in [8], for the same MAC,
we would obtain a capacity region characterization defined
by 16 inequalities rather than11, which would involve 4
auxiliary random variables.

IV. MAC WITH GENERAL MESSAGEHIERARCHY

Now, we show that the characterization for the special
message hierarchy given in Section III can be used to obtain
the capacity region in general. Given a MAC with any message
structure, consider all possible pairs of setsIi and Ij with
i 6= j. If Ii ∩ Ij is neither empty nor equal to the message
set of any of the existing users, create a “virtual user” that
has access to messages inIi ∩ Ij but no channel input. After
going through all pairs of users, apply the same procedure in
the new MAC including the virtual users, and repeat until there
is no further need to create virtual users. Since the cardinality
of the message sets of the virtual users will be decreasing at
each stage, this process will stop after finite number of steps.
At the end, we obtain a MAC that satisfies the special message
hierarchy. We can then characterize the capacity region of this
MAC using the technique in Section III. Note that, although
the virtual users have no channel input, since they are all mp-
vertices, there will be one auxiliary random variable associated
with each virtual user.

As an example, consider the same MAC as in Fig. 1 without
user1. The new MAC does not satisfy the special message
hierarchy property since the intersection of the message sets
of user 3 and user4 is {W1}, which neither is empty, nor
corresponds to another user’s message set. We then create a
“virtual” user 1, without a channel input, which has access
to W1. This new MAC satisfies the special message hierarchy
and its message graph is as given in Fig. 2. The capacity region

for the MAC in Fig. 1 without user1 is then obtained as the
closure of the convex hull of the rate tuples satisfying

0 ≤ R3 ≤ I(X3, X5;Y |U1, X2, X4, X6)

0 ≤ R1 +R3 ≤ I(X3, X4, X5;Y |X2, X6)

0 ≤ R2 ≤ I(X2, X4, X5;Y |U1, X3, X6)

0 ≤ R1 +R2 +R3 ≤ I(X2, X3, X4, X5;Y |X6)

0 ≤ R2 +R3 ≤ I(X2, X3, X4, X5;Y |U1, X6)

0 ≤ R4 ≤ I(X6;Y |U1, X2, X3, X4, X5)

0 ≤ R3 +R4 ≤ I(X3, X5, X6;Y |U1, X2, X4)

0 ≤ R1 +R3 +R4 ≤ I(X3, X4, X5, X6;Y |X2)

0 ≤ R2 +R4 ≤ I(X2, X4, X5, X6;Y |U1, X3)

0 ≤ R1 +R2 +R3 +R4 ≤ I(X2, X3, X4, X5, X6;Y )

for some joint pmf p(u1) p(x2) p(x3|u1) p(x4|u1, x2)
p(x5|u1, x2, x3, x4) p(x6) p(y|x2, x3, x4, x5, x6).

After having included all the virtual users as above, one can
potentially reduce the number of auxiliary variables required.
For any virtual user that does not have a private message,
we can assign its auxiliary random variable to be equivalent
to the auxiliaries of its descendants, hence we do not need
an additional auxiliary variable for these users. Consider,
for example, the4 user MAC with I1 = {W1,W2,W3},
I2 = {W2,W3,W4}, I3 = {W2,W5}, I4 = {W3,W6}. Now
following the above algorithm, we end up adding the following
virtual users:I5 = {W2,W3}, I6 = {W2} andI7 = {W3}.
Note that, we will have auxiliary random variables, sayU6 and
U7, assigned to the two virtual users which are the leaves of the
message graph, but we do not need an additional variable for
the virtual user without a private message, and simply assign
it as (U6, U7). Hence, for this example, we can define the
capacity region with only2 auxiliaries and8 inequalities as
opposed to6 auxiliaries and63 inequalities of Thm. 2.1.

In general, the number of auxiliary variables involved will
be less than Theorem 2.1. This follows from the fact that,
in the worst case, we will create one virtual user for each
message in the system. In this case Theorem 3.2 will give us
the same capacity characterization as the one given by Han in
Theorem 2.1. Moreover, even in the case when the numbers
of auxiliaries involved in both characterizations are equal, the
number of inequalities in Theorem 3.2 will be less than or
equal to the ones in Theorem 2.1.

V. CONCLUSIONS

We have considered a MAC with multiple users and mes-
sages, in which each user has access to a certain subset of
the messages. We have provided the corresponding capacity
region under the assumption of a special message hierarchy.
This single-letter capacity region characterization involves less
auxiliary random variables and inequalities than the general
characterization given by [8] and generalizes the results in [1],
[2][10]. We then used this result to give the capacity regionfor
the general MAC with common messages that again requires
in general less auxiliary random variables and inequalities than
the capacity region characterization given in [8].



APPENDIX

A. Achievability

Code Construction: We fix a joint distribution∏K

k=1p(xk, uk|xDk
, uDk

). We start generating the code
from the leaves of the corresponding message graph.
For each leaf vk whose private message isW (k),
generate 2nR(vk) codeword pairs un

k (wk) and xn
k (wk)

wk = 1, 2, ..., 2nR(vk) independent and identically distributed
(i.i.d.) with

∏n

i=1 p(uki) and
∏n

i=1 p(xki), respectively.
For each of the parents of the leaves, generate a separate
codebook for each combination of the messages of its
descendants. For example, consider a parentvk. For each
combination of the messages of its descendants, denoted
by wDk

, generate 2nR(k) codeword pairsun
k (wk) and

xn
k (wk) i.i.d. according to the probability distribution∏n

i=1 p(xki,uki|uDki(wDk
), xDki(wDk

)), where xDki(wDk
)

and uDki(wDk
) correspond to the codewords of the

descendantsDk. Label these codewords asun
k (wk, wDk

) and
xn
k (wk, wDk

) for wk ∈ [1, 2nR(vk)]. We continue similarly
until we reachv0. Sincev0 does not correspond to a user in
the system, it does not have a channel input.

Encoders: Given (W (1), ...,W (M)) = (w1, . . . , wM ) =
w, encoderk transmitsxn

k (w) , xn
k (wmk

1
, . . . , wmk

ik

).
Decoders: The decoder uses a joint typicality

decoder and looks for a tuplew such that
(xn

1 (w), . . . , xn
K(w), un

1 (w), . . . , un
K(w), yn) ∈ T ǫ

n, where
T ǫ
n denotes the set of jointly typical sequences.
Error analysis: Assume (w1, . . . , wM ) = 1

was sent, where1 is a length M vector of 1’s.
We define the following set of events:E1 =
{(Xn

1 (1), . . . , X
n
K(1), Un

1 (1), . . . , U
n
K(1), Y n) /∈ T ǫ

n},
and forb = b1 · · · bM with bi ∈ {0, 1} andb 6= 1,

Eb = {(Xn
1 (b), . . . , X

n
K(b), Un

1 (b), . . . , U
n
K(b), Y n) ∈ T ǫ

n

for somewi 6= 1 if bi = 0, i = 1, . . . ,M}

where we defineXn
1 (b) = Xn

1 (w1, . . . , wM ) such thatwi = 1
if bi = 1. We have a total of2M error events. However, we
observe that all the error events that have a messagewk 6=
1, i.e., bk = 0, correspond to the same induced distribution,
irrespective of the private messages of the ancestors ofvk.
Therefore, we can combine these into a single error event
corresponding to one proper rooted subgraph ofΓ. We can use
the union bound to bound the probability of the union of the
error events, and the proof follows from standard arguments.
Finally, we setUk = Xk if vk /∈ M.

B. Converse

Assume that a sequence of(2nR1 , . . . , 2nRM , n) codes
exists such thatPn

e → 0 asn → ∞. From Fano’s inequality,
we haveH(WΓ|Y n) ≤ nδn with δn → 0 asn → ∞5. This
also leads toH(WF |Y n,WF c) ≤ nδn for any proper rooted
subgraphF of Γ. Then, for anyF , we have

n
∑

v∈FR(v) = H(WF ) = H(WF |WF c)

5We defineWS , {W (k) : vk ∈ S}.

≤ I(WF ;Y
n|WF c) + nδn

=

n∑

i=1

I(WF ;Yi|WF c , Y i−1) + nδn

=

n∑

i=1

I(WF , XF,i;Yi|WF c , XF c,i, Y
i−1) + nδn (4)

≤
n∑

i=1

I(XF,i;Yi|WF c , XF c,i) + nδn (5)

≤
n∑

i=1

I(XF,i;Yi|W
D
F c∩M, XF c,i) + nδn (6)

=

n∑

i=1

I(XF,i;Yi|UF c,i, XF c,i) + nδn (7)

where (4) follows from the fact that the codewords are
functions of the messages and the definition of a proper rooted
subgraph; (5) follows from the facts that conditioning reduces
entropy and(WΓ, Y

i−1) −XΓ,i − Yi forms a Markov chain;
in (6) we defineWD

S , {WDk
: vk ∈ S} and use the fact

that Dk ⊆ F c for vk ∈ F c; and finally in (7) we define
Uk,i , WDk

for vk ∈ M. We then introduce a time-sharing
random variableQ, uniformly distributed over{1, .., n}, in-
dependent from everything else and defineXk , XkQ and
Uk , UkQ for k ∈ [1,K] andY , YQ. This results in a rate
region with all the mutual information terms conditioned on
Q. The channel input distributions are also conditioned onq.

It can also be shown that the joint distribution of the chosen
auxiliary random variables and the channel inputs is of the
form given in Thm. 3.2. This can be done rigorously by
induction on the vertices of the message graph. It can be
shown for the mp vertices that the input distributions of nodes
following an mp are conditionally independent given the set
of messages of the descendants of the mp itself.
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