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Abstract—The capacity region for a multiple access channel in certain special cases, it is possible to describe theoitgpa
(MAC) with arbitrary sets of common messages was derived region without resorting to auxiliary random variables efhi
by Han in 1979, extending a result by Slepian and Wolf from g nificantly simplifies the numerical evaluation of the aipy
1973. The general characterization by Han involves one auidry . The classical f inale ind dent s
random variable per message and one inequality per subset region. the Cas_s'ce_‘ case ol a single Independent message a
of messages. In this paper, at first, a special hierarchy of €ach user studied in [1] and [2], and the case of degraded
common messages is identified for which the capacity regiorsi message sets studied in [10] are two examples. Our goal in
characterized with generally fewer auxiliary random variables this paper is to give a generalization of such special cases
and inequalities. It is also shown that this characterizatbn and also to provide an alternative capacity charactedadtr

requires no auxiliary random variable for certain message th | hich Id red th b f i
structures. A procedure is then proposed to transform any € general case which would reduce the number ot auxifiary

common message structure to this special hierarchy, leadinto a fandom variables involved.
general capacity characterization which generally requies fewer We identify a special message hierarchy for MACs with

auxiliary random variables than the one given by Han. common messages such that the capacity region is described
with a limited number of auxiliary random variables. We
show for a special subset, generalizing [1], [2], [10], no
A multiple access channel (MAC) consists of multiple usersuxiliaries are needed, unlike the characterization of T&en,
transmitting to a common receiver. The capacity region ef thwe propose a procedure to characterize the capacity region
MAC was first characterized by Ahlswede [1] and Liao [2]of any common message structure with a number of auxiliary
assuming independent messages at the users. In this muelyariables smaller than (or, in the worst case, equal to) ére g
independence of the transmitted messages prevents theethagral description of [8]. The procedure works by transforgnin
inputs of different users to be chosen as correlated (apart f the message set into the identified special message higrarch
possible time-sharing), and the capacity region is charaetd through the definition of additional virtual users.
via the set of probability distributions that factorize dee t
product of the input distributions of the users [1][2]. [I. SYsTEM MODEL

A more general model encompasses arbitrarily correlatedwe consider M independent messages and non-
sources at the users. This leads to a significantly hard@joperating users. Each user has access to a non-empty
problem, which remains open in the most general setup, @fset of the messages, and all messages are to be conveyed
the source correlation allows the users to generate ctettlagy 5 destination over a MAC. We denote the messages by
channelinputs [3]. A few special cases have been solvedin [4y7 < W, for m ¢ [1,M], and the channel input of user
[10]. Among such special cases is the model first considergdyy x, € x, for k € [1,K]. The discrete memoryless
by Slepian and Wolf in [7], in which users have access ¥hannel is characterized by a probability mass functionf(pm
a given subset of a number of independent messages. Thig|;,. ... xx) whereY € ) is the channel output available

scenario generalizes the classical MAC of [1], [2] in whicht the destination. We denote the set of the messages deailab
each independent message is available to only a single usgy.yserk, by 7,

Within this class of channels, in [7], the capacity region
is found for a two-user three-message MAC with two pri- Ty = {Wpeo ., Wi }, k€ [1K], (1)
vate and one common messages. An “educated guess” on *
the extension of this result to three users (and thus seviRereiy is the number of messages at usendm’ € [1, M]
messages, including the three pair-wise common messal§eie index of thejth messagej(€ [1,4x]) at userk. Without
and one common message to all users) is also providé$s of generality, we assume that # Z; for i # j, since,
Later, it was shown by Pinsker with a simple example thatherwise, two users with the exact set of messages can be
such guess does not provide the correct capacity region (§88'0ined into a single super-user. Similarly, we assume tha
[9]). The correct generalization to a MAC with an arbitranf’© tWo messages are available to the same set of users.
number of users and messages is derived by Han in [8]. Han'definition 2.1: A (27 ... 2" n) code for aK-user
characterization requires one auxiliary random varialoe fMAC consists ofM setsW,, = {1,...,2"%"}, m € [1, M],
each of the independent messages. However, it is known tHatencoding functionsfy, : Wy > --- x Wy - — Ay, k€

I. INTRODUCTION



[1, K], Aand a dgcoding functior : Y™ — Wy x ... x Wy, two vertices not on the same edge. However, we can define
with (Wy,...,Wy) = h(QJ™). some terminology similar to trees, which will be useful ir th
The average probability of error for a code is defined asfollowing. The parentsof a nodex; are defined as the nodes
n A A A that are directly connected tg and are on a path from; to
P! £ Pr{(Wi,...,Wn) # Wi,...,Wn)}, the root. Achild of a vertexz; is a vertex of whichr; is the
whereW; are independent and uniformly distributed in theiparent. The seD;, of descendantsf a vertexv;, contains all

domainsW;, j € [1, M]. its children, the children of its children and so forth.|éaf
Definition 2.2: A rate tuple (Ry,...,Ry) is said to be is a vertex that does not have a child so its descendant set is

achievableif there exists a sequence "1 ... 2nfm )  empty. Theancestorof a vertex are all its parents, the parents

codes withP? — 0 asn — oo. The capacity regionis the of its parents and so forth.

closure of the set of all achievable rate tuples. Definition 3.3: Given a MAC with a message structure as in
Theorem 2.1:[8] The capacity region of the MAC at hand(1), theassociated graph' = (V, E) is defined as follows. We

is given by the closure of the convex hull of the set of all rateave V' = {vg, v1,...,vk }, Where vertexv;, corresponds to

tuples(Ry, ..., Rys) satisfying userk in the MAC fork =1,..., K. We add a directed edge

from vy to v if Z € Z; and if there exists n@,, j # k, I,
, < : c . J ’

ZJGMRJ S IUM Y |Upae) @ such thatZ;, C Z; C Z;. Finally, we add the edge@y, vo)

for all M C [1, M], for some auxiliary variable$’; € U;, if v; has no parent. Root vertex does not correspond to a

j € [1,M] and pmf [T p(u;) TTi p(wkltiyyy, .o, ) USEr in the network, but is added to the graph to make it a

p(ylz1,...,xx). Moreover, the conditional pkmfs rooted graph
P(Tx |tk -, uys ) €AN be restricted to take values only in The associated graph for a MAC with any message structure
{0,1} and ;] <kﬂ | Xe| + M. is a message graph. As an example, conside6thgser MAC
’ T e Wi with 4 messages in Fig. 1 and its associated graph in Fig. 2.
1. MAC WITH A SPECIAL MESSAGEHIERARCHY The graph has a total Gfvertices, one for each user and a root
A. Definitions and Associated Message Graph vo. Note, for example that, vertex, is the parent ofv; and

Our focus here is on a MAC with a special messagé since the messagd®; and W, are also avqilable at user
hierarchy, which is specified by the following definition, - Vertexv: has two parents ai, is also available to user
Definition 3.1: A given MAC with K users andM mes- 3. Moreover, examples of descendant sets]_mie:_ {v1, 02}
sages, where theth user has access to messageg(1) for 2ndDs = {v1,v2,v3,v4}. Note that the MAC in this example

k € [1,K], is said to have thepecial message hierarctify has the ;pemal.message hierarchy.
for anyi # j € [1, K], the setZ; NZ, is either an empty set Definition 3.4: Iq a message gra_plj = (V,E), we call a
or is equal taZ,, for somek € [LK]'- vertexv € V multiple parent(mp) if it has more than one

This special message hierarchy induces a particular areictP@rent. We denote the set of all mp-verticesirby M.
on the message subsefgs. It is useful to describe this Note Fhat a message graph |sa_\tree if and only if there are no
structure as a graph, in order to ease the description of {RE-Vertices. In the example of Fig. 2 we haw¢ = {v,} and
capacity region (see Fig. 1 and 2). We first give some negessil€ 9raphis notatree. As seen below, in the characterizafio
definitions. A graph is denoted byG = (V, E) with vertex the capacity region, users corresponding to mp-verticesl ne
setV and edge seE, E C [V]2. G is adirected graphif we [0 be handled in a special way.
have two mapsinit : £ — V andter : E — V| assigning an
initial vertexinit(e) and a terminal vertexer(e) to each edge _ .
e € E, whereinit(e) # ter(e). Then, edgee is said to be  We define theprivate messagesf userk as the messages
directed frominit(e) to ter(e), and is denoted by the orderedhat are inZ; but are not available to any of the users in the
pair e = (init(e), ter(e)). A subgraphP = (V’, E’), with descendant seb, of userk. h‘_D;C is empty, then all the
V' = {zo,....,2x} CV andE' = {eg,...,ex_1} C E, is a Messages available to udemre its private messages.
directed path oif if ¢; is an edge directed from; to =, for Lemma 3.1:If the underlying MAC has the special source
all i < k. A directed graph is called moted directed graph hierarchy, there can be at most one private message for each
if there exists a directed path between a vertex designatedugerk (and associated vertex 7 vo). This private message is
the root and every vertex in the graph. A directed cycle isdgnoted asV (k). Moreover, each messagg; in the system
directed path that starts and ends at the same vertex. AatiredS @ private message for exactly one user, I1&;, = W (k)

B. Capacity Region

graph isacyclic of if it contains no directed cycles. for only onek € [1, K. _

Definition 3.2: A rooted, directed, acyclic graplty = Proof: Assume thatiV; and W> are both inZ, but not
(V,E) is referred to as anessage graplif for any e € E available to any of the users if;. Then, there needs to be at
it has no directed path frormit(e) to ter(e) other thane. least one user in the MAC such that, € Z, butW» ¢ 7,, as

Itis noted that a message graph is not in general a (directéff)erwise one can combin&, andW; into a single message.
tree, since more than one directed path may exist betwddt now Wy € Z,, N Z; and thus, by Definition 3.1, we need

IXpq 2 {X;: j € M} for any set of indices\ and M = [1, M]\ M. 2This step may be skipped if there exists a user observing edisages.



X1
W1 User1 o
X
Wa User2 | =2
*—> X3 .’.
W3 User 3 &.Q.p(w5\m1.m2.w3,w4)
Y . R .
p(ylz, ..., x6) Receiver
—> X4 :: .,
User4 |
(W1, Wa, W3, Wy)
‘;3, W3, p(z3]21) Wi 0. p(zgler, @0)
L]
X5 <«
Userb 3 g
X6
W, User6
wy, Wi, p(xq) ug, Wa, p(x2) ug, Wy, p(zg)

Figure 1. Example of a MAC with a special message hierarchy. Figure 2. The message graphcorresponding to the MAC in Fig. 1.

to haveZ,, = 7, N Z; for some usern € [1, M]. But, since hull of the set of all rate tuplegRy, ..., Ry) satisfying
Wy ¢ I_m, we hqyem #* k aqd Z, € Dy. However, this 0< Y, crRW) < I(Xp; Y| Xpe, Upenp) 3)
contradicts the initial assumption. [ ]

Private message®/ (k) for the MAC in Fig. 1 are also for all the proper rooted subgraphsF of the
included in Fig. 2. Fomy, # v let R(v,) denote the rate of associated message graphl’ and some pmf

messagéV (k). Note that, nodes, andvs having no private [T, p(Fxl Dy, up, )p(YlT1, . . ., K ), Wheredy, = (z,ug)
messages havid’ (4) = W(5) = § and R(vs) = R(vs) = 0. if k € Mandz, = z; otherwise.

Definition 3.5: A graph ' = (V', E') is a proper rooted Proof: A sketch of the proof is given in the Appendix.
subgraphof the message graph= (V, E) if V' C V, E' C u

E, v € V' and for anyw € V"’ all the edges irfZ that originate The characterization in Theorem 3.2 involves one inequalit
from v belong toF’, i.e.,e € E' if ¢ € E andinit(e) € V'.  per proper rooted subgraph, each concerning the rates of
Each rooted subgraph corresponds to a set of users, #mglprivate messages in. This is unlike Theorem 2.1 by Han
this set is considered to be proper if for each message thawkich involves one inequality for each subset of messages.
available to a user in the chosen set, all the users that hajereover, Theorem 3.2 requires one auxiliary variable for

access to this message are also included in the set. each mp-vertex only, whereas Theorem 2.1 uses one auxiliary
For example, in the message graphof Fig. 2, the rooted variable per message. It should be noted, however, that it
subgraph(V’, E') with V' = {vg,vs,v3,v4,v1} and B’ = appears difficult to give general bounds on the cardinality o

{(vs,v0), (v3v5), (v4,vs), (v1,v3), (v2,v3)} iS & proper rooted the auxiliary variables in Theorem 3.2, unlike for Theorem
subgraph. This subgraph is illustrated with the dotted sdg 1. Finally, we remark that Theorem 3.2 generalizes the
in Fig. 2. Note that the subgraph with’ = {vg, vs,vs3,v;} Capacity region in [7 while the following corollary provides
andE’ = {(vs,v0), (v3vs), (v1,v3)} is not a proper one since & generalization of the capacity regions in [1], [2] and [10]
(vi,v5) ¢ E’ even thoughy, € V. Corollary 3.3: The capacity characterization (3) for a MAC
Since each proper rooted subgragh is defined by Wwith a special message structure that does not involve ary mp
its vertices, with abuse of notation, we will denoteertex (i.e., whose message grdpis a tree) does not require
F by its vertex set. In Fig. 2, we have8 proper any auxiliary random variables.
rooted subgraphs: vo, {vo,vs}, {vo,v6}, {vo,vs,v3}, Some of the inequalities obtained from Theorem 3.2 may
{vo,vs,v4}, {vo,vs,v6}, {vo,vs,vs,vs}, {vo,vs,vs,v2}, b€ redundant or trivial. For instance, in Fig. 2, since no
{vo,vs,v4,06}, {vo,vs,v3,06}, {v0,vs,v3,0v4,01}, {vo,vs5, Private message is assignedut (vo, vs) or (vo, vs,v4), they
v3, V4, Va2 ¥, {v0, Vs, V3, Va4, V6 }y {V0, U5, U3, V4, 1,02}, {vo,v5, CAN be ignored (corresponding inequalities are trivialsoA

U3,0V4,01,V6},  {V0,V5,V4,V2,V6}, {vo,Vs, V3, Vs, V2, V6 }
T ' Y ' TTer T TR e ' 3Xr £ {X;: v; € V'} for a proper rooted subgraph = (V', E'),

{vo, vs,v3,v4, 1, v2, V6 } . % ] y
K . . . while Xpe = {Xj. v € V\V }
Theorem 3.2:For a MAC with a special message hierarchy “Notice that in this case the cardinality of the only auxjliaandom variable

as in Defn. 3.1, the capacity region is the closure of the egnvcan be bounded as shown in [11].



(vo, vs, v3,v4) €an be ignored as we already hgvg, vs,v3) for the MAC in Fig. 1 without usel is then obtained as the
and v, has no private message (corresponding inequality aglosure of the convex hull of the rate tuples satisfying
redundant). In general, for all the combinations that idelu

the same subset of vertices with private messages all but one 0 < Ry < I(X5, X5; Y|Us, X5, X4, X)
can be ignored. Following these arguments, it can be seen 0 < Ri+ Rs < I(X3, X4, X5;Y| X2, Xe)
from Theorem 3.2 that the capacity region is the closure of 0 < Ry < I(Xo2, X4, X5;Y Uy, X3, X6)
the convex hull of the rate tuples satisfying 0< Ry + Ry + Ry < I(Xa, X3, X4, X5 Y| Xg)
0 < Ry < I(X3, X5;Y|Ur, X1, Xo, X4, Xg) 0 < Ry + Rz < I(Xy, X3, X4, X5; YUy, Xo)
0< R1 “+ R3 < I(Xl, X37X4, X5; Y|X2,X6) 0 < R4 < I(XG; Y|U17X21 X37X4a X5)
0 < Ro < I(X2, X4, X5; Y|Ut, X1, X3, Xg) 0 < Ra + Ry < I(X3, X5, X3 V[U1, X2, Xa)
0< Ri+ Ry + R3 < I(X1, X2, X3, X4, X5; Y| X5) 0 < Ry + Rs+ Ry < I(X3, Xy, X5, X6; Y[ X2)
0 < Ro+ Ry < I(X2, X3, X4, X5: Y|Uy, X1, Xg) 0 < Ry + Ry < I(X2, X4, X5, Xo; Y|U1, X3)
0< Ry <I(Xg;Y|Ur, X1, Xo, X3, X4,X5) O0<Ri+Ro+ R3+ Ry < I(X2, X3, X4, X5, X63Y)
0 <R3+ Ry < I(X3, X5, X6; Y|U1, X1, X5, X4) for some joint pmf p(ui) p(x2) plaslur) plaalur,s)
0< Ri+ R3+ Ry <I(X1, X3, X4, X5, X6; Y| X2) p(zs|ui, L2, X3, 14) p(z6) p(y|x2,_x3, T4,T5,T6).
0 < Ry + Ry < I(Xa, X4, X5, Xo: Y|U1, X1, X3) Afte_r having included all the virtual users as_above, one can
potentially reduce the number of auxiliary variables reegi
0 < Ry + Ry + Ry + Ry < I(Xy, Xo, X3, Xy, X5, X3 Y) For any virtual user that does not have a private message,

we can assign its auxiliary random variable to be equivalent
to the auxiliaries of its descendants, hence we do not need
p(xslur, x1) plwalur, 1, 22) p(rs|ur, x1, 22, 23,24) p(a6)

ply|z1, 22, w3, 24, 75, 7). We would like to remark here that N additional auxiliary variable for these users. Consider

using the formulation given by Han in [8], for the same MACfor_ex?/[r/anV?/, tlr/‘gl uIser_Mﬁ\VC Vv[\gth Izl B %Vl’vy?’ MN/S}’
we would obtain a capacity region characterization defined = {Wa, W5, Wa}, Iy = {Wa, W5}, Iy = {W3, Ws}. Now
by 16 inequalities rather thari1, which would involve 4 c_>||owmgthe above algorithm, we end up adding the follogvin
auxiliary random variables. virtual usersZs = {Ws, W3}, I = {W>2} andZ; = {W3}.
Note that, we will have auxiliary random variables, $ayand
IV. MAC WITH GENERAL MESSAGEHIERARCHY Uz, assigned to the two virtual users which are the leaves of the
message graph, but we do not need an additional variable for

Now, we show that the characterization for the specigle yirtual user without a private message, and simply assig
message hierarchy given in Section Ill can be used to obtgin,g (Us, Ur). Hence, for this example, we can define the
the capacity region in general. Given a MAC with any messaggpacity region with only2 auxiliaries ands inequalities as
structure, consider all possible pairs of sésandZ; with  opnosed ts auxiliaries ands3 inequalities of Thm. 2.1.

i # j. It Z; N1, is neither empty nor equal to the message |n general, the number of auxiliary variables involved will
set of any of the existing users, create a "virtual user” th@k |ess than Theorem 2.1. This follows from the fact that,
has access to message</jm Z; but no channel input. After i, the worst case, we will create one virtual user for each
going through all pairs of users, apply the same procedurefpssage in the system. In this case Theorem 3.2 will give us
the new MAC including the virtual users, and repeat untiféhe the same capacity characterization as the one given by Han in
is no further need to create virtual users. Since the caiyina Theorem 2.1. Moreover. even in the case when the numbers
of the message sets of the virtual users will be decreasingygtyyjliaries involved in both characterizations are dgtre

each stage, this process will stop after finite number ofsstepmber of inequalities in Theorem 3.2 will be less than or
At the end, we obtain a MAC that satisfies the special MessSagR al to the ones in Theorem 2.1.

hierarchy. We can then characterize the capacity regiohisf t

MAC using the technique in Section Ill. Note that, although V. CONCLUSIONS

the virtual users have no channel input, since they are all mp We have considered a MAC with multiple users and mes-

vertices, there will be one auxiliary random variable agged sages, in which each user has access to a certain subset of

with each virtual user. the messages. We have provided the corresponding capacity
As an example, consider the same MAC as in Fig. 1 withotggion under the assumption of a special message hierarchy.

user1l. The new MAC does not satisfy the special messagddis single-letter capacity region characterization lags less

hierarchy property since the intersection of the messatge sauxiliary random variables and inequalities than the ganer

of user3 and user4 is {W;}, which neither is empty, nor characterization given by [8] and generalizes the resnlfs]i

corresponds to another user's message set. We then credt@][40]. We then used this result to give the capacity redam

“virtual” user 1, without a channel input, which has accegbte general MAC with common messages that again requires

to W1. This new MAC satisfies the special message hierarchrygeneral less auxiliary random variables and inequalitian

and its message graph is as given in Fig. 2. The capacityrregthe capacity region characterization given in [8].

for some joint pmf of the form p(ui,xz1) p(x2)



APPENDIX < I(Wgp; Y |Wge) + ndy,

A. Achievability

Code Construction We fix a joint distribution
Hlep(xk,uk|ka,uDk). We start generating the code
from the leaves of the corresponding message graph.
For each leaf v, whose private message sV (k),
generate 2"%(+) codeword pairs u} (wy) and z7(wg)

=Y I(Wp; Yi|Wpe, Y™ ') + nd,
i=1

= ZI(WFvXF.,iQYi|WFC7XFC.,iaYi71) +nd, (4)

i=1

> I(Xpis Yi|Wre, Xpe i) +ndy

wy, = 1,2, ...,2"E@s) independent and identically distributed < (5)
(iid.) with [, p(uri) and [];, p(xk:), respectively. i=1

For each of the parents of the leaves, generate a separate = ) D

codebook for each combination of the messages of its SZI(XFvi’}/i|WFCﬁM7XFC,i)+Tl5n (6)
descendants. For example, consider a paigntFor each 121

combination of the messages of its descendants, denoted ZZI(XFi;YiWFci,XFci)-i-Mn (7)
by wp,, generate 2" (%) codeword pairsu}(wy) and P 7 7 7

aj,(wy) iid. according to the probability distribution nere (4) follows from the fact that the codewords are

Hz‘gl p(@kiukilupgi(wpy), xzki(kar)]), thre xDéci(wf;k functions of the messages and the definition of a proper doote

and up,i(wp,) correspond to the codewords of theypgranh: (5) follows from the facts that conditioning reels:

descendant®,.. Label these codewords ag(z_uk,wpk_) _and entropy and(Wr, Yi~1) — X1, — Y; forms a Markov chain;

wj (wy, wp, ) for wy € [1,2"7)]. We continue similarly ; (6) we defineW? £ {Wp, : v, € S} and use the fact

until we reachvy. Sincewv, does not correspond to a user "}hat D, C Fe for v, € Fc'kand finally in (7) we define

theEsystdem, gdoes not have a er\‘/‘["mmil input. Uk 2 Wp, for vy € M. We then introduce a time-sharing
nco dersk ven (W(i)"“’z/(n ) = (wi,... random variableQ, uniformly distributed ovef{1,..,n}, in-

w, encoderk transmitse (w) = o (Wt - . ’.w_mifk)' __ dependent from everything else and defikig = X, and
Decoders The decoder uses a joint typicality;;, 2 Uk for k € [1, K] andY £ Y,,. This results in a rate
defoder an:lj IOOES for a tuplgw Sufh that yegion with all the mutual information terms conditioned on

(5061 (W), .., 25 (W), uf (W), ..., uf(w),y") € Ty, where o The channel input distributions are also conditioned;on
T, denotes the set of jointly typical sequences. It can also be shown that the joint distribution of the chosen

awM) =

Error  analysis: Assume (wi,...,wn) = auxiliary random variables and the channel inputs is of the
was sent, wherel is a length M vector of 1'S. form given in Thm. 3.2. This can be done rigorously by
We define the following set of eventsi&i = jnquction on the vertices of the message graph. It can be
{(XPA),. . XE (1), U1 (1), Uk (1),Y") ¢ Ti} shown for the mp vertices that the input distributions of emd

and forb = by - - - by with b; € {0,1} andb # 1,
& = {(X7'(b),..., Xg(b),Ul'(b),..., Ug(b),Y") € T,
for somew; #1if b; =0,i=1,...,M}

where we definé(?*(b) = XJ*(wy, ..., wyr) such thaty; =1 [
if b; = 1. We have a total oM error events. However, we 2]
observe that all the error events that have a message*

1, i.e., by = 0, correspond to the same induced distribution/3!
irrespective of the private messages of the ancestors,.of
Therefore, we can combine these into a single error evep
corresponding to one proper rooted subgraph.diVe can use

the union bound to bound the probability of the union of the®!
error events, and the proof follows from standard arguments
Finally, we setUy, = X, if v, ¢ M. (6]

B. Converse

Assume that a sequence ¢2"%1,... 2"Em p) codes
exists such thaP™ — 0 asn — co. From Fano’s inequality, [&]
we haveH (Wr|Y™) < né, with §, — 0 asn — oo®. This [9]
also leads taH (Wg|Y™, Wge) < nd,, for any proper rooted
subgraphF’ of I". Then, for anyF, we have

nY_,epl(v) = H(Wr) = HWp|Wre)

[7

[10]

[11]

SWe defineWs £ {W (k) : v;, € S}.

following an mp are conditionally independent given the set
of messages of the descendants of the mp itself.
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